XLM-RoBERTa base Universal Dependencies v2.8 POS tagging: North Sami
This model is part of our paper called:
- Make the Best of Cross-lingual Transfer: Evidence from POS Tagging with over 100 Languages
Check the Space for more details.
Usage
from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-sme")
model = AutoModelForTokenClassification.from_pretrained("wietsedv/xlm-roberta-base-ft-udpos28-sme")
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Dataset used to train wietsedv/xlm-roberta-base-ft-udpos28-sme
Space using wietsedv/xlm-roberta-base-ft-udpos28-sme 1
Evaluation results
- English Test accuracy on Universal Dependencies v2.8self-reported48.100
- Dutch Test accuracy on Universal Dependencies v2.8self-reported49.500
- German Test accuracy on Universal Dependencies v2.8self-reported40.400
- Italian Test accuracy on Universal Dependencies v2.8self-reported48.900
- French Test accuracy on Universal Dependencies v2.8self-reported43.900
- Spanish Test accuracy on Universal Dependencies v2.8self-reported47.100
- Russian Test accuracy on Universal Dependencies v2.8self-reported57.300
- Swedish Test accuracy on Universal Dependencies v2.8self-reported47.900
- Norwegian Test accuracy on Universal Dependencies v2.8self-reported45.500
- Danish Test accuracy on Universal Dependencies v2.8self-reported50.700