|
--- |
|
library_name: transformers |
|
license: cc-by-sa-4.0 |
|
base_model: klue/bert-base |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: bert-base-nsmc |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-base-nsmc |
|
|
|
This model is a fine-tuned version of [klue/bert-base](https://huggingface.co/klue/bert-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.0262 |
|
- Train Accuracy: 0.9925 |
|
- Validation Loss: 0.5354 |
|
- Validation Accuracy: 0.8766 |
|
- Epoch: 4 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 5e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 5e-05, 'decay_steps': 1058, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 117, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |
|
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:| |
|
| 0.3931 | 0.8180 | 0.3096 | 0.8686 | 0 | |
|
| 0.2118 | 0.9166 | 0.3170 | 0.8698 | 1 | |
|
| 0.1043 | 0.9649 | 0.4012 | 0.8770 | 2 | |
|
| 0.0459 | 0.9855 | 0.4940 | 0.8746 | 3 | |
|
| 0.0262 | 0.9925 | 0.5354 | 0.8766 | 4 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.48.3 |
|
- TensorFlow 2.18.0 |
|
- Tokenizers 0.21.0 |
|
|