SentenceTransformer based on CocoRoF/ModernBERT-SimCSE-multitask_v03-retry
This is a sentence-transformers model finetuned from CocoRoF/ModernBERT-SimCSE-multitask_v03-retry on the misc_sts_pairs_v2_kor_kosimcse dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: CocoRoF/ModernBERT-SimCSE-multitask_v03-retry
- Maximum Sequence Length: 2048 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 2048, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 1024, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("CocoRoF/ModernBERT-SimCSE-multitask_v03-distill")
# Run inference
sentences = [
'버스가 바쁜 길을 따라 운전한다.',
'녹색 버스가 도로를 따라 내려간다.',
'그 여자는 데이트하러 가는 중이다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts_dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8221 |
spearman_cosine | 0.8282 |
pearson_euclidean | 0.7929 |
spearman_euclidean | 0.798 |
pearson_manhattan | 0.7937 |
spearman_manhattan | 0.7997 |
pearson_dot | 0.7011 |
spearman_dot | 0.6845 |
pearson_max | 0.8221 |
spearman_max | 0.8282 |
Training Details
Training Dataset
misc_sts_pairs_v2_kor_kosimcse
- Dataset: misc_sts_pairs_v2_kor_kosimcse at e747415
- Size: 449,904 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 18.3 tokens
- max: 69 tokens
- min: 6 tokens
- mean: 18.69 tokens
- max: 66 tokens
- min: 0.11
- mean: 0.77
- max: 1.0
- Samples:
sentence1 sentence2 score 주홍글씨는 언제 출판되었습니까?
《주홍글씨》는 몇 년에 출판되었습니까?
0.8638778924942017
폴란드에서 빨간색과 흰색은 무엇을 의미합니까?
폴란드 국기의 색상은 무엇입니까?
0.6773715019226074
노르만인들은 방어를 위해 모트와 베일리 성을 어떻게 사용했는가?
11세기에는 어떻게 모트와 베일리 성을 만들었습니까?
0.7460665702819824
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
Unnamed Dataset
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 20.38 tokens
- max: 52 tokens
- min: 6 tokens
- mean: 20.52 tokens
- max: 54 tokens
- min: 0.0
- mean: 0.42
- max: 1.0
- Samples:
sentence1 sentence2 score 안전모를 가진 한 남자가 춤을 추고 있다.
안전모를 쓴 한 남자가 춤을 추고 있다.
1.0
어린아이가 말을 타고 있다.
아이가 말을 타고 있다.
0.95
한 남자가 뱀에게 쥐를 먹이고 있다.
남자가 뱀에게 쥐를 먹이고 있다.
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
overwrite_output_dir
: Trueeval_strategy
: stepsgradient_accumulation_steps
: 16learning_rate
: 8e-05num_train_epochs
: 10.0warmup_ratio
: 0.2push_to_hub
: Truehub_model_id
: CocoRoF/ModernBERT-SimCSE-multitask_v03-distillhub_strategy
: checkpointbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Truedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 8e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10.0max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.2warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: CocoRoF/ModernBERT-SimCSE-multitask_v03-distillhub_strategy
