XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: Classical Chinese
This model is part of our paper called:
- Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages
Check the Space for more details.
Usage
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-lzh")
model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-lzh")
- Downloads last month
- 109
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Dataset used to train wietsedv/xlm-roberta-base-ft-udpos28-lzh
Space using wietsedv/xlm-roberta-base-ft-udpos28-lzh 1
Evaluation results
- English Test accuracy on Universal Dependencies v2.8self-reported33.600
- Dutch Test accuracy on Universal Dependencies v2.8self-reported30.900
- German Test accuracy on Universal Dependencies v2.8self-reported31.100
- Italian Test accuracy on Universal Dependencies v2.8self-reported31.100
- French Test accuracy on Universal Dependencies v2.8self-reported30.300
- Spanish Test accuracy on Universal Dependencies v2.8self-reported30.600
- Russian Test accuracy on Universal Dependencies v2.8self-reported37.100
- Swedish Test accuracy on Universal Dependencies v2.8self-reported35.600
- Norwegian Test accuracy on Universal Dependencies v2.8self-reported32.700
- Danish Test accuracy on Universal Dependencies v2.8self-reported35.000