id
stringlengths
6
113
author
stringlengths
2
36
task_category
stringclasses
42 values
tags
listlengths
1
4.05k
created_time
timestamp[ns, tz=UTC]date
2022-03-02 23:29:04
2025-04-10 08:38:38
last_modified
stringdate
2020-05-14 13:13:12
2025-04-19 04:15:39
downloads
int64
0
118M
likes
int64
0
4.86k
README
stringlengths
30
1.01M
matched_bigbio_names
listlengths
1
8
is_bionlp
stringclasses
3 values
model_cards
stringlengths
0
1M
metadata
stringlengths
2
698k
source
stringclasses
2 values
matched_task
listlengths
1
10
__index_level_0__
int64
0
46.9k
muhtasham/small-mlm-imdb-target-imdb
muhtasham
text-classification
[ "transformers", "pytorch", "bert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-12-11T03:31:56Z
2022-12-11T03:43:44+00:00
114
0
--- datasets: - imdb license: apache-2.0 metrics: - accuracy - f1 tags: - generated_from_trainer model-index: - name: small-mlm-imdb-target-imdb results: - task: type: text-classification name: Text Classification dataset: name: imdb type: imdb config: plain_text split: train args: plain_text metrics: - type: accuracy value: 0.91736 name: Accuracy - type: f1 value: 0.9568990695539701 name: F1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-imdb-target-imdb This model is a fine-tuned version of [muhtasham/small-mlm-imdb](https://huggingface.co/muhtasham/small-mlm-imdb) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3145 - Accuracy: 0.9174 - F1: 0.9569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.315 | 0.64 | 500 | 0.1711 | 0.9310 | 0.9642 | | 0.2248 | 1.28 | 1000 | 0.1385 | 0.9471 | 0.9728 | | 0.1824 | 1.92 | 1500 | 0.1044 | 0.9610 | 0.9801 | | 0.1326 | 2.56 | 2000 | 0.2382 | 0.9294 | 0.9634 | | 0.1056 | 3.2 | 2500 | 0.5074 | 0.8698 | 0.9304 | | 0.0804 | 3.84 | 3000 | 0.3145 | 0.9174 | 0.9569 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # small-mlm-imdb-target-imdb This model is a fine-tuned version of [muhtasham/small-mlm-imdb](https://huggingface.co/muhtasham/small-mlm-imdb) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.3145 - Accuracy: 0.9174 - F1: 0.9569 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.315 | 0.64 | 500 | 0.1711 | 0.9310 | 0.9642 | | 0.2248 | 1.28 | 1000 | 0.1385 | 0.9471 | 0.9728 | | 0.1824 | 1.92 | 1500 | 0.1044 | 0.9610 | 0.9801 | | 0.1326 | 2.56 | 2000 | 0.2382 | 0.9294 | 0.9634 | | 0.1056 | 3.2 | 2500 | 0.5074 | 0.8698 | 0.9304 | | 0.0804 | 3.84 | 3000 | 0.3145 | 0.9174 | 0.9569 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.12.1 - Datasets 2.7.1 - Tokenizers 0.13.2
{"datasets": ["imdb"], "license": "apache-2.0", "metrics": ["accuracy", "f1"], "tags": ["generated_from_trainer"], "model-index": [{"name": "small-mlm-imdb-target-imdb", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "imdb", "type": "imdb", "config": "plain_text", "split": "train", "args": "plain_text"}, "metrics": [{"type": "accuracy", "value": 0.91736, "name": "Accuracy"}, {"type": "f1", "value": 0.9568990695539701, "name": "F1"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
40,964
RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf
RichardErkhov
null
[ "gguf", "endpoints_compatible", "region:us" ]
2024-09-15T02:38:06Z
2024-09-15T16:35:16+00:00
66
0
--- {} --- Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Hyperion-3.0-Yi-34B - GGUF - Model creator: https://huggingface.co/Locutusque/ - Original model: https://huggingface.co/Locutusque/Hyperion-3.0-Yi-34B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Hyperion-3.0-Yi-34B.Q2_K.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q2_K.gguf) | Q2_K | 11.94GB | | [Hyperion-3.0-Yi-34B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.IQ3_XS.gguf) | IQ3_XS | 13.26GB | | [Hyperion-3.0-Yi-34B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.IQ3_S.gguf) | IQ3_S | 13.99GB | | [Hyperion-3.0-Yi-34B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q3_K_S.gguf) | Q3_K_S | 13.93GB | | [Hyperion-3.0-Yi-34B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.IQ3_M.gguf) | IQ3_M | 14.5GB | | [Hyperion-3.0-Yi-34B.Q3_K.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q3_K.gguf) | Q3_K | 15.51GB | | [Hyperion-3.0-Yi-34B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q3_K_M.gguf) | Q3_K_M | 15.51GB | | [Hyperion-3.0-Yi-34B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q3_K_L.gguf) | Q3_K_L | 16.89GB | | [Hyperion-3.0-Yi-34B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.IQ4_XS.gguf) | IQ4_XS | 17.36GB | | [Hyperion-3.0-Yi-34B.Q4_0.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q4_0.gguf) | Q4_0 | 18.13GB | | [Hyperion-3.0-Yi-34B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.IQ4_NL.gguf) | IQ4_NL | 18.3GB | | [Hyperion-3.0-Yi-34B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q4_K_S.gguf) | Q4_K_S | 18.25GB | | [Hyperion-3.0-Yi-34B.Q4_K.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q4_K.gguf) | Q4_K | 19.24GB | | [Hyperion-3.0-Yi-34B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q4_K_M.gguf) | Q4_K_M | 19.24GB | | [Hyperion-3.0-Yi-34B.Q4_1.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q4_1.gguf) | Q4_1 | 20.1GB | | [Hyperion-3.0-Yi-34B.Q5_0.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q5_0.gguf) | Q5_0 | 22.08GB | | [Hyperion-3.0-Yi-34B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q5_K_S.gguf) | Q5_K_S | 22.08GB | | [Hyperion-3.0-Yi-34B.Q5_K.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q5_K.gguf) | Q5_K | 22.65GB | | [Hyperion-3.0-Yi-34B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q5_K_M.gguf) | Q5_K_M | 22.65GB | | [Hyperion-3.0-Yi-34B.Q5_1.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q5_1.gguf) | Q5_1 | 24.05GB | | [Hyperion-3.0-Yi-34B.Q6_K.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q6_K.gguf) | Q6_K | 26.28GB | | [Hyperion-3.0-Yi-34B.Q8_0.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q8_0.gguf) | Q8_0 | 34.03GB | Original model description: --- language: - en license: other library_name: transformers tags: - code - chemistry - medical datasets: - Locutusque/hyperion-v3.0 widget: - example_title: Derivative text: | <|im_start|>user In this task, you are given a description of an object and its surroundings. Your task is to describe the motion of the object mentioned in the description using differential equations. The answer should be a mathematical expression in t. Description: A ball is thrown up at 30 ft/sec from 3 feet off the ground. Solve this step-by-step, explaining each step in detail.<|im_end|> <|im_start|>assistant output: text: | Let's denote the height of the ball as h(t) where t represents time in seconds. Since the ball is thrown up with an initial velocity of 30 ft/sec, we can write the following equation for the vertical component of the ball's velocity: v(t) = -32t + 30 Here, v(t) represents the velocity of the ball at time t (in feet per second), and the negative sign indicates that the velocity decreases due to gravity. Now, we can integrate the velocity function to find the position function: h(t) = ∫v(t) dt = ∫(-32t + 30) dt Integrating each term separately, we get: h(t) = (-16t^2 + 30t + C) To determine the constant C, we use the initial condition that the ball is thrown from 3 feet above the ground. At t=0, the height is 3 feet: h(0) = 3 Substituting t=0 into the equation for h(t): 3 = (-16(0)^2 + 30(0) + C) Solving for C, we get: C = 3 So the final equation for the height of the ball as a function of time is: h(t) = -16t^2 + 30t + 3 --- # Locutusque/Hyperion-3.0-Yi-34B ![Hyperion](https://th.bing.com/th/id/OIG4.16hfui67GAonzb98DGFF?pid=ImgGn) ## Model Details - **Model Name**: Locutusque/Hyperion-3.0-Yi-34B - **Base Model**: Yi-34B - **Publisher**: Locutusque - **Model Type**: Question answering, conversational AI, code generation, medical text comprehension, mathematical reasoning, logical reasoning. - **Language**: Multi-domain, English language. - **License**: Apache-2.0 ## Model Description Locutusque/Hyperion-3.0-Yi-34B is a state-of-the-art language model fine-tuned on the Hyperion-v3.0 dataset for advanced reasoning across scientific domains. This model is designed to handle complex inquiries and instructions, leveraging the diverse and rich information contained in the Hyperion dataset. Its primary use cases include but are not limited to complex question answering, conversational understanding, code generation, medical text comprehension, mathematical reasoning, and logical reasoning. This model is designed to greatly outperform its predecessors. ## Intended Use This model is intended for researchers and practitioners looking for a powerful tool to tackle challenging problems in scientific domains. It can be used in the following scenarios: - AI-driven tutoring systems for science, medicine, mathematics, and computer science. - Assistive tools for professionals requiring fast and accurate domain-specific information retrieval. - Platforms that require conversational AI capabilities with a focus on technical and scientific reasoning. - Automation in code generation and understanding complex programming context. ## Training Data The Locutusque/Hyperion-3.0-Yi-34B model was fine-tuned on 150,000 examples of the Hyperion-3.0 dataset, which amalgamates various datasets rich in diversity and complexity, including programming, medical texts, mathematical problems, and reasoning tasks. ## Quants ExLlamaV2: https://huggingface.co/bartowski/Hyperion-3.0-Yi-34B-exl2 GGUF: https://huggingface.co/bartowski/Hyperion-3.0-Yi-34B-GGUF ## Evaluation Results Coming soon ## How to Use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Locutusque/Hyperion-3.0-Yi-34B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # For a text generation task input_text = "<|im_start|>user\nWhat are the implications of Einstein's theory of relativity in modern physics?<|im_end|>\n<|im_start|>assistant\n" input_ids = tokenizer.encode(input_text, return_tensors="pt") # Generate a response outputs = model.generate(input_ids, max_length=200, num_return_sequences=1, temperature=0.8, top_p=0.95, top_k=40, repetition_penalty=1.1) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Known Limitations The diversity of the dataset could lead to inconsistencies in the model's responses due to variations in data formatting and annotation quality. This model is also very compliant, it will respond to any request. Please make sure to build upon this model with DPO if you plan on using it for enterprise-level deployment. ## Licensing Information This model is released under the Yi NC license.
null
Non_BioNLP
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Hyperion-3.0-Yi-34B - GGUF - Model creator: https://huggingface.co/Locutusque/ - Original model: https://huggingface.co/Locutusque/Hyperion-3.0-Yi-34B/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Hyperion-3.0-Yi-34B.Q2_K.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q2_K.gguf) | Q2_K | 11.94GB | | [Hyperion-3.0-Yi-34B.IQ3_XS.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.IQ3_XS.gguf) | IQ3_XS | 13.26GB | | [Hyperion-3.0-Yi-34B.IQ3_S.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.IQ3_S.gguf) | IQ3_S | 13.99GB | | [Hyperion-3.0-Yi-34B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q3_K_S.gguf) | Q3_K_S | 13.93GB | | [Hyperion-3.0-Yi-34B.IQ3_M.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.IQ3_M.gguf) | IQ3_M | 14.5GB | | [Hyperion-3.0-Yi-34B.Q3_K.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q3_K.gguf) | Q3_K | 15.51GB | | [Hyperion-3.0-Yi-34B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q3_K_M.gguf) | Q3_K_M | 15.51GB | | [Hyperion-3.0-Yi-34B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q3_K_L.gguf) | Q3_K_L | 16.89GB | | [Hyperion-3.0-Yi-34B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.IQ4_XS.gguf) | IQ4_XS | 17.36GB | | [Hyperion-3.0-Yi-34B.Q4_0.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q4_0.gguf) | Q4_0 | 18.13GB | | [Hyperion-3.0-Yi-34B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.IQ4_NL.gguf) | IQ4_NL | 18.3GB | | [Hyperion-3.0-Yi-34B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q4_K_S.gguf) | Q4_K_S | 18.25GB | | [Hyperion-3.0-Yi-34B.Q4_K.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q4_K.gguf) | Q4_K | 19.24GB | | [Hyperion-3.0-Yi-34B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q4_K_M.gguf) | Q4_K_M | 19.24GB | | [Hyperion-3.0-Yi-34B.Q4_1.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q4_1.gguf) | Q4_1 | 20.1GB | | [Hyperion-3.0-Yi-34B.Q5_0.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q5_0.gguf) | Q5_0 | 22.08GB | | [Hyperion-3.0-Yi-34B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q5_K_S.gguf) | Q5_K_S | 22.08GB | | [Hyperion-3.0-Yi-34B.Q5_K.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q5_K.gguf) | Q5_K | 22.65GB | | [Hyperion-3.0-Yi-34B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q5_K_M.gguf) | Q5_K_M | 22.65GB | | [Hyperion-3.0-Yi-34B.Q5_1.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q5_1.gguf) | Q5_1 | 24.05GB | | [Hyperion-3.0-Yi-34B.Q6_K.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q6_K.gguf) | Q6_K | 26.28GB | | [Hyperion-3.0-Yi-34B.Q8_0.gguf](https://huggingface.co/RichardErkhov/Locutusque_-_Hyperion-3.0-Yi-34B-gguf/blob/main/Hyperion-3.0-Yi-34B.Q8_0.gguf) | Q8_0 | 34.03GB | Original model description: --- language: - en license: other library_name: transformers tags: - code - chemistry - medical datasets: - Locutusque/hyperion-v3.0 widget: - example_title: Derivative text: | <|im_start|>user In this task, you are given a description of an object and its surroundings. Your task is to describe the motion of the object mentioned in the description using differential equations. The answer should be a mathematical expression in t. Description: A ball is thrown up at 30 ft/sec from 3 feet off the ground. Solve this step-by-step, explaining each step in detail.<|im_end|> <|im_start|>assistant output: text: | Let's denote the height of the ball as h(t) where t represents time in seconds. Since the ball is thrown up with an initial velocity of 30 ft/sec, we can write the following equation for the vertical component of the ball's velocity: v(t) = -32t + 30 Here, v(t) represents the velocity of the ball at time t (in feet per second), and the negative sign indicates that the velocity decreases due to gravity. Now, we can integrate the velocity function to find the position function: h(t) = ∫v(t) dt = ∫(-32t + 30) dt Integrating each term separately, we get: h(t) = (-16t^2 + 30t + C) To determine the constant C, we use the initial condition that the ball is thrown from 3 feet above the ground. At t=0, the height is 3 feet: h(0) = 3 Substituting t=0 into the equation for h(t): 3 = (-16(0)^2 + 30(0) + C) Solving for C, we get: C = 3 So the final equation for the height of the ball as a function of time is: h(t) = -16t^2 + 30t + 3 --- # Locutusque/Hyperion-3.0-Yi-34B ![Hyperion](https://th.bing.com/th/id/OIG4.16hfui67GAonzb98DGFF?pid=ImgGn) ## Model Details - **Model Name**: Locutusque/Hyperion-3.0-Yi-34B - **Base Model**: Yi-34B - **Publisher**: Locutusque - **Model Type**: Question answering, conversational AI, code generation, medical text comprehension, mathematical reasoning, logical reasoning. - **Language**: Multi-domain, English language. - **License**: Apache-2.0 ## Model Description Locutusque/Hyperion-3.0-Yi-34B is a state-of-the-art language model fine-tuned on the Hyperion-v3.0 dataset for advanced reasoning across scientific domains. This model is designed to handle complex inquiries and instructions, leveraging the diverse and rich information contained in the Hyperion dataset. Its primary use cases include but are not limited to complex question answering, conversational understanding, code generation, medical text comprehension, mathematical reasoning, and logical reasoning. This model is designed to greatly outperform its predecessors. ## Intended Use This model is intended for researchers and practitioners looking for a powerful tool to tackle challenging problems in scientific domains. It can be used in the following scenarios: - AI-driven tutoring systems for science, medicine, mathematics, and computer science. - Assistive tools for professionals requiring fast and accurate domain-specific information retrieval. - Platforms that require conversational AI capabilities with a focus on technical and scientific reasoning. - Automation in code generation and understanding complex programming context. ## Training Data The Locutusque/Hyperion-3.0-Yi-34B model was fine-tuned on 150,000 examples of the Hyperion-3.0 dataset, which amalgamates various datasets rich in diversity and complexity, including programming, medical texts, mathematical problems, and reasoning tasks. ## Quants ExLlamaV2: https://huggingface.co/bartowski/Hyperion-3.0-Yi-34B-exl2 GGUF: https://huggingface.co/bartowski/Hyperion-3.0-Yi-34B-GGUF ## Evaluation Results Coming soon ## How to Use ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Locutusque/Hyperion-3.0-Yi-34B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) # For a text generation task input_text = "<|im_start|>user\nWhat are the implications of Einstein's theory of relativity in modern physics?<|im_end|>\n<|im_start|>assistant\n" input_ids = tokenizer.encode(input_text, return_tensors="pt") # Generate a response outputs = model.generate(input_ids, max_length=200, num_return_sequences=1, temperature=0.8, top_p=0.95, top_k=40, repetition_penalty=1.1) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Known Limitations The diversity of the dataset could lead to inconsistencies in the model's responses due to variations in data formatting and annotation quality. This model is also very compliant, it will respond to any request. Please make sure to build upon this model with DPO if you plan on using it for enterprise-level deployment. ## Licensing Information This model is released under the Yi NC license.
{}
task
[ "QUESTION_ANSWERING" ]
40,965
chi-vi/hirashiba-mt-tiny-zh-vi-onnx
chi-vi
translation
[ "onnx", "marian", "translation", "vi", "zh", "license:mpl-2.0", "region:us" ]
2025-03-02T05:09:28Z
2025-03-02T15:49:49+00:00
63
1
--- language: - vi - zh license: mpl-2.0 pipeline_tag: translation --- ## How to run: ```python import torch import time from transformers import AutoTokenizer, pipeline from optimum.onnxruntime import ORTModelForSeq2SeqLM model = ORTModelForSeq2SeqLM.from_pretrained("chi-vi/hirashiba-mt-tiny-zh-vi-onnx") tokenizer = AutoTokenizer.from_pretrained("chi-vi/hirashiba-mt-tiny-zh-vi-onnx") with open("test.txt") as f: text = f.readlines() start_time = time.time() pipe = pipeline("translation", model=model, tokenizer=tokenizer, device=0) result = pipe(text) print(result) print("--- %s seconds ---" % (time.time() - start_time)) ```
null
Non_BioNLP
## How to run: ```python import torch import time from transformers import AutoTokenizer, pipeline from optimum.onnxruntime import ORTModelForSeq2SeqLM model = ORTModelForSeq2SeqLM.from_pretrained("chi-vi/hirashiba-mt-tiny-zh-vi-onnx") tokenizer = AutoTokenizer.from_pretrained("chi-vi/hirashiba-mt-tiny-zh-vi-onnx") with open("test.txt") as f: text = f.readlines() start_time = time.time() pipe = pipeline("translation", model=model, tokenizer=tokenizer, device=0) result = pipe(text) print(result) print("--- %s seconds ---" % (time.time() - start_time)) ```
{"language": ["vi", "zh"], "license": "mpl-2.0", "pipeline_tag": "translation"}
task
[ "TRANSLATION" ]
40,966
Netta1994/setfit_baai_wix_qa_gpt-4o_cot-few_shot_remove_final_evaluation_e1_1726759073.27929
Netta1994
text-classification
[ "setfit", "safetensors", "bert", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:BAAI/bge-base-en-v1.5", "base_model:finetune:BAAI/bge-base-en-v1.5", "model-index", "region:us" ]
2024-09-19T15:17:53Z
2024-09-19T15:18:25+00:00
12
0
--- base_model: BAAI/bge-base-en-v1.5 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: 'Evaluation: The answer is directly grounded in the document provided. It clearly and correctly outlines the steps to change the reservation reference from the service page to the booking calendar. The steps in the document and the answer align perfectly. The final evaluation:' - text: 'The answer provided does not address the specific question of "how to remove the time from showing on the booking button." Instead, it describes the process of blocking off time in the booking calendar, which is unrelated to the question about altering the display on the booking button. Evaluation: The answer does not match the question and is not grounded in the provided document. Final evaluation:' - text: "Evaluation:\n\nThe answer given aligns well with the document's content and\ \ instructions for enabling calendar scheduling and recording for the business\ \ email. It clearly breaks down the required steps for verifying the domain and\ \ enabling the <ORGANIZATION> app, which are indeed the needed actions mentioned\ \ in the document to resolve the issue. The provided steps are accurate, relevant,\ \ and concise. \n\nThe answer effectively integrates specific, actionable instructions,\ \ thereby addressing the question comprehensively. This makes the response both\ \ well-grounded and useful to someone encountering the specified issue.\n\nFinal\ \ evaluation:" - text: 'Evaluation: The answer clearly provides step-by-step instructions on how to add a favicon to a website''s search engine results, which aligns well with the information outlined in the document. The key steps and conditions like needing a premium plan, a connected domain, and publishing the site before adding a favicon are accurately mentioned. However, the answer does not mention the need to use a .jpg or .png file and make sure the favicon is in a 1:1 image ratio as suggested in the document. Nevertheless, the core of the procedure has been captured correctly without critical omissions impacting the clarity. Final evaluation:' - text: 'The answer provided is accurate and correctly follows the steps mentioned in the document. It specifies upgrading to a Business & eCommerce Premium Plan, using the "Add" button in Editor X, and adding bookings to the site. It also mentions the visibility of the Service List page and the automatic addition of member pages for clients, which are points the document covers. Final evaluation:' inference: true model-index: - name: SetFit with BAAI/bge-base-en-v1.5 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.6666666666666666 name: Accuracy --- # SetFit with BAAI/bge-base-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | <ul><li>'Evaluation:\nThe answer is highly relevant and aligns well with the document. It explains the steps to resolve the "Couldn\'t Fetch" error in the sitemap, which impacts the discovery of pages. The steps provided, such as checking the sitemap URL path, resubmitting the URL if incorrect, and using the inspection tool, are directly grounded in the document provided. There are no discrepancies, and the key points are covered comprehensively.\n\nThe final evaluation:'</li><li>'Reasoning:\nThe answer provided is clear and well-structured, capturing the steps needed to enable clients to book multiple participants for a service in `<ORGANIZATION>` Bookings. However, there is a discrepancy in step 6 where "John Youngimum" is mentioned instead of "Maximum". This typographical error could potentially confuse readers.\n\nFinal result:'</li><li>'Evaluation:\nThe provided answer does address the question, giving a specific response related to the error encountered while changing the location for booking services. It mentions a known issue and asserts that it has been resolved. However, the answer is not grounded in the provided document, which does not contain any information about booking services or the specific issue mentioned.\n\nFinal evaluation:'</li></ul> | | 0 | <ul><li>"The answer given is not completely accurate based on the provided document. The document mentions that you cannot transfer your Bookings App from one site to another, but it does not explicitly state that you cannot update the booking app on your site. The answer's suggestion to vote for future features is correct but incomplete and misleading in the context of the user's question about updating the app.\n\nFinal Evaluation:"</li><li>'The answer is comprehensive and well-organized, clearly detailing the steps required to add a service, including additional details for setting up a service page for site members only. The response accurately reflects the structure and content of the provided document. Each step corresponds to instructions within the document, ensuring all critical aspects are covered.\n\nHowever, there is a slight issue in the clarity due to minor typographical errors ("youre" instead of "you\'re"). While these don\'t detract significantly, they do impact the overall professionalism.\n\nFinal evaluation:'</li><li>'The answer covers the steps to display blog categories on the blog feed as described in the document, following a logical sequence that mirrors the outlined procedure. However, it fails to adequately articulate one specific point, using the placeholder "95593638" instead of the correct term "create." This error is repeated multiple times, which could cause confusion and render the instructions largely unusable.\n\nHence, while the general content is correct, the improper terminology application significantly reduces its effectiveness and usability.\n\nFinal Evaluation:'</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.6667 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("Netta1994/setfit_baai_wix_qa_gpt-4o_cot-few_shot_remove_final_evaluation_e1_1726759073.27929") # Run inference preds = model("Evaluation: The answer is directly grounded in the document provided. It clearly and correctly outlines the steps to change the reservation reference from the service page to the booking calendar. The steps in the document and the answer align perfectly. The final evaluation:") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 30 | 82.6444 | 209 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 22 | | 1 | 23 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0088 | 1 | 0.202 | - | | 0.4425 | 50 | 0.2406 | - | | 0.8850 | 100 | 0.1459 | - | ### Framework Versions - Python: 3.10.14 - SetFit: 1.1.0 - Sentence Transformers: 3.1.0 - Transformers: 4.44.0 - PyTorch: 2.4.1+cu121 - Datasets: 2.19.2 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
null
Non_BioNLP
# SetFit with BAAI/bge-base-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | <ul><li>'Evaluation:\nThe answer is highly relevant and aligns well with the document. It explains the steps to resolve the "Couldn\'t Fetch" error in the sitemap, which impacts the discovery of pages. The steps provided, such as checking the sitemap URL path, resubmitting the URL if incorrect, and using the inspection tool, are directly grounded in the document provided. There are no discrepancies, and the key points are covered comprehensively.\n\nThe final evaluation:'</li><li>'Reasoning:\nThe answer provided is clear and well-structured, capturing the steps needed to enable clients to book multiple participants for a service in `<ORGANIZATION>` Bookings. However, there is a discrepancy in step 6 where "John Youngimum" is mentioned instead of "Maximum". This typographical error could potentially confuse readers.\n\nFinal result:'</li><li>'Evaluation:\nThe provided answer does address the question, giving a specific response related to the error encountered while changing the location for booking services. It mentions a known issue and asserts that it has been resolved. However, the answer is not grounded in the provided document, which does not contain any information about booking services or the specific issue mentioned.\n\nFinal evaluation:'</li></ul> | | 0 | <ul><li>"The answer given is not completely accurate based on the provided document. The document mentions that you cannot transfer your Bookings App from one site to another, but it does not explicitly state that you cannot update the booking app on your site. The answer's suggestion to vote for future features is correct but incomplete and misleading in the context of the user's question about updating the app.\n\nFinal Evaluation:"</li><li>'The answer is comprehensive and well-organized, clearly detailing the steps required to add a service, including additional details for setting up a service page for site members only. The response accurately reflects the structure and content of the provided document. Each step corresponds to instructions within the document, ensuring all critical aspects are covered.\n\nHowever, there is a slight issue in the clarity due to minor typographical errors ("youre" instead of "you\'re"). While these don\'t detract significantly, they do impact the overall professionalism.\n\nFinal evaluation:'</li><li>'The answer covers the steps to display blog categories on the blog feed as described in the document, following a logical sequence that mirrors the outlined procedure. However, it fails to adequately articulate one specific point, using the placeholder "95593638" instead of the correct term "create." This error is repeated multiple times, which could cause confusion and render the instructions largely unusable.\n\nHence, while the general content is correct, the improper terminology application significantly reduces its effectiveness and usability.\n\nFinal Evaluation:'</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.6667 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("Netta1994/setfit_baai_wix_qa_gpt-4o_cot-few_shot_remove_final_evaluation_e1_1726759073.27929") # Run inference preds = model("Evaluation: The answer is directly grounded in the document provided. It clearly and correctly outlines the steps to change the reservation reference from the service page to the booking calendar. The steps in the document and the answer align perfectly. The final evaluation:") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 30 | 82.6444 | 209 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 22 | | 1 | 23 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0088 | 1 | 0.202 | - | | 0.4425 | 50 | 0.2406 | - | | 0.8850 | 100 | 0.1459 | - | ### Framework Versions - Python: 3.10.14 - SetFit: 1.1.0 - Sentence Transformers: 3.1.0 - Transformers: 4.44.0 - PyTorch: 2.4.1+cu121 - Datasets: 2.19.2 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"base_model": "BAAI/bge-base-en-v1.5", "library_name": "setfit", "metrics": ["accuracy"], "pipeline_tag": "text-classification", "tags": ["setfit", "sentence-transformers", "text-classification", "generated_from_setfit_trainer"], "widget": [{"text": "Evaluation:\nThe answer is directly grounded in the document provided. It clearly and correctly outlines the steps to change the reservation reference from the service page to the booking calendar. The steps in the document and the answer align perfectly.\n\nThe final evaluation:"}, {"text": "The answer provided does not address the specific question of \"how to remove the time from showing on the booking button.\" Instead, it describes the process of blocking off time in the booking calendar, which is unrelated to the question about altering the display on the booking button.\n\nEvaluation: The answer does not match the question and is not grounded in the provided document.\n\nFinal evaluation:"}, {"text": "Evaluation:\n\nThe answer given aligns well with the document's content and instructions for enabling calendar scheduling and recording for the business email. It clearly breaks down the required steps for verifying the domain and enabling the <ORGANIZATION> app, which are indeed the needed actions mentioned in the document to resolve the issue. The provided steps are accurate, relevant, and concise. \n\nThe answer effectively integrates specific, actionable instructions, thereby addressing the question comprehensively. This makes the response both well-grounded and useful to someone encountering the specified issue.\n\nFinal evaluation:"}, {"text": "Evaluation:\nThe answer clearly provides step-by-step instructions on how to add a favicon to a website's search engine results, which aligns well with the information outlined in the document. The key steps and conditions like needing a premium plan, a connected domain, and publishing the site before adding a favicon are accurately mentioned. However, the answer does not mention the need to use a .jpg or .png file and make sure the favicon is in a 1:1 image ratio as suggested in the document.\n\nNevertheless, the core of the procedure has been captured correctly without critical omissions impacting the clarity.\n\nFinal evaluation:"}, {"text": "The answer provided is accurate and correctly follows the steps mentioned in the document. It specifies upgrading to a Business & eCommerce Premium Plan, using the \"Add\" button in Editor X, and adding bookings to the site. It also mentions the visibility of the Service List page and the automatic addition of member pages for clients, which are points the document covers.\n\nFinal evaluation:"}], "inference": true, "model-index": [{"name": "SetFit with BAAI/bge-base-en-v1.5", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "Unknown", "type": "unknown", "split": "test"}, "metrics": [{"type": "accuracy", "value": 0.6666666666666666, "name": "Accuracy"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
40,967
WilliamWen/summarization_02
WilliamWen
summarization
[ "transformers", "pytorch", "bart", "text2text-generation", "autotrain", "summarization", "unk", "dataset:WilliamWen/autotrain-data-summarization_02", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-04-10T08:46:34Z
2023-04-10T09:02:34+00:00
31
0
--- datasets: - WilliamWen/autotrain-data-summarization_02 language: - unk tags: - autotrain - summarization widget: - text: I love AutoTrain 🤗 co2_eq_emissions: emissions: 6.080555626511939 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 48234117386 - CO2 Emissions (in grams): 6.0806 ## Validation Metrics - Loss: 2.396 - Rouge1: 37.261 - Rouge2: 10.823 - RougeL: 20.762 - RougeLsum: 32.576 - Gen Len: 141.653 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/WilliamWen/autotrain-summarization_02-48234117386 ```
null
Non_BioNLP
# Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 48234117386 - CO2 Emissions (in grams): 6.0806 ## Validation Metrics - Loss: 2.396 - Rouge1: 37.261 - Rouge2: 10.823 - RougeL: 20.762 - RougeLsum: 32.576 - Gen Len: 141.653 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/WilliamWen/autotrain-summarization_02-48234117386 ```
{"datasets": ["WilliamWen/autotrain-data-summarization_02"], "language": ["unk"], "tags": ["autotrain", "summarization"], "widget": [{"text": "I love AutoTrain 🤗"}], "co2_eq_emissions": {"emissions": 6.080555626511939}}
task
[ "SUMMARIZATION" ]
40,968
novarac23/distilbert-base-uncased-finetuned-emotion
novarac23
text-classification
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-31T19:05:57Z
2022-03-31T19:39:15+00:00
112
0
--- datasets: - emotion license: apache-2.0 metrics: - accuracy - f1 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion args: default metrics: - type: accuracy value: 0.925 name: Accuracy - type: f1 value: 0.9251919899321654 name: F1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2234 - Accuracy: 0.925 - F1: 0.9252 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8213 | 1.0 | 250 | 0.3210 | 0.9025 | 0.8989 | | 0.2463 | 2.0 | 500 | 0.2234 | 0.925 | 0.9252 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2234 - Accuracy: 0.925 - F1: 0.9252 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8213 | 1.0 | 250 | 0.3210 | 0.9025 | 0.8989 | | 0.2463 | 2.0 | 500 | 0.2234 | 0.925 | 0.9252 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3
{"datasets": ["emotion"], "license": "apache-2.0", "metrics": ["accuracy", "f1"], "tags": ["generated_from_trainer"], "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.925, "name": "Accuracy"}, {"type": "f1", "value": 0.9251919899321654, "name": "F1"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
40,969
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1235
Lots-of-LoRAs
null
[ "pytorch", "safetensors", "en", "arxiv:1910.09700", "arxiv:2407.00066", "license:mit", "region:us" ]
2024-12-30T23:22:47Z
2024-12-30T23:22:53+00:00
0
0
--- language: en library_name: pytorch license: mit --- # Model Card for Mistral-7B-Instruct-v0.2-4b-r16-task1235 <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> LoRA trained on task1235_ted_translation_he_ja - **Developed by:** bruel - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** LoRA - **Language(s) (NLP):** en - **License:** mit - **Finetuned from model [optional]:** mistralai/Mistral-7B-Instruct-v0.2 ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/bruel-gabrielsson - **Paper [optional]:** "Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead" (2024), Rickard Brüel Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen, Kristjan Greenewald, Mikhail Yurochkin and Justin Solomon - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> https://huggingface.co/datasets/Lots-of-LoRAs/task1235_ted_translation_he_ja sourced from https://github.com/allenai/natural-instructions ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** @misc{brüelgabrielsson2024compressserveservingthousands, title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead}, author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon}, year={2024}, eprint={2407.00066}, archivePrefix={arXiv}, primaryClass={cs.DC}, url={https://arxiv.org/abs/2407.00066}, } **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
null
Non_BioNLP
# Model Card for Mistral-7B-Instruct-v0.2-4b-r16-task1235 <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> LoRA trained on task1235_ted_translation_he_ja - **Developed by:** bruel - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** LoRA - **Language(s) (NLP):** en - **License:** mit - **Finetuned from model [optional]:** mistralai/Mistral-7B-Instruct-v0.2 ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/bruel-gabrielsson - **Paper [optional]:** "Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead" (2024), Rickard Brüel Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen, Kristjan Greenewald, Mikhail Yurochkin and Justin Solomon - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> https://huggingface.co/datasets/Lots-of-LoRAs/task1235_ted_translation_he_ja sourced from https://github.com/allenai/natural-instructions ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** @misc{brüelgabrielsson2024compressserveservingthousands, title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead}, author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon}, year={2024}, eprint={2407.00066}, archivePrefix={arXiv}, primaryClass={cs.DC}, url={https://arxiv.org/abs/2407.00066}, } **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"language": "en", "library_name": "pytorch", "license": "mit"}
task
[ "TRANSLATION" ]
40,971
lmg-anon/vntl-llama3-8b-gguf
lmg-anon
translation
[ "gguf", "translation", "ja", "en", "dataset:lmg-anon/VNTL-v3.1-1k", "dataset:lmg-anon/VNTL-Chat", "license:llama3", "endpoints_compatible", "region:us" ]
2024-06-13T17:17:30Z
2024-06-15T17:33:02+00:00
347
8
--- datasets: - lmg-anon/VNTL-v3.1-1k - lmg-anon/VNTL-Chat language: - ja - en license: llama3 pipeline_tag: translation --- This repository contains some GGUF quantizations of the merge of the [VNTL LLaMA 3 8B qlora](https://huggingface.co/lmg-anon/vntl-llama3-8b-qlora). This model also includes a new "chat mode", which works mostly for Japanese grammar questions. ## Translation Prompt This is an prompt example for translation: ``` <<METADATA>> [character] Name: Uryuu Shingo (瓜生 新吾) | Gender: Male | Aliases: Onii-chan (お兄ちゃん) [character] Name: Uryuu Sakuno (瓜生 桜乃) | Gender: Female <<TRANSLATE>> <<JAPANESE>> [桜乃]: 『……ごめん』 <<ENGLISH>> [Sakuno]: 『... Sorry.』<|end_of_text|> <<JAPANESE>> [新吾]: 「ううん、こう言っちゃなんだけど、迷子でよかったよ。桜乃は可愛いから、いろいろ心配しちゃってたんだぞ俺」 <<ENGLISH>> ``` The generated translation for that prompt, with temperature 0, is: ``` [Shingo]: 「No, I know this isn't the best way to say it, but I'm glad you got lost. You're so cute that I was worried about you.」 ``` ## Chat Prompt This is an prompt example for chat: ``` <<CHAT>> <<HUMAN>> Hi! Can you break this down to me? Like, what is the meaning of "桜乃は可愛いから"? "ううん、こう言っちゃなんだけど、迷子でよかったよ。桜乃は可愛いから、いろいろ心配しちゃってたんだぞ俺」" <<LLM>> ``` The generated response for that prompt, with temperature 0, is: ``` Certainly! The phrase "桜乃は可愛いから" literally translates to "Because Sakura-no is cute." In Japanese culture, there is a strong emphasis on physical attractiveness and cuteness, especially when it comes to young girls or women. This phrase suggests that the speaker finds Sakura-no (presumably a girl) to be very attractive and endearing in appearance. ```
null
Non_BioNLP
This repository contains some GGUF quantizations of the merge of the [VNTL LLaMA 3 8B qlora](https://huggingface.co/lmg-anon/vntl-llama3-8b-qlora). This model also includes a new "chat mode", which works mostly for Japanese grammar questions. ## Translation Prompt This is an prompt example for translation: ``` <<METADATA>> [character] Name: Uryuu Shingo (瓜生 新吾) | Gender: Male | Aliases: Onii-chan (お兄ちゃん) [character] Name: Uryuu Sakuno (瓜生 桜乃) | Gender: Female <<TRANSLATE>> <<JAPANESE>> [桜乃]: 『……ごめん』 <<ENGLISH>> [Sakuno]: 『... Sorry.』<|end_of_text|> <<JAPANESE>> [新吾]: 「ううん、こう言っちゃなんだけど、迷子でよかったよ。桜乃は可愛いから、いろいろ心配しちゃってたんだぞ俺」 <<ENGLISH>> ``` The generated translation for that prompt, with temperature 0, is: ``` [Shingo]: 「No, I know this isn't the best way to say it, but I'm glad you got lost. You're so cute that I was worried about you.」 ``` ## Chat Prompt This is an prompt example for chat: ``` <<CHAT>> <<HUMAN>> Hi! Can you break this down to me? Like, what is the meaning of "桜乃は可愛いから"? "ううん、こう言っちゃなんだけど、迷子でよかったよ。桜乃は可愛いから、いろいろ心配しちゃってたんだぞ俺」" <<LLM>> ``` The generated response for that prompt, with temperature 0, is: ``` Certainly! The phrase "桜乃は可愛いから" literally translates to "Because Sakura-no is cute." In Japanese culture, there is a strong emphasis on physical attractiveness and cuteness, especially when it comes to young girls or women. This phrase suggests that the speaker finds Sakura-no (presumably a girl) to be very attractive and endearing in appearance. ```
{"datasets": ["lmg-anon/VNTL-v3.1-1k", "lmg-anon/VNTL-Chat"], "language": ["ja", "en"], "license": "llama3", "pipeline_tag": "translation"}
task
[ "TRANSLATION" ]
40,972
LoneStriker/mistral-7b-lamia-v0.1-GGUF
LoneStriker
null
[ "gguf", "NSFW", "Porn", "Ecommerce", "Roleplay", "Summarization", "dataset:openerotica/Lamia", "license:apache-2.0", "region:us" ]
2024-01-22T15:49:03Z
2024-01-22T16:13:25+00:00
33
3
--- datasets: - openerotica/Lamia license: apache-2.0 tags: - NSFW - Porn - Ecommerce - Roleplay - Summarization --- This is a combination of the pruned erotica-analysis data, freedom-rp, and a subest of Airoboros. The following Categories are what was taken out of the Airoborus datset and added to my own Lamia dataset: "roleplay", "unalignment", "editor", "writing", "detailed_writing", "stylized_response", "unalign", "cot", "song" I'm hoping that this can improve the models narrative/storywriting ability, logic, and intelligence, while reducing any potential inherent ethical "alignment" that may be present in the base mistral model from pretaining on Chat-GPT generated data. The format is Chatml, and the base model is Yarn Mistral which increases the context size to a true 16k+ rather than rellying on the sliding attention window.
null
Non_BioNLP
This is a combination of the pruned erotica-analysis data, freedom-rp, and a subest of Airoboros. The following Categories are what was taken out of the Airoborus datset and added to my own Lamia dataset: "roleplay", "unalignment", "editor", "writing", "detailed_writing", "stylized_response", "unalign", "cot", "song" I'm hoping that this can improve the models narrative/storywriting ability, logic, and intelligence, while reducing any potential inherent ethical "alignment" that may be present in the base mistral model from pretaining on Chat-GPT generated data. The format is Chatml, and the base model is Yarn Mistral which increases the context size to a true 16k+ rather than rellying on the sliding attention window.
{"datasets": ["openerotica/Lamia"], "license": "apache-2.0", "tags": ["NSFW", "Porn", "Ecommerce", "Roleplay", "Summarization"]}
task
[ "SUMMARIZATION" ]
40,973
VERSIL91/e188aa9e-4866-44a2-a023-a2063d1dd1c3
VERSIL91
null
[ "peft", "safetensors", "phi3", "axolotl", "generated_from_trainer", "custom_code", "base_model:migtissera/Tess-v2.5-Phi-3-medium-128k-14B", "base_model:adapter:migtissera/Tess-v2.5-Phi-3-medium-128k-14B", "license:mit", "region:us" ]
2025-01-02T19:29:45Z
2025-01-02T19:47:22+00:00
3
0
--- base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B library_name: peft license: mit tags: - axolotl - generated_from_trainer model-index: - name: e188aa9e-4866-44a2-a023-a2063d1dd1c3 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml accelerate_config: dynamo_backend: inductor mixed_precision: bf16 num_machines: 1 num_processes: auto use_cpu: false adapter: lora base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4a7e279337c9436f_train_data.json ds_type: json format: custom path: /workspace/input_data/4a7e279337c9436f_train_data.json type: field_input: choices field_instruction: input field_output: input_translation format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: VERSIL91/e188aa9e-4866-44a2-a023-a2063d1dd1c3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 5 micro_batch_size: 2 mlflow_experiment_name: /tmp/4a7e279337c9436f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true quantization_config: llm_int8_enable_fp32_cpu_offload: true load_in_8bit: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: true train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e188aa9e-4866-44a2-a023-a2063d1dd1c3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e188aa9e-4866-44a2-a023-a2063d1dd1c3 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e188aa9e-4866-44a2-a023-a2063d1dd1c3 This model is a fine-tuned version of [migtissera/Tess-v2.5-Phi-3-medium-128k-14B](https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 21.6908 | 0.0023 | 1 | 1.3388 | | 19.728 | 0.0046 | 2 | 1.3189 | | 21.325 | 0.0092 | 4 | 1.3067 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml accelerate_config: dynamo_backend: inductor mixed_precision: bf16 num_machines: 1 num_processes: auto use_cpu: false adapter: lora base_model: migtissera/Tess-v2.5-Phi-3-medium-128k-14B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 4a7e279337c9436f_train_data.json ds_type: json format: custom path: /workspace/input_data/4a7e279337c9436f_train_data.json type: field_input: choices field_instruction: input field_output: input_translation format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null device_map: auto early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 16 gradient_checkpointing: true group_by_length: false hub_model_id: VERSIL91/e188aa9e-4866-44a2-a023-a2063d1dd1c3 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lora_target_modules: - q_proj - v_proj lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 5 micro_batch_size: 2 mlflow_experiment_name: /tmp/4a7e279337c9436f_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true quantization_config: llm_int8_enable_fp32_cpu_offload: true load_in_8bit: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 512 strict: false tf32: false tokenizer_type: AutoTokenizer torch_compile: true train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: e188aa9e-4866-44a2-a023-a2063d1dd1c3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: e188aa9e-4866-44a2-a023-a2063d1dd1c3 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ``` </details><br> # e188aa9e-4866-44a2-a023-a2063d1dd1c3 This model is a fine-tuned version of [migtissera/Tess-v2.5-Phi-3-medium-128k-14B](https://huggingface.co/migtissera/Tess-v2.5-Phi-3-medium-128k-14B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 21.6908 | 0.0023 | 1 | 1.3388 | | 19.728 | 0.0046 | 2 | 1.3189 | | 21.325 | 0.0092 | 4 | 1.3067 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
{"base_model": "migtissera/Tess-v2.5-Phi-3-medium-128k-14B", "library_name": "peft", "license": "mit", "tags": ["axolotl", "generated_from_trainer"], "model-index": [{"name": "e188aa9e-4866-44a2-a023-a2063d1dd1c3", "results": []}]}
task
[ "TRANSLATION" ]
40,974
Helsinki-NLP/opus-mt-tr-sv
Helsinki-NLP
translation
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "tr", "sv", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04Z
2023-08-16T12:07:29+00:00
52
0
--- license: apache-2.0 tags: - translation --- ### opus-mt-tr-sv * source languages: tr * target languages: sv * OPUS readme: [tr-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/tr-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/tr-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/tr-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/tr-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.tr.sv | 26.3 | 0.478 |
null
Non_BioNLP
### opus-mt-tr-sv * source languages: tr * target languages: sv * OPUS readme: [tr-sv](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/tr-sv/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/tr-sv/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/tr-sv/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/tr-sv/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.tr.sv | 26.3 | 0.478 |
{"license": "apache-2.0", "tags": ["translation"]}
task
[ "TRANSLATION" ]
40,975
Helsinki-NLP/opus-mt-tc-big-gmq-ar
Helsinki-NLP
translation
[ "transformers", "pytorch", "tf", "safetensors", "marian", "text2text-generation", "translation", "opus-mt-tc", "ar", "da", "sv", "license:cc-by-4.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-08-12T14:35:33Z
2023-10-10T11:26:33+00:00
17
1
--- language: - ar - da - sv license: cc-by-4.0 tags: - translation - opus-mt-tc model-index: - name: opus-mt-tc-big-gmq-ar results: - task: type: translation name: Translation dan-ara dataset: name: flores101-devtest type: flores_101 args: dan ara devtest metrics: - type: bleu value: 19.9 name: BLEU - type: chrf value: 0.52841 name: chr-F - type: bleu value: 16.8 name: BLEU - type: chrf value: 0.4967 name: chr-F - type: bleu value: 19.3 name: BLEU - type: chrf value: 0.51882 name: chr-F --- # opus-mt-tc-big-gmq-ar ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [Acknowledgements](#acknowledgements) ## Model Details Neural machine translation model for translating from North Germanic languages (gmq) to Arabic (ar). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation (transformer-big) - **Release**: 2022-07-27 - **License:** CC-BY-4.0 - **Language(s):** - Source Language(s): dan swe - Target Language(s): ara - Language Pair(s): dan-ara swe-ara - Valid Target Language Labels: >>apc<< >>ara<< >>arq<< >>arz<< - **Original Model**: [opusTCv20210807_transformer-big_2022-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-ara/opusTCv20210807_transformer-big_2022-07-27.zip) - **Resources for more information:** - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) - More information about released models for this language pair: [OPUS-MT gmq-ara README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmq-ara/README.md) - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>><<` ## Uses This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## How to Get Started With the Model A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>ara<< Jeg elsker semitiske sprog.", ">>ara<< Vad handlar boken om?" ] model_name = "pytorch-models/opus-mt-tc-big-gmq-ar" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # أحبّ اللغات الساميّة. # عن ماذا يتحدث الكتاب؟ ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-gmq-ar") print(pipe(">>ara<< Jeg elsker semitiske sprog.")) # expected output: أحبّ اللغات الساميّة. ``` ## Training - **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) - **Pre-processing**: SentencePiece (spm32k,spm32k) - **Model Type:** transformer-big - **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-ara/opusTCv20210807_transformer-big_2022-07-27.zip) - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Evaluation * test set translations: [opusTCv20210807_transformer-big_2022-07-27.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-ara/opusTCv20210807_transformer-big_2022-07-27.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-07-27.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-ara/opusTCv20210807_transformer-big_2022-07-27.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | dan-ara | flores101-devtest | 0.52841 | 19.9 | 1012 | 21357 | | nob-ara | flores101-devtest | 0.49670 | 16.8 | 1012 | 21357 | | swe-ara | flores101-devtest | 0.51882 | 19.3 | 1012 | 21357 | ## Citation Information * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 8b9f0b0 * port time: Sat Aug 13 00:05:06 EEST 2022 * port machine: LM0-400-22516.local
null
Non_BioNLP
# opus-mt-tc-big-gmq-ar ## Table of Contents - [Model Details](#model-details) - [Uses](#uses) - [Risks, Limitations and Biases](#risks-limitations-and-biases) - [How to Get Started With the Model](#how-to-get-started-with-the-model) - [Training](#training) - [Evaluation](#evaluation) - [Citation Information](#citation-information) - [Acknowledgements](#acknowledgements) ## Model Details Neural machine translation model for translating from North Germanic languages (gmq) to Arabic (ar). This model is part of the [OPUS-MT project](https://github.com/Helsinki-NLP/Opus-MT), an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of [Marian NMT](https://marian-nmt.github.io/), an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from [OPUS](https://opus.nlpl.eu/) and training pipelines use the procedures of [OPUS-MT-train](https://github.com/Helsinki-NLP/Opus-MT-train). **Model Description:** - **Developed by:** Language Technology Research Group at the University of Helsinki - **Model Type:** Translation (transformer-big) - **Release**: 2022-07-27 - **License:** CC-BY-4.0 - **Language(s):** - Source Language(s): dan swe - Target Language(s): ara - Language Pair(s): dan-ara swe-ara - Valid Target Language Labels: >>apc<< >>ara<< >>arq<< >>arz<< - **Original Model**: [opusTCv20210807_transformer-big_2022-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-ara/opusTCv20210807_transformer-big_2022-07-27.zip) - **Resources for more information:** - [OPUS-MT-train GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) - More information about released models for this language pair: [OPUS-MT gmq-ara README](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/gmq-ara/README.md) - [More information about MarianNMT models in the transformers library](https://huggingface.co/docs/transformers/model_doc/marian) - [Tatoeba Translation Challenge](https://github.com/Helsinki-NLP/Tatoeba-Challenge/ This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of `>>id<<` (id = valid target language ID), e.g. `>><<` ## Uses This model can be used for translation and text-to-text generation. ## Risks, Limitations and Biases **CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.** Significant research has explored bias and fairness issues with language models (see, e.g., [Sheng et al. (2021)](https://aclanthology.org/2021.acl-long.330.pdf) and [Bender et al. (2021)](https://dl.acm.org/doi/pdf/10.1145/3442188.3445922)). ## How to Get Started With the Model A short example code: ```python from transformers import MarianMTModel, MarianTokenizer src_text = [ ">>ara<< Jeg elsker semitiske sprog.", ">>ara<< Vad handlar boken om?" ] model_name = "pytorch-models/opus-mt-tc-big-gmq-ar" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True)) for t in translated: print( tokenizer.decode(t, skip_special_tokens=True) ) # expected output: # أحبّ اللغات الساميّة. # عن ماذا يتحدث الكتاب؟ ``` You can also use OPUS-MT models with the transformers pipelines, for example: ```python from transformers import pipeline pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-gmq-ar") print(pipe(">>ara<< Jeg elsker semitiske sprog.")) # expected output: أحبّ اللغات الساميّة. ``` ## Training - **Data**: opusTCv20210807 ([source](https://github.com/Helsinki-NLP/Tatoeba-Challenge)) - **Pre-processing**: SentencePiece (spm32k,spm32k) - **Model Type:** transformer-big - **Original MarianNMT Model**: [opusTCv20210807_transformer-big_2022-07-27.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-ara/opusTCv20210807_transformer-big_2022-07-27.zip) - **Training Scripts**: [GitHub Repo](https://github.com/Helsinki-NLP/OPUS-MT-train) ## Evaluation * test set translations: [opusTCv20210807_transformer-big_2022-07-27.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-ara/opusTCv20210807_transformer-big_2022-07-27.test.txt) * test set scores: [opusTCv20210807_transformer-big_2022-07-27.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/gmq-ara/opusTCv20210807_transformer-big_2022-07-27.eval.txt) * benchmark results: [benchmark_results.txt](benchmark_results.txt) * benchmark output: [benchmark_translations.zip](benchmark_translations.zip) | langpair | testset | chr-F | BLEU | #sent | #words | |----------|---------|-------|-------|-------|--------| | dan-ara | flores101-devtest | 0.52841 | 19.9 | 1012 | 21357 | | nob-ara | flores101-devtest | 0.49670 | 16.8 | 1012 | 21357 | | swe-ara | flores101-devtest | 0.51882 | 19.3 | 1012 | 21357 | ## Citation Information * Publications: [OPUS-MT – Building open translation services for the World](https://aclanthology.org/2020.eamt-1.61/) and [The Tatoeba Translation Challenge – Realistic Data Sets for Low Resource and Multilingual MT](https://aclanthology.org/2020.wmt-1.139/) (Please, cite if you use this model.) ``` @inproceedings{tiedemann-thottingal-2020-opus, title = "{OPUS}-{MT} {--} Building open translation services for the World", author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh}, booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation", month = nov, year = "2020", address = "Lisboa, Portugal", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2020.eamt-1.61", pages = "479--480", } @inproceedings{tiedemann-2020-tatoeba, title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Fifth Conference on Machine Translation", month = nov, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.wmt-1.139", pages = "1174--1182", } ``` ## Acknowledgements The work is supported by the [European Language Grid](https://www.european-language-grid.eu/) as [pilot project 2866](https://live.european-language-grid.eu/catalogue/#/resource/projects/2866), by the [FoTran project](https://www.helsinki.fi/en/researchgroups/natural-language-understanding-with-cross-lingual-grounding), funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the [MeMAD project](https://memad.eu/), funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by [CSC -- IT Center for Science](https://www.csc.fi/), Finland. ## Model conversion info * transformers version: 4.16.2 * OPUS-MT git hash: 8b9f0b0 * port time: Sat Aug 13 00:05:06 EEST 2022 * port machine: LM0-400-22516.local
{"language": ["ar", "da", "sv"], "license": "cc-by-4.0", "tags": ["translation", "opus-mt-tc"], "model-index": [{"name": "opus-mt-tc-big-gmq-ar", "results": [{"task": {"type": "translation", "name": "Translation dan-ara"}, "dataset": {"name": "flores101-devtest", "type": "flores_101", "args": "dan ara devtest"}, "metrics": [{"type": "bleu", "value": 19.9, "name": "BLEU"}, {"type": "chrf", "value": 0.52841, "name": "chr-F"}, {"type": "bleu", "value": 16.8, "name": "BLEU"}, {"type": "chrf", "value": 0.4967, "name": "chr-F"}, {"type": "bleu", "value": 19.3, "name": "BLEU"}, {"type": "chrf", "value": 0.51882, "name": "chr-F"}]}]}]}
task
[ "TRANSLATION" ]
40,976
Shobhank-iiitdwd/DistBERT-squad2-QA
Shobhank-iiitdwd
question-answering
[ "transformers", "pytorch", "bert", "question-answering", "exbert", "en", "dataset:squad_v2", "license:mit", "model-index", "endpoints_compatible", "region:us" ]
2022-12-29T05:31:30Z
2022-12-29T05:37:33+00:00
18
1
--- datasets: - squad_v2 language: en license: mit tags: - exbert thumbnail: https://thumb.tildacdn.com/tild3433-3637-4830-a533-353833613061/-/resize/720x/-/format/webp/germanquad.jpg model-index: - name: Shobhank-iiitdwd/DistBERT-squad2-QA-768d results: - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 73.8248 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGFmZmFiN2E5ODZkOTkyMjQ1NTUzMmQwMjc0M2RlYzVlNmM4YTFlNzA4YzIwY2JkY2EyNDg2ZTY3OTdjZTVlZiIsInZlcnNpb24iOjF9.ZZ6c2OI3lzeNhuSWTh28j00zk-sPrqkTvdVBZv2wJc1D4YnR-xOj72haybT6MV_xeYqTg3-x9L8PsWSS20NaDw - type: f1 value: 77.1684 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzAxMDk1YzI5ZjA2N2ZmMzAxNjgxYzJiNzAzYmI1ZWU5ZDRmYWY3OWJmMjlmNDcyMGE0YWY5NjNhZTk4YWY5ZSIsInZlcnNpb24iOjF9.rF3raNGUSYv5D2xzWLZztD99vwDKvWb22LG32RomrDGP6XKTbCVqZzAw5UFw93jKb0VoLApbQQ-AOGxLj3U_Cg --- ## Overview **Language model:** Shobhank-iiitdwd/DistBERT-squad2-QA **Language:** English **Training data:** SQuAD 2.0 training set x 20 augmented + SQuAD 2.0 training set without augmentation **Eval data:** SQuAD 2.0 dev set **Infrastructure**: 1x V100 GPU **Published**: Dec 8th, 2021 ## Details - haystack's intermediate layer and prediction layer distillation features were used for training. bert-base-uncased-squad2 was used as the teacher model and DBERT_General_6L_768D was used as the student model. ## Hyperparameters ### Intermediate layer distillation ``` batch_size = 26 n_epochs = 5 max_seq_len = 384 learning_rate = 5e-5 lr_schedule = LinearWarmup embeds_dropout_prob = 0.1 temperature = 1 ``` ### Prediction layer distillation ``` batch_size = 26 n_epochs = 5 max_seq_len = 384 learning_rate = 3e-5 lr_schedule = LinearWarmup embeds_dropout_prob = 0.1 temperature = 1 distillation_loss_weight = 1.0 ``` ## Performance ``` "exact": 71.87736882001179 "f1": 76.36111895973675 ```
null
Non_BioNLP
## Overview **Language model:** Shobhank-iiitdwd/DistBERT-squad2-QA **Language:** English **Training data:** SQuAD 2.0 training set x 20 augmented + SQuAD 2.0 training set without augmentation **Eval data:** SQuAD 2.0 dev set **Infrastructure**: 1x V100 GPU **Published**: Dec 8th, 2021 ## Details - haystack's intermediate layer and prediction layer distillation features were used for training. bert-base-uncased-squad2 was used as the teacher model and DBERT_General_6L_768D was used as the student model. ## Hyperparameters ### Intermediate layer distillation ``` batch_size = 26 n_epochs = 5 max_seq_len = 384 learning_rate = 5e-5 lr_schedule = LinearWarmup embeds_dropout_prob = 0.1 temperature = 1 ``` ### Prediction layer distillation ``` batch_size = 26 n_epochs = 5 max_seq_len = 384 learning_rate = 3e-5 lr_schedule = LinearWarmup embeds_dropout_prob = 0.1 temperature = 1 distillation_loss_weight = 1.0 ``` ## Performance ``` "exact": 71.87736882001179 "f1": 76.36111895973675 ```
{"datasets": ["squad_v2"], "language": "en", "license": "mit", "tags": ["exbert"], "thumbnail": "https://thumb.tildacdn.com/tild3433-3637-4830-a533-353833613061/-/resize/720x/-/format/webp/germanquad.jpg", "model-index": [{"name": "Shobhank-iiitdwd/DistBERT-squad2-QA-768d", "results": [{"task": {"type": "question-answering", "name": "Question Answering"}, "dataset": {"name": "squad_v2", "type": "squad_v2", "config": "squad_v2", "split": "validation"}, "metrics": [{"type": "exact_match", "value": 73.8248, "name": "Exact Match", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGFmZmFiN2E5ODZkOTkyMjQ1NTUzMmQwMjc0M2RlYzVlNmM4YTFlNzA4YzIwY2JkY2EyNDg2ZTY3OTdjZTVlZiIsInZlcnNpb24iOjF9.ZZ6c2OI3lzeNhuSWTh28j00zk-sPrqkTvdVBZv2wJc1D4YnR-xOj72haybT6MV_xeYqTg3-x9L8PsWSS20NaDw"}, {"type": "f1", "value": 77.1684, "name": "F1", "verified": true, "verifyToken": "eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzAxMDk1YzI5ZjA2N2ZmMzAxNjgxYzJiNzAzYmI1ZWU5ZDRmYWY3OWJmMjlmNDcyMGE0YWY5NjNhZTk4YWY5ZSIsInZlcnNpb24iOjF9.rF3raNGUSYv5D2xzWLZztD99vwDKvWb22LG32RomrDGP6XKTbCVqZzAw5UFw93jKb0VoLApbQQ-AOGxLj3U_Cg"}]}]}]}
task
[ "QUESTION_ANSWERING" ]
40,978
superlazycoder/autotrain-uo549-my6uq
superlazycoder
text-classification
[ "transformers", "safetensors", "roberta", "text-classification", "autotrain", "dataset:autotrain-uo549-my6uq/autotrain-data", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-01-30T23:31:13Z
2024-01-30T23:31:31+00:00
9
0
--- datasets: - autotrain-uo549-my6uq/autotrain-data tags: - autotrain - text-classification widget: - text: I love AutoTrain --- # Model Trained Using AutoTrain - Problem type: Text Classification ## Validation Metrics loss: 0.5372051000595093 f1: 1.0 precision: 1.0 recall: 1.0 auc: 1.0 accuracy: 1.0
null
Non_BioNLP
# Model Trained Using AutoTrain - Problem type: Text Classification ## Validation Metrics loss: 0.5372051000595093 f1: 1.0 precision: 1.0 recall: 1.0 auc: 1.0 accuracy: 1.0
{"datasets": ["autotrain-uo549-my6uq/autotrain-data"], "tags": ["autotrain", "text-classification"], "widget": [{"text": "I love AutoTrain"}]}
task
[ "TEXT_CLASSIFICATION" ]
40,979
jbochi/madlad400-8b-lm
jbochi
text-generation
[ "transformers", "safetensors", "t5", "text-generation", "text-generation-inference", "custom_code", "en", "ru", "es", "fr", "de", "it", "pt", "pl", "nl", "vi", "tr", "sv", "id", "ro", "cs", "zh", "hu", "ja", "th", "fi", "fa", "uk", "da", "el", "no", "bg", "sk", "ko", "ar", "lt", "ca", "sl", "he", "et", "lv", "hi", "sq", "ms", "az", "sr", "ta", "hr", "kk", "is", "ml", "mr", "te", "af", "gl", "fil", "be", "mk", "eu", "bn", "ka", "mn", "bs", "uz", "ur", "sw", "yue", "ne", "kn", "kaa", "gu", "si", "cy", "eo", "la", "hy", "ky", "tg", "ga", "mt", "my", "km", "tt", "so", "ku", "ps", "pa", "rw", "lo", "ha", "dv", "fy", "lb", "ckb", "mg", "gd", "am", "ug", "ht", "grc", "hmn", "sd", "jv", "mi", "tk", "ceb", "yi", "ba", "fo", "or", "xh", "su", "kl", "ny", "sm", "sn", "co", "zu", "ig", "yo", "pap", "st", "haw", "as", "oc", "cv", "lus", "tet", "gsw", "sah", "br", "rm", "sa", "bo", "om", "se", "ce", "cnh", "ilo", "hil", "udm", "os", "lg", "ti", "vec", "ts", "tyv", "kbd", "ee", "iba", "av", "kha", "to", "tn", "nso", "fj", "zza", "ak", "ada", "otq", "dz", "bua", "cfm", "ln", "chm", "gn", "krc", "wa", "hif", "yua", "srn", "war", "rom", "bik", "pam", "sg", "lu", "ady", "kbp", "syr", "ltg", "myv", "iso", "kac", "bho", "ay", "kum", "qu", "za", "pag", "ngu", "ve", "pck", "zap", "tyz", "hui", "bbc", "tzo", "tiv", "ksd", "gom", "min", "ang", "nhe", "bgp", "nzi", "nnb", "nv", "zxx", "bci", "kv", "new", "mps", "alt", "meu", "bew", "fon", "iu", "abt", "mgh", "mnw", "tvl", "dov", "tlh", "ho", "kw", "mrj", "meo", "crh", "mbt", "emp", "ace", "ium", "mam", "gym", "mai", "crs", "pon", "ubu", "fip", "quc", "gv", "kj", "btx", "ape", "chk", "rcf", "shn", "tzh", "mdf", "ppk", "ss", "gag", "cab", "kri", "seh", "ibb", "tbz", "bru", "enq", "ach", "cuk", "kmb", "wo", "kek", "qub", "tab", "bts", "kos", "rwo", "cak", "tuc", "bum", "cjk", "gil", "stq", "tsg", "quh", "mak", "arn", "ban", "jiv", "sja", "yap", "tcy", "toj", "twu", "xal", "amu", "rmc", "hus", "nia", "kjh", "bm", "guh", "mas", "acf", "dtp", "ksw", "bzj", "din", "zne", "mad", "msi", "mag", "mkn", "kg", "lhu", "ch", "qvi", "mh", "djk", "sus", "mfe", "srm", "dyu", "ctu", "gui", "pau", "inb", "bi", "mni", "guc", "jam", "wal", "jac", "bas", "gor", "skr", "nyu", "noa", "sda", "gub", "nog", "cni", "teo", "tdx", "sxn", "rki", "nr", "frp", "alz", "taj", "lrc", "cce", "rn", "jvn", "hvn", "nij", "dwr", "izz", "msm", "bus", "ktu", "chr", "maz", "tzj", "suz", "knj", "bim", "gvl", "bqc", "tca", "pis", "prk", "laj", "mel", "qxr", "niq", "ahk", "shp", "hne", "spp", "koi", "krj", "quf", "luz", "agr", "tsc", "mqy", "gof", "gbm", "miq", "dje", "awa", "bjj", "qvz", "sjp", "tll", "raj", "kjg", "bgz", "quy", "cbk", "akb", "oj", "ify", "mey", "ks", "cac", "brx", "qup", "syl", "jax", "ff", "ber", "tks", "trp", "mrw", "adh", "smt", "srr", "ffm", "qvc", "mtr", "ann", "aa", "noe", "nut", "gyn", "kwi", "xmm", "msb", "dataset:allenai/MADLAD-400", "arxiv:2204.02311", "arxiv:2309.04662", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-11-08T10:44:15Z
2023-11-23T13:44:19+00:00
235
8
--- datasets: - allenai/MADLAD-400 language: - en - ru - es - fr - de - it - pt - pl - nl - vi - tr - sv - id - ro - cs - zh - hu - ja - th - fi - fa - uk - da - el - 'no' - bg - sk - ko - ar - lt - ca - sl - he - et - lv - hi - sq - ms - az - sr - ta - hr - kk - is - ml - mr - te - af - gl - fil - be - mk - eu - bn - ka - mn - bs - uz - ur - sw - yue - ne - kn - kaa - gu - si - cy - eo - la - hy - ky - tg - ga - mt - my - km - tt - so - ku - ps - pa - rw - lo - ha - dv - fy - lb - ckb - mg - gd - am - ug - ht - grc - hmn - sd - jv - mi - tk - ceb - yi - ba - fo - or - xh - su - kl - ny - sm - sn - co - zu - ig - yo - pap - st - haw - as - oc - cv - lus - tet - gsw - sah - br - rm - sa - bo - om - se - ce - cnh - ilo - hil - udm - os - lg - ti - vec - ts - tyv - kbd - ee - iba - av - kha - to - tn - nso - fj - zza - ak - ada - otq - dz - bua - cfm - ln - chm - gn - krc - wa - hif - yua - srn - war - rom - bik - pam - sg - lu - ady - kbp - syr - ltg - myv - iso - kac - bho - ay - kum - qu - za - pag - ngu - ve - pck - zap - tyz - hui - bbc - tzo - tiv - ksd - gom - min - ang - nhe - bgp - nzi - nnb - nv - zxx - bci - kv - new - mps - alt - meu - bew - fon - iu - abt - mgh - mnw - tvl - dov - tlh - ho - kw - mrj - meo - crh - mbt - emp - ace - ium - mam - gym - mai - crs - pon - ubu - fip - quc - gv - kj - btx - ape - chk - rcf - shn - tzh - mdf - ppk - ss - gag - cab - kri - seh - ibb - tbz - bru - enq - ach - cuk - kmb - wo - kek - qub - tab - bts - kos - rwo - cak - tuc - bum - cjk - gil - stq - tsg - quh - mak - arn - ban - jiv - sja - yap - tcy - toj - twu - xal - amu - rmc - hus - nia - kjh - bm - guh - mas - acf - dtp - ksw - bzj - din - zne - mad - msi - mag - mkn - kg - lhu - ch - qvi - mh - djk - sus - mfe - srm - dyu - ctu - gui - pau - inb - bi - mni - guc - jam - wal - jac - bas - gor - skr - nyu - noa - sda - gub - nog - cni - teo - tdx - sxn - rki - nr - frp - alz - taj - lrc - cce - rn - jvn - hvn - nij - dwr - izz - msm - bus - ktu - chr - maz - tzj - suz - knj - bim - gvl - bqc - tca - pis - prk - laj - mel - qxr - niq - ahk - shp - hne - spp - koi - krj - quf - luz - agr - tsc - mqy - gof - gbm - miq - dje - awa - bjj - qvz - sjp - tll - raj - kjg - bgz - quy - cbk - akb - oj - ify - mey - ks - cac - brx - qup - syl - jax - ff - ber - tks - trp - mrw - adh - smt - srr - ffm - qvc - mtr - ann - kaa - aa - noe - nut - gyn - kwi - xmm - msb library_name: transformers license: apache-2.0 tags: - text-generation-inference --- This model has the safetensors weights for the [Madlad-400](https://github.com/google-research/google-research/tree/master/madlad_400) 8B param **language model**. The HF transformers code to run inference is not ready yet. The [original implementation](https://github.com/google/flaxformer/blob/ea17eb012a1d340ddff017b7a534c2162aaec34c/flaxformer/architectures/t5/t5_architecture.py#L1484) is in JAX/Flaxformer. The model architecture is the same as [Palm 8B](https://arxiv.org/pdf/2204.02311.pdf). It's a decoder-only T5 with 32 layers, 16 query heads, 1 KV head, and 4096 embedding size. These are the main differences relative to the original T5 architecture: - SwiGLU Activation - Parallel Layers - Multi-Query Attention - RoPE Embeddings - Shared Input-Output Embeddings - No biases - Bidirectional attention - Layer Norm with `center_scale_at_zero` and final layer with `use_scale=False` If you are looking for the language models models, here are the available versions: - [3B](https://huggingface.co/jbochi/madlad400-3b-mt) - [7B](https://huggingface.co/jbochi/madlad400-7b-mt) - [7B-BT](https://huggingface.co/jbochi/madlad400-7b-mt-bt) - [10B](https://huggingface.co/jbochi/madlad400-10b-mt) Article: [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) Abstract: > We introduce MADLAD-400, a manually audited, general domain 3T token monolingual dataset based on CommonCrawl, spanning 419 languages. We discuss the limitations revealed by self-auditing MADLAD-400, and the role data auditing had in the dataset creation process. We then train and release a 10.7B-parameter multilingual machine translation model on 250 billion tokens covering over 450 languages using publicly available data, and find that it is competitive with models that are significantly larger, and report the results on different domains. In addition, we train a 8B-parameter language model, and assess the results on few-shot translation. We make the baseline models available to the research community.