: checkpointhub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | sts_dev_spearman_max |
---|---|---|---|---|
0.0228 | 10 | 0.3524 | - | - |
0.0455 | 20 | 0.3496 | - | - |
0.0683 | 30 | 0.3515 | - | - |
0.0911 | 40 | 0.348 | - | - |
0.1138 | 50 | 0.3409 | - | - |
0.1366 | 60 | 0.347 | - | - |
0.1593 | 70 | 0.3377 | - | - |
0.1821 | 80 | 0.3317 | - | - |
0.2049 | 90 | 0.3279 | - | - |
0.2276 | 100 | 0.3264 | - | - |
0.2504 | 110 | 0.3116 | - | - |
0.2732 | 120 | 0.3055 | - | - |
0.2959 | 130 | 0.3042 | - | - |
0.3187 | 140 | 0.2928 | - | - |
0.3414 | 150 | 0.2835 | - | - |
0.3642 | 160 | 0.2665 | - | - |
0.3870 | 170 | 0.2665 | - | - |
0.4097 | 180 | 0.2486 | - | - |
0.4325 | 190 | 0.2387 | - | - |
0.4553 | 200 | 0.2283 | - | - |
0.4780 | 210 | 0.2237 | - | - |
0.5008 | 220 | 0.2204 | - | - |
0.5235 | 230 | 0.205 | - | - |
0.5463 | 240 | 0.2002 | - | - |
0.5691 | 250 | 0.1904 | 0.0330 | 0.7921 |
0.5918 | 260 | 0.1834 | - | - |
0.6146 | 270 | 0.1776 | - | - |
0.6374 | 280 | 0.1665 | - | - |
0.6601 | 290 | 0.1625 | - | - |
0.6829 | 300 | 0.1585 | - | - |
0.7056 | 310 | 0.1522 | - | - |
0.7284 | 320 | 0.1552 | - | - |
0.7512 | 330 | 0.1448 | - | - |
0.7739 | 340 | 0.1428 | - | - |
0.7967 | 350 | 0.1401 | - | - |
0.8195 | 360 | 0.1399 | - | - |
0.8422 | 370 | 0.1389 | - | - |
0.8650 | 380 | 0.1372 | - | - |
0.8878 | 390 | 0.1338 | - | - |
0.9105 | 400 | 0.1361 | - | - |
0.9333 | 410 | 0.1389 | - | - |
0.9560 | 420 | 0.1328 | - | - |
0.9788 | 430 | 0.1375 | - | - |
1.0 | 440 | 0.1266 | - | - |
1.0228 | 450 | 0.1269 | - | - |
1.0455 | 460 | 0.1262 | - | - |
1.0683 | 470 | 0.127 | - | - |
1.0911 | 480 | 0.1306 | - | - |
1.1138 | 490 | 0.1266 | - | - |
1.1366 | 500 | 0.1247 | 0.0405 | 0.7995 |
1.1593 | 510 | 0.1258 | - | - |
1.1821 | 520 | 0.1277 | - | - |
1.2049 | 530 | 0.13 | - | - |
1.2276 | 540 | 0.1291 | - | - |
1.2504 | 550 | 0.1287 | - | - |
1.2732 | 560 | 0.1233 | - | - |
1.2959 | 570 | 0.1242 | - | - |
1.3187 | 580 | 0.1242 | - | - |
1.3414 | 590 | 0.1227 | - | - |
1.3642 | 600 | 0.1201 | - | - |
1.3870 | 610 | 0.1247 | - | - |
1.4097 | 620 | 0.1249 | - | - |
1.4325 | 630 | 0.1213 | - | - |
1.4553 | 640 | 0.1217 | - | - |
1.4780 | 650 | 0.1204 | - | - |
1.5008 | 660 | 0.1191 | - | - |
1.5235 | 670 | 0.1163 | - | - |
1.5463 | 680 | 0.1171 | - | - |
1.5691 | 690 | 0.1208 | - | - |
1.5918 | 700 | 0.1194 | - | - |
1.6146 | 710 | 0.1173 | - | - |
1.6374 | 720 | 0.1177 | - | - |
1.6601 | 730 | 0.1148 | - | - |
1.6829 | 740 | 0.1134 | - | - |
