LogSAD / model_ensemble.py
zhiqing0205
Add basic Python scripts and documentation
74acc06
import os
# Set cache directories to use checkpoint folder for model downloads
os.environ['TORCH_HOME'] = './checkpoint'
os.environ['HF_HOME'] = './checkpoint/huggingface'
os.environ['TRANSFORMERS_CACHE'] = './checkpoint/huggingface/transformers'
os.environ['HF_HUB_CACHE'] = './checkpoint/huggingface/hub'
# Create checkpoint subdirectories if they don't exist
os.makedirs('./checkpoint/huggingface/transformers', exist_ok=True)
os.makedirs('./checkpoint/huggingface/hub', exist_ok=True)
import torch
from torch import nn
from torchvision.transforms import v2
from torchvision.transforms.v2.functional import resize
import cv2
import json
import torch
import random
import logging
import argparse
import numpy as np
from PIL import Image
from skimage import measure
from tabulate import tabulate
from torchvision.ops.focal_loss import sigmoid_focal_loss
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
from sklearn.metrics import auc, roc_auc_score, average_precision_score, f1_score, precision_recall_curve, pairwise
from sklearn.mixture import GaussianMixture
import faiss
import open_clip_local as open_clip
from torch.utils.data.dataset import ConcatDataset
from scipy.optimize import linear_sum_assignment
from sklearn.random_projection import SparseRandomProjection
import cv2
from torchvision.transforms import InterpolationMode
from PIL import Image
import string
from prompt_ensemble import encode_text_with_prompt_ensemble, encode_normal_text, encode_abnormal_text, encode_general_text, encode_obj_text
from kmeans_pytorch import kmeans, kmeans_predict
from scipy.optimize import linear_sum_assignment
from scipy.stats import norm
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
from matplotlib import pyplot as plt
import pickle
from scipy.stats import norm
from open_clip_local.pos_embed import get_2d_sincos_pos_embed
from anomalib.models.components import KCenterGreedy
def to_np_img(m):
m = m.permute(1, 2, 0).cpu().numpy()
mean = np.array([[[0.48145466, 0.4578275, 0.40821073]]])
std = np.array([[[0.26862954, 0.26130258, 0.27577711]]])
m = m * std + mean
return np.clip((m * 255.), 0, 255).astype(np.uint8)
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
class MyModel(nn.Module):
"""Example model class for track 2.
This class applies few-shot anomaly detection using the WinClip model from Anomalib.
"""
def __init__(self) -> None:
super().__init__()
setup_seed(42)
# NOTE: Create your transformation pipeline (if needed).
self.device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
self.transform = v2.Compose(
[
v2.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)),
],
)
# NOTE: Create your model.
self.model_clip, _, _ = open_clip.create_model_and_transforms('hf-hub:laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K')
self.tokenizer = open_clip.get_tokenizer('hf-hub:laion/CLIP-ViT-L-14-DataComp.XL-s13B-b90K')
self.feature_list = [6, 12, 18, 24]
self.embed_dim = 768
self.vision_width = 1024
self.model_sam = sam_model_registry["vit_h"](checkpoint = "./checkpoint/sam_vit_h_4b8939.pth").to(self.device)
self.mask_generator = SamAutomaticMaskGenerator(model = self.model_sam)
self.memory_size = 2048
self.n_neighbors = 2
self.model_clip.eval()
self.test_args = None
self.align_corners = True # False
self.antialias = True # False
self.inter_mode = 'bilinear' # bilinear/bicubic
self.cluster_feature_id = [0, 1]
self.cluster_num_dict = {
"breakfast_box": 3, # unused
"juice_bottle": 8, # unused
"splicing_connectors": 10, # unused
"pushpins": 10,
"screw_bag": 10,
}
self.query_words_dict = {
"breakfast_box": ['orange', "nectarine", "cereals", "banana chips", 'almonds', 'white box', 'black background'],
"juice_bottle": ['bottle', ['black background', 'background']],
"pushpins": [['pushpin', 'pin'], ['plastic box', 'black background']],
"screw_bag": [['screw'], 'plastic bag', 'background'],
"splicing_connectors": [['splicing connector', 'splice connector',], ['cable', 'wire'], ['grid']],
}
self.foreground_label_idx = { # for query_words_dict
"breakfast_box": [0, 1, 2, 3, 4, 5],
"juice_bottle": [0],
"pushpins": [0],
"screw_bag": [0],
"splicing_connectors":[0, 1]
}
self.patch_query_words_dict = {
"breakfast_box": ['orange', "nectarine", "cereals", "banana chips", 'almonds', 'white box', 'black background'],
"juice_bottle": [['glass'], ['liquid in bottle'], ['fruit'], ['label', 'tag'], ['black background', 'background']],
"pushpins": [['pushpin', 'pin'], ['plastic box', 'black background']],
"screw_bag": [['hex screw', 'hexagon bolt'], ['hex nut', 'hexagon nut'], ['ring washer', 'ring gasket'], ['plastic bag', 'background']], # 79.71
"splicing_connectors": [['splicing connector', 'splice connector',], ['cable', 'wire'], ['grid']],
}
self.query_threshold_dict = {
"breakfast_box": [0., 0., 0., 0., 0., 0., 0.], # unused
"juice_bottle": [0., 0., 0.], # unused
"splicing_connectors": [0.15, 0.15, 0.15, 0., 0.], # unused
"pushpins": [0.2, 0., 0., 0.],
"screw_bag": [0., 0., 0.,],
}
self.feat_size = 64
self.ori_feat_size = 32
self.visualization = False #False # True #False
self.pushpins_count = 15
self.splicing_connectors_count = [2, 3, 5] # coresponding to yellow, blue, and red
self.splicing_connectors_distance = 0
self.splicing_connectors_cable_color_query_words_dict = [['yellow cable', 'yellow wire'], ['blue cable', 'blue wire'], ['red cable', 'red wire']]
self.juice_bottle_liquid_query_words_dict = [['red liquid', 'cherry juice'], ['yellow liquid', 'orange juice'], ['milky liquid']]
self.juice_bottle_fruit_query_words_dict = ['cherry', ['tangerine', 'orange'], 'banana']
# query words
self.foreground_pixel_hist = 0
self.foreground_pixel_hist_screw_bag = 366.0 # 4-shot statistics
self.foreground_pixel_hist_splicing_connectors = 4249.666666666667 # 4-shot statistics
# patch query words
self.patch_token_hist = []
self.few_shot_inited = False
self.save_coreset_features = False
from dinov2.dinov2.hub.backbones import dinov2_vitl14
self.model_dinov2 = dinov2_vitl14()
self.model_dinov2.to(self.device)
self.model_dinov2.eval()
self.feature_list_dinov2 = [6, 12, 18, 24]
self.vision_width_dinov2 = 1024
self.stats = pickle.load(open("memory_bank/statistic_scores_model_ensemble_val.pkl", "rb"))
self.mem_instance_masks = None
self.anomaly_flag = False
self.validation = False #True #False
def set_save_coreset_features(self, save_coreset_features):
self.save_coreset_features = save_coreset_features
def set_viz(self, viz):
self.visualization = viz
def set_val(self, val):
self.validation = val
def forward(self, batch: torch.Tensor, batch_path: list) -> dict[str, torch.Tensor]:
"""Transform the input batch and pass it through the model.