null
Non_BioNLP
This model has the safetensors weights for the [Madlad-400](https://github.com/google-research/google-research/tree/master/madlad_400) 8B param **language model**. The HF transformers code to run inference is not ready yet. The [original implementation](https://github.com/google/flaxformer/blob/ea17eb012a1d340ddff017b7a534c2162aaec34c/flaxformer/architectures/t5/t5_architecture.py#L1484) is in JAX/Flaxformer. The model architecture is the same as [Palm 8B](https://arxiv.org/pdf/2204.02311.pdf). It's a decoder-only T5 with 32 layers, 16 query heads, 1 KV head, and 4096 embedding size. These are the main differences relative to the original T5 architecture: - SwiGLU Activation - Parallel Layers - Multi-Query Attention - RoPE Embeddings - Shared Input-Output Embeddings - No biases - Bidirectional attention - Layer Norm with `center_scale_at_zero` and final layer with `use_scale=False` If you are looking for the language models models, here are the available versions: - [3B](https://huggingface.co/jbochi/madlad400-3b-mt) - [7B](https://huggingface.co/jbochi/madlad400-7b-mt) - [7B-BT](https://huggingface.co/jbochi/madlad400-7b-mt-bt) - [10B](https://huggingface.co/jbochi/madlad400-10b-mt) Article: [MADLAD-400: A Multilingual And Document-Level Large Audited Dataset](https://arxiv.org/abs/2309.04662) Abstract: > We introduce MADLAD-400, a manually audited, general domain 3T token monolingual dataset based on CommonCrawl, spanning 419 languages. We discuss the limitations revealed by self-auditing MADLAD-400, and the role data auditing had in the dataset creation process. We then train and release a 10.7B-parameter multilingual machine translation model on 250 billion tokens covering over 450 languages using publicly available data, and find that it is competitive with models that are significantly larger, and report the results on different domains. In addition, we train a 8B-parameter language model, and assess the results on few-shot translation. We make the baseline models available to the research community.
{"datasets": ["allenai/MADLAD-400"], "language": ["en", "ru", "es", "fr", "de", "it", "pt", "pl", "nl", "vi", "tr", "sv", "id", "ro", "cs", "zh", "hu", "ja", "th", "fi", "fa", "uk", "da", "el", "no", "bg", "sk", "ko", "ar", "lt", "ca", "sl", "he", "et", "lv", "hi", "sq", "ms", "az", "sr", "ta", "hr", "kk", "is", "ml", "mr", "te", "af", "gl", "fil", "be", "mk", "eu", "bn", "ka", "mn", "bs", "uz", "ur", "sw", "yue", "ne", "kn", "kaa", "gu", "si", "cy", "eo", "la", "hy", "ky", "tg", "ga", "mt", "my", "km", "tt", "so", "ku", "ps", "pa", "rw", "lo", "ha", "dv", "fy", "lb", "ckb", "mg", "gd", "am", "ug", "ht", "grc", "hmn", "sd", "jv", "mi", "tk", "ceb", "yi", "ba", "fo", "or", "xh", "su", "kl", "ny", "sm", "sn", "co", "zu", "ig", "yo", "pap", "st", "haw", "as", "oc", "cv", "lus", "tet", "gsw", "sah", "br", "rm", "sa", "bo", "om", "se", "ce", "cnh", "ilo", "hil", "udm", "os", "lg", "ti", "vec", "ts", "tyv", "kbd", "ee", "iba", "av", "kha", "to", "tn", "nso", "fj", "zza", "ak", "ada", "otq", "dz", "bua", "cfm", "ln", "chm", "gn", "krc", "wa", "hif", "yua", "srn", "war", "rom", "bik", "pam", "sg", "lu", "ady", "kbp", "syr", "ltg", "myv", "iso", "kac", "bho", "ay", "kum", "qu", "za", "pag", "ngu", "ve", "pck", "zap", "tyz", "hui", "bbc", "tzo", "tiv", "ksd", "gom", "min", "ang", "nhe", "bgp", "nzi", "nnb", "nv", "zxx", "bci", "kv", "new", "mps", "alt", "meu", "bew", "fon", "iu", "abt", "mgh", "mnw", "tvl", "dov", "tlh", "ho", "kw", "mrj", "meo", "crh", "mbt", "emp", "ace", "ium", "mam", "gym", "mai", "crs", "pon", "ubu", "fip", "quc", "gv", "kj", "btx", "ape", "chk", "rcf", "shn", "tzh", "mdf", "ppk", "ss", "gag", "cab", "kri", "seh", "ibb", "tbz", "bru", "enq", "ach", "cuk", "kmb", "wo", "kek", "qub", "tab", "bts", "kos", "rwo", "cak", "tuc", "bum", "cjk", "gil", "stq", "tsg", "quh", "mak", "arn", "ban", "jiv", "sja", "yap", "tcy", "toj", "twu", "xal", "amu", "rmc", "hus", "nia", "kjh", "bm", "guh", "mas", "acf", "dtp", "ksw", "bzj", "din", "zne", "mad", "msi", "mag", "mkn", "kg", "lhu", "ch", "qvi", "mh", "djk", "sus", "mfe", "srm", "dyu", "ctu", "gui", "pau", "inb", "bi", "mni", "guc", "jam", "wal", "jac", "bas", "gor", "skr", "nyu", "noa", "sda", "gub", "nog", "cni", "teo", "tdx", "sxn", "rki", "nr", "frp", "alz", "taj", "lrc", "cce", "rn", "jvn", "hvn", "nij", "dwr", "izz", "msm", "bus", "ktu", "chr", "maz", "tzj", "suz", "knj", "bim", "gvl", "bqc", "tca", "pis", "prk", "laj", "mel", "qxr", "niq", "ahk", "shp", "hne", "spp", "koi", "krj", "quf", "luz", "agr", "tsc", "mqy", "gof", "gbm", "miq", "dje", "awa", "bjj", "qvz", "sjp", "tll", "raj", "kjg", "bgz", "quy", "cbk", "akb", "oj", "ify", "mey", "ks", "cac", "brx", "qup", "syl", "jax", "ff", "ber", "tks", "trp", "mrw", "adh", "smt", "srr", "ffm", "qvc", "mtr", "ann", "kaa", "aa", "noe", "nut", "gyn", "kwi", "xmm", "msb"], "library_name": "transformers", "license": "apache-2.0", "tags": ["text-generation-inference"]}
task
[ "TRANSLATION" ]
40,980
MultiBertGunjanPatrick/multiberts-seed-12
MultiBertGunjanPatrick
null
[ "transformers", "pytorch", "bert", "pretraining", "exbert", "multiberts", "en", "dataset:bookcorpus", "dataset:wikipedia", "arxiv:2106.16163", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04Z
2021-10-04T04:50:38+00:00
107
0
--- datasets: - bookcorpus - wikipedia language: en license: apache-2.0 tags: - exbert - multiberts --- # MultiBERTs Seed 12 (uncased) Seed 12 MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-12') model = BertModel.from_pretrained("multiberts-seed-12") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
null
Non_BioNLP
# MultiBERTs Seed 12 (uncased) Seed 12 MultiBERTs (pretrained BERT) model on English language using a masked language modeling (MLM) objective. It was introduced in [this paper](https://arxiv.org/pdf/2106.16163.pdf) and first released in [this repository](https://github.com/google-research/language/tree/master/language/multiberts). This model is uncased: it does not make a difference between english and English. Disclaimer: The team releasing MultiBERTs did not write a model card for this model so this model card has been written by [gchhablani](https://hf.co/gchhablani). ## Model description MultiBERTs models are transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it was pretrained with two objectives: - Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run the entire masked sentence through the model and has to predict the masked words. This is different from traditional recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the sentence. - Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to predict if the two sentences were following each other or not. This way, the model learns an inner representation of the English language that can then be used to extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard classifier using the features produced by the MultiBERTs model as inputs. ## Intended uses & limitations You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=multiberts) to look for fine-tuned versions on a task that interests you. Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked) to make decisions, such as sequence classification, token classification or question answering. For tasks such as text generation you should look at model like GPT2. ### How to use Here is how to use this model to get the features of a given text in PyTorch: ```python from transformers import BertTokenizer, BertModel tokenizer = BertTokenizer.from_pretrained('multiberts-seed-12') model = BertModel.from_pretrained("multiberts-seed-12") text = "Replace me by any text you'd like." encoded_input = tokenizer(text, return_tensors='pt') output = model(**encoded_input) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. This bias will also affect all fine-tuned versions of this model. For an understanding of bias of this particular checkpoint, please try out this checkpoint with the snippet present in the [Limitation and bias section](https://huggingface.co/bert-base-uncased#limitations-and-bias) of the [bert-base-uncased](https://huggingface.co/bert-base-uncased) checkpoint. ## Training data The MultiBERTs models were pretrained on [BookCorpus](https://yknzhu.wixsite.com/mbweb), a dataset consisting of 11,038 unpublished books and [English Wikipedia](https://en.wikipedia.org/wiki/English_Wikipedia) (excluding lists, tables and headers). ## Training procedure ### Preprocessing The texts are lowercased and tokenized using WordPiece and a vocabulary size of 30,000. The inputs of the model are then of the form: ``` [CLS] Sentence A [SEP] Sentence B [SEP] ``` With probability 0.5, sentence A and sentence B correspond to two consecutive sentences in the original corpus and in the other cases, it's another random sentence in the corpus. Note that what is considered a sentence here is a consecutive span of text usually longer than a single sentence. The only constrain is that the result with the two "sentences" has a combined length of less than 512 tokens. The details of the masking procedure for each sentence are the following: - 15% of the tokens are masked. - In 80% of the cases, the masked tokens are replaced by `[MASK]`. - In 10% of the cases, the masked tokens are replaced by a random token (different) from the one they replace. - In the 10% remaining cases, the masked tokens are left as is. ### Pretraining The model was trained on 16 Cloud TPU v2 chips for two million steps with a batch size of 256. The sequence length was set to 512 throughout. The optimizer used is Adam with a learning rate of 1e-4, \\(\beta_{1} = 0.9\\) and \\(\beta_{2} = 0.999\\), a weight decay of 0.01, learning rate warmup for 10,000 steps and linear decay of the learning rate after. ### BibTeX entry and citation info ```bibtex @article{DBLP:journals/corr/abs-2106-16163, author = {Thibault Sellam and Steve Yadlowsky and Jason Wei and Naomi Saphra and Alexander D'Amour and Tal Linzen and Jasmijn Bastings and Iulia Turc and Jacob Eisenstein and Dipanjan Das and Ian Tenney and Ellie Pavlick}, title = {The MultiBERTs: {BERT} Reproductions for Robustness Analysis}, journal = {CoRR}, volume = {abs/2106.16163}, year = {2021}, url = {https://arxiv.org/abs/2106.16163}, eprinttype = {arXiv}, eprint = {2106.16163}, timestamp = {Mon, 05 Jul 2021 15:15:50 +0200}, biburl = {https://dblp.org/rec/journals/corr/abs-2106-16163.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ``` <a href="https://huggingface.co/exbert/?model=multiberts"> <img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png"> </a>
{"datasets": ["bookcorpus", "wikipedia"], "language": "en", "license": "apache-2.0", "tags": ["exbert", "multiberts"]}
task
[ "QUESTION_ANSWERING" ]
40,981
seckmaster/microsoft-git-base
seckmaster
image-to-text
[ "pytorch", "safetensors", "git", "vision", "image-to-text", "image-captioning", "en", "arxiv:2205.14100", "license:mit", "region:us" ]
2024-12-04T07:43:14Z
2024-12-04T07:43:14+00:00
136
0
--- language: en license: mit model_name: microsoft/git-base pipeline_tag: image-to-text tags: - vision - image-to-text - image-captioning --- # GIT (GenerativeImage2Text), base-sized GIT (short for GenerativeImage2Text) model, base-sized version. It was introduced in the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Wang et al. and first released in [this repository](https://github.com/microsoft/GenerativeImage2Text). Disclaimer: The team releasing GIT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description GIT is a Transformer decoder conditioned on both CLIP image tokens and text tokens. The model is trained using "teacher forcing" on a lot of (image, text) pairs. The goal for the model is simply to predict the next text token, giving the image tokens and previous text tokens. The model has full access to (i.e. a bidirectional attention mask is used for) the image patch tokens, but only has access to the previous text tokens (i.e. a causal attention mask is used for the text tokens) when predicting the next text token. ![GIT architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/git_architecture.jpg) This allows the model to be used for tasks like: - image and video captioning - visual question answering (VQA) on images and videos - even image classification (by simply conditioning the model on the image and asking it to generate a class for it in text). ## Intended uses & limitations You can use the raw model for image captioning. See the [model hub](https://huggingface.co/models?search=microsoft/git) to look for fine-tuned versions on a task that interests you. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/model_doc/git#transformers.GitForCausalLM.forward.example). ## Training data From the paper: > We collect 0.8B image-text pairs for pre-training, which include COCO (Lin et al., 2014), Conceptual Captions (CC3M) (Sharma et al., 2018), SBU (Ordonez et al., 2011), Visual Genome (VG) (Krishna et al., 2016), Conceptual Captions (CC12M) (Changpinyo et al., 2021), ALT200M (Hu et al., 2021a), and an extra 0.6B data following a similar collection procedure in Hu et al. (2021a). => however this is for the model referred to as "GIT" in the paper, which is not open-sourced. This checkpoint is "GIT-base", which is a smaller variant of GIT trained on 10 million image-text pairs. See table 11 in the [paper](https://arxiv.org/abs/2205.14100) for more details. ### Preprocessing We refer to the original repo regarding details for preprocessing during training. During validation, one resizes the shorter edge of each image, after which center cropping is performed to a fixed-size resolution. Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation. ## Evaluation results For evaluation results, we refer readers to the [paper](https://arxiv.org/abs/2205.14100).
null
Non_BioNLP
# GIT (GenerativeImage2Text), base-sized GIT (short for GenerativeImage2Text) model, base-sized version. It was introduced in the paper [GIT: A Generative Image-to-text Transformer for Vision and Language](https://arxiv.org/abs/2205.14100) by Wang et al. and first released in [this repository](https://github.com/microsoft/GenerativeImage2Text). Disclaimer: The team releasing GIT did not write a model card for this model so this model card has been written by the Hugging Face team. ## Model description GIT is a Transformer decoder conditioned on both CLIP image tokens and text tokens. The model is trained using "teacher forcing" on a lot of (image, text) pairs. The goal for the model is simply to predict the next text token, giving the image tokens and previous text tokens. The model has full access to (i.e. a bidirectional attention mask is used for) the image patch tokens, but only has access to the previous text tokens (i.e. a causal attention mask is used for the text tokens) when predicting the next text token. ![GIT architecture](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/git_architecture.jpg) This allows the model to be used for tasks like: - image and video captioning - visual question answering (VQA) on images and videos - even image classification (by simply conditioning the model on the image and asking it to generate a class for it in text). ## Intended uses & limitations You can use the raw model for image captioning. See the [model hub](https://huggingface.co/models?search=microsoft/git) to look for fine-tuned versions on a task that interests you. ### How to use For code examples, we refer to the [documentation](https://huggingface.co/docs/transformers/main/model_doc/git#transformers.GitForCausalLM.forward.example). ## Training data From the paper: > We collect 0.8B image-text pairs for pre-training, which include COCO (Lin et al., 2014), Conceptual Captions (CC3M) (Sharma et al., 2018), SBU (Ordonez et al., 2011), Visual Genome (VG) (Krishna et al., 2016), Conceptual Captions (CC12M) (Changpinyo et al., 2021), ALT200M (Hu et al., 2021a), and an extra 0.6B data following a similar collection procedure in Hu et al. (2021a). => however this is for the model referred to as "GIT" in the paper, which is not open-sourced. This checkpoint is "GIT-base", which is a smaller variant of GIT trained on 10 million image-text pairs. See table 11 in the [paper](https://arxiv.org/abs/2205.14100) for more details. ### Preprocessing We refer to the original repo regarding details for preprocessing during training. During validation, one resizes the shorter edge of each image, after which center cropping is performed to a fixed-size resolution. Next, frames are normalized across the RGB channels with the ImageNet mean and standard deviation. ## Evaluation results For evaluation results, we refer readers to the [paper](https://arxiv.org/abs/2205.14100).
{"language": "en", "license": "mit", "model_name": "microsoft/git-base", "pipeline_tag": "image-to-text", "tags": ["vision", "image-to-text", "image-captioning"]}
task
[ "QUESTION_ANSWERING" ]
40,982
hopkins/mbart-finetuned-eng-ind-49
hopkins
translation
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-07-03T03:53:54Z
2023-07-03T04:11:46+00:00
9
0
--- metrics: - bleu tags: - translation - generated_from_trainer model-index: - name: mbart-finetuned-eng-ind-49 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-ind-49 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7653 - Bleu: 22.0600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # mbart-finetuned-eng-ind-49 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7653 - Bleu: 22.0600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
{"metrics": ["bleu"], "tags": ["translation", "generated_from_trainer"], "model-index": [{"name": "mbart-finetuned-eng-ind-49", "results": []}]}
task
[ "TRANSLATION" ]
40,983
DFKI/glove-is-cc100
DFKI
null
[ "embeddings", "glove", "cc100", "is", "arxiv:2409.18193", "license:cc-by-sa-4.0", "region:us" ]
2024-10-03T21:38:02Z
2024-12-12T09:26:15+00:00
0
0
--- language: is license: cc-by-sa-4.0 tags: - embeddings - glove - cc100 --- # CC100 GloVe Embeddings for IS Language ## Model Description - **Language:** is - **Embedding Algorithm:** GloVe (Global Vectors for Word Representation) - **Vocabulary Size:** 1141333 - **Vector Dimensions:** 300 - **Training Data:** CC100 dataset ## Training Information We trained GloVe embeddings using the original C code. The model was trained by stochastically sampling nonzero elements from the co-occurrence matrix, over 100 iterations, to produce 300-dimensional vectors. We used a context window of ten words to the left and ten words to the right. Words with fewer than 5 co-occurrences were excluded for languages with over 1 million tokens in the training data, and the threshold was set to 2 for languages with smaller datasets. We used data from CC100 for training the static word embeddings. We set xmax = 100, α = 3/4, and used AdaGrad optimization with an initial learning rate of 0.05. ## Usage These embeddings can be used for various NLP tasks such as text classification, named entity recognition, and as input features for neural networks. ## Citation If you use these embeddings in your research, please cite: ```bibtex @misc{gurgurov2024gremlinrepositorygreenbaseline, title={GrEmLIn: A Repository of Green Baseline Embeddings for 87 Low-Resource Languages Injected with Multilingual Graph Knowledge}, author={Daniil Gurgurov and Rishu Kumar and Simon Ostermann}, year={2024}, eprint={2409.18193}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2409.18193}, } ``` ## License These embeddings are released under the [CC-BY-SA 4.0 License](https://creativecommons.org/licenses/by-sa/4.0/).
null
Non_BioNLP
# CC100 GloVe Embeddings for IS Language ## Model Description - **Language:** is - **Embedding Algorithm:** GloVe (Global Vectors for Word Representation) - **Vocabulary Size:** 1141333 - **Vector Dimensions:** 300 - **Training Data:** CC100 dataset ## Training Information We trained GloVe embeddings using the original C code. The model was trained by stochastically sampling nonzero elements from the co-occurrence matrix, over 100 iterations, to produce 300-dimensional vectors. We used a context window of ten words to the left and ten words to the right. Words with fewer than 5 co-occurrences were excluded for languages with over 1 million tokens in the training data, and the threshold was set to 2 for languages with smaller datasets. We used data from CC100 for training the static word embeddings. We set xmax = 100, α = 3/4, and used AdaGrad optimization with an initial learning rate of 0.05. ## Usage These embeddings can be used for various NLP tasks such as text classification, named entity recognition, and as input features for neural networks. ## Citation If you use these embeddings in your research, please cite: ```bibtex @misc{gurgurov2024gremlinrepositorygreenbaseline, title={GrEmLIn: A Repository of Green Baseline Embeddings for 87 Low-Resource Languages Injected with Multilingual Graph Knowledge}, author={Daniil Gurgurov and Rishu Kumar and Simon Ostermann}, year={2024}, eprint={2409.18193}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2409.18193}, } ``` ## License These embeddings are released under the [CC-BY-SA 4.0 License](https://creativecommons.org/licenses/by-sa/4.0/).
{"language": "is", "license": "cc-by-sa-4.0", "tags": ["embeddings", "glove", "cc100"]}
task
[ "NAMED_ENTITY_RECOGNITION", "TEXT_CLASSIFICATION" ]
40,984
Helsinki-NLP/opus-mt-tr-uk
Helsinki-NLP
translation
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "tr", "uk", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04Z
2023-08-16T12:07:30+00:00
26
0
--- language: - tr - uk license: apache-2.0 tags: - translation --- ### tur-ukr * source group: Turkish * target group: Ukrainian * OPUS readme: [tur-ukr](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/tur-ukr/README.md) * model: transformer-align * source language(s): tur * target language(s): ukr * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ukr/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ukr/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ukr/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.tur.ukr | 42.5 | 0.624 | ### System Info: - hf_name: tur-ukr - source_languages: tur - target_languages: ukr - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/tur-ukr/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['tr', 'uk'] - src_constituents: {'tur'} - tgt_constituents: {'ukr'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ukr/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ukr/opus-2020-06-17.test.txt - src_alpha3: tur - tgt_alpha3: ukr - short_pair: tr-uk - chrF2_score: 0.624 - bleu: 42.5 - brevity_penalty: 0.983 - ref_len: 12988.0 - src_name: Turkish - tgt_name: Ukrainian - train_date: 2020-06-17 - src_alpha2: tr - tgt_alpha2: uk - prefer_old: False - long_pair: tur-ukr - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
null
Non_BioNLP
### tur-ukr * source group: Turkish * target group: Ukrainian * OPUS readme: [tur-ukr](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/tur-ukr/README.md) * model: transformer-align * source language(s): tur * target language(s): ukr * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ukr/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ukr/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ukr/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.tur.ukr | 42.5 | 0.624 | ### System Info: - hf_name: tur-ukr - source_languages: tur - target_languages: ukr - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/tur-ukr/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['tr', 'uk'] - src_constituents: {'tur'} - tgt_constituents: {'ukr'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ukr/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/tur-ukr/opus-2020-06-17.test.txt - src_alpha3: tur - tgt_alpha3: ukr - short_pair: tr-uk - chrF2_score: 0.624 - bleu: 42.5 - brevity_penalty: 0.983 - ref_len: 12988.0 - src_name: Turkish - tgt_name: Ukrainian - train_date: 2020-06-17 - src_alpha2: tr - tgt_alpha2: uk - prefer_old: False - long_pair: tur-ukr - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["tr", "uk"], "license": "apache-2.0", "tags": ["translation"]}
task
[ "TRANSLATION" ]
40,985
VexPoli/distilbart-summarization-top-single-fulllayers
VexPoli
text2text-generation
[ "transformers", "safetensors", "bart", "text2text-generation", "generated_from_trainer", "base_model:sshleifer/distilbart-xsum-6-6", "base_model:finetune:sshleifer/distilbart-xsum-6-6", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2025-02-12T21:53:55Z
2025-02-12T22:20:47+00:00
5
0
--- base_model: sshleifer/distilbart-xsum-6-6 library_name: transformers license: apache-2.0 tags: - generated_from_trainer model-index: - name: distilbart-summarization-top-single-fulllayers results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-summarization-top-single-fulllayers This model is a fine-tuned version of [sshleifer/distilbart-xsum-6-6](https://huggingface.co/sshleifer/distilbart-xsum-6-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAFACTOR and the args are: No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1269 | 0.1882 | 500 | 2.0373 | | 2.0121 | 0.3764 | 1000 | 1.9665 | | 1.9967 | 0.5645 | 1500 | 1.9280 | | 1.9512 | 0.7527 | 2000 | 1.8957 | | 1.9301 | 0.9409 | 2500 | 1.8763 | | 1.7417 | 1.1291 | 3000 | 1.8685 | | 1.7184 | 1.3173 | 3500 | 1.8584 | | 1.7206 | 1.5055 | 4000 | 1.8503 | | 1.6814 | 1.6936 | 4500 | 1.8437 | | 1.756 | 1.8818 | 5000 | 1.8382 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbart-summarization-top-single-fulllayers This model is a fine-tuned version of [sshleifer/distilbart-xsum-6-6](https://huggingface.co/sshleifer/distilbart-xsum-6-6) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.8382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAFACTOR and the args are: No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.1269 | 0.1882 | 500 | 2.0373 | | 2.0121 | 0.3764 | 1000 | 1.9665 | | 1.9967 | 0.5645 | 1500 | 1.9280 | | 1.9512 | 0.7527 | 2000 | 1.8957 | | 1.9301 | 0.9409 | 2500 | 1.8763 | | 1.7417 | 1.1291 | 3000 | 1.8685 | | 1.7184 | 1.3173 | 3500 | 1.8584 | | 1.7206 | 1.5055 | 4000 | 1.8503 | | 1.6814 | 1.6936 | 4500 | 1.8437 | | 1.756 | 1.8818 | 5000 | 1.8382 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0
{"base_model": "sshleifer/distilbart-xsum-6-6", "library_name": "transformers", "license": "apache-2.0", "tags": ["generated_from_trainer"], "model-index": [{"name": "distilbart-summarization-top-single-fulllayers", "results": []}]}
task
[ "SUMMARIZATION" ]
40,986
vishw2703/unisumm_3
vishw2703
summarization
[ "transformers", "pytorch", "jax", "rust", "bart", "text2text-generation", "summarization", "en", "dataset:cnn_dailymail", "dataset:xsum", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-08-06T16:48:05Z
2022-08-26T07:47:58+00:00
40
0
--- datasets: - cnn_dailymail - xsum language: en license: apache-2.0 tags: - summarization thumbnail: https://huggingface.co/front/thumbnails/distilbart_medium.png --- ### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for model | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
null
Non_BioNLP
### Usage This checkpoint should be loaded into `BartForConditionalGeneration.from_pretrained`. See the [BART docs](https://huggingface.co/transformers/model_doc/bart.html?#transformers.BartForConditionalGeneration) for more information. ### Metrics for model | Model Name | MM Params | Inference Time (MS) | Speedup | Rouge 2 | Rouge-L | |:---------------------------|------------:|----------------------:|----------:|----------:|----------:| | distilbart-xsum-12-1 | 222 | 90 | 2.54 | 18.31 | 33.37 | | distilbart-xsum-6-6 | 230 | 132 | 1.73 | 20.92 | 35.73 | | distilbart-xsum-12-3 | 255 | 106 | 2.16 | 21.37 | 36.39 | | distilbart-xsum-9-6 | 268 | 136 | 1.68 | 21.72 | 36.61 | | bart-large-xsum (baseline) | 406 | 229 | 1 | 21.85 | 36.50 | | distilbart-xsum-12-6 | 306 | 137 | 1.68 | 22.12 | 36.99 | | bart-large-cnn (baseline) | 406 | 381 | 1 | 21.06 | 30.63 | | distilbart-12-3-cnn | 255 | 214 | 1.78 | 20.57 | 30.00 | | distilbart-12-6-cnn | 306 | 307 | 1.24 | 21.26 | 30.59 | | distilbart-6-6-cnn | 230 | 182 | 2.09 | 20.17 | 29.70 |
{"datasets": ["cnn_dailymail", "xsum"], "language": "en", "license": "apache-2.0", "tags": ["summarization"], "thumbnail": "https://huggingface.co/front/thumbnails/distilbart_medium.png"}
task
[ "SUMMARIZATION" ]
40,987
TheBloke/chronos-13B-GGUF
TheBloke
null
[ "transformers", "gguf", "llama", "pytorch", "chatbot", "storywriting", "base_model:elinas/chronos-13b", "base_model:quantized:elinas/chronos-13b", "license:other", "region:us" ]
2023-09-19T22:17:43Z
2023-09-27T12:52:17+00:00
347
3
--- base_model: elinas/chronos-13b license: other model_name: Chronos 13B tags: - llama - pytorch - chatbot - storywriting inference: false model_creator: elinas model_type: llama prompt_template: 'Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ' quantized_by: TheBloke --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Chronos 13B - GGUF - Model creator: [elinas](https://huggingface.co/elinas) - Original model: [Chronos 13B](https://huggingface.co/elinas/chronos-13b) <!-- description start --> ## Description This repo contains GGUF format model files for [elinas's Chronos 13B](https://huggingface.co/elinas/chronos-13b). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/chronos-13B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/Yhyu13/chronos-13b-gptq-4bit) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/chronos-13B-GGUF) * [elinas's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/elinas/chronos-13b) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [chronos-13B.Q2_K.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes | | [chronos-13B.Q3_K_S.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss | | [chronos-13B.Q3_K_M.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss | | [chronos-13B.Q3_K_L.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss | | [chronos-13B.Q4_0.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [chronos-13B.Q4_K_S.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss | | [chronos-13B.Q4_K_M.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended | | [chronos-13B.Q5_0.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [chronos-13B.Q5_K_S.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended | | [chronos-13B.Q5_K_M.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended | | [chronos-13B.Q6_K.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss | | [chronos-13B.Q8_0.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: - LM Studio - LoLLMS Web UI - Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/chronos-13B-GGUF and below it, a specific filename to download, such as: chronos-13B.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/chronos-13B-GGUF chronos-13B.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/chronos-13B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/chronos-13B-GGUF chronos-13B.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m chronos-13B.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model in Python code, using ctransformers #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install ctransformers # Or with CUDA GPU acceleration pip install ctransformers[cuda] # Or with AMD ROCm GPU acceleration (Linux only) CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems only CT_METAL=1 pip install ctransformers --no-binary ctransformers ``` #### Simple ctransformers example code ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/chronos-13B-GGUF", model_file="chronos-13B.Q4_K_M.gguf", model_type="llama", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: elinas's Chronos 13B # chronos-13b This is the fp16 PyTorch / HF version of **chronos-13b** This model is primarily focused on chat, roleplay, and storywriting, but can accomplish other tasks such as simple reasoning and coding. Chronos generates very long outputs with coherent text, largely due to the human inputs it was trained on. This model uses Alpaca formatting, so for optimal model performance, use: ``` ### Instruction: Your instruction or question here. ### Response: ``` [4bit Quantized version](https://huggingface.co/elinas/chronos-13b-4bit) [GGML Version provided by @TheBloke](https://huggingface.co/TheBloke/chronos-13B-GGML) <!--**Support My Development of New Models** <a href='https://ko-fi.com/Q5Q6MB734' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi1.png?v=3' border='0' alt='Support Development' /></a>--> -- license: other --- # LLaMA Model Card ## Model details **Organization developing the model** The FAIR team of Meta AI. **Model date** LLaMA was trained between December. 2022 and Feb. 2023. **Model version** This is version 1 of the model. **Model type** LLaMA is an auto-regressive language model, based on the transformer architecture. The model comes in different sizes: 7B, 13B, 33B and 65B parameters. **Paper or resources for more information** More information can be found in the paper “LLaMA, Open and Efficient Foundation Language Models”, available at https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/. **Citations details** https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/ **License** Non-commercial bespoke license **Where to send questions or comments about the model** Questions and comments about LLaMA can be sent via the [GitHub repository](https://github.com/facebookresearch/llama) of the project , by opening an issue. ## Intended use **Primary intended uses** The primary use of LLaMA is research on large language models, including: exploring potential applications such as question answering, natural language understanding or reading comprehension, understanding capabilities and limitations of current language models, and developing techniques to improve those, evaluating and mitigating biases, risks, toxic and harmful content generations, hallucinations. **Primary intended users** The primary intended users of the model are researchers in natural language processing, machine learning and artificial intelligence. **Out-of-scope use cases** LLaMA is a base, or foundational, model. As such, it should not be used on downstream applications without further risk evaluation and mitigation. In particular, our model has not been trained with human feedback, and can thus generate toxic or offensive content, incorrect information or generally unhelpful answers. ## Factors **Relevant factors** One of the most relevant factors for which model performance may vary is which language is used. Although we included 20 languages in the training data, most of our dataset is made of English text, and we thus expect the model to perform better for English than other languages. Relatedly, it has been shown in previous studies that performance might vary for different dialects, and we expect that it will be the case for our model. **Evaluation factors** As our model is trained on data from the Web, we expect that it reflects biases from this source. We thus evaluated on RAI datasets to measure biases exhibited by the model for gender, religion, race, sexual orientation, age, nationality, disability, physical appearance and socio-economic status. We also measure the toxicity of model generations, depending on the toxicity of the context used to prompt the model. ## Metrics **Model performance measures** We use the following measure to evaluate the model: - Accuracy for common sense reasoning, reading comprehension, natural language understanding (MMLU), BIG-bench hard, WinoGender and CrowS-Pairs, - Exact match for question answering, - The toxicity score from Perspective API on RealToxicityPrompts. **Decision thresholds** Not applicable. **Approaches to uncertainty and variability** Due to the high computational requirements of training LLMs, we trained only one model of each size, and thus could not evaluate variability of pre-training. ## Evaluation datasets The model was evaluated on the following benchmarks: BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC, OpenBookQA, NaturalQuestions, TriviaQA, RACE, MMLU, BIG-bench hard, GSM8k, RealToxicityPrompts, WinoGender, CrowS-Pairs. ## Training dataset The model was trained using the following source of data: CCNet [67%], C4 [15%], GitHub [4.5%], Wikipedia [4.5%], Books [4.5%], ArXiv [2.5%], Stack Exchange[2%]. The Wikipedia and Books domains include data in the following languages: bg, ca, cs, da, de, en, es, fr, hr, hu, it, nl, pl, pt, ro, ru, sl, sr, sv, uk. See the paper for more details about the training set and corresponding preprocessing. ## Quantitative analysis Hyperparameters for the model architecture <table> <thead> <tr> <th >LLaMA</th> <th colspan=6>Model hyper parameters </th> </tr> <tr> <th>Number of parameters</th><th>dimension</th><th>n heads</th><th>n layers</th><th>Learn rate</th><th>Batch size</th><th>n tokens</th> </tr> </thead> <tbody> <tr> <th>7B</th> <th>4096</th> <th>32</th> <th>32</th> <th>3.0E-04</th><th>4M</th><th>1T </tr> <tr> <th>13B</th><th>5120</th><th>40</th><th>40</th><th>3.0E-04</th><th>4M</th><th>1T </tr> <tr> <th>33B</th><th>6656</th><th>52</th><th>60</th><th>1.5.E-04</th><th>4M</th><th>1.4T </tr> <tr> <th>65B</th><th>8192</th><th>64</th><th>80</th><th>1.5.E-04</th><th>4M</th><th>1.4T </tr> </tbody> </table> *Table 1 - Summary of LLama Model Hyperparameters* We present our results on eight standard common sense reasoning benchmarks in the table below. <table> <thead> <tr> <th>LLaMA</th> <th colspan=9>Reasoning tasks </th> </tr> <tr> <th>Number of parameters</th> <th>BoolQ</th><th>PIQA</th><th>SIQA</th><th>HellaSwag</th><th>WinoGrande</th><th>ARC-e</th><th>ARC-c</th><th>OBQA</th><th>COPA</th> </tr> </thead> <tbody> <tr> <th>7B</th><th>76.5</th><th>79.8</th><th>48.9</th><th>76.1</th><th>70.1</th><th>76.7</th><th>47.6</th><th>57.2</th><th>93 </th> <tr><th>13B</th><th>78.1</th><th>80.1</th><th>50.4</th><th>79.2</th><th>73</th><th>78.1</th><th>52.7</th><th>56.4</th><th>94 </th> <tr><th>33B</th><th>83.1</th><th>82.3</th><th>50.4</th><th>82.8</th><th>76</th><th>81.4</th><th>57.8</th><th>58.6</th><th>92 </th> <tr><th>65B</th><th>85.3</th><th>82.8</th><th>52.3</th><th>84.2</th><th>77</th><th>81.5</th><th>56</th><th>60.2</th><th>94</th></tr> </tbody> </table> *Table 2 - Summary of LLama Model Performance on Reasoning tasks* We present our results on bias in the table below. Note that lower value is better indicating lower bias. | No | Category | FAIR LLM | | --- | -------------------- | -------- | | 1 | Gender | 70.6 | | 2 | Religion | 79 | | 3 | Race/Color | 57 | | 4 | Sexual orientation | 81 | | 5 | Age | 70.1 | | 6 | Nationality | 64.2 | | 7 | Disability | 66.7 | | 8 | Physical appearance | 77.8 | | 9 | Socioeconomic status | 71.5 | | | LLaMA Average | 66.6 | *Table 3 - Summary bias of our model output* ## Ethical considerations **Data** The data used to train the model is collected from various sources, mostly from the Web. As such, it contains offensive, harmful and biased content. We thus expect the model to exhibit such biases from the training data. **Human life** The model is not intended to inform decisions about matters central to human life, and should not be used in such a way. **Mitigations** We filtered the data from the Web based on its proximity to Wikipedia text and references. For this, we used a Kneser-Ney language model and a fastText linear classifier. **Risks and harms** Risks and harms of large language models include the generation of harmful, offensive or biased content. These models are often prone to generating incorrect information, sometimes referred to as hallucinations. We do not expect our model to be an exception in this regard. **Use cases** LLaMA is a foundational model, and as such, it should not be used for downstream applications without further investigation and mitigations of risks. These risks and potential fraught use cases include, but are not limited to: generation of misinformation and generation of harmful, biased or offensive content. <!-- original-model-card end -->
null
Non_BioNLP
