This repo contains a low-rank adapter for LLaMA-7b fit on the Cleaned Alpaca dataset (with the new GPT-4 training data).

This version of the weights was trained with the following hyperparameters:

Cleaned dataset: Snapshot April 8, 2023
Epochs: 6 (Checkpoint with lowest eval loss at 3.6 epochs uploaded here)
Validation set size: 1500
Batch size: 128
Micro batch size: 8
Cutoff length: 512
Learning rate: 3e-4
Lora r: 16
Lora target modules: q_proj, k_proj, v_proj, o_proj

That is:

python finetune.py
--base_model='yahma/llama-7b-hf'
--data_path 'yahma/alpaca-cleaned'
--num_epochs=6
--cutoff_len=512
--output_dir='./lora-alpaca'
--lora_target_modules='[q_proj,k_proj, v_proj, o_proj]'
--lora_r=16
--val_set_size 1500
--micro_batch_size=8

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Dataset used to train yahma/alpaca-7b-lora