This model returns a dictionary with the following keys
- ``anomaly_map`` - Anomaly map.
- ``pred_score`` - Predicted anomaly score.
"""
self.anomaly_flag = False
batch = self.transform(batch).to(self.device)
results = self.forward_one_sample(batch, self.mem_patch_feature_clip_coreset, self.mem_patch_feature_dinov2_coreset, batch_path[0])
hist_score = results['hist_score']
structural_score = results['structural_score']
instance_hungarian_match_score = results['instance_hungarian_match_score']
if self.validation:
return {"hist_score": torch.tensor(hist_score), "structural_score": torch.tensor(structural_score), "instance_hungarian_match_score": torch.tensor(instance_hungarian_match_score)}
def sigmoid(z):
return 1/(1 + np.exp(-z))
# standardization
standard_structural_score = (structural_score - self.stats[self.class_name]["structural_scores"]["mean"]) / self.stats[self.class_name]["structural_scores"]["unbiased_std"]
standard_instance_hungarian_match_score = (instance_hungarian_match_score - self.stats[self.class_name]["instance_hungarian_match_scores"]["mean"]) / self.stats[self.class_name]["instance_hungarian_match_scores"]["unbiased_std"]
pred_score = max(standard_instance_hungarian_match_score, standard_structural_score)
pred_score = sigmoid(pred_score)
if self.anomaly_flag:
pred_score = 1.
self.anomaly_flag = False
return {"pred_score": torch.tensor(pred_score), "hist_score": torch.tensor(hist_score), "structural_score": torch.tensor(structural_score), "instance_hungarian_match_score": torch.tensor(instance_hungarian_match_score)}
def forward_one_sample(self, batch: torch.Tensor, mem_patch_feature_clip_coreset: torch.Tensor, mem_patch_feature_dinov2_coreset: torch.Tensor, path: str):
with torch.no_grad():
image_features, patch_tokens, proj_patch_tokens = self.model_clip.encode_image(batch, self.feature_list)
# image_features /= image_features.norm(dim=-1, keepdim=True)
patch_tokens = [p[:, 1:, :] for p in patch_tokens]
patch_tokens = [p.reshape(p.shape[0]*p.shape[1], p.shape[2]) for p in patch_tokens]
patch_tokens_clip = torch.cat(patch_tokens, dim=-1) # (1, 1024, 1024x4)
# patch_tokens_clip = torch.cat(patch_tokens[2:], dim=-1) # (1, 1024, 1024x2)
patch_tokens_clip = patch_tokens_clip.view(1, self.ori_feat_size, self.ori_feat_size, -1).permute(0, 3, 1, 2)
patch_tokens_clip = F.interpolate(patch_tokens_clip, size=(self.feat_size, self.feat_size), mode=self.inter_mode, align_corners=self.align_corners)
patch_tokens_clip = patch_tokens_clip.permute(0, 2, 3, 1).view(-1, self.vision_width * len(self.feature_list))
patch_tokens_clip = F.normalize(patch_tokens_clip, p=2, dim=-1) # (1x64x64, 1024x4)
with torch.no_grad():
patch_tokens_dinov2 = self.model_dinov2.forward_features(batch, out_layer_list=self.feature_list)
patch_tokens_dinov2 = torch.cat(patch_tokens_dinov2, dim=-1) # (1, 1024, 1024x4)
patch_tokens_dinov2 = patch_tokens_dinov2.view(1, self.ori_feat_size, self.ori_feat_size, -1).permute(0, 3, 1, 2)
patch_tokens_dinov2 = F.interpolate(patch_tokens_dinov2, size=(self.feat_size, self.feat_size), mode=self.inter_mode, align_corners=self.align_corners)
patch_tokens_dinov2 = patch_tokens_dinov2.permute(0, 2, 3, 1).view(-1, self.vision_width_dinov2 * len(self.feature_list_dinov2))
patch_tokens_dinov2 = F.normalize(patch_tokens_dinov2, p=2, dim=-1) # (1x64x64, 1024x4)
'''adding for kmeans seg '''
if self.feat_size != self.ori_feat_size:
proj_patch_tokens = proj_patch_tokens.view(1, self.ori_feat_size, self.ori_feat_size, -1).permute(0, 3, 1, 2)
proj_patch_tokens = F.interpolate(proj_patch_tokens, size=(self.feat_size, self.feat_size), mode=self.inter_mode, align_corners=self.align_corners)
proj_patch_tokens = proj_patch_tokens.permute(0, 2, 3, 1).view(self.feat_size * self.feat_size, self.embed_dim)
proj_patch_tokens = F.normalize(proj_patch_tokens, p=2, dim=-1)
mid_features = None
for layer in self.cluster_feature_id:
temp_feat = patch_tokens[layer]
mid_features = temp_feat if mid_features is None else torch.cat((mid_features, temp_feat), -1)
if self.feat_size != self.ori_feat_size:
mid_features = mid_features.view(1, self.ori_feat_size, self.ori_feat_size, -1).permute(0, 3, 1, 2)
mid_features = F.interpolate(mid_features, size=(self.feat_size, self.feat_size), mode=self.inter_mode, align_corners=self.align_corners)
mid_features = mid_features.permute(0, 2, 3, 1).view(-1, self.vision_width * len(self.cluster_feature_id))
mid_features = F.normalize(mid_features, p=2, dim=-1)
results = self.histogram(batch, mid_features, proj_patch_tokens, self.class_name, os.path.dirname(path).split('/')[-1] + "_" + os.path.basename(path).split('.')[0])
hist_score = results['score']
'''calculate patchcore'''
anomaly_maps_patchcore = []
if self.class_name in ['pushpins', 'screw_bag']: # clip feature for patchcore
len_feature_list = len(self.feature_list)
for patch_feature, mem_patch_feature in zip(patch_tokens_clip.chunk(len_feature_list, dim=-1), mem_patch_feature_clip_coreset.chunk(len_feature_list, dim=-1)):
patch_feature = F.normalize(patch_feature, dim=-1)
mem_patch_feature = F.normalize(mem_patch_feature, dim=-1)
normal_map_patchcore = (patch_feature @ mem_patch_feature.T)
normal_map_patchcore = (normal_map_patchcore.max(1)[0]).cpu().numpy() # 1: normal 0: abnormal
anomaly_map_patchcore = 1 - normal_map_patchcore
anomaly_maps_patchcore.append(anomaly_map_patchcore)
if self.class_name in ['splicing_connectors', 'breakfast_box', 'juice_bottle']: # dinov2 feature for patchcore
len_feature_list = len(self.feature_list_dinov2)
for patch_feature, mem_patch_feature in zip(patch_tokens_dinov2.chunk(len_feature_list, dim=-1), mem_patch_feature_dinov2_coreset.chunk(len_feature_list, dim=-1)):
patch_feature = F.normalize(patch_feature, dim=-1)
mem_patch_feature = F.normalize(mem_patch_feature, dim=-1)
normal_map_patchcore = (patch_feature @ mem_patch_feature.T)
normal_map_patchcore = (normal_map_patchcore.max(1)[0]).cpu().numpy() # 1: normal 0: abnormal
anomaly_map_patchcore = 1 - normal_map_patchcore
anomaly_maps_patchcore.append(anomaly_map_patchcore)
structural_score = np.stack(anomaly_maps_patchcore).mean(0).max()
# anomaly_map_structural = np.stack(anomaly_maps_patchcore).mean(0).reshape(self.feat_size, self.feat_size)
instance_masks = results["instance_masks"]
anomaly_instances_hungarian = []
instance_hungarian_match_score = 1.