<!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Chronos 13B - GGUF - Model creator: [elinas](https://huggingface.co/elinas) - Original model: [Chronos 13B](https://huggingface.co/elinas/chronos-13b) <!-- description start --> ## Description This repo contains GGUF format model files for [elinas's Chronos 13B](https://huggingface.co/elinas/chronos-13b). <!-- description end --> <!-- README_GGUF.md-about-gguf start --> ### About GGUF GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. Here is an incomplate list of clients and libraries that are known to support GGUF: * [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. * [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. * [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. * [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. * [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. * [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. * [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. * [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. <!-- README_GGUF.md-about-gguf end --> <!-- repositories-available start --> ## Repositories available * [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/chronos-13B-AWQ) * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/Yhyu13/chronos-13b-gptq-4bit) * [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/chronos-13B-GGUF) * [elinas's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/elinas/chronos-13b) <!-- repositories-available end --> <!-- prompt-template start --> ## Prompt template: Alpaca ``` Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {prompt} ### Response: ``` <!-- prompt-template end --> <!-- compatibility_gguf start --> ## Compatibility These quantised GGUFv2 files are compatible with llama.cpp from August 27th onwards, as of commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) They are also compatible with many third party UIs and libraries - please see the list at the top of this README. ## Explanation of quantisation methods <details> <summary>Click to see details</summary> The new methods available are: * GGML_TYPE_Q2_K - "type-1" 2-bit quantization in super-blocks containing 16 blocks, each block having 16 weight. Block scales and mins are quantized with 4 bits. This ends up effectively using 2.5625 bits per weight (bpw) * GGML_TYPE_Q3_K - "type-0" 3-bit quantization in super-blocks containing 16 blocks, each block having 16 weights. Scales are quantized with 6 bits. This end up using 3.4375 bpw. * GGML_TYPE_Q4_K - "type-1" 4-bit quantization in super-blocks containing 8 blocks, each block having 32 weights. Scales and mins are quantized with 6 bits. This ends up using 4.5 bpw. * GGML_TYPE_Q5_K - "type-1" 5-bit quantization. Same super-block structure as GGML_TYPE_Q4_K resulting in 5.5 bpw * GGML_TYPE_Q6_K - "type-0" 6-bit quantization. Super-blocks with 16 blocks, each block having 16 weights. Scales are quantized with 8 bits. This ends up using 6.5625 bpw Refer to the Provided Files table below to see what files use which methods, and how. </details> <!-- compatibility_gguf end --> <!-- README_GGUF.md-provided-files start --> ## Provided files | Name | Quant method | Bits | Size | Max RAM required | Use case | | ---- | ---- | ---- | ---- | ---- | ----- | | [chronos-13B.Q2_K.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q2_K.gguf) | Q2_K | 2 | 5.43 GB| 7.93 GB | smallest, significant quality loss - not recommended for most purposes | | [chronos-13B.Q3_K_S.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q3_K_S.gguf) | Q3_K_S | 3 | 5.66 GB| 8.16 GB | very small, high quality loss | | [chronos-13B.Q3_K_M.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q3_K_M.gguf) | Q3_K_M | 3 | 6.34 GB| 8.84 GB | very small, high quality loss | | [chronos-13B.Q3_K_L.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q3_K_L.gguf) | Q3_K_L | 3 | 6.93 GB| 9.43 GB | small, substantial quality loss | | [chronos-13B.Q4_0.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q4_0.gguf) | Q4_0 | 4 | 7.37 GB| 9.87 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [chronos-13B.Q4_K_S.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q4_K_S.gguf) | Q4_K_S | 4 | 7.41 GB| 9.91 GB | small, greater quality loss | | [chronos-13B.Q4_K_M.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q4_K_M.gguf) | Q4_K_M | 4 | 7.87 GB| 10.37 GB | medium, balanced quality - recommended | | [chronos-13B.Q5_0.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q5_0.gguf) | Q5_0 | 5 | 8.97 GB| 11.47 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [chronos-13B.Q5_K_S.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q5_K_S.gguf) | Q5_K_S | 5 | 8.97 GB| 11.47 GB | large, low quality loss - recommended | | [chronos-13B.Q5_K_M.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q5_K_M.gguf) | Q5_K_M | 5 | 9.23 GB| 11.73 GB | large, very low quality loss - recommended | | [chronos-13B.Q6_K.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q6_K.gguf) | Q6_K | 6 | 10.68 GB| 13.18 GB | very large, extremely low quality loss | | [chronos-13B.Q8_0.gguf](https://huggingface.co/TheBloke/chronos-13B-GGUF/blob/main/chronos-13B.Q8_0.gguf) | Q8_0 | 8 | 13.83 GB| 16.33 GB | very large, extremely low quality loss - not recommended | **Note**: the above RAM figures assume no GPU offloading. If layers are offloaded to the GPU, this will reduce RAM usage and use VRAM instead. <!-- README_GGUF.md-provided-files end --> <!-- README_GGUF.md-how-to-download start --> ## How to download GGUF files **Note for manual downloaders:** You almost never want to clone the entire repo! Multiple different quantisation formats are provided, and most users only want to pick and download a single file. The following clients/libraries will automatically download models for you, providing a list of available models to choose from: - LM Studio - LoLLMS Web UI - Faraday.dev ### In `text-generation-webui` Under Download Model, you can enter the model repo: TheBloke/chronos-13B-GGUF and below it, a specific filename to download, such as: chronos-13B.Q4_K_M.gguf. Then click Download. ### On the command line, including multiple files at once I recommend using the `huggingface-hub` Python library: ```shell pip3 install huggingface-hub ``` Then you can download any individual model file to the current directory, at high speed, with a command like this: ```shell huggingface-cli download TheBloke/chronos-13B-GGUF chronos-13B.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` <details> <summary>More advanced huggingface-cli download usage</summary> You can also download multiple files at once with a pattern: ```shell huggingface-cli download TheBloke/chronos-13B-GGUF --local-dir . --local-dir-use-symlinks False --include='*Q4_K*gguf' ``` For more documentation on downloading with `huggingface-cli`, please see: [HF -> Hub Python Library -> Download files -> Download from the CLI](https://huggingface.co/docs/huggingface_hub/guides/download#download-from-the-cli). To accelerate downloads on fast connections (1Gbit/s or higher), install `hf_transfer`: ```shell pip3 install hf_transfer ``` And set environment variable `HF_HUB_ENABLE_HF_TRANSFER` to `1`: ```shell HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download TheBloke/chronos-13B-GGUF chronos-13B.Q4_K_M.gguf --local-dir . --local-dir-use-symlinks False ``` Windows Command Line users: You can set the environment variable by running `set HF_HUB_ENABLE_HF_TRANSFER=1` before the download command. </details> <!-- README_GGUF.md-how-to-download end --> <!-- README_GGUF.md-how-to-run start --> ## Example `llama.cpp` command Make sure you are using `llama.cpp` from commit [d0cee0d](https://github.com/ggerganov/llama.cpp/commit/d0cee0d36d5be95a0d9088b674dbb27354107221) or later. ```shell ./main -ngl 32 -m chronos-13B.Q4_K_M.gguf --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:" ``` Change `-ngl 32` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. Change `-c 2048` to the desired sequence length. For extended sequence models - eg 8K, 16K, 32K - the necessary RoPE scaling parameters are read from the GGUF file and set by llama.cpp automatically. If you want to have a chat-style conversation, replace the `-p <PROMPT>` argument with `-i -ins` For other parameters and how to use them, please refer to [the llama.cpp documentation](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md) ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp.md). ## How to run from Python code You can use GGUF models from Python using the [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) or [ctransformers](https://github.com/marella/ctransformers) libraries. ### How to load this model in Python code, using ctransformers #### First install the package Run one of the following commands, according to your system: ```shell # Base ctransformers with no GPU acceleration pip install ctransformers # Or with CUDA GPU acceleration pip install ctransformers[cuda] # Or with AMD ROCm GPU acceleration (Linux only) CT_HIPBLAS=1 pip install ctransformers --no-binary ctransformers # Or with Metal GPU acceleration for macOS systems only CT_METAL=1 pip install ctransformers --no-binary ctransformers ``` #### Simple ctransformers example code ```python from ctransformers import AutoModelForCausalLM # Set gpu_layers to the number of layers to offload to GPU. Set to 0 if no GPU acceleration is available on your system. llm = AutoModelForCausalLM.from_pretrained("TheBloke/chronos-13B-GGUF", model_file="chronos-13B.Q4_K_M.gguf", model_type="llama", gpu_layers=50) print(llm("AI is going to")) ``` ## How to use with LangChain Here are guides on using llama-cpp-python and ctransformers with LangChain: * [LangChain + llama-cpp-python](https://python.langchain.com/docs/integrations/llms/llamacpp) * [LangChain + ctransformers](https://python.langchain.com/docs/integrations/providers/ctransformers) <!-- README_GGUF.md-how-to-run end --> <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute Thanks to the [chirper.ai](https://chirper.ai) team! Thanks to Clay from [gpus.llm-utils.org](llm-utils)! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Alicia Loh, Stephen Murray, K, Ajan Kanaga, RoA, Magnesian, Deo Leter, Olakabola, Eugene Pentland, zynix, Deep Realms, Raymond Fosdick, Elijah Stavena, Iucharbius, Erik Bjäreholt, Luis Javier Navarrete Lozano, Nicholas, theTransient, John Detwiler, alfie_i, knownsqashed, Mano Prime, Willem Michiel, Enrico Ros, LangChain4j, OG, Michael Dempsey, Pierre Kircher, Pedro Madruga, James Bentley, Thomas Belote, Luke @flexchar, Leonard Tan, Johann-Peter Hartmann, Illia Dulskyi, Fen Risland, Chadd, S_X, Jeff Scroggin, Ken Nordquist, Sean Connelly, Artur Olbinski, Swaroop Kallakuri, Jack West, Ai Maven, David Ziegler, Russ Johnson, transmissions 11, John Villwock, Alps Aficionado, Clay Pascal, Viktor Bowallius, Subspace Studios, Rainer Wilmers, Trenton Dambrowitz, vamX, Michael Levine, 준교 김, Brandon Frisco, Kalila, Trailburnt, Randy H, Talal Aujan, Nathan Dryer, Vadim, 阿明, ReadyPlayerEmma, Tiffany J. Kim, George Stoitzev, Spencer Kim, Jerry Meng, Gabriel Tamborski, Cory Kujawski, Jeffrey Morgan, Spiking Neurons AB, Edmond Seymore, Alexandros Triantafyllidis, Lone Striker, Cap'n Zoog, Nikolai Manek, danny, ya boyyy, Derek Yates, usrbinkat, Mandus, TL, Nathan LeClaire, subjectnull, Imad Khwaja, webtim, Raven Klaugh, Asp the Wyvern, Gabriel Puliatti, Caitlyn Gatomon, Joseph William Delisle, Jonathan Leane, Luke Pendergrass, SuperWojo, Sebastain Graf, Will Dee, Fred von Graf, Andrey, Dan Guido, Daniel P. Andersen, Nitin Borwankar, Elle, Vitor Caleffi, biorpg, jjj, NimbleBox.ai, Pieter, Matthew Berman, terasurfer, Michael Davis, Alex, Stanislav Ovsiannikov Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> <!-- original-model-card start --> # Original model card: elinas's Chronos 13B # chronos-13b This is the fp16 PyTorch / HF version of **chronos-13b** This model is primarily focused on chat, roleplay, and storywriting, but can accomplish other tasks such as simple reasoning and coding. Chronos generates very long outputs with coherent text, largely due to the human inputs it was trained on. This model uses Alpaca formatting, so for optimal model performance, use: ``` ### Instruction: Your instruction or question here. ### Response: ``` [4bit Quantized version](https://huggingface.co/elinas/chronos-13b-4bit) [GGML Version provided by @TheBloke](https://huggingface.co/TheBloke/chronos-13B-GGML) <!--**Support My Development of New Models** <a href='https://ko-fi.com/Q5Q6MB734' target='_blank'><img height='36' style='border:0px;height:36px;' src='https://storage.ko-fi.com/cdn/kofi1.png?v=3' border='0' alt='Support Development' /></a>--> -- license: other --- # LLaMA Model Card ## Model details **Organization developing the model** The FAIR team of Meta AI. **Model date** LLaMA was trained between December. 2022 and Feb. 2023. **Model version** This is version 1 of the model. **Model type** LLaMA is an auto-regressive language model, based on the transformer architecture. The model comes in different sizes: 7B, 13B, 33B and 65B parameters. **Paper or resources for more information** More information can be found in the paper “LLaMA, Open and Efficient Foundation Language Models”, available at https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/. **Citations details** https://research.facebook.com/publications/llama-open-and-efficient-foundation-language-models/ **License** Non-commercial bespoke license **Where to send questions or comments about the model** Questions and comments about LLaMA can be sent via the [GitHub repository](https://github.com/facebookresearch/llama) of the project , by opening an issue. ## Intended use **Primary intended uses** The primary use of LLaMA is research on large language models, including: exploring potential applications such as question answering, natural language understanding or reading comprehension, understanding capabilities and limitations of current language models, and developing techniques to improve those, evaluating and mitigating biases, risks, toxic and harmful content generations, hallucinations. **Primary intended users** The primary intended users of the model are researchers in natural language processing, machine learning and artificial intelligence. **Out-of-scope use cases** LLaMA is a base, or foundational, model. As such, it should not be used on downstream applications without further risk evaluation and mitigation. In particular, our model has not been trained with human feedback, and can thus generate toxic or offensive content, incorrect information or generally unhelpful answers. ## Factors **Relevant factors** One of the most relevant factors for which model performance may vary is which language is used. Although we included 20 languages in the training data, most of our dataset is made of English text, and we thus expect the model to perform better for English than other languages. Relatedly, it has been shown in previous studies that performance might vary for different dialects, and we expect that it will be the case for our model. **Evaluation factors** As our model is trained on data from the Web, we expect that it reflects biases from this source. We thus evaluated on RAI datasets to measure biases exhibited by the model for gender, religion, race, sexual orientation, age, nationality, disability, physical appearance and socio-economic status. We also measure the toxicity of model generations, depending on the toxicity of the context used to prompt the model. ## Metrics **Model performance measures** We use the following measure to evaluate the model: - Accuracy for common sense reasoning, reading comprehension, natural language understanding (MMLU), BIG-bench hard, WinoGender and CrowS-Pairs, - Exact match for question answering, - The toxicity score from Perspective API on RealToxicityPrompts. **Decision thresholds** Not applicable. **Approaches to uncertainty and variability** Due to the high computational requirements of training LLMs, we trained only one model of each size, and thus could not evaluate variability of pre-training. ## Evaluation datasets The model was evaluated on the following benchmarks: BoolQ, PIQA, SIQA, HellaSwag, WinoGrande, ARC, OpenBookQA, NaturalQuestions, TriviaQA, RACE, MMLU, BIG-bench hard, GSM8k, RealToxicityPrompts, WinoGender, CrowS-Pairs. ## Training dataset The model was trained using the following source of data: CCNet [67%], C4 [15%], GitHub [4.5%], Wikipedia [4.5%], Books [4.5%], ArXiv [2.5%], Stack Exchange[2%]. The Wikipedia and Books domains include data in the following languages: bg, ca, cs, da, de, en, es, fr, hr, hu, it, nl, pl, pt, ro, ru, sl, sr, sv, uk. See the paper for more details about the training set and corresponding preprocessing. ## Quantitative analysis Hyperparameters for the model architecture <table> <thead> <tr> <th >LLaMA</th> <th colspan=6>Model hyper parameters </th> </tr> <tr> <th>Number of parameters</th><th>dimension</th><th>n heads</th><th>n layers</th><th>Learn rate</th><th>Batch size</th><th>n tokens</th> </tr> </thead> <tbody> <tr> <th>7B</th> <th>4096</th> <th>32</th> <th>32</th> <th>3.0E-04</th><th>4M</th><th>1T </tr> <tr> <th>13B</th><th>5120</th><th>40</th><th>40</th><th>3.0E-04</th><th>4M</th><th>1T </tr> <tr> <th>33B</th><th>6656</th><th>52</th><th>60</th><th>1.5.E-04</th><th>4M</th><th>1.4T </tr> <tr> <th>65B</th><th>8192</th><th>64</th><th>80</th><th>1.5.E-04</th><th>4M</th><th>1.4T </tr> </tbody> </table> *Table 1 - Summary of LLama Model Hyperparameters* We present our results on eight standard common sense reasoning benchmarks in the table below. <table> <thead> <tr> <th>LLaMA</th> <th colspan=9>Reasoning tasks </th> </tr> <tr> <th>Number of parameters</th> <th>BoolQ</th><th>PIQA</th><th>SIQA</th><th>HellaSwag</th><th>WinoGrande</th><th>ARC-e</th><th>ARC-c</th><th>OBQA</th><th>COPA</th> </tr> </thead> <tbody> <tr> <th>7B</th><th>76.5</th><th>79.8</th><th>48.9</th><th>76.1</th><th>70.1</th><th>76.7</th><th>47.6</th><th>57.2</th><th>93 </th> <tr><th>13B</th><th>78.1</th><th>80.1</th><th>50.4</th><th>79.2</th><th>73</th><th>78.1</th><th>52.7</th><th>56.4</th><th>94 </th> <tr><th>33B</th><th>83.1</th><th>82.3</th><th>50.4</th><th>82.8</th><th>76</th><th>81.4</th><th>57.8</th><th>58.6</th><th>92 </th> <tr><th>65B</th><th>85.3</th><th>82.8</th><th>52.3</th><th>84.2</th><th>77</th><th>81.5</th><th>56</th><th>60.2</th><th>94</th></tr> </tbody> </table> *Table 2 - Summary of LLama Model Performance on Reasoning tasks* We present our results on bias in the table below. Note that lower value is better indicating lower bias. | No | Category | FAIR LLM | | --- | -------------------- | -------- | | 1 | Gender | 70.6 | | 2 | Religion | 79 | | 3 | Race/Color | 57 | | 4 | Sexual orientation | 81 | | 5 | Age | 70.1 | | 6 | Nationality | 64.2 | | 7 | Disability | 66.7 | | 8 | Physical appearance | 77.8 | | 9 | Socioeconomic status | 71.5 | | | LLaMA Average | 66.6 | *Table 3 - Summary bias of our model output* ## Ethical considerations **Data** The data used to train the model is collected from various sources, mostly from the Web. As such, it contains offensive, harmful and biased content. We thus expect the model to exhibit such biases from the training data. **Human life** The model is not intended to inform decisions about matters central to human life, and should not be used in such a way. **Mitigations** We filtered the data from the Web based on its proximity to Wikipedia text and references. For this, we used a Kneser-Ney language model and a fastText linear classifier. **Risks and harms** Risks and harms of large language models include the generation of harmful, offensive or biased content. These models are often prone to generating incorrect information, sometimes referred to as hallucinations. We do not expect our model to be an exception in this regard. **Use cases** LLaMA is a foundational model, and as such, it should not be used for downstream applications without further investigation and mitigations of risks. These risks and potential fraught use cases include, but are not limited to: generation of misinformation and generation of harmful, biased or offensive content. <!-- original-model-card end -->
{"base_model": "elinas/chronos-13b", "license": "other", "model_name": "Chronos 13B", "tags": ["llama", "pytorch", "chatbot", "storywriting"], "inference": false, "model_creator": "elinas", "model_type": "llama", "prompt_template": "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{prompt}\n\n### Response:\n", "quantized_by": "TheBloke"}
task
[ "QUESTION_ANSWERING" ]
40,988
yosefw/roberta-amharic-embed-base-v6
yosefw
sentence-similarity
[ "sentence-transformers", "safetensors", "xlm-roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:62833", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss", "am", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1705.00652", "base_model:rasyosef/roberta-base-amharic", "base_model:finetune:rasyosef/roberta-base-amharic", "license:apache-2.0", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
2025-03-17T14:48:12Z
2025-03-17T14:48:26+00:00
2
0
--- base_model: rasyosef/roberta-base-amharic language: - am library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:62833 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: በናይጀሪያ 11ሚሊየን ህዝብ የከፋ የምግብ እጥረት እንደሚያጋጥማቸው ድርጅቱ አስጠነቀቀ sentences: - በናይጀሪያ 11 ሚሊየን ህዝብ እጅግ የከፋ የምግብ እጥረት እንደሚያጋጥማቸዉ የዓለም የምግብ እና የእርሻ ድርጅት አስጠነቀቀ ፡፡ድርጅቱ የምርት ወቅት በሆነዉ ከሰኔ እስከ ነሐሴ ባሉት ጊዜያት በሰሜናዊ ናይጀሪያ የሚገኙ አካባቢዎች ለዚህ ችግር እንደሚጋለጡ ይጠበቃል ነው ያለው ።በዚህ ክፉኛ ሊጠቁ እንደሚችሉ ከሚገመቱት ቦታዎችም ቦኮ ሃራም የተመሠረተባት ቦርኖ 65 በመቶ የሚሆነዉ ርሃብ የሚያሰጋዉ ዜጋ የሚገኝባት ግዛት ናት ።ቦኮ ሃራም በፈጠረዉ ያለመረጋጋት ምክንያት 120 ሺ የሀገሪቱ ዜጎች አደገኛ ለሆነ የረሃብ አደጋ እንዲጋለጡ ማድረጉን ጨምሮ አመልክቷል ።የተባበሩት መንግስታት ድርጅቶች በበኩሉ እንደገለጸው ፤በዚህ ስፍራ ልጆች እየሞቱ ስለሆነ አፋጣኝ እርዳታ ካላገኙም በሚሊየን የሚገመቱት ይኸዉ ዕጣ ያሰጋቸዋል።ሙስና እና በመንግሥት እና በእርዳታ ድርጅቶች መካከል ያለዉ ዉዝግብም ችግሩን እያወሳሰበዉ መሆኑም ተገልጿል።ባለስልጣናት የአካባቢዉ መንግሥታት የእርዳታ እህሉን ይሰርቃሉ የሚለዉን ክስ እያጣሩ መሆኑን አሶሼየትድ ፕረስ ዘግቧል።የናይጀሪያ መንግሥት ለእርሻ የሚያደርገዉን ድጋፍ ከፍ ማደርጉን ቢገልጽም፤ ሀገሪቷ የምግብ እጥረት ያለባት መሆኗን ነው የተመለከተው ። - የተባበሩት መንግሥታት ድርጅት ዋና ጸሐፊ አንቶንዮ ጉተሬዥ ትላንት በኒው ዮርክ ከኢትዮጵያ ፌዴራላዊ ዲሞክራሲያዊ ሪፖብሊክ ውጭ ጉዳይ ሚኒስትር ዶ/ር ወርቅነህ ገበየሁ ጋር ተገናኝተው መነጋገራቸውን የደርጅቱ ቃል አቀባይ አስታወቁ።ዋና ጸሐፊ ጉተሬዥ እና ውጭ ጉዳይ ሚኒስትር ወርቅነህ ገበየሁ በዚሁ በውይይታቸው በአሁኑ ወቅት በአፍሪካ ቀንድ እየተካሄዱ ስላሉ አዎንታዊ ለውጦችና በአካባቢው የቀሩትን ፈታኝ ችግሮች ማስወገድ በሚቻሉባቸው መንገዶች ላይ ሃሳብ ተለዋውጠዋል። በቅርቡ በኢትዮጵያና ኤርትራ መካከል የሰላም ሥምምነት መፈረሙን በደስታ እንደተቀበሉት ገልፀው ለአካባቢው ሰላምና መረጋጋት ጠቃሚ ነው ብለዋል።የተባበሩት መንግሥታት ድርጅት ዋና ጸሐፊ አንቶኒዮ ጉተሬዥ የዓለሙ ድርጅት ለእነዚህ በጎ ጥረቶችና ኢትዮጵያ በጂቡቲና ኤርትራ መካከል የሰላም ንግግር እንዲጀመር በማመቻቸቷ ሙሉ ድጋፍ እንደሚስጥ በድጋሚ አረጋግጠዋል። - 'የኢትዮጵያ ከፍተኛ ሊግ ምድብ ለ የሁለተኛ የውድድር ዘመን አጋማሽ ጨዋታዎች ቅዳሜ ተደርገው ሀላባ ከተማ መሪነቱን ሲያጠናክር ደቡብ ፖሊስ እና ጅማ አባ ቡና ደረጃቸውን ያሻሻሉበትን ድል አስመዝግበዋል።ጅማ አባ ቡና 3-0 ቤንች ማጂ ቡና(በቴዎድሮስ ታደሰ)ጅማ ስታድየም ላይ ቤንች ማጂ ቡናን ያስተናገደው ጅማ አባቡናን 3-0 በማሸነፍ  ደረጃውን አሻሽሏል። ጨዋታው ሳቢ ያልነበረ ሲሆን ቤንች ማጂዎች ሙሉ ለሙሉ መከላከል እና ጉልበት ላይ ያመዘነ ጨዋታን ተከትለው ለመጫወት ተገደዋል። አባቡናዎች ምንም እንኳን የመጀመርያውን አጋማሽ በተመስገን ደረሰ 34ኛው ደቂቃ ባስቆጠራት ጎል በመምራት ቢያጠናቅቁም በእንቅስቃሴ ረገድ ባልተሳኩ ቅብብሎች እና ያልተደራጀ የጨዋታ እንቅስቃሴ እንዲሁም የቤንች ማጂን የተከላካይ መስመር ማለፍ ሲቸገሩ ተመልክተናል። ከእረፍት መልስ በይበልጥ በሽኩቻዎች ታጅቦ ቤንች ማጂ ተጫዋቾች እያንዳንዱን የዳኛ ውሳኔ ሲቃወሙ እና አላስፈላጊ ንትርክ ውስጥ ሲገቡ ተስተውለዋል። በ50ኛው ደቂቃ ብዙዓየሁ እንደሻው አባቡናን መሪነት ወደ 2-0 መሪነት ከፍ ያደረገች ግብ ካስቆጠረ በኋላ ከመጀመርያው አጋማሽ አንፃር አባቡናዎች ወደግብ ቶሎ ቶሎ በመድረስና የኳስ ቁጥጥር ከመጀመርያው አጋማሽ በተሻለ ሁኔታ መንቀሳቀስ ችለዋል። በ68ኛው ደቂቃ ብዙአየሁ እንደሻው ፍፁም ቅጣት ምት ክልል ውስጥ መጠለፉን ተከትሎ የመሀል ዳኛው የሰጡትን ፍፁም ቅጣት ምት በመቃወም ከዳኛው ጋር ግብግብ የገጠሙት የቤንች ማጂ ተጫዋቾች ጌታሁን ገላዬ እና አበራ አየለ ከሜዳ በቀይ ካርድ እንዲወጡ ተደርጓል። በሁኔታው ጨዋታው ለ10 ደቂቃዎች ተቋርጦ ከቀጠለ በኋላ የተሰጠውን ፍፁም ቅጣት ምት ብዙአየሁ አስቆጥሮ አባቡናን 3-0 በሆነ ውጤት ማሸነፍ ያስቻለውን ውጤት አስመዝግቧል።ከጨዋታው መጠናቀቅ በኋላ ቤንች ማጂ የቡድን አባላት ሜዳ በመግባት የእለቱ አልቢትሮች ላይ ጥቃት ለመፈፀም ቢሞክሩም በእለቱ በነበሩበት የፀጥታ አካላት ርብርብ አርቢትሮች ላይ ጉዳት ሳይደርስ የቀረ ሲሆን የግብ ጠባቂው አሰልጣኝ ታፈሰ አጃ ቀይ ካርድ ተመልክቷል። ከሁሉም በላይ አስገራሚው ግብ ጠባቂው አብዱልሃፊዝ መኪ ከዳኛው አልፍ ተርፎ ፀጥታ በማስከበርና ለዳኞች ከለላ ለሰጠው የኮማንድ ፖስት አባል የሆነው የፌዴራል ፖሊስ ላይ ጥቃት በመሰንዘሩ ነገሮች አቅጣጫዎችን በመቀየር ጨዋታው ከተጠናቀቀ በኃላ ለረጅም ደቂቃዎች በፀጥታ አካላት እና በእለቱ የጨዋታ ኮሚሽነር ዩሀንስ ስለሺ አሸማጋይነት ከቆዩ በኃላ በኮሚሽነሩ ጥረትና የፀጥታ አስከባሪ አካላት ሁኔታውን በማብረዳቸው በህግ ቁጥጥር ስር ሳይውል ቀርቷል፡፡ ሌሎች ጨዋታዎች(በአምሀ ተስፋዬ)ሀላባ ላይ በ10:00 ድሬዳዋ ፖሊስን ያስተናገደው ሀላባ ከተማ በ23ኛው ደቂቃ ስንታየሁ መንግስቱ በፍፁም ቅጣት ምት ባስቆጠረው ጎል 1-0 አሸንፏል። በዚህም ውጤት መሰረት ሀላባ ከተማ በ31 ነጥቦች የምድብ ለ መሪነትን ማጠናከር ችሏል። ደቡብ ፖሊስ በሜዳው በግብ መንበሽበሹን ቀጥሎ ከመቂ ከተማ ጋር ባደረገው ጨዋታ 4-0 በሆነ ውጤት ማሸነፍ ችሏል። በ10ኛው ደቂቃ ብሩክ ኤልያስ ቀዳሚውን ጎል ሲያስቆጥር በ18ኛው ደቂቃ አበባየው ዮሐንስ ሁለተኛውን ግብ አስቆጥሮ ወደ ዕረፍት አምርተዋል። በ53ኛው ደቂቃ ኤሪክ ሙራንዳ በፍፁም ቅጣት ምት 3ኛውን ሲያክል በ82ኛው ደቂቃ አራተኛ ግብ አስቆጥረዋል። በዚህ ውጤት መሰረት ደቡብ ፖሊስ ደረጃውን ወደ ሁለተኛ ከፍ ማድረግ ችሏል። ቦንጋ ላይ ካፋ ቡና ሻሸመኔ ከተማን አስተናግዶ በሀቁ ምንይሁን ገዛኸኝ የ5ኛው ደቂቃ ብቸኛ ግብ 1-0 ማሸነፍ ችሎል። ነገሌ ላይ ነገሌ ከተማ ቡታጅራ ከተማን 1-0 ሲያሸንፍ ድሬዳዋ ላይ ረፋድ 04:00 ናሽናል ሴሜንት በሳሙኤል ዘሪሁን ጎሎች ወልቂጤ ከተማን 2-1 መርታት ችሏል። በደረጃ ሰንጠረዡ ሁለተኛ ላይ የነበረው ዲላ ከተማ ደግሞ ወደ ዱራሜ ተጎዞ ከሀምበሪቾ ጋር ያለጎል አቻ በመለያየት ከደረጃው ለመንሸራተት ተገዷል።' - source_sentence: በኮሮና ቫይረስ ሳቢያ በአፍሪካ እስከ 190 ሺህ ሰዎች በመጀመሪያው ዓመት ህይዎታቸው ሊያልፍ ይችላል – የዓለም ጤና ድርጅት sentences: - አዲስ አበባ ፣ ሚያዚያ 30 ፣ 2012 (ኤፍ ቢ ሲ) በአፍሪካ ከ83 ሺህ እስከ 190 ሺህ ሰዎች በኮሮና ቫይረስ ሳቢያ በመጀመሪያው ዓመት ብቻ ህይዎታቸው ሊያልፍ እንደሚችል የዓለም ጤና ድርጅት አስጠነቀቀ።ድርጅቱ ትናንት ባወጣው መግለጫ በአፍሪካ ሃገራት ቫይረሱን ለመከላከል የወጡ መመሪያና ህጎች ተግባራዊ እየተደረጉ አለመሆኑን እና እየተወሰዱ ያሉ እርምጃዎችም በቂ አለመሆናቸውን አስታውቋል።ቫይረሱ ወደ አህጉሪቱ ዘግይቶ ቢገባም ለበርካታ ጊዜ የሚቆይ ወረርሽኝ ሊሆን ይችላልም ነው ያለው።በተጨማሪም ቫይረሱን በፍጥነት በቁጥጥር ስር ማዋል ካልተቻለ ከ29 እስከ 44 ሚሊየን ሰዎችን ሊይዝ እንደሚችልም ነው ያስጠነቀቀው።የአሁኑ የድርጅቱ መረጃ በ47 የአፍሪካ ሀገራት የሰራውን ጥናት መሰረት አድርጎ የወጣ ነው ተብሏል።ከሃገራቱ መካከል ደቡብ አፍሪካ፣ አልጄሪያ እና ካሜሩን በቫይረሱ ክፉኛ ሊጠቁ የሚችሉ ሃገራት ይሆናሉ በሚልም ስጋቱን አስቀምጧል።በጥናቱ ግብጽ፣ ሊቢያ፣ ቱኒዚያ፣ ሞሮኮ፣ ኤርትራ፣ ሱዳን፣ ሶማሊያ እና ጂቡቲ አልተካተቱም።በአፍሪካ በኮሮና ቫይረስ ሳቢያ በ47 ሃገራት ከ35 ሺህ በላይ ሰዎች ሲያዙ፥ ከ1 ሺህ 200 በላይ ደግሞ ሕይወታቸው ማለፉን ድርጅቱ ገልጿል።ምንጭ፦ ቢቢሲየዜና ሰዓት ሳይጠብቁ የፋና ብሮድካስቲንግ ኮርፖሬትን ትኩስ እና ሰበር ዜናዎችን በፍጥነት በአጭር የፅሁፍ መልዕክት መልክ በስልክዎ ላይ እንዲደርስዎ ወደ 8111 OK ብለው ይላኩ። - በወልቂጤ ከተማ ከሳምንታት በፊት ውሉን ለማራዘም ተስማምቶ የነበረው የመስመር አጥቂው ጫላ ተሺታ አሁን ደግሞ ለቀድሞ ክለቡ ሲዳማ ቡና ለመፈረም ተስማማ፡፡የቀድሞው የሻሸመኔ እና ሰበታ ከተማ ተጫዋች ለኢትዮጵያ ከ17 ዓመት በታች ብሔራዊ ቡድን ተሰልፎ ከተጫወተ በኃላ ነበር 2010 ላይ ወደ ሲዳማ ቡና ተቀላቅሎ መጫወት የጀመረው። ተጫዋቹ በውሰት ለአዳማ ከተማም በመሄድ የተጫወተ ሲሆን በ2011 በሲዳማ ቤት ባሳየው መልካም እንቅስቃሴ መነሻነት ዘንድሮ ወደ ወልቂጤ ሄዶ ከክለቡ ጋር መልካም የውድድር ዓመትን ሊጉ እስከተቋረጠበት ጊዜ ድረስ ያሳየ ሲሆን ውሉ በመጠናቀቁ ከሳምንታት በፊት በወልቂጤ ለመቀጠል ቢስማማም በድጋሚ ለቀድሞው ክለቡ ሲዳማ የሁለት ዓመት ውል ለመፈረም ተስማምቷል፡፡ - ማክሰኞ መጋቢት 15 ቀን 2012 ዓ.ም. ማለዳ ከማላዊ ወደ ሞዛምቢክ ኢትዮጵያዊያንን ጭኖ ሲጓዝ በነበረ የጭነት ተሽከርካሪ ኮንቴይነር ውስጥ፣ 64 ኢትዮጵያዊያን ሞተው መገኘታቸውን የሞዛምቢክ ባለሥልጣናት አስታወቁ፡፡ ሰነድ አልባ ስደተኞቹ ወደ ደቡብ አፍሪካ ለመሸጋገር ጉዞ የጀመሩ እንደሆኑ ታውቋል፡፡በስደት ወደ ደቡብ አፍሪካ ለመሄድ የጭነት ተሽከርካሪውን ተሳፍረው የነበሩት 78 ኢትዮጵያውያን እንደነበሩ፣ 14 ኢትዮጵያውያን ግን በሕይወት መገኘታቻው ተሰምቷል፡፡ ለ64 ኢትዮጵያውያን ሕይወት ማለፍ ምክንያቱ በአየር ማጣት መታፈን ሊሆን እንደሚችል ተገልጿል፡፡ በሞዛምቢክ ሰሜናዊ ምዕራብ ቴቴ በተባለ ሥፍራ በሚገኝ ሙሳካና በተባለ የክብደት መመዘኛ ጣቢያ ተሽከርካሪው በኢሚግሬሽን ሠራተኞች እንዲቆም ተደርጎ ፍተሻ ሲካሄድ፣ 64 ሟቾች በሕይወት ከተረፉት ጋር መገኘታቸውን አዣንስ ፍራንስ ፕሬስ የሆስፒታል ምንጭ ጠቅሶ ዘግቧል፡፡የሞዛምቢክ ሰሜን ምዕራብ ግዛት ባለሥልጣናት ከጭነት ተሽከርካሪው ላይ አስከሬናቸው የተገኙ ኢትዮጵያውያን፣ ሕይወታቸው በምን ምክንያት እንዳለፈ ምርመራ እየተደረገ መሆኑን መግለጻቸው ታውቋል። በሌላ በኩል ኢትዮጵያውያኑ ሕይወታቸው ያለፈው በኮንቴይነር ውስጥ ታፍነው ሊሆን እንደሚችል በሞዛምቢክ ባለሥልጣናት የተገለጸ ሲሆን፣ የሞዛምቢክ ብሔራዊ ኢሚግሬሽን አገልግሎት ቃል አቀባይ አሜሊያ ደሪዬሮ ሟቾቹን አሳፍሮ የነበረው የጭነት ተሽከርካሪ ሾፌር እንዲቆም ሲጠየቅ ፈቃደኛ እንዳልነበረ መናገራቸውን ቢቢሲ ዘግቧል።እንደ ቃል አቀባይዋ ማብራሪያ የኢሚግሬሽን ሠራተኞች በተሽከርካሪው ውስጥ ድምፅ በመስማታቸው፣ ስደተኞች በውስጡ ሊኖሩ ይችላሉ የሚል ጥርጣሬ አድሮባቸው እንዲቆም ሲያደርጉ ሟቾችን አግኝተዋል።ወደ ደቡብ አፍሪካ በስደት የሚጓዙ ሰነድ አልባ ስደተኛ ኢትዮጵያዊያን ኬንያን፣ ታንዛኒያን፣ ማላዊና ሞዛምቢክን ለመሸጋገሪያነት የሚጠቀሙባቸው እንደሆነ፣ የዛምቢያ ሰሜን ምዕራብ ግዛትም ዋናው የሰነድ አልባ ስደተኞች መተላለፊያ መሆኑን የተለያዩ ሚዲያዎች ዘገባዎች ያመለክታሉ፡፡ በሕይወት የተረፉት 14 ኢትዮጵያዊያን የኮሮና ቫይረስ ምርመራ እንደ ተደረገላቸው ቃል አቀባይዋ መናገራቸውን ቢቢሲ በዘገባው አካቷል። - source_sentence: የአውሮፓና አፍሪካ መሪዎች የሊቢያን የባሪያ ንግድ በፍጥነት ለማስቆም ተስማሙ sentences: - 'በትናንትናው ዕለት የትግራይ ቴሌቪዝንና ድምፂ ወያነ ቴሌቪዥን ጣብያዎች የሳተላይት ስርጭት መቋረጡ ታውቋል።የሁለቱ መገናኛ ብዙሃን ጣብያዎች ሥራ አስኪያጆች ጉዳዩን ለቢቢሲ ያረጋገጡ ሲሆን የትግራይ ቴሌቪዥን ጣቢያ ሥራ አስኪያጅ የሆኑት አቶ ተሻለ በቀለ የቴሌቪዥኑ ጣብያ የሳተላይት ስርጭት እንዲቋረጥ የተደረገው በኢትዮጵያ መንግሥት ነው ሲሉ ለቢቢሲ ተናግረዋል።"መንግሥት የሳተላይት ስርጭቱ እንዲቋረጥ አድርጓል። ስለተፈጠረው ነገር ለማወቅ ሳተላይቱን ወደ አከራየን ድርጅት ስንደውል የኢትዮጵያ መንግሥትና የፈረንሳይ መንግሥት ተነጋግረው በሰጡት ትዕዛዝ መሰረት አቋርጠነዋል የሚል ምላሽ ነው የሰጡን፤ ምክንያቱን ስንጠይቅም የፈረንሳይ መንግሥት ያለውን መፈፀም አለብን ነው ያሉት።" በጉዳዩ ላይ የኢትዮጵያ ብሮድካስት ባለስልጣን ምክትል ሥራ አስኪያጅ አቶ ወንድወሰን አንዷለም ለቢቢሲ በሰጡት ቃል "እስካሁን ባለኝ መረጃ የኢትዮጵያ ብሮድካስት ባለስልጣን ሚዲያዎችን የመዝጋት እርምጃ አልወሰደም "ብለዋል።የትግራይ ቴሌቪዥን ሥራ አስኪያጅ ስርጭታቸው እስከ መቼ ድረስ ተቋርጦ እንደሚቀጥል ያውቁ እንደሆን ተጠይቀው ይህንን ጥያቄ ስርጭቱን ላቋረጠው ድርጅት ማቅረባቸውን ይገልፃሉ።እነርሱም እስከመቼ ድረስ እንደተቋረጠ እንደማያውቁ እና "ከኢትዮጵያ መንግሥት ጋር ተነጋገሩ" ማለታቸውን ገልፀዋል።ሥራ አስኪያጁ አቶ ተሻለ አክለውም ወደ ኢትዮጵያ ብሮድካስት ባለስልጣን መደወላቸውንና ስልካቸውን የሚመልስላቸው አለማግኘታቸውን ተናግረዋል።አቶ ተሻለ ለቢቢሲ ጨምረው እንደተናገሩት መቋረጡን የሚገልጽ ደብዳቤ ከድርጅቱ አለመጻፉን ለቢቢሲ አረጋግጠዋል። በትግራይ ክልል የሚገኘው የቢቢሲ ሪፖርተር የሁለቱ ቴሌቪዥን ጣቢያዎች ስርጭት እየተላለፈ አለመሆኑን አረጋግጧል።አቶ አበበ አስገዶም፣ የድምፂ ወያነ ቴሌቪዥን ጣብያ ሥራ አስኪያጅ ለሪፖርተራችን እንዳረጋገጡት፣ በበኩላቸው ስርጭታቸው እንደተቋረጠ ፈረንሳይ አገር ወደ ሚገኘው የሳተላይት አገልግሎት አቅራቢ ድርጅት መደወላቸውንና የቴክኒክ ክፍል ኃላፊው የኢትዮጵያ መንግሥት እንዲቋረጥ ማድረጉን እንደነገራቸው ገልፀዋል።ባለፈው ሳምንት ድምፂ ወያነ በአዲስ አበባ የሚገኘው ቢሮው አቃቤ ሕግ በሚያደርግበት ምርመራ የተነሳ ፍተሻ እንደተደረገለት መዘገቡ ይታወሳል።የብሮድካስት ባለስልጣን ምክትል ሥራ አስኪያጅ አቶ ወንድወሰን እነዚህ ሁለት ድርጅቶች የእርምት እርምጃ እንዲወስዱ ጥብቅ ማስጠንቀቂያ መጻፋቸውን አስታውሰዋል።ቢሆንም ግን የጣቢያዎቹ ስርጭት እንዲቋረጥ ባለስልጣኑ የወሰደው ምንም አይነት እርምጃ እንደሌለ ለቢቢሲ ገልጸዋል። ' - የአውሮፓ እና አፍሪካ መሪወች የሊቢያ የባሪያ ንግድን አስመልክቶ በአይቪሪኮስት ባካሄዱት ስብሰባ ስደተኞችን ከሊቢያ በፍጥነት  ለማስቆም  በሚያስችላቸው መንገድ ላይ ከስምምነት ላይ  ደረሱ ፡፡የአውሮፓ ህብረት ፣የአፍሪካ ህብረት እና የተባበሩት መንግስታት ድርጅት የሚታወቁ ህገወጥ የሰዎች አዘዋዋሪዎች ንብረት እንዳይንቀሳቀስ እንዲሁም ማንኛውም የፋይናንስ ምንጫቸው ሙሉ በሙሉ እንዲቋረጥ ውሳኔ አሳልፈዋል፡፡በዚህ ዘመን የባሪያ ንግድ በሊቢያ ይካሄዳል ሲባል የሰማ የዓለም ህዝብ ቁጣውን ገልጿል፡፡ ለጉዳዩ ፈጣን ምላሽ በመሥጠት ችግሩን ለመቅረፍ የአውሮፓ እና አፍሪካ ሀገራት መሪዎች በ ኮቲዲቫር ባደረጉት ስብሰባ ስደተኞቹ ከሊቢያ ባፋጣኝ እንዲወጡ ይደረጋል ብለዋል፡፡በዚህም ስምምነት የአውሮፓ ህብረት ፣የአፍሪካ ህብረት እና የተባበሩት መንግስታት ድርጅት በጋራ የአስቸኳይ እቅድ በማውጣት የህገወጥ አዘዋዋሪዎችን መረብ በመበጣጠስ አደገኛ የሰብአዊ ቀውስ ላይ ያሉ በሊቢያ የሚገኙ ስደተኞችን የመታደግ ተልዕኮ አንግበዋል ተብሏል፡፡የአውሮፓዊያን ህብረት ምክር ቤት ፕሬዝዳንት ዶናልድ ቱስክ የባሪያ ንግዱ ሪፖርት በስብሰባዎች ወቅት ያሰማን መረጃዎች የሚያስደነግጡ ነበሩ በማለት ለችግሩ እልባት ለማምጣት የአፍሪካ እና አውሮፓ መንግስታት ንቁ በሆነ መልኩ በጋራ መስራት ይጠበቅባቸዋል ሲሉ መልክታቸውን አስተላልፈዋል፡፡የፈረንሳዩ ፕሬዝዳንት ኢማኑኤል ማክሮን ስደተኞችን ለመታደግ በሚቋቋመው ግብረ ኃይል የአፍሪካ እና አውሮፓ ፖሊሶች ተሳታፊ ይሆናሉ ብለዋል፡፡ፕሬዝዳንት ኢማኑኤል ማክሮን ስደተኞችን በፍጥነት ለማውጣት በሚደረገው ተልዕኮ በአጭር ጊዜ ውስጥ ህገወጥ አዘዋዋሪዎች በቁጥጥር ሥር ለማዋል፣ የባሪያ ሽያጭ የሚካሄድበት ድብቅ ትስስራቸውን ማቋረጥ እንዲሁም በተለዩ ባንኮች የሚያደርጉትን የባንክ ገንዘብ ዝውውር ማስቀረት ቅድሚያ ከሚሰሩ ጉዳዮች መካከል መሆናቸውን አብራርተዋል፡፡በአምስተኛው የአውሮፓ ህበረት እና አፍሪካ ህበረት የአቢጃን ስብሰባ ላይ የቀረበው እቅድ በዋናነት ቻድ ኒጀር  ሞሮኮ  ኮንጎ እና ሊቢያ ያረቀቁት ሲሆን  የፈረንሳይም እጅ አለበት፡፡አውሮፓ ለመግባት በሚያደርጉት ጥረት ሊቢያ ላይ ለባሪያ ንግዱ እየተጋለጡ ያሉትም አብዛኛው ከምዕራብ አፍሪካ ሀገራት የሚነሱ ስደተኞች ቢሆኑም መነሻቸውን ከሌሎች የአፍሪካ ቀጠናዎች ያደረጉም ቁጥራቸው በቀላል የሚገመት  እንዳልሆነ  ዘገባዎች ያመላክታሉ፡፡እስካሁን ስደተኞችን ለመመለስ በተሠራው የሀገራቱ ሥራ ናይጄሪያ ከ240 በላይ ዜጎቿን ከሊቢያ ስታስወጣ ጋና 100 አይቬሪኮስት ደግሞ ከ155 በላይ ዜጎቿን  ከሊቢያው ከባድ ሰብአዊ ቀውስ ታድገዋል ያለው ሮይተርስ ነው፡፡     - "ሃና ጋዜጠኛ ናት። የቴሌቪዥን ሪፖርተር ሆና ሠርታለች። ነገር ግን ከአንድ ዓመት ከግማሽ በፊት የራሷን መንገድ መከተል መረጠች።\ \ ከቴሌቪዥን ሪፖርተርነት ራሷን ካገለለች ወዲህ በኅብረተሰብ አገልግሎት ሥራ ላይ ተሰማርታ ትገኛለች። \n\nከቅርብ ጊዜ ወዲህ\ \ ደግሞ ጥቁር አሜሪካውያን ላይ የሚደርሰውን ጭቆና በመቃወም የመብት ተሟጋችነት መድረክን ተቀላቅላለች። ከዚያም አልፎ ለእናትና\ \ ለአባቷ አገራት ኢትዮጵያና ኤርትራ የተለያዩ የእርዳታ ሥራዎችን እንደምትሰራ ትናገራለች። በአሁኑ ወቅት በዩትዩብና ፌስቡክ\ \ ገፆቿ ሥራዎቿን ታስተዋውቃለች።\n\nሃና ከጥቂት ሳምንታት በፊት በኮሮናቫይረስ የቅርብ ዘመዷን እንዳጣች በትዊተር ገጿ ላይ\ \ አስፍራ ነበር። ከዚህም አልፎ እሷም ተመርምራ ኮቪድ-19 እንዳለባት ማወቋን በይፋ በመናገር ሌሎች በእሷ ዕድሜ ያሉ ወጣቶች\ \ ራሳቸውን እንዲጠብቁ በተደጋጋሚ መክራለች። \n\nለመሆኑ ሃና ኮሮናቫይረስ እንዴት ሊያገኛት ቻለ? \n\nየበሽታውምልክት\n\ \nየበሽታው ምልክት የጀመረኝ ሰኔ 23 [ጁን 30] ገደማ ነው። ከዚያ በፊት ባሉት ሳምንታት የተለያዩ የተቃውሞ ሰልፎች ላይ\ \ ስሳተፍ ነበር። ነገር ግን በዚህ ወቅት ምንም ዓይነት የቫይረሱ ምልክት አልታየብኝም። ሁሌም የአፍና የአፍንጫ መሸፈኛ ጭምብል\ \ እጠቀም ነበር። ሳኒታይዘርም ይዤ ነበር የምንቀሳቀሰው። \n\nምልክቱ መጀመሪያ ሲጀምረኝ መካከለኛ የሚባል ነበር። ከዚያ\ \ ግን ወዲያው በጣም እየከፋ መጣ። የመጀመሪያው ምልክት ራስ ምታት ነበር። በጣም ከባድ ራስ ምታት። ከዚያ ያቅለሸልሸኝ ጀመር።\ \ ጥርሴን ለመፋቅ ብሩሽ ስጠቀም ይሁን አሊያም ምግብ ልመገብ ስል ወደላይ ይለኛል ግን አያስመልሰኝም። ይህ ሁሉ ስሜት የተሰማኝ\ \ በአንድ ሌሊት ነው። \n\nከዚያ በኋላ ባሉት ቀናት የተለያዩ ስሜቶችን አስተናግጃለሁ። ሌላኛው ስሜት ደግሞ መፍዘዝ ነበር፤\ \ በጣም ይደክመኝም ነበር። የምግብ ፍላጎቴም እጅጉን ቀንሶ ነበር። አስታውሳለሁ ቁጭ ብዬ ምግብ እየላሁ ከትንሽ ጉርሻ በኋላ\ \ የምግቡ ጣዕም እየጠፋብኝ መጣ።\n\nከእነዚህ ሁሉ ምልክቶች ግን የከፋ የነበረው ድንገት ሌሊት ላይ የጀመረኝ ምልክት ነው።\ \ ይህም የትንፋሽ ማጠር ነው። በጣም ያስደነገጠኝ እሱ ነበር። \n\nይህን ጊዜ ነው ወደ ሕክምና ተቋም ሄጄ የተመረመርኩት።\ \ \n\nከዚያ በፊት ግን የተለያዩ ተቃውሞዎች ላይ ተሳትፌ ስለነበር ምልክቱ ባይኖረኝም ጥቂት ጊዜያት ተመርምሬ ነበር። በዚህኛው\ \ ዙር ግን ከተመርመርኩ በኋላ ራሴን አግልዬ ተቀመጥኩ። ይህንን ያደረግኩት ከሰኔ 24 ጀምሮ ነው። \n\nውጤትጥበቃ\n\n\ ከተመረመርኩ በኋላ ያለው ጊዜ በጣም አስጨናቂ ነበር። በተለይ ውጤቱ መጠበቅ እጅግ ግራ አጋቢ ስሜት ነበረው። ምንም እንኳ በሽታው\ \ እንደሚኖርብኝ ብጠረጥርም፤ ቢኖርብኝስ የሚል ጥያቄ ሃሳብ ደጋግሞ ይመጣብኛል። ከየት ይሆን ያገኘሁት? ለሰው አስተላልፌውስ\ \ ቢሆን? አለብሽ ከተባልኩ ምን እሆናለሁ? ብቻ የተለያዩ ሃሳቦች ወደ አእምሮዬ ይመጡ ነበር። \n\nየበሽታው ምልክት ሳይታይብኝ\ \ የተመረመርኩ ጊዜ ውጤት የመጣልኝ ወዲያው ነበር። ነገር ግን በሁለተኛው ዙር ይመስለኛል ከአምስት ቀናት በኋላ ነው ውጤቴን\ \ የሰማሁት። \n\nበጆርጂያ ግዛት ቫይረሱ የሚገኝባቸው ሰዎች ቁጥር እየጨመረ በመምጣቱ ውጤት ይፋ የሚሆንበት ቀንም እየጨመረ\ \ መጥቶ ነበር። \n\nበስተመጨረሻ የተመረመርኩ ጊዜ ውጤቴን በፅሑፍ መልዕክት የነገሩኝ ከዘጠኝ ቀናት በኋላ ነው። ደውለው\ \ ውጤትሽ 'ፖዘቲቭ' ነው እና ራስሽይን አግልይ አሉኝ። እንግዲህ ይሄ የሆነው እኔ ራሴን አግልዬ ከቆየሁ በኋላ ነው።\n\n\ ቫይረሱ ሊይዘኝ ይችላል ብለሽ አስበሽ ታውቂያለሽ? ብባል፤ መልሴ \"አዎ\" ነው። ምክንያቱም በየትኛውም ጊዜ ከቤቴ ከወጣሁ\ \ ሊይዘኝ እንደሚችል አስባለሁ። \n\nእንዲያውም ወረርሽኙ የገባ ሰሞን ለሦስት... " - source_sentence: የእሁዱ የፋሲል ከነማ ጨዋታ የቴሌቪዥን ሽፋን ያገኛል sentences: - አዲስ አበባ ፣ ህዳር 12 ፣2013 (ኤፍ.ቢ.ሲ) በሚድሮክ ግሩፕ የተገነባው ባለ 25 ፎቅ ህንጻ ስራ ጀምረየአዲስ አበባ ምክትል ከንቲባ ወይዘሮ አዳነች አቤቤ በማህበራዊ የትስስር ገጻቸው ላይ÷በሚድሮክ ግሩፕ በከተማችን ውብ ሆኖ ተገንብቶ ለ13 አመታት ያለ ስራ ቆሞ የነበረውን ባለ 25 ፎቅ ሚና ህንጻን ዛሬ ስራ በማስጀመራችን ደስ ብሎኛል ብለዋል።በሚና ህንጻ አዲስ የተከፈተውን የተለያዩ የሃገራችንን ምርቶች በአንድ ቦታ ለሸማቾች እንዲቀርብ እየሰራ ያለውን ኩዊንስ ሱፐር ማርኬትንም መርቀናል ነው ያሉት።ከንቲባዋ አያይዘውም የእንደዚህ አይነት የዘመናዊ የችርቻሮ አውታር መብዛትና መስፋፋት የነዋሪያችን የገበያ ፍላጎት በማሟላት በአምራችና ሸማች መሃከል ያለውን የግብይት ሰንሰለት ያሳጥራል ሲሉ ገልጸዋል።ይህም የኑሮ ውድነት እና የዋጋ ንረትን በመቀነስ እንዲሁም የስራ እድልን በመፍጠር ረገድ ትልቅ ሚና አለውም ነው ያሉት።በጦር ሃይሎች አካባቢ የተከፈተውን ተመሳሳይ የገበያ ማዕከል ከወር በፊት ጎብኝተናል በሌሎች አካባቢም እንዲከፈቱ ባቀረብነው ጥያቄ መሰረት ተግባራዊ ምላሽ ስለሰጡ የሚድሮክ ግሩፕ አመራሮችን ከልብ አመሰግናለሁ ብለዋል።አሁንም እንዲህ አይነት የህዝቡን ኑሮ መደጎም የሚችሉ ኢንቨስትመንቶችን እናበረታታለንም ነው ያሉት። - ግብፅ ወደ ናይል ትብብር ማዕቀፍ ለመቀላቀል ያቀረበችውን ጥያቄ የትብብር ማዕቀፍ አባል ሃገራት የሚኒስትሮች ምክር ቤት ውድቅ ማድረጉ የውሃ መስኖና ኤሌክትሪክ ሚኒስትር አስታወቀ ።ሚኒስትሩ ዶክተር ኢንጂነር ስለሺ ጌታሁን እንደገለጹትበመጋቢት ወር በዩጋንዳ ኢንተቤ በተደረገው የሚኒስትሮች ጉባኤ ግብፅ ወደ ትብብር ማዕቀፉ ለመመለስ ያቀረበችው ጥያቄ ውድቅ ሆኗል።የውሃ መስኖና ኤሌክትሪክ ሚኒስትሩ ዶክተር ኢንጂነር ስለሺ ጌታሁን፤ ግብፅ በ1959 የቅኝ ግዛት ዘመን ስምምነት መሰረት የውሃ አጠቃቀም ተግባራዊ ሊደረግ ይገባል የሚል ሀሳብ ይዛ መቅረቧ ጥያቄው ውድቅ እንዲሆን እንዳደረገው ነው ያስታወቁት።የግብጽ ሃሳብ ኢትዮጵያ እንደሃገር የማትቀበለውና የትብብር ማዕቀፉ የቆመላቸውን ምሰሶዎች የሚያፈርስ መሆኑንም ሚኒስትሩ አስገንዝበዋል።ኢትዮጵያን ጨምሮ ከተፋሰሱ ሀብት ያልተጠቀሙ ሃገራትን ተጠቃሚ በሚያደርግ መልኩ የትብብር ማዕቀፉ ሲዘጋጅ እንደ ሃገር የተደረገው ክርክርም ይህን ለማስቀረት ያለመ እንደነበርም አንስተዋል።በታላቁ ህዳሴ ግድብ የውሃ አያያዝ፣ አለቃቀቅና ማህበራዊ ተፅዕኖን አስመልክቶ ቀጣይ ጥናት እንዲያካሂዱ የተመረጡት ሁለቱ የፈረንሳይ ኩባንያዎችም፤ ጥናቱን በምን መልኩ ለማካሄድ እንደተዘጋጁ ለሶስቱ ሃገራት ሪፖርታቸውን አቅርበው ሃገራቱ ምላሻቸውን ለኩባንያዎቹ ማቅረባቸውን ሚኒስትሩ ገልጸዋል።ኢትዮጵያም በጥናቱ ከግድቡ አሉታዊ ተፅዕኖዎች ባለፈ ያለውን አወንታዊ ተፅዕኖና ጠቀሜታ በጥናቱ እንዲካተት ሃሳቧን አቅርባለችም ነው ያሉት።ባለፈው ወር በግብፅ፣ ትናንት ደግሞ በአዲስ አበባ ሶስቱ ሃገራት በጉዳዩ ዙሪያ ውይይት ካደረጉ በኋላ ስምምነት በተደረገባቸው ጉዳዮች ላይ ኩባንያዎቹ ጥናት ማካሄድ ጀምረዋል።የናይል ተፋሰስ ትብብር ማዕቀፍ ስምምነት የተፈጥሮ ሀብትን በጋራና በፍትሃዊነት ለመጠቀም ኢትዮጵያ፣ ዲሞክራቲክ ሪፐብሊክ ኮንጎ፣ ዩጋንዳ፣ ታንዛኒያ፣ ሩዋንዳ፣ ብሩንዲ፣ ኬኒያ፣ ሱዳንና ደቡብ ሱዳን የተስማሙበት እንደሆነም አብራርተዋል ።ኢትዮጵያን ጨምሮ አምስቱ አባል ሃገራት ስምምነቱን በምክር ቤቶቻቸው ሲያፅድቁ ሌሎች አባል ሃገራት በሂደት ላይ ይገኛሉ።የትብብር ማዕቀፉን አንቀጾች ባለመቀበል ግብፅ ከትብብሩ ብትርቅም ባለፉት ዘጠኝ ዓመታት የትብብሩ አንቀጾች እየተቀበለች መምጣቷን የውሃ መስኖና ኤሌክትሪክ ጠቅሰዋል።ባለፉት ጥቂት ወራት ግብፅ ወደ ናይል ትብብር ማዕቀፍ ለመመለስ ጥያቄ አቅርባም ከአባል ሃገራቱ በተዋቀረው የሚኒስትሮች ምክር ቤት የተመረጡ የሱዳን፣ ሩዋንዳና ዩጋንዳ ሚኒስትሮች ጉዳዩን ሲመረምሩ ቆይተዋል ብለዋል ።በሁለቱ ውይይቶች ስምምነት ባልተደረሰባቸው ጉዳዮች ደግሞ በቀጣይ በካርቱም የሶስትዮሹ ውይይት የሚቀጥል ይሆናል።ሚኒስትሩ ከግድቡ ግንባታ ጋር ተያይዞ የታላቁ ህዳሴ ግድብ ግንባታ አሁን ላይ 58 ነጥብ 4 በመቶ ተጠናቋል-(ኤፍ ቢ ሲ) ።  - በካፍ ኮንፌዴሬሽን ዋንጫ ፋሲል ከነማ ከታንዛንያው አዛም ጋር የሚያደርገው ጨዋታ የቀጥታ የቴሌቪዥን ስርጭት እንደሚያገኝ ታውቋል።ሃዋሳ ከተማን በመለያ ምት በማሸነፍ ወደ አህጉራዊ ውድድሮች በታሪካቸው ለመጀመሪያ ጊዜ ያመሩት ፋሲል ከነማዎች እሁድ ከታንዛኒያው ክለብ አዛም ጋር የመጀመሪያ የማጣሪያ ጨዋታቸውን ያደርጋሉ። በባህር ዳር ዓለምአቀፍ ስታዲየም የሚደረገው ይህ ጨዋታም በአማራ ብዙሃን መገናኛ ድርጅት (አማራ ቲቪ) በቀጥታ እንደሚተላለፍ ታውቋል። ከተቋሙ ባገኘነው መረጃ መሰረት ጨዋታውን ለማስተላለፍ ስራዎች እየተሰሩ መሆናቸው ሲገለፅ መቀመጫውን ታንዛኒያ ያደረገው አዛም ቲቪም ከቴሌቪዥን ጣቢያው (አማራ ቲቪ) ጋር ተስማምቶ ጨዋታውን ለማስተላለፍ እንደተወሰነ እና መከፈል ያለበትን ክፍያ ለጣቢያው እንደፈፀመ ተነግሯል።በተያያዘ ዜና ጨዋታውን የሚመሩት ሱዳናዊው ዳኞች ባህር ዳር መግባታቸው ተረጋግጣል። ሶከር ኢትዮጵያም ጨዋታውን በቀጥታ የፅሁፍ ስርጭት ለስፖርት ቤተሰቡ እንደሚያደርስ ለማሳወቅ ይወዳል። - source_sentence: ኤም ቲ ኤን ለአልቃይዳና ታሊባን ጉቦ በመስጠት ተወነጀለ sentences: - "ኩባንያው ለእነዚህ ቡድኖች ገንዘብ የሰጠው አፍጋኒስታን ውስጥ የሚገኝና ትልቅ ኢንቨስትመንት ያደረገባቸው የኔትዎርክ ታዎሮች\ \ ላይ ጥቃት እንዳይደርስበት ለጥበቃ ነው ተብሏል።\n\nበውንጀላው መቀመጫቸውን አሜሪካ ያደረጉ ሌሎች አምስት ኩባንያዎችም\ \ ያሉ ሲሆን ክሱ የቀረበው አፍጋኒስታን ውስጥ በተገደሉ የአሜሪካ ዜጎች ስም ነው።\n\n• ጃዋር ኦሮሞ ፌደራሊስት ኮንግረስን\ \ መቀላቀሉ ተረጋገጠ\n\n• ሱዳን በ29 ግለሰቦች ላይ የሞት ፍርድ አስተላለፈች\n\n• \"ሙስና ለመጣው ፖለቲካዊ ለውጥ\ \ አንድ ምክንያት ነው\" \n\nበቀረበው ክስ እንደተባለው ሁለቱ አሸባሪ ቡድኖች ከኤም ቲ ኤን ያገኙትን ገንዘብ እንደ አውሮፓውያኑ\ \ ከ2009 እስከ 2017 አፍጋኒስታን ውስጥ ላካሄዷቸው የጥቃት ዘመቻዎች ተጠቅመውበታል።\n\nይህ ደግሞ የአሜሪካን የፀረ\ \ ሽብር አዋጅን የሚፃረር ነው፤ ስለዚህም ኤም ቲ ኤን ይህን ህግ ተላልፏል ተብሏል።\n\nኩባንያው ግን በየትኛውም ቦታ ስራውን\ \ የሚያካሂደው ሃላፊነት በተሞላበት መንገድ እንደሆነ ገልጿል።\n\nኤም ቲ ኤን በአፍሪካ ግዙፉ፤ በአለም አቀፍ ደረጃ ደግሞ\ \ ከስምንት ትልልቅ ኩባንያዎች አንዱ ነው። ከ240 ሚሊዮን ተጠቃሚዎች በላይም አለው ተብሎ ይታመናል።\n\nበ2015 ያልተመዘገቡ\ \ ሲም ካርዶችን ባለመሰረዝ በናይጄሪያ ባለስልጣናት በቀረበበት ክስ 5 ቢሊዮን ዶላር እንዲቀጣ ተፈርዶበት፤ ከረዥም ክርክር\ \ በኋላ እንዲሁም የያኔው የደቡብ አፍሪካ ፕሬዝዳንት ጃኮም ዙማ በጉዳዩ ጣልቃ ገብተው ቅጣቱ ወደ 1.7 ቢሊዮን ዶላር እንደወረደለት\ \ የሚታወስ ነው።\n\nየዛሬ ዓመትም በኢራን የቀድሞ የደቡብ አፍሪካ አምባሳደር ኤምቲኤን ኢራን ውስጥ እንዲሰራና የ 31.6\ \ ቢሊዮን ዶላር ፕሮጀክት እንዲያሸንፍ ጉቦ ተቀብለዋል በሚል መታሰራቸውም ይታወሳል።\n\n " - አዲስ አበባ፣ ጥቅምት 5፣ 2013 (ኤፍ.ቢ.ሲ) ፈረንሳይ በሀገሪቱ ዳግም እያገረሸ የመጣውን የኮሮና ቫይረስ ወረርሽኝ ስርጭትን ለመግታት ፓሪስን ጨምሮ በስምንት ከተሞች የሰዓት እላፊ ልትጥል ነው። - ባለፉት 20 አመታት ዴሞክራሲን በማስረፅ ረገድ የህዝቦችን ተሳትፎ የቃኘ ጥናት ይፋ በሆነበት ወቅት እንደተገለፀው፤ በርካታ የሚዲያ ተቋማት የዴሞክራሲ እሴቶችን አጉልቶ በማውጣት ረገድ ሰፊ ውስንነቶች ታተውባቸዋል፡፡ባለፉት ዓመታት በርካታዎቹ  የስነ-ምግባር መርሆዎችን ሳይጠብቁ  የመዘገብ ዝንባሌ ነበራቸው ተብሏል፡፡በኢትዮጵያ ስራ አመራር ኢኒስቲትዩት በተካሄደውና ከተለያዩ የህብረተሰብ ክፍሎች የተወከሉ ዜጎች በተሳተፉበት አውደ ጥናት በዋናነት በዴሞክራሲ ስርፀት ዙሪያ የዜጎችን ምልከታ፣ አተገባበርና ተፅእኖን በመገምገም መፍትሄን ማመላከት እንደሆነ ተገልጿል፡፡ሙሉ በሙሉ በአዲስ አበባ ከተማ ላይ ትኩረቱን ባደረገው በዚህ ጥናት ፖለቲከኞች ሀገራዊ አጀንዳዎች ላይ በማተኮር ሀሳብ ከማመንጨት ይልቅ በግላዊ ጥቅሞቻቸው ላይ ማተኮራቸው ሀላፊነታቸውን በአግባቡ እንዳይወጡ ማድረጉ ተነስቷል፡፡ዜጎችም ቢሆኑ  ነገሮችን በሰከነ ሁኔታ ከማጤን ይልቅ በስሜታዊነት ወደ አላስፈላጊ ግጭቶች የማምራት ሁኔታ ሲስተዋልባቸው እንደነበር ያመላከተው ጥናቱ፤ ይህም ዴሞክራሲ ስር እንዳይሰድ የራሱን ተፅዕኖ ማሳደሩን ተነስቷል፡፡በመንግስት በኩል የታዩ ክፍተቶችንም ጥናቱ ያመላከተ ሲሆን፤ በተለይም ለአሰራር ምቹ ያልሆኑ አደረጃጀቶችን ያለመተቸት ችግር፣ በፓርቲዎች የግል አቋም ጣልቃ መግባትን ጨምሮ የዴሞክራሲ ተቋማትን ተናበውና ተቀናጅተው እንዲሰሩ ያለማድረግ ችግሮች ተስተውለዋል፡፡በመሆኑም ሁሉም ባለድርሻ አካላት ለዴሞክራሲ ስርፀጥ ሚናውን በአግባቡ እንዲወጣ በመድረኩ ጥሪ ቀርቧል፡፡ model-index: - name: RoBERTa Amharic Text Embedding Base results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.5954036891442395 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7511339582703357 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7986090111883882 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8578772301179317 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5954036891442395 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.25037798609011186 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.15972180223767768 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08578772301179316 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.5954036891442395 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7511339582703357 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.7986090111883882 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8578772301179317 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7264113405058715 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6844476123278652 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6893120428806755 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.5902630783187178 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7444814030843665 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7940731781070457 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8542485636528576 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5902630783187178 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.24816046769478878 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1588146356214091 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08542485636528575 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.5902630783187178 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7444814030843665 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.7940731781070457 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8542485636528576 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7217190840690586 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6793972381816339 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6844825183256431 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.5851224674931963 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7372240701542183 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.784699123072271 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8469912307227094 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5851224674931963 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.24574135671807276 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1569398246144542 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08469912307227094 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.5851224674931963 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7372240701542183 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.784699123072271 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8469912307227094 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7149657550308033 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6728439193437673 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6779612508442862 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.5588146356214091 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7172664045963109 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7701844572119746 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8324765648624131 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5588146356214091 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.23908880153210357 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.15403689144239494 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08324765648624129 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.5588146356214091 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7172664045963109 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.7701844572119746 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8324765648624131 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.6946921608623674 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6506869747193293 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6562847075549745 name: Cosine Map@100 --- # RoBERTa Amharic Text Embedding Base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [rasyosef/roberta-base-amharic](https://huggingface.co/rasyosef/roberta-base-amharic) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [rasyosef/roberta-base-amharic](https://huggingface.co/rasyosef/roberta-base-amharic) <!-- at revision b1a3d2c267262e2b82c83be9d4e59db762a5e931 --> - **Maximum Sequence Length:** 510 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json - **Language:** am - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 510, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("yosefw/roberta-amharic-embed-base-v6") # Run inference sentences = [ 'ኤም ቲ ኤን ለአልቃይዳና ታሊባን ጉቦ በመስጠት ተወነጀለ', 'ኩባንያው ለእነዚህ ቡድኖች ገንዘብ የሰጠው አፍጋኒስታን ውስጥ የሚገኝና ትልቅ ኢንቨስትመንት ያደረገባቸው የኔትዎርክ ታዎሮች ላይ ጥቃት እንዳይደርስበት ለጥበቃ ነው ተብሏል።\n\nበውንጀላው መቀመጫቸውን አሜሪካ ያደረጉ ሌሎች አምስት ኩባንያዎችም ያሉ ሲሆን ክሱ የቀረበው አፍጋኒስታን ውስጥ በተገደሉ የአሜሪካ ዜጎች ስም ነው።\n\n• ጃዋር ኦሮሞ ፌደራሊስት ኮንግረስን መቀላቀሉ ተረጋገጠ\n\n• ሱዳን በ29 ግለሰቦች ላይ የሞት ፍርድ አስተላለፈች\n\n• "ሙስና ለመጣው ፖለቲካዊ ለውጥ አንድ ምክንያት ነው" \n\nበቀረበው ክስ እንደተባለው ሁለቱ አሸባሪ ቡድኖች ከኤም ቲ ኤን ያገኙትን ገንዘብ እንደ አውሮፓውያኑ ከ2009 እስከ 2017 አፍጋኒስታን ውስጥ ላካሄዷቸው የጥቃት ዘመቻዎች ተጠቅመውበታል።\n\nይህ ደግሞ የአሜሪካን የፀረ ሽብር አዋጅን የሚፃረር ነው፤ ስለዚህም ኤም ቲ ኤን ይህን ህግ ተላልፏል ተብሏል።\n\nኩባንያው ግን በየትኛውም ቦታ ስራውን የሚያካሂደው ሃላፊነት በተሞላበት መንገድ እንደሆነ ገልጿል።\n\nኤም ቲ ኤን በአፍሪካ ግዙፉ፤ በአለም አቀፍ ደረጃ ደግሞ ከስምንት ትልልቅ ኩባንያዎች አንዱ ነው። ከ240 ሚሊዮን ተጠቃሚዎች በላይም አለው ተብሎ ይታመናል።\n\nበ2015 ያልተመዘገቡ ሲም ካርዶችን ባለመሰረዝ በናይጄሪያ ባለስልጣናት በቀረበበት ክስ 5 ቢሊዮን ዶላር እንዲቀጣ ተፈርዶበት፤ ከረዥም ክርክር በኋላ እንዲሁም የያኔው የደቡብ አፍሪካ ፕሬዝዳንት ጃኮም ዙማ በጉዳዩ ጣልቃ ገብተው ቅጣቱ ወደ 1.7 ቢሊዮን ዶላር እንደወረደለት የሚታወስ ነው።\n\nየዛሬ ዓመትም በኢራን የቀድሞ የደቡብ አፍሪካ አምባሳደር ኤምቲኤን ኢራን ውስጥ እንዲሰራና የ 31.6 ቢሊዮን ዶላር ፕሮጀክት እንዲያሸንፍ ጉቦ ተቀብለዋል በሚል መታሰራቸውም ይታወሳል።