1.7056 | 750 | 0.1167 | 0.0422 | 0.8092 |
1.7284 | 760 | 0.1145 | - | - |
1.7512 | 770 | 0.114 | - | - |
1.7739 | 780 | 0.1136 | - | - |
1.7967 | 790 | 0.1123 | - | - |
1.8195 | 800 | 0.1115 | - | - |
1.8422 | 810 | 0.1127 | - | - |
1.8650 | 820 | 0.1137 | - | - |
1.8878 | 830 | 0.1137 | - | - |
1.9105 | 840 | 0.1123 | - | - |
1.9333 | 850 | 0.1115 | - | - |
1.9560 | 860 | 0.1105 | - | - |
1.9788 | 870 | 0.1133 | - | - |
2.0 | 880 | 0.1049 | - | - |
2.0228 | 890 | 0.1091 | - | - |
2.0455 | 900 | 0.111 | - | - |
2.0683 | 910 | 0.1101 | - | - |
2.0911 | 920 | 0.1078 | - | - |
2.1138 | 930 | 0.1097 | - | - |
2.1366 | 940 | 0.108 | - | - |
2.1593 | 950 | 0.1077 | - | - |
2.1821 | 960 | 0.1087 | - | - |
2.2049 | 970 | 0.1058 | - | - |
2.2276 | 980 | 0.1071 | - | - |
2.2504 | 990 | 0.1058 | - | - |
2.2732 | 1000 | 0.1104 | 0.0434 | 0.8156 |
2.2959 | 1010 | 0.1036 | - | - |
2.3187 | 1020 | 0.1068 | - | - |
2.3414 | 1030 | 0.1033 | - | - |
2.3642 | 1040 | 0.1058 | - | - |
2.3870 | 1050 | 0.105 | - | - |
2.4097 | 1060 | 0.1052 | - | - |
2.4325 | 1070 | 0.1013 | - | - |
2.4553 | 1080 | 0.1037 | - | - |
2.4780 | 1090 | 0.1031 | - | - |
2.5008 | 1100 | 0.1057 | - | - |
2.5235 | 1110 | 0.1051 | - | - |
2.5463 | 1120 | 0.1019 | - | - |
2.5691 | 1130 | 0.1018 | - | - |
2.5918 | 1140 | 0.1007 | - | - |
2.6146 | 1150 | 0.1035 | - | - |
2.6374 | 1160 | 0.1032 | - | - |
2.6601 | 1170 | 0.1036 | - | - |
2.6829 | 1180 | 0.0971 | - | - |
2.7056 | 1190 | 0.1015 | - | - |
2.7284 | 1200 | 0.104 | - | - |
2.7512 | 1210 | 0.1007 | - | - |
2.7739 | 1220 | 0.102 | - | - |
2.7967 | 1230 | 0.0994 | - | - |
2.8195 | 1240 | 0.0972 | - | - |
2.8422 | 1250 | 0.0969 | 0.0437 | 0.8185 |
2.8650 | 1260 | 0.0968 | - | - |
2.8878 | 1270 | 0.1003 | - | - |
2.9105 | 1280 | 0.1036 | - | - |
2.9333 | 1290 | 0.0969 | - | - |
2.9560 | 1300 | 0.0965 | - | - |
2.9788 | 1310 | 0.0974 | - | - |
3.0 | 1320 | 0.0905 | - | - |
3.0228 | 1330 | 0.1006 | - | - |
3.0455 | 1340 | 0.0952 | - | - |
3.0683 | 1350 | 0.0971 | - | - |
3.0911 | 1360 | 0.0943 | - | - |
3.1138 | 1370 | 0.0996 | - | - |
3.1366 | 1380 | 0.0971 | - | - |
3.1593 | 1390 | 0.097 | - | - |
3.1821 | 1400 | 0.0937 | - | - |
3.2049 | 1410 | 0.0955 | - | - |
3.2276 | 1420 | 0.0963 | - | - |
3.2504 | 1430 | 0.0938 | - | - |
3.2732 | 1440 | 0.0986 | - | - |
3.2959 | 1450 | 0.0949 | - | - |
3.3187 | 1460 | 0.0932 | - | - |
3.3414 | 1470 | 0.096 | - | - |
3.3642 | 1480 | 0.0919 | - | - |
3.3870 | 1490 | 0.093 | - | - |
3.4097 | 1500 | 0.0925 | 0.0438 | 0.8201 |
3.4325 | 1510 | 0.0935 | - | - |
3.4553 | 1520 | 0.0928 | - | - |