if self.mem_instance_masks is not None and len(instance_masks) != 0:
for patch_feature, mem_instance_features_single_stage in zip(patch_tokens_clip.chunk(len_feature_list, dim=-1), self.mem_instance_features_multi_stage.chunk(len_feature_list, dim=1)):
instance_features = [patch_feature[mask, :].mean(0, keepdim=True) for mask in instance_masks]
instance_features = torch.cat(instance_features, dim=0)
instance_features = F.normalize(instance_features, dim=-1)
normal_instance_hungarian = (instance_features @ mem_instance_features_single_stage.T)
cost_matrix = (1 - normal_instance_hungarian).cpu().numpy()
row_ind, col_ind = linear_sum_assignment(cost_matrix)
cost = cost_matrix[row_ind, col_ind].sum()
cost = cost / min(cost_matrix.shape)
anomaly_instances_hungarian.append(cost)
instance_hungarian_match_score = np.mean(anomaly_instances_hungarian)
results = {'hist_score': hist_score, 'structural_score': structural_score, 'instance_hungarian_match_score': instance_hungarian_match_score}
return results
def histogram(self, image, cluster_feature, proj_patch_token, class_name, path):
def plot_results_only(sorted_anns):
cur = 1
img_color = np.zeros((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1]))
for ann in sorted_anns:
m = ann['segmentation']
img_color[m] = cur
cur += 1
return img_color
def merge_segmentations(a, b, background_class):
unique_labels_a = np.unique(a)
unique_labels_b = np.unique(b)
max_label_a = unique_labels_a.max()
label_map = np.zeros(max_label_a + 1, dtype=int)
for label_a in unique_labels_a:
mask_a = (a == label_a)
labels_b = b[mask_a]
if labels_b.size > 0:
count_b = np.bincount(labels_b, minlength=unique_labels_b.max() + 1)
label_map[label_a] = np.argmax(count_b)
else:
label_map[label_a] = background_class # default background
merged_a = label_map[a]
return merged_a
pseudo_labels = kmeans_predict(cluster_feature, self.cluster_centers, 'euclidean', device=self.device)
kmeans_mask = torch.ones_like(pseudo_labels) * (self.classes - 1) # default to background
for pl in pseudo_labels.unique():
mask = (pseudo_labels == pl).reshape(-1)
# filter small region
binary = mask.cpu().numpy().reshape(self.feat_size, self.feat_size).astype(np.uint8)
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary, connectivity=8)
for i in range(1, num_labels):
temp_mask = labels == i
if np.sum(temp_mask) <= 8:
mask[temp_mask.reshape(-1)] = False
if mask.any():
region_feature = proj_patch_token[mask, :].mean(0, keepdim=True)
similarity = (region_feature @ self.query_obj.T)
prob, index = torch.max(similarity, dim=-1)
temp_label = index.squeeze(0).item()
temp_prob = prob.squeeze(0).item()
if temp_prob > self.query_threshold_dict[class_name][temp_label]: # threshold for each class
kmeans_mask[mask] = temp_label
raw_image = to_np_img(image[0])
height, width = raw_image.shape[:2]
masks = self.mask_generator.generate(raw_image)
# self.predictor.set_image(raw_image)
kmeans_label = pseudo_labels.view(self.feat_size, self.feat_size).cpu().numpy()
kmeans_mask = kmeans_mask.view(self.feat_size, self.feat_size).cpu().numpy()
patch_similarity = (proj_patch_token @ self.patch_query_obj.T)
patch_mask = patch_similarity.argmax(-1)
patch_mask = patch_mask.view(self.feat_size, self.feat_size).cpu().numpy()
sorted_masks = sorted(masks, key=(lambda x: x['area']), reverse=True)
sam_mask = plot_results_only(sorted_masks).astype(np.int)
resized_mask = cv2.resize(kmeans_mask, (width, height), interpolation = cv2.INTER_NEAREST)
merge_sam = merge_segmentations(sam_mask, resized_mask, background_class=self.classes-1)
resized_patch_mask = cv2.resize(patch_mask, (width, height), interpolation = cv2.INTER_NEAREST)
patch_merge_sam = merge_segmentations(sam_mask, resized_patch_mask, background_class=self.patch_query_obj.shape[0]-1)
# filter small region for merge sam
binary = np.isin(merge_sam, self.foreground_label_idx[self.class_name]).astype(np.uint8) # foreground 1 background 0
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary, connectivity=8)
for i in range(1, num_labels):
temp_mask = labels == i
if np.sum(temp_mask) <= 32: # 448x448
merge_sam[temp_mask] = self.classes - 1 # set to background
# filter small region for patch merge sam
binary = (patch_merge_sam != (self.patch_query_obj.shape[0]-1) ).astype(np.uint8) # foreground 1 background 0
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary, connectivity=8)
for i in range(1, num_labels):
temp_mask = labels == i
if np.sum(temp_mask) <= 32: # 448x448
patch_merge_sam[temp_mask] = self.patch_query_obj.shape[0]-1 # set to background
score = 0. # default to normal
self.anomaly_flag = False
instance_masks = []
if self.class_name == 'pushpins':
# object count hist
kernel = np.ones((3, 3), dtype=np.uint8) # dilate for robustness
binary = np.isin(merge_sam, self.foreground_label_idx[self.class_name]).astype(np.uint8) # foreground 1 background 0
dilate_binary = cv2.dilate(binary, kernel)
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(dilate_binary, connectivity=8)
pushpins_count = num_labels - 1 # number of pushpins
for i in range(1, num_labels):
instance_mask = (labels == i).astype(np.uint8)
instance_mask = cv2.resize(instance_mask, (self.feat_size, self.feat_size), interpolation = cv2.INTER_NEAREST)
if instance_mask.any():
instance_masks.append(instance_mask.astype(np.bool).reshape(-1))
if self.few_shot_inited and pushpins_count != self.pushpins_count and self.anomaly_flag is False:
self.anomaly_flag = True
print('number of pushpins: {}, but canonical number of pushpins: {}'.format(pushpins_count, self.pushpins_count))
# patch hist
clip_patch_hist = np.bincount(patch_mask.reshape(-1), minlength=self.patch_query_obj.shape[0])
clip_patch_hist = clip_patch_hist / np.linalg.norm(clip_patch_hist)
if self.few_shot_inited:
