Model Details

Model Description

An adapter for the google/vit-base-patch16-224 ViT trained on CIFAR10 classification task

Loading guide

from transformers import AutoModelForImageClassification

labels2title = ['plane', 'car', 'bird', 'cat',
    'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
model = AutoModelForImageClassification.from_pretrained(
    'google/vit-base-patch16-224-in21k',
    num_labels=len(labels2title),
    id2label={i: c for i, c in enumerate(labels2title)},
    label2id={c: i for i, c in enumerate(labels2title)}
)
model.load_adapter("yturkunov/cifar10_vit16_lora")

Learning curves

image/png

Recommendations to input

The model expects an image that has went through the following preprocessing stages:

  • Scaling range:
  • Normalization parameters:
  • Dimensions: 224x224
  • Number of channels: 3

Inference on 3x4 random sample

image/png

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Dataset used to train yturkunov/cifar10_vit16_lora