3.4780 | 1530 | 0.0914 | - | - |
3.5008 | 1540 | 0.0912 | - | - |
3.5235 | 1550 | 0.091 | - | - |
3.5463 | 1560 | 0.0906 | - | - |
3.5691 | 1570 | 0.0936 | - | - |
3.5918 | 1580 | 0.0943 | - | - |
3.6146 | 1590 | 0.0925 | - | - |
3.6374 | 1600 | 0.0908 | - | - |
3.6601 | 1610 | 0.0933 | - | - |
3.6829 | 1620 | 0.0917 | - | - |
3.7056 | 1630 | 0.0887 | - | - |
3.7284 | 1640 | 0.0903 | - | - |
3.7512 | 1650 | 0.0934 | - | - |
3.7739 | 1660 | 0.0906 | - | - |
3.7967 | 1670 | 0.0886 | - | - |
3.8195 | 1680 | 0.0915 | - | - |
3.8422 | 1690 | 0.0924 | - | - |
3.8650 | 1700 | 0.094 | - | - |
3.8878 | 1710 | 0.0899 | - | - |
3.9105 | 1720 | 0.0881 | - | - |
3.9333 | 1730 | 0.0884 | - | - |
3.9560 | 1740 | 0.0894 | - | - |
3.9788 | 1750 | 0.0892 | 0.0441 | 0.8215 |
4.0 | 1760 | 0.0812 | - | - |
4.0228 | 1770 | 0.0878 | - | - |
4.0455 | 1780 | 0.0869 | - | - |
4.0683 | 1790 | 0.09 | - | - |
4.0911 | 1800 | 0.0875 | - | - |
4.1138 | 1810 | 0.086 | - | - |
4.1366 | 1820 | 0.0888 | - | - |
4.1593 | 1830 | 0.086 | - | - |
4.1821 | 1840 | 0.0869 | - | - |
4.2049 | 1850 | 0.0885 | - | - |
4.2276 | 1860 | 0.0891 | - | - |
4.2504 | 1870 | 0.0853 | - | - |
4.2732 | 1880 | 0.0849 | - | - |
4.2959 | 1890 | 0.0856 | - | - |
4.3187 | 1900 | 0.0863 | - | - |
4.3414 | 1910 | 0.0849 | - | - |
4.3642 | 1920 | 0.0855 | - | - |
4.3870 | 1930 | 0.0841 | - | - |
4.4097 | 1940 | 0.0893 | - | - |
4.4325 | 1950 | 0.0847 | - | - |
4.4553 | 1960 | 0.0866 | - | - |
4.4780 | 1970 | 0.0866 | - | - |
4.5008 | 1980 | 0.0844 | - | - |
4.5235 | 1990 | 0.0846 | - | - |
4.5463 | 2000 | 0.0847 | 0.0435 | 0.8220 |
4.5691 | 2010 | 0.0831 | - | - |
4.5918 | 2020 | 0.0843 | - | - |
4.6146 | 2030 | 0.086 | - | - |
4.6374 | 2040 | 0.0851 | - | - |
4.6601 | 2050 | 0.0844 | - | - |
4.6829 | 2060 | 0.0843 | - | - |
4.7056 | 2070 | 0.0854 | - | - |
4.7284 | 2080 | 0.0851 | - | - |
4.7512 | 2090 | 0.0822 | - | - |
4.7739 | 2100 | 0.0859 | - | - |
4.7967 | 2110 | 0.0844 | - | - |
4.8195 | 2120 | 0.0853 | - | - |
4.8422 | 2130 | 0.0815 | - | - |
4.8650 | 2140 | 0.0833 | - | - |
4.8878 | 2150 | 0.0817 | - | - |
4.9105 | 2160 | 0.0873 | - | - |
4.9333 | 2170 | 0.0813 | - | - |
4.9560 | 2180 | 0.0829 | - | - |
4.9788 | 2190 | 0.0812 | - | - |
5.0 | 2200 | 0.0776 | - | - |
5.0228 | 2210 | 0.083 | - | - |
5.0455 | 2220 | 0.0821 | - | - |
5.0683 | 2230 | 0.0806 | - | - |
5.0911 | 2240 | 0.0809 | - | - |
5.1138 | 2250 | 0.0814 | 0.0431 | 0.8225 |
5.1366 | 2260 | 0.0808 | - | - |
5.1593 | 2270 | 0.0791 | - | - |
5.1821 | 2280 | 0.0811 | - | - |
5.2049 | 2290 | 0.0805 | - | - |