patch_hist_similarity = (clip_patch_hist @ self.patch_token_hist.T)
score = 1 - patch_hist_similarity.max()
binary_foreground = dilate_binary.astype(np.uint8)
if len(instance_masks) != 0:
instance_masks = np.stack(instance_masks) #[N, 64x64]
if self.visualization:
image_list = [raw_image, kmeans_label, kmeans_mask, patch_mask, sam_mask, merge_sam, patch_merge_sam, binary_foreground]
title_list = ['raw image', 'k-means', 'kmeans mask', 'patch mask', 'sam mask', 'merge sam mask', 'patch merge sam', 'binary_foreground']
plt.figure(figsize=(20, 3))
for ind, (temp_title, temp_image) in enumerate(zip(title_list, image_list), start=1):
plt.subplot(1, len(image_list), ind)
plt.imshow(temp_image)
plt.title(temp_title)
plt.margins(0, 0)
plt.axis('off')
# Extract relative path from class_name onwards
if class_name in path:
relative_path = path.split(class_name, 1)[-1]
if relative_path.startswith('/'):
relative_path = relative_path[1:]
save_path = f'visualization/full_data/{class_name}/{relative_path}.png'
else:
save_path = f'visualization/full_data/{class_name}/{path}.png'
os.makedirs(os.path.dirname(save_path), exist_ok=True)
plt.tight_layout()
plt.savefig(save_path, bbox_inches='tight', dpi=150)
plt.close()
# todo: same number in total but in different boxes or broken box
return {"score": score, "clip_patch_hist": clip_patch_hist, "instance_masks": instance_masks}
elif self.class_name == 'splicing_connectors':
# object count hist for default
sam_mask_max_area = sorted_masks[0]['segmentation'] # background
binary = (sam_mask_max_area == 0).astype(np.uint8) # sam_mask_max_area is background, background 0 foreground 1
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary, connectivity=8)
count = 0
for i in range(1, num_labels):
temp_mask = labels == i
if np.sum(temp_mask) <= 64: # 448x448 64
binary[temp_mask] = 0 # set to background
else:
count += 1
if count != 1 and self.anomaly_flag is False: # cable cut or no cable or no connector
print('number of connected component in splicing_connectors: {}, but the default connected component is 1.'.format(count))
self.anomaly_flag = True
merge_sam[~(binary.astype(np.bool))] = self.query_obj.shape[0] - 1 # remove noise
patch_merge_sam[~(binary.astype(np.bool))] = self.patch_query_obj.shape[0] - 1 # remove patch noise
# erode the cable and divide into left and right parts
kernel = np.ones((23, 23), dtype=np.uint8)
erode_binary = cv2.erode(binary, kernel)
h, w = erode_binary.shape
distance = 0
left, right = erode_binary[:, :int(w/2)], erode_binary[:, int(w/2):]
left_count = np.bincount(left.reshape(-1), minlength=self.classes)[1] # foreground
right_count = np.bincount(right.reshape(-1), minlength=self.classes)[1] # foreground
# binary_cable = (merge_sam == 1).astype(np.uint8)
binary_cable = (patch_merge_sam == 1).astype(np.uint8)
kernel = np.ones((5, 5), dtype=np.uint8)
binary_cable = cv2.erode(binary_cable, kernel)
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_cable, connectivity=8)
for i in range(1, num_labels):
temp_mask = labels == i
if np.sum(temp_mask) <= 64: # 448x448
binary_cable[temp_mask] = 0 # set to background
binary_cable = cv2.resize(binary_cable, (self.feat_size, self.feat_size), interpolation = cv2.INTER_NEAREST)
binary_clamps = (patch_merge_sam == 0).astype(np.uint8)
kernel = np.ones((5, 5), dtype=np.uint8)
binary_clamps = cv2.erode(binary_clamps, kernel)
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_clamps, connectivity=8)
for i in range(1, num_labels):
temp_mask = labels == i
if np.sum(temp_mask) <= 64: # 448x448
binary_clamps[temp_mask] = 0 # set to background
else:
instance_mask = temp_mask.astype(np.uint8)
instance_mask = cv2.resize(instance_mask, (self.feat_size, self.feat_size), interpolation = cv2.INTER_NEAREST)
if instance_mask.any():
instance_masks.append(instance_mask.astype(np.bool).reshape(-1))
binary_clamps = cv2.resize(binary_clamps, (self.feat_size, self.feat_size), interpolation = cv2.INTER_NEAREST)
binary_connector = cv2.resize(binary, (self.feat_size, self.feat_size), interpolation = cv2.INTER_NEAREST)
query_cable_color = encode_obj_text(self.model_clip, self.splicing_connectors_cable_color_query_words_dict, self.tokenizer, self.device)
cable_feature = proj_patch_token[binary_cable.astype(np.bool).reshape(-1), :].mean(0, keepdim=True)
idx_color = (cable_feature @ query_cable_color.T).argmax(-1).squeeze(0).item()
foreground_pixel_count = np.sum(erode_binary) / self.splicing_connectors_count[idx_color]
slice_cable = binary[:, int(w/2)-1: int(w/2)+1]
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(slice_cable, connectivity=8)
cable_count = num_labels - 1
if cable_count != 1 and self.anomaly_flag is False: # two cables
print('number of cable count in splicing_connectors: {}, but the default cable count is 1.'.format(cable_count))
self.anomaly_flag = True
# {2-clamp: yellow 3-clamp: blue 5-clamp: red} cable color and clamp number mismatch
if self.few_shot_inited and self.foreground_pixel_hist_splicing_connectors != 0 and self.anomaly_flag is False:
ratio = foreground_pixel_count / self.foreground_pixel_hist_splicing_connectors
if (ratio > 1.2 or ratio < 0.8) and self.anomaly_flag is False: # color and number mismatch
print('cable color and number of clamps mismatch, cable color idx: {} (0: yellow 2-clamp, 1: blue 3-clamp, 2: red 5-clamp), foreground_pixel_count :{}, canonical foreground_pixel_hist: {}.'.format(idx_color, foreground_pixel_count, self.foreground_pixel_hist_splicing_connectors))
self.anomaly_flag = True
# left right hist for symmetry
ratio = np.sum(left_count) / (np.sum(right_count) + 1e-5)
if self.few_shot_inited and (ratio > 1.2 or ratio < 0.8) and self.anomaly_flag is False: # left right asymmetry in clamp
print('left and right connectors are not symmetry.')
