JerryLearnCode's picture
End of training
4bd4d98 verified
metadata
library_name: transformers
language:
  - en
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Small Finetune - IERG4320 Project
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 13
          type: mozilla-foundation/common_voice_13_0
          config: en
          split: None
          args: en
        metrics:
          - name: Wer
            type: wer
            value: 18.293375256561422

Whisper Small Finetune - IERG4320 Project

This model is a fine-tuned version of openai/whisper-small on the Common Voice 13 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5674
  • Wer Ortho: 22.0544
  • Wer: 18.2934

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.094 2.5974 200 0.4300 20.8774 17.1318
0.0105 5.1948 400 0.5000 21.6635 17.7999
0.0024 7.7922 600 0.5250 21.7294 17.9615
0.0015 10.3896 800 0.5528 23.3630 19.5205
0.0011 12.9870 1000 0.5674 22.0544 18.2934

Framework versions

  • Transformers 4.46.3
  • Pytorch 2.5.1
  • Datasets 3.1.0
  • Tokenizers 0.20.4