wwwtwwwt's picture
End of training
0711cb3 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-large-cased
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-large-cased-NER-Model
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: test
          args: conll2003
        metrics:
          - name: Precision
            type: precision
            value: 0.90625
          - name: Recall
            type: recall
            value: 0.9190864022662889
          - name: F1
            type: f1
            value: 0.9126230661040787
          - name: Accuracy
            type: accuracy
            value: 0.9824916550016152

bert-large-cased-NER-Model

This model is a fine-tuned version of bert-large-cased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1281
  • Precision: 0.9062
  • Recall: 0.9191
  • F1: 0.9126
  • Accuracy: 0.9825

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0319 1.0 1756 0.1147 0.9025 0.9198 0.9111 0.9822
0.0113 2.0 3512 0.1281 0.9062 0.9191 0.9126 0.9825

Framework versions

  • Transformers 4.51.1
  • Pytorch 2.5.1+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.0