self.anomaly_flag = True
# left and right centroids distance
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(erode_binary, connectivity=8)
if num_labels - 1 == 2:
centroids = centroids[1:]
x1, y1 = centroids[0]
x2, y2 = centroids[1]
distance = np.sqrt((x1/w - x2/w)**2 + (y1/h - y2/h)**2)
if self.few_shot_inited and self.splicing_connectors_distance != 0 and self.anomaly_flag is False:
ratio = distance / self.splicing_connectors_distance
if ratio < 0.6 or ratio > 1.4: # too short or too long centroids distance (cable) # 0.6 1.4
print('cable is too short or too long.')
self.anomaly_flag = True
# patch hist
sam_patch_hist = np.bincount(patch_merge_sam.reshape(-1), minlength=self.patch_query_obj.shape[0])#[:-1] # ignore background (grid) for statistic
sam_patch_hist = sam_patch_hist / np.linalg.norm(sam_patch_hist)
if self.few_shot_inited:
patch_hist_similarity = (sam_patch_hist @ self.patch_token_hist.T)
score = 1 - patch_hist_similarity.max()
# todo mismatch cable link
binary_foreground = binary.astype(np.uint8) # only 1 instance, so additionally seperate cable and clamps
if binary_connector.any():
instance_masks.append(binary_connector.astype(np.bool).reshape(-1))
if binary_clamps.any():
instance_masks.append(binary_clamps.astype(np.bool).reshape(-1))
if binary_cable.any():
instance_masks.append(binary_cable.astype(np.bool).reshape(-1))
if len(instance_masks) != 0:
instance_masks = np.stack(instance_masks) #[N, 64x64]
if self.visualization:
image_list = [raw_image, kmeans_label, kmeans_mask, patch_mask, sam_mask, binary_connector, merge_sam, patch_merge_sam, erode_binary, binary_cable, binary_clamps]
title_list = ['raw image', 'k-means', 'kmeans mask', 'patch mask', 'sam mask', 'binary_connector', 'merge sam', 'patch merge sam', 'erode binary', 'binary_cable', 'binary_clamps']
plt.figure(figsize=(25, 3))
for ind, (temp_title, temp_image) in enumerate(zip(title_list, image_list), start=1):
plt.subplot(1, len(image_list), ind)
plt.imshow(temp_image)
plt.title(temp_title)
plt.margins(0, 0)
plt.axis('off')
# Extract relative path from class_name onwards
if class_name in path:
relative_path = path.split(class_name, 1)[-1]
if relative_path.startswith('/'):
relative_path = relative_path[1:]
save_path = f'visualization/full_data/{class_name}/{relative_path}.png'
else:
save_path = f'visualization/full_data/{class_name}/{path}.png'
os.makedirs(os.path.dirname(save_path), exist_ok=True)
plt.tight_layout()
plt.savefig(save_path, bbox_inches='tight', dpi=150)
plt.close()
return {"score": score, "foreground_pixel_count": foreground_pixel_count, "distance": distance, "sam_patch_hist": sam_patch_hist, "instance_masks": instance_masks}
elif self.class_name == 'screw_bag':
# pixel hist of kmeans mask
foreground_pixel_count = np.sum(np.bincount(kmeans_mask.reshape(-1))[:len(self.foreground_label_idx[self.class_name])]) # foreground pixel
if self.few_shot_inited and self.foreground_pixel_hist_screw_bag != 0 and self.anomaly_flag is False:
ratio = foreground_pixel_count / self.foreground_pixel_hist_screw_bag
# todo: optimize
if ratio < 0.94 or ratio > 1.06: # 82.95 | 81.3
print('foreground pixel histagram of screw bag: {}, the canonical foreground pixel histogram of screw bag in few shot: {}'.format(foreground_pixel_count, self.foreground_pixel_hist_screw_bag))
self.anomaly_flag = True
# patch hist
binary_screw = np.isin(kmeans_mask, self.foreground_label_idx[self.class_name])
patch_mask[~binary_screw] = self.patch_query_obj.shape[0] - 1 # remove patch noise
resized_binary_screw = cv2.resize(binary_screw.astype(np.uint8), (patch_merge_sam.shape[1], patch_merge_sam.shape[0]), interpolation = cv2.INTER_NEAREST)
patch_merge_sam[~(resized_binary_screw.astype(np.bool))] = self.patch_query_obj.shape[0] - 1 # remove patch noise
clip_patch_hist = np.bincount(patch_mask.reshape(-1), minlength=self.patch_query_obj.shape[0])[:-1]
clip_patch_hist = clip_patch_hist / np.linalg.norm(clip_patch_hist)
if self.few_shot_inited:
patch_hist_similarity = (clip_patch_hist @ self.patch_token_hist.T)
score = 1 - patch_hist_similarity.max()
for i in range(self.patch_query_obj.shape[0]-1):
binary_foreground = (patch_merge_sam == i).astype(np.uint8)
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_foreground, connectivity=8)
for i in range(1, num_labels):
instance_mask = (labels == i).astype(np.uint8)
instance_mask = cv2.resize(instance_mask, (self.feat_size, self.feat_size), interpolation = cv2.INTER_NEAREST)
if instance_mask.any():
instance_masks.append(instance_mask.astype(np.bool).reshape(-1))
if len(instance_masks) != 0:
instance_masks = np.stack(instance_masks) #[N, 64x64]
if self.visualization:
image_list = [raw_image, kmeans_label, kmeans_mask, patch_mask, sam_mask, merge_sam, patch_merge_sam, binary_foreground]
title_list = ['raw image', 'k-means', 'kmeans mask', 'patch mask', 'sam mask', 'merge sam mask', 'patch merge sam', 'binary_foreground']
plt.figure(figsize=(20, 3))
for ind, (temp_title, temp_image) in enumerate(zip(title_list, image_list), start=1):
plt.subplot(1, len(image_list), ind)
plt.imshow(temp_image)
plt.title(temp_title)
plt.margins(0, 0)
plt.axis('off')
# Extract relative path from class_name onwards
if class_name in path:
relative_path = path.split(class_name, 1)[-1]
if relative_path.startswith('/'):
relative_path = relative_path[1:]
save_path = f'visualization/full_data/{class_name}/{relative_path}.png'
else:
save_path = f'visualization/full_data/{class_name}/{path}.png'
