Whisper tiny eng

This model is a fine-tuned version of openai/whisper-tiny.en on the test_data dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3574
  • Wer: 5.5556

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
2.1546 1.0 3 1.6919 37.5
1.3508 2.0 6 1.1947 16.6667
0.9872 3.0 9 0.9060 12.5
0.782 4.0 12 0.7305 9.7222
0.6452 5.0 15 0.6134 8.3333
0.5597 6.0 18 0.5442 5.5556
0.5109 7.0 21 0.5086 5.5556
0.4854 8.0 24 0.4854 5.5556
0.4685 9.0 27 0.4690 5.5556
0.4558 10.0 30 0.4558 5.5556
0.4449 11.0 33 0.4449 5.5556
0.4353 12.0 36 0.4344 5.5556
0.4257 13.0 39 0.4243 5.5556
0.4168 14.0 42 0.4147 5.5556
0.4075 15.0 45 0.4053 5.5556
0.3985 16.0 48 0.3960 5.5556
0.3893 17.0 51 0.3866 5.5556
0.3801 18.0 54 0.3770 5.5556
0.3706 19.0 57 0.3673 5.5556
0.3609 20.0 60 0.3574 5.5556

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.2.1
  • Datasets 3.3.2
  • Tokenizers 0.21.0
Downloads last month
15
Safetensors
Model size
37.8M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for anveshg03/whisper-tiny-finetuned

Finetuned
(65)
this model

Evaluation results