|  | --- | 
					
						
						|  | base_model: | 
					
						
						|  | - Qwen/Qwen2.5-VL-7B-Instruct | 
					
						
						|  | license: apache-2.0 | 
					
						
						|  | library_name: transformers | 
					
						
						|  | pipeline_tag: image-text-to-text | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | ## Overview | 
					
						
						|  | OpenVLThinker-7B is a vision-language reasoning model designed to handle multimodal tasks. It is especially tuned for visual mathematical problem-solving. | 
					
						
						|  |  | 
					
						
						|  | For more details: [Blog](https://yihe-deng.notion.site/openvlthinker), [GitHub](https://github.com/yihedeng9/OpenVLThinker) | 
					
						
						|  |  | 
					
						
						|  | ## How to use | 
					
						
						|  | ```python | 
					
						
						|  | from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration | 
					
						
						|  | import torch | 
					
						
						|  | from qwen_vl_utils import process_vision_info | 
					
						
						|  | import requests | 
					
						
						|  | from PIL import Image | 
					
						
						|  |  | 
					
						
						|  | # 1. Define model and processor names | 
					
						
						|  | model_name = "ydeng9/OpenVLThinker-7B" | 
					
						
						|  | processor_name = "Qwen/Qwen2.5-VL-7B-Instruct" | 
					
						
						|  |  | 
					
						
						|  | # 2. Load the OpenVLThinker-7B model and processor | 
					
						
						|  | device = "cuda:0" if torch.cuda.is_available() else "cpu" | 
					
						
						|  | model = Qwen2_5_VLForConditionalGeneration.from_pretrained( | 
					
						
						|  | model_name, | 
					
						
						|  | torch_dtype=torch.bfloat16, | 
					
						
						|  | attn_implementation="flash_attention_2", | 
					
						
						|  | device_map=device | 
					
						
						|  | ) | 
					
						
						|  | processor = AutoProcessor.from_pretrained(processor_name) | 
					
						
						|  |  | 
					
						
						|  | # 3. Define a sample image URL and an instruction | 
					
						
						|  | image_url = "https://example.com/sample_image.jpg"  # replace with your image URL | 
					
						
						|  | instruction = "Example question" | 
					
						
						|  |  | 
					
						
						|  | # 4. Create a multimodal prompt using a chat message structure | 
					
						
						|  | messages = [ | 
					
						
						|  | { | 
					
						
						|  | "role": "user", | 
					
						
						|  | "content": [ | 
					
						
						|  | {"type": "image", "image": image_url}, | 
					
						
						|  | {"type": "text", "text": instruction}, | 
					
						
						|  | ], | 
					
						
						|  | } | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | # 5. Generate a text prompt from the chat messages | 
					
						
						|  | text_prompt = processor.apply_chat_template( | 
					
						
						|  | messages, tokenize=False, add_generation_prompt=True | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | # 6. Process image (and video) inputs from the messages | 
					
						
						|  | image_inputs, video_inputs = process_vision_info(messages) | 
					
						
						|  | inputs = processor( | 
					
						
						|  | text=[text_prompt], | 
					
						
						|  | images=image_inputs, | 
					
						
						|  | videos=video_inputs, | 
					
						
						|  | padding=True, | 
					
						
						|  | return_tensors="pt", | 
					
						
						|  | ).to(device) | 
					
						
						|  |  | 
					
						
						|  | # 7. Generate the model's response (with specified generation parameters) | 
					
						
						|  | generated_ids = model.generate( | 
					
						
						|  | **inputs, | 
					
						
						|  | do_sample=True, | 
					
						
						|  | max_new_tokens=2048, | 
					
						
						|  | top_p=0.001, | 
					
						
						|  | top_k=1, | 
					
						
						|  | temperature=0.01, | 
					
						
						|  | repetition_penalty=1.0, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | # 8. Decode the generated tokens into human-readable text | 
					
						
						|  | generated_text = processor.batch_decode( | 
					
						
						|  | generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False | 
					
						
						|  | )[0] | 
					
						
						|  |  | 
					
						
						|  | # 9. Print the generated response | 
					
						
						|  | print("Generated Response:") | 
					
						
						|  | print(generated_text) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ### Citation | 
					
						
						|  | ```text | 
					
						
						|  | @misc{deng2025openvlthinker, | 
					
						
						|  | title={OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement}, | 
					
						
						|  | author={Yihe Deng and Hritik Bansal and Fan Yin and Nanyun Peng and Wei Wang and Kai-Wei Chang}, | 
					
						
						|  | year={2025}, | 
					
						
						|  | eprint={2503.17352}, | 
					
						
						|  | archivePrefix={arXiv}, | 
					
						
						|  | primaryClass={cs.CV}, | 
					
						
						|  | url={https://arxiv.org/abs/2503.17352}, | 
					
						
						|  | } | 
					
						
						|  | ``` |