5.2276 | 2300 | 0.0817 | - | - |
5.2504 | 2310 | 0.0772 | - | - |
5.2732 | 2320 | 0.0799 | - | - |
5.2959 | 2330 | 0.0829 | - | - |
5.3187 | 2340 | 0.077 | - | - |
5.3414 | 2350 | 0.0801 | - | - |
5.3642 | 2360 | 0.0812 | - | - |
5.3870 | 2370 | 0.0788 | - | - |
5.4097 | 2380 | 0.0776 | - | - |
5.4325 | 2390 | 0.0785 | - | - |
5.4553 | 2400 | 0.0771 | - | - |
5.4780 | 2410 | 0.0788 | - | - |
5.5008 | 2420 | 0.0796 | - | - |
5.5235 | 2430 | 0.0793 | - | - |
5.5463 | 2440 | 0.0813 | - | - |
5.5691 | 2450 | 0.0757 | - | - |
5.5918 | 2460 | 0.079 | - | - |
5.6146 | 2470 | 0.0797 | - | - |
5.6374 | 2480 | 0.0794 | - | - |
5.6601 | 2490 | 0.0808 | - | - |
5.6829 | 2500 | 0.0796 | 0.0424 | 0.8230 |
5.7056 | 2510 | 0.0802 | - | - |
5.7284 | 2520 | 0.0799 | - | - |
5.7512 | 2530 | 0.0802 | - | - |
5.7739 | 2540 | 0.0813 | - | - |
5.7967 | 2550 | 0.0772 | - | - |
5.8195 | 2560 | 0.0766 | - | - |
5.8422 | 2570 | 0.0778 | - | - |
5.8650 | 2580 | 0.076 | - | - |
5.8878 | 2590 | 0.0787 | - | - |
5.9105 | 2600 | 0.0794 | - | - |
5.9333 | 2610 | 0.076 | - | - |
5.9560 | 2620 | 0.0773 | - | - |
5.9788 | 2630 | 0.0755 | - | - |
6.0 | 2640 | 0.0725 | - | - |
6.0228 | 2650 | 0.0738 | - | - |
6.0455 | 2660 | 0.0762 | - | - |
6.0683 | 2670 | 0.0761 | - | - |
6.0911 | 2680 | 0.0771 | - | - |
6.1138 | 2690 | 0.0765 | - | - |
6.1366 | 2700 | 0.0755 | - | - |
6.1593 | 2710 | 0.0771 | - | - |
6.1821 | 2720 | 0.0748 | - | - |
6.2049 | 2730 | 0.0768 | - | - |
6.2276 | 2740 | 0.0766 | - | - |
6.2504 | 2750 | 0.0766 | 0.0422 | 0.8239 |
6.2732 | 2760 | 0.076 | - | - |
6.2959 | 2770 | 0.0753 | - | - |
6.3187 | 2780 | 0.0735 | - | - |
6.3414 | 2790 | 0.0751 | - | - |
6.3642 | 2800 | 0.0738 | - | - |
6.3870 | 2810 | 0.0749 | - | - |
6.4097 | 2820 | 0.0753 | - | - |
6.4325 | 2830 | 0.077 | - | - |
6.4553 | 2840 | 0.0747 | - | - |
6.4780 | 2850 | 0.0722 | - | - |
6.5008 | 2860 | 0.0736 | - | - |
6.5235 | 2870 | 0.073 | - | - |
6.5463 | 2880 | 0.0774 | - | - |
6.5691 | 2890 | 0.075 | - | - |
6.5918 | 2900 | 0.0718 | - | - |
6.6146 | 2910 | 0.0727 | - | - |
6.6374 | 2920 | 0.0735 | - | - |
6.6601 | 2930 | 0.0726 | - | - |
6.6829 | 2940 | 0.075 | - | - |
6.7056 | 2950 | 0.0728 | - | - |
6.7284 | 2960 | 0.0713 | - | - |
6.7512 | 2970 | 0.0722 | - | - |
6.7739 | 2980 | 0.0753 | - | - |
6.7967 | 2990 | 0.0733 | - | - |
6.8195 | 3000 | 0.0727 | 0.0425 | 0.8243 |
6.8422 | 3010 | 0.0729 | - | - |
6.8650 | 3020 | 0.073 | - | - |
6.8878 | 3030 | 0.0739 | - | - |
6.9105 | 3040 | 0.0717 | - | - |
6.9333 | 3050 | 0.0719 | - | - |
6.9560 | 3060 | 0.0712 | - | - |