\n\n ', 'ባለፉት 20 አመታት ዴሞክራሲን በማስረፅ ረገድ የህዝቦችን ተሳትፎ የቃኘ ጥናት ይፋ በሆነበት ወቅት እንደተገለፀው፤ በርካታ የሚዲያ ተቋማት የዴሞክራሲ እሴቶችን አጉልቶ በማውጣት ረገድ ሰፊ ውስንነቶች ታተውባቸዋል፡፡ባለፉት ዓመታት\xa0በርካታዎቹ \xa0የስነ-ምግባር መርሆዎችን ሳይጠብቁ \xa0የመዘገብ ዝንባሌ ነበራቸው ተብሏል፡፡በኢትዮጵያ ስራ አመራር ኢኒስቲትዩት በተካሄደውና ከተለያዩ የህብረተሰብ ክፍሎች የተወከሉ ዜጎች በተሳተፉበት አውደ ጥናት በዋናነት በዴሞክራሲ ስርፀት ዙሪያ የዜጎችን ምልከታ፣ አተገባበርና ተፅእኖን በመገምገም መፍትሄን ማመላከት እንደሆነ ተገልጿል፡፡ሙሉ በሙሉ በአዲስ አበባ ከተማ ላይ ትኩረቱን ባደረገው በዚህ ጥናት ፖለቲከኞች ሀገራዊ አጀንዳዎች ላይ በማተኮር ሀሳብ ከማመንጨት ይልቅ በግላዊ ጥቅሞቻቸው ላይ ማተኮራቸው ሀላፊነታቸውን በአግባቡ እንዳይወጡ ማድረጉ ተነስቷል፡፡ዜጎችም ቢሆኑ \xa0ነገሮችን በሰከነ ሁኔታ ከማጤን ይልቅ በስሜታዊነት ወደ አላስፈላጊ ግጭቶች የማምራት ሁኔታ ሲስተዋልባቸው እንደነበር ያመላከተው\xa0ጥናቱ፤ ይህም ዴሞክራሲ ስር እንዳይሰድ የራሱን ተፅዕኖ ማሳደሩን ተነስቷል፡፡በመንግስት በኩል የታዩ ክፍተቶችንም ጥናቱ ያመላከተ ሲሆን፤ በተለይም ለአሰራር ምቹ ያልሆኑ አደረጃጀቶችን ያለመተቸት ችግር፣ በፓርቲዎች የግል አቋም ጣልቃ መግባትን ጨምሮ የዴሞክራሲ ተቋማትን ተናበውና ተቀናጅተው እንዲሰሩ ያለማድረግ ችግሮች ተስተውለዋል፡፡በመሆኑም ሁሉም ባለድርሻ አካላት ለዴሞክራሲ ስርፀጥ ሚናውን በአግባቡ እንዲወጣ በመድረኩ ጥሪ ቀርቧል፡፡', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_768`, `dim_512`, `dim_256` and `dim_128` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_768 | dim_512 | dim_256 | dim_128 | |:--------------------|:-----------|:-----------|:----------|:-----------| | cosine_accuracy@1 | 0.5954 | 0.5903 | 0.5851 | 0.5588 | | cosine_accuracy@3 | 0.7511 | 0.7445 | 0.7372 | 0.7173 | | cosine_accuracy@5 | 0.7986 | 0.7941 | 0.7847 | 0.7702 | | cosine_accuracy@10 | 0.8579 | 0.8542 | 0.847 | 0.8325 | | cosine_precision@1 | 0.5954 | 0.5903 | 0.5851 | 0.5588 | | cosine_precision@3 | 0.2504 | 0.2482 | 0.2457 | 0.2391 | | cosine_precision@5 | 0.1597 | 0.1588 | 0.1569 | 0.154 | | cosine_precision@10 | 0.0858 | 0.0854 | 0.0847 | 0.0832 | | cosine_recall@1 | 0.5954 | 0.5903 | 0.5851 | 0.5588 | | cosine_recall@3 | 0.7511 | 0.7445 | 0.7372 | 0.7173 | | cosine_recall@5 | 0.7986 | 0.7941 | 0.7847 | 0.7702 | | cosine_recall@10 | 0.8579 | 0.8542 | 0.847 | 0.8325 | | **cosine_ndcg@10** | **0.7264** | **0.7217** | **0.715** | **0.6947** | | cosine_mrr@10 | 0.6844 | 0.6794 | 0.6728 | 0.6507 | | cosine_map@100 | 0.6893 | 0.6845 | 0.678 | 0.6563 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### json * Dataset: json * Size: 62,833 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 15.86 tokens</li><li>max: 106 tokens</li></ul> | <ul><li>min: 32 tokens</li><li>mean: 305.41 tokens</li><li>max: 510 tokens</li></ul> | * Samples: | anchor | positive | |:--------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>የ8ኛ እና የ12ኛ ክፍል ተማሪዎች የማካካሻ ትምህርት መማር ጀመሩ።</code> | <code>ባሕር ዳር፡ ጥቅምት 10/2013 ዓ.ም (አብመድ) በባሕር ዳር ከተማ አስተዳደር ለሚገኙ የ12ኛ እና የ8ኛ ክፍል ተማሪዎች የማካካሻ ትምህርት መስጠት መጀመሩን መምሪያው አስታውቋል፡፡በባሕር ዳር ከተማ አስተዳደር ለሚገኙ ለ12ኛ እና ለ8ኛ ክፍል ተማሪዎች ሀገራዊና ሀገር አቀፍ ዜና ፈተና ከመወስዳቸው በፊት ለ45 ቀናት የሚቆይ የማካካሻ ትምህርት ከጥቅምት 09/2013 ዓ.ም ጀምሮ መስጠት መጀመሩን የከተማ አስተዳደሩ ትምህርት መምሪያ ምክትል ኃላፊ መላክ ጀመረ ተናግረዋል፡፡“ዛሬ ተቀብለን ማስተማር የጀመርነው የኮሮናቫይረስን ለመከላከል የአፍና የአፍንጫ መሸፈኛ ጭምብል የተጠቀሙ ተማሪዎችን ብቻ ነው፡፡ ከትምህርት ሚኒስቴር የተላከው ጭምብል እስከዛሬ ባይደርሰንም ወላጆች ለልጆቻቸው በገዙት ተጠቅመን ነው ማስተማር የጀመርነው” ብለዋል አቶ መላክ። መማርም ሆነ ማስተማር የሚቻለው ጤና ሲኖር ብቻ ስለሆነ ተማሪዎች ያለማንም ክትትል ጭምብል እንዲጠቀሙም ጥሪ አቅርበዋል፡፡በሚቀጥለው ሳምንት ከ1ኛ ክፍል በስተቀር ሁሉም ትምህርት ቤቶች ለሦስት ሳምንታት የማካካሻ ትምህርት እንደሚወስዱ የተናገሩት ምክትል መምሪያ ኃላፊው ከማካካሻው ትምህርት በኋላ የ2013 ትምህርት ዘመን ሙሉ በሙሉ የመማር ማስተማር ሂደቱ እንደሚቀጥል አስገንዝበዋል፡፡ወረርሽኙን ለመከላከል ሲባል ትምህርት ሚኒስቴር ባስቀመጠው አቅጣጫ መሠረት የመንግሥት ትምህርት ቤቶች ከአንድ እስከ ሦስት ፈረቃ እንዲሁም የግል ትምህርት ቤቶች ደግሞ በአንድ እና ሁለት ፈረቃ ብቻ ማስተማር እንደሚቀጥሉ አቶ መላክ ጠቁመዋል፡፡</code> | | <code>በክልሎች በተፈጠሩ ግጭቶች ላይ ተሳትፈዋል በተባሉ 1 ሺህ 323 ተጠርጣሪዎች ላይ ክስ ተመሰረተ</code> | <code>በተለያዩ ክልሎች በተፈጠሩ ግጭቶች ላይ ተሳትፈዋል በተባሉ 1 ሺህ 323 ተጠርጣሪዎች ላይ ክስ ተመሰረተ።በ2011 በጀት ዓመት በተለያዩ ክልሎች በተፈጠሩ ግጭቶች ተሳትፈዋል በተባሉ 1 ሺህ 323 ተጠርጣሪዎች ላይ ክስ መመስረቱን የኢፌዲሪ ጠቅላይ ዐቃቤ ሕግ አስታወቀ፡፡በተፈጠረው ሁከትና ብጥብጥ 1 ሺህ 229 ሰዎች ህይዎት ያለፈ ሲሆን በ1 ሺህ 393 ሰዎች ላይ ደግሞ ቀላልና ከባድ የአካል ጉዳት ሲደርስ በ19 ሰዎች ላይ የግድያ ሙከራ መደረጉን በጠቅላይ ዐቃቤ ሕግ የተደራጁ ድንበር ተሸጋሪ ወንጀሎች ዳይሬክተር የሆኑት አቶ ፍቃዱ ፀጋ ገልፀዋል፡፡በግጭቶቹ ከ2.2 ቢሊዮን ብር በላይ የሚገመት የዜጎች ንብረት የወደመ ሲሆን፤ 1.2 ሚሊዮን ዜጎች ከመኖሪያ ቤታቸውና ከአካባቢያቸው ተፈናቅለዋል፡፡ከተከሳሾቹ መካከል 645 ተጠርጣሪዎች በቁጥጥር ስር ውለው ጉዳያቸው እየታየ ሲሆን 667 የሚሆኑ ተጠርጣሪዎች ደግሞ በቁጥጥር ስር አልዋሉም፡፡የ10 ተጠርጣሪዎች ክስም በምህረት መነሳቱን ዳይሬክተሩ አክለዋል፡፡በመጨረሻም አቶ ፍቃዱ ተጠርጣሪዎችን በቁጥጥር ስር ለማዋል በሚደረግ እንቅስቃሴ ዙሪያ የሚስተዋለው ክፍተት አስመልክቶ መፍትሔ ያሉትን ሀሳብ ሲጠቁሙ ይህንን ችግር ለመቅረፍ ህብረተሰቡና የሚመለከታቸው ባለድርሻ አካላት ከፍትህ አካላት ጎን በመቆምና ተጠርጣሪዎችን አሳልፎ በመስጠት በኩል በጉዳዩ ላይ በባለቤትነት ስሜት ሊሰሩ እንደሚገባ አጽእኖት ሰጥተው መልዕክታቸውን አስተላልፈዋል፡፡በሌላ በኩል በአማራ ክልል በጃዊ ወረዳና በመተክል ዞን፤ በጎንደርና አካባቢው በተፈጠረ ሁከትና ብጥብጥ፤ በሰሜን ሸዋ አስተዳደር እንዲሁም በቤንሻጉል ጉምዝ ክልል ከማሻ ዞን ውስጥ በሚገኙ የተለያዩ ወረዳዎችና ቀበሌዎችና የዚሁ ዞን አጎራባች በሆነው በኦሮሚያ ክልል ምስራቅና ምዕራብ ወለጋ ዞን በተለያዩ ቀ...</code> | | <code>ከሽመና ሥራ ---- እስከ ሚሊየነርነት! </code> | <code>“ይቅርታ መጠየቅ ጀግንነት እንጂ ሽንፈት አይደለም”የኮንሶው ተወላጅ አቶ ዱላ ኩሴ፤ቤሳቤስቲን አልነበራቸውም፡፡ ለብዙ ዓመታት በሽመና ስራ ላይ ቆይተዋል፡፡ በብዙ ልፋትና ትጋት፣ወጥተው ወርደው፣ ነው ለስኬት የበቁት፡፡ ዛሬበሚሊዮን ብሮች የሚንቀሳቀሱ የንግድ ድርጅቶች ባለቤት ሆነዋል፡፡ ባለጠጋ ናቸው፡፡ የ50 ዓመቱ ጎልማሳ አቶ ዱላ፤በልጆችም ተንበሽብሸዋል፡፡ የ17 ልጆች አባት ናቸው፡፡ በቅርቡበሚዲያ የሰጡት አንድ አስተያየት የአገሬውን ህዝብ ማስቆጣቱን የሚናገሩት ባለሃብቱ፤አሁን በሽማግሌ እርቅ ለመፍጠር እየተሞከረ መሆኑን ጠቁመዋል፡፡ ባለሃብቱ ከህዝቡ ጋር ቅራኔውስጥ የከተታቸው ጉዳይ ምን ይሆን? የአዲስ አድማስ ጋዜጠኛ ማህሌት ኪዳነወልድ፤ ከአቶ ዱላ ኩሴ ጋር ይሄን ጨምሮ በስኬት ጉዟቸውና በንግድ ሥራቸው ዙሪያ አነጋግራቸዋለች፡፡መቼ ነው የሽመና ሥራ የጀመሩት?በ13 ወይም በ14 ዓመቴ ይመስለኛል፡፡ ለቤተሰቤ አራተኛ ልጅ ነኝ፡፡ ለ10 ዓመታት ያህል በሽመና ስራ ላይ ቆይቻለሁ፡፡ ስራዎቼንም የምሸጠው እዛው በአካባቢው ላሉ ሰዎች ነበር፡፡ ቀጣዩ ሥራዎስ ምን ነበር?ወደ ጅንካ በመሄድ ለ4 ዓመታት ያህል ኦሞ ዞን ጂንካ ከተማ ላይ ሽያጩን ቀጠልኩ፡፡ በኋላም ወደ ወላይታ ተመልሼ፣ ማግና ሰዴቦራ /ብርድ ቦታ የሚለበስ የጋቢ አይነት/ መሸጥ ጀመርኩ፡፡ ለ3 ዓመታትም ቦዲቲ እየወሰድኩ ሸጫለሁ፡፡ እንግዲህ አቅም እየጠነከረ፣ ገንዘብ እየተሰበሰበ ሲመጣ፣ አነስተኛ ሸቀጣ ሸቀጥ ሱቅ ከፈትኩኝ፡፡ የቤት እቃና ልብስ መሸጥ ጀመርኩኝ፡፡ ብዙም ሳልቆይ ወደ ከተማ ወርጄ፣ ወደ ሆቴል ስራ ገባሁ፡፡ ተቀጥረው ነው ወይስ የራስዎን ሆቴል?የራሴን ነው፡፡ ኮንሶ እድገት ሆቴል ይባላል፡፡ በ91 ዓመተ ምህረት ነበር ሆቴሉን አነስ አድርጌ የከፈትኩት፡፡ በኋላም የሸቀጣሸቀጥ ገበያው እየተቀዛቀዘ በ...</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128 ], "matryoshka_weights": [ 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 64 - `gradient_accumulation_steps`: 16 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `fp16`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | |:----------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:| | 0.0815 | 10 | 129.4178 | - | - | - | - | | 0.1629 | 20 | 40.6648 | - | - | - | - | | 0.2444 | 30 | 14.7765 | - | - | - | - | | 0.3259 | 40 | 10.3171 | - | - | - | - | | 0.4073 | 50 | 8.2567 | - | - | - | - | | 0.4888 | 60 | 6.8566 | - | - | - | - | | 0.5703 | 70 | 6.8733 | - | - | - | - | | 0.6517 | 80 | 6.1625 | - | - | - | - | | 0.7332 | 90 | 5.1076 | - | - | - | - | | 0.8147 | 100 | 5.4369 | - | - | - | - | | 0.8961 | 110 | 4.8402 | - | - | - | - | | 0.9776 | 120 | 4.4237 | - | - | - | - | | 0.9939 | 122 | - | 0.6379 | 0.6338 | 0.6226 | 0.6020 | | 1.0652 | 130 | 3.4286 | - | - | - | - | | 1.1466 | 140 | 2.883 | - | - | - | - | | 1.2281 | 150 | 2.6902 | - | - | - | - | | 1.3096 | 160 | 2.7897 | - | - | - | - | | 1.3910 | 170 | 2.6433 | - | - | - | - | | 1.4725 | 180 | 2.4738 | - | - | - | - | | 1.5540 | 190 | 2.5929 | - | - | - | - | | 1.6354 | 200 | 2.564 | - | - | - | - | | 1.7169 | 210 | 2.4794 | - | - | - | - | | 1.7984 | 220 | 2.4917 | - | - | - | - | | 1.8798 | 230 | 2.109 | - | - | - | - | | 1.9613 | 240 | 2.1082 | - | - | - | - | | 1.9939 | 244 | - | 0.6909 | 0.6911 | 0.6793 | 0.6623 | | 2.0489 | 250 | 1.6165 | - | - | - | - | | 2.1303 | 260 | 1.3835 | - | - | - | - | | 2.2118 | 270 | 1.2062 | - | - | - | - | | 2.2933 | 280 | 1.1091 | - | - | - | - | | 2.3747 | 290 | 1.1475 | - | - | - | - | | 2.4562 | 300 | 1.3218 | - | - | - | - | | 2.5377 | 310 | 1.2644 | - | - | - | - | | 2.6191 | 320 | 1.1783 | - | - | - | - | | 2.7006 | 330 | 1.4143 | - | - | - | - | | 2.7821 | 340 | 1.3219 | - | - | - | - | | 2.8635 | 350 | 1.1191 | - | - | - | - | | 2.9450 | 360 | 1.0473 | - | - | - | - | | 2.9939 | 366 | - | 0.7231 | 0.7199 | 0.7115 | 0.6924 | | 3.0326 | 370 | 1.0302 | - | - | - | - | | 3.1141 | 380 | 1.0575 | - | - | - | - | | 3.1955 | 390 | 0.8955 | - | - | - | - | | 3.2770 | 400 | 0.9451 | - | - | - | - | | 3.3585 | 410 | 0.9191 | - | - | - | - | | 3.4399 | 420 | 0.8541 | - | - | - | - | | 3.5214 | 430 | 0.9939 | - | - | - | - | | 3.6029 | 440 | 0.9023 | - | - | - | - | | 3.6843 | 450 | 0.9905 | - | - | - | - | | 3.7658 | 460 | 0.932 | - | - | - | - | | 3.8473 | 470 | 0.7228 | - | - | - | - | | 3.9287 | 480 | 0.9572 | - | - | - | - | | **3.9939** | **488** | **-** | **0.7264** | **0.7217** | **0.715** | **0.6947** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.4.1 - Transformers: 4.49.0 - PyTorch: 2.6.0+cu124 - Accelerate: 1.2.1 - Datasets: 3.4.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
null
Non_BioNLP
# RoBERTa Amharic Text Embedding Base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [rasyosef/roberta-base-amharic](https://huggingface.co/rasyosef/roberta-base-amharic) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [rasyosef/roberta-base-amharic](https://huggingface.co/rasyosef/roberta-base-amharic) <!-- at revision b1a3d2c267262e2b82c83be9d4e59db762a5e931 --> - **Maximum Sequence Length:** 510 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json - **Language:** am - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 510, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("yosefw/roberta-amharic-embed-base-v6") # Run inference sentences = [ 'ኤም ቲ ኤን ለአልቃይዳና ታሊባን ጉቦ በመስጠት ተወነጀለ', 'ኩባንያው ለእነዚህ ቡድኖች ገንዘብ የሰጠው አፍጋኒስታን ውስጥ የሚገኝና ትልቅ ኢንቨስትመንት ያደረገባቸው የኔትዎርክ ታዎሮች ላይ ጥቃት እንዳይደርስበት ለጥበቃ ነው ተብሏል።\n\nበውንጀላው መቀመጫቸውን አሜሪካ ያደረጉ ሌሎች አምስት ኩባንያዎችም ያሉ ሲሆን ክሱ የቀረበው አፍጋኒስታን ውስጥ በተገደሉ የአሜሪካ ዜጎች ስም ነው።\n\n• ጃዋር ኦሮሞ ፌደራሊስት ኮንግረስን መቀላቀሉ ተረጋገጠ\n\n• ሱዳን በ29 ግለሰቦች ላይ የሞት ፍርድ አስተላለፈች\n\n• "ሙስና ለመጣው ፖለቲካዊ ለውጥ አንድ ምክንያት ነው" \n\nበቀረበው ክስ እንደተባለው ሁለቱ አሸባሪ ቡድኖች ከኤም ቲ ኤን ያገኙትን ገንዘብ እንደ አውሮፓውያኑ ከ2009 እስከ 2017 አፍጋኒስታን ውስጥ ላካሄዷቸው የጥቃት ዘመቻዎች ተጠቅመውበታል።\n\nይህ ደግሞ የአሜሪካን የፀረ ሽብር አዋጅን የሚፃረር ነው፤ ስለዚህም ኤም ቲ ኤን ይህን ህግ ተላልፏል ተብሏል።\n\nኩባንያው ግን በየትኛውም ቦታ ስራውን የሚያካሂደው ሃላፊነት በተሞላበት መንገድ እንደሆነ ገልጿል።\n\nኤም ቲ ኤን በአፍሪካ ግዙፉ፤ በአለም አቀፍ ደረጃ ደግሞ ከስምንት ትልልቅ ኩባንያዎች አንዱ ነው። ከ240 ሚሊዮን ተጠቃሚዎች በላይም አለው ተብሎ ይታመናል።\n\nበ2015 ያልተመዘገቡ ሲም ካርዶችን ባለመሰረዝ በናይጄሪያ ባለስልጣናት በቀረበበት ክስ 5 ቢሊዮን ዶላር እንዲቀጣ ተፈርዶበት፤ ከረዥም ክርክር በኋላ እንዲሁም የያኔው የደቡብ አፍሪካ ፕሬዝዳንት ጃኮም ዙማ በጉዳዩ ጣልቃ ገብተው ቅጣቱ ወደ 1.7 ቢሊዮን ዶላር እንደወረደለት የሚታወስ ነው።\n\nየዛሬ ዓመትም በኢራን የቀድሞ የደቡብ አፍሪካ አምባሳደር ኤምቲኤን ኢራን ውስጥ እንዲሰራና የ 31.6 ቢሊዮን ዶላር ፕሮጀክት እንዲያሸንፍ ጉቦ ተቀብለዋል በሚል መታሰራቸውም ይታወሳል።\n\n ', 'ባለፉት 20 አመታት ዴሞክራሲን በማስረፅ ረገድ የህዝቦችን ተሳትፎ የቃኘ ጥናት ይፋ በሆነበት ወቅት እንደተገለፀው፤ በርካታ የሚዲያ ተቋማት የዴሞክራሲ እሴቶችን አጉልቶ በማውጣት ረገድ ሰፊ ውስንነቶች ታተውባቸዋል፡፡ባለፉት ዓመታት\xa0በርካታዎቹ \xa0የስነ-ምግባር መርሆዎችን ሳይጠብቁ \xa0የመዘገብ ዝንባሌ ነበራቸው ተብሏል፡፡በኢትዮጵያ ስራ አመራር ኢኒስቲትዩት በተካሄደውና ከተለያዩ የህብረተሰብ ክፍሎች የተወከሉ ዜጎች በተሳተፉበት አውደ ጥናት በዋናነት በዴሞክራሲ ስርፀት ዙሪያ የዜጎችን ምልከታ፣ አተገባበርና ተፅእኖን በመገምገም መፍትሄን ማመላከት እንደሆነ ተገልጿል፡፡ሙሉ በሙሉ በአዲስ አበባ ከተማ ላይ ትኩረቱን ባደረገው በዚህ ጥናት ፖለቲከኞች ሀገራዊ አጀንዳዎች ላይ በማተኮር ሀሳብ ከማመንጨት ይልቅ በግላዊ ጥቅሞቻቸው ላይ ማተኮራቸው ሀላፊነታቸውን በአግባቡ እንዳይወጡ ማድረጉ ተነስቷል፡፡ዜጎችም ቢሆኑ \xa0ነገሮችን በሰከነ ሁኔታ ከማጤን ይልቅ በስሜታዊነት ወደ አላስፈላጊ ግጭቶች የማምራት ሁኔታ ሲስተዋልባቸው እንደነበር ያመላከተው\xa0ጥናቱ፤ ይህም ዴሞክራሲ ስር እንዳይሰድ የራሱን ተፅዕኖ ማሳደሩን ተነስቷል፡፡በመንግስት በኩል የታዩ ክፍተቶችንም ጥናቱ ያመላከተ ሲሆን፤ በተለይም ለአሰራር ምቹ ያልሆኑ አደረጃጀቶችን ያለመተቸት ችግር፣ በፓርቲዎች የግል አቋም ጣልቃ መግባትን ጨምሮ የዴሞክራሲ ተቋማትን ተናበውና ተቀናጅተው እንዲሰሩ ያለማድረግ ችግሮች ተስተውለዋል፡፡በመሆኑም ሁሉም ባለድርሻ አካላት ለዴሞክራሲ ስርፀጥ ሚናውን በአግባቡ እንዲወጣ በመድረኩ ጥሪ ቀርቧል፡፡', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_768`, `dim_512`, `dim_256` and `dim_128` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_768 | dim_512 | dim_256 | dim_128 | |:--------------------|:-----------|:-----------|:----------|:-----------| | cosine_accuracy@1 | 0.5954 | 0.5903 | 0.5851 | 0.5588 | | cosine_accuracy@3 | 0.7511 | 0.7445 | 0.7372 | 0.7173 | | cosine_accuracy@5 | 0.7986 | 0.7941 | 0.7847 | 0.7702 | | cosine_accuracy@10 | 0.8579 | 0.8542 | 0.847 | 0.8325 | | cosine_precision@1 | 0.5954 | 0.5903 | 0.5851 | 0.5588 | | cosine_precision@3 | 0.2504 | 0.2482 | 0.2457 | 0.2391 | | cosine_precision@5 | 0.1597 | 0.1588 | 0.1569 | 0.154 | | cosine_precision@10 | 0.0858 | 0.0854 | 0.0847 | 0.0832 | | cosine_recall@1 | 0.5954 | 0.5903 | 0.5851 | 0.5588 | | cosine_recall@3 | 0.7511 | 0.7445 | 0.7372 | 0.7173 | | cosine_recall@5 | 0.7986 | 0.7941 | 0.7847 | 0.7702 | | cosine_recall@10 | 0.8579 | 0.8542 | 0.847 | 0.8325 | | **cosine_ndcg@10** | **0.7264** | **0.7217** | **0.715** | **0.6947** | | cosine_mrr@10 | 0.6844 | 0.6794 | 0.6728 | 0.6507 | | cosine_map@100 | 0.6893 | 0.6845 | 0.678 | 0.6563 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### json * Dataset: json * Size: 62,833 training samples * Columns: <code>anchor</code> and <code>positive</code> * Approximate statistics based on the first 1000 samples: | | anchor | positive | |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 15.86 tokens</li><li>max: 106 tokens</li></ul> | <ul><li>min: 32 tokens</li><li>mean: 305.41 tokens</li><li>max: 510 tokens</li></ul> | * Samples: | anchor | positive | |:--------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>የ8ኛ እና የ12ኛ ክፍል ተማሪዎች የማካካሻ ትምህርት መማር ጀመሩ።</code> | <code>ባሕር ዳር፡ ጥቅምት 10/2013 ዓ.ም (አብመድ) በባሕር ዳር ከተማ አስተዳደር ለሚገኙ የ12ኛ እና የ8ኛ ክፍል ተማሪዎች የማካካሻ ትምህርት መስጠት መጀመሩን መምሪያው አስታውቋል፡፡በባሕር ዳር ከተማ አስተዳደር ለሚገኙ ለ12ኛ እና ለ8ኛ ክፍል ተማሪዎች ሀገራዊና ሀገር አቀፍ ዜና ፈተና ከመወስዳቸው በፊት ለ45 ቀናት የሚቆይ የማካካሻ ትምህርት ከጥቅምት 09/2013 ዓ.ም ጀምሮ መስጠት መጀመሩን የከተማ አስተዳደሩ ትምህርት መምሪያ ምክትል ኃላፊ መላክ ጀመረ ተናግረዋል፡፡“ዛሬ ተቀብለን ማስተማር የጀመርነው የኮሮናቫይረስን ለመከላከል የአፍና የአፍንጫ መሸፈኛ ጭምብል የተጠቀሙ ተማሪዎችን ብቻ ነው፡፡ ከትምህርት ሚኒስቴር የተላከው ጭምብል እስከዛሬ ባይደርሰንም ወላጆች ለልጆቻቸው በገዙት ተጠቅመን ነው ማስተማር የጀመርነው” ብለዋል አቶ መላክ። መማርም ሆነ ማስተማር የሚቻለው ጤና ሲኖር ብቻ ስለሆነ ተማሪዎች ያለማንም ክትትል ጭምብል እንዲጠቀሙም ጥሪ አቅርበዋል፡፡በሚቀጥለው ሳምንት ከ1ኛ ክፍል በስተቀር ሁሉም ትምህርት ቤቶች ለሦስት ሳምንታት የማካካሻ ትምህርት እንደሚወስዱ የተናገሩት ምክትል መምሪያ ኃላፊው ከማካካሻው ትምህርት በኋላ የ2013 ትምህርት ዘመን ሙሉ በሙሉ የመማር ማስተማር ሂደቱ እንደሚቀጥል አስገንዝበዋል፡፡ወረርሽኙን ለመከላከል ሲባል ትምህርት ሚኒስቴር ባስቀመጠው አቅጣጫ መሠረት የመንግሥት ትምህርት ቤቶች ከአንድ እስከ ሦስት ፈረቃ እንዲሁም የግል ትምህርት ቤቶች ደግሞ በአንድ እና ሁለት ፈረቃ ብቻ ማስተማር እንደሚቀጥሉ አቶ መላክ ጠቁመዋል፡፡</code> | | <code>በክልሎች በተፈጠሩ ግጭቶች ላይ ተሳትፈዋል በተባሉ 1 ሺህ 323 ተጠርጣሪዎች ላይ ክስ ተመሰረተ</code> | <code>በተለያዩ ክልሎች በተፈጠሩ ግጭቶች ላይ ተሳትፈዋል በተባሉ 1 ሺህ 323 ተጠርጣሪዎች ላይ ክስ ተመሰረተ።በ2011 በጀት ዓመት በተለያዩ ክልሎች በተፈጠሩ ግጭቶች ተሳትፈዋል በተባሉ 1 ሺህ 323 ተጠርጣሪዎች ላይ ክስ መመስረቱን የኢፌዲሪ ጠቅላይ ዐቃቤ ሕግ አስታወቀ፡፡በተፈጠረው ሁከትና ብጥብጥ 1 ሺህ 229 ሰዎች ህይዎት ያለፈ ሲሆን በ1 ሺህ 393 ሰዎች ላይ ደግሞ ቀላልና ከባድ የአካል ጉዳት ሲደርስ በ19 ሰዎች ላይ የግድያ ሙከራ መደረጉን በጠቅላይ ዐቃቤ ሕግ የተደራጁ ድንበር ተሸጋሪ ወንጀሎች ዳይሬክተር የሆኑት አቶ ፍቃዱ ፀጋ ገልፀዋል፡፡በግጭቶቹ ከ2.2 ቢሊዮን ብር በላይ የሚገመት የዜጎች ንብረት የወደመ ሲሆን፤ 1.2 ሚሊዮን ዜጎች ከመኖሪያ ቤታቸውና ከአካባቢያቸው ተፈናቅለዋል፡፡ከተከሳሾቹ መካከል 645 ተጠርጣሪዎች በቁጥጥር ስር ውለው ጉዳያቸው እየታየ ሲሆን 667 የሚሆኑ ተጠርጣሪዎች ደግሞ በቁጥጥር ስር አልዋሉም፡፡የ10 ተጠርጣሪዎች ክስም በምህረት መነሳቱን ዳይሬክተሩ አክለዋል፡፡በመጨረሻም አቶ ፍቃዱ ተጠርጣሪዎችን በቁጥጥር ስር ለማዋል በሚደረግ እንቅስቃሴ ዙሪያ የሚስተዋለው ክፍተት አስመልክቶ መፍትሔ ያሉትን ሀሳብ ሲጠቁሙ ይህንን ችግር ለመቅረፍ ህብረተሰቡና የሚመለከታቸው ባለድርሻ አካላት ከፍትህ አካላት ጎን በመቆምና ተጠርጣሪዎችን አሳልፎ በመስጠት በኩል በጉዳዩ ላይ በባለቤትነት ስሜት ሊሰሩ እንደሚገባ አጽእኖት ሰጥተው መልዕክታቸውን አስተላልፈዋል፡፡በሌላ በኩል በአማራ ክልል በጃዊ ወረዳና በመተክል ዞን፤ በጎንደርና አካባቢው በተፈጠረ ሁከትና ብጥብጥ፤ በሰሜን ሸዋ አስተዳደር እንዲሁም በቤንሻጉል ጉምዝ ክልል ከማሻ ዞን ውስጥ በሚገኙ የተለያዩ ወረዳዎችና ቀበሌዎችና የዚሁ ዞን አጎራባች በሆነው በኦሮሚያ ክልል ምስራቅና ምዕራብ ወለጋ ዞን በተለያዩ ቀ...</code> | | <code>ከሽመና ሥራ ---- እስከ ሚሊየነርነት! </code> | <code>“ይቅርታ መጠየቅ ጀግንነት እንጂ ሽንፈት አይደለም”የኮንሶው ተወላጅ አቶ ዱላ ኩሴ፤ቤሳቤስቲን አልነበራቸውም፡፡ ለብዙ ዓመታት በሽመና ስራ ላይ ቆይተዋል፡፡ በብዙ ልፋትና ትጋት፣ወጥተው ወርደው፣ ነው ለስኬት የበቁት፡፡ ዛሬበሚሊዮን ብሮች የሚንቀሳቀሱ የንግድ ድርጅቶች ባለቤት ሆነዋል፡፡ ባለጠጋ ናቸው፡፡ የ50 ዓመቱ ጎልማሳ አቶ ዱላ፤በልጆችም ተንበሽብሸዋል፡፡ የ17 ልጆች አባት ናቸው፡፡ በቅርቡበሚዲያ የሰጡት አንድ አስተያየት የአገሬውን ህዝብ ማስቆጣቱን የሚናገሩት ባለሃብቱ፤አሁን በሽማግሌ እርቅ ለመፍጠር እየተሞከረ መሆኑን ጠቁመዋል፡፡ ባለሃብቱ ከህዝቡ ጋር ቅራኔውስጥ የከተታቸው ጉዳይ ምን ይሆን? የአዲስ አድማስ ጋዜጠኛ ማህሌት ኪዳነወልድ፤ ከአቶ ዱላ ኩሴ ጋር ይሄን ጨምሮ በስኬት ጉዟቸውና በንግድ ሥራቸው ዙሪያ አነጋግራቸዋለች፡፡መቼ ነው የሽመና ሥራ የጀመሩት?በ13 ወይም በ14 ዓመቴ ይመስለኛል፡፡ ለቤተሰቤ አራተኛ ልጅ ነኝ፡፡ ለ10 ዓመታት ያህል በሽመና ስራ ላይ ቆይቻለሁ፡፡ ስራዎቼንም የምሸጠው እዛው በአካባቢው ላሉ ሰዎች ነበር፡፡ ቀጣዩ ሥራዎስ ምን ነበር?ወደ ጅንካ በመሄድ ለ4 ዓመታት ያህል ኦሞ ዞን ጂንካ ከተማ ላይ ሽያጩን ቀጠልኩ፡፡ በኋላም ወደ ወላይታ ተመልሼ፣ ማግና ሰዴቦራ /ብርድ ቦታ የሚለበስ የጋቢ አይነት/ መሸጥ ጀመርኩ፡፡ ለ3 ዓመታትም ቦዲቲ እየወሰድኩ ሸጫለሁ፡፡ እንግዲህ አቅም እየጠነከረ፣ ገንዘብ እየተሰበሰበ ሲመጣ፣ አነስተኛ ሸቀጣ ሸቀጥ ሱቅ ከፈትኩኝ፡፡ የቤት እቃና ልብስ መሸጥ ጀመርኩኝ፡፡ ብዙም ሳልቆይ ወደ ከተማ ወርጄ፣ ወደ ሆቴል ስራ ገባሁ፡፡ ተቀጥረው ነው ወይስ የራስዎን ሆቴል?የራሴን ነው፡፡ ኮንሶ እድገት ሆቴል ይባላል፡፡ በ91 ዓመተ ምህረት ነበር ሆቴሉን አነስ አድርጌ የከፈትኩት፡፡ በኋላም የሸቀጣሸቀጥ ገበያው እየተቀዛቀዘ በ...</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128 ], "matryoshka_weights": [ 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 64 - `gradient_accumulation_steps`: 16 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `fp16`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | |:----------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:| | 0.0815 | 10 | 129.4178 | - | - | - | - | | 0.1629 | 20 | 40.6648 | - | - | - | - | | 0.2444 | 30 | 14.7765 | - | - | - | - | | 0.3259 | 40 | 10.3171 | - | - | - | - | | 0.4073 | 50 | 8.2567 | - | - | - | - | | 0.4888 | 60 | 6.8566 | - | - | - | - | | 0.5703 | 70 | 6.8733 | - | - | - | - | | 0.6517 | 80 | 6.1625 | - | - | - | - | | 0.7332 | 90 | 5.1076 | - | - | - | - | | 0.8147 | 100 | 5.4369 | - | - | - | - | | 0.8961 | 110 | 4.8402 | - | - | - | - | | 0.9776 | 120 | 4.4237 | - | - | - | - | | 0.9939 | 122 | - | 0.6379 | 0.6338 | 0.6226 | 0.6020 | | 1.0652 | 130 | 3.4286 | - | - | - | - | | 1.1466 | 140 | 2.883 | - | - | - | - | | 1.2281 | 150 | 2.6902 | - | - | - | - | | 1.3096 | 160 | 2.7897 | - | - | - | - | | 1.3910 | 170 | 2.6433 | - | - | - | - | | 1.4725 | 180 | 2.4738 | - | - | - | - | | 1.5540 | 190 | 2.5929 | - | - | - | - | | 1.6354 | 200 | 2.564 | - | - | - | - | | 1.7169 | 210 | 2.4794 | - | - | - | - | | 1.7984 | 220 | 2.4917 | - | - | - | - | | 1.8798 | 230 | 2.109 | - | - | - | - | | 1.9613 | 240 | 2.1082 | - | - | - | - | | 1.9939 | 244 | - | 0.6909 | 0.6911 | 0.6793 | 0.6623 | | 2.0489 | 250 | 1.6165 | - | - | - | - | | 2.1303 | 260 | 1.3835 | - | - | - | - | | 2.2118 | 270 | 1.2062 | - | - | - | - | | 2.2933 | 280 | 1.1091 | - | - | - | - | | 2.3747 | 290 | 1.1475 | - | - | - | - | | 2.4562 | 300 | 1.3218 | - | - | - | - | | 2.5377 | 310 | 1.2644 | - | - | - | - | | 2.6191 | 320 | 1.1783 | - | - | - | - | | 2.7006 | 330 | 1.4143 | - | - | - | - | | 2.7821 | 340 | 1.3219 | - | - | - | - | | 2.8635 | 350 | 1.1191 | - | - | - | - | | 2.9450 | 360 | 1.0473 | - | - | - | - | | 2.9939 | 366 | - | 0.7231 | 0.7199 | 0.7115 | 0.6924 | | 3.0326 | 370 | 1.0302 | - | - | - | - | | 3.1141 | 380 | 1.0575 | - | - | - | - | | 3.1955 | 390 | 0.8955 | - | - | - | - | | 3.2770 | 400 | 0.9451 | - | - | - | - | | 3.3585 | 410 | 0.9191 | - | - | - | - | | 3.4399 | 420 | 0.8541 | - | - | - | - | | 3.5214 | 430 | 0.9939 | - | - | - | - | | 3.6029 | 440 | 0.9023 | - | - | - | - | | 3.6843 | 450 | 0.9905 | - | - | - | - | | 3.7658 | 460 | 0.932 | - | - | - | - | | 3.8473 | 470 | 0.7228 | - | - | - | - | | 3.9287 | 480 | 0.9572 | - | - | - | - | | **3.9939** | **488** | **-** | **0.7264** | **0.7217** | **0.715** | **0.6947** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.4.1 - Transformers: 4.49.0 - PyTorch: 2.6.0+cu124 - Accelerate: 1.2.1 - Datasets: 3.4.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"base_model": "rasyosef/roberta-base-amharic", "language": ["am"], "library_name": "sentence-transformers", "license": "apache-2.0", "metrics": ["cosine_accuracy@1", "cosine_accuracy@3", "cosine_accuracy@5", "cosine_accuracy@10", "cosine_precision@1", "cosine_precision@3", "cosine_precision@5", "cosine_precision@10", "cosine_recall@1", "cosine_recall@3", "cosine_recall@5", "cosine_recall@10", "cosine_ndcg@10", "cosine_mrr@10", "cosine_map@100"], "pipeline_tag": "sentence-similarity", "tags": ["sentence-transformers", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:62833", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss"], "widget": [{"source_sentence": "በናይጀሪያ 11ሚሊየን ህዝብ የከፋ የምግብ እጥረት እንደሚያጋጥማቸው ድርጅቱ አስጠነቀቀ", "sentences": ["በናይጀሪያ 11 ሚሊየን ህዝብ እጅግ የከፋ የምግብ እጥረት እንደሚያጋጥማቸዉ የዓለም የምግብ እና የእርሻ ድርጅት አስጠነቀቀ ፡፡ድርጅቱ የምርት ወቅት በሆነዉ ከሰኔ እስከ ነሐሴ ባሉት ጊዜያት በሰሜናዊ ናይጀሪያ የሚገኙ አካባቢዎች ለዚህ ችግር እንደሚጋለጡ ይጠበቃል ነው ያለው ።በዚህ ክፉኛ ሊጠቁ እንደሚችሉ ከሚገመቱት ቦታዎችም ቦኮ ሃራም የተመሠረተባት ቦርኖ 65 በመቶ የሚሆነዉ ርሃብ የሚያሰጋዉ ዜጋ የሚገኝባት ግዛት ናት ።ቦኮ ሃራም በፈጠረዉ ያለመረጋጋት ምክንያት 120 ሺ የሀገሪቱ ዜጎች አደገኛ ለሆነ የረሃብ አደጋ እንዲጋለጡ ማድረጉን ጨምሮ አመልክቷል ።የተባበሩት መንግስታት ድርጅቶች በበኩሉ እንደገለጸው ፤በዚህ ስፍራ ልጆች እየሞቱ ስለሆነ አፋጣኝ እርዳታ ካላገኙም በሚሊየን የሚገመቱት ይኸዉ ዕጣ ያሰጋቸዋል።ሙስና እና በመንግሥት እና በእርዳታ ድርጅቶች መካከል ያለዉ ዉዝግብም ችግሩን እያወሳሰበዉ መሆኑም ተገልጿል።ባለስልጣናት የአካባቢዉ መንግሥታት የእርዳታ እህሉን ይሰርቃሉ የሚለዉን ክስ እያጣሩ መሆኑን አሶሼየትድ ፕረስ ዘግቧል።የናይጀሪያ መንግሥት ለእርሻ የሚያደርገዉን ድጋፍ ከፍ ማደርጉን ቢገልጽም፤ ሀገሪቷ የምግብ እጥረት ያለባት መሆኗን ነው የተመለከተው ።", "የተባበሩት መንግሥታት ድርጅት ዋና ጸሐፊ አንቶንዮ ጉተሬዥ ትላንት በኒው ዮርክ ከኢትዮጵያ ፌዴራላዊ ዲሞክራሲያዊ ሪፖብሊክ ውጭ ጉዳይ ሚኒስትር ዶ/ር ወርቅነህ ገበየሁ ጋር ተገናኝተው መነጋገራቸውን የደርጅቱ ቃል አቀባይ አስታወቁ።ዋና ጸሐፊ ጉተሬዥ እና ውጭ ጉዳይ ሚኒስትር ወርቅነህ ገበየሁ በዚሁ በውይይታቸው በአሁኑ ወቅት በአፍሪካ ቀንድ እየተካሄዱ ስላሉ አዎንታዊ ለውጦችና በአካባቢው የቀሩትን ፈታኝ ችግሮች ማስወገድ በሚቻሉባቸው መንገዶች ላይ ሃሳብ ተለዋውጠዋል። በቅርቡ በኢትዮጵያና ኤርትራ መካከል የሰላም ሥምምነት መፈረሙን በደስታ እንደተቀበሉት ገልፀው ለአካባቢው ሰላምና መረጋጋት ጠቃሚ ነው ብለዋል።የተባበሩት መንግሥታት ድርጅት ዋና ጸሐፊ አንቶኒዮ ጉተሬዥ የዓለሙ ድርጅት ለእነዚህ በጎ ጥረቶችና ኢትዮጵያ በጂቡቲና ኤርትራ መካከል የሰላም ንግግር እንዲጀመር በማመቻቸቷ ሙሉ ድጋፍ እንደሚስጥ በድጋሚ አረጋግጠዋል።", "የኢትዮጵያ ከፍተኛ ሊግ ምድብ ለ የሁለተኛ የውድድር ዘመን አጋማሽ ጨዋታዎች ቅዳሜ ተደርገው ሀላባ ከተማ መሪነቱን ሲያጠናክር ደቡብ ፖሊስ እና ጅማ አባ ቡና ደረጃቸውን ያሻሻሉበትን ድል አስመዝግበዋል።ጅማ አባ ቡና 3-0 ቤንች ማጂ ቡና(በቴዎድሮስ ታደሰ)ጅማ ስታድየም ላይ ቤንች ማጂ ቡናን ያስተናገደው ጅማ አባቡናን 3-0 በማሸነፍ  ደረጃውን አሻሽሏል። ጨዋታው ሳቢ ያልነበረ ሲሆን ቤንች ማጂዎች ሙሉ ለሙሉ መከላከል እና ጉልበት ላይ ያመዘነ ጨዋታን ተከትለው ለመጫወት ተገደዋል። አባቡናዎች ምንም እንኳን የመጀመርያውን አጋማሽ በተመስገን ደረሰ 34ኛው ደቂቃ ባስቆጠራት ጎል በመምራት ቢያጠናቅቁም በእንቅስቃሴ ረገድ ባልተሳኩ ቅብብሎች እና ያልተደራጀ የጨዋታ እንቅስቃሴ እንዲሁም የቤንች ማጂን የተከላካይ መስመር ማለፍ ሲቸገሩ ተመልክተናል።\nከእረፍት መልስ በይበልጥ በሽኩቻዎች ታጅቦ ቤንች ማጂ ተጫዋቾች እያንዳንዱን የዳኛ ውሳኔ ሲቃወሙ እና አላስፈላጊ ንትርክ ውስጥ ሲገቡ ተስተውለዋል። በ50ኛው ደቂቃ ብዙዓየሁ እንደሻው አባቡናን መሪነት ወደ 2-0 መሪነት ከፍ ያደረገች ግብ ካስቆጠረ በኋላ ከመጀመርያው አጋማሽ አንፃር አባቡናዎች ወደግብ ቶሎ ቶሎ በመድረስና የኳስ ቁጥጥር ከመጀመርያው አጋማሽ በተሻለ ሁኔታ መንቀሳቀስ ችለዋል። በ68ኛው ደቂቃ ብዙአየሁ እንደሻው ፍፁም ቅጣት ምት ክልል ውስጥ መጠለፉን ተከትሎ የመሀል ዳኛው የሰጡትን ፍፁም ቅጣት ምት በመቃወም ከዳኛው ጋር ግብግብ የገጠሙት የቤንች ማጂ ተጫዋቾች ጌታሁን ገላዬ እና አበራ አየለ ከሜዳ በቀይ ካርድ እንዲወጡ ተደርጓል። በሁኔታው ጨዋታው ለ10 ደቂቃዎች ተቋርጦ ከቀጠለ በኋላ የተሰጠውን ፍፁም ቅጣት ምት ብዙአየሁ አስቆጥሮ አባቡናን 3-0 በሆነ ውጤት ማሸነፍ ያስቻለውን ውጤት አስመዝግቧል።ከጨዋታው መጠናቀቅ በኋላ ቤንች ማጂ የቡድን አባላት ሜዳ በመግባት የእለቱ አልቢትሮች ላይ ጥቃት ለመፈፀም ቢሞክሩም በእለቱ በነበሩበት የፀጥታ አካላት ርብርብ አርቢትሮች ላይ ጉዳት ሳይደርስ የቀረ ሲሆን የግብ ጠባቂው አሰልጣኝ ታፈሰ አጃ ቀይ ካርድ ተመልክቷል። ከሁሉም በላይ አስገራሚው ግብ ጠባቂው አብዱልሃፊዝ መኪ ከዳኛው አልፍ ተርፎ ፀጥታ በማስከበርና ለዳኞች ከለላ ለሰጠው የኮማንድ ፖስት አባል የሆነው የፌዴራል ፖሊስ ላይ ጥቃት በመሰንዘሩ ነገሮች አቅጣጫዎችን በመቀየር ጨዋታው ከተጠናቀቀ በኃላ ለረጅም ደቂቃዎች በፀጥታ አካላት እና በእለቱ የጨዋታ ኮሚሽነር ዩሀንስ ስለሺ አሸማጋይነት ከቆዩ በኃላ በኮሚሽነሩ ጥረትና የፀጥታ አስከባሪ አካላት ሁኔታውን በማብረዳቸው በህግ ቁጥጥር ስር ሳይውል ቀርቷል፡፡\nሌሎች ጨዋታዎች(በአምሀ ተስፋዬ)ሀላባ ላይ በ10:00 ድሬዳዋ ፖሊስን ያስተናገደው ሀላባ ከተማ በ23ኛው ደቂቃ ስንታየሁ መንግስቱ በፍፁም ቅጣት ምት ባስቆጠረው ጎል 1-0 አሸንፏል። በዚህም ውጤት መሰረት ሀላባ ከተማ በ31 ነጥቦች የምድብ ለ መሪነትን ማጠናከር ችሏል።\nደቡብ ፖሊስ በሜዳው በግብ መንበሽበሹን ቀጥሎ ከመቂ ከተማ ጋር ባደረገው ጨዋታ 4-0 በሆነ ውጤት ማሸነፍ ችሏል። በ10ኛው ደቂቃ ብሩክ ኤልያስ ቀዳሚውን ጎል ሲያስቆጥር በ18ኛው ደቂቃ አበባየው ዮሐንስ ሁለተኛውን ግብ አስቆጥሮ ወደ ዕረፍት አምርተዋል። በ53ኛው ደቂቃ ኤሪክ ሙራንዳ በፍፁም ቅጣት ምት 3ኛውን ሲያክል በ82ኛው ደቂቃ አራተኛ ግብ አስቆጥረዋል። በዚህ ውጤት መሰረት ደቡብ ፖሊስ ደረጃውን ወደ ሁለተኛ ከፍ ማድረግ ችሏል።\nቦንጋ ላይ ካፋ ቡና ሻሸመኔ ከተማን አስተናግዶ በሀቁ ምንይሁን ገዛኸኝ የ5ኛው ደቂቃ ብቸኛ ግብ 1-0 ማሸነፍ ችሎል። ነገሌ ላይ ነገሌ ከተማ ቡታጅራ ከተማን 1-0 ሲያሸንፍ ድሬዳዋ ላይ ረፋድ 04:00 ናሽናል ሴሜንት በሳሙኤል ዘሪሁን ጎሎች ወልቂጤ ከተማን 2-1 መርታት ችሏል። በደረጃ ሰንጠረዡ ሁለተኛ ላይ የነበረው ዲላ ከተማ ደግሞ ወደ ዱራሜ ተጎዞ ከሀምበሪቾ ጋር ያለጎል አቻ በመለያየት ከደረጃው ለመንሸራተት ተገዷል።"]}, {"source_sentence": "በኮሮና ቫይረስ ሳቢያ በአፍሪካ እስከ 190 ሺህ ሰዎች በመጀመሪያው ዓመት ህይዎታቸው ሊያልፍ ይችላል – የዓለም ጤና ድርጅት", "sentences": ["አዲስ አበባ ፣ ሚያዚያ 30 ፣ 2012 (ኤፍ ቢ ሲ) በአፍሪካ ከ83 ሺህ እስከ 190 ሺህ ሰዎች በኮሮና ቫይረስ ሳቢያ በመጀመሪያው ዓመት ብቻ ህይዎታቸው ሊያልፍ እንደሚችል የዓለም ጤና ድርጅት አስጠነቀቀ።ድርጅቱ ትናንት ባወጣው መግለጫ በአፍሪካ ሃገራት ቫይረሱን ለመከላከል የወጡ መመሪያና ህጎች ተግባራዊ እየተደረጉ አለመሆኑን እና እየተወሰዱ ያሉ እርምጃዎችም በቂ አለመሆናቸውን አስታውቋል።ቫይረሱ ወደ አህጉሪቱ ዘግይቶ ቢገባም ለበርካታ ጊዜ የሚቆይ ወረርሽኝ ሊሆን ይችላልም ነው ያለው።በተጨማሪም ቫይረሱን በፍጥነት በቁጥጥር ስር ማዋል ካልተቻለ ከ29 እስከ 44 ሚሊየን ሰዎችን ሊይዝ እንደሚችልም ነው ያስጠነቀቀው።የአሁኑ የድርጅቱ መረጃ በ47 የአፍሪካ ሀገራት የሰራውን ጥናት መሰረት አድርጎ የወጣ ነው ተብሏል።ከሃገራቱ መካከል ደቡብ አፍሪካ፣ አልጄሪያ እና ካሜሩን በቫይረሱ ክፉኛ ሊጠቁ የሚችሉ ሃገራት ይሆናሉ በሚልም ስጋቱን አስቀምጧል።በጥናቱ ግብጽ፣ ሊቢያ፣ ቱኒዚያ፣ ሞሮኮ፣ ኤርትራ፣ ሱዳን፣ ሶማሊያ እና ጂቡቲ አልተካተቱም።በአፍሪካ በኮሮና ቫይረስ ሳቢያ በ47 ሃገራት ከ35 ሺህ በላይ ሰዎች ሲያዙ፥ ከ1 ሺህ 200 በላይ ደግሞ ሕይወታቸው ማለፉን ድርጅቱ ገልጿል።ምንጭ፦ ቢቢሲየዜና ሰዓት ሳይጠብቁ የፋና ብሮድካስቲንግ ኮርፖሬትን ትኩስ እና ሰበር ዜናዎችን በፍጥነት በአጭር የፅሁፍ መልዕክት መልክ በስልክዎ ላይ እንዲደርስዎ ወደ 8111 OK ብለው ይላኩ።", "በወልቂጤ ከተማ ከሳምንታት በፊት ውሉን ለማራዘም ተስማምቶ የነበረው የመስመር አጥቂው ጫላ ተሺታ አሁን ደግሞ ለቀድሞ ክለቡ ሲዳማ ቡና ለመፈረም ተስማማ፡፡የቀድሞው የሻሸመኔ እና ሰበታ ከተማ ተጫዋች ለኢትዮጵያ ከ17 ዓመት በታች ብሔራዊ ቡድን ተሰልፎ ከተጫወተ በኃላ ነበር 2010 ላይ ወደ ሲዳማ ቡና ተቀላቅሎ መጫወት የጀመረው። ተጫዋቹ በውሰት ለአዳማ ከተማም በመሄድ የተጫወተ ሲሆን በ2011 በሲዳማ ቤት ባሳየው መልካም እንቅስቃሴ መነሻነት ዘንድሮ ወደ ወልቂጤ ሄዶ ከክለቡ ጋር መልካም የውድድር ዓመትን ሊጉ እስከተቋረጠበት ጊዜ ድረስ ያሳየ ሲሆን ውሉ በመጠናቀቁ ከሳምንታት በፊት በወልቂጤ ለመቀጠል ቢስማማም በድጋሚ ለቀድሞው ክለቡ ሲዳማ የሁለት ዓመት ውል ለመፈረም ተስማምቷል፡፡", "ማክሰኞ መጋቢት 15 ቀን 2012 ዓ.ም. ማለዳ ከማላዊ ወደ ሞዛምቢክ ኢትዮጵያዊያንን ጭኖ ሲጓዝ በነበረ የጭነት ተሽከርካሪ ኮንቴይነር ውስጥ፣ 64 ኢትዮጵያዊያን ሞተው መገኘታቸውን የሞዛምቢክ ባለሥልጣናት አስታወቁ፡፡ ሰነድ አልባ ስደተኞቹ ወደ ደቡብ አፍሪካ ለመሸጋገር ጉዞ የጀመሩ እንደሆኑ ታውቋል፡፡በስደት ወደ ደቡብ አፍሪካ ለመሄድ የጭነት ተሽከርካሪውን ተሳፍረው የነበሩት 78 ኢትዮጵያውያን እንደነበሩ፣ 14 ኢትዮጵያውያን ግን በሕይወት መገኘታቻው ተሰምቷል፡፡ ለ64 ኢትዮጵያውያን ሕይወት ማለፍ ምክንያቱ በአየር ማጣት መታፈን ሊሆን እንደሚችል ተገልጿል፡፡ በሞዛምቢክ ሰሜናዊ ምዕራብ ቴቴ በተባለ ሥፍራ በሚገኝ ሙሳካና በተባለ የክብደት መመዘኛ ጣቢያ ተሽከርካሪው በኢሚግሬሽን ሠራተኞች እንዲቆም ተደርጎ ፍተሻ ሲካሄድ፣ 64 ሟቾች በሕይወት ከተረፉት ጋር መገኘታቸውን አዣንስ ፍራንስ ፕሬስ የሆስፒታል ምንጭ ጠቅሶ ዘግቧል፡፡የሞዛምቢክ ሰሜን ምዕራብ ግዛት ባለሥልጣናት ከጭነት ተሽከርካሪው ላይ አስከሬናቸው የተገኙ ኢትዮጵያውያን፣ ሕይወታቸው በምን ምክንያት እንዳለፈ ምርመራ እየተደረገ መሆኑን መግለጻቸው ታውቋል። በሌላ በኩል ኢትዮጵያውያኑ ሕይወታቸው ያለፈው በኮንቴይነር ውስጥ ታፍነው ሊሆን እንደሚችል በሞዛምቢክ ባለሥልጣናት የተገለጸ ሲሆን፣ የሞዛምቢክ ብሔራዊ ኢሚግሬሽን አገልግሎት ቃል አቀባይ አሜሊያ ደሪዬሮ ሟቾቹን አሳፍሮ የነበረው የጭነት ተሽከርካሪ ሾፌር እንዲቆም ሲጠየቅ ፈቃደኛ እንዳልነበረ መናገራቸውን ቢቢሲ ዘግቧል።እንደ ቃል አቀባይዋ ማብራሪያ የኢሚግሬሽን ሠራተኞች በተሽከርካሪው ውስጥ ድምፅ በመስማታቸው፣ ስደተኞች በውስጡ ሊኖሩ ይችላሉ የሚል ጥርጣሬ አድሮባቸው እንዲቆም ሲያደርጉ ሟቾችን አግኝተዋል።ወደ ደቡብ አፍሪካ በስደት የሚጓዙ ሰነድ አልባ ስደተኛ ኢትዮጵያዊያን ኬንያን፣ ታንዛኒያን፣ ማላዊና ሞዛምቢክን ለመሸጋገሪያነት የሚጠቀሙባቸው እንደሆነ፣ የዛምቢያ ሰሜን ምዕራብ ግዛትም ዋናው የሰነድ አልባ ስደተኞች መተላለፊያ መሆኑን የተለያዩ ሚዲያዎች ዘገባዎች ያመለክታሉ፡፡ በሕይወት የተረፉት 14 ኢትዮጵያዊያን የኮሮና ቫይረስ ምርመራ እንደ ተደረገላቸው ቃል አቀባይዋ መናገራቸውን ቢቢሲ በዘገባው አካቷል።"]}, {"source_sentence": "የአውሮፓና አፍሪካ መሪዎች የሊቢያን የባሪያ ንግድ በፍጥነት ለማስቆም ተስማሙ", "sentences": ["በትናንትናው ዕለት የትግራይ ቴሌቪዝንና ድምፂ ወያነ ቴሌቪዥን ጣብያዎች የሳተላይት ስርጭት መቋረጡ ታውቋል።የሁለቱ መገናኛ ብዙሃን ጣብያዎች ሥራ አስኪያጆች ጉዳዩን ለቢቢሲ ያረጋገጡ ሲሆን የትግራይ ቴሌቪዥን ጣቢያ ሥራ አስኪያጅ የሆኑት አቶ ተሻለ በቀለ የቴሌቪዥኑ ጣብያ የሳተላይት ስርጭት እንዲቋረጥ የተደረገው በኢትዮጵያ መንግሥት ነው ሲሉ ለቢቢሲ ተናግረዋል።\"መንግሥት የሳተላይት ስርጭቱ እንዲቋረጥ አድርጓል። ስለተፈጠረው ነገር ለማወቅ ሳተላይቱን ወደ አከራየን ድርጅት ስንደውል የኢትዮጵያ መንግሥትና የፈረንሳይ መንግሥት ተነጋግረው በሰጡት ትዕዛዝ መሰረት አቋርጠነዋል የሚል ምላሽ ነው የሰጡን፤ ምክንያቱን ስንጠይቅም የፈረንሳይ መንግሥት ያለውን መፈፀም አለብን ነው ያሉት።\" በጉዳዩ ላይ የኢትዮጵያ ብሮድካስት ባለስልጣን ምክትል ሥራ አስኪያጅ አቶ ወንድወሰን አንዷለም ለቢቢሲ በሰጡት ቃል \"እስካሁን ባለኝ መረጃ የኢትዮጵያ ብሮድካስት ባለስልጣን ሚዲያዎችን የመዝጋት እርምጃ አልወሰደም \"ብለዋል።የትግራይ ቴሌቪዥን ሥራ አስኪያጅ ስርጭታቸው እስከ መቼ ድረስ ተቋርጦ እንደሚቀጥል ያውቁ እንደሆን ተጠይቀው ይህንን ጥያቄ ስርጭቱን ላቋረጠው ድርጅት ማቅረባቸውን ይገልፃሉ።እነርሱም እስከመቼ ድረስ እንደተቋረጠ እንደማያውቁ እና \"ከኢትዮጵያ መንግሥት ጋር ተነጋገሩ\" ማለታቸውን ገልፀዋል።ሥራ አስኪያጁ አቶ ተሻለ አክለውም ወደ ኢትዮጵያ ብሮድካስት ባለስልጣን መደወላቸውንና ስልካቸውን የሚመልስላቸው አለማግኘታቸውን ተናግረዋል።አቶ ተሻለ ለቢቢሲ ጨምረው እንደተናገሩት መቋረጡን የሚገልጽ ደብዳቤ ከድርጅቱ አለመጻፉን ለቢቢሲ አረጋግጠዋል። በትግራይ ክልል የሚገኘው የቢቢሲ ሪፖርተር የሁለቱ ቴሌቪዥን ጣቢያዎች ስርጭት እየተላለፈ አለመሆኑን አረጋግጧል።አቶ አበበ አስገዶም፣ የድምፂ ወያነ ቴሌቪዥን ጣብያ ሥራ አስኪያጅ ለሪፖርተራችን እንዳረጋገጡት፣ በበኩላቸው ስርጭታቸው እንደተቋረጠ ፈረንሳይ አገር ወደ ሚገኘው የሳተላይት አገልግሎት አቅራቢ ድርጅት መደወላቸውንና የቴክኒክ ክፍል ኃላፊው የኢትዮጵያ መንግሥት እንዲቋረጥ ማድረጉን እንደነገራቸው ገልፀዋል።ባለፈው ሳምንት ድምፂ ወያነ በአዲስ አበባ የሚገኘው ቢሮው አቃቤ ሕግ በሚያደርግበት ምርመራ የተነሳ ፍተሻ እንደተደረገለት መዘገቡ ይታወሳል።የብሮድካስት ባለስልጣን ምክትል ሥራ አስኪያጅ አቶ ወንድወሰን እነዚህ ሁለት ድርጅቶች የእርምት እርምጃ እንዲወስዱ ጥብቅ ማስጠንቀቂያ መጻፋቸውን አስታውሰዋል።ቢሆንም ግን የጣቢያዎቹ ስርጭት እንዲቋረጥ ባለስልጣኑ የወሰደው ምንም አይነት እርምጃ እንደሌለ ለቢቢሲ ገልጸዋል። ", "የአውሮፓ እና አፍሪካ መሪወች የሊቢያ የባሪያ ንግድን አስመልክቶ በአይቪሪኮስት ባካሄዱት ስብሰባ ስደተኞችን ከሊቢያ በፍጥነት  ለማስቆም  በሚያስችላቸው መንገድ ላይ ከስምምነት ላይ  ደረሱ ፡፡የአውሮፓ ህብረት ፣የአፍሪካ ህብረት እና የተባበሩት መንግስታት ድርጅት የሚታወቁ ህገወጥ የሰዎች አዘዋዋሪዎች ንብረት እንዳይንቀሳቀስ እንዲሁም ማንኛውም የፋይናንስ ምንጫቸው ሙሉ በሙሉ እንዲቋረጥ ውሳኔ አሳልፈዋል፡፡በዚህ ዘመን የባሪያ ንግድ በሊቢያ ይካሄዳል ሲባል የሰማ የዓለም ህዝብ ቁጣውን ገልጿል፡፡ ለጉዳዩ ፈጣን ምላሽ በመሥጠት ችግሩን ለመቅረፍ የአውሮፓ እና አፍሪካ ሀገራት መሪዎች በ ኮቲዲቫር ባደረጉት ስብሰባ ስደተኞቹ ከሊቢያ ባፋጣኝ እንዲወጡ ይደረጋል ብለዋል፡፡በዚህም ስምምነት የአውሮፓ ህብረት ፣የአፍሪካ ህብረት እና የተባበሩት መንግስታት ድርጅት በጋራ የአስቸኳይ እቅድ በማውጣት የህገወጥ አዘዋዋሪዎችን መረብ በመበጣጠስ አደገኛ የሰብአዊ ቀውስ ላይ ያሉ በሊቢያ የሚገኙ ስደተኞችን የመታደግ ተልዕኮ አንግበዋል ተብሏል፡፡የአውሮፓዊያን ህብረት ምክር ቤት ፕሬዝዳንት ዶናልድ ቱስክ የባሪያ ንግዱ ሪፖርት በስብሰባዎች ወቅት ያሰማን መረጃዎች የሚያስደነግጡ ነበሩ በማለት ለችግሩ እልባት ለማምጣት የአፍሪካ እና አውሮፓ መንግስታት ንቁ በሆነ መልኩ በጋራ መስራት ይጠበቅባቸዋል ሲሉ መልክታቸውን አስተላልፈዋል፡፡የፈረንሳዩ ፕሬዝዳንት ኢማኑኤል ማክሮን ስደተኞችን ለመታደግ በሚቋቋመው ግብረ ኃይል የአፍሪካ እና አውሮፓ ፖሊሶች ተሳታፊ ይሆናሉ ብለዋል፡፡ፕሬዝዳንት ኢማኑኤል ማክሮን ስደተኞችን በፍጥነት ለማውጣት በሚደረገው ተልዕኮ በአጭር ጊዜ ውስጥ ህገወጥ አዘዋዋሪዎች በቁጥጥር ሥር ለማዋል፣ የባሪያ ሽያጭ የሚካሄድበት ድብቅ ትስስራቸውን ማቋረጥ እንዲሁም በተለዩ ባንኮች የሚያደርጉትን የባንክ ገንዘብ ዝውውር ማስቀረት ቅድሚያ ከሚሰሩ ጉዳዮች መካከል መሆናቸውን አብራርተዋል፡፡በአምስተኛው የአውሮፓ ህበረት እና አፍሪካ ህበረት የአቢጃን ስብሰባ ላይ የቀረበው እቅድ በዋናነት ቻድ ኒጀር  ሞሮኮ  ኮንጎ እና ሊቢያ ያረቀቁት ሲሆን  የፈረንሳይም እጅ አለበት፡፡አውሮፓ ለመግባት በሚያደርጉት ጥረት ሊቢያ ላይ ለባሪያ ንግዱ እየተጋለጡ ያሉትም አብዛኛው ከምዕራብ አፍሪካ ሀገራት የሚነሱ ስደተኞች ቢሆኑም መነሻቸውን ከሌሎች የአፍሪካ ቀጠናዎች ያደረጉም ቁጥራቸው በቀላል የሚገመት  እንዳልሆነ  ዘገባዎች ያመላክታሉ፡፡እስካሁን ስደተኞችን ለመመለስ በተሠራው የሀገራቱ ሥራ ናይጄሪያ ከ240 በላይ ዜጎቿን ከሊቢያ ስታስወጣ ጋና 100 አይቬሪኮስት ደግሞ ከ155 በላይ ዜጎቿን  ከሊቢያው ከባድ ሰብአዊ ቀውስ ታድገዋል ያለው ሮይተርስ ነው፡፡    ", "ሃና ጋዜጠኛ ናት። የቴሌቪዥን ሪፖርተር ሆና ሠርታለች። ነገር ግን ከአንድ ዓመት ከግማሽ በፊት የራሷን መንገድ መከተል መረጠች። ከቴሌቪዥን ሪፖርተርነት ራሷን ካገለለች ወዲህ በኅብረተሰብ አገልግሎት ሥራ ላይ ተሰማርታ ትገኛለች። \n\nከቅርብ ጊዜ ወዲህ ደግሞ ጥቁር አሜሪካውያን ላይ የሚደርሰውን ጭቆና በመቃወም የመብት ተሟጋችነት መድረክን ተቀላቅላለች። ከዚያም አልፎ ለእናትና ለአባቷ አገራት ኢትዮጵያና ኤርትራ የተለያዩ የእርዳታ ሥራዎችን እንደምትሰራ ትናገራለች። በአሁኑ ወቅት በዩትዩብና ፌስቡክ ገፆቿ ሥራዎቿን ታስተዋውቃለች።\n\nሃና ከጥቂት ሳምንታት በፊት በኮሮናቫይረስ የቅርብ ዘመዷን እንዳጣች በትዊተር ገጿ ላይ አስፍራ ነበር። ከዚህም አልፎ እሷም ተመርምራ ኮቪድ-19 እንዳለባት ማወቋን በይፋ በመናገር ሌሎች በእሷ ዕድሜ ያሉ ወጣቶች ራሳቸውን እንዲጠብቁ በተደጋጋሚ መክራለች። \n\nለመሆኑ ሃና ኮሮናቫይረስ እንዴት ሊያገኛት ቻለ? \n\nየበሽታውምልክት\n\nየበሽታው ምልክት የጀመረኝ ሰኔ 23 [ጁን 30] ገደማ ነው። ከዚያ በፊት ባሉት ሳምንታት የተለያዩ የተቃውሞ ሰልፎች ላይ ስሳተፍ ነበር። ነገር ግን በዚህ ወቅት ምንም ዓይነት የቫይረሱ ምልክት አልታየብኝም። ሁሌም የአፍና የአፍንጫ መሸፈኛ ጭምብል እጠቀም ነበር። ሳኒታይዘርም ይዤ ነበር የምንቀሳቀሰው። \n\nምልክቱ መጀመሪያ ሲጀምረኝ መካከለኛ የሚባል ነበር። ከዚያ ግን ወዲያው በጣም እየከፋ መጣ። የመጀመሪያው ምልክት ራስ ምታት ነበር። በጣም ከባድ ራስ ምታት። ከዚያ ያቅለሸልሸኝ ጀመር። ጥርሴን ለመፋቅ ብሩሽ ስጠቀም ይሁን አሊያም ምግብ ልመገብ ስል ወደላይ ይለኛል ግን አያስመልሰኝም። ይህ ሁሉ ስሜት የተሰማኝ በአንድ ሌሊት ነው። \n\nከዚያ በኋላ ባሉት ቀናት የተለያዩ ስሜቶችን አስተናግጃለሁ። ሌላኛው ስሜት ደግሞ መፍዘዝ ነበር፤ በጣም ይደክመኝም ነበር። የምግብ ፍላጎቴም እጅጉን ቀንሶ ነበር። አስታውሳለሁ ቁጭ ብዬ ምግብ እየላሁ ከትንሽ ጉርሻ በኋላ የምግቡ ጣዕም እየጠፋብኝ መጣ።\n\nከእነዚህ ሁሉ ምልክቶች ግን የከፋ የነበረው ድንገት ሌሊት ላይ የጀመረኝ ምልክት ነው። ይህም የትንፋሽ ማጠር ነው። በጣም ያስደነገጠኝ እሱ ነበር። \n\nይህን ጊዜ ነው ወደ ሕክምና ተቋም ሄጄ የተመረመርኩት። \n\nከዚያ በፊት ግን የተለያዩ ተቃውሞዎች ላይ ተሳትፌ ስለነበር ምልክቱ ባይኖረኝም ጥቂት ጊዜያት ተመርምሬ ነበር። በዚህኛው ዙር ግን ከተመርመርኩ በኋላ ራሴን አግልዬ ተቀመጥኩ። ይህንን ያደረግኩት ከሰኔ 24 ጀምሮ ነው። \n\nውጤትጥበቃ\n\nከተመረመርኩ በኋላ ያለው ጊዜ በጣም አስጨናቂ ነበር። በተለይ ውጤቱ መጠበቅ እጅግ ግራ አጋቢ ስሜት ነበረው። ምንም እንኳ በሽታው እንደሚኖርብኝ ብጠረጥርም፤ ቢኖርብኝስ የሚል ጥያቄ ሃሳብ ደጋግሞ ይመጣብኛል። ከየት ይሆን ያገኘሁት? ለሰው አስተላልፌውስ ቢሆን? አለብሽ ከተባልኩ ምን እሆናለሁ? ብቻ የተለያዩ ሃሳቦች ወደ አእምሮዬ ይመጡ ነበር። \n\nየበሽታው ምልክት ሳይታይብኝ የተመረመርኩ ጊዜ ውጤት የመጣልኝ ወዲያው ነበር። ነገር ግን በሁለተኛው ዙር ይመስለኛል ከአምስት ቀናት በኋላ ነው ውጤቴን የሰማሁት። \n\nበጆርጂያ ግዛት ቫይረሱ የሚገኝባቸው ሰዎች ቁጥር እየጨመረ በመምጣቱ ውጤት ይፋ የሚሆንበት ቀንም እየጨመረ መጥቶ ነበር። \n\nበስተመጨረሻ የተመረመርኩ ጊዜ ውጤቴን በፅሑፍ መልዕክት የነገሩኝ ከዘጠኝ ቀናት በኋላ ነው። ደውለው ውጤትሽ 'ፖዘቲቭ' ነው እና ራስሽይን አግልይ አሉኝ። እንግዲህ ይሄ የሆነው እኔ ራሴን አግልዬ ከቆየሁ በኋላ ነው።\n\nቫይረሱ ሊይዘኝ ይችላል ብለሽ አስበሽ ታውቂያለሽ? ብባል፤ መልሴ \"አዎ\" ነው። ምክንያቱም በየትኛውም ጊዜ ከቤቴ ከወጣሁ ሊይዘኝ እንደሚችል አስባለሁ። \n\nእንዲያውም ወረርሽኙ የገባ ሰሞን ለሦስት... "]}, {"source_sentence": "የእሁዱ የፋሲል ከነማ ጨዋታ የቴሌቪዥን ሽፋን ያገኛል", "sentences": ["አዲስ አበባ ፣ ህዳር 12 ፣2013 (ኤፍ.ቢ.ሲ) በሚድሮክ ግሩፕ የተገነባው ባለ 25 ፎቅ ህንጻ ስራ ጀምረየአዲስ አበባ ምክትል ከንቲባ ወይዘሮ አዳነች አቤቤ በማህበራዊ የትስስር ገጻቸው ላይ÷በሚድሮክ ግሩፕ በከተማችን ውብ ሆኖ ተገንብቶ ለ13 አመታት ያለ ስራ ቆሞ የነበረውን ባለ 25 ፎቅ ሚና ህንጻን ዛሬ ስራ በማስጀመራችን ደስ ብሎኛል ብለዋል።በሚና ህንጻ አዲስ የተከፈተውን የተለያዩ የሃገራችንን ምርቶች በአንድ ቦታ ለሸማቾች እንዲቀርብ እየሰራ ያለውን ኩዊንስ ሱፐር ማርኬትንም መርቀናል ነው ያሉት።ከንቲባዋ አያይዘውም የእንደዚህ አይነት የዘመናዊ የችርቻሮ አውታር መብዛትና መስፋፋት የነዋሪያችን የገበያ ፍላጎት በማሟላት በአምራችና ሸማች መሃከል ያለውን የግብይት ሰንሰለት ያሳጥራል ሲሉ ገልጸዋል።ይህም የኑሮ ውድነት እና የዋጋ ንረትን በመቀነስ እንዲሁም የስራ እድልን በመፍጠር ረገድ ትልቅ ሚና አለውም ነው ያሉት።በጦር ሃይሎች አካባቢ የተከፈተውን ተመሳሳይ የገበያ ማዕከል ከወር በፊት ጎብኝተናል በሌሎች አካባቢም እንዲከፈቱ ባቀረብነው ጥያቄ መሰረት ተግባራዊ ምላሽ ስለሰጡ የሚድሮክ ግሩፕ አመራሮችን ከልብ አመሰግናለሁ ብለዋል።አሁንም እንዲህ አይነት የህዝቡን ኑሮ መደጎም የሚችሉ ኢንቨስትመንቶችን እናበረታታለንም ነው ያሉት።", "ግብፅ ወደ ናይል ትብብር ማዕቀፍ ለመቀላቀል ያቀረበችውን ጥያቄ የትብብር ማዕቀፍ አባል ሃገራት የሚኒስትሮች ምክር ቤት ውድቅ ማድረጉ የውሃ መስኖና ኤሌክትሪክ ሚኒስትር አስታወቀ ።ሚኒስትሩ ዶክተር ኢንጂነር ስለሺ ጌታሁን እንደገለጹትበመጋቢት ወር በዩጋንዳ ኢንተቤ በተደረገው የሚኒስትሮች ጉባኤ ግብፅ ወደ ትብብር ማዕቀፉ ለመመለስ ያቀረበችው ጥያቄ ውድቅ ሆኗል።የውሃ መስኖና ኤሌክትሪክ ሚኒስትሩ ዶክተር ኢንጂነር ስለሺ ጌታሁን፤ ግብፅ በ1959 የቅኝ ግዛት ዘመን ስምምነት መሰረት የውሃ አጠቃቀም ተግባራዊ ሊደረግ ይገባል የሚል ሀሳብ ይዛ መቅረቧ ጥያቄው ውድቅ እንዲሆን እንዳደረገው ነው ያስታወቁት።የግብጽ ሃሳብ ኢትዮጵያ እንደሃገር የማትቀበለውና የትብብር ማዕቀፉ የቆመላቸውን ምሰሶዎች የሚያፈርስ መሆኑንም ሚኒስትሩ አስገንዝበዋል።ኢትዮጵያን ጨምሮ ከተፋሰሱ ሀብት ያልተጠቀሙ ሃገራትን ተጠቃሚ በሚያደርግ መልኩ የትብብር ማዕቀፉ ሲዘጋጅ እንደ ሃገር የተደረገው ክርክርም ይህን ለማስቀረት ያለመ እንደነበርም አንስተዋል።በታላቁ ህዳሴ ግድብ የውሃ አያያዝ፣ አለቃቀቅና ማህበራዊ ተፅዕኖን አስመልክቶ ቀጣይ ጥናት እንዲያካሂዱ የተመረጡት ሁለቱ የፈረንሳይ ኩባንያዎችም፤ ጥናቱን በምን መልኩ ለማካሄድ እንደተዘጋጁ ለሶስቱ ሃገራት ሪፖርታቸውን አቅርበው ሃገራቱ ምላሻቸውን ለኩባንያዎቹ ማቅረባቸውን ሚኒስትሩ ገልጸዋል።ኢትዮጵያም በጥናቱ ከግድቡ አሉታዊ ተፅዕኖዎች ባለፈ ያለውን አወንታዊ ተፅዕኖና ጠቀሜታ በጥናቱ እንዲካተት ሃሳቧን አቅርባለችም ነው ያሉት።ባለፈው ወር በግብፅ፣ ትናንት ደግሞ በአዲስ አበባ ሶስቱ ሃገራት በጉዳዩ ዙሪያ ውይይት ካደረጉ በኋላ ስምምነት በተደረገባቸው ጉዳዮች ላይ ኩባንያዎቹ ጥናት ማካሄድ ጀምረዋል።የናይል ተፋሰስ ትብብር ማዕቀፍ ስምምነት የተፈጥሮ ሀብትን በጋራና በፍትሃዊነት ለመጠቀም ኢትዮጵያ፣ ዲሞክራቲክ ሪፐብሊክ ኮንጎ፣ ዩጋንዳ፣ ታንዛኒያ፣ ሩዋንዳ፣ ብሩንዲ፣ ኬኒያ፣ ሱዳንና ደቡብ ሱዳን የተስማሙበት እንደሆነም አብራርተዋል ።ኢትዮጵያን ጨምሮ አምስቱ አባል ሃገራት ስምምነቱን በምክር ቤቶቻቸው ሲያፅድቁ ሌሎች አባል ሃገራት በሂደት ላይ ይገኛሉ።የትብብር ማዕቀፉን አንቀጾች ባለመቀበል ግብፅ ከትብብሩ ብትርቅም ባለፉት ዘጠኝ ዓመታት የትብብሩ አንቀጾች እየተቀበለች መምጣቷን የውሃ መስኖና ኤሌክትሪክ ጠቅሰዋል።ባለፉት ጥቂት ወራት ግብፅ ወደ ናይል ትብብር ማዕቀፍ ለመመለስ ጥያቄ አቅርባም ከአባል ሃገራቱ በተዋቀረው የሚኒስትሮች ምክር ቤት የተመረጡ የሱዳን፣ ሩዋንዳና ዩጋንዳ ሚኒስትሮች ጉዳዩን ሲመረምሩ ቆይተዋል ብለዋል ።በሁለቱ ውይይቶች ስምምነት ባልተደረሰባቸው ጉዳዮች ደግሞ በቀጣይ በካርቱም የሶስትዮሹ ውይይት የሚቀጥል ይሆናል።ሚኒስትሩ ከግድቡ ግንባታ ጋር ተያይዞ የታላቁ ህዳሴ ግድብ ግንባታ አሁን ላይ 58 ነጥብ 4 በመቶ ተጠናቋል-(ኤፍ ቢ ሲ) ። ", "በካፍ ኮንፌዴሬሽን ዋንጫ ፋሲል ከነማ ከታንዛንያው አዛም ጋር የሚያደርገው ጨዋታ የቀጥታ የቴሌቪዥን ስርጭት እንደሚያገኝ ታውቋል።ሃዋሳ ከተማን በመለያ ምት በማሸነፍ ወደ አህጉራዊ ውድድሮች በታሪካቸው ለመጀመሪያ ጊዜ ያመሩት ፋሲል ከነማዎች እሁድ ከታንዛኒያው ክለብ አዛም ጋር የመጀመሪያ የማጣሪያ ጨዋታቸውን ያደርጋሉ። በባህር ዳር ዓለምአቀፍ ስታዲየም የሚደረገው ይህ ጨዋታም በአማራ ብዙሃን መገናኛ ድርጅት (አማራ ቲቪ) በቀጥታ እንደሚተላለፍ ታውቋል። ከተቋሙ ባገኘነው መረጃ መሰረት ጨዋታውን ለማስተላለፍ ስራዎች እየተሰሩ መሆናቸው ሲገለፅ መቀመጫውን ታንዛኒያ ያደረገው አዛም ቲቪም ከቴሌቪዥን ጣቢያው (አማራ ቲቪ) ጋር ተስማምቶ ጨዋታውን ለማስተላለፍ እንደተወሰነ እና መከፈል ያለበትን ክፍያ ለጣቢያው እንደፈፀመ ተነግሯል።በተያያዘ ዜና ጨዋታውን የሚመሩት ሱዳናዊው ዳኞች ባህር ዳር መግባታቸው ተረጋግጣል። ሶከር ኢትዮጵያም ጨዋታውን በቀጥታ የፅሁፍ ስርጭት ለስፖርት ቤተሰቡ እንደሚያደርስ ለማሳወቅ ይወዳል።"]}, {"source_sentence": "ኤም ቲ ኤን ለአልቃይዳና ታሊባን ጉቦ በመስጠት ተወነጀለ", "sentences": ["ኩባንያው ለእነዚህ ቡድኖች ገንዘብ የሰጠው አፍጋኒስታን ውስጥ የሚገኝና ትልቅ ኢንቨስትመንት ያደረገባቸው የኔትዎርክ ታዎሮች ላይ ጥቃት እንዳይደርስበት ለጥበቃ ነው ተብሏል።\n\nበውንጀላው መቀመጫቸውን አሜሪካ ያደረጉ ሌሎች አምስት ኩባንያዎችም ያሉ ሲሆን ክሱ የቀረበው አፍጋኒስታን ውስጥ በተገደሉ የአሜሪካ ዜጎች ስም ነው።\n\n• ጃዋር ኦሮሞ ፌደራሊስት ኮንግረስን መቀላቀሉ ተረጋገጠ\n\n• ሱዳን በ29 ግለሰቦች ላይ የሞት ፍርድ አስተላለፈች\n\n• \"ሙስና ለመጣው ፖለቲካዊ ለውጥ አንድ ምክንያት ነው\" \n\nበቀረበው ክስ እንደተባለው ሁለቱ አሸባሪ ቡድኖች ከኤም ቲ ኤን ያገኙትን ገንዘብ እንደ አውሮፓውያኑ ከ2009 እስከ 2017 አፍጋኒስታን ውስጥ ላካሄዷቸው የጥቃት ዘመቻዎች ተጠቅመውበታል።\n\nይህ ደግሞ የአሜሪካን የፀረ ሽብር አዋጅን የሚፃረር ነው፤ ስለዚህም ኤም ቲ ኤን ይህን ህግ ተላልፏል ተብሏል።\n\nኩባንያው ግን በየትኛውም ቦታ ስራውን የሚያካሂደው ሃላፊነት በተሞላበት መንገድ እንደሆነ ገልጿል።\n\nኤም ቲ ኤን በአፍሪካ ግዙፉ፤ በአለም አቀፍ ደረጃ ደግሞ ከስምንት ትልልቅ ኩባንያዎች አንዱ ነው። ከ240 ሚሊዮን ተጠቃሚዎች በላይም አለው ተብሎ ይታመናል።\n\nበ2015 ያልተመዘገቡ ሲም ካርዶችን ባለመሰረዝ በናይጄሪያ ባለስልጣናት በቀረበበት ክስ 5 ቢሊዮን ዶላር እንዲቀጣ ተፈርዶበት፤ ከረዥም ክርክር በኋላ እንዲሁም የያኔው የደቡብ አፍሪካ ፕሬዝዳንት ጃኮም ዙማ በጉዳዩ ጣልቃ ገብተው ቅጣቱ ወደ 1.7 ቢሊዮን ዶላር እንደወረደለት የሚታወስ ነው።\n\nየዛሬ ዓመትም በኢራን የቀድሞ የደቡብ አፍሪካ አምባሳደር ኤምቲኤን ኢራን ውስጥ እንዲሰራና የ 31.6 ቢሊዮን ዶላር ፕሮጀክት እንዲያሸንፍ ጉቦ ተቀብለዋል በሚል መታሰራቸውም ይታወሳል።\n\n ", "አዲስ አበባ፣ ጥቅምት 5፣ 2013 (ኤፍ.ቢ.ሲ) ፈረንሳይ በሀገሪቱ ዳግም እያገረሸ የመጣውን የኮሮና ቫይረስ ወረርሽኝ ስርጭትን ለመግታት ፓሪስን ጨምሮ በስምንት ከተሞች የሰዓት እላፊ ልትጥል ነው።", "ባለፉት 20 አመታት ዴሞክራሲን በማስረፅ ረገድ የህዝቦችን ተሳትፎ የቃኘ ጥናት ይፋ በሆነበት ወቅት እንደተገለፀው፤ በርካታ የሚዲያ ተቋማት የዴሞክራሲ እሴቶችን አጉልቶ በማውጣት ረገድ ሰፊ ውስንነቶች ታተውባቸዋል፡፡ባለፉት ዓመታት በርካታዎቹ  የስነ-ምግባር መርሆዎችን ሳይጠብቁ  የመዘገብ ዝንባሌ ነበራቸው ተብሏል፡፡በኢትዮጵያ ስራ አመራር ኢኒስቲትዩት በተካሄደውና ከተለያዩ የህብረተሰብ ክፍሎች የተወከሉ ዜጎች በተሳተፉበት አውደ ጥናት በዋናነት በዴሞክራሲ ስርፀት ዙሪያ የዜጎችን ምልከታ፣ አተገባበርና ተፅእኖን በመገምገም መፍትሄን ማመላከት እንደሆነ ተገልጿል፡፡ሙሉ በሙሉ በአዲስ አበባ ከተማ ላይ ትኩረቱን ባደረገው በዚህ ጥናት ፖለቲከኞች ሀገራዊ አጀንዳዎች ላይ በማተኮር ሀሳብ ከማመንጨት ይልቅ በግላዊ ጥቅሞቻቸው ላይ ማተኮራቸው ሀላፊነታቸውን በአግባቡ እንዳይወጡ ማድረጉ ተነስቷል፡፡ዜጎችም ቢሆኑ  ነገሮችን በሰከነ ሁኔታ ከማጤን ይልቅ በስሜታዊነት ወደ አላስፈላጊ ግጭቶች የማምራት ሁኔታ ሲስተዋልባቸው እንደነበር ያመላከተው ጥናቱ፤ ይህም ዴሞክራሲ ስር እንዳይሰድ የራሱን ተፅዕኖ ማሳደሩን ተነስቷል፡፡በመንግስት በኩል የታዩ ክፍተቶችንም ጥናቱ ያመላከተ ሲሆን፤ በተለይም ለአሰራር ምቹ ያልሆኑ አደረጃጀቶችን ያለመተቸት ችግር፣ በፓርቲዎች የግል አቋም ጣልቃ መግባትን ጨምሮ የዴሞክራሲ ተቋማትን ተናበውና ተቀናጅተው እንዲሰሩ ያለማድረግ ችግሮች ተስተውለዋል፡፡በመሆኑም ሁሉም ባለድርሻ አካላት ለዴሞክራሲ ስርፀጥ ሚናውን በአግባቡ እንዲወጣ በመድረኩ ጥሪ ቀርቧል፡፡"]}], "model-index": [{"name": "RoBERTa Amharic Text Embedding Base", "results": [{"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 768", "type": "dim_768"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.5954036891442395, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.7511339582703357, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.7986090111883882, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.8578772301179317, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.5954036891442395, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.25037798609011186, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.15972180223767768, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.08578772301179316, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.5954036891442395, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.7511339582703357, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.7986090111883882, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.8578772301179317, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.7264113405058715, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.6844476123278652, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.6893120428806755, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 512", "type": "dim_512"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.5902630783187178, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.7444814030843665, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.7940731781070457, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.8542485636528576, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.5902630783187178, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.24816046769478878, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.1588146356214091, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.08542485636528575, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.5902630783187178, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.7444814030843665, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.7940731781070457, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.8542485636528576, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.7217190840690586, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.6793972381816339, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.6844825183256431, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 256", "type": "dim_256"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.5851224674931963, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.7372240701542183, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.784699123072271, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.8469912307227094, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.5851224674931963, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.24574135671807276, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.1569398246144542, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.08469912307227094, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.5851224674931963, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.7372240701542183, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.784699123072271, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.8469912307227094, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.7149657550308033, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.6728439193437673, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.6779612508442862, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 128", "type": "dim_128"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.5588146356214091, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.7172664045963109, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.7701844572119746, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.8324765648624131, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.5588146356214091, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.23908880153210357, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.15403689144239494, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.08324765648624129, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.5588146356214091, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.7172664045963109, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.7701844572119746, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.8324765648624131, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.6946921608623674, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.6506869747193293, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.6562847075549745, "name": "Cosine Map@100"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
40,989
NTIS/KoRnDAlpaca
NTIS
null
[ "ko", "license:apache-2.0", "region:us" ]
2023-05-23T09:29:38Z
2023-09-19T00:22:26+00:00
0
0
--- language: ko license: apache-2.0 --- ### 1. Background of Model Development - NTIS (www.ntis.go.kr) and KISTI (Korean Institute of Science and Technology Information) have been working to enhance accessibility and convenience for users seeking R&D data and science and technology information. The rise of ChatGPT has revolutionised the paradigm of information delivery with its Generative AI model. NTIS and KISTI are also aiming to provide conversation-based complex information by breaking away from the search-oriented information delivery method by utilizing Generative AI technology. - Despite this remarkable technology, however, the tendency for hallucination in Generative AI models is a significant impediment for researchers and professionals in scientific and technological fields, where high accuracy is crucial. In particular, the current generative AI model experiences more severe issues with hallucination, particularly when creating R&D and science and technology information. These fields heavily employ specialist jargon that is seldom used in the pre-training stage, and involve different question types than those trained by existing models. - Therefore, we decided to create a LLM specialized for R&D data to provide more accurate R&D and scientific information. ### 2. KoRnDAlpaca - KoRnDAlpaca is based on Korean and fine-tuned with 1 million instruction data (R&D Instruction dataset v1.3) generated from Korean national research reports. - The base model of KoRnDAlpaca is EleutherAI/polyglot-en-12.8b. - For more information about the training procedure and model, please contact [email protected]. - To actually use the model, please use https://huggingface.co/NTIS/KoRnDAlpaca-Polyglot-12.8B. ### 3. R&D Instruction Dataset v1.3 - The dataset is built using 30,000 original research reports from the last 5 years provided by KISTI (curation.kisti.re.kr). - The dataset cannot be released at this time due to the licensing issues (to be discussed to release data in the future). - The process of building the dataset is as follows * A. Extract important texts related to technology, such as technology trends and technology definitions, from research reports. * B. Preprocess the extracted text * C. Generate question and answer pairs (total 1.5 million) based on the extracted text by using ChatGPT API(temporarily), which scheduled to be replaced with our own question&answer generation model(`23.11). * D. Reformat the dataset in the form of (Instruction, Output, Source). ‘Instruction’ is the user's question, ‘Output’ is the answer, and ‘Source’ is the research report identification code that the answer is based on. * E. Remove low-quality data by the data quality evaluation module. Use only high-quality Q&As for training. (1 million) * ※ In KoRnDAlpaca v2 (planned for `23.10), in addition to Q&A, the instruction dataset will be added to generate long-form technology trends. ### 4. Future plans - 23.10: Release KoRnDAlpaca v2 (adds the ability to generate long-form technology trend information in Markdown format) - 23.12: Release NITS-seachGPT module v1 (Retriever + KoRnDAlpaca v3) * ※ R&D-specific open-domain question answering module with "Retriever + Generator" structure * ※ NTIS-searchGPT v1 is an early edition, with anticipated performance improvements scheduled for 2024. - 23.12: KoRnDAlpaca v2 will be applied to the chatbot of NTIS (www.ntis.go.kr) ### References - https://huggingface.co/EleutherAI/polyglot-ko-12.8b - https://github.com/Beomi/KoAlpaca
