coref-ua / README.md
artemkramov's picture
Update README.md
0ab75dd
|
raw
history blame
5.37 kB
---
datasets:
- artemkramov/coreference-dataset-ua
language:
- uk
tags:
- coreference-resolution
- anaphora
---
# Coreference resolution model for the Ukrainian language
<!-- Provide a quick summary of what the model is/does. -->
The coreference resolution model for the Ukrainian language was trained on the [silver Ukrainian coreference dataset](https://huggingface.co/datasets/artemkramov/coreference-dataset-ua)
using the [F-Coref](https://arxiv.org/abs/2209.04280) library. The model was trained on top of the [XML-Roberta-base model](https://huggingface.co/ukr-models/xlm-roberta-base-uk).
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
- **Developed by:** [Artem Kramov](https://www.linkedin.com/in/artem-kramov-0b3731100/), Andrii Kursin ([email protected]).
- **Languages:** Ukrainian
- **Finetuned from model:** [XML-Roberta-base](https://huggingface.co/ukr-models/xlm-roberta-base-uk)
### Model Sources
<!-- Provide the basic links for the model. -->
- **Repository:** https://github.com/artemkramov/fastcoref-ua/blob/main/README.md
- **Demo:** [Google Colab](https://colab.research.google.com/drive/1vsaH15DFDrmKB4aNsQ-9TCQGTW73uk1y?usp=sharing)
### Out-of-Scope Use
According to the metrics retrieved from the evaluation dataset, the model is more precision-oriented. Also, there is a high level of granularity of mentions.
E.g., the mention "Головний виконавчий директор Андрій Сидоренко" can be divided into the following coreferent groups: ["Головний виконавчий директор Андрій Сидоренко", "Головний виконавчий директор", "Андрій Сидоренко"].
Such a feature can also be used to extract some positions, roles, or other features of entities in the text.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from fastcoref import FCoref
import spacy
nlp = spacy.load('uk_core_news_md')
model_path = "artemkramov/coref-ua"
model = FCoref(model_name_or_path=model_path, device='cuda:0', nlp=nlp)
preds = model.predict(
texts=["""Мій друг дав мені свою машину та ключі до неї; крім того, він дав мені його книгу. Я з радістю її читаю."""]
)
preds[0].get_clusters(as_strings=False)
> [[(0, 3), (13, 17), (66, 70), (83, 84)],
[(0, 8), (18, 22), (58, 61), (71, 75)],
[(18, 29), (42, 45)],
[(71, 81), (95, 97)]]
preds[0].get_clusters()
> [['Мій', 'мені', 'мені', 'Я'], ['Мій друг', 'свою', 'він', 'його'], ['свою машину', 'неї'], ['його книгу', 'її']]
preds[0].get_logit(
span_i=(13, 17), span_j=(42, 45)
)
> -6.867196
```
## Training Details
### Training Data
The model was trained on the silver coreference resolution dataset: https://huggingface.co/datasets/artemkramov/coreference-dataset-ua.
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
#### Metrics
Two types of metrics were considered: mention-based and the coreference resolution metrics themselves.
Mention-based metrics:
- mention precision
- mention recall
- mention F1
Coreference resolution metrics were calculated as the average values across the following metrics: MUC, BCubed, CEAFE:
- coreference precision
- coreference recall
- coreference F1
### Results
The metrics for the validation dataset:
| Metric | Value |
|:---------------------:|-------|
| Mention precision | 0.850 |
| Mention recall | 0.798 |
| Mention F1 | 0.824 |
| Coreference precision | 0.758 |
| Coreference recall | 0.706 |
| Coreference F1 | 0.731 |
#### Summary
## Model Examination [optional]
<!-- Relevant interpretability work for the model goes here -->
[More Information Needed]
## Environmental Impact
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
- **Hardware Type:** [More Information Needed]
- **Hours used:** [More Information Needed]
- **Cloud Provider:** [More Information Needed]
- **Compute Region:** [More Information Needed]
- **Carbon Emitted:** [More Information Needed]
## Technical Specifications [optional]
### Model Architecture and Objective
[More Information Needed]
### Compute Infrastructure
[More Information Needed]
#### Hardware
[More Information Needed]
#### Software
[More Information Needed]
## Citation [optional]
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Model Card Authors [optional]
[More Information Needed]
## Model Card Contact
[More Information Needed]