6.9788 | 3070 | 0.0712 | - | - |
7.0 | 3080 | 0.0674 | - | - |
7.0228 | 3090 | 0.0729 | - | - |
7.0455 | 3100 | 0.0712 | - | - |
7.0683 | 3110 | 0.0701 | - | - |
7.0911 | 3120 | 0.0699 | - | - |
7.1138 | 3130 | 0.0675 | - | - |
7.1366 | 3140 | 0.0699 | - | - |
7.1593 | 3150 | 0.0716 | - | - |
7.1821 | 3160 | 0.0707 | - | - |
7.2049 | 3170 | 0.0717 | - | - |
7.2276 | 3180 | 0.0709 | - | - |
7.2504 | 3190 | 0.071 | - | - |
7.2732 | 3200 | 0.0722 | - | - |
7.2959 | 3210 | 0.072 | - | - |
7.3187 | 3220 | 0.0729 | - | - |
7.3414 | 3230 | 0.0678 | - | - |
7.3642 | 3240 | 0.0705 | - | - |
7.3870 | 3250 | 0.0715 | 0.0426 | 0.8256 |
7.4097 | 3260 | 0.0703 | - | - |
7.4325 | 3270 | 0.0699 | - | - |
7.4553 | 3280 | 0.071 | - | - |
7.4780 | 3290 | 0.0692 | - | - |
7.5008 | 3300 | 0.0693 | - | - |
7.5235 | 3310 | 0.0661 | - | - |
7.5463 | 3320 | 0.0702 | - | - |
7.5691 | 3330 | 0.0697 | - | - |
7.5918 | 3340 | 0.072 | - | - |
7.6146 | 3350 | 0.0693 | - | - |
7.6374 | 3360 | 0.0691 | - | - |
7.6601 | 3370 | 0.0702 | - | - |
7.6829 | 3380 | 0.0672 | - | - |
7.7056 | 3390 | 0.0698 | - | - |
7.7284 | 3400 | 0.0687 | - | - |
7.7512 | 3410 | 0.0654 | - | - |
7.7739 | 3420 | 0.0687 | - | - |
7.7967 | 3430 | 0.0679 | - | - |
7.8195 | 3440 | 0.0713 | - | - |
7.8422 | 3450 | 0.0676 | - | - |
7.8650 | 3460 | 0.0708 | - | - |
7.8878 | 3470 | 0.0666 | - | - |
7.9105 | 3480 | 0.0675 | - | - |
7.9333 | 3490 | 0.0693 | - | - |
7.9560 | 3500 | 0.0688 | 0.0427 | 0.8260 |
7.9788 | 3510 | 0.068 | - | - |
8.0 | 3520 | 0.063 | - | - |
8.0228 | 3530 | 0.0659 | - | - |
8.0455 | 3540 | 0.0639 | - | - |
8.0683 | 3550 | 0.0678 | - | - |
8.0911 | 3560 | 0.0689 | - | - |
8.1138 | 3570 | 0.0687 | - | - |
8.1366 | 3580 | 0.0672 | - | - |
8.1593 | 3590 | 0.0659 | - | - |
8.1821 | 3600 | 0.0658 | - | - |
8.2049 | 3610 | 0.0664 | - | - |
8.2276 | 3620 | 0.0659 | - | - |
8.2504 | 3630 | 0.0664 | - | - |
8.2732 | 3640 | 0.0652 | - | - |
8.2959 | 3650 | 0.0683 | - | - |
8.3187 | 3660 | 0.0641 | - | - |
8.3414 | 3670 | 0.0672 | - | - |
8.3642 | 3680 | 0.0655 | - | - |
8.3870 | 3690 | 0.0661 | - | - |
8.4097 | 3700 | 0.0638 | - | - |
8.4325 | 3710 | 0.0675 | - | - |
8.4553 | 3720 | 0.0648 | - | - |
8.4780 | 3730 | 0.067 | - | - |
8.5008 | 3740 | 0.0684 | - | - |
8.5235 | 3750 | 0.0667 | 0.0420 | 0.8268 |
8.5463 | 3760 | 0.0645 | - | - |
8.5691 | 3770 | 0.0652 | - | - |
8.5918 | 3780 | 0.0633 | - | - |
8.6146 | 3790 | 0.065 | - | - |
8.6374 | 3800 | 0.064 | - | - |
8.6601 | 3810 | 0.0677 | - | - |
8.6829 | 3820 | 0.0661 | - | - |
8.7056 | 3830 | 0.0653 | - | - |
8.7284 | 3840 | 0.0625 | - | - |
8.7512 | 3850 | 0.0651 | - | - |
8.7739 | 3860 | 0.0656 | - | - |
8.7967 | 3870 | 0.0636 | - | - |
8.8195 | 3880 | 0.0655 | - | - |
8.8422 | 3890 | 0.0647 | - | - |
8.8650 | 3900 | 0.0638 | - | - |
8.8878 | 3910 | 0.0636 | - | - |
8.9105 | 3920 | 0.0666 | - | - |
8.9333 | 3930 | 0.062 | - | - |
8.9560 | 3940 | 0.065 | - | - |
8.9788 | 3950 | 0.0643 | - | - |
9.0 | 3960 | 0.0594 | - | - |
9.0228 | 3970 | 0.0616 | - | - |
9.0455 | 3980 | 0.0638 | - | - |
9.0683 | 3990 | 0.0625 | - | - |
9.0911 | 4000 | 0.0665 | 0.0414 | 0.8276 |
9.1138 | 4010 | 0.0624 | - | - |
9.1366 | 4020 | 0.0621 | - | - |
9.1593 | 4030 | 0.0648 | - | - |
9.1821 | 4040 | 0.0622 | - | - |
9.2049 | 4050 | 0.0635 | - | - |
9.2276 | 4060 | 0.061 | - | - |
9.2504 | 4070 | 0.0602 | - | - |
9.2732 | 4080 | 0.0613 | - | - |
9.2959 | 4090 | 0.0604 | - | - |
9.3187 | 4100 | 0.0623 | - | - |
9.3414 | 4110 | 0.0641 | - | - |
9.3642 | 4120 | 0.0635 | - | - |
9.3870 | 4130 | 0.0608 | - | - |
9.4097 | 4140 | 0.0611 | - | - |
9.4325 | 4150 | 0.0607 | - | - |
9.4553 | 4160 | 0.0631 | - | - |
9.4780 | 4170 | 0.0618 | - | - |
9.5008 | 4180 | 0.0609 | - | - |
9.5235 | 4190 | 0.0613 | - | - |
9.5463 | 4200 | 0.0606 | - | - |
9.5691 | 4210 | 0.0595 | - | - |
9.5918 | 4220 | 0.0609 | - | - |
9.6146 | 4230 | 0.061 | - | - |
9.6374 | 4240 | 0.0616 | - | - |
9.6601 | 4250 | 0.0613 | 0.0418 | 0.8282 |
9.6829 | 4260 | 0.0623 | - | - |
9.7056 | 4270 | 0.0605 | - | - |
9.7284 | 4280 | 0.0637 | - | - |
9.7512 | 4290 | 0.0604 | - | - |
9.7739 | 4300 | 0.0606 | - | - |
9.7967 | 4310 | 0.0622 | - | - |
9.8195 | 4320 | 0.0598 | - | - |
9.8422 | 4330 | 0.0611 | - | - |
9.8650 | 4340 | 0.0604 | - | - |
9.8878 | 4350 | 0.0598 | - | - |
9.9105 | 4360 | 0.0626 | - | - |
9.9333 | 4370 | 0.0624 | - | - |
9.9560 | 4380 | 0.0617 | - | - |
9.9788 | 4390 | 0.0603 | - | - |
Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 79
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for CocoRoF/ModernBERT-SimCSE-multitask_v03-distill
Dataset used to train CocoRoF/ModernBERT-SimCSE-multitask_v03-distill
Evaluation results
- Pearson Cosine on sts devself-reported0.822
- Spearman Cosine on sts devself-reported0.828
- Pearson Euclidean on sts devself-reported0.793
- Spearman Euclidean on sts devself-reported0.798
- Pearson Manhattan on sts devself-reported0.794
- Spearman Manhattan on sts devself-reported0.800
- Pearson Dot on sts devself-reported0.701
- Spearman Dot on sts devself-reported0.684
- Pearson Max on sts devself-reported0.822
- Spearman Max on sts devself-reported0.828