Text Generation
Safetensors
English
llama
conversational
Fino1-8B / README.md
jiminHuang's picture
Update README.md
b51c988 verified
metadata
license: llama3.1
datasets:
  - TheFinAI/Fino1_Reasoning_Path_FinQA
language:
  - en
base_model:
  - meta-llama/Llama-3.1-8B-Instruct
pipeline_tag: text-generation

πŸ¦™ Fino1-8B

Fino1-8B is a fine-tuned version of Llama 3.1 8B Instruct, designed to improve performance on [financial reasoning tasks]. This model has been trained using SFT and RF on TheFinAI/Fino1_Reasoning_Path_FinQA, enhancing its capabilities in financial reasoning tasks. Check our paper arxiv.org/abs/2502.08127 for more details.

πŸ“Œ Model Details

  • Model Name: Fino1-8B
  • Base Model: Meta Llama 3.1 8B Instruct
  • Fine-Tuned On: TheFinAI/Fino1_Reasoning_Path_FinQA Derived from FinQA dataset.
  • Training Method: SFT and RF
  • Objective: [Enhance performance on specific tasks such as financial mathemtical reasoning]
  • Tokenizer: Inherited from Llama 3.1 8B Instruct

πŸ“Š Training Configuration

  • Training Hardware: GPU: [e.g., 4xH100]
  • Batch Size: [e.g., 16]
  • Learning Rate: [e.g., 2e-5]
  • Epochs: [e.g., 3]
  • Optimizer: [e.g., AdamW, LAMB]

πŸ”§ Usage

To use Fino1-8B with Hugging Face's transformers library:

from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "TheFinAI/Fino1-8B"

tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

input_text = "What is the results of 3-5?"
inputs = tokenizer(input_text, return_tensors="pt")

output = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(output[0], skip_special_tokens=True))