BERT-NER-CoNLL / README.md
Sharpaxis's picture
End of training
01c65f7 verified
metadata
library_name: transformers
license: apache-2.0
base_model: bert-large-uncased
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - f1
model-index:
  - name: BERT-NER-CoNLL
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: test
          args: conll2003
        metrics:
          - name: F1
            type: f1
            value: 0.9105776839883936

BERT-NER-CoNLL

This model is a fine-tuned version of bert-large-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1243
  • F1: 0.9106

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1
0.115 1.0 878 0.1003 0.8983
0.0276 2.0 1756 0.1157 0.9081
0.0128 3.0 2634 0.1243 0.9106

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0