Datasets:
Tasks:
Feature Extraction
Modalities:
Image
Formats:
imagefolder
Size:
10K - 100K
Tags:
climate
License:
import os | |
import shutil | |
import random | |
# Define paths | |
train_dir = "train" | |
val_dir = "val" | |
test_dir = "test" | |
# Define split ratios | |
train_ratio = 0.8 | |
val_ratio = 0.1 | |
test_ratio = 0.1 | |
# Ensure output directories exist | |
for split_dir in [train_dir, val_dir, test_dir]: | |
os.makedirs(split_dir, exist_ok=True) | |
# Get class names (subdirectories current dir) | |
class_names = [d for d in os.listdir() if os.path.isdir(d) and d not in {"train", "val", "test"}] | |
# Process each class | |
for class_name in class_names: | |
class_path = class_name | |
images = [f for f in os.listdir(class_path) if os.path.isfile(os.path.join(class_path, f))] | |
# Shuffle images randomly | |
random.shuffle(images) | |
# Compute split indices | |
total_images = len(images) | |
train_count = int(total_images * train_ratio) | |
val_count = int(total_images * val_ratio) | |
# Split images | |
train_images = images[:train_count] | |
val_images = images[train_count:train_count + val_count] | |
test_images = images[train_count + val_count:] | |
# Define destination directories for the class | |
for split_name, split_images in zip(["train", "val", "test"], [train_images, val_images, test_images]): | |
split_class_dir = os.path.join(split_name, class_name) | |
os.makedirs(split_class_dir, exist_ok=True) | |
# Move images | |
for image in split_images: | |
src = os.path.join(class_path, image) | |
dst = os.path.join(split_class_dir, image) | |
shutil.move(src, dst) | |
print("Dataset successfully split into train, val, and test sets.") | |