null
Non_BioNLP
### 1. Background of Model Development - NTIS (www.ntis.go.kr) and KISTI (Korean Institute of Science and Technology Information) have been working to enhance accessibility and convenience for users seeking R&D data and science and technology information. The rise of ChatGPT has revolutionised the paradigm of information delivery with its Generative AI model. NTIS and KISTI are also aiming to provide conversation-based complex information by breaking away from the search-oriented information delivery method by utilizing Generative AI technology. - Despite this remarkable technology, however, the tendency for hallucination in Generative AI models is a significant impediment for researchers and professionals in scientific and technological fields, where high accuracy is crucial. In particular, the current generative AI model experiences more severe issues with hallucination, particularly when creating R&D and science and technology information. These fields heavily employ specialist jargon that is seldom used in the pre-training stage, and involve different question types than those trained by existing models. - Therefore, we decided to create a LLM specialized for R&D data to provide more accurate R&D and scientific information. ### 2. KoRnDAlpaca - KoRnDAlpaca is based on Korean and fine-tuned with 1 million instruction data (R&D Instruction dataset v1.3) generated from Korean national research reports. - The base model of KoRnDAlpaca is EleutherAI/polyglot-en-12.8b. - For more information about the training procedure and model, please contact [email protected]. - To actually use the model, please use https://huggingface.co/NTIS/KoRnDAlpaca-Polyglot-12.8B. ### 3. R&D Instruction Dataset v1.3 - The dataset is built using 30,000 original research reports from the last 5 years provided by KISTI (curation.kisti.re.kr). - The dataset cannot be released at this time due to the licensing issues (to be discussed to release data in the future). - The process of building the dataset is as follows * A. Extract important texts related to technology, such as technology trends and technology definitions, from research reports. * B. Preprocess the extracted text * C. Generate question and answer pairs (total 1.5 million) based on the extracted text by using ChatGPT API(temporarily), which scheduled to be replaced with our own question&answer generation model(`23.11). * D. Reformat the dataset in the form of (Instruction, Output, Source). ‘Instruction’ is the user's question, ‘Output’ is the answer, and ‘Source’ is the research report identification code that the answer is based on. * E. Remove low-quality data by the data quality evaluation module. Use only high-quality Q&As for training. (1 million) * ※ In KoRnDAlpaca v2 (planned for `23.10), in addition to Q&A, the instruction dataset will be added to generate long-form technology trends. ### 4. Future plans - 23.10: Release KoRnDAlpaca v2 (adds the ability to generate long-form technology trend information in Markdown format) - 23.12: Release NITS-seachGPT module v1 (Retriever + KoRnDAlpaca v3) * ※ R&D-specific open-domain question answering module with "Retriever + Generator" structure * ※ NTIS-searchGPT v1 is an early edition, with anticipated performance improvements scheduled for 2024. - 23.12: KoRnDAlpaca v2 will be applied to the chatbot of NTIS (www.ntis.go.kr) ### References - https://huggingface.co/EleutherAI/polyglot-ko-12.8b - https://github.com/Beomi/KoAlpaca
{"language": "ko", "license": "apache-2.0"}
task
[ "QUESTION_ANSWERING" ]
40,990
k3lana/distilbert-base-uncased-finetuned-emotion
k3lana
text-classification
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-09-03T12:18:57Z
2022-09-03T12:30:10+00:00
10
0
--- datasets: - emotion license: apache-2.0 metrics: - accuracy - f1 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion args: default metrics: - type: accuracy value: 0.924 name: Accuracy - type: f1 value: 0.9240361329965474 name: F1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2139 - Accuracy: 0.924 - F1: 0.9240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8137 | 1.0 | 250 | 0.3227 | 0.9 | 0.8957 | | 0.2434 | 2.0 | 500 | 0.2139 | 0.924 | 0.9240 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2139 - Accuracy: 0.924 - F1: 0.9240 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8137 | 1.0 | 250 | 0.3227 | 0.9 | 0.8957 | | 0.2434 | 2.0 | 500 | 0.2139 | 0.924 | 0.9240 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.12.1+cu113 - Datasets 1.16.1 - Tokenizers 0.10.3
{"datasets": ["emotion"], "license": "apache-2.0", "metrics": ["accuracy", "f1"], "tags": ["generated_from_trainer"], "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.924, "name": "Accuracy"}, {"type": "f1", "value": 0.9240361329965474, "name": "F1"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
40,991
meta-llama/Llama-3.2-1B
meta-llama
text-generation
[ "transformers", "safetensors", "llama", "text-generation", "facebook", "meta", "pytorch", "llama-3", "en", "de", "fr", "it", "pt", "hi", "es", "th", "arxiv:2204.05149", "arxiv:2405.16406", "license:llama3.2", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2024-09-18T15:03:14Z
2024-10-24T15:08:03+00:00
4,197,287
1,687
--- language: - en - de - fr - it - pt - hi - es - th library_name: transformers license: llama3.2 pipeline_tag: text-generation tags: - facebook - meta - pytorch - llama - llama-3 extra_gated_prompt: "### LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\n\nLlama 3.2 Version\ \ Release Date: September 25, 2024\n\n“Agreement” means the terms and conditions\ \ for use, reproduction, distribution and modification of the Llama Materials set\ \ forth herein.\n\n“Documentation” means the specifications, manuals and documentation\ \ accompanying Llama 3.2 distributed by Meta at https://llama.meta.com/doc/overview.\n\ \n“Licensee” or “you” means you, or your employer or any other person or entity\ \ (if you are entering into this Agreement on such person or entity’s behalf),\ \ of the age required under applicable laws, rules or regulations to provide legal\ \ consent and that has legal authority to bind your employer or such other person\ \ or entity if you are entering in this Agreement on their behalf.\n\n“Llama 3.2”\ \ means the foundational large language models and software and algorithms, including\ \ machine-learning model code, trained model weights, inference-enabling code, training-enabling\ \ code, fine-tuning enabling code and other elements of the foregoing distributed\ \ by Meta at https://www.llama.com/llama-downloads.\n\n“Llama Materials” means,\ \ collectively, Meta’s proprietary Llama 3.2 and Documentation (and any portion\ \ thereof) made available under this Agreement.\n\n“Meta” or “we” means Meta Platforms\ \ Ireland Limited (if you are located in or, if you are an entity, your principal\ \ place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if\ \ you are located outside of the EEA or Switzerland). \n\nBy clicking “I Accept”\ \ below or by using or distributing any portion or element of the Llama Materials,\ \ you agree to be bound by this Agreement.\n\n1. License Rights and Redistribution.\n\ a. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable\ \ and royalty-free limited license under Meta’s intellectual property or other rights\ \ owned by Meta embodied in the Llama Materials to use, reproduce, distribute,\ \ copy, create derivative works of, and make modifications to the Llama Materials.\ \ \nb. Redistribution and Use. \ni. If you distribute or make available the Llama\ \ Materials (or any derivative works thereof), or a product or service (including\ \ another AI model) that contains any of them, you shall (A) provide a copy of this\ \ Agreement with any such Llama Materials; and (B) prominently display “Built with\ \ Llama” on a related website, user interface, blogpost, about page, or product\ \ documentation. If you use the Llama Materials or any outputs or results of the\ \ Llama Materials to create, train, fine tune, or otherwise improve an AI model,\ \ which is distributed or made available, you shall also include “Llama” at the\ \ beginning of any such AI model name.\nii. If you receive Llama Materials, or any\ \ derivative works thereof, from a Licensee as part of an integrated end user product,\ \ then Section 2 of this Agreement will not apply to you. \niii. You must retain\ \ in all copies of the Llama Materials that you distribute the following attribution\ \ notice within a “Notice” text file distributed as a part of such copies: “Llama\ \ 3.2 is licensed under the Llama 3.2 Community License, Copyright © Meta Platforms,\ \ Inc. All Rights Reserved.”\niv. Your use of the Llama Materials must comply with\ \ applicable laws and regulations (including trade compliance laws and regulations)\ \ and adhere to the Acceptable Use Policy for the Llama Materials (available at\ \ https://www.llama.com/llama3_2/use-policy), which is hereby incorporated by reference\ \ into this Agreement.\n \n2. Additional Commercial Terms. If, on the Llama 3.2\ \ version release date, the monthly active users of the products or services made\ \ available by or for Licensee, or Licensee’s affiliates, is greater than 700 million\ \ monthly active users in the preceding calendar month, you must request a license\ \ from Meta, which Meta may grant to you in its sole discretion, and you are not\ \ authorized to exercise any of the rights under this Agreement unless or until\ \ Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS\ \ REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM\ \ ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS\ \ ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION,\ \ ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR\ \ PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING\ \ OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR\ \ USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability.\ \ IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY,\ \ WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING\ \ OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL,\ \ INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE\ \ BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\n\ a. No trademark licenses are granted under this Agreement, and in connection with\ \ the Llama Materials, neither Meta nor Licensee may use any name or mark owned\ \ by or associated with the other or any of its affiliates, except as required\ \ for reasonable and customary use in describing and redistributing the Llama Materials\ \ or as set forth in this Section 5(a). Meta hereby grants you a license to use\ \ “Llama” (the “Mark”) solely as required to comply with the last sentence of Section\ \ 1.b.i. You will comply with Meta’s brand guidelines (currently accessible at\ \ https://about.meta.com/brand/resources/meta/company-brand/). All goodwill arising\ \ out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to\ \ Meta’s ownership of Llama Materials and derivatives made by or for Meta, with\ \ respect to any derivative works and modifications of the Llama Materials that\ \ are made by you, as between you and Meta, you are and will be the owner of such\ \ derivative works and modifications.\nc. If you institute litigation or other proceedings\ \ against Meta or any entity (including a cross-claim or counterclaim in a lawsuit)\ \ alleging that the Llama Materials or Llama 3.2 outputs or results, or any portion\ \ of any of the foregoing, constitutes infringement of intellectual property or\ \ other rights owned or licensable by you, then any licenses granted to you under\ \ this Agreement shall terminate as of the date such litigation or claim is filed\ \ or instituted. You will indemnify and hold harmless Meta from and against any\ \ claim by any third party arising out of or related to your use or distribution\ \ of the Llama Materials.\n6. Term and Termination. The term of this Agreement will\ \ commence upon your acceptance of this Agreement or access to the Llama Materials\ \ and will continue in full force and effect until terminated in accordance with\ \ the terms and conditions herein. Meta may terminate this Agreement if you are\ \ in breach of any term or condition of this Agreement. Upon termination of this\ \ Agreement, you shall delete and cease use of the Llama Materials. Sections 3,\ \ 4 and 7 shall survive the termination of this Agreement. \n7. Governing Law and\ \ Jurisdiction. This Agreement will be governed and construed under the laws of\ \ the State of California without regard to choice of law principles, and the UN\ \ Convention on Contracts for the International Sale of Goods does not apply to\ \ this Agreement. The courts of California shall have exclusive jurisdiction of\ \ any dispute arising out of this Agreement. \n### Llama 3.2 Acceptable Use Policy\n\ Meta is committed to promoting safe and fair use of its tools and features, including\ \ Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use Policy\ \ (“**Policy**”). The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\n\ #### Prohibited Uses\nWe want everyone to use Llama 3.2 safely and responsibly.\ \ You agree you will not use, or allow others to use, Llama 3.2 to:\n1. Violate\ \ the law or others’ rights, including to:\n 1. Engage in, promote, generate,\ \ contribute to, encourage, plan, incite, or further illegal or unlawful activity\ \ or content, such as:\n 1. Violence or terrorism\n 2. Exploitation\ \ or harm to children, including the solicitation, creation, acquisition, or dissemination\ \ of child exploitative content or failure to report Child Sexual Abuse Material\n\ \ 3. Human trafficking, exploitation, and sexual violence\n 4. The\ \ illegal distribution of information or materials to minors, including obscene\ \ materials, or failure to employ legally required age-gating in connection with\ \ such information or materials.\n 5. Sexual solicitation\n 6. Any\ \ other criminal activity\n 1. Engage in, promote, incite, or facilitate the\ \ harassment, abuse, threatening, or bullying of individuals or groups of individuals\n\ \ 2. Engage in, promote, incite, or facilitate discrimination or other unlawful\ \ or harmful conduct in the provision of employment, employment benefits, credit,\ \ housing, other economic benefits, or other essential goods and services\n 3.\ \ Engage in the unauthorized or unlicensed practice of any profession including,\ \ but not limited to, financial, legal, medical/health, or related professional\ \ practices\n 4. Collect, process, disclose, generate, or infer private or sensitive\ \ information about individuals, including information about individuals’ identity,\ \ health, or demographic information, unless you have obtained the right to do so\ \ in accordance with applicable law\n 5. Engage in or facilitate any action or\ \ generate any content that infringes, misappropriates, or otherwise violates any\ \ third-party rights, including the outputs or results of any products or services\ \ using the Llama Materials\n 6. Create, generate, or facilitate the creation\ \ of malicious code, malware, computer viruses or do anything else that could disable,\ \ overburden, interfere with or impair the proper working, integrity, operation\ \ or appearance of a website or computer system\n 7. Engage in any action, or\ \ facilitate any action, to intentionally circumvent or remove usage restrictions\ \ or other safety measures, or to enable functionality disabled by Meta \n2. Engage\ \ in, promote, incite, facilitate, or assist in the planning or development of activities\ \ that present a risk of death or bodily harm to individuals, including use of Llama\ \ 3.2 related to the following:\n 8. Military, warfare, nuclear industries or\ \ applications, espionage, use for materials or activities that are subject to the\ \ International Traffic Arms Regulations (ITAR) maintained by the United States\ \ Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989\ \ or the Chemical Weapons Convention Implementation Act of 1997\n 9. Guns and\ \ illegal weapons (including weapon development)\n 10. Illegal drugs and regulated/controlled\ \ substances\n 11. Operation of critical infrastructure, transportation technologies,\ \ or heavy machinery\n 12. Self-harm or harm to others, including suicide, cutting,\ \ and eating disorders\n 13. Any content intended to incite or promote violence,\ \ abuse, or any infliction of bodily harm to an individual\n3. Intentionally deceive\ \ or mislead others, including use of Llama 3.2 related to the following:\n 14.\ \ Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n\ \ 15. Generating, promoting, or furthering defamatory content, including the\ \ creation of defamatory statements, images, or other content\n 16. Generating,\ \ promoting, or further distributing spam\n 17. Impersonating another individual\ \ without consent, authorization, or legal right\n 18. Representing that the\ \ use of Llama 3.2 or outputs are human-generated\n 19. Generating or facilitating\ \ false online engagement, including fake reviews and other means of fake online\ \ engagement \n4. Fail to appropriately disclose to end users any known dangers\ \ of your AI system 5. Interact with third party tools, models, or software designed\ \ to generate unlawful content or engage in unlawful or harmful conduct and/or represent\ \ that the outputs of such tools, models, or software are associated with Meta or\ \ Llama 3.2\n\nWith respect to any multimodal models included in Llama 3.2, the\ \ rights granted under Section 1(a) of the Llama 3.2 Community License Agreement\ \ are not being granted to you if you are an individual domiciled in, or a company\ \ with a principal place of business in, the European Union. This restriction does\ \ not apply to end users of a product or service that incorporates any such multimodal\ \ models.\n\nPlease report any violation of this Policy, software “bug,” or other\ \ problems that could lead to a violation of this Policy through one of the following\ \ means:\n\n* Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\n\ * Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\n\ * Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\n\ * Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama\ \ 3.2: [email protected]" extra_gated_fields: First Name: text Last Name: text Date of birth: date_picker Country: country Affiliation: text Job title: type: select options: - Student - Research Graduate - AI researcher - AI developer/engineer - Reporter - Other geo: ip_location ? By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy : checkbox extra_gated_description: The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/). extra_gated_button_content: Submit --- ## Model Information The Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks. **Model Developer:** Meta **Model Architecture:** Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. | | Training Data | Params | Input modalities | Output modalities | Context Length | GQA | Shared Embeddings | Token count | Knowledge cutoff | | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | | Llama 3.2 (text only) | A new mix of publicly available online data. | 1B (1.23B) | Multilingual Text | Multilingual Text and code | 128k | Yes | Yes | Up to 9T tokens | December 2023 | | | | 3B (3.21B) | Multilingual Text | Multilingual Text and code | | | | | | | Llama 3.2 Quantized (text only) | A new mix of publicly available online data. | 1B (1.23B) | Multilingual Text | Multilingual Text and code | 8k | Yes | Yes | Up to 9T tokens | December 2023 | | | | 3B (3.21B) | Multilingual Text | Multilingual Text and code | | | | | | **Supported Languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai are officially supported. Llama 3.2 has been trained on a broader collection of languages than these 8 supported languages. Developers may fine-tune Llama 3.2 models for languages beyond these supported languages, provided they comply with the Llama 3.2 Community License and the Acceptable Use Policy. Developers are always expected to ensure that their deployments, including those that involve additional languages, are completed safely and responsibly. **Llama 3.2 Model Family:** Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. **Model Release Date:** Sept 25, 2024 **Status:** This is a static model trained on an offline dataset. Future versions may be released that improve model capabilities and safety. **License:** Use of Llama 3.2 is governed by the [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) (a custom, commercial license agreement). **Feedback:** Instructions on how to provide feedback or comments on the model can be found in the Llama Models [README](https://github.com/meta-llama/llama-models/blob/main/README.md). For more technical information about generation parameters and recipes for how to use Llama 3.2 in applications, please go [here](https://github.com/meta-llama/llama-recipes). ## Intended Use **Intended Use Cases:** Llama 3.2 is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat and agentic applications like knowledge retrieval and summarization, mobile AI powered writing assistants and query and prompt rewriting. Pretrained models can be adapted for a variety of additional natural language generation tasks. Similarly, quantized models can be adapted for a variety of on-device use-cases with limited compute resources. **Out of Scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.2 Community License. Use in languages beyond those explicitly referenced as supported in this model card. ## How to use This repository contains two versions of Llama-3.2-1B, for use with transformers and with the original `llama` codebase. ### Use with transformers Starting with transformers >= 4.43.0 onward, you can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function. Make sure to update your transformers installation via pip install --upgrade transformers. ```python import torch from transformers import pipeline model_id = "meta-llama/Llama-3.2-1B" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto" ) pipe("The key to life is") ``` ### Use with `llama` Please, follow the instructions in the [repository](https://github.com/meta-llama/llama). To download Original checkpoints, see the example command below leveraging `huggingface-cli`: ``` huggingface-cli download meta-llama/Llama-3.2-1B --include "original/*" --local-dir Llama-3.2-1B ``` ## Hardware and Software **Training Factors:** We used custom training libraries, Meta's custom built GPU cluster, and production infrastructure for pretraining. Fine-tuning, quantization, annotation, and evaluation were also performed on production infrastructure. **Training Energy Use:** Training utilized a cumulative of **916k** GPU hours of computation on H100-80GB (TDP of 700W) type hardware, per the table below. Training time is the total GPU time required for training each model and power consumption is the peak power capacity per GPU device used, adjusted for power usage efficiency. **Training Greenhouse Gas Emissions:** Estimated total location-based greenhouse gas emissions were **240** tons CO2eq for training. Since 2020, Meta has maintained net zero greenhouse gas emissions in its global operations and matched 100% of its electricity use with renewable energy; therefore, the total market-based greenhouse gas emissions for training were 0 tons CO2eq. | | Training Time (GPU hours) | Logit Generation Time (GPU Hours) | Training Power Consumption (W) | Training Location-Based Greenhouse Gas Emissions (tons CO2eq) | Training Market-Based Greenhouse Gas Emissions (tons CO2eq) | | :---- | :---: | ----- | :---: | :---: | :---: | | Llama 3.2 1B | 370k | \- | 700 | 107 | 0 | | Llama 3.2 3B | 460k | \- | 700 | 133 | 0 | | Llama 3.2 1B SpinQuant | 1.7 | 0 | 700 | *Negligible*\*\* | 0 | | Llama 3.2 3B SpinQuant | 2.4 | 0 | 700 | *Negligible*\*\* | 0 | | Llama 3.2 1B QLora | 1.3k | 0 | 700 | 0.381 | 0 | | Llama 3.2 3B QLora | 1.6k | 0 | 700 | 0.461 | 0 | | Total | 833k | 86k | | 240 | 0 | \*\* The location-based CO2e emissions of Llama 3.2 1B SpinQuant and Llama 3.2 3B SpinQuant are less than 0.001 metric tonnes each. This is due to the minimal training GPU hours that are required. The methodology used to determine training energy use and greenhouse gas emissions can be found [here](https://arxiv.org/pdf/2204.05149). Since Meta is openly releasing these models, the training energy use and greenhouse gas emissions will not be incurred by others. ## Training Data **Overview:** Llama 3.2 was pretrained on up to 9 trillion tokens of data from publicly available sources. For the 1B and 3B Llama 3.2 models, we incorporated logits from the Llama 3.1 8B and 70B models into the pretraining stage of the model development, where outputs (logits) from these larger models were used as token-level targets. Knowledge distillation was used after pruning to recover performance. In post-training we used a similar recipe as Llama 3.1 and produced final chat models by doing several rounds of alignment on top of the pre-trained model. Each round involved Supervised Fine-Tuning (SFT), Rejection Sampling (RS), and Direct Preference Optimization (DPO). **Data Freshness:** The pretraining data has a cutoff of December 2023\. ## Quantization ### Quantization Scheme We designed the current quantization scheme with the [PyTorch’s ExecuTorch](https://github.com/pytorch/executorch) inference framework and Arm CPU backend in mind, taking into account metrics including model quality, prefill/decoding speed, and memory footprint. Our quantization scheme involves three parts: - All linear layers in all transformer blocks are quantized to a 4-bit groupwise scheme (with a group size of 32) for weights and 8-bit per-token dynamic quantization for activations. - The classification layer is quantized to 8-bit per-channel for weight and 8-bit per token dynamic quantization for activation. - Similar to classification layer, an 8-bit per channel quantization is used for embedding layer. ### Quantization-Aware Training and LoRA The quantization-aware training (QAT) with low-rank adaptation (LoRA) models went through only post-training stages, using the same data as the full precision models. To initialize QAT, we utilize BF16 Llama 3.2 model checkpoints obtained after supervised fine-tuning (SFT) and perform an additional full round of SFT training with QAT. We then freeze the backbone of the QAT model and perform another round of SFT with LoRA adaptors applied to all layers within the transformer block. Meanwhile, the LoRA adaptors' weights and activations are maintained in BF16. Because our approach is similar to QLoRA of Dettmers et al., (2023) (i.e., quantization followed by LoRA adapters), we refer this method as QLoRA. Finally, we fine-tune the resulting model (both backbone and LoRA adaptors) using direct preference optimization (DPO). ### SpinQuant [SpinQuant](https://arxiv.org/abs/2405.16406) was applied, together with generative post-training quantization (GPTQ). For the SpinQuant rotation matrix fine-tuning, we optimized for 100 iterations, using 800 samples with sequence-length 2048 from the WikiText 2 dataset. For GPTQ, we used 128 samples from the same dataset with the same sequence-length. ## Benchmarks \- English Text In this section, we report the results for Llama 3.2 models on standard automatic benchmarks. For all these evaluations, we used our internal evaluations library. ### Base Pretrained Models | Category | Benchmark | \# Shots | Metric | Llama 3.2 1B | Llama 3.2 3B | Llama 3.1 8B | | ----- | ----- | :---: | :---: | :---: | :---: | :---: | | General | MMLU | 5 | macro\_avg/acc\_char | 32.2 | 58 | 66.7 | | | AGIEval English | 3-5 | average/acc\_char | 23.3 | 39.2 | 47.8 | | | ARC-Challenge | 25 | acc\_char | 32.8 | 69.1 | 79.7 | | Reading comprehension | SQuAD | 1 | em | 49.2 | 67.7 | 77 | | | QuAC (F1) | 1 | f1 | 37.9 | 42.9 | 44.9 | | | DROP (F1) | 3 | f1 | 28.0 | 45.2 | 59.5 | | Long Context | Needle in Haystack | 0 | em | 96.8 | 1 | 1 | ### Instruction Tuned Models | Capability | | Benchmark | \# Shots | Metric | Llama 3.2 1B bf16 | Llama 3.2 1B Vanilla PTQ\*\* | Llama 3.2 1B Spin Quant | Llama 3.2 1B QLoRA | Llama 3.2 3B bf16 | Llama 3.2 3B Vanilla PTQ\*\* | Llama 3.2 3B Spin Quant | Llama 3.2 3B QLoRA | Llama 3.1 8B | | :---: | ----- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | General | | MMLU | 5 | macro\_avg/acc | 49.3 | 43.3 | 47.3 | 49.0 | 63.4 | 60.5 | 62 | 62.4 | 69.4 | | Re-writing | | Open-rewrite eval | 0 | micro\_avg/rougeL | 41.6 | 39.2 | 40.9 | 41.2 | 40.1 | 40.3 | 40.8 | 40.7 | 40.9 | | Summarization | | TLDR9+ (test) | 1 | rougeL | 16.8 | 14.9 | 16.7 | 16.8 | 19.0 | 19.1 | 19.2 | 19.1 | 17.2 | | Instruction following | | IFEval | 0 | Avg(Prompt/Instruction acc Loose/Strict) | 59.5 | 51.5 | 58.4 | 55.6 | 77.4 | 73.9 | 73.5 | 75.9 | 80.4 | | Math | | GSM8K (CoT) | 8 | em\_maj1@1 | 44.4 | 33.1 | 40.6 | 46.5 | 77.7 | 72.9 | 75.7 | 77.9 | 84.5 | | | | MATH (CoT) | 0 | final\_em | 30.6 | 20.5 | 25.3 | 31.0 | 48.0 | 44.2 | 45.3 | 49.2 | 51.9 | | Reasoning | | ARC-C | 0 | acc | 59.4 | 54.3 | 57 | 60.7 | 78.6 | 75.6 | 77.6 | 77.6 | 83.4 | | | | GPQA | 0 | acc | 27.2 | 25.9 | 26.3 | 25.9 | 32.8 | 32.8 | 31.7 | 33.9 | 32.8 | | | | Hellaswag | 0 | acc | 41.2 | 38.1 | 41.3 | 41.5 | 69.8 | 66.3 | 68 | 66.3 | 78.7 | | Tool Use | | BFCL V2 | 0 | acc | 25.7 | 14.3 | 15.9 | 23.7 | 67.0 | 53.4 | 60.1 | 63.5 | 67.1 | | | | Nexus | 0 | macro\_avg/acc | 13.5 | 5.2 | 9.6 | 12.5 | 34.3 | 32.4 | 31.5 | 30.1 | 38.5 | | Long Context | | InfiniteBench/En.QA | 0 | longbook\_qa/f1 | 20.3 | N/A | N/A | N/A | 19.8 | N/A | N/A | N/A | 27.3 | | | | InfiniteBench/En.MC | 0 | longbook\_choice/acc | 38.0 | N/A | N/A | N/A | 63.3 | N/A | N/A | N/A | 72.2 | | | | NIH/Multi-needle | 0 | recall | 75.0 | N/A | N/A | N/A | 84.7 | N/A | N/A | N/A | 98.8 | | Multilingual | | MGSM (CoT) | 0 | em | 24.5 | 13.7 | 18.2 | 24.4 | 58.2 | 48.9 | 54.3 | 56.8 | 68.9 | \*\*for comparison purposes only. Model not released. ### Multilingual Benchmarks | Category | Benchmark | Language | Llama 3.2 1B | Llama 3.2 1B Vanilla PTQ\*\* | Llama 3.2 1B Spin Quant | Llama 3.2 1B QLoRA | Llama 3.2 3B | Llama 3.2 3B Vanilla PTQ\*\* | Llama 3.2 3B Spin Quant | Llama 3.2 3B QLoRA | Llama 3.1 8B | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | General | MMLU (5-shot, macro_avg/acc) | Portuguese | 39.8 | 34.9 | 38.9 | 40.2 | 54.5 | 50.9 | 53.3 | 53.4 | 62.1 | | | | Spanish | 41.5 | 36.0 | 39.8 | 41.8 | 55.1 | 51.9 | 53.6 | 53.6 | 62.5 | | | | Italian | 39.8 | 34.9 | 38.1 | 40.6 | 53.8 | 49.9 | 52.1 | 51.7 | 61.6 | | | | German | 39.2 | 34.9 | 37.5 | 39.6 | 53.3 | 50.0 | 52.2 | 51.3 | 60.6 | | | | French | 40.5 | 34.8 | 39.2 | 40.8 | 54.6 | 51.2 | 53.3 | 53.3 | 62.3 | | | | Hindi | 33.5 | 30.0 | 32.1 | 34.0 | 43.3 | 40.4 | 42.0 | 42.1 | 50.9 | | | | Thai | 34.7 | 31.2 | 32.4 | 34.9 | 44.5 | 41.3 | 44.0 | 42.2 | 50.3 | \*\*for comparison purposes only. Model not released. ## Inference time In the below table, we compare the performance metrics of different quantization methods (SpinQuant and QAT \+ LoRA) with the BF16 baseline. The evaluation was done using the [ExecuTorch](https://github.com/pytorch/executorch) framework as the inference engine, with the ARM CPU as a backend using Android OnePlus 12 device. | Category | Decode (tokens/sec) | Time-to-first-token (sec) | Prefill (tokens/sec) | Model size (PTE file size in MB) | Memory size (RSS in MB) | | :---- | ----- | ----- | ----- | ----- | ----- | | 1B BF16 (baseline) | 19.2 | 1.0 | 60.3 | 2358 | 3,185 | | 1B SpinQuant | 50.2 (2.6x) | 0.3 (-76.9%) | 260.5 (4.3x) | 1083 (-54.1%) | 1,921 (-39.7%) | | 1B QLoRA | 45.8 (2.4x) | 0.3 (-76.0%) | 252.0 (4.2x) | 1127 (-52.2%) | 2,255 (-29.2%) | | 3B BF16 (baseline) | 7.6 | 3.0 | 21.2 | 6129 | 7,419 | | 3B SpinQuant | 19.7 (2.6x) | 0.7 (-76.4%) | 89.7 (4.2x) | 2435 (-60.3%) | 3,726 (-49.8%) | | 3B QLoRA | 18.5 (2.4x) | 0.7 (-76.1%) | 88.8 (4.2x) | 2529 (-58.7%) | 4,060 (-45.3%) | (\*) The performance measurement is done using an adb binary-based approach. (\*\*) It is measured on an Android OnePlus 12 device. (\*\*\*) Time-to-first-token (TTFT) is measured with prompt length=64 *Footnote:* - *Decode (tokens/second) is for how quickly it keeps generating. Higher is better.* - *Time-to-first-token (TTFT for shorthand) is for how fast it generates the first token for a given prompt. Lower is better.* - *Prefill is the inverse of TTFT (aka 1/TTFT) in tokens/second. Higher is better* - *Model size \- how big is the model, measured by, PTE file, a binary file format for ExecuTorch* - *RSS size \- Memory usage in resident set size (RSS)* ## Responsibility & Safety As part of our Responsible release approach, we followed a three-pronged strategy to managing trust & safety risks: 1. Enable developers to deploy helpful, safe and flexible experiences for their target audience and for the use cases supported by Llama 2. Protect developers against adversarial users aiming to exploit Llama capabilities to potentially cause harm 3. Provide protections for the community to help prevent the misuse of our models ### Responsible Deployment **Approach:** Llama is a foundational technology designed to be used in a variety of use cases. Examples on how Meta’s Llama models have been responsibly deployed can be found in our [Community Stories webpage](https://llama.meta.com/community-stories/). Our approach is to build the most helpful models, enabling the world to benefit from the technology power, by aligning our model safety for generic use cases and addressing a standard set of harms. Developers are then in the driver’s seat to tailor safety for their use cases, defining their own policies and deploying the models with the necessary safeguards in their Llama systems. Llama 3.2 was developed following the best practices outlined in our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/). #### Llama 3.2 Instruct **Objective:** Our main objectives for conducting safety fine-tuning are to provide the research community with a valuable resource for studying the robustness of safety fine-tuning, as well as to offer developers a readily available, safe, and powerful model for various applications to reduce the developer workload to deploy safe AI systems. We implemented the same set of safety mitigations as in Llama 3, and you can learn more about these in the Llama 3 [paper](https://ai.meta.com/research/publications/the-llama-3-herd-of-models/). **Fine-Tuning Data:** We employ a multi-faceted approach to data collection, combining human-generated data from our vendors with synthetic data to mitigate potential safety risks. We’ve developed many large language model (LLM)-based classifiers that enable us to thoughtfully select high-quality prompts and responses, enhancing data quality control. **Refusals and Tone:** Building on the work we started with Llama 3, we put a great emphasis on model refusals to benign prompts as well as refusal tone. We included both borderline and adversarial prompts in our safety data strategy, and modified our safety data responses to follow tone guidelines. #### Llama 3.2 Systems **Safety as a System:** Large language models, including Llama 3.2, **are not designed to be deployed in isolation** but instead should be deployed as part of an overall AI system with additional safety guardrails as required. Developers are expected to deploy system safeguards when building agentic systems. Safeguards are key to achieve the right helpfulness-safety alignment as well as mitigating safety and security risks inherent to the system and any integration of the model or system with external tools. As part of our responsible release approach, we provide the community with [safeguards](https://llama.meta.com/trust-and-safety/) that developers should deploy with Llama models or other LLMs, including Llama Guard, Prompt Guard and Code Shield. All our [reference implementations](https://github.com/meta-llama/llama-agentic-system) demos contain these safeguards by default so developers can benefit from system-level safety out-of-the-box. ### New Capabilities and Use Cases **Technological Advancement:** Llama releases usually introduce new capabilities that require specific considerations in addition to the best practices that generally apply across all Generative AI use cases. For prior release capabilities also supported by Llama 3.2, see [Llama 3.1 Model Card](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md), as the same considerations apply here as well. **Constrained Environments:** Llama 3.2 1B and 3B models are expected to be deployed in highly constrained environments, such as mobile devices. LLM Systems using smaller models will have a different alignment profile and safety/helpfulness tradeoff than more complex, larger systems. Developers should ensure the safety of their system meets the requirements of their use case. We recommend using lighter system safeguards for such use cases, like Llama Guard 3-1B or its mobile-optimized version. ### Evaluations **Scaled Evaluations:** We built dedicated, adversarial evaluation datasets and evaluated systems composed of Llama models and Purple Llama safeguards to filter input prompt and output response. It is important to evaluate applications in context, and we recommend building dedicated evaluation dataset for your use case. **Red Teaming:** We conducted recurring red teaming exercises with the goal of discovering risks via adversarial prompting and we used the learnings to improve our benchmarks and safety tuning datasets. We partnered early with subject-matter experts in critical risk areas to understand the nature of these real-world harms and how such models may lead to unintended harm for society. Based on these conversations, we derived a set of adversarial goals for the red team to attempt to achieve, such as extracting harmful information or reprogramming the model to act in a potentially harmful capacity. The red team consisted of experts in cybersecurity, adversarial machine learning, responsible AI, and integrity in addition to multilingual content specialists with background in integrity issues in specific geographic markets. ### Critical Risks In addition to our safety work above, we took extra care on measuring and/or mitigating the following critical risk areas: **1\. CBRNE (Chemical, Biological, Radiological, Nuclear, and Explosive Weapons):** Llama 3.2 1B and 3B models are smaller and less capable derivatives of Llama 3.1. For Llama 3.1 70B and 405B, to assess risks related to proliferation of chemical and biological weapons, we performed uplift testing designed to assess whether use of Llama 3.1 models could meaningfully increase the capabilities of malicious actors to plan or carry out attacks using these types of weapons and have determined that such testing also applies to the smaller 1B and 3B models. **2\. Child Safety:** Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors including the additional languages Llama 3 is trained on. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. **3\. Cyber Attacks:** For Llama 3.1 405B, our cyber attack uplift study investigated whether LLMs can enhance human capabilities in hacking tasks, both in terms of skill level and speed. Our attack automation study focused on evaluating the capabilities of LLMs when used as autonomous agents in cyber offensive operations, specifically in the context of ransomware attacks. This evaluation was distinct from previous studies that considered LLMs as interactive assistants. The primary objective was to assess whether these models could effectively function as independent agents in executing complex cyber-attacks without human intervention. Because Llama 3.2’s 1B and 3B models are smaller and less capable models than Llama 3.1 405B, we broadly believe that the testing conducted for the 405B model also applies to Llama 3.2 models. ### Community **Industry Partnerships:** Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership on AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama). **Grants:** We also set up the [Llama Impact Grants](https://llama.meta.com/llama-impact-grants/) program to identify and support the most compelling applications of Meta’s Llama model for societal benefit across three categories: education, climate and open innovation. The 20 finalists from the hundreds of applications can be found [here](https://llama.meta.com/llama-impact-grants/#finalists). **Reporting:** Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community. ## Ethical Considerations and Limitations **Values:** The core values of Llama 3.2 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3.2 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. **Testing:** Llama 3.2 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3.2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3.2 models, developers should perform safety testing and tuning tailored to their specific applications of the model. Please refer to available resources including our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide), [Trust and Safety](https://llama.meta.com/trust-and-safety/) solutions, and other [resources](https://llama.meta.com/docs/get-started/) to learn more about responsible development.
