whisper_new_ver3 / README.md
Curiousfox's picture
End of training
81d1ac5 verified
metadata
library_name: transformers
language:
  - nan
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_1
metrics:
  - wer
model-index:
  - name: Hokkien-to-Tai Lo Whisper ver 3
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 16.0
          type: mozilla-foundation/common_voice_16_1
          config: nan-tw
          split: test
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 82.85779502396713

Hokkien-to-Tai Lo Whisper ver 3

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5026
  • Wer: 82.8578

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 8
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 8000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.9959 0.2581 800 1.1302 99.9772
0.8265 0.5161 1600 0.7367 92.8555
0.6895 0.7742 2400 0.6409 87.4001
0.5814 1.0323 3200 0.5745 85.9849
0.4864 1.2903 4000 0.5512 85.4143
0.4662 1.5484 4800 0.5334 85.8480
0.4421 1.8065 5600 0.5154 83.6339
0.449 2.0645 6400 0.5097 83.3600
0.3807 2.3226 7200 0.5058 83.0861
0.3783 2.5806 8000 0.5026 82.8578

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.3.2
  • Tokenizers 0.21.0