LiamKhoaLe's picture
Re-add scripts and README, removing previous large files
41f0921
import os
import shutil
import random
# Define paths
train_dir = "train"
val_dir = "val"
test_dir = "test"
# Define split ratios
train_ratio = 0.8
val_ratio = 0.1
test_ratio = 0.1
# Ensure output directories exist
for split_dir in [train_dir, val_dir, test_dir]:
os.makedirs(split_dir, exist_ok=True)
# Get class names (subdirectories current dir)
class_names = [d for d in os.listdir() if os.path.isdir(d) and d not in {"train", "val", "test"}]
# Process each class
for class_name in class_names:
class_path = class_name
images = [f for f in os.listdir(class_path) if os.path.isfile(os.path.join(class_path, f))]
# Shuffle images randomly
random.shuffle(images)
# Compute split indices
total_images = len(images)
train_count = int(total_images * train_ratio)
val_count = int(total_images * val_ratio)
# Split images
train_images = images[:train_count]
val_images = images[train_count:train_count + val_count]
test_images = images[train_count + val_count:]
# Define destination directories for the class
for split_name, split_images in zip(["train", "val", "test"], [train_images, val_images, test_images]):
split_class_dir = os.path.join(split_name, class_name)
os.makedirs(split_class_dir, exist_ok=True)
# Move images
for image in split_images:
src = os.path.join(class_path, image)
dst = os.path.join(split_class_dir, image)
shutil.move(src, dst)
print("Dataset successfully split into train, val, and test sets.")