os.makedirs(os.path.dirname(save_path), exist_ok=True)
plt.tight_layout()
plt.savefig(save_path, bbox_inches='tight', dpi=150)
plt.close()
# plt.axis('off')
# plt.imshow(patch_merge_sam)
# plt.savefig('pic/vis/{}_seg_{}.png'.format(class_name, path), bbox_inches='tight', pad_inches = 0) # pad_inches = 0
# plt.close()
return {"score": score, "foreground_pixel_count": foreground_pixel_count, "clip_patch_hist": clip_patch_hist, "instance_masks": instance_masks}
elif self.class_name == 'breakfast_box':
# patch hist
sam_patch_hist = np.bincount(patch_merge_sam.reshape(-1), minlength=self.patch_query_obj.shape[0])
sam_patch_hist = sam_patch_hist / np.linalg.norm(sam_patch_hist)
if self.few_shot_inited:
patch_hist_similarity = (sam_patch_hist @ self.patch_token_hist.T)
score = 1 - patch_hist_similarity.max()
# todo: exist of foreground
binary_foreground = (patch_merge_sam != (self.patch_query_obj.shape[0] - 1)).astype(np.uint8)
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_foreground, connectivity=8)
for i in range(1, num_labels):
instance_mask = (labels == i).astype(np.uint8)
instance_mask = cv2.resize(instance_mask, (self.feat_size, self.feat_size), interpolation = cv2.INTER_NEAREST)
if instance_mask.any():
instance_masks.append(instance_mask.astype(np.bool).reshape(-1))
if len(instance_masks) != 0:
instance_masks = np.stack(instance_masks) #[N, 64x64]
if self.visualization:
image_list = [raw_image, kmeans_label, kmeans_mask, patch_mask, sam_mask, merge_sam, patch_merge_sam, binary_foreground]
title_list = ['raw image', 'k-means', 'kmeans mask', 'patch mask', 'sam mask', 'merge sam mask', 'patch merge sam', 'binary_foreground']
plt.figure(figsize=(20, 3))
for ind, (temp_title, temp_image) in enumerate(zip(title_list, image_list), start=1):
plt.subplot(1, len(image_list), ind)
plt.imshow(temp_image)
plt.title(temp_title)
plt.margins(0, 0)
plt.axis('off')
# Extract relative path from class_name onwards
if class_name in path:
relative_path = path.split(class_name, 1)[-1]
if relative_path.startswith('/'):
relative_path = relative_path[1:]
save_path = f'visualization/full_data/{class_name}/{relative_path}.png'
else:
save_path = f'visualization/full_data/{class_name}/{path}.png'
os.makedirs(os.path.dirname(save_path), exist_ok=True)
plt.tight_layout()
plt.savefig(save_path, bbox_inches='tight', dpi=150)
plt.close()
# plt.axis('off')
# plt.imshow(patch_merge_sam)
# plt.savefig('pic/vis/{}_seg_{}.png'.format(class_name, path), bbox_inches='tight', pad_inches = 0) # pad_inches = 0
# plt.close()
return {"score": score, "sam_patch_hist": sam_patch_hist, "instance_masks": instance_masks}
elif self.class_name == 'juice_bottle':
# remove noise due to non sam mask
merge_sam[sam_mask == 0] = self.classes - 1
patch_merge_sam[sam_mask == 0] = self.patch_query_obj.shape[0] - 1 # 79.5
# [['glass'], ['liquid in bottle'], ['fruit'], ['label', 'tag'], ['black background', 'background']],
# fruit and liquid mismatch (todo if exist)
resized_patch_merge_sam = cv2.resize(patch_merge_sam, (self.feat_size, self.feat_size), interpolation = cv2.INTER_NEAREST)
binary_liquid = (resized_patch_merge_sam == 1)
binary_fruit = (resized_patch_merge_sam == 2)
query_liquid = encode_obj_text(self.model_clip, self.juice_bottle_liquid_query_words_dict, self.tokenizer, self.device)
query_fruit = encode_obj_text(self.model_clip, self.juice_bottle_fruit_query_words_dict, self.tokenizer, self.device)
liquid_feature = proj_patch_token[binary_liquid.reshape(-1), :].mean(0, keepdim=True)
liquid_idx = (liquid_feature @ query_liquid.T).argmax(-1).squeeze(0).item()
fruit_feature = proj_patch_token[binary_fruit.reshape(-1), :].mean(0, keepdim=True)
fruit_idx = (fruit_feature @ query_fruit.T).argmax(-1).squeeze(0).item()
if (liquid_idx != fruit_idx) and self.anomaly_flag is False:
print('liquid: {}, but fruit: {}.'.format(self.juice_bottle_liquid_query_words_dict[liquid_idx], self.juice_bottle_fruit_query_words_dict[fruit_idx]))
self.anomaly_flag = True
# # todo centroid of fruit and tag_0 mismatch (if exist) , only one tag, center
# patch hist
sam_patch_hist = np.bincount(patch_merge_sam.reshape(-1), minlength=self.patch_query_obj.shape[0])
sam_patch_hist = sam_patch_hist / np.linalg.norm(sam_patch_hist)
if self.few_shot_inited:
patch_hist_similarity = (sam_patch_hist @ self.patch_token_hist.T)
score = 1 - patch_hist_similarity.max()
binary_foreground = (patch_merge_sam != (self.patch_query_obj.shape[0] - 1) ).astype(np.uint8)
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(binary_foreground, connectivity=8)
for i in range(1, num_labels):
instance_mask = (labels == i).astype(np.uint8)
instance_mask = cv2.resize(instance_mask, (self.feat_size, self.feat_size), interpolation = cv2.INTER_NEAREST)
if instance_mask.any():
instance_masks.append(instance_mask.astype(np.bool).reshape(-1))
if len(instance_masks) != 0:
instance_masks = np.stack(instance_masks) #[N, 64x64]
if self.visualization:
image_list = [raw_image, kmeans_label, kmeans_mask, patch_mask, sam_mask, merge_sam, patch_merge_sam, binary_foreground]
title_list = ['raw image', 'k-means', 'kmeans mask', 'patch mask', 'sam mask', 'merge sam mask', 'patch merge sam', 'binary_foreground']
plt.figure(figsize=(20, 3))
for ind, (temp_title, temp_image) in enumerate(zip(title_list, image_list), start=1):
plt.subplot(1, len(image_list), ind)
plt.imshow(temp_image)
plt.title(temp_title)
plt.margins(0, 0)
plt.axis('off')
# Extract relative path from class_name onwards
if class_name in path:
relative_path = path.split(class_name, 1)[-1]
if relative_path.startswith('/'):
relative_path = relative_path[1:]
save_path = f'visualization/full_data/{class_name}/{relative_path}.png'
else:
save_path = f'visualization/full_data/{class_name}/{path}.png'
os.makedirs(os.path.dirname(save_path), exist_ok=True)
plt.tight_layout()
plt.savefig(save_path, bbox_inches='tight', dpi=150)
plt.close()
return {"score": score, "sam_patch_hist": sam_patch_hist, "instance_masks": instance_masks}
return {"score": score, "instance_masks": instance_masks}
def process_k_shot(self, class_name, few_shot_samples, few_shot_paths):
few_shot_samples = F.interpolate(few_shot_samples, size=(448, 448), mode=self.inter_mode, align_corners=self.align_corners, antialias=self.antialias)
with torch.no_grad():
image_features, patch_tokens, proj_patch_tokens = self.model_clip.encode_image(few_shot_samples, self.feature_list)
patch_tokens = [p[:, 1:, :] for p in patch_tokens]
patch_tokens = [p.reshape(p.shape[0]*p.shape[1], p.shape[2]) for p in patch_tokens]
patch_tokens_clip = torch.cat(patch_tokens, dim=-1) # (bs, 1024, 1024x4)
# patch_tokens_clip = torch.cat(patch_tokens[2:], dim=-1) # (bs, 1024, 1024x2)
patch_tokens_clip = patch_tokens_clip.view(self.k_shot, self.ori_feat_size, self.ori_feat_size, -1).permute(0, 3, 1, 2)
patch_tokens_clip = F.interpolate(patch_tokens_clip, size=(self.feat_size, self.feat_size), mode=self.inter_mode, align_corners=self.align_corners)
patch_tokens_clip = patch_tokens_clip.permute(0, 2, 3, 1).view(-1, self.vision_width * len(self.feature_list))
patch_tokens_clip = F.normalize(patch_tokens_clip, p=2, dim=-1) # (bsx64x64, 1024x4)
with torch.no_grad():
patch_tokens_dinov2 = self.model_dinov2.forward_features(few_shot_samples, out_layer_list=self.feature_list_dinov2) # 4 x [bs, 32x32, 1024]
patch_tokens_dinov2 = torch.cat(patch_tokens_dinov2, dim=-1) # (bs, 1024, 1024x4)
patch_tokens_dinov2 = patch_tokens_dinov2.view(self.k_shot, self.ori_feat_size, self.ori_feat_size, -1).permute(0, 3, 1, 2)
patch_tokens_dinov2 = F.interpolate(patch_tokens_dinov2, size=(self.feat_size, self.feat_size), mode=self.inter_mode, align_corners=self.align_corners)
patch_tokens_dinov2 = patch_tokens_dinov2.permute(0, 2, 3, 1).view(-1, self.vision_width_dinov2 * len(self.feature_list_dinov2))
patch_tokens_dinov2 = F.normalize(patch_tokens_dinov2, p=2, dim=-1) # (bsx64x64, 1024x4)
cluster_features = None
for layer in self.cluster_feature_id:
temp_feat = patch_tokens[layer]
cluster_features = temp_feat if cluster_features is None else torch.cat((cluster_features, temp_feat), 1)
if self.feat_size != self.ori_feat_size:
cluster_features = cluster_features.view(self.k_shot, self.ori_feat_size, self.ori_feat_size, -1).permute(0, 3, 1, 2)
cluster_features = F.interpolate(cluster_features, size=(self.feat_size, self.feat_size), mode=self.inter_mode, align_corners=self.align_corners)
cluster_features = cluster_features.permute(0, 2, 3, 1).view(-1, self.vision_width * len(self.cluster_feature_id))
cluster_features = F.normalize(cluster_features, p=2, dim=-1)
if self.feat_size != self.ori_feat_size:
proj_patch_tokens = proj_patch_tokens.view(self.k_shot, self.ori_feat_size, self.ori_feat_size, -1).permute(0, 3, 1, 2)
proj_patch_tokens = F.interpolate(proj_patch_tokens, size=(self.feat_size, self.feat_size), mode=self.inter_mode, align_corners=self.align_corners)
proj_patch_tokens = proj_patch_tokens.permute(0, 2, 3, 1).view(-1, self.embed_dim)
proj_patch_tokens = F.normalize(proj_patch_tokens, p=2, dim=-1)
if not self.cluster_init:
num_clusters = self.cluster_num_dict[class_name]
_, self.cluster_centers = kmeans(X=cluster_features, num_clusters=num_clusters, device=self.device)
self.query_obj = encode_obj_text(self.model_clip, self.query_words_dict[class_name], self.tokenizer, self.device)
self.patch_query_obj = encode_obj_text(self.model_clip, self.patch_query_words_dict[class_name], self.tokenizer, self.device)
self.classes = self.query_obj.shape[0]
self.cluster_init = True
scores = []
foreground_pixel_hist = []
splicing_connectors_distance = []
patch_token_hist = []
mem_instance_masks = []
for image, cluster_feature, proj_patch_token, few_shot_path in zip(few_shot_samples.chunk(self.k_shot), cluster_features.chunk(self.k_shot), proj_patch_tokens.chunk(self.k_shot), few_shot_paths):
# path = os.path.dirname(few_shot_path).split('/')[-1] + "_" + os.path.basename(few_shot_path).split('.')[0]
self.anomaly_flag = False
results = self.histogram(image, cluster_feature, proj_patch_token, class_name, "few_shot_" + os.path.basename(few_shot_path).split('.')[0])
if self.class_name == 'pushpins':
patch_token_hist.append(results["clip_patch_hist"])
mem_instance_masks.append(results['instance_masks'])
elif self.class_name == 'splicing_connectors':
foreground_pixel_hist.append(results["foreground_pixel_count"])
splicing_connectors_distance.append(results["distance"])
patch_token_hist.append(results["sam_patch_hist"])
mem_instance_masks.append(results['instance_masks'])
elif self.class_name == 'screw_bag':
foreground_pixel_hist.append(results["foreground_pixel_count"])
patch_token_hist.append(results["clip_patch_hist"])
mem_instance_masks.append(results['instance_masks'])
elif self.class_name == 'breakfast_box':
patch_token_hist.append(results["sam_patch_hist"])
mem_instance_masks.append(results['instance_masks'])
elif self.class_name == 'juice_bottle':
patch_token_hist.append(results["sam_patch_hist"])
mem_instance_masks.append(results['instance_masks'])
