anveshg03's picture
End of training
13643b3 verified
metadata
library_name: transformers
language:
  - eng
license: apache-2.0
base_model: openai/whisper-tiny.en
tags:
  - generated_from_trainer
datasets:
  - test_data
metrics:
  - wer
model-index:
  - name: Whisper tiny eng
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: test_data
          type: test_data
          args: 'config: eng, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 5.555555555555555

Whisper tiny eng

This model is a fine-tuned version of openai/whisper-tiny.en on the test_data dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3574
  • Wer: 5.5556

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_steps: 5
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer
2.1546 1.0 3 1.6919 37.5
1.3508 2.0 6 1.1947 16.6667
0.9872 3.0 9 0.9060 12.5
0.782 4.0 12 0.7305 9.7222
0.6452 5.0 15 0.6134 8.3333
0.5597 6.0 18 0.5442 5.5556
0.5109 7.0 21 0.5086 5.5556
0.4854 8.0 24 0.4854 5.5556
0.4685 9.0 27 0.4690 5.5556
0.4558 10.0 30 0.4558 5.5556
0.4449 11.0 33 0.4449 5.5556
0.4353 12.0 36 0.4344 5.5556
0.4257 13.0 39 0.4243 5.5556
0.4168 14.0 42 0.4147 5.5556
0.4075 15.0 45 0.4053 5.5556
0.3985 16.0 48 0.3960 5.5556
0.3893 17.0 51 0.3866 5.5556
0.3801 18.0 54 0.3770 5.5556
0.3706 19.0 57 0.3673 5.5556
0.3609 20.0 60 0.3574 5.5556

Framework versions

  • Transformers 4.49.0
  • Pytorch 2.2.1
  • Datasets 3.3.2
  • Tokenizers 0.21.0