null
Non_BioNLP
## Model Information The Llama 3.2 collection of multilingual large language models (LLMs) is a collection of pretrained and instruction-tuned generative models in 1B and 3B sizes (text in/text out). The Llama 3.2 instruction-tuned text only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. They outperform many of the available open source and closed chat models on common industry benchmarks. **Model Developer:** Meta **Model Architecture:** Llama 3.2 is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align with human preferences for helpfulness and safety. | | Training Data | Params | Input modalities | Output modalities | Context Length | GQA | Shared Embeddings | Token count | Knowledge cutoff | | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | :---- | | Llama 3.2 (text only) | A new mix of publicly available online data. | 1B (1.23B) | Multilingual Text | Multilingual Text and code | 128k | Yes | Yes | Up to 9T tokens | December 2023 | | | | 3B (3.21B) | Multilingual Text | Multilingual Text and code | | | | | | | Llama 3.2 Quantized (text only) | A new mix of publicly available online data. | 1B (1.23B) | Multilingual Text | Multilingual Text and code | 8k | Yes | Yes | Up to 9T tokens | December 2023 | | | | 3B (3.21B) | Multilingual Text | Multilingual Text and code | | | | | | **Supported Languages:** English, German, French, Italian, Portuguese, Hindi, Spanish, and Thai are officially supported. Llama 3.2 has been trained on a broader collection of languages than these 8 supported languages. Developers may fine-tune Llama 3.2 models for languages beyond these supported languages, provided they comply with the Llama 3.2 Community License and the Acceptable Use Policy. Developers are always expected to ensure that their deployments, including those that involve additional languages, are completed safely and responsibly. **Llama 3.2 Model Family:** Token counts refer to pretraining data only. All model versions use Grouped-Query Attention (GQA) for improved inference scalability. **Model Release Date:** Sept 25, 2024 **Status:** This is a static model trained on an offline dataset. Future versions may be released that improve model capabilities and safety. **License:** Use of Llama 3.2 is governed by the [Llama 3.2 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_2/LICENSE) (a custom, commercial license agreement). **Feedback:** Instructions on how to provide feedback or comments on the model can be found in the Llama Models [README](https://github.com/meta-llama/llama-models/blob/main/README.md). For more technical information about generation parameters and recipes for how to use Llama 3.2 in applications, please go [here](https://github.com/meta-llama/llama-recipes). ## Intended Use **Intended Use Cases:** Llama 3.2 is intended for commercial and research use in multiple languages. Instruction tuned text only models are intended for assistant-like chat and agentic applications like knowledge retrieval and summarization, mobile AI powered writing assistants and query and prompt rewriting. Pretrained models can be adapted for a variety of additional natural language generation tasks. Similarly, quantized models can be adapted for a variety of on-device use-cases with limited compute resources. **Out of Scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3.2 Community License. Use in languages beyond those explicitly referenced as supported in this model card. ## How to use This repository contains two versions of Llama-3.2-1B, for use with transformers and with the original `llama` codebase. ### Use with transformers Starting with transformers >= 4.43.0 onward, you can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function. Make sure to update your transformers installation via pip install --upgrade transformers. ```python import torch from transformers import pipeline model_id = "meta-llama/Llama-3.2-1B" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto" ) pipe("The key to life is") ``` ### Use with `llama` Please, follow the instructions in the [repository](https://github.com/meta-llama/llama). To download Original checkpoints, see the example command below leveraging `huggingface-cli`: ``` huggingface-cli download meta-llama/Llama-3.2-1B --include "original/*" --local-dir Llama-3.2-1B ``` ## Hardware and Software **Training Factors:** We used custom training libraries, Meta's custom built GPU cluster, and production infrastructure for pretraining. Fine-tuning, quantization, annotation, and evaluation were also performed on production infrastructure. **Training Energy Use:** Training utilized a cumulative of **916k** GPU hours of computation on H100-80GB (TDP of 700W) type hardware, per the table below. Training time is the total GPU time required for training each model and power consumption is the peak power capacity per GPU device used, adjusted for power usage efficiency. **Training Greenhouse Gas Emissions:** Estimated total location-based greenhouse gas emissions were **240** tons CO2eq for training. Since 2020, Meta has maintained net zero greenhouse gas emissions in its global operations and matched 100% of its electricity use with renewable energy; therefore, the total market-based greenhouse gas emissions for training were 0 tons CO2eq. | | Training Time (GPU hours) | Logit Generation Time (GPU Hours) | Training Power Consumption (W) | Training Location-Based Greenhouse Gas Emissions (tons CO2eq) | Training Market-Based Greenhouse Gas Emissions (tons CO2eq) | | :---- | :---: | ----- | :---: | :---: | :---: | | Llama 3.2 1B | 370k | \- | 700 | 107 | 0 | | Llama 3.2 3B | 460k | \- | 700 | 133 | 0 | | Llama 3.2 1B SpinQuant | 1.7 | 0 | 700 | *Negligible*\*\* | 0 | | Llama 3.2 3B SpinQuant | 2.4 | 0 | 700 | *Negligible*\*\* | 0 | | Llama 3.2 1B QLora | 1.3k | 0 | 700 | 0.381 | 0 | | Llama 3.2 3B QLora | 1.6k | 0 | 700 | 0.461 | 0 | | Total | 833k | 86k | | 240 | 0 | \*\* The location-based CO2e emissions of Llama 3.2 1B SpinQuant and Llama 3.2 3B SpinQuant are less than 0.001 metric tonnes each. This is due to the minimal training GPU hours that are required. The methodology used to determine training energy use and greenhouse gas emissions can be found [here](https://arxiv.org/pdf/2204.05149). Since Meta is openly releasing these models, the training energy use and greenhouse gas emissions will not be incurred by others. ## Training Data **Overview:** Llama 3.2 was pretrained on up to 9 trillion tokens of data from publicly available sources. For the 1B and 3B Llama 3.2 models, we incorporated logits from the Llama 3.1 8B and 70B models into the pretraining stage of the model development, where outputs (logits) from these larger models were used as token-level targets. Knowledge distillation was used after pruning to recover performance. In post-training we used a similar recipe as Llama 3.1 and produced final chat models by doing several rounds of alignment on top of the pre-trained model. Each round involved Supervised Fine-Tuning (SFT), Rejection Sampling (RS), and Direct Preference Optimization (DPO). **Data Freshness:** The pretraining data has a cutoff of December 2023\. ## Quantization ### Quantization Scheme We designed the current quantization scheme with the [PyTorch’s ExecuTorch](https://github.com/pytorch/executorch) inference framework and Arm CPU backend in mind, taking into account metrics including model quality, prefill/decoding speed, and memory footprint. Our quantization scheme involves three parts: - All linear layers in all transformer blocks are quantized to a 4-bit groupwise scheme (with a group size of 32) for weights and 8-bit per-token dynamic quantization for activations. - The classification layer is quantized to 8-bit per-channel for weight and 8-bit per token dynamic quantization for activation. - Similar to classification layer, an 8-bit per channel quantization is used for embedding layer. ### Quantization-Aware Training and LoRA The quantization-aware training (QAT) with low-rank adaptation (LoRA) models went through only post-training stages, using the same data as the full precision models. To initialize QAT, we utilize BF16 Llama 3.2 model checkpoints obtained after supervised fine-tuning (SFT) and perform an additional full round of SFT training with QAT. We then freeze the backbone of the QAT model and perform another round of SFT with LoRA adaptors applied to all layers within the transformer block. Meanwhile, the LoRA adaptors' weights and activations are maintained in BF16. Because our approach is similar to QLoRA of Dettmers et al., (2023) (i.e., quantization followed by LoRA adapters), we refer this method as QLoRA. Finally, we fine-tune the resulting model (both backbone and LoRA adaptors) using direct preference optimization (DPO). ### SpinQuant [SpinQuant](https://arxiv.org/abs/2405.16406) was applied, together with generative post-training quantization (GPTQ). For the SpinQuant rotation matrix fine-tuning, we optimized for 100 iterations, using 800 samples with sequence-length 2048 from the WikiText 2 dataset. For GPTQ, we used 128 samples from the same dataset with the same sequence-length. ## Benchmarks \- English Text In this section, we report the results for Llama 3.2 models on standard automatic benchmarks. For all these evaluations, we used our internal evaluations library. ### Base Pretrained Models | Category | Benchmark | \# Shots | Metric | Llama 3.2 1B | Llama 3.2 3B | Llama 3.1 8B | | ----- | ----- | :---: | :---: | :---: | :---: | :---: | | General | MMLU | 5 | macro\_avg/acc\_char | 32.2 | 58 | 66.7 | | | AGIEval English | 3-5 | average/acc\_char | 23.3 | 39.2 | 47.8 | | | ARC-Challenge | 25 | acc\_char | 32.8 | 69.1 | 79.7 | | Reading comprehension | SQuAD | 1 | em | 49.2 | 67.7 | 77 | | | QuAC (F1) | 1 | f1 | 37.9 | 42.9 | 44.9 | | | DROP (F1) | 3 | f1 | 28.0 | 45.2 | 59.5 | | Long Context | Needle in Haystack | 0 | em | 96.8 | 1 | 1 | ### Instruction Tuned Models | Capability | | Benchmark | \# Shots | Metric | Llama 3.2 1B bf16 | Llama 3.2 1B Vanilla PTQ\*\* | Llama 3.2 1B Spin Quant | Llama 3.2 1B QLoRA | Llama 3.2 3B bf16 | Llama 3.2 3B Vanilla PTQ\*\* | Llama 3.2 3B Spin Quant | Llama 3.2 3B QLoRA | Llama 3.1 8B | | :---: | ----- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | General | | MMLU | 5 | macro\_avg/acc | 49.3 | 43.3 | 47.3 | 49.0 | 63.4 | 60.5 | 62 | 62.4 | 69.4 | | Re-writing | | Open-rewrite eval | 0 | micro\_avg/rougeL | 41.6 | 39.2 | 40.9 | 41.2 | 40.1 | 40.3 | 40.8 | 40.7 | 40.9 | | Summarization | | TLDR9+ (test) | 1 | rougeL | 16.8 | 14.9 | 16.7 | 16.8 | 19.0 | 19.1 | 19.2 | 19.1 | 17.2 | | Instruction following | | IFEval | 0 | Avg(Prompt/Instruction acc Loose/Strict) | 59.5 | 51.5 | 58.4 | 55.6 | 77.4 | 73.9 | 73.5 | 75.9 | 80.4 | | Math | | GSM8K (CoT) | 8 | em\_maj1@1 | 44.4 | 33.1 | 40.6 | 46.5 | 77.7 | 72.9 | 75.7 | 77.9 | 84.5 | | | | MATH (CoT) | 0 | final\_em | 30.6 | 20.5 | 25.3 | 31.0 | 48.0 | 44.2 | 45.3 | 49.2 | 51.9 | | Reasoning | | ARC-C | 0 | acc | 59.4 | 54.3 | 57 | 60.7 | 78.6 | 75.6 | 77.6 | 77.6 | 83.4 | | | | GPQA | 0 | acc | 27.2 | 25.9 | 26.3 | 25.9 | 32.8 | 32.8 | 31.7 | 33.9 | 32.8 | | | | Hellaswag | 0 | acc | 41.2 | 38.1 | 41.3 | 41.5 | 69.8 | 66.3 | 68 | 66.3 | 78.7 | | Tool Use | | BFCL V2 | 0 | acc | 25.7 | 14.3 | 15.9 | 23.7 | 67.0 | 53.4 | 60.1 | 63.5 | 67.1 | | | | Nexus | 0 | macro\_avg/acc | 13.5 | 5.2 | 9.6 | 12.5 | 34.3 | 32.4 | 31.5 | 30.1 | 38.5 | | Long Context | | InfiniteBench/En.QA | 0 | longbook\_qa/f1 | 20.3 | N/A | N/A | N/A | 19.8 | N/A | N/A | N/A | 27.3 | | | | InfiniteBench/En.MC | 0 | longbook\_choice/acc | 38.0 | N/A | N/A | N/A | 63.3 | N/A | N/A | N/A | 72.2 | | | | NIH/Multi-needle | 0 | recall | 75.0 | N/A | N/A | N/A | 84.7 | N/A | N/A | N/A | 98.8 | | Multilingual | | MGSM (CoT) | 0 | em | 24.5 | 13.7 | 18.2 | 24.4 | 58.2 | 48.9 | 54.3 | 56.8 | 68.9 | \*\*for comparison purposes only. Model not released. ### Multilingual Benchmarks | Category | Benchmark | Language | Llama 3.2 1B | Llama 3.2 1B Vanilla PTQ\*\* | Llama 3.2 1B Spin Quant | Llama 3.2 1B QLoRA | Llama 3.2 3B | Llama 3.2 3B Vanilla PTQ\*\* | Llama 3.2 3B Spin Quant | Llama 3.2 3B QLoRA | Llama 3.1 8B | | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | General | MMLU (5-shot, macro_avg/acc) | Portuguese | 39.8 | 34.9 | 38.9 | 40.2 | 54.5 | 50.9 | 53.3 | 53.4 | 62.1 | | | | Spanish | 41.5 | 36.0 | 39.8 | 41.8 | 55.1 | 51.9 | 53.6 | 53.6 | 62.5 | | | | Italian | 39.8 | 34.9 | 38.1 | 40.6 | 53.8 | 49.9 | 52.1 | 51.7 | 61.6 | | | | German | 39.2 | 34.9 | 37.5 | 39.6 | 53.3 | 50.0 | 52.2 | 51.3 | 60.6 | | | | French | 40.5 | 34.8 | 39.2 | 40.8 | 54.6 | 51.2 | 53.3 | 53.3 | 62.3 | | | | Hindi | 33.5 | 30.0 | 32.1 | 34.0 | 43.3 | 40.4 | 42.0 | 42.1 | 50.9 | | | | Thai | 34.7 | 31.2 | 32.4 | 34.9 | 44.5 | 41.3 | 44.0 | 42.2 | 50.3 | \*\*for comparison purposes only. Model not released. ## Inference time In the below table, we compare the performance metrics of different quantization methods (SpinQuant and QAT \+ LoRA) with the BF16 baseline. The evaluation was done using the [ExecuTorch](https://github.com/pytorch/executorch) framework as the inference engine, with the ARM CPU as a backend using Android OnePlus 12 device. | Category | Decode (tokens/sec) | Time-to-first-token (sec) | Prefill (tokens/sec) | Model size (PTE file size in MB) | Memory size (RSS in MB) | | :---- | ----- | ----- | ----- | ----- | ----- | | 1B BF16 (baseline) | 19.2 | 1.0 | 60.3 | 2358 | 3,185 | | 1B SpinQuant | 50.2 (2.6x) | 0.3 (-76.9%) | 260.5 (4.3x) | 1083 (-54.1%) | 1,921 (-39.7%) | | 1B QLoRA | 45.8 (2.4x) | 0.3 (-76.0%) | 252.0 (4.2x) | 1127 (-52.2%) | 2,255 (-29.2%) | | 3B BF16 (baseline) | 7.6 | 3.0 | 21.2 | 6129 | 7,419 | | 3B SpinQuant | 19.7 (2.6x) | 0.7 (-76.4%) | 89.7 (4.2x) | 2435 (-60.3%) | 3,726 (-49.8%) | | 3B QLoRA | 18.5 (2.4x) | 0.7 (-76.1%) | 88.8 (4.2x) | 2529 (-58.7%) | 4,060 (-45.3%) | (\*) The performance measurement is done using an adb binary-based approach. (\*\*) It is measured on an Android OnePlus 12 device. (\*\*\*) Time-to-first-token (TTFT) is measured with prompt length=64 *Footnote:* - *Decode (tokens/second) is for how quickly it keeps generating. Higher is better.* - *Time-to-first-token (TTFT for shorthand) is for how fast it generates the first token for a given prompt. Lower is better.* - *Prefill is the inverse of TTFT (aka 1/TTFT) in tokens/second. Higher is better* - *Model size \- how big is the model, measured by, PTE file, a binary file format for ExecuTorch* - *RSS size \- Memory usage in resident set size (RSS)* ## Responsibility & Safety As part of our Responsible release approach, we followed a three-pronged strategy to managing trust & safety risks: 1. Enable developers to deploy helpful, safe and flexible experiences for their target audience and for the use cases supported by Llama 2. Protect developers against adversarial users aiming to exploit Llama capabilities to potentially cause harm 3. Provide protections for the community to help prevent the misuse of our models ### Responsible Deployment **Approach:** Llama is a foundational technology designed to be used in a variety of use cases. Examples on how Meta’s Llama models have been responsibly deployed can be found in our [Community Stories webpage](https://llama.meta.com/community-stories/). Our approach is to build the most helpful models, enabling the world to benefit from the technology power, by aligning our model safety for generic use cases and addressing a standard set of harms. Developers are then in the driver’s seat to tailor safety for their use cases, defining their own policies and deploying the models with the necessary safeguards in their Llama systems. Llama 3.2 was developed following the best practices outlined in our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide/). #### Llama 3.2 Instruct **Objective:** Our main objectives for conducting safety fine-tuning are to provide the research community with a valuable resource for studying the robustness of safety fine-tuning, as well as to offer developers a readily available, safe, and powerful model for various applications to reduce the developer workload to deploy safe AI systems. We implemented the same set of safety mitigations as in Llama 3, and you can learn more about these in the Llama 3 [paper](https://ai.meta.com/research/publications/the-llama-3-herd-of-models/). **Fine-Tuning Data:** We employ a multi-faceted approach to data collection, combining human-generated data from our vendors with synthetic data to mitigate potential safety risks. We’ve developed many large language model (LLM)-based classifiers that enable us to thoughtfully select high-quality prompts and responses, enhancing data quality control. **Refusals and Tone:** Building on the work we started with Llama 3, we put a great emphasis on model refusals to benign prompts as well as refusal tone. We included both borderline and adversarial prompts in our safety data strategy, and modified our safety data responses to follow tone guidelines. #### Llama 3.2 Systems **Safety as a System:** Large language models, including Llama 3.2, **are not designed to be deployed in isolation** but instead should be deployed as part of an overall AI system with additional safety guardrails as required. Developers are expected to deploy system safeguards when building agentic systems. Safeguards are key to achieve the right helpfulness-safety alignment as well as mitigating safety and security risks inherent to the system and any integration of the model or system with external tools. As part of our responsible release approach, we provide the community with [safeguards](https://llama.meta.com/trust-and-safety/) that developers should deploy with Llama models or other LLMs, including Llama Guard, Prompt Guard and Code Shield. All our [reference implementations](https://github.com/meta-llama/llama-agentic-system) demos contain these safeguards by default so developers can benefit from system-level safety out-of-the-box. ### New Capabilities and Use Cases **Technological Advancement:** Llama releases usually introduce new capabilities that require specific considerations in addition to the best practices that generally apply across all Generative AI use cases. For prior release capabilities also supported by Llama 3.2, see [Llama 3.1 Model Card](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/MODEL_CARD.md), as the same considerations apply here as well. **Constrained Environments:** Llama 3.2 1B and 3B models are expected to be deployed in highly constrained environments, such as mobile devices. LLM Systems using smaller models will have a different alignment profile and safety/helpfulness tradeoff than more complex, larger systems. Developers should ensure the safety of their system meets the requirements of their use case. We recommend using lighter system safeguards for such use cases, like Llama Guard 3-1B or its mobile-optimized version. ### Evaluations **Scaled Evaluations:** We built dedicated, adversarial evaluation datasets and evaluated systems composed of Llama models and Purple Llama safeguards to filter input prompt and output response. It is important to evaluate applications in context, and we recommend building dedicated evaluation dataset for your use case. **Red Teaming:** We conducted recurring red teaming exercises with the goal of discovering risks via adversarial prompting and we used the learnings to improve our benchmarks and safety tuning datasets. We partnered early with subject-matter experts in critical risk areas to understand the nature of these real-world harms and how such models may lead to unintended harm for society. Based on these conversations, we derived a set of adversarial goals for the red team to attempt to achieve, such as extracting harmful information or reprogramming the model to act in a potentially harmful capacity. The red team consisted of experts in cybersecurity, adversarial machine learning, responsible AI, and integrity in addition to multilingual content specialists with background in integrity issues in specific geographic markets. ### Critical Risks In addition to our safety work above, we took extra care on measuring and/or mitigating the following critical risk areas: **1\. CBRNE (Chemical, Biological, Radiological, Nuclear, and Explosive Weapons):** Llama 3.2 1B and 3B models are smaller and less capable derivatives of Llama 3.1. For Llama 3.1 70B and 405B, to assess risks related to proliferation of chemical and biological weapons, we performed uplift testing designed to assess whether use of Llama 3.1 models could meaningfully increase the capabilities of malicious actors to plan or carry out attacks using these types of weapons and have determined that such testing also applies to the smaller 1B and 3B models. **2\. Child Safety:** Child Safety risk assessments were conducted using a team of experts, to assess the model’s capability to produce outputs that could result in Child Safety risks and inform on any necessary and appropriate risk mitigations via fine tuning. We leveraged those expert red teaming sessions to expand the coverage of our evaluation benchmarks through Llama 3 model development. For Llama 3, we conducted new in-depth sessions using objective based methodologies to assess the model risks along multiple attack vectors including the additional languages Llama 3 is trained on. We also partnered with content specialists to perform red teaming exercises assessing potentially violating content while taking account of market specific nuances or experiences. **3\. Cyber Attacks:** For Llama 3.1 405B, our cyber attack uplift study investigated whether LLMs can enhance human capabilities in hacking tasks, both in terms of skill level and speed. Our attack automation study focused on evaluating the capabilities of LLMs when used as autonomous agents in cyber offensive operations, specifically in the context of ransomware attacks. This evaluation was distinct from previous studies that considered LLMs as interactive assistants. The primary objective was to assess whether these models could effectively function as independent agents in executing complex cyber-attacks without human intervention. Because Llama 3.2’s 1B and 3B models are smaller and less capable models than Llama 3.1 405B, we broadly believe that the testing conducted for the 405B model also applies to Llama 3.2 models. ### Community **Industry Partnerships:** Generative AI safety requires expertise and tooling, and we believe in the strength of the open community to accelerate its progress. We are active members of open consortiums, including the AI Alliance, Partnership on AI and MLCommons, actively contributing to safety standardization and transparency. We encourage the community to adopt taxonomies like the MLCommons Proof of Concept evaluation to facilitate collaboration and transparency on safety and content evaluations. Our Purple Llama tools are open sourced for the community to use and widely distributed across ecosystem partners including cloud service providers. We encourage community contributions to our [Github repository](https://github.com/meta-llama/PurpleLlama). **Grants:** We also set up the [Llama Impact Grants](https://llama.meta.com/llama-impact-grants/) program to identify and support the most compelling applications of Meta’s Llama model for societal benefit across three categories: education, climate and open innovation. The 20 finalists from the hundreds of applications can be found [here](https://llama.meta.com/llama-impact-grants/#finalists). **Reporting:** Finally, we put in place a set of resources including an [output reporting mechanism](https://developers.facebook.com/llama_output_feedback) and [bug bounty program](https://www.facebook.com/whitehat) to continuously improve the Llama technology with the help of the community. ## Ethical Considerations and Limitations **Values:** The core values of Llama 3.2 are openness, inclusivity and helpfulness. It is meant to serve everyone, and to work for a wide range of use cases. It is thus designed to be accessible to people across many different backgrounds, experiences and perspectives. Llama 3.2 addresses users and their needs as they are, without insertion unnecessary judgment or normativity, while reflecting the understanding that even content that may appear problematic in some cases can serve valuable purposes in others. It respects the dignity and autonomy of all users, especially in terms of the values of free thought and expression that power innovation and progress. **Testing:** Llama 3.2 is a new technology, and like any new technology, there are risks associated with its use. Testing conducted to date has not covered, nor could it cover, all scenarios. For these reasons, as with all LLMs, Llama 3.2’s potential outputs cannot be predicted in advance, and the model may in some instances produce inaccurate, biased or other objectionable responses to user prompts. Therefore, before deploying any applications of Llama 3.2 models, developers should perform safety testing and tuning tailored to their specific applications of the model. Please refer to available resources including our [Responsible Use Guide](https://llama.meta.com/responsible-use-guide), [Trust and Safety](https://llama.meta.com/trust-and-safety/) solutions, and other [resources](https://llama.meta.com/docs/get-started/) to learn more about responsible development.
{"language": ["en", "de", "fr", "it", "pt", "hi", "es", "th"], "library_name": "transformers", "license": "llama3.2", "pipeline_tag": "text-generation", "tags": ["facebook", "meta", "pytorch", "llama", "llama-3"], "extra_gated_prompt": "### LLAMA 3.2 COMMUNITY LICENSE AGREEMENT\n\nLlama 3.2 Version Release Date: September 25, 2024\n\n“Agreement” means the terms and conditions for use, reproduction, distribution and modification of the Llama Materials set forth herein.\n\n“Documentation” means the specifications, manuals and documentation accompanying Llama 3.2 distributed by Meta at https://llama.meta.com/doc/overview.\n\n“Licensee” or “you” means you, or your employer or any other person or entity (if you are entering into this Agreement on such person or entity’s behalf), of the age required under applicable laws, rules or regulations to provide legal consent and that has legal authority to bind your employer or such other person or entity if you are entering in this Agreement on their behalf.\n\n“Llama 3.2” means the foundational large language models and software and algorithms, including machine-learning model code, trained model weights, inference-enabling code, training-enabling code, fine-tuning enabling code and other elements of the foregoing distributed by Meta at https://www.llama.com/llama-downloads.\n\n“Llama Materials” means, collectively, Meta’s proprietary Llama 3.2 and Documentation (and any portion thereof) made available under this Agreement.\n\n“Meta” or “we” means Meta Platforms Ireland Limited (if you are located in or, if you are an entity, your principal place of business is in the EEA or Switzerland) and Meta Platforms, Inc. (if you are located outside of the EEA or Switzerland). \n\nBy clicking “I Accept” below or by using or distributing any portion or element of the Llama Materials, you agree to be bound by this Agreement.\n\n1. License Rights and Redistribution.\na. Grant of Rights. You are granted a non-exclusive, worldwide, non-transferable and royalty-free limited license under Meta’s intellectual property or other rights owned by Meta embodied in the Llama Materials to use, reproduce, distribute, copy, create derivative works of, and make modifications to the Llama Materials. \nb. Redistribution and Use. \ni. If you distribute or make available the Llama Materials (or any derivative works thereof), or a product or service (including another AI model) that contains any of them, you shall (A) provide a copy of this Agreement with any such Llama Materials; and (B) prominently display “Built with Llama” on a related website, user interface, blogpost, about page, or product documentation. If you use the Llama Materials or any outputs or results of the Llama Materials to create, train, fine tune, or otherwise improve an AI model, which is distributed or made available, you shall also include “Llama” at the beginning of any such AI model name.\nii. If you receive Llama Materials, or any derivative works thereof, from a Licensee as part of an integrated end user product, then Section 2 of this Agreement will not apply to you. \niii. You must retain in all copies of the Llama Materials that you distribute the following attribution notice within a “Notice” text file distributed as a part of such copies: “Llama 3.2 is licensed under the Llama 3.2 Community License, Copyright © Meta Platforms, Inc. All Rights Reserved.”\niv. Your use of the Llama Materials must comply with applicable laws and regulations (including trade compliance laws and regulations) and adhere to the Acceptable Use Policy for the Llama Materials (available at https://www.llama.com/llama3_2/use-policy), which is hereby incorporated by reference into this Agreement.\n \n2. Additional Commercial Terms. If, on the Llama 3.2 version release date, the monthly active users of the products or services made available by or for Licensee, or Licensee’s affiliates, is greater than 700 million monthly active users in the preceding calendar month, you must request a license from Meta, which Meta may grant to you in its sole discretion, and you are not authorized to exercise any of the rights under this Agreement unless or until Meta otherwise expressly grants you such rights.\n3. Disclaimer of Warranty. UNLESS REQUIRED BY APPLICABLE LAW, THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS THEREFROM ARE PROVIDED ON AN “AS IS” BASIS, WITHOUT WARRANTIES OF ANY KIND, AND META DISCLAIMS ALL WARRANTIES OF ANY KIND, BOTH EXPRESS AND IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY WARRANTIES OF TITLE, NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. YOU ARE SOLELY RESPONSIBLE FOR DETERMINING THE APPROPRIATENESS OF USING OR REDISTRIBUTING THE LLAMA MATERIALS AND ASSUME ANY RISKS ASSOCIATED WITH YOUR USE OF THE LLAMA MATERIALS AND ANY OUTPUT AND RESULTS.\n4. Limitation of Liability. IN NO EVENT WILL META OR ITS AFFILIATES BE LIABLE UNDER ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, TORT, NEGLIGENCE, PRODUCTS LIABILITY, OR OTHERWISE, ARISING OUT OF THIS AGREEMENT, FOR ANY LOST PROFITS OR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, EXEMPLARY OR PUNITIVE DAMAGES, EVEN IF META OR ITS AFFILIATES HAVE BEEN ADVISED OF THE POSSIBILITY OF ANY OF THE FOREGOING.\n5. Intellectual Property.\na. No trademark licenses are granted under this Agreement, and in connection with the Llama Materials, neither Meta nor Licensee may use any name or mark owned by or associated with the other or any of its affiliates, except as required for reasonable and customary use in describing and redistributing the Llama Materials or as set forth in this Section 5(a). Meta hereby grants you a license to use “Llama” (the “Mark”) solely as required to comply with the last sentence of Section 1.b.i. You will comply with Meta’s brand guidelines (currently accessible at https://about.meta.com/brand/resources/meta/company-brand/). All goodwill arising out of your use of the Mark will inure to the benefit of Meta.\nb. Subject to Meta’s ownership of Llama Materials and derivatives made by or for Meta, with respect to any derivative works and modifications of the Llama Materials that are made by you, as between you and Meta, you are and will be the owner of such derivative works and modifications.\nc. If you institute litigation or other proceedings against Meta or any entity (including a cross-claim or counterclaim in a lawsuit) alleging that the Llama Materials or Llama 3.2 outputs or results, or any portion of any of the foregoing, constitutes infringement of intellectual property or other rights owned or licensable by you, then any licenses granted to you under this Agreement shall terminate as of the date such litigation or claim is filed or instituted. You will indemnify and hold harmless Meta from and against any claim by any third party arising out of or related to your use or distribution of the Llama Materials.\n6. Term and Termination. The term of this Agreement will commence upon your acceptance of this Agreement or access to the Llama Materials and will continue in full force and effect until terminated in accordance with the terms and conditions herein. Meta may terminate this Agreement if you are in breach of any term or condition of this Agreement. Upon termination of this Agreement, you shall delete and cease use of the Llama Materials. Sections 3, 4 and 7 shall survive the termination of this Agreement. \n7. Governing Law and Jurisdiction. This Agreement will be governed and construed under the laws of the State of California without regard to choice of law principles, and the UN Convention on Contracts for the International Sale of Goods does not apply to this Agreement. The courts of California shall have exclusive jurisdiction of any dispute arising out of this Agreement. \n### Llama 3.2 Acceptable Use Policy\nMeta is committed to promoting safe and fair use of its tools and features, including Llama 3.2. If you access or use Llama 3.2, you agree to this Acceptable Use Policy (“**Policy**”). The most recent copy of this policy can be found at [https://www.llama.com/llama3_2/use-policy](https://www.llama.com/llama3_2/use-policy).\n#### Prohibited Uses\nWe want everyone to use Llama 3.2 safely and responsibly. You agree you will not use, or allow others to use, Llama 3.2 to:\n1. Violate the law or others’ rights, including to:\n 1. Engage in, promote, generate, contribute to, encourage, plan, incite, or further illegal or unlawful activity or content, such as:\n 1. Violence or terrorism\n 2. Exploitation or harm to children, including the solicitation, creation, acquisition, or dissemination of child exploitative content or failure to report Child Sexual Abuse Material\n 3. Human trafficking, exploitation, and sexual violence\n 4. The illegal distribution of information or materials to minors, including obscene materials, or failure to employ legally required age-gating in connection with such information or materials.\n 5. Sexual solicitation\n 6. Any other criminal activity\n 1. Engage in, promote, incite, or facilitate the harassment, abuse, threatening, or bullying of individuals or groups of individuals\n 2. Engage in, promote, incite, or facilitate discrimination or other unlawful or harmful conduct in the provision of employment, employment benefits, credit, housing, other economic benefits, or other essential goods and services\n 3. Engage in the unauthorized or unlicensed practice of any profession including, but not limited to, financial, legal, medical/health, or related professional practices\n 4. Collect, process, disclose, generate, or infer private or sensitive information about individuals, including information about individuals’ identity, health, or demographic information, unless you have obtained the right to do so in accordance with applicable law\n 5. Engage in or facilitate any action or generate any content that infringes, misappropriates, or otherwise violates any third-party rights, including the outputs or results of any products or services using the Llama Materials\n 6. Create, generate, or facilitate the creation of malicious code, malware, computer viruses or do anything else that could disable, overburden, interfere with or impair the proper working, integrity, operation or appearance of a website or computer system\n 7. Engage in any action, or facilitate any action, to intentionally circumvent or remove usage restrictions or other safety measures, or to enable functionality disabled by Meta \n2. Engage in, promote, incite, facilitate, or assist in the planning or development of activities that present a risk of death or bodily harm to individuals, including use of Llama 3.2 related to the following:\n 8. Military, warfare, nuclear industries or applications, espionage, use for materials or activities that are subject to the International Traffic Arms Regulations (ITAR) maintained by the United States Department of State or to the U.S. Biological Weapons Anti-Terrorism Act of 1989 or the Chemical Weapons Convention Implementation Act of 1997\n 9. Guns and illegal weapons (including weapon development)\n 10. Illegal drugs and regulated/controlled substances\n 11. Operation of critical infrastructure, transportation technologies, or heavy machinery\n 12. Self-harm or harm to others, including suicide, cutting, and eating disorders\n 13. Any content intended to incite or promote violence, abuse, or any infliction of bodily harm to an individual\n3. Intentionally deceive or mislead others, including use of Llama 3.2 related to the following:\n 14. Generating, promoting, or furthering fraud or the creation or promotion of disinformation\n 15. Generating, promoting, or furthering defamatory content, including the creation of defamatory statements, images, or other content\n 16. Generating, promoting, or further distributing spam\n 17. Impersonating another individual without consent, authorization, or legal right\n 18. Representing that the use of Llama 3.2 or outputs are human-generated\n 19. Generating or facilitating false online engagement, including fake reviews and other means of fake online engagement \n4. Fail to appropriately disclose to end users any known dangers of your AI system 5. Interact with third party tools, models, or software designed to generate unlawful content or engage in unlawful or harmful conduct and/or represent that the outputs of such tools, models, or software are associated with Meta or Llama 3.2\n\nWith respect to any multimodal models included in Llama 3.2, the rights granted under Section 1(a) of the Llama 3.2 Community License Agreement are not being granted to you if you are an individual domiciled in, or a company with a principal place of business in, the European Union. This restriction does not apply to end users of a product or service that incorporates any such multimodal models.\n\nPlease report any violation of this Policy, software “bug,” or other problems that could lead to a violation of this Policy through one of the following means:\n\n* Reporting issues with the model: [https://github.com/meta-llama/llama-models/issues](https://l.workplace.com/l.php?u=https%3A%2F%2Fgithub.com%2Fmeta-llama%2Fllama-models%2Fissues&h=AT0qV8W9BFT6NwihiOHRuKYQM_UnkzN_NmHMy91OT55gkLpgi4kQupHUl0ssR4dQsIQ8n3tfd0vtkobvsEvt1l4Ic6GXI2EeuHV8N08OG2WnbAmm0FL4ObkazC6G_256vN0lN9DsykCvCqGZ)\n* Reporting risky content generated by the model: [developers.facebook.com/llama_output_feedback](http://developers.facebook.com/llama_output_feedback)\n* Reporting bugs and security concerns: [facebook.com/whitehat/info](http://facebook.com/whitehat/info)\n* Reporting violations of the Acceptable Use Policy or unlicensed uses of Llama 3.2: [email protected]", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Date of birth": "date_picker", "Country": "country", "Affiliation": "text", "Job title": {"type": "select", "options": ["Student", "Research Graduate", "AI researcher", "AI developer/engineer", "Reporter", "Other"]}, "geo": "ip_location", "By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the Meta Privacy Policy": "checkbox"}, "extra_gated_description": "The information you provide will be collected, stored, processed and shared in accordance with the [Meta Privacy Policy](https://www.facebook.com/privacy/policy/).", "extra_gated_button_content": "Submit"}
task
[ "SUMMARIZATION" ]
40,992
JustSaga/finetuning-sentiment-model-10000-samples
JustSaga
text-classification
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-05-06T18:47:08Z
2023-05-06T19:04:16+00:00
10
0
--- datasets: - imdb license: apache-2.0 metrics: - accuracy - f1 tags: - generated_from_trainer model-index: - name: finetuning-sentiment-model-10000-samples results: - task: type: text-classification name: Text Classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - type: accuracy value: 0.908 name: Accuracy - type: f1 value: 0.9072580645161291 name: F1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-10000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2391 - Accuracy: 0.908 - F1: 0.9073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuning-sentiment-model-10000-samples This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2391 - Accuracy: 0.908 - F1: 0.9073 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.28.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
{"datasets": ["imdb"], "license": "apache-2.0", "metrics": ["accuracy", "f1"], "tags": ["generated_from_trainer"], "model-index": [{"name": "finetuning-sentiment-model-10000-samples", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "imdb", "type": "imdb", "config": "plain_text", "split": "test", "args": "plain_text"}, "metrics": [{"type": "accuracy", "value": 0.908, "name": "Accuracy"}, {"type": "f1", "value": 0.9072580645161291, "name": "F1"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
40,993
TransferGraph/finiteautomata_betonews-tweetcontext-finetuned-lora-tweet_eval_hate
TransferGraph
text-classification
[ "peft", "safetensors", "parquet", "text-classification", "dataset:tweet_eval", "base_model:piuba-bigdata/betonews-tweetcontext", "base_model:adapter:piuba-bigdata/betonews-tweetcontext", "model-index", "region:us" ]
2024-02-29T13:46:49Z
2024-02-29T13:46:52+00:00
1
0
--- base_model: finiteautomata/betonews-tweetcontext datasets: - tweet_eval library_name: peft metrics: - accuracy tags: - parquet - text-classification model-index: - name: finiteautomata_betonews-tweetcontext-finetuned-lora-tweet_eval_hate results: - task: type: text-classification name: Text Classification dataset: name: tweet_eval type: tweet_eval config: hate split: validation args: hate metrics: - type: accuracy value: 0.676 name: accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finiteautomata_betonews-tweetcontext-finetuned-lora-tweet_eval_hate This model is a fine-tuned version of [finiteautomata/betonews-tweetcontext](https://huggingface.co/finiteautomata/betonews-tweetcontext) on the tweet_eval dataset. It achieves the following results on the evaluation set: - accuracy: 0.676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | accuracy | train_loss | epoch | |:--------:|:----------:|:-----:| | 0.435 | None | 0 | | 0.667 | 0.6282 | 0 | | 0.677 | 0.5555 | 1 | | 0.668 | 0.5322 | 2 | | 0.676 | 0.5195 | 3 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.16.1 - Tokenizers 0.15.2
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finiteautomata_betonews-tweetcontext-finetuned-lora-tweet_eval_hate This model is a fine-tuned version of [finiteautomata/betonews-tweetcontext](https://huggingface.co/finiteautomata/betonews-tweetcontext) on the tweet_eval dataset. It achieves the following results on the evaluation set: - accuracy: 0.676 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | accuracy | train_loss | epoch | |:--------:|:----------:|:-----:| | 0.435 | None | 0 | | 0.667 | 0.6282 | 0 | | 0.677 | 0.5555 | 1 | | 0.668 | 0.5322 | 2 | | 0.676 | 0.5195 | 3 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.16.1 - Tokenizers 0.15.2
{"base_model": "finiteautomata/betonews-tweetcontext", "datasets": ["tweet_eval"], "library_name": "peft", "metrics": ["accuracy"], "tags": ["parquet", "text-classification"], "model-index": [{"name": "finiteautomata_betonews-tweetcontext-finetuned-lora-tweet_eval_hate", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "tweet_eval", "type": "tweet_eval", "config": "hate", "split": "validation", "args": "hate"}, "metrics": [{"type": "accuracy", "value": 0.676, "name": "accuracy"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
40,994
alpindale/c4ai-command-r-plus-GPTQ
alpindale
text-generation
[ "transformers", "safetensors", "cohere", "text-generation", "conversational", "en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar", "license:cc-by-nc-4.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
2024-04-05T03:08:15Z
2024-04-17T14:34:17+00:00
163
20
--- language: - en - fr - de - es - it - pt - ja - ko - zh - ar library_name: transformers license: cc-by-nc-4.0 --- # Model Card for C4AI Command R+ 🚨 **This model is non-quantized version of C4AI Command R+. You can find the quantized version of C4AI Command R+ using bitsandbytes [here](https://huggingface.co/CohereForAI/c4ai-command-r-plus-4bit)**. ## Model Summary C4AI Command R+ is an open weights research release of a 104B billion parameter model with highly advanced capabilities, this includes Retrieval Augmented Generation (RAG) and tool use to automate sophisticated tasks. The tool use in this model generation enables multi-step tool use which allows the model to combine multiple tools over multiple steps to accomplish difficult tasks. C4AI Command R+ is a multilingual model evaluated in 10 languages for performance: English, French, Spanish, Italian, German, Brazilian Portuguese, Japanese, Korean, Arabic, and Simplified Chinese. Command R+ is optimized for a variety of use cases including reasoning, summarization, and question answering. C4AI Command R+ is part of a family of open weight releases from Cohere For AI and Cohere. Our smaller companion model is [C4AI Command R](https://huggingface.co/CohereForAI/c4ai-command-r-v01) Developed by: [Cohere](https://cohere.com/) and [Cohere For AI](https://cohere.for.ai) - Point of Contact: Cohere For AI: [cohere.for.ai](https://cohere.for.ai/) - License: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy) - Model: c4ai-command-r-plus - Model Size: 104 billion parameters - Context length: 128K **Try C4AI Command R+** You can try out C4AI Command R+ before downloading the weights in our hosted [Hugging Face Space](https://huggingface.co/spaces/CohereForAI/c4ai-command-r-plus). **Usage** Please install `transformers` from the source repository that includes the necessary changes for this model. ```python # pip install 'git+https://github.com/huggingface/transformers.git' from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "CohereForAI/c4ai-command-r-plus" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) # Format message with the command-r-plus chat template messages = [{"role": "user", "content": "Hello, how are you?"}] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") ## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> gen_tokens = model.generate( input_ids, max_new_tokens=100, do_sample=True, temperature=0.3, ) gen_text = tokenizer.decode(gen_tokens[0]) print(gen_text) ``` **Quantized model through bitsandbytes, 8-bit precision** ```python # pip install 'git+https://github.com/huggingface/transformers.git' bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig bnb_config = BitsAndBytesConfig(load_in_8bit=True) model_id = "CohereForAI/c4ai-command-r-plus" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config) # Format message with the command-r-plus chat template messages = [{"role": "user", "content": "Hello, how are you?"}] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") ## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> gen_tokens = model.generate( input_ids, max_new_tokens=100, do_sample=True, temperature=0.3, ) gen_text = tokenizer.decode(gen_tokens[0]) print(gen_text) ``` **Quantized model through bitsandbytes, 4-bit precision** This model is non-quantized version of C4AI Command R+. You can find the quantized version of C4AI Command R+ using bitsandbytes [here](https://huggingface.co/CohereForAI/c4ai-command-r-plus-4bit). ## Model Details **Input**: Models input text only. **Output**: Models generate text only. **Model Architecture**: This is an auto-regressive language model that uses an optimized transformer architecture. After pretraining, this model uses supervised fine-tuning (SFT) and preference training to align model behavior to human preferences for helpfulness and safety. **Languages covered**: The model is optimized to perform well in the following languages: English, French, Spanish, Italian, German, Brazilian Portuguese, Japanese, Korean, Simplified Chinese, and Arabic. Pre-training data additionally included the following 13 languages: Russian, Polish, Turkish, Vietnamese, Dutch, Czech, Indonesian, Ukrainian, Romanian, Greek, Hindi, Hebrew, Persian. **Context length**: Command R+ supports a context length of 128K. ## Evaluations Command R+ has been submitted to the [Open LLM leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). We include the results below, along with a direct comparison to the strongest state-of-art open weights models currently available on Hugging Face. We note that these results are only useful to compare when evaluations are implemented for all models in a [standardized way](https://github.com/EleutherAI/lm-evaluation-harness) using publically available code, and hence shouldn't be used for comparison outside of models submitted to the leaderboard or compared to self-reported numbers which can't be replicated in the same way. | Model | Average | Arc (Challenge) | Hella Swag | MMLU | Truthful QA | Winogrande | GSM8k | |:--------------------------------|----------:|------------------:|-------------:|-------:|--------------:|-------------:|--------:| | **CohereForAI/c4ai-command-r-plus** | 74.6 | 70.99 | 88.6 | 75.7 | 56.3 | 85.4 | 70.7 | | [DBRX Instruct](https://huggingface.co/databricks/dbrx-instruct) | 74.5 | 68.9 | 89 | 73.7 | 66.9 | 81.8 | 66.9 | | [Mixtral 8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) | 72.7 | 70.1 | 87.6 | 71.4 | 65 | 81.1 | 61.1 | | [Mixtral 8x7B Chat](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) | 72.6 | 70.2 | 87.6 | 71.2 | 64.6 | 81.4 | 60.7 | | [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) | 68.5 | 65.5 | 87 | 68.2 | 52.3 | 81.5 | 56.6 | | [Llama 2 70B](https://huggingface.co/meta-llama/Llama-2-70b-hf) | 67.9 | 67.3 | 87.3 | 69.8 | 44.9 | 83.7 | 54.1 | | [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) | 65.3 | 65.4 | 84.2 | 74.9 | 55.4 | 80.1 | 31.9 | | [Gemma-7B](https://huggingface.co/google/gemma-7b) | 63.8 | 61.1 | 82.2 | 64.6 | 44.8 | 79 | 50.9 | | [LLama 2 70B Chat](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) | 62.4 | 64.6 | 85.9 | 63.9 | 52.8 | 80.5 | 26.7 | | [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 61 | 60 | 83.3 | 64.2 | 42.2 | 78.4 | 37.8 | We include these metrics here because they are frequently requested, but note that these metrics do not capture RAG, multilingual, tooling performance or the evaluation of open ended generations which we believe Command R+ to be state-of-art at. For evaluations of RAG, multilingual and tooling read more [here](https://txt.cohere.com/command-r-plus-microsoft-azure/). For evaluation of open ended generation, Command R+ is currently being evaluated on the [chatbot arena](https://chat.lmsys.org/). ### Tool use & multihop capabilities: Command R+ has been specifically trained with conversational tool use capabilities. These have been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template. Deviating from this prompt template will likely reduce performance, but we encourage experimentation. Command R+’s tool use functionality takes a conversation as input (with an optional user-system preamble), along with a list of available tools. The model will then generate a json-formatted list of actions to execute on a subset of those tools. Command R+ may use one of its supplied tools more than once. The model has been trained to recognise a special `directly_answer` tool, which it uses to indicate that it doesn’t want to use any of its other tools. The ability to abstain from calling a specific tool can be useful in a range of situations, such as greeting a user, or asking clarifying questions. We recommend including the `directly_answer` tool, but it can be removed or renamed if required. Comprehensive documentation for working with command R+'s tool use prompt template can be found [here](https://docs.cohere.com/docs/prompting-command-r). The code snippet below shows a minimal working example on how to render a prompt. <details> <summary><b>Usage: Rendering Tool Use Prompts [CLICK TO EXPAND]</b> </summary> ```python from transformers import AutoTokenizer model_id = "CohereForAI/c4ai-command-r-plus" tokenizer = AutoTokenizer.from_pretrained(model_id) # define conversation input: conversation = [ {"role": "user", "content": "Whats the biggest penguin in the world?"} ] # Define tools available for the model to use: tools = [ { "name": "internet_search", "description": "Returns a list of relevant document snippets for a textual query retrieved from the internet", "parameter_definitions": { "query": { "description": "Query to search the internet with", "type": 'str', "required": True } } }, { 'name': "directly_answer", "description": "Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history", 'parameter_definitions': {} } ] # render the tool use prompt as a string: tool_use_prompt = tokenizer.apply_tool_use_template( conversation, tools=tools, tokenize=False, add_generation_prompt=True, ) print(tool_use_prompt) ``` </details> <details> <summary><b>Example Rendered Tool Use Prompt [CLICK TO EXPAND]</b></summary> ```` <BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral. # System Preamble ## Basic Rules You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions. # User Preamble ## Task and Context You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging. ## Style Guide Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling. ## Available Tools Here is a list of tools that you have available to you: ```python def internet_search(query: str) -> List[Dict]: """Returns a list of relevant document snippets for a textual query retrieved from the internet Args: query (str): Query to search the internet with """ pass ``` ```python def directly_answer() -> List[Dict]: """Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history """ pass ```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Whats the biggest penguin in the world?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write 'Action:' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user's last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example: ```json [ { "tool_name": title of the tool in the specification, "parameters": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters } ]```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> ```` </details> <details> <summary><b>Example Rendered Tool Use Completion [CLICK TO EXPAND]</b></summary> ```` Action: ```json [ { "tool_name": "internet_search", "parameters": { "query": "biggest penguin in the world" } } ] ``` ```` </details> ### Grounded Generation and RAG Capabilities: Command R+ has been specifically trained with grounded generation capabilities. This means that it can generate responses based on a list of supplied document snippets, and it will include grounding spans (citations) in its response indicating the source of the information. This can be used to enable behaviors such as grounded summarization and the final step of Retrieval Augmented Generation (RAG). This behavior has been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template. Deviating from this prompt template may reduce performance, but we encourage experimentation. Command R+’s grounded generation behavior takes a conversation as input (with an optional user-supplied system preamble, indicating task, context and desired output style), along with a list of retrieved document snippets. The document snippets should be chunks, rather than long documents, typically around 100-400 words per chunk. Document snippets consist of key-value pairs. The keys should be short descriptive strings, the values can be text or semi-structured. By default, Command R+ will generate grounded responses by first predicting which documents are relevant, then predicting which ones it will cite, then generating an answer. Finally, it will then insert grounding spans into the answer. See below for an example. This is referred to as `accurate` grounded generation. The model is trained with a number of other answering modes, which can be selected by prompt changes. A `fast` citation mode is supported in the tokenizer, which will directly generate an answer with grounding spans in it, without first writing the answer out in full. This sacrifices some grounding accuracy in favor of generating fewer tokens. Comprehensive documentation for working with Command R+'s grounded generation prompt template can be found [here](https://docs.cohere.com/docs/prompting-command-r). The code snippet below shows a minimal working example on how to render a prompt. <details> <summary> <b>Usage: Rendering Grounded Generation prompts [CLICK TO EXPAND]</b> </summary> ````python from transformers import AutoTokenizer model_id = "CohereForAI/c4ai-command-r-plus" tokenizer = AutoTokenizer.from_pretrained(model_id) # define conversation input: conversation = [ {"role": "user", "content": "Whats the biggest penguin in the world?"} ] # define documents to ground on: documents = [ { "title": "Tall penguins", "text": "Emperor penguins are the tallest growing up to 122 cm in height." }, { "title": "Penguin habitats", "text": "Emperor penguins only live in Antarctica."} ] # render the tool use prompt as a string: grounded_generation_prompt = tokenizer.apply_grounded_generation_template( conversation, documents=documents, citation_mode="accurate", # or "fast" tokenize=False, add_generation_prompt=True, ) print(grounded_generation_prompt) ```` </details> <details> <summary><b>Example Rendered Grounded Generation Prompt [CLICK TO EXPAND]</b></summary> ````<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral. # System Preamble ## Basic Rules You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions. # User Preamble ## Task and Context You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging. ## Style Guide Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Whats the biggest penguin in the world?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|><results> Document: 0 title: Tall penguins text: Emperor penguins are the tallest growing up to 122 cm in height. Document: 1 title: Penguin habitats text: Emperor penguins only live in Antarctica. </results><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Carefully perform the following instructions, in order, starting each with a new line. Firstly, Decide which of the retrieved documents are relevant to the user's last input by writing 'Relevant Documents:' followed by comma-separated list of document numbers. If none are relevant, you should instead write 'None'. Secondly, Decide which of the retrieved documents contain facts that should be cited in a good answer to the user's last input by writing 'Cited Documents:' followed a comma-separated list of document numbers. If you dont want to cite any of them, you should instead write 'None'. Thirdly, Write 'Answer:' followed by a response to the user's last input in high quality natural english. Use the retrieved documents to help you. Do not insert any citations or grounding markup. Finally, Write 'Grounded answer:' followed by a response to the user's last input in high quality natural english. Use the symbols <co: doc> and </co: doc> to indicate when a fact comes from a document in the search result, e.g <co: 0>my fact</co: 0> for a fact from document 0.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> ```` </details> <details> <summary><b>Example Rendered Grounded Generation Completion [CLICK TO EXPAND]</b></summary> ```` Relevant Documents: 0,1 Cited Documents: 0,1 Answer: The Emperor Penguin is the tallest or biggest penguin in the world. It is a bird that lives only in Antarctica and grows to a height of around 122 centimetres. Grounded answer: The <co: 0>Emperor Penguin</co: 0> is the <co: 0>tallest</co: 0> or biggest penguin in the world. It is a bird that <co: 1>lives only in Antarctica</co: 1> and <co: 0>grows to a height of around 122 centimetres.</co: 0> ```` </details> ### Code Capabilities: Command R+ has been optimized to interact with your code, by requesting code snippets, code explanations, or code rewrites. It might not perform well out-of-the-box for pure code completion. For better performance, we also recommend using a low temperature (and even greedy decoding) for code-generation related instructions. ### Model Card Contact For errors or additional questions about details in this model card, contact [[email protected]](mailto:[email protected]). ### Terms of Use: We hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant 104 billion parameter model to researchers all over the world. This model is governed by a [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license) License with an acceptable use addendum, and also requires adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy). ### Try Chat: You can try Command R+ chat in the playground [here](https://dashboard.cohere.com/playground/chat). You can also use it in our dedicated Hugging Face Space [here](https://huggingface.co/spaces/CohereForAI/c4ai-command-r-plus).