scores.append(results["score"])
if len(foreground_pixel_hist) != 0:
self.foreground_pixel_hist = np.mean(foreground_pixel_hist)
if len(splicing_connectors_distance) != 0:
self.splicing_connectors_distance = np.mean(splicing_connectors_distance)
if len(patch_token_hist) != 0: # patch hist
self.patch_token_hist = np.stack(patch_token_hist)
if len(mem_instance_masks) != 0:
self.mem_instance_masks = mem_instance_masks
# for interests matching
len_feature_list = len(self.feature_list)
for idx, batch_mem_patch_feature in enumerate(patch_tokens_clip.chunk(len_feature_list, dim=-1)): # 4 stages batch_mem_patch_feature (bsx64x64, 1024)
mem_instance_features = []
for mem_patch_feature, mem_instance_masks in zip(batch_mem_patch_feature.chunk(self.k_shot), self.mem_instance_masks): # k shot mem_patch_feature (64x64, 1024)
mem_instance_features.extend([mem_patch_feature[mask, :].mean(0, keepdim=True) for mask in mem_instance_masks])
mem_instance_features = torch.cat(mem_instance_features, dim=0)
mem_instance_features = F.normalize(mem_instance_features, dim=-1) # 4 stages
# mem_instance_features_multi_stage.append(mem_instance_features)
self.mem_instance_features_multi_stage[idx].append(mem_instance_features)
mem_patch_feature_clip_coreset = patch_tokens_clip
mem_patch_feature_dinov2_coreset = patch_tokens_dinov2
return scores, mem_patch_feature_clip_coreset, mem_patch_feature_dinov2_coreset
def process(self, class_name: str, few_shot_samples: list[torch.Tensor], few_shot_paths: list[str]):
few_shot_samples = self.transform(few_shot_samples).to(self.device)
scores, mem_patch_feature_clip_coreset, mem_patch_feature_dinov2_coreset = self.process_k_shot(class_name, few_shot_samples, few_shot_paths)
clip_sampler = KCenterGreedy(embedding=mem_patch_feature_clip_coreset, sampling_ratio=0.25)
mem_patch_feature_clip_coreset = clip_sampler.sample_coreset()
dinov2_sampler = KCenterGreedy(embedding=mem_patch_feature_dinov2_coreset, sampling_ratio=0.25)
mem_patch_feature_dinov2_coreset = dinov2_sampler.sample_coreset()
self.mem_patch_feature_clip_coreset.append(mem_patch_feature_clip_coreset)
self.mem_patch_feature_dinov2_coreset.append(mem_patch_feature_dinov2_coreset)
def setup(self, data: dict) -> None:
"""Setup the few-shot samples for the model.
The evaluation script will call this method to pass the k images for few shot learning and the object class
name. In the case of MVTec LOCO this will be the dataset category name (e.g. breakfast_box). Please contact
the organizing committee if if your model requires any additional dataset-related information at setup-time.
"""
few_shot_samples = data.get("few_shot_samples")
class_name = data.get("dataset_category")
few_shot_paths = data.get("few_shot_samples_path")
self.class_name = class_name
print(few_shot_samples.shape)
self.total_size = few_shot_samples.size(0)
self.k_shot = 4 if self.total_size > 4 else self.total_size
self.cluster_init = False
self.mem_instance_features_multi_stage = [[],[],[],[]]
self.mem_patch_feature_clip_coreset = []
self.mem_patch_feature_dinov2_coreset = []
# Check if coreset files already exist
clip_file = 'memory_bank/mem_patch_feature_clip_{}.pt'.format(self.class_name)
dinov2_file = 'memory_bank/mem_patch_feature_dinov2_{}.pt'.format(self.class_name)
instance_file = 'memory_bank/mem_instance_features_multi_stage_{}.pt'.format(self.class_name)
files_exist = os.path.exists(clip_file) and os.path.exists(dinov2_file) and os.path.exists(instance_file)
if self.save_coreset_features and not files_exist:
print(f"Coreset files not found for {self.class_name}, computing and saving...")
for i in range(self.total_size//self.k_shot):
self.process(class_name, few_shot_samples[self.k_shot*i : min(self.k_shot*(i+1), self.total_size)], few_shot_paths[self.k_shot*i : min(self.k_shot*(i+1), self.total_size)])
# Coreset Subsampling
self.mem_patch_feature_clip_coreset = torch.cat(self.mem_patch_feature_clip_coreset, dim=0)
torch.save(self.mem_patch_feature_clip_coreset, clip_file)
self.mem_patch_feature_dinov2_coreset = torch.cat(self.mem_patch_feature_dinov2_coreset, dim=0)
torch.save(self.mem_patch_feature_dinov2_coreset, dinov2_file)
print(self.mem_patch_feature_dinov2_coreset.shape, self.mem_patch_feature_clip_coreset.shape)
self.mem_instance_features_multi_stage = [ torch.cat(mem_instance_features, dim=0) for mem_instance_features in self.mem_instance_features_multi_stage ]
self.mem_instance_features_multi_stage = torch.cat(self.mem_instance_features_multi_stage, dim=1)
torch.save(self.mem_instance_features_multi_stage, instance_file)
print(self.mem_instance_features_multi_stage.shape)
elif self.save_coreset_features and files_exist:
print(f"Coreset files found for {self.class_name}, loading existing files...")
self.process(class_name, few_shot_samples[0 : self.k_shot], few_shot_paths[0 : self.k_shot])
self.mem_patch_feature_clip_coreset = torch.load(clip_file)
self.mem_patch_feature_dinov2_coreset = torch.load(dinov2_file)
self.mem_instance_features_multi_stage = torch.load(instance_file)
print(self.mem_patch_feature_dinov2_coreset.shape, self.mem_patch_feature_clip_coreset.shape)
print(self.mem_instance_features_multi_stage.shape)
else:
self.process(class_name, few_shot_samples[0 : self.k_shot], few_shot_paths[0 : self.k_shot])
self.mem_patch_feature_clip_coreset = torch.load(clip_file)
self.mem_patch_feature_dinov2_coreset = torch.load(dinov2_file)
self.mem_instance_features_multi_stage = torch.load(instance_file)
self.few_shot_inited = True