|
import os |
|
from typing import TYPE_CHECKING, List |
|
|
|
import torch |
|
import torchvision |
|
import yaml |
|
from toolkit import train_tools |
|
from toolkit.config_modules import GenerateImageConfig, ModelConfig |
|
from PIL import Image |
|
from toolkit.models.base_model import BaseModel |
|
from diffusers import FluxTransformer2DModel, AutoencoderKL, FluxKontextPipeline |
|
from toolkit.basic import flush |
|
from toolkit.prompt_utils import PromptEmbeds |
|
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler |
|
from toolkit.models.flux import add_model_gpu_splitter_to_flux, bypass_flux_guidance, restore_flux_guidance |
|
from toolkit.dequantize import patch_dequantization_on_save |
|
from toolkit.accelerator import get_accelerator, unwrap_model |
|
from optimum.quanto import freeze, QTensor |
|
from toolkit.util.mask import generate_random_mask, random_dialate_mask |
|
from toolkit.util.quantize import quantize, get_qtype |
|
from transformers import T5TokenizerFast, T5EncoderModel, CLIPTextModel, CLIPTokenizer |
|
from einops import rearrange, repeat |
|
import random |
|
import torch.nn.functional as F |
|
|
|
if TYPE_CHECKING: |
|
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO |
|
|
|
scheduler_config = { |
|
"base_image_seq_len": 256, |
|
"base_shift": 0.5, |
|
"max_image_seq_len": 4096, |
|
"max_shift": 1.15, |
|
"num_train_timesteps": 1000, |
|
"shift": 3.0, |
|
"use_dynamic_shifting": True |
|
} |
|
|
|
|
|
|
|
class FluxKontextModel(BaseModel): |
|
arch = "flux_kontext" |
|
|
|
def __init__( |
|
self, |
|
device, |
|
model_config: ModelConfig, |
|
dtype='bf16', |
|
custom_pipeline=None, |
|
noise_scheduler=None, |
|
**kwargs |
|
): |
|
super().__init__( |
|
device, |
|
model_config, |
|
dtype, |
|
custom_pipeline, |
|
noise_scheduler, |
|
**kwargs |
|
) |
|
self.is_flow_matching = True |
|
self.is_transformer = True |
|
self.target_lora_modules = ['FluxTransformer2DModel'] |
|
|
|
|
|
@staticmethod |
|
def get_train_scheduler(): |
|
return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config) |
|
|
|
def get_bucket_divisibility(self): |
|
return 16 |
|
|
|
def load_model(self): |
|
dtype = self.torch_dtype |
|
self.print_and_status_update("Loading Flux Kontext model") |
|
|
|
model_path = self.model_config.name_or_path |
|
|
|
|
|
|
|
base_model_path = self.model_config.extras_name_or_path |
|
|
|
transformer_path = model_path |
|
transformer_subfolder = 'transformer' |
|
|
|
|
|
if model_path.endswith('.safetensors'): |
|
|
|
self.print_and_status_update("Loading transformer from safetensors file") |
|
from safetensors.torch import load_file |
|
from diffusers.models.transformers.transformer_flux import FluxTransformer2DModel |
|
|
|
|
|
transformer_config_path = os.path.join(base_model_path, 'transformer', 'config.json') |
|
if not os.path.exists(transformer_config_path): |
|
|
|
transformer = FluxTransformer2DModel.from_pretrained( |
|
"black-forest-labs/FLUX.1-dev", |
|
subfolder="transformer", |
|
torch_dtype=dtype |
|
) |
|
else: |
|
transformer = FluxTransformer2DModel.from_pretrained( |
|
base_model_path, |
|
subfolder="transformer", |
|
torch_dtype=dtype |
|
) |
|
|
|
|
|
state_dict = load_file(model_path) |
|
transformer.load_state_dict(state_dict, strict=False) |
|
else: |
|
|
|
if os.path.exists(transformer_path): |
|
transformer_subfolder = None |
|
transformer_path = os.path.join(transformer_path, 'transformer') |
|
|
|
te_folder_path = os.path.join(model_path, 'text_encoder') |
|
|
|
if os.path.exists(te_folder_path): |
|
base_model_path = model_path |
|
|
|
self.print_and_status_update("Loading transformer") |
|
transformer = FluxTransformer2DModel.from_pretrained( |
|
transformer_path, |
|
subfolder=transformer_subfolder, |
|
torch_dtype=dtype |
|
) |
|
transformer.to(self.quantize_device, dtype=dtype) |
|
|
|
if self.model_config.quantize: |
|
|
|
patch_dequantization_on_save(transformer) |
|
quantization_type = get_qtype(self.model_config.qtype) |
|
self.print_and_status_update("Quantizing transformer") |
|
quantize(transformer, weights=quantization_type, |
|
**self.model_config.quantize_kwargs) |
|
freeze(transformer) |
|
transformer.to(self.device_torch) |
|
else: |
|
transformer.to(self.device_torch, dtype=dtype) |
|
|
|
flush() |
|
|
|
self.print_and_status_update("Loading T5") |
|
tokenizer_2 = T5TokenizerFast.from_pretrained( |
|
base_model_path, subfolder="tokenizer_2", torch_dtype=dtype |
|
) |
|
text_encoder_2 = T5EncoderModel.from_pretrained( |
|
base_model_path, subfolder="text_encoder_2", torch_dtype=dtype |
|
) |
|
text_encoder_2.to(self.device_torch, dtype=dtype) |
|
flush() |
|
|
|
if self.model_config.quantize_te: |
|
self.print_and_status_update("Quantizing T5") |
|
quantize(text_encoder_2, weights=get_qtype( |
|
self.model_config.qtype)) |
|
freeze(text_encoder_2) |
|
flush() |
|
|
|
self.print_and_status_update("Loading CLIP") |
|
text_encoder = CLIPTextModel.from_pretrained( |
|
base_model_path, subfolder="text_encoder", torch_dtype=dtype) |
|
tokenizer = CLIPTokenizer.from_pretrained( |
|
base_model_path, subfolder="tokenizer", torch_dtype=dtype) |
|
text_encoder.to(self.device_torch, dtype=dtype) |
|
|
|
self.print_and_status_update("Loading VAE") |
|
vae = AutoencoderKL.from_pretrained( |
|
base_model_path, subfolder="vae", torch_dtype=dtype) |
|
|
|
self.noise_scheduler = FluxKontextModel.get_train_scheduler() |
|
|
|
self.print_and_status_update("Making pipe") |
|
|
|
pipe: FluxKontextPipeline = FluxKontextPipeline( |
|
scheduler=self.noise_scheduler, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
text_encoder_2=None, |
|
tokenizer_2=tokenizer_2, |
|
vae=vae, |
|
transformer=None, |
|
) |
|
|
|
pipe.text_encoder_2 = text_encoder_2 |
|
pipe.transformer = transformer |
|
|
|
self.print_and_status_update("Preparing Model") |
|
|
|
text_encoder = [pipe.text_encoder, pipe.text_encoder_2] |
|
tokenizer = [pipe.tokenizer, pipe.tokenizer_2] |
|
|
|
pipe.transformer = pipe.transformer.to(self.device_torch) |
|
|
|
flush() |
|
|
|
text_encoder[0].to(self.device_torch) |
|
text_encoder[0].requires_grad_(False) |
|
text_encoder[0].eval() |
|
text_encoder[1].to(self.device_torch) |
|
text_encoder[1].requires_grad_(False) |
|
text_encoder[1].eval() |
|
pipe.transformer = pipe.transformer.to(self.device_torch) |
|
flush() |
|
|
|
|
|
self.vae = vae |
|
self.text_encoder = text_encoder |
|
self.tokenizer = tokenizer |
|
self.model = pipe.transformer |
|
self.pipeline = pipe |
|
self.print_and_status_update("Model Loaded") |
|
|
|
def get_generation_pipeline(self): |
|
scheduler = FluxKontextModel.get_train_scheduler() |
|
|
|
pipeline: FluxKontextPipeline = FluxKontextPipeline( |
|
scheduler=scheduler, |
|
text_encoder=unwrap_model(self.text_encoder[0]), |
|
tokenizer=self.tokenizer[0], |
|
text_encoder_2=unwrap_model(self.text_encoder[1]), |
|
tokenizer_2=self.tokenizer[1], |
|
vae=unwrap_model(self.vae), |
|
transformer=unwrap_model(self.transformer) |
|
) |
|
|
|
pipeline = pipeline.to(self.device_torch) |
|
|
|
return pipeline |
|
|
|
def generate_single_image( |
|
self, |
|
pipeline: FluxKontextPipeline, |
|
gen_config: GenerateImageConfig, |
|
conditional_embeds: PromptEmbeds, |
|
unconditional_embeds: PromptEmbeds, |
|
generator: torch.Generator, |
|
extra: dict, |
|
): |
|
if gen_config.ctrl_img is None: |
|
raise ValueError( |
|
"Control image is required for Flux Kontext model generation." |
|
) |
|
else: |
|
control_img = Image.open(gen_config.ctrl_img) |
|
control_img = control_img.convert("RGB") |
|
img = pipeline( |
|
image=control_img, |
|
prompt_embeds=conditional_embeds.text_embeds, |
|
pooled_prompt_embeds=conditional_embeds.pooled_embeds, |
|
height=gen_config.height, |
|
width=gen_config.width, |
|
num_inference_steps=gen_config.num_inference_steps, |
|
guidance_scale=gen_config.guidance_scale, |
|
latents=gen_config.latents, |
|
generator=generator, |
|
**extra |
|
).images[0] |
|
return img |
|
|
|
def get_noise_prediction( |
|
self, |
|
latent_model_input: torch.Tensor, |
|
timestep: torch.Tensor, |
|
text_embeddings: PromptEmbeds, |
|
guidance_embedding_scale: float, |
|
bypass_guidance_embedding: bool, |
|
**kwargs |
|
): |
|
with torch.no_grad(): |
|
bs, c, h, w = latent_model_input.shape |
|
|
|
has_control = False |
|
if latent_model_input.shape[1] == 32: |
|
|
|
|
|
lat, control = torch.chunk(latent_model_input, 2, dim=1) |
|
latent_model_input = torch.cat([lat, control], dim=0) |
|
has_control = True |
|
|
|
latent_model_input_packed = rearrange( |
|
latent_model_input, |
|
"b c (h ph) (w pw) -> b (h w) (c ph pw)", |
|
ph=2, |
|
pw=2 |
|
) |
|
|
|
img_ids = torch.zeros(h // 2, w // 2, 3) |
|
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] |
|
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] |
|
img_ids = repeat(img_ids, "h w c -> b (h w) c", |
|
b=bs).to(self.device_torch) |
|
|
|
|
|
if has_control: |
|
ctrl_ids = img_ids.clone() |
|
ctrl_ids[..., 0] = 1 |
|
img_ids = torch.cat([img_ids, ctrl_ids], dim=1) |
|
|
|
|
|
txt_ids = torch.zeros( |
|
bs, text_embeddings.text_embeds.shape[1], 3).to(self.device_torch) |
|
|
|
|
|
if self.unet_unwrapped.config.guidance_embeds: |
|
if isinstance(guidance_embedding_scale, list): |
|
guidance = torch.tensor( |
|
guidance_embedding_scale, device=self.device_torch) |
|
else: |
|
guidance = torch.tensor( |
|
[guidance_embedding_scale], device=self.device_torch) |
|
guidance = guidance.expand(latent_model_input.shape[0]) |
|
else: |
|
guidance = None |
|
|
|
if bypass_guidance_embedding: |
|
bypass_flux_guidance(self.unet) |
|
|
|
cast_dtype = self.unet.dtype |
|
|
|
if txt_ids.ndim == 3: |
|
txt_ids = txt_ids[0] |
|
if img_ids.ndim == 3: |
|
img_ids = img_ids[0] |
|
|
|
latent_size = latent_model_input_packed.shape[1] |
|
|
|
if has_control: |
|
latent, control = torch.chunk(latent_model_input_packed, 2, dim=0) |
|
latent_model_input_packed = torch.cat( |
|
[latent, control], dim=1 |
|
) |
|
latent_size = latent.shape[1] |
|
|
|
noise_pred = self.unet( |
|
hidden_states=latent_model_input_packed.to( |
|
self.device_torch, cast_dtype), |
|
timestep=timestep / 1000, |
|
encoder_hidden_states=text_embeddings.text_embeds.to( |
|
self.device_torch, cast_dtype), |
|
pooled_projections=text_embeddings.pooled_embeds.to( |
|
self.device_torch, cast_dtype), |
|
txt_ids=txt_ids, |
|
img_ids=img_ids, |
|
guidance=guidance, |
|
return_dict=False, |
|
**kwargs, |
|
)[0] |
|
|
|
|
|
noise_pred = noise_pred[:, :latent_size] |
|
|
|
if isinstance(noise_pred, QTensor): |
|
noise_pred = noise_pred.dequantize() |
|
|
|
noise_pred = rearrange( |
|
noise_pred, |
|
"b (h w) (c ph pw) -> b c (h ph) (w pw)", |
|
h=latent_model_input.shape[2] // 2, |
|
w=latent_model_input.shape[3] // 2, |
|
ph=2, |
|
pw=2, |
|
c=self.vae.config.latent_channels |
|
) |
|
|
|
if bypass_guidance_embedding: |
|
restore_flux_guidance(self.unet) |
|
|
|
return noise_pred |
|
|
|
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds: |
|
if self.pipeline.text_encoder.device != self.device_torch: |
|
self.pipeline.text_encoder.to(self.device_torch) |
|
prompt_embeds, pooled_prompt_embeds = train_tools.encode_prompts_flux( |
|
self.tokenizer, |
|
self.text_encoder, |
|
prompt, |
|
max_length=512, |
|
) |
|
pe = PromptEmbeds( |
|
prompt_embeds |
|
) |
|
pe.pooled_embeds = pooled_prompt_embeds |
|
return pe |
|
|
|
def get_model_has_grad(self): |
|
|
|
return self.model.proj_out.weight.requires_grad |
|
|
|
def get_te_has_grad(self): |
|
|
|
return self.text_encoder[1].encoder.block[0].layer[0].SelfAttention.q.weight.requires_grad |
|
|
|
def save_model(self, output_path, meta, save_dtype): |
|
|
|
transformer: FluxTransformer2DModel = unwrap_model(self.model) |
|
transformer.save_pretrained( |
|
save_directory=os.path.join(output_path, 'transformer'), |
|
safe_serialization=True, |
|
) |
|
|
|
meta_path = os.path.join(output_path, 'aitk_meta.yaml') |
|
with open(meta_path, 'w') as f: |
|
yaml.dump(meta, f) |
|
|
|
def get_loss_target(self, *args, **kwargs): |
|
noise = kwargs.get('noise') |
|
batch = kwargs.get('batch') |
|
return (noise - batch.latents).detach() |
|
|
|
def condition_noisy_latents(self, latents: torch.Tensor, batch:'DataLoaderBatchDTO'): |
|
with torch.no_grad(): |
|
control_tensor = batch.control_tensor |
|
if control_tensor is not None: |
|
self.vae.to(self.device_torch) |
|
|
|
control_tensor = control_tensor * 2 - 1 |
|
control_tensor = control_tensor.to(self.vae_device_torch, dtype=self.torch_dtype) |
|
|
|
|
|
if batch.tensor is not None: |
|
target_h, target_w = batch.tensor.shape[2], batch.tensor.shape[3] |
|
else: |
|
|
|
target_h = batch.file_items[0].crop_height |
|
target_w = batch.file_items[0].crop_width |
|
|
|
if control_tensor.shape[2] != target_h or control_tensor.shape[3] != target_w: |
|
control_tensor = F.interpolate(control_tensor, size=(target_h, target_w), mode='bilinear') |
|
|
|
control_latent = self.encode_images(control_tensor).to(latents.device, latents.dtype) |
|
latents = torch.cat((latents, control_latent), dim=1) |
|
|
|
return latents.detach() |