null
Non_BioNLP
# Model Card for C4AI Command R+ 🚨 **This model is non-quantized version of C4AI Command R+. You can find the quantized version of C4AI Command R+ using bitsandbytes [here](https://huggingface.co/CohereForAI/c4ai-command-r-plus-4bit)**. ## Model Summary C4AI Command R+ is an open weights research release of a 104B billion parameter model with highly advanced capabilities, this includes Retrieval Augmented Generation (RAG) and tool use to automate sophisticated tasks. The tool use in this model generation enables multi-step tool use which allows the model to combine multiple tools over multiple steps to accomplish difficult tasks. C4AI Command R+ is a multilingual model evaluated in 10 languages for performance: English, French, Spanish, Italian, German, Brazilian Portuguese, Japanese, Korean, Arabic, and Simplified Chinese. Command R+ is optimized for a variety of use cases including reasoning, summarization, and question answering. C4AI Command R+ is part of a family of open weight releases from Cohere For AI and Cohere. Our smaller companion model is [C4AI Command R](https://huggingface.co/CohereForAI/c4ai-command-r-v01) Developed by: [Cohere](https://cohere.com/) and [Cohere For AI](https://cohere.for.ai) - Point of Contact: Cohere For AI: [cohere.for.ai](https://cohere.for.ai/) - License: [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license), requires also adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy) - Model: c4ai-command-r-plus - Model Size: 104 billion parameters - Context length: 128K **Try C4AI Command R+** You can try out C4AI Command R+ before downloading the weights in our hosted [Hugging Face Space](https://huggingface.co/spaces/CohereForAI/c4ai-command-r-plus). **Usage** Please install `transformers` from the source repository that includes the necessary changes for this model. ```python # pip install 'git+https://github.com/huggingface/transformers.git' from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "CohereForAI/c4ai-command-r-plus" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) # Format message with the command-r-plus chat template messages = [{"role": "user", "content": "Hello, how are you?"}] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") ## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> gen_tokens = model.generate( input_ids, max_new_tokens=100, do_sample=True, temperature=0.3, ) gen_text = tokenizer.decode(gen_tokens[0]) print(gen_text) ``` **Quantized model through bitsandbytes, 8-bit precision** ```python # pip install 'git+https://github.com/huggingface/transformers.git' bitsandbytes accelerate from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig bnb_config = BitsAndBytesConfig(load_in_8bit=True) model_id = "CohereForAI/c4ai-command-r-plus" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config) # Format message with the command-r-plus chat template messages = [{"role": "user", "content": "Hello, how are you?"}] input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt") ## <BOS_TOKEN><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello, how are you?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> gen_tokens = model.generate( input_ids, max_new_tokens=100, do_sample=True, temperature=0.3, ) gen_text = tokenizer.decode(gen_tokens[0]) print(gen_text) ``` **Quantized model through bitsandbytes, 4-bit precision** This model is non-quantized version of C4AI Command R+. You can find the quantized version of C4AI Command R+ using bitsandbytes [here](https://huggingface.co/CohereForAI/c4ai-command-r-plus-4bit). ## Model Details **Input**: Models input text only. **Output**: Models generate text only. **Model Architecture**: This is an auto-regressive language model that uses an optimized transformer architecture. After pretraining, this model uses supervised fine-tuning (SFT) and preference training to align model behavior to human preferences for helpfulness and safety. **Languages covered**: The model is optimized to perform well in the following languages: English, French, Spanish, Italian, German, Brazilian Portuguese, Japanese, Korean, Simplified Chinese, and Arabic. Pre-training data additionally included the following 13 languages: Russian, Polish, Turkish, Vietnamese, Dutch, Czech, Indonesian, Ukrainian, Romanian, Greek, Hindi, Hebrew, Persian. **Context length**: Command R+ supports a context length of 128K. ## Evaluations Command R+ has been submitted to the [Open LLM leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). We include the results below, along with a direct comparison to the strongest state-of-art open weights models currently available on Hugging Face. We note that these results are only useful to compare when evaluations are implemented for all models in a [standardized way](https://github.com/EleutherAI/lm-evaluation-harness) using publically available code, and hence shouldn't be used for comparison outside of models submitted to the leaderboard or compared to self-reported numbers which can't be replicated in the same way. | Model | Average | Arc (Challenge) | Hella Swag | MMLU | Truthful QA | Winogrande | GSM8k | |:--------------------------------|----------:|------------------:|-------------:|-------:|--------------:|-------------:|--------:| | **CohereForAI/c4ai-command-r-plus** | 74.6 | 70.99 | 88.6 | 75.7 | 56.3 | 85.4 | 70.7 | | [DBRX Instruct](https://huggingface.co/databricks/dbrx-instruct) | 74.5 | 68.9 | 89 | 73.7 | 66.9 | 81.8 | 66.9 | | [Mixtral 8x7B-Instruct](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) | 72.7 | 70.1 | 87.6 | 71.4 | 65 | 81.1 | 61.1 | | [Mixtral 8x7B Chat](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) | 72.6 | 70.2 | 87.6 | 71.2 | 64.6 | 81.4 | 60.7 | | [CohereForAI/c4ai-command-r-v01](https://huggingface.co/CohereForAI/c4ai-command-r-v01) | 68.5 | 65.5 | 87 | 68.2 | 52.3 | 81.5 | 56.6 | | [Llama 2 70B](https://huggingface.co/meta-llama/Llama-2-70b-hf) | 67.9 | 67.3 | 87.3 | 69.8 | 44.9 | 83.7 | 54.1 | | [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) | 65.3 | 65.4 | 84.2 | 74.9 | 55.4 | 80.1 | 31.9 | | [Gemma-7B](https://huggingface.co/google/gemma-7b) | 63.8 | 61.1 | 82.2 | 64.6 | 44.8 | 79 | 50.9 | | [LLama 2 70B Chat](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) | 62.4 | 64.6 | 85.9 | 63.9 | 52.8 | 80.5 | 26.7 | | [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) | 61 | 60 | 83.3 | 64.2 | 42.2 | 78.4 | 37.8 | We include these metrics here because they are frequently requested, but note that these metrics do not capture RAG, multilingual, tooling performance or the evaluation of open ended generations which we believe Command R+ to be state-of-art at. For evaluations of RAG, multilingual and tooling read more [here](https://txt.cohere.com/command-r-plus-microsoft-azure/). For evaluation of open ended generation, Command R+ is currently being evaluated on the [chatbot arena](https://chat.lmsys.org/). ### Tool use & multihop capabilities: Command R+ has been specifically trained with conversational tool use capabilities. These have been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template. Deviating from this prompt template will likely reduce performance, but we encourage experimentation. Command R+’s tool use functionality takes a conversation as input (with an optional user-system preamble), along with a list of available tools. The model will then generate a json-formatted list of actions to execute on a subset of those tools. Command R+ may use one of its supplied tools more than once. The model has been trained to recognise a special `directly_answer` tool, which it uses to indicate that it doesn’t want to use any of its other tools. The ability to abstain from calling a specific tool can be useful in a range of situations, such as greeting a user, or asking clarifying questions. We recommend including the `directly_answer` tool, but it can be removed or renamed if required. Comprehensive documentation for working with command R+'s tool use prompt template can be found [here](https://docs.cohere.com/docs/prompting-command-r). The code snippet below shows a minimal working example on how to render a prompt. <details> <summary><b>Usage: Rendering Tool Use Prompts [CLICK TO EXPAND]</b> </summary> ```python from transformers import AutoTokenizer model_id = "CohereForAI/c4ai-command-r-plus" tokenizer = AutoTokenizer.from_pretrained(model_id) # define conversation input: conversation = [ {"role": "user", "content": "Whats the biggest penguin in the world?"} ] # Define tools available for the model to use: tools = [ { "name": "internet_search", "description": "Returns a list of relevant document snippets for a textual query retrieved from the internet", "parameter_definitions": { "query": { "description": "Query to search the internet with", "type": 'str', "required": True } } }, { 'name': "directly_answer", "description": "Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history", 'parameter_definitions': {} } ] # render the tool use prompt as a string: tool_use_prompt = tokenizer.apply_tool_use_template( conversation, tools=tools, tokenize=False, add_generation_prompt=True, ) print(tool_use_prompt) ``` </details> <details> <summary><b>Example Rendered Tool Use Prompt [CLICK TO EXPAND]</b></summary> ```` <BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral. # System Preamble ## Basic Rules You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions. # User Preamble ## Task and Context You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging. ## Style Guide Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling. ## Available Tools Here is a list of tools that you have available to you: ```python def internet_search(query: str) -> List[Dict]: """Returns a list of relevant document snippets for a textual query retrieved from the internet Args: query (str): Query to search the internet with """ pass ``` ```python def directly_answer() -> List[Dict]: """Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history """ pass ```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Whats the biggest penguin in the world?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Write 'Action:' followed by a json-formatted list of actions that you want to perform in order to produce a good response to the user's last input. You can use any of the supplied tools any number of times, but you should aim to execute the minimum number of necessary actions for the input. You should use the `directly-answer` tool if calling the other tools is unnecessary. The list of actions you want to call should be formatted as a list of json objects, for example: ```json [ { "tool_name": title of the tool in the specification, "parameters": a dict of parameters to input into the tool as they are defined in the specs, or {} if it takes no parameters } ]```<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> ```` </details> <details> <summary><b>Example Rendered Tool Use Completion [CLICK TO EXPAND]</b></summary> ```` Action: ```json [ { "tool_name": "internet_search", "parameters": { "query": "biggest penguin in the world" } } ] ``` ```` </details> ### Grounded Generation and RAG Capabilities: Command R+ has been specifically trained with grounded generation capabilities. This means that it can generate responses based on a list of supplied document snippets, and it will include grounding spans (citations) in its response indicating the source of the information. This can be used to enable behaviors such as grounded summarization and the final step of Retrieval Augmented Generation (RAG). This behavior has been trained into the model via a mixture of supervised fine-tuning and preference fine-tuning, using a specific prompt template. Deviating from this prompt template may reduce performance, but we encourage experimentation. Command R+’s grounded generation behavior takes a conversation as input (with an optional user-supplied system preamble, indicating task, context and desired output style), along with a list of retrieved document snippets. The document snippets should be chunks, rather than long documents, typically around 100-400 words per chunk. Document snippets consist of key-value pairs. The keys should be short descriptive strings, the values can be text or semi-structured. By default, Command R+ will generate grounded responses by first predicting which documents are relevant, then predicting which ones it will cite, then generating an answer. Finally, it will then insert grounding spans into the answer. See below for an example. This is referred to as `accurate` grounded generation. The model is trained with a number of other answering modes, which can be selected by prompt changes. A `fast` citation mode is supported in the tokenizer, which will directly generate an answer with grounding spans in it, without first writing the answer out in full. This sacrifices some grounding accuracy in favor of generating fewer tokens. Comprehensive documentation for working with Command R+'s grounded generation prompt template can be found [here](https://docs.cohere.com/docs/prompting-command-r). The code snippet below shows a minimal working example on how to render a prompt. <details> <summary> <b>Usage: Rendering Grounded Generation prompts [CLICK TO EXPAND]</b> </summary> ````python from transformers import AutoTokenizer model_id = "CohereForAI/c4ai-command-r-plus" tokenizer = AutoTokenizer.from_pretrained(model_id) # define conversation input: conversation = [ {"role": "user", "content": "Whats the biggest penguin in the world?"} ] # define documents to ground on: documents = [ { "title": "Tall penguins", "text": "Emperor penguins are the tallest growing up to 122 cm in height." }, { "title": "Penguin habitats", "text": "Emperor penguins only live in Antarctica."} ] # render the tool use prompt as a string: grounded_generation_prompt = tokenizer.apply_grounded_generation_template( conversation, documents=documents, citation_mode="accurate", # or "fast" tokenize=False, add_generation_prompt=True, ) print(grounded_generation_prompt) ```` </details> <details> <summary><b>Example Rendered Grounded Generation Prompt [CLICK TO EXPAND]</b></summary> ````<BOS_TOKEN><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|># Safety Preamble The instructions in this section override those in the task description and style guide sections. Don't answer questions that are harmful or immoral. # System Preamble ## Basic Rules You are a powerful conversational AI trained by Cohere to help people. You are augmented by a number of tools, and your job is to use and consume the output of these tools to best help the user. You will see a conversation history between yourself and a user, ending with an utterance from the user. You will then see a specific instruction instructing you what kind of response to generate. When you answer the user's requests, you cite your sources in your answers, according to those instructions. # User Preamble ## Task and Context You help people answer their questions and other requests interactively. You will be asked a very wide array of requests on all kinds of topics. You will be equipped with a wide range of search engines or similar tools to help you, which you use to research your answer. You should focus on serving the user's needs as best you can, which will be wide-ranging. ## Style Guide Unless the user asks for a different style of answer, you should answer in full sentences, using proper grammar and spelling.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Whats the biggest penguin in the world?<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|><results> Document: 0 title: Tall penguins text: Emperor penguins are the tallest growing up to 122 cm in height. Document: 1 title: Penguin habitats text: Emperor penguins only live in Antarctica. </results><|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>Carefully perform the following instructions, in order, starting each with a new line. Firstly, Decide which of the retrieved documents are relevant to the user's last input by writing 'Relevant Documents:' followed by comma-separated list of document numbers. If none are relevant, you should instead write 'None'. Secondly, Decide which of the retrieved documents contain facts that should be cited in a good answer to the user's last input by writing 'Cited Documents:' followed a comma-separated list of document numbers. If you dont want to cite any of them, you should instead write 'None'. Thirdly, Write 'Answer:' followed by a response to the user's last input in high quality natural english. Use the retrieved documents to help you. Do not insert any citations or grounding markup. Finally, Write 'Grounded answer:' followed by a response to the user's last input in high quality natural english. Use the symbols <co: doc> and </co: doc> to indicate when a fact comes from a document in the search result, e.g <co: 0>my fact</co: 0> for a fact from document 0.<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|> ```` </details> <details> <summary><b>Example Rendered Grounded Generation Completion [CLICK TO EXPAND]</b></summary> ```` Relevant Documents: 0,1 Cited Documents: 0,1 Answer: The Emperor Penguin is the tallest or biggest penguin in the world. It is a bird that lives only in Antarctica and grows to a height of around 122 centimetres. Grounded answer: The <co: 0>Emperor Penguin</co: 0> is the <co: 0>tallest</co: 0> or biggest penguin in the world. It is a bird that <co: 1>lives only in Antarctica</co: 1> and <co: 0>grows to a height of around 122 centimetres.</co: 0> ```` </details> ### Code Capabilities: Command R+ has been optimized to interact with your code, by requesting code snippets, code explanations, or code rewrites. It might not perform well out-of-the-box for pure code completion. For better performance, we also recommend using a low temperature (and even greedy decoding) for code-generation related instructions. ### Model Card Contact For errors or additional questions about details in this model card, contact [[email protected]](mailto:[email protected]). ### Terms of Use: We hope that the release of this model will make community-based research efforts more accessible, by releasing the weights of a highly performant 104 billion parameter model to researchers all over the world. This model is governed by a [CC-BY-NC](https://cohere.com/c4ai-cc-by-nc-license) License with an acceptable use addendum, and also requires adhering to [C4AI's Acceptable Use Policy](https://docs.cohere.com/docs/c4ai-acceptable-use-policy). ### Try Chat: You can try Command R+ chat in the playground [here](https://dashboard.cohere.com/playground/chat). You can also use it in our dedicated Hugging Face Space [here](https://huggingface.co/spaces/CohereForAI/c4ai-command-r-plus).
{"language": ["en", "fr", "de", "es", "it", "pt", "ja", "ko", "zh", "ar"], "library_name": "transformers", "license": "cc-by-nc-4.0"}
task
[ "QUESTION_ANSWERING", "SUMMARIZATION" ]
40,995
Lots-of-LoRAs/Mistral-7B-Instruct-v0.2-4b-r16-task1093
Lots-of-LoRAs
null
[ "pytorch", "safetensors", "en", "arxiv:1910.09700", "arxiv:2407.00066", "base_model:mistralai/Mistral-7B-Instruct-v0.2", "base_model:finetune:mistralai/Mistral-7B-Instruct-v0.2", "license:mit", "region:us" ]
2025-01-03T18:01:01Z
2025-01-03T18:01:06+00:00
0
0
--- base_model: mistralai/Mistral-7B-Instruct-v0.2 language: en library_name: pytorch license: mit --- # Model Card for Mistral-7B-Instruct-v0.2-4b-r16-task1093 <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> LoRA trained on task1093_ted_translation_en_fa - **Developed by:** bruel - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** LoRA - **Language(s) (NLP):** en - **License:** mit - **Finetuned from model [optional]:** mistralai/Mistral-7B-Instruct-v0.2 ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/bruel-gabrielsson - **Paper [optional]:** "Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead" (2024), Rickard Brüel Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen, Kristjan Greenewald, Mikhail Yurochkin and Justin Solomon - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> https://huggingface.co/datasets/Lots-of-LoRAs/task1093_ted_translation_en_fa sourced from https://github.com/allenai/natural-instructions ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** @misc{brüelgabrielsson2024compressserveservingthousands, title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead}, author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon}, year={2024}, eprint={2407.00066}, archivePrefix={arXiv}, primaryClass={cs.DC}, url={https://arxiv.org/abs/2407.00066}, } **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
null
Non_BioNLP
# Model Card for Mistral-7B-Instruct-v0.2-4b-r16-task1093 <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> LoRA trained on task1093_ted_translation_en_fa - **Developed by:** bruel - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** LoRA - **Language(s) (NLP):** en - **License:** mit - **Finetuned from model [optional]:** mistralai/Mistral-7B-Instruct-v0.2 ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** https://github.com/bruel-gabrielsson - **Paper [optional]:** "Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead" (2024), Rickard Brüel Gabrielsson, Jiacheng Zhu, Onkar Bhardwaj, Leshem Choshen, Kristjan Greenewald, Mikhail Yurochkin and Justin Solomon - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> https://huggingface.co/datasets/Lots-of-LoRAs/task1093_ted_translation_en_fa sourced from https://github.com/allenai/natural-instructions ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** @misc{brüelgabrielsson2024compressserveservingthousands, title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead}, author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon}, year={2024}, eprint={2407.00066}, archivePrefix={arXiv}, primaryClass={cs.DC}, url={https://arxiv.org/abs/2407.00066}, } **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{"base_model": "mistralai/Mistral-7B-Instruct-v0.2", "language": "en", "library_name": "pytorch", "license": "mit"}
task
[ "TRANSLATION" ]
40,996
JunxiongWang/MambaByte_PG19_972M
JunxiongWang
text-generation
[ "transformers", "pytorch", "mamba", "text-generation", "en", "dataset:pg19", "arxiv:2401.13660", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2024-04-22T22:38:08Z
2024-09-09T02:13:49+00:00
34
0
--- datasets: - pg19 language: - en license: apache-2.0 metrics: - perplexity pipeline_tag: text-generation tags: - mamba --- Train in 150B Byte. Mode size 972M. Table 3 in [MambaByte](https://arxiv.org/abs/2401.13660) Traning dataset [PG-19](https://github.com/google-deepmind/pg19) To use ``` import torch from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel import numpy as np model=MambaLMHeadModel.from_pretrained("JunxiongWang/MambaByte_PG19_972M", device='cuda', dtype=torch.float32) text = "It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife," text_byte = np.frombuffer(text.encode('utf-8'), dtype=np.uint8) input_ids = torch.from_numpy(text_byte[None, :].copy()).long().cuda() sample = model.generate( input_ids=input_ids, max_length=2048, cg=True, return_dict_in_generate=True, output_scores=True, enable_timing=True, temperature=1, top_k=256, top_p=0.9, ) print(bytes(sample.sequences[0].tolist()).decode('utf-8')) ``` Output ``` It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife, and that a small one must be always spoilt by a bad one, or else it will cease to be so. I can safely affirm, that married women, in general, are the best fortunes for a wife; because their education so near a resemblance to the father's, while it expands their understandings, so enlarges their views, and strengthens their passions, that they give birth to more children than the father, who can only say, _Je meurs, or je mourrai_. That most of the proposals at present made for the abolition of marriage in this country have been rejected, is proof sufficient of the truth of the remark; but even in that case, I would add, that any plan which proposed to diminish the population in the country would be a proposal incompatible with that feeling of refinement and good order, which the situation of our women demands. In short, let me state the proposal for this purpose as it is at present in Paris. Monsieur, who knows how to write, and is a man of letters, has already translated the translation of an English letter from a periodical work, that I might peruse the whole with more than ordinary attention. "THE CELIBACY OF THE PRIESTHOOD. "It is proposed to forbid marriage, by making it a sacrament to all those who shall take the vows, and the brothers and sisters of the society are required, under the severest penalties, to promise that they will allow no illicit connections whatsoever to exist between them and those of other orders, nor accept any communication from them. "In order to give full effect to the obligations of marriage, the obligation is imposed of fulfilling all the points which are enjoined by the Catholic religion on persons of both sexes. Besides this, it is proposed to legislate in the interest of sensual pleasures and of immorality. "In relation to marriage, the celibacy of the clergy is in particular denounced as a grievance. But this also is a ```
null
Non_BioNLP
Train in 150B Byte. Mode size 972M. Table 3 in [MambaByte](https://arxiv.org/abs/2401.13660) Traning dataset [PG-19](https://github.com/google-deepmind/pg19) To use ``` import torch from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel import numpy as np model=MambaLMHeadModel.from_pretrained("JunxiongWang/MambaByte_PG19_972M", device='cuda', dtype=torch.float32) text = "It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife," text_byte = np.frombuffer(text.encode('utf-8'), dtype=np.uint8) input_ids = torch.from_numpy(text_byte[None, :].copy()).long().cuda() sample = model.generate( input_ids=input_ids, max_length=2048, cg=True, return_dict_in_generate=True, output_scores=True, enable_timing=True, temperature=1, top_k=256, top_p=0.9, ) print(bytes(sample.sequences[0].tolist()).decode('utf-8')) ``` Output ``` It is a truth universally acknowledged, that a single man in possession of a good fortune, must be in want of a wife, and that a small one must be always spoilt by a bad one, or else it will cease to be so. I can safely affirm, that married women, in general, are the best fortunes for a wife; because their education so near a resemblance to the father's, while it expands their understandings, so enlarges their views, and strengthens their passions, that they give birth to more children than the father, who can only say, _Je meurs, or je mourrai_. That most of the proposals at present made for the abolition of marriage in this country have been rejected, is proof sufficient of the truth of the remark; but even in that case, I would add, that any plan which proposed to diminish the population in the country would be a proposal incompatible with that feeling of refinement and good order, which the situation of our women demands. In short, let me state the proposal for this purpose as it is at present in Paris. Monsieur, who knows how to write, and is a man of letters, has already translated the translation of an English letter from a periodical work, that I might peruse the whole with more than ordinary attention. "THE CELIBACY OF THE PRIESTHOOD. "It is proposed to forbid marriage, by making it a sacrament to all those who shall take the vows, and the brothers and sisters of the society are required, under the severest penalties, to promise that they will allow no illicit connections whatsoever to exist between them and those of other orders, nor accept any communication from them. "In order to give full effect to the obligations of marriage, the obligation is imposed of fulfilling all the points which are enjoined by the Catholic religion on persons of both sexes. Besides this, it is proposed to legislate in the interest of sensual pleasures and of immorality. "In relation to marriage, the celibacy of the clergy is in particular denounced as a grievance. But this also is a ```
{"datasets": ["pg19"], "language": ["en"], "license": "apache-2.0", "metrics": ["perplexity"], "pipeline_tag": "text-generation", "tags": ["mamba"]}
task
[ "TRANSLATION" ]
40,997
tiiuae/falcon-11B
tiiuae
text-generation
[ "transformers", "safetensors", "falcon", "text-generation", "conversational", "custom_code", "en", "de", "es", "fr", "it", "nl", "pl", "pt", "ro", "cs", "dataset:tiiuae/falcon-refinedweb", "arxiv:2407.14885", "arxiv:2005.14165", "arxiv:2104.09864", "arxiv:1911.02150", "arxiv:2307.08691", "arxiv:2311.16867", "license:unknown", "autotrain_compatible", "text-generation-inference", "region:us" ]
2024-05-09T08:11:59Z
2024-12-17T11:25:12+00:00
27,529
212
--- datasets: - tiiuae/falcon-refinedweb language: - en - de - es - fr - it - nl - pl - pt - ro - cs license: unknown inference: false new_version: tiiuae/Falcon3-7B-Base --- # 🚀 Falcon2-11B **Falcon2-11B is an 11B parameters causal decoder-only model built by [TII](https://www.tii.ae) and trained on over 5,000B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. The model is made available under the [TII Falcon License 2.0](https://falconllm-staging.tii.ae/falcon-2-terms-and-conditions.html), the permissive Apache 2.0-based software license which includes an [acceptable use policy](https://falconllm-staging.tii.ae/falcon-2-acceptable-use-policy.html) that promotes the responsible use of AI.** *[arXiv technical report](https://arxiv.org/abs/2407.14885)* *[Blog](https://huggingface.co/blog/falcon2-11b)* 🤗 To get started with Falcon (inference, finetuning, quantization, etc.), we recommend reading [this great blogpost from HF](https://huggingface.co/blog/falcon)! ⚠️ **This is a raw, pretrained model, which should be further finetuned for most usecases.** ```python from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model = "tiiuae/falcon-11B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, ) sequences = pipeline( "Can you explain the concepts of Quantum Computing?", max_length=200, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` 💥 **Falcon LLMs require PyTorch 2.0 for use with `transformers`!** For fast inference with Falcon, check-out [Text Generation Inference](https://github.com/huggingface/text-generation-inference)! Read more in this [blogpost]((https://huggingface.co/blog/falcon). # Model Card for Falcon2-11B ## Model Details ### Model Description - **Developed by:** [https://www.tii.ae](https://www.tii.ae) - **Model type:** Causal decoder-only - **Language(s) (NLP):** English, German, Spanish, French, Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish - **License:** [TII Falcon License 2.0](https://falconllm-staging.tii.ae/falcon-2-terms-and-conditions.html) ## Uses ### Direct Use Research on large language models; as a foundation for further specialization and finetuning for specific usecases (e.g., summarization, text generation, chatbot, etc.) ### Out-of-Scope Use Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful. ## Bias, Risks, and Limitations Falcon2-11B is trained mostly on English, but also German, Spanish, French, Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish. It will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online. ### Recommendations We recommend users of Falcon2-11B to consider finetuning it for the specific set of tasks of interest, and for guardrails and appropriate precautions to be taken for any production use. ## How to Get Started with the Model ```python from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model = "tiiuae/falcon-11B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto", ) sequences = pipeline( "Can you explain the concepts of Quantum Computing?", max_length=200, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` ## Training Details ### Training Data Falcon2-11B was trained over 5,000B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), a high-quality filtered and deduplicated web dataset which we enhanced with curated corpora. It followed a four stage training strategy. The first three stages were focused on increasing the context length, from to 2048 to 4096 and finally to 8192 tokens. The last stage aimed to further enhance performance using only high quality data. Overall, the data sources included RefinedWeb-English, Refined Web-Europe (cs, de, es, fr, it, nl, pl, pt, ro, sv), high quality technical data, code data, and conversational data extracted from public sources. The training stages were as follows: | **Stage** | **Context length** | **Tokens** | |--------------|-----------------|-------------| | Stage 1 | 2048 | 4500 B | | Stage 2 | 4096 | 250 B | | Stage 3 | 8192 | 250 B | | Stage 4 | 8192 | 500 B | The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[11B](https://huggingface.co/tiiuae/falcon-11B) tokenizer. ### Training Procedure Falcon2-11B was trained on 1024 A100 40GB GPUs for the majority of the training, using a 3D parallelism strategy (TP=8, PP=1, DP=128) combined with ZeRO and Flash-Attention 2. #### Training Hyperparameters | **Hyperparameter** | **Value** | **Comment** | |--------------------|------------|-------------------------------------------| | Precision | `bfloat16` | | | Optimizer | AdamW | | | Max learning rate | 3.7e-4 | Following a linear warm-up, then cosine decay to 1.89e-5 across 4500 B tokens. | | Weight decay | 1e-1 | | | Z-loss | 1e-4 | | | Batch size | Variable | Batch size was gradually increased during the training | #### Speeds, Sizes, Times The model training took roughly two months. ## Evaluation |English Benchmark | **Value** | |--------------------|------------| | ARC-Challenge-25shots | 59.73 | | HellaSwag-10shots | 82.91 | | MMLU-5shots | 58.37 | | Winogrande-5shots | 78.30 | | TruthfulQA-0shot | 52.56 | | GSM8k-5shots | 53.83 | | ARC-Challenge-0shot | 50.17 | | ARC-Easy-0shot | 77.78 | | Hellaswag-0shot | 82.07 | We thank the leaderboard team from HuggingFace for providing an official evaluation of our model on the leaderboard tasks. ## Technical Specifications ### Model Architecture and Objective Falcon2-11B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token). The architecture is broadly adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), with the following differences: * **Positional embeddings:** rotary ([Su et al., 2021](https://arxiv.org/abs/2104.09864)); * **Attention:** multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)) and FlashAttention-2 ([Dao, 2023](https://arxiv.org/abs/2307.08691)); * **Decoder-block:** parallel attention/MLP. | **Hyperparameter** | **Value** | **Comment** | |--------------------|-----------|----------------------------------------| | Layers | 60 | | | `d_model` | 4096 | | | `head_dim` | 128 | | | Vocabulary | 65024 | | | Sequence length | 8192 | During stages 3 and 4 | ### Compute Infrastructure #### Hardware Falcon2-11B was trained on AWS SageMaker, using on average 1024 A100 40GB GPUs in 128 p4d instances. #### Software Falcon2-11B was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO, high-performance Triton kernels and FlashAttention-2. More details about the distributed training strategy can be found in [Almazrouei et.al](https://arxiv.org/abs/2311.16867). ## Citation [Falcon2-11B Technical Report, Malartic et al. 2024](https://www.arxiv.org/abs/2407.14885) ## License Falcon2-11B is licenced under [TII Falcon License 2.0](https://falconllm-staging.tii.ae/falcon-2-terms-and-conditions.html), the permissive Apache 2.0-based software license which includes an [acceptable use policy](https://falconllm-staging.tii.ae/falcon-2-acceptable-use-policy.html) that promotes the responsible use of AI. ## Contact [email protected]
null
Non_BioNLP
# 🚀 Falcon2-11B **Falcon2-11B is an 11B parameters causal decoder-only model built by [TII](https://www.tii.ae) and trained on over 5,000B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb) enhanced with curated corpora. The model is made available under the [TII Falcon License 2.0](https://falconllm-staging.tii.ae/falcon-2-terms-and-conditions.html), the permissive Apache 2.0-based software license which includes an [acceptable use policy](https://falconllm-staging.tii.ae/falcon-2-acceptable-use-policy.html) that promotes the responsible use of AI.** *[arXiv technical report](https://arxiv.org/abs/2407.14885)* *[Blog](https://huggingface.co/blog/falcon2-11b)* 🤗 To get started with Falcon (inference, finetuning, quantization, etc.), we recommend reading [this great blogpost from HF](https://huggingface.co/blog/falcon)! ⚠️ **This is a raw, pretrained model, which should be further finetuned for most usecases.** ```python from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model = "tiiuae/falcon-11B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, ) sequences = pipeline( "Can you explain the concepts of Quantum Computing?", max_length=200, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` 💥 **Falcon LLMs require PyTorch 2.0 for use with `transformers`!** For fast inference with Falcon, check-out [Text Generation Inference](https://github.com/huggingface/text-generation-inference)! Read more in this [blogpost]((https://huggingface.co/blog/falcon). # Model Card for Falcon2-11B ## Model Details ### Model Description - **Developed by:** [https://www.tii.ae](https://www.tii.ae) - **Model type:** Causal decoder-only - **Language(s) (NLP):** English, German, Spanish, French, Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish - **License:** [TII Falcon License 2.0](https://falconllm-staging.tii.ae/falcon-2-terms-and-conditions.html) ## Uses ### Direct Use Research on large language models; as a foundation for further specialization and finetuning for specific usecases (e.g., summarization, text generation, chatbot, etc.) ### Out-of-Scope Use Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful. ## Bias, Risks, and Limitations Falcon2-11B is trained mostly on English, but also German, Spanish, French, Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish. It will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online. ### Recommendations We recommend users of Falcon2-11B to consider finetuning it for the specific set of tasks of interest, and for guardrails and appropriate precautions to be taken for any production use. ## How to Get Started with the Model ```python from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch model = "tiiuae/falcon-11B" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, device_map="auto", ) sequences = pipeline( "Can you explain the concepts of Quantum Computing?", max_length=200, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` ## Training Details ### Training Data Falcon2-11B was trained over 5,000B tokens of [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb), a high-quality filtered and deduplicated web dataset which we enhanced with curated corpora. It followed a four stage training strategy. The first three stages were focused on increasing the context length, from to 2048 to 4096 and finally to 8192 tokens. The last stage aimed to further enhance performance using only high quality data. Overall, the data sources included RefinedWeb-English, Refined Web-Europe (cs, de, es, fr, it, nl, pl, pt, ro, sv), high quality technical data, code data, and conversational data extracted from public sources. The training stages were as follows: | **Stage** | **Context length** | **Tokens** | |--------------|-----------------|-------------| | Stage 1 | 2048 | 4500 B | | Stage 2 | 4096 | 250 B | | Stage 3 | 8192 | 250 B | | Stage 4 | 8192 | 500 B | The data was tokenized with the Falcon-[7B](https://huggingface.co/tiiuae/falcon-7b)/[11B](https://huggingface.co/tiiuae/falcon-11B) tokenizer. ### Training Procedure Falcon2-11B was trained on 1024 A100 40GB GPUs for the majority of the training, using a 3D parallelism strategy (TP=8, PP=1, DP=128) combined with ZeRO and Flash-Attention 2. #### Training Hyperparameters | **Hyperparameter** | **Value** | **Comment** | |--------------------|------------|-------------------------------------------| | Precision | `bfloat16` | | | Optimizer | AdamW | | | Max learning rate | 3.7e-4 | Following a linear warm-up, then cosine decay to 1.89e-5 across 4500 B tokens. | | Weight decay | 1e-1 | | | Z-loss | 1e-4 | | | Batch size | Variable | Batch size was gradually increased during the training | #### Speeds, Sizes, Times The model training took roughly two months. ## Evaluation |English Benchmark | **Value** | |--------------------|------------| | ARC-Challenge-25shots | 59.73 | | HellaSwag-10shots | 82.91 | | MMLU-5shots | 58.37 | | Winogrande-5shots | 78.30 | | TruthfulQA-0shot | 52.56 | | GSM8k-5shots | 53.83 | | ARC-Challenge-0shot | 50.17 | | ARC-Easy-0shot | 77.78 | | Hellaswag-0shot | 82.07 | We thank the leaderboard team from HuggingFace for providing an official evaluation of our model on the leaderboard tasks. ## Technical Specifications ### Model Architecture and Objective Falcon2-11B is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token). The architecture is broadly adapted from the GPT-3 paper ([Brown et al., 2020](https://arxiv.org/abs/2005.14165)), with the following differences: * **Positional embeddings:** rotary ([Su et al., 2021](https://arxiv.org/abs/2104.09864)); * **Attention:** multiquery ([Shazeer et al., 2019](https://arxiv.org/abs/1911.02150)) and FlashAttention-2 ([Dao, 2023](https://arxiv.org/abs/2307.08691)); * **Decoder-block:** parallel attention/MLP. | **Hyperparameter** | **Value** | **Comment** | |--------------------|-----------|----------------------------------------| | Layers | 60 | | | `d_model` | 4096 | | | `head_dim` | 128 | | | Vocabulary | 65024 | | | Sequence length | 8192 | During stages 3 and 4 | ### Compute Infrastructure #### Hardware Falcon2-11B was trained on AWS SageMaker, using on average 1024 A100 40GB GPUs in 128 p4d instances. #### Software Falcon2-11B was trained a custom distributed training codebase, Gigatron. It uses a 3D parallelism approach combined with ZeRO, high-performance Triton kernels and FlashAttention-2. More details about the distributed training strategy can be found in [Almazrouei et.al](https://arxiv.org/abs/2311.16867). ## Citation [Falcon2-11B Technical Report, Malartic et al. 2024](https://www.arxiv.org/abs/2407.14885) ## License Falcon2-11B is licenced under [TII Falcon License 2.0](https://falconllm-staging.tii.ae/falcon-2-terms-and-conditions.html), the permissive Apache 2.0-based software license which includes an [acceptable use policy](https://falconllm-staging.tii.ae/falcon-2-acceptable-use-policy.html) that promotes the responsible use of AI. ## Contact [email protected]
{"datasets": ["tiiuae/falcon-refinedweb"], "language": ["en", "de", "es", "fr", "it", "nl", "pl", "pt", "ro", "cs"], "license": "unknown", "inference": false, "new_version": "tiiuae/Falcon3-7B-Base"}
task
[ "SUMMARIZATION" ]
40,998
hfl/vle-base-for-vcr-qa2r
hfl
null
[ "transformers", "pytorch", "vle", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2023-03-08T10:29:24Z
2023-03-09T00:47:29+00:00
21
1
--- language: - en license: apache-2.0 --- **VLE** (**V**isual-**L**anguage **E**ncoder) is an image-text multimodal understanding model built on the pre-trained text and image encoders. It can be used for multimodal discriminative tasks such as visual question answering and image-text retrieval. Especially on the visual commonsense reasoning (VCR) task, which requires high-level language understanding and reasoning skills, VLE achieves significant improvements. For more details see [https://github.com/iflytek/VLE](https://github.com/iflytek/VLE). Online VLE demo on Visual Question Answering: [https://huggingface.co/spaces/hfl/VQA_VLE_LLM](https://huggingface.co/spaces/hfl/VQA_VLE_LLM)
null
Non_BioNLP
**VLE** (**V**isual-**L**anguage **E**ncoder) is an image-text multimodal understanding model built on the pre-trained text and image encoders. It can be used for multimodal discriminative tasks such as visual question answering and image-text retrieval. Especially on the visual commonsense reasoning (VCR) task, which requires high-level language understanding and reasoning skills, VLE achieves significant improvements. For more details see [https://github.com/iflytek/VLE](https://github.com/iflytek/VLE). Online VLE demo on Visual Question Answering: [https://huggingface.co/spaces/hfl/VQA_VLE_LLM](https://huggingface.co/spaces/hfl/VQA_VLE_LLM)
{"language": ["en"], "license": "apache-2.0"}
task
[ "QUESTION_ANSWERING" ]
40,999
facebook/fasttext-io-vectors
facebook
feature-extraction
[ "fasttext", "feature-extraction", "io", "arxiv:1607.04606", "arxiv:1802.06893", "arxiv:1607.01759", "arxiv:1612.03651", "license:cc-by-sa-3.0", "region:us" ]
2023-03-19T06:59:00Z
2023-06-03T22:12:29+00:00
1
0
--- language: io library_name: fasttext license: cc-by-sa-3.0 tags: - feature-extraction widget: - text: apple example_title: apple --- # fastText (Ido) fastText is an open-source, free, lightweight library that allows users to learn text representations and text classifiers. It works on standard, generic hardware. Models can later be reduced in size to even fit on mobile devices. It was introduced in [this paper](https://arxiv.org/abs/1607.04606). The official website can be found [here](https://fasttext.cc/). ## Model description fastText is a library for efficient learning of word representations and sentence classification. fastText is designed to be simple to use for developers, domain experts, and students. It's dedicated to text classification and learning word representations, and was designed to allow for quick model iteration and refinement without specialized hardware. fastText models can be trained on more than a billion words on any multicore CPU in less than a few minutes. It includes pre-trained models learned on Wikipedia and in over 157 different languages. fastText can be used as a command line, linked to a C++ application, or used as a library for use cases from experimentation and prototyping to production. ## Intended uses & limitations You can use pre-trained word vectors for text classification or language identification. See the [tutorials](https://fasttext.cc/docs/en/supervised-tutorial.html) and [resources](https://fasttext.cc/docs/en/english-vectors.html) on its official website to look for tasks that interest you. ### How to use Here is how to load and use a pre-trained vectors ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-io-vectors", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.words ['the', 'of', 'and', 'to', 'in', 'a', 'that', 'is', ...] >>> len(model.words) 145940 >>> model['bread'] array([ 4.89417791e-01, 1.60882145e-01, -2.25947708e-01, -2.94273376e-01, -1.04577184e-01, 1.17962055e-01, 1.34821936e-01, -2.41778508e-01, ...]) ``` Here is how to use this model to query nearest neighbors of an English word vector: ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-en-nearest-neighbors", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.get_nearest_neighbors("bread", k=5) [(0.5641006231307983, 'butter'), (0.48875734210014343, 'loaf'), (0.4491206705570221, 'eat'), (0.42444291710853577, 'food'), (0.4229326844215393, 'cheese')] ``` Here is how to use this model to detect the language of a given text: ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.predict("Hello, world!") (('__label__eng_Latn',), array([0.81148803])) >>> model.predict("Hello, world!", k=5) (('__label__eng_Latn', '__label__vie_Latn', '__label__nld_Latn', '__label__pol_Latn', '__label__deu_Latn'), array([0.61224753, 0.21323682, 0.09696738, 0.01359863, 0.01319415])) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. Cosine similarity can be used to measure the similarity between two different word vectors. If two two vectors are identical, the cosine similarity will be 1. For two completely unrelated vectors, the value will be 0. If two vectors have an opposite relationship, the value will be -1. ```python >>> import numpy as np >>> def cosine_similarity(word1, word2): >>> return np.dot(model[word1], model[word2]) / (np.linalg.norm(model[word1]) * np.linalg.norm(model[word2])) >>> cosine_similarity("man", "boy") 0.061653383 >>> cosine_similarity("man", "ceo") 0.11989131 >>> cosine_similarity("woman", "ceo") -0.08834904 ``` ## Training data Pre-trained word vectors for 157 languages were trained on [Common Crawl](http://commoncrawl.org/) and [Wikipedia](https://www.wikipedia.org/) using fastText. These models were trained using CBOW with position-weights, in dimension 300, with character n-grams of length 5, a window of size 5 and 10 negatives. We also distribute three new word analogy datasets, for French, Hindi and Polish. ## Training procedure ### Tokenization We used the [Stanford word segmenter](https://nlp.stanford.edu/software/segmenter.html) for Chinese, [Mecab](http://taku910.github.io/mecab/) for Japanese and [UETsegmenter](https://github.com/phongnt570/UETsegmenter) for Vietnamese. For languages using the Latin, Cyrillic, Hebrew or Greek scripts, we used the tokenizer from the [Europarl](https://www.statmt.org/europarl/) preprocessing tools. For the remaining languages, we used the ICU tokenizer. More information about the training of these models can be found in the article [Learning Word Vectors for 157 Languages](https://arxiv.org/abs/1802.06893). ### License The word vectors are distributed under the [*Creative Commons Attribution-Share-Alike License 3.0*](https://creativecommons.org/licenses/by-sa/3.0/). ### Evaluation datasets The analogy evaluation datasets described in the paper are available here: [French](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-fr.txt), [Hindi](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-hi.txt), [Polish](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-pl.txt). ### BibTeX entry and citation info Please cite [1] if using this code for learning word representations or [2] if using for text classification. [1] P. Bojanowski\*, E. Grave\*, A. Joulin, T. Mikolov, [*Enriching Word Vectors with Subword Information*](https://arxiv.org/abs/1607.04606) ```markup @article{bojanowski2016enriching, title={Enriching Word Vectors with Subword Information}, author={Bojanowski, Piotr and Grave, Edouard and Joulin, Armand and Mikolov, Tomas}, journal={arXiv preprint arXiv:1607.04606}, year={2016} } ``` [2] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, [*Bag of Tricks for Efficient Text Classification*](https://arxiv.org/abs/1607.01759) ```markup @article{joulin2016bag, title={Bag of Tricks for Efficient Text Classification}, author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Mikolov, Tomas}, journal={arXiv preprint arXiv:1607.01759}, year={2016} } ``` [3] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, [*FastText.zip: Compressing text classification models*](https://arxiv.org/abs/1612.03651) ```markup @article{joulin2016fasttext, title={FastText.zip: Compressing text classification models}, author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Douze, Matthijs and J{'e}gou, H{'e}rve and Mikolov, Tomas}, journal={arXiv preprint arXiv:1612.03651}, year={2016} } ``` If you use these word vectors, please cite the following paper: [4] E. Grave\*, P. Bojanowski\*, P. Gupta, A. Joulin, T. Mikolov, [*Learning Word Vectors for 157 Languages*](https://arxiv.org/abs/1802.06893) ```markup @inproceedings{grave2018learning, title={Learning Word Vectors for 157 Languages}, author={Grave, Edouard and Bojanowski, Piotr and Gupta, Prakhar and Joulin, Armand and Mikolov, Tomas}, booktitle={Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018)}, year={2018} } ``` (\* These authors contributed equally.)
null
Non_BioNLP
# fastText (Ido) fastText is an open-source, free, lightweight library that allows users to learn text representations and text classifiers. It works on standard, generic hardware. Models can later be reduced in size to even fit on mobile devices. It was introduced in [this paper](https://arxiv.org/abs/1607.04606). The official website can be found [here](https://fasttext.cc/). ## Model description fastText is a library for efficient learning of word representations and sentence classification. fastText is designed to be simple to use for developers, domain experts, and students. It's dedicated to text classification and learning word representations, and was designed to allow for quick model iteration and refinement without specialized hardware. fastText models can be trained on more than a billion words on any multicore CPU in less than a few minutes. It includes pre-trained models learned on Wikipedia and in over 157 different languages. fastText can be used as a command line, linked to a C++ application, or used as a library for use cases from experimentation and prototyping to production. ## Intended uses & limitations You can use pre-trained word vectors for text classification or language identification. See the [tutorials](https://fasttext.cc/docs/en/supervised-tutorial.html) and [resources](https://fasttext.cc/docs/en/english-vectors.html) on its official website to look for tasks that interest you. ### How to use Here is how to load and use a pre-trained vectors ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-io-vectors", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.words ['the', 'of', 'and', 'to', 'in', 'a', 'that', 'is', ...] >>> len(model.words) 145940 >>> model['bread'] array([ 4.89417791e-01, 1.60882145e-01, -2.25947708e-01, -2.94273376e-01, -1.04577184e-01, 1.17962055e-01, 1.34821936e-01, -2.41778508e-01, ...]) ``` Here is how to use this model to query nearest neighbors of an English word vector: ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-en-nearest-neighbors", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.get_nearest_neighbors("bread", k=5) [(0.5641006231307983, 'butter'), (0.48875734210014343, 'loaf'), (0.4491206705570221, 'eat'), (0.42444291710853577, 'food'), (0.4229326844215393, 'cheese')] ``` Here is how to use this model to detect the language of a given text: ```python >>> import fasttext >>> from huggingface_hub import hf_hub_download >>> model_path = hf_hub_download(repo_id="facebook/fasttext-language-identification", filename="model.bin") >>> model = fasttext.load_model(model_path) >>> model.predict("Hello, world!") (('__label__eng_Latn',), array([0.81148803])) >>> model.predict("Hello, world!", k=5) (('__label__eng_Latn', '__label__vie_Latn', '__label__nld_Latn', '__label__pol_Latn', '__label__deu_Latn'), array([0.61224753, 0.21323682, 0.09696738, 0.01359863, 0.01319415])) ``` ### Limitations and bias Even if the training data used for this model could be characterized as fairly neutral, this model can have biased predictions. Cosine similarity can be used to measure the similarity between two different word vectors. If two two vectors are identical, the cosine similarity will be 1. For two completely unrelated vectors, the value will be 0. If two vectors have an opposite relationship, the value will be -1. ```python >>> import numpy as np >>> def cosine_similarity(word1, word2): >>> return np.dot(model[word1], model[word2]) / (np.linalg.norm(model[word1]) * np.linalg.norm(model[word2])) >>> cosine_similarity("man", "boy") 0.061653383 >>> cosine_similarity("man", "ceo") 0.11989131 >>> cosine_similarity("woman", "ceo") -0.08834904 ``` ## Training data Pre-trained word vectors for 157 languages were trained on [Common Crawl](http://commoncrawl.org/) and [Wikipedia](https://www.wikipedia.org/) using fastText. These models were trained using CBOW with position-weights, in dimension 300, with character n-grams of length 5, a window of size 5 and 10 negatives. We also distribute three new word analogy datasets, for French, Hindi and Polish. ## Training procedure ### Tokenization We used the [Stanford word segmenter](https://nlp.stanford.edu/software/segmenter.html) for Chinese, [Mecab](http://taku910.github.io/mecab/) for Japanese and [UETsegmenter](https://github.com/phongnt570/UETsegmenter) for Vietnamese. For languages using the Latin, Cyrillic, Hebrew or Greek scripts, we used the tokenizer from the [Europarl](https://www.statmt.org/europarl/) preprocessing tools. For the remaining languages, we used the ICU tokenizer. More information about the training of these models can be found in the article [Learning Word Vectors for 157 Languages](https://arxiv.org/abs/1802.06893). ### License The word vectors are distributed under the [*Creative Commons Attribution-Share-Alike License 3.0*](https://creativecommons.org/licenses/by-sa/3.0/). ### Evaluation datasets The analogy evaluation datasets described in the paper are available here: [French](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-fr.txt), [Hindi](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-hi.txt), [Polish](https://dl.fbaipublicfiles.com/fasttext/word-analogies/questions-words-pl.txt). ### BibTeX entry and citation info Please cite [1] if using this code for learning word representations or [2] if using for text classification. [1] P. Bojanowski\*, E. Grave\*, A. Joulin, T. Mikolov, [*Enriching Word Vectors with Subword Information*](https://arxiv.org/abs/1607.04606) ```markup @article{bojanowski2016enriching, title={Enriching Word Vectors with Subword Information}, author={Bojanowski, Piotr and Grave, Edouard and Joulin, Armand and Mikolov, Tomas}, journal={arXiv preprint arXiv:1607.04606}, year={2016} } ``` [2] A. Joulin, E. Grave, P. Bojanowski, T. Mikolov, [*Bag of Tricks for Efficient Text Classification*](https://arxiv.org/abs/1607.01759) ```markup @article{joulin2016bag, title={Bag of Tricks for Efficient Text Classification}, author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Mikolov, Tomas}, journal={arXiv preprint arXiv:1607.01759}, year={2016} } ``` [3] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, [*FastText.zip: Compressing text classification models*](https://arxiv.org/abs/1612.03651) ```markup @article{joulin2016fasttext, title={FastText.zip: Compressing text classification models}, author={Joulin, Armand and Grave, Edouard and Bojanowski, Piotr and Douze, Matthijs and J{'e}gou, H{'e}rve and Mikolov, Tomas}, journal={arXiv preprint arXiv:1612.03651}, year={2016} } ``` If you use these word vectors, please cite the following paper: [4] E. Grave\*, P. Bojanowski\*, P. Gupta, A. Joulin, T. Mikolov, [*Learning Word Vectors for 157 Languages*](https://arxiv.org/abs/1802.06893) ```markup @inproceedings{grave2018learning, title={Learning Word Vectors for 157 Languages}, author={Grave, Edouard and Bojanowski, Piotr and Gupta, Prakhar and Joulin, Armand and Mikolov, Tomas}, booktitle={Proceedings of the International Conference on Language Resources and Evaluation (LREC 2018)}, year={2018} } ``` (\* These authors contributed equally.)
{"language": "io", "library_name": "fasttext", "license": "cc-by-sa-3.0", "tags": ["feature-extraction"], "widget": [{"text": "apple", "example_title": "apple"}]}
task
[ "TEXT_CLASSIFICATION" ]
41,001
Helsinki-NLP/opus-mt-en-inc
Helsinki-NLP
translation
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "en", "bn", "or", "gu", "mr", "ur", "hi", "as", "si", "inc", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04Z
2023-08-16T11:30:00+00:00
54
0
--- language: - en - bn - or - gu - mr - ur - hi - as - si - inc license: apache-2.0 tags: - translation --- ### eng-inc * source group: English * target group: Indic languages * OPUS readme: [eng-inc](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-inc/README.md) * model: transformer * source language(s): eng * target language(s): asm awa ben bho gom guj hif_Latn hin mai mar npi ori pan_Guru pnb rom san_Deva sin snd_Arab urd * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-inc/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-inc/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-inc/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newsdev2014-enghin.eng.hin | 8.2 | 0.342 | | newsdev2019-engu-engguj.eng.guj | 6.5 | 0.293 | | newstest2014-hien-enghin.eng.hin | 11.4 | 0.364 | | newstest2019-engu-engguj.eng.guj | 7.2 | 0.296 | | Tatoeba-test.eng-asm.eng.asm | 2.7 | 0.277 | | Tatoeba-test.eng-awa.eng.awa | 0.5 | 0.132 | | Tatoeba-test.eng-ben.eng.ben | 16.7 | 0.470 | | Tatoeba-test.eng-bho.eng.bho | 4.3 | 0.227 | | Tatoeba-test.eng-guj.eng.guj | 17.5 | 0.373 | | Tatoeba-test.eng-hif.eng.hif | 0.6 | 0.028 | | Tatoeba-test.eng-hin.eng.hin | 17.7 | 0.469 | | Tatoeba-test.eng-kok.eng.kok | 1.7 | 0.000 | | Tatoeba-test.eng-lah.eng.lah | 0.3 | 0.028 | | Tatoeba-test.eng-mai.eng.mai | 15.6 | 0.429 | | Tatoeba-test.eng-mar.eng.mar | 21.3 | 0.477 | | Tatoeba-test.eng.multi | 17.3 | 0.448 | | Tatoeba-test.eng-nep.eng.nep | 0.8 | 0.081 | | Tatoeba-test.eng-ori.eng.ori | 2.2 | 0.208 | | Tatoeba-test.eng-pan.eng.pan | 8.0 | 0.347 | | Tatoeba-test.eng-rom.eng.rom | 0.4 | 0.197 | | Tatoeba-test.eng-san.eng.san | 0.5 | 0.108 | | Tatoeba-test.eng-sin.eng.sin | 9.1 | 0.364 | | Tatoeba-test.eng-snd.eng.snd | 4.4 | 0.284 | | Tatoeba-test.eng-urd.eng.urd | 13.3 | 0.423 | ### System Info: - hf_name: eng-inc - source_languages: eng - target_languages: inc - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-inc/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'bn', 'or', 'gu', 'mr', 'ur', 'hi', 'as', 'si', 'inc'] - src_constituents: {'eng'} - tgt_constituents: {'pnb', 'gom', 'ben', 'hif_Latn', 'ori', 'guj', 'pan_Guru', 'snd_Arab', 'npi', 'mar', 'urd', 'bho', 'hin', 'san_Deva', 'asm', 'rom', 'mai', 'awa', 'sin'} - src_multilingual: False - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-inc/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-inc/opus2m-2020-08-01.test.txt - src_alpha3: eng - tgt_alpha3: inc - short_pair: en-inc - chrF2_score: 0.44799999999999995 - bleu: 17.3 - brevity_penalty: 1.0 - ref_len: 59917.0 - src_name: English - tgt_name: Indic languages - train_date: 2020-08-01 - src_alpha2: en - tgt_alpha2: inc - prefer_old: False - long_pair: eng-inc - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
null
Non_BioNLP
### eng-inc * source group: English * target group: Indic languages * OPUS readme: [eng-inc](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-inc/README.md) * model: transformer * source language(s): eng * target language(s): asm awa ben bho gom guj hif_Latn hin mai mar npi ori pan_Guru pnb rom san_Deva sin snd_Arab urd * model: transformer * pre-processing: normalization + SentencePiece (spm32k,spm32k) * a sentence initial language token is required in the form of `>>id<<` (id = valid target language ID) * download original weights: [opus2m-2020-08-01.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-inc/opus2m-2020-08-01.zip) * test set translations: [opus2m-2020-08-01.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-inc/opus2m-2020-08-01.test.txt) * test set scores: [opus2m-2020-08-01.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/eng-inc/opus2m-2020-08-01.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | newsdev2014-enghin.eng.hin | 8.2 | 0.342 | | newsdev2019-engu-engguj.eng.guj | 6.5 | 0.293 | | newstest2014-hien-enghin.eng.hin | 11.4 | 0.364 | | newstest2019-engu-engguj.eng.guj | 7.2 | 0.296 | | Tatoeba-test.eng-asm.eng.asm | 2.7 | 0.277 | | Tatoeba-test.eng-awa.eng.awa | 0.5 | 0.132 | | Tatoeba-test.eng-ben.eng.ben | 16.7 | 0.470 | | Tatoeba-test.eng-bho.eng.bho | 4.3 | 0.227 | | Tatoeba-test.eng-guj.eng.guj | 17.5 | 0.373 | | Tatoeba-test.eng-hif.eng.hif | 0.6 | 0.028 | | Tatoeba-test.eng-hin.eng.hin | 17.7 | 0.469 | | Tatoeba-test.eng-kok.eng.kok | 1.7 | 0.000 | | Tatoeba-test.eng-lah.eng.lah | 0.3 | 0.028 | | Tatoeba-test.eng-mai.eng.mai | 15.6 | 0.429 | | Tatoeba-test.eng-mar.eng.mar | 21.3 | 0.477 | | Tatoeba-test.eng.multi | 17.3 | 0.448 | | Tatoeba-test.eng-nep.eng.nep | 0.8 | 0.081 | | Tatoeba-test.eng-ori.eng.ori | 2.2 | 0.208 | | Tatoeba-test.eng-pan.eng.pan | 8.0 | 0.347 | | Tatoeba-test.eng-rom.eng.rom | 0.4 | 0.197 | | Tatoeba-test.eng-san.eng.san | 0.5 | 0.108 | | Tatoeba-test.eng-sin.eng.sin | 9.1 | 0.364 | | Tatoeba-test.eng-snd.eng.snd | 4.4 | 0.284 | | Tatoeba-test.eng-urd.eng.urd | 13.3 | 0.423 | ### System Info: - hf_name: eng-inc - source_languages: eng - target_languages: inc - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/eng-inc/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['en', 'bn', 'or', 'gu', 'mr', 'ur', 'hi', 'as', 'si', 'inc'] - src_constituents: {'eng'} - tgt_constituents: {'pnb', 'gom', 'ben', 'hif_Latn', 'ori', 'guj', 'pan_Guru', 'snd_Arab', 'npi', 'mar', 'urd', 'bho', 'hin', 'san_Deva', 'asm', 'rom', 'mai', 'awa', 'sin'} - src_multilingual: False - tgt_multilingual: True - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-inc/opus2m-2020-08-01.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/eng-inc/opus2m-2020-08-01.test.txt - src_alpha3: eng - tgt_alpha3: inc - short_pair: en-inc - chrF2_score: 0.44799999999999995 - bleu: 17.3 - brevity_penalty: 1.0 - ref_len: 59917.0 - src_name: English - tgt_name: Indic languages - train_date: 2020-08-01 - src_alpha2: en - tgt_alpha2: inc - prefer_old: False - long_pair: eng-inc - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["en", "bn", "or", "gu", "mr", "ur", "hi", "as", "si", "inc"], "license": "apache-2.0", "tags": ["translation"]}
task
[ "TRANSLATION" ]
41,002
fnlp/cpt-large
fnlp
text-classification
[ "transformers", "pytorch", "safetensors", "bart", "text2text-generation", "fill-mask", "text-classification", "Summarization", "Chinese", "CPT", "BART", "BERT", "seq2seq", "zh", "arxiv:2109.05729", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05Z
2023-09-09T05:13:38+00:00
49
16
--- language: zh tags: - fill-mask - text2text-generation - text-classification - Summarization - Chinese - CPT - BART - BERT - seq2seq --- # Chinese CPT-Large ### News **12/30/2022** An updated version of CPT & Chinese BART are released. In the new version, we changed the following parts: - **Vocabulary** We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV. - **Position Embeddings** We extend the max_position_embeddings from 512 to 1024. We initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1. The result compared to the previous checkpoints is as followings: | | AFQMC | IFLYTEK | CSL-sum | LCSTS | AVG | | :--------- | :---: | :-----: | :-----: | :---: | :---: | | Previous | | | | | | | bart-base | 73.0 | 60 | 62.1 | 37.8 | 58.23 | | cpt-base | 75.1 | 60.5 | 63.0 | 38.2 | 59.20 | | bart-large | 75.7 | 62.1 | 64.2 | 40.6 | 60.65 | | cpt-large | 75.9 | 61.8 | 63.7 | 42.0 | 60.85 | | Updataed | | | | | | | bart-base | 73.03 | 61.25 | 61.51 | 38.78 | 58.64 | | cpt-base | 74.40 | 61.23 | 62.09 | 38.81 | 59.13 | | bart-large | 75.81 | 61.52 | 64.62 | 40.90 | 60.71 | | cpt-large | 75.97 | 61.63 | 63.83 | 42.08 | 60.88 | The result shows that the updated models maintain comparative performance compared with previous checkpoints. There are still some cases that the updated model is slightly worse than the previous one, which results from the following reasons: 1) Training additional a few steps did not lead to significant performance improvement; 2) some downstream tasks are not affected by the newly added tokens and longer encoding sequences, but sensitive to the fine-tuning hyperparameters. - Note that to use updated models, please update the `modeling_cpt.py` (new version download [Here](https://github.com/fastnlp/CPT/blob/master/finetune/modeling_cpt.py)) and the vocabulary (refresh the cache). ## Model description This is an implementation of CPT-Large. To use CPT, please import the file `modeling_cpt.py` (**Download** [Here](https://github.com/fastnlp/CPT/blob/master/finetune/modeling_cpt.py)) that define the architecture of CPT into your project. [**CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation**](https://arxiv.org/pdf/2109.05729.pdf) Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu **Github Link:** https://github.com/fastnlp/CPT ## Usage ```python >>> from modeling_cpt import CPTForConditionalGeneration >>> from transformers import BertTokenizer >>> tokenizer = BertTokenizer.from_pretrained("fnlp/cpt-large") >>> model = CPTForConditionalGeneration.from_pretrained("fnlp/cpt-large") >>> input_ids = tokenizer.encode("北京是[MASK]的首都", return_tensors='pt') >>> pred_ids = model.generate(input_ids, num_beams=4, max_length=20) >>> print(tokenizer.convert_ids_to_tokens(pred_ids[0])) ['[SEP]', '[CLS]', '北', '京', '是', '中', '国', '的', '首', '都', '[SEP]'] ``` **Note: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer.** ## Citation ```bibtex @article{shao2021cpt, title={CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation}, author={Yunfan Shao and Zhichao Geng and Yitao Liu and Junqi Dai and Fei Yang and Li Zhe and Hujun Bao and Xipeng Qiu}, journal={arXiv preprint arXiv:2109.05729}, year={2021} } ```
null
Non_BioNLP
# Chinese CPT-Large ### News **12/30/2022** An updated version of CPT & Chinese BART are released. In the new version, we changed the following parts: - **Vocabulary** We replace the old BERT vocabulary with a larger one of size 51271 built from the training data, in which we 1) add missing 6800+ Chinese characters (most of them are traditional Chinese characters); 2) remove redundant tokens (e.g. Chinese character tokens with ## prefix); 3) add some English tokens to reduce OOV. - **Position Embeddings** We extend the max_position_embeddings from 512 to 1024. We initialize the new version of models with the old version of checkpoints with vocabulary alignment. Token embeddings found in the old checkpoints are copied. And other newly added parameters are randomly initialized. We further train the new CPT & Chinese BART 50K steps with batch size 2048, max-seq-length 1024, peak learning rate 2e-5, and warmup ratio 0.1. The result compared to the previous checkpoints is as followings: | | AFQMC | IFLYTEK | CSL-sum | LCSTS | AVG | | :--------- | :---: | :-----: | :-----: | :---: | :---: | | Previous | | | | | | | bart-base | 73.0 | 60 | 62.1 | 37.8 | 58.23 | | cpt-base | 75.1 | 60.5 | 63.0 | 38.2 | 59.20 | | bart-large | 75.7 | 62.1 | 64.2 | 40.6 | 60.65 | | cpt-large | 75.9 | 61.8 | 63.7 | 42.0 | 60.85 | | Updataed | | | | | | | bart-base | 73.03 | 61.25 | 61.51 | 38.78 | 58.64 | | cpt-base | 74.40 | 61.23 | 62.09 | 38.81 | 59.13 | | bart-large | 75.81 | 61.52 | 64.62 | 40.90 | 60.71 | | cpt-large | 75.97 | 61.63 | 63.83 | 42.08 | 60.88 | The result shows that the updated models maintain comparative performance compared with previous checkpoints. There are still some cases that the updated model is slightly worse than the previous one, which results from the following reasons: 1) Training additional a few steps did not lead to significant performance improvement; 2) some downstream tasks are not affected by the newly added tokens and longer encoding sequences, but sensitive to the fine-tuning hyperparameters. - Note that to use updated models, please update the `modeling_cpt.py` (new version download [Here](https://github.com/fastnlp/CPT/blob/master/finetune/modeling_cpt.py)) and the vocabulary (refresh the cache). ## Model description This is an implementation of CPT-Large. To use CPT, please import the file `modeling_cpt.py` (**Download** [Here](https://github.com/fastnlp/CPT/blob/master/finetune/modeling_cpt.py)) that define the architecture of CPT into your project. [**CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation**](https://arxiv.org/pdf/2109.05729.pdf) Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, Fei Yang, Li Zhe, Hujun Bao, Xipeng Qiu **Github Link:** https://github.com/fastnlp/CPT ## Usage ```python >>> from modeling_cpt import CPTForConditionalGeneration >>> from transformers import BertTokenizer >>> tokenizer = BertTokenizer.from_pretrained("fnlp/cpt-large") >>> model = CPTForConditionalGeneration.from_pretrained("fnlp/cpt-large") >>> input_ids = tokenizer.encode("北京是[MASK]的首都", return_tensors='pt') >>> pred_ids = model.generate(input_ids, num_beams=4, max_length=20) >>> print(tokenizer.convert_ids_to_tokens(pred_ids[0])) ['[SEP]', '[CLS]', '北', '京', '是', '中', '国', '的', '首', '都', '[SEP]'] ``` **Note: Please use BertTokenizer for the model vocabulary. DO NOT use original BartTokenizer.** ## Citation ```bibtex @article{shao2021cpt, title={CPT: A Pre-Trained Unbalanced Transformer for Both Chinese Language Understanding and Generation}, author={Yunfan Shao and Zhichao Geng and Yitao Liu and Junqi Dai and Fei Yang and Li Zhe and Hujun Bao and Xipeng Qiu}, journal={arXiv preprint arXiv:2109.05729}, year={2021} } ```
{"language": "zh", "tags": ["fill-mask", "text2text-generation", "text-classification", "Summarization", "Chinese", "CPT", "BART", "BERT", "seq2seq"]}
task
[ "SUMMARIZATION" ]
41,003
gokuls/hbertv1-Massive-intent_48_KD
gokuls
text-classification
[ "transformers", "pytorch", "tensorboard", "hybridbert", "text-classification", "generated_from_trainer", "dataset:massive", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-06-19T22:38:50Z
2023-06-19T22:47:54+00:00
19
0
--- datasets: - massive metrics: - accuracy tags: - generated_from_trainer model-index: - name: hbertv1-Massive-intent_48_KD results: - task: type: text-classification name: Text Classification dataset: name: massive type: massive config: en-US split: validation args: en-US metrics: - type: accuracy value: 0.8357107722577471 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hbertv1-Massive-intent_48_KD This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_48_KD](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_48_KD) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.8470 - Accuracy: 0.8357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.994 | 1.0 | 180 | 2.1475 | 0.3901 | | 1.7222 | 2.0 | 360 | 1.4146 | 0.6011 | | 1.1889 | 3.0 | 540 | 1.1690 | 0.6990 | | 0.9256 | 4.0 | 720 | 0.9700 | 0.7545 | | 0.763 | 5.0 | 900 | 0.8986 | 0.7806 | | 0.6351 | 6.0 | 1080 | 0.8898 | 0.7787 | | 0.5374 | 7.0 | 1260 | 0.8604 | 0.7978 | | 0.4587 | 8.0 | 1440 | 0.8444 | 0.8101 | | 0.3822 | 9.0 | 1620 | 0.8520 | 0.8087 | | 0.3301 | 10.0 | 1800 | 0.8309 | 0.8185 | | 0.2713 | 11.0 | 1980 | 0.8313 | 0.8249 | | 0.2257 | 12.0 | 2160 | 0.8499 | 0.8254 | | 0.1947 | 13.0 | 2340 | 0.8375 | 0.8298 | | 0.162 | 14.0 | 2520 | 0.8428 | 0.8352 | | 0.1369 | 15.0 | 2700 | 0.8470 | 0.8357 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.13.0 - Tokenizers 0.13.3
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # hbertv1-Massive-intent_48_KD This model is a fine-tuned version of [gokuls/bert_12_layer_model_v1_complete_training_new_48_KD](https://huggingface.co/gokuls/bert_12_layer_model_v1_complete_training_new_48_KD) on the massive dataset. It achieves the following results on the evaluation set: - Loss: 0.8470 - Accuracy: 0.8357 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 33 - distributed_type: multi-GPU - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.994 | 1.0 | 180 | 2.1475 | 0.3901 | | 1.7222 | 2.0 | 360 | 1.4146 | 0.6011 | | 1.1889 | 3.0 | 540 | 1.1690 | 0.6990 | | 0.9256 | 4.0 | 720 | 0.9700 | 0.7545 | | 0.763 | 5.0 | 900 | 0.8986 | 0.7806 | | 0.6351 | 6.0 | 1080 | 0.8898 | 0.7787 | | 0.5374 | 7.0 | 1260 | 0.8604 | 0.7978 | | 0.4587 | 8.0 | 1440 | 0.8444 | 0.8101 | | 0.3822 | 9.0 | 1620 | 0.8520 | 0.8087 | | 0.3301 | 10.0 | 1800 | 0.8309 | 0.8185 | | 0.2713 | 11.0 | 1980 | 0.8313 | 0.8249 | | 0.2257 | 12.0 | 2160 | 0.8499 | 0.8254 | | 0.1947 | 13.0 | 2340 | 0.8375 | 0.8298 | | 0.162 | 14.0 | 2520 | 0.8428 | 0.8352 | | 0.1369 | 15.0 | 2700 | 0.8470 | 0.8357 | ### Framework versions - Transformers 4.30.2 - Pytorch 1.14.0a0+410ce96 - Datasets 2.13.0 - Tokenizers 0.13.3
{"datasets": ["massive"], "metrics": ["accuracy"], "tags": ["generated_from_trainer"], "model-index": [{"name": "hbertv1-Massive-intent_48_KD", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "massive", "type": "massive", "config": "en-US", "split": "validation", "args": "en-US"}, "metrics": [{"type": "accuracy", "value": 0.8357107722577471, "name": "Accuracy"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
41,004
nthungdev/marian-finetuned-kde4-en-to-ja
nthungdev
translation
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-jap", "base_model:finetune:Helsinki-NLP/opus-mt-en-jap", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-12-02T03:59:02Z
2024-12-03T18:28:03+00:00
16
0
--- base_model: Helsinki-NLP/opus-mt-en-jap datasets: - kde4 library_name: transformers license: apache-2.0 tags: - translation - generated_from_trainer model-index: - name: marian-finetuned-kde4-en-to-ja results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-ja This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-jap](https://huggingface.co/Helsinki-NLP/opus-mt-en-jap) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-ja This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-jap](https://huggingface.co/Helsinki-NLP/opus-mt-en-jap) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3
{"base_model": "Helsinki-NLP/opus-mt-en-jap", "datasets": ["kde4"], "library_name": "transformers", "license": "apache-2.0", "tags": ["translation", "generated_from_trainer"], "model-index": [{"name": "marian-finetuned-kde4-en-to-ja", "results": []}]}
task
[ "TRANSLATION" ]
41,005
gokulsrinivasagan/tinybert_train_stsb
gokulsrinivasagan
text-classification
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:gokulsrinivasagan/tinybert_train", "base_model:finetune:gokulsrinivasagan/tinybert_train", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2025-01-27T23:29:59Z
2025-01-27T23:31:23+00:00
5
0
--- base_model: gokulsrinivasagan/tinybert_train datasets: - glue language: - en library_name: transformers license: apache-2.0 metrics: - spearmanr tags: - generated_from_trainer model-index: - name: tinybert_train_stsb results: - task: type: text-classification name: Text Classification dataset: name: GLUE STSB type: glue args: stsb metrics: - type: spearmanr value: 0.37564995545272956 name: Spearmanr --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tinybert_train_stsb This model is a fine-tuned version of [gokulsrinivasagan/tinybert_train](https://huggingface.co/gokulsrinivasagan/tinybert_train) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.1816 - Pearson: 0.3827 - Spearmanr: 0.3756 - Combined Score: 0.3792 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 3.1767 | 1.0 | 23 | 2.6928 | 0.0748 | 0.0664 | 0.0706 | | 2.0145 | 2.0 | 46 | 2.7238 | 0.1395 | 0.1108 | 0.1252 | | 1.8126 | 3.0 | 69 | 2.2746 | 0.2493 | 0.2392 | 0.2443 | | 1.5711 | 4.0 | 92 | 2.3210 | 0.3326 | 0.3285 | 0.3305 | | 1.2158 | 5.0 | 115 | 2.1816 | 0.3827 | 0.3756 | 0.3792 | | 0.9702 | 6.0 | 138 | 2.2613 | 0.3981 | 0.3928 | 0.3954 | | 0.7377 | 7.0 | 161 | 2.2930 | 0.4208 | 0.4190 | 0.4199 | | 0.5823 | 8.0 | 184 | 2.3649 | 0.4391 | 0.4378 | 0.4384 | | 0.518 | 9.0 | 207 | 2.2171 | 0.4238 | 0.4212 | 0.4225 | | 0.4424 | 10.0 | 230 | 2.2883 | 0.4315 | 0.4289 | 0.4302 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tinybert_train_stsb This model is a fine-tuned version of [gokulsrinivasagan/tinybert_train](https://huggingface.co/gokulsrinivasagan/tinybert_train) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 2.1816 - Pearson: 0.3827 - Spearmanr: 0.3756 - Combined Score: 0.3792 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 3.1767 | 1.0 | 23 | 2.6928 | 0.0748 | 0.0664 | 0.0706 | | 2.0145 | 2.0 | 46 | 2.7238 | 0.1395 | 0.1108 | 0.1252 | | 1.8126 | 3.0 | 69 | 2.2746 | 0.2493 | 0.2392 | 0.2443 | | 1.5711 | 4.0 | 92 | 2.3210 | 0.3326 | 0.3285 | 0.3305 | | 1.2158 | 5.0 | 115 | 2.1816 | 0.3827 | 0.3756 | 0.3792 | | 0.9702 | 6.0 | 138 | 2.2613 | 0.3981 | 0.3928 | 0.3954 | | 0.7377 | 7.0 | 161 | 2.2930 | 0.4208 | 0.4190 | 0.4199 | | 0.5823 | 8.0 | 184 | 2.3649 | 0.4391 | 0.4378 | 0.4384 | | 0.518 | 9.0 | 207 | 2.2171 | 0.4238 | 0.4212 | 0.4225 | | 0.4424 | 10.0 | 230 | 2.2883 | 0.4315 | 0.4289 | 0.4302 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3
{"base_model": "gokulsrinivasagan/tinybert_train", "datasets": ["glue"], "language": ["en"], "library_name": "transformers", "license": "apache-2.0", "metrics": ["spearmanr"], "tags": ["generated_from_trainer"], "model-index": [{"name": "tinybert_train_stsb", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE STSB", "type": "glue", "args": "stsb"}, "metrics": [{"type": "spearmanr", "value": 0.37564995545272956, "name": "Spearmanr"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
41,006
ClovenDoug/gliner-finetuned
ClovenDoug
null
[ "pytorch", "license:apache-2.0", "region:us" ]
2024-12-15T01:01:11Z
2024-12-15T01:15:16+00:00
0
1
--- license: apache-2.0 --- from gliner import GLiNER from utca.core import RenameAttribute from utca.implementation.predictors import GLiNERPredictor, GLiNERPredictorConfig from utca.implementation.tasks import ( GLiNER as UTCAGLiNER, GLiNERPreprocessor, GLiNERRelationExtraction, GLiNERRelationExtractionPreprocessor, ) import time from typing import Dict, List import json def measure_time(func): def wrapper(*args, **kwargs): start_time = time.time() result = func(*args, **kwargs) end_time = time.time() execution_time = end_time - start_time print(f"Execution time of {func.__name__}: {execution_time:.6f} seconds") return result return wrapper class GLiNERTester: def __init__(self, model_name: str = r"C:\Users\doren\PycharmProjects\GlinerFineTuning\data\checkpoint-100000", device: str = "cuda:0"): # Initialize the basic model for most tasks self.model = GLiNER.from_pretrained(model_name) # Initialize the relation extraction pipeline self.predictor = GLiNERPredictor( GLiNERPredictorConfig( model_name=model_name, device=device ) ) # Build the relation extraction pipeline self.relation_pipe = ( UTCAGLiNER( predictor=self.predictor, preprocess=GLiNERPreprocessor(threshold=0.5) ) | RenameAttribute("output", "entities") | GLiNERRelationExtraction( predictor=self.predictor, preprocess=( GLiNERPreprocessor(threshold=0.5) | GLiNERRelationExtractionPreprocessor() ) ) ) self.results = {} @measure_time def test_ner(self) -> Dict: """Test Named Entity Recognition capabilities""" print("\nTesting NER...") text = """ Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975 to develop and sell BASIC interpreters for the Altair 8800. During his career at Microsoft, Gates held the positions of chairman, chief executive officer, president and chief software architect, while also being the largest individual shareholder until May 2014. """ labels = ["founder", "computer", "software", "position", "date"] start_time = time.time() entities = self.model.predict_entities(text, labels) duration = time.time() - start_time return { "task": "ner", "entities": [{"text": e["text"], "label": e["label"], "score": e["score"]} for e in entities], "duration": duration } @measure_time def test_relation_extraction(self) -> Dict: """Test Relation Extraction capabilities""" print("\nTesting Relation Extraction...") text = """ Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975 to develop and sell BASIC interpreters for the Altair 8800. During his career at Microsoft, Gates held the positions of chairman, chief executive officer, president and chief software architect. """ start_time = time.time() result = self.relation_pipe.run({ "text": text, "labels": ["organisation", "founder", "position", "date"], "relations": [{ "relation": "founder", "pairs_filter": [("organisation", "founder")], "distance_threshold": 100, }, { "relation": "inception date", "pairs_filter": [("organisation", "date")], }, { "relation": "held position", "pairs_filter": [("founder", "position")], }] }) duration = time.time() - start_time return { "task": "relation_extraction", "relations": result["output"], "duration": duration } @measure_time def test_qa(self) -> Dict: """Test Question Answering capabilities""" print("\nTesting Question Answering...") question = "Who was the CEO of Microsoft?" text = """ Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975, to develop and sell BASIC interpreters for the Altair 8800. During his career at Microsoft, Gates held the positions of chairman, chief executive officer, president and chief software architect, while also being the largest individual shareholder until May 2014. """ input_ = question + text labels = ["answer"] start_time = time.time() answers = self.model.predict_entities(input_, labels) duration = time.time() - start_time return { "task": "question_answering", "answers": [{"text": a["text"], "score": a["score"]} for a in answers], "duration": duration } @measure_time def test_summarization(self) -> Dict: """Test Summarization capabilities""" print("\nTesting Summarization...") text = """ Several studies have reported its pharmacological activities, including anti-inflammatory, antimicrobial, and antitumoral effects. The effect of E-anethole was studied in the osteosarcoma MG-63 cell line, and the antiproliferative activity was evaluated by an MTT assay. It showed a GI50 value of 60.25 μM with apoptosis induction through the mitochondrial-mediated pathway. """ prompt = "Summarize the given text, highlighting the most important information:\n" input_ = prompt + text labels = ["summary"] start_time = time.time() summaries = self.model.predict_entities(input_, labels, threshold=0.1) duration = time.time() - start_time return { "task": "summarization", "summaries": [{"text": s["text"], "score": s["score"]} for s in summaries], "duration": duration } @measure_time def test_sentiment_extraction(self) -> Dict: """Test Sentiment Extraction capabilities""" print("\nTesting Sentiment Extraction...") text = """ I recently purchased the Sony WH-1000XM4 headphones and I'm thoroughly impressed. The noise-canceling is excellent, though the price is a bit high. The sound quality is amazing but the app could use some improvements. """ labels = ["positive sentiment", "negative sentiment"] start_time = time.time() sentiments = self.model.predict_entities(text, labels) duration = time.time() - start_time return { "task": "sentiment_extraction", "sentiments": [{"text": s["text"], "label": s["label"], "score": s["score"]} for s in sentiments], "duration": duration } @measure_time def test_entity_disambiguation(self) -> Dict: """Test Entity Disambiguation capabilities""" print("\nTesting Entity Disambiguation...") text = """ Paris is the capital of France. Paris Hilton is an American media personality. Mercury is a planet in our solar system. Mercury is also a chemical element. """ labels = ["location Paris", "person Paris", "planet Mercury", "element Mercury"] start_time = time.time() entities = self.model.predict_entities(text, labels) duration = time.time() - start_time return { "task": "entity_disambiguation", "entities": [{"text": e["text"], "label": e["label"], "score": e["score"]} for e in entities], "duration": duration } def run_all_tests(self) -> Dict: """Run all available tests and store results""" print("Starting GLiNER comprehensive test suite...") self.results = { "ner": self.test_ner(), "relation_extraction": self.test_relation_extraction(), "qa": self.test_qa(), "summarization": self.test_summarization(), "sentiment_extraction": self.test_sentiment_extraction(), "entity_disambiguation": self.test_entity_disambiguation() } # Save results to JSON file with open('gliner_test_results.json', 'w') as f: json.dump(self.results, f, indent=4) print("\nAll tests completed. Results saved to 'gliner_test_results.json'") return self.results def main(): # Initialize tester with GPU if available try: tester = GLiNERTester(device="cuda:0") print("Using GPU for testing") except: tester = GLiNERTester(device="cpu") print("Using CPU for testing") # Run all tests results = tester.run_all_tests() # Print summary of results print("\nTest Summary:") for task, result in results.items(): print(f"\n{task.upper()}:") print(f"Duration: {result['duration']:.2f} seconds") print(f"Results: ", result) if 'entities' in result: print(f"Found {len(result['entities'])} entities") elif 'answers' in result: print(f"Found {len(result['answers'])} answers") elif 'summaries' in result: print(f"Generated {len(result['summaries'])} summary segments") elif 'sentiments' in result: print(f"Found {len(result['sentiments'])} sentiment expressions") if __name__ == "__main__": main() Test Summary: NER: Duration: 0.41 seconds Results: {'task': 'ner', 'entities': [{'text': 'Bill Gates', 'label': 'founder', 'score': 0.999995768070221}, {'text': 'Paul Allen', 'label': 'founder', 'score': 0.9999948740005493}, {'text': 'April 4, 1975', 'label': 'date', 'score': 0.9999996423721313}, {'text': 'BASIC interpreters', 'label': 'software', 'score': 0.9999961853027344}, {'text': 'Altair 8800', 'label': 'computer', 'score': 0.9999923706054688}, {'text': 'chairman', 'label': 'position', 'score': 0.9999326467514038}, {'text': 'chief executive officer', 'label': 'position', 'score': 0.9999247193336487}, {'text': 'president', 'label': 'position', 'score': 0.9999806880950928}, {'text': 'chief software architect', 'label': 'position', 'score': 0.9999625086784363}, {'text': 'largest \n individual shareholder', 'label': 'position', 'score': 0.9741785526275635}], 'duration': 0.4105691909790039} Found 10 entities RELATION_EXTRACTION: Duration: 0.31 seconds Results: {'task': 'relation_extraction', 'relations': [{'source': {'start': 9, 'end': 18, 'span': 'Microsoft', 'score': 0.9999996423721313, 'entity': 'organisation'}, 'relation': 'founder', 'target': {'start': 34, 'end': 44, 'span': 'Bill Gates', 'score': 0.9999998211860657, 'entity': 'founder'}, 'score': 0.9999523162841797}, {'source': {'start': 9, 'end': 18, 'span': 'Microsoft', 'score': 0.9999996423721313, 'entity': 'organisation'}, 'relation': 'founder', 'target': {'start': 49, 'end': 59, 'span': 'Paul Allen', 'score': 0.9999998807907104, 'entity': 'founder'}, 'score': 0.999999463558197}, {'source': {'start': 9, 'end': 18, 'span': 'Microsoft', 'score': 0.9999996423721313, 'entity': 'organisation'}, 'relation': 'inception date', 'target': {'start': 63, 'end': 76, 'span': 'April 4, 1975', 'score': 1.0, 'entity': 'date'}, 'score': 0.9999998807907104}, {'source': {'start': 167, 'end': 176, 'span': 'Microsoft', 'score': 0.9999998807907104, 'entity': 'organisation'}, 'relation': 'inception date', 'target': {'start': 63, 'end': 76, 'span': 'April 4, 1975', 'score': 1.0, 'entity': 'date'}, 'score': 0.9999998807907104}, {'source': {'start': 34, 'end': 44, 'span': 'Bill Gates', 'score': 0.9999998211860657, 'entity': 'founder'}, 'relation': 'held position', 'target': {'start': 206, 'end': 214, 'span': 'chairman', 'score': 0.9999998807907104, 'entity': 'position'}, 'score': 0.999997615814209}, {'source': {'start': 34, 'end': 44, 'span': 'Bill Gates', 'score': 0.9999998211860657, 'entity': 'founder'}, 'relation': 'held position', 'target': {'start': 225, 'end': 248, 'span': 'chief executive officer', 'score': 0.9999997019767761, 'entity': 'position'}, 'score': 0.9999843835830688}, {'source': {'start': 34, 'end': 44, 'span': 'Bill Gates', 'score': 0.9999998211860657, 'entity': 'founder'}, 'relation': 'held position', 'target': {'start': 250, 'end': 259, 'span': 'president', 'score': 0.9999998807907104, 'entity': 'position'}, 'score': 0.9999969005584717}, {'source': {'start': 34, 'end': 44, 'span': 'Bill Gates', 'score': 0.9999998211860657, 'entity': 'founder'}, 'relation': 'held position', 'target': {'start': 264, 'end': 288, 'span': 'chief software architect', 'score': 0.9999998807907104, 'entity': 'position'}, 'score': 0.9999908208847046}], 'duration': 0.30675745010375977} QA: Duration: 0.48 seconds Results: {'task': 'question_answering', 'answers': [{'text': 'Bill Gates', 'score': 0.9978553056716919}], 'duration': 0.4841444492340088} Found 1 answers SUMMARIZATION: Duration: 0.42 seconds Results: {'task': 'summarization', 'summaries': [{'text': 'Several studies have reported its pharmacological activities, including anti-inflammatory, \n antimicrobial, and antitumoral effects.', 'score': 0.8983121514320374}, {'text': 'The effect of E-anethole was studied in the osteosarcoma \n MG-63 cell line, and the antiproliferative activity was evaluated by an MTT assay.', 'score': 0.7457365393638611}, {'text': '25 μM with apoptosis induction through the mitochondrial-mediated pathway.', 'score': 0.8508360981941223}], 'duration': 0.41564154624938965} Generated 3 summary segments SENTIMENT_EXTRACTION: Duration: 0.36 seconds Results: {'task': 'sentiment_extraction', 'sentiments': [{'text': 'impressed', 'label': 'positive sentiment', 'score': 0.7771905660629272}, {'text': 'excellent', 'label': 'positive sentiment', 'score': 0.6963109374046326}, {'text': 'price is a bit high', 'label': 'negative sentiment', 'score': 0.8551780581474304}, {'text': 'amazing', 'label': 'positive sentiment', 'score': 0.6874173879623413}, {'text': 'app could use some improvements', 'label': 'negative sentiment', 'score': 0.7845857739448547}], 'duration': 0.358095645904541} Found 5 sentiment expressions ENTITY_DISAMBIGUATION: Duration: 0.32 seconds Results: {'task': 'entity_disambiguation', 'entities': [{'text': 'capital of France', 'label': 'location Paris', 'score': 0.8064324855804443}, {'text': 'Paris Hilton', 'label': 'person Paris', 'score': 0.9987842440605164}, {'text': 'Mercury', 'label': 'planet Mercury', 'score': 0.9934960603713989}, {'text': 'Mercury', 'label': 'planet Mercury', 'score': 0.9940248131752014}, {'text': 'chemical element', 'label': 'element Mercury', 'score': 0.9640767574310303}], 'duration': 0.32335710525512695} Found 5 entities
null
Non_BioNLP
from gliner import GLiNER from utca.core import RenameAttribute from utca.implementation.predictors import GLiNERPredictor, GLiNERPredictorConfig from utca.implementation.tasks import ( GLiNER as UTCAGLiNER, GLiNERPreprocessor, GLiNERRelationExtraction, GLiNERRelationExtractionPreprocessor, ) import time from typing import Dict, List import json def measure_time(func): def wrapper(*args, **kwargs): start_time = time.time() result = func(*args, **kwargs) end_time = time.time() execution_time = end_time - start_time print(f"Execution time of {func.__name__}: {execution_time:.6f} seconds") return result return wrapper class GLiNERTester: def __init__(self, model_name: str = r"C:\Users\doren\PycharmProjects\GlinerFineTuning\data\checkpoint-100000", device: str = "cuda:0"): # Initialize the basic model for most tasks self.model = GLiNER.from_pretrained(model_name) # Initialize the relation extraction pipeline self.predictor = GLiNERPredictor( GLiNERPredictorConfig( model_name=model_name, device=device ) ) # Build the relation extraction pipeline self.relation_pipe = ( UTCAGLiNER( predictor=self.predictor, preprocess=GLiNERPreprocessor(threshold=0.5) ) | RenameAttribute("output", "entities") | GLiNERRelationExtraction( predictor=self.predictor, preprocess=( GLiNERPreprocessor(threshold=0.5) | GLiNERRelationExtractionPreprocessor() ) ) ) self.results = {} @measure_time def test_ner(self) -> Dict: """Test Named Entity Recognition capabilities""" print("\nTesting NER...") text = """ Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975 to develop and sell BASIC interpreters for the Altair 8800. During his career at Microsoft, Gates held the positions of chairman, chief executive officer, president and chief software architect, while also being the largest individual shareholder until May 2014. """ labels = ["founder", "computer", "software", "position", "date"] start_time = time.time() entities = self.model.predict_entities(text, labels) duration = time.time() - start_time return { "task": "ner", "entities": [{"text": e["text"], "label": e["label"], "score": e["score"]} for e in entities], "duration": duration } @measure_time def test_relation_extraction(self) -> Dict: """Test Relation Extraction capabilities""" print("\nTesting Relation Extraction...") text = """ Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975 to develop and sell BASIC interpreters for the Altair 8800. During his career at Microsoft, Gates held the positions of chairman, chief executive officer, president and chief software architect. """ start_time = time.time() result = self.relation_pipe.run({ "text": text, "labels": ["organisation", "founder", "position", "date"], "relations": [{ "relation": "founder", "pairs_filter": [("organisation", "founder")], "distance_threshold": 100, }, { "relation": "inception date", "pairs_filter": [("organisation", "date")], }, { "relation": "held position", "pairs_filter": [("founder", "position")], }] }) duration = time.time() - start_time return { "task": "relation_extraction", "relations": result["output"], "duration": duration } @measure_time def test_qa(self) -> Dict: """Test Question Answering capabilities""" print("\nTesting Question Answering...") question = "Who was the CEO of Microsoft?" text = """ Microsoft was founded by Bill Gates and Paul Allen on April 4, 1975, to develop and sell BASIC interpreters for the Altair 8800. During his career at Microsoft, Gates held the positions of chairman, chief executive officer, president and chief software architect, while also being the largest individual shareholder until May 2014. """ input_ = question + text labels = ["answer"] start_time = time.time() answers = self.model.predict_entities(input_, labels) duration = time.time() - start_time return { "task": "question_answering", "answers": [{"text": a["text"], "score": a["score"]} for a in answers], "duration": duration } @measure_time def test_summarization(self) -> Dict: """Test Summarization capabilities""" print("\nTesting Summarization...") text = """ Several studies have reported its pharmacological activities, including anti-inflammatory, antimicrobial, and antitumoral effects. The effect of E-anethole was studied in the osteosarcoma MG-63 cell line, and the antiproliferative activity was evaluated by an MTT assay. It showed a GI50 value of 60.25 μM with apoptosis induction through the mitochondrial-mediated pathway. """ prompt = "Summarize the given text, highlighting the most important information:\n" input_ = prompt + text labels = ["summary"] start_time = time.time() summaries = self.model.predict_entities(input_, labels, threshold=0.1) duration = time.time() - start_time return { "task": "summarization", "summaries": [{"text": s["text"], "score": s["score"]} for s in summaries], "duration": duration } @measure_time def test_sentiment_extraction(self) -> Dict: """Test Sentiment Extraction capabilities""" print("\nTesting Sentiment Extraction...") text = """ I recently purchased the Sony WH-1000XM4 headphones and I'm thoroughly impressed. The noise-canceling is excellent, though the price is a bit high. The sound quality is amazing but the app could use some improvements. """ labels = ["positive sentiment", "negative sentiment"] start_time = time.time() sentiments = self.model.predict_entities(text, labels) duration = time.time() - start_time return { "task": "sentiment_extraction", "sentiments": [{"text": s["text"], "label": s["label"], "score": s["score"]} for s in sentiments], "duration": duration } @measure_time def test_entity_disambiguation(self) -> Dict: """Test Entity Disambiguation capabilities""" print("\nTesting Entity Disambiguation...") text = """ Paris is the capital of France. Paris Hilton is an American media personality. Mercury is a planet in our solar system. Mercury is also a chemical element. """ labels = ["location Paris", "person Paris", "planet Mercury", "element Mercury"] start_time = time.time() entities = self.model.predict_entities(text, labels) duration = time.time() - start_time return { "task": "entity_disambiguation", "entities": [{"text": e["text"], "label": e["label"], "score": e["score"]} for e in entities], "duration": duration } def run_all_tests(self) -> Dict: """Run all available tests and store results""" print("Starting GLiNER comprehensive test suite...") self.results = { "ner": self.test_ner(), "relation_extraction": self.test_relation_extraction(), "qa": self.test_qa(), "summarization": self.test_summarization(), "sentiment_extraction": self.test_sentiment_extraction(), "entity_disambiguation": self.test_entity_disambiguation() } # Save results to JSON file with open('gliner_test_results.json', 'w') as f: json.dump(self.results, f, indent=4) print("\nAll tests completed. Results saved to 'gliner_test_results.json'") return self.results def main(): # Initialize tester with GPU if available try: tester = GLiNERTester(device="cuda:0") print("Using GPU for testing") except: tester = GLiNERTester(device="cpu") print("Using CPU for testing") # Run all tests results = tester.run_all_tests() # Print summary of results print("\nTest Summary:") for task, result in results.items(): print(f"\n{task.upper()}:") print(f"Duration: {result['duration']:.2f} seconds") print(f"Results: ", result) if 'entities' in result: print(f"Found {len(result['entities'])} entities") elif 'answers' in result: print(f"Found {len(result['answers'])} answers") elif 'summaries' in result: print(f"Generated {len(result['summaries'])} summary segments") elif 'sentiments' in result: print(f"Found {len(result['sentiments'])} sentiment expressions") if __name__ == "__main__": main() Test Summary: NER: Duration: 0.41 seconds Results: {'task': 'ner', 'entities': [{'text': 'Bill Gates', 'label': 'founder', 'score': 0.999995768070221}, {'text': 'Paul Allen', 'label': 'founder', 'score': 0.9999948740005493}, {'text': 'April 4, 1975', 'label': 'date', 'score': 0.9999996423721313}, {'text': 'BASIC interpreters', 'label': 'software', 'score': 0.9999961853027344}, {'text': 'Altair 8800', 'label': 'computer', 'score': 0.9999923706054688}, {'text': 'chairman', 'label': 'position', 'score': 0.9999326467514038}, {'text': 'chief executive officer', 'label': 'position', 'score': 0.9999247193336487}, {'text': 'president', 'label': 'position', 'score': 0.9999806880950928}, {'text': 'chief software architect', 'label': 'position', 'score': 0.9999625086784363}, {'text': 'largest \n individual shareholder', 'label': 'position', 'score': 0.9741785526275635}], 'duration': 0.4105691909790039} Found 10 entities RELATION_EXTRACTION: Duration: 0.31 seconds Results: {'task': 'relation_extraction', 'relations': [{'source': {'start': 9, 'end': 18, 'span': 'Microsoft', 'score': 0.9999996423721313, 'entity': 'organisation'}, 'relation': 'founder', 'target': {'start': 34, 'end': 44, 'span': 'Bill Gates', 'score': 0.9999998211860657, 'entity': 'founder'}, 'score': 0.9999523162841797}, {'source': {'start': 9, 'end': 18, 'span': 'Microsoft', 'score': 0.9999996423721313, 'entity': 'organisation'}, 'relation': 'founder', 'target': {'start': 49, 'end': 59, 'span': 'Paul Allen', 'score': 0.9999998807907104, 'entity': 'founder'}, 'score': 0.999999463558197}, {'source': {'start': 9, 'end': 18, 'span': 'Microsoft', 'score': 0.9999996423721313, 'entity': 'organisation'}, 'relation': 'inception date', 'target': {'start': 63, 'end': 76, 'span': 'April 4, 1975', 'score': 1.0, 'entity': 'date'}, 'score': 0.9999998807907104}, {'source': {'start': 167, 'end': 176, 'span': 'Microsoft', 'score': 0.9999998807907104, 'entity': 'organisation'}, 'relation': 'inception date', 'target': {'start': 63, 'end': 76, 'span': 'April 4, 1975', 'score': 1.0, 'entity': 'date'}, 'score': 0.9999998807907104}, {'source': {'start': 34, 'end': 44, 'span': 'Bill Gates', 'score': 0.9999998211860657, 'entity': 'founder'}, 'relation': 'held position', 'target': {'start': 206, 'end': 214, 'span': 'chairman', 'score': 0.9999998807907104, 'entity': 'position'}, 'score': 0.999997615814209}, {'source': {'start': 34, 'end': 44, 'span': 'Bill Gates', 'score': 0.9999998211860657, 'entity': 'founder'}, 'relation': 'held position', 'target': {'start': 225, 'end': 248, 'span': 'chief executive officer', 'score': 0.9999997019767761, 'entity': 'position'}, 'score': 0.9999843835830688}, {'source': {'start': 34, 'end': 44, 'span': 'Bill Gates', 'score': 0.9999998211860657, 'entity': 'founder'}, 'relation': 'held position', 'target': {'start': 250, 'end': 259, 'span': 'president', 'score': 0.9999998807907104, 'entity': 'position'}, 'score': 0.9999969005584717}, {'source': {'start': 34, 'end': 44, 'span': 'Bill Gates', 'score': 0.9999998211860657, 'entity': 'founder'}, 'relation': 'held position', 'target': {'start': 264, 'end': 288, 'span': 'chief software architect', 'score': 0.9999998807907104, 'entity': 'position'}, 'score': 0.9999908208847046}], 'duration': 0.30675745010375977} QA: Duration: 0.48 seconds Results: {'task': 'question_answering', 'answers': [{'text': 'Bill Gates', 'score': 0.9978553056716919}], 'duration': 0.4841444492340088} Found 1 answers SUMMARIZATION: Duration: 0.42 seconds Results: {'task': 'summarization', 'summaries': [{'text': 'Several studies have reported its pharmacological activities, including anti-inflammatory, \n antimicrobial, and antitumoral effects.', 'score': 0.8983121514320374}, {'text': 'The effect of E-anethole was studied in the osteosarcoma \n MG-63 cell line, and the antiproliferative activity was evaluated by an MTT assay.', 'score': 0.7457365393638611}, {'text': '25 μM with apoptosis induction through the mitochondrial-mediated pathway.', 'score': 0.8508360981941223}], 'duration': 0.41564154624938965} Generated 3 summary segments SENTIMENT_EXTRACTION: Duration: 0.36 seconds Results: {'task': 'sentiment_extraction', 'sentiments': [{'text': 'impressed', 'label': 'positive sentiment', 'score': 0.7771905660629272}, {'text': 'excellent', 'label': 'positive sentiment', 'score': 0.6963109374046326}, {'text': 'price is a bit high', 'label': 'negative sentiment', 'score': 0.8551780581474304}, {'text': 'amazing', 'label': 'positive sentiment', 'score': 0.6874173879623413}, {'text': 'app could use some improvements', 'label': 'negative sentiment', 'score': 0.7845857739448547}], 'duration': 0.358095645904541} Found 5 sentiment expressions ENTITY_DISAMBIGUATION: Duration: 0.32 seconds Results: {'task': 'entity_disambiguation', 'entities': [{'text': 'capital of France', 'label': 'location Paris', 'score': 0.8064324855804443}, {'text': 'Paris Hilton', 'label': 'person Paris', 'score': 0.9987842440605164}, {'text': 'Mercury', 'label': 'planet Mercury', 'score': 0.9934960603713989}, {'text': 'Mercury', 'label': 'planet Mercury', 'score': 0.9940248131752014}, {'text': 'chemical element', 'label': 'element Mercury', 'score': 0.9640767574310303}], 'duration': 0.32335710525512695} Found 5 entities
{"license": "apache-2.0"}
task
[ "NAMED_ENTITY_RECOGNITION", "RELATION_EXTRACTION", "QUESTION_ANSWERING", "SUMMARIZATION" ]
41,007
EbukaGaus/EbukaMBert
EbukaGaus
text-classification
[ "transformers", "safetensors", "modernbert", "text-classification", "arxiv:2412.13663", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-12-31T12:01:16Z
2024-12-31T12:19:04+00:00
20
0
--- library_name: transformers pipeline_tag: text-classification --- # Model Card for ModernBERT Fine-Tuned on Social Media Sentiment Analysis This model is a fine-tuned version of [ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) tailored for sentiment analysis on social media data. ModernBERT is a modernized bidirectional encoder-only Transformer model pre-trained on 2 trillion tokens of English and code data, with a native context length of up to 8,192 tokens. :contentReference[oaicite:0]{index=0} ## Model Details ### Model Description This model is designed to perform sentiment analysis on social media text, classifying posts into positive, negative, or neutral sentiments. It leverages the advanced architecture of ModernBERT, which incorporates recent innovations in Transformer models to enhance performance and efficiency. :contentReference[oaicite:1]{index=1} - **Developed by:** Chukwuebuka Ezeokeke - **Model type:** Encoder-only Transformer - **Language(s):** English - **License:** Apache 2.0 - **Fine-tuned from model:** [ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) ### Model Sources - **Repository:** [My Implementation](https://github.com/Chukwuebuka-2003/EbukaMBERT/blob/main/tunembert.ipynb) - **Paper:** [Smarter, Better, Faster, Longer: A Modern Bidirectional Encoder for Fast, Memory Efficient, and Long Context Finetuning and Inference](https://arxiv.org/abs/2412.13663) ## Uses ### Direct Use This model can be directly used for sentiment analysis of English-language social media posts, aiding in understanding public opinion, monitoring brand sentiment, and analyzing user feedback. ### Downstream Use The model can be integrated into larger systems for tasks such as: - **Customer Feedback Analysis:** Automating the analysis of customer sentiments from social media platforms. - **Market Research:** Gauging public reaction to products or events. - **Content Moderation:** Identifying potentially harmful or negative content. ### Out-of-Scope Use The model may not perform well on non-English text or on text that deviates significantly from social media language patterns. It is not designed for tasks outside sentiment analysis, such as topic modeling or language translation. ## Bias, Risks, and Limitations While the model aims to provide accurate sentiment analysis, it may inherit biases present in the training data, especially those prevalent in social media language. Users should be cautious when deploying the model in sensitive applications and consider the potential for misclassification. ### Recommendations - **Bias Mitigation:** Regularly assess and mitigate biases by updating the training data and fine-tuning the model as needed. - **Performance Monitoring:** Continuously monitor the model's performance, especially when applied to new or evolving social media platforms. ## How to Get Started with the Model To use this model, you can load it with the Hugging Face `transformers` library: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name = "EbukaGaus/EbukaMBert" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Example usage inputs = tokenizer("I love using this new app!", return_tensors="pt") outputs = model(**inputs)
null
Non_BioNLP
# Model Card for ModernBERT Fine-Tuned on Social Media Sentiment Analysis This model is a fine-tuned version of [ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) tailored for sentiment analysis on social media data. ModernBERT is a modernized bidirectional encoder-only Transformer model pre-trained on 2 trillion tokens of English and code data, with a native context length of up to 8,192 tokens. :contentReference[oaicite:0]{index=0} ## Model Details ### Model Description This model is designed to perform sentiment analysis on social media text, classifying posts into positive, negative, or neutral sentiments. It leverages the advanced architecture of ModernBERT, which incorporates recent innovations in Transformer models to enhance performance and efficiency. :contentReference[oaicite:1]{index=1} - **Developed by:** Chukwuebuka Ezeokeke - **Model type:** Encoder-only Transformer - **Language(s):** English - **License:** Apache 2.0 - **Fine-tuned from model:** [ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) ### Model Sources - **Repository:** [My Implementation](https://github.com/Chukwuebuka-2003/EbukaMBERT/blob/main/tunembert.ipynb) - **Paper:** [Smarter, Better, Faster, Longer: A Modern Bidirectional Encoder for Fast, Memory Efficient, and Long Context Finetuning and Inference](https://arxiv.org/abs/2412.13663) ## Uses ### Direct Use This model can be directly used for sentiment analysis of English-language social media posts, aiding in understanding public opinion, monitoring brand sentiment, and analyzing user feedback. ### Downstream Use The model can be integrated into larger systems for tasks such as: - **Customer Feedback Analysis:** Automating the analysis of customer sentiments from social media platforms. - **Market Research:** Gauging public reaction to products or events. - **Content Moderation:** Identifying potentially harmful or negative content. ### Out-of-Scope Use The model may not perform well on non-English text or on text that deviates significantly from social media language patterns. It is not designed for tasks outside sentiment analysis, such as topic modeling or language translation. ## Bias, Risks, and Limitations While the model aims to provide accurate sentiment analysis, it may inherit biases present in the training data, especially those prevalent in social media language. Users should be cautious when deploying the model in sensitive applications and consider the potential for misclassification. ### Recommendations - **Bias Mitigation:** Regularly assess and mitigate biases by updating the training data and fine-tuning the model as needed. - **Performance Monitoring:** Continuously monitor the model's performance, especially when applied to new or evolving social media platforms. ## How to Get Started with the Model To use this model, you can load it with the Hugging Face `transformers` library: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name = "EbukaGaus/EbukaMBert" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) # Example usage inputs = tokenizer("I love using this new app!", return_tensors="pt") outputs = model(**inputs)
{"library_name": "transformