Whisper Small Finetune - IERG4320 Project
This model is a fine-tuned version of openai/whisper-small on the Common Voice 13 dataset. It achieves the following results on the evaluation set:
- Loss: 0.5674
- Wer Ortho: 22.0544
- Wer: 18.2934
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 1000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
0.094 | 2.5974 | 200 | 0.4300 | 20.8774 | 17.1318 |
0.0105 | 5.1948 | 400 | 0.5000 | 21.6635 | 17.7999 |
0.0024 | 7.7922 | 600 | 0.5250 | 21.7294 | 17.9615 |
0.0015 | 10.3896 | 800 | 0.5528 | 23.3630 | 19.5205 |
0.0011 | 12.9870 | 1000 | 0.5674 | 22.0544 | 18.2934 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.4
- Downloads last month
- 87
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for JerryLearnCode/4320-whisper-small-eng
Base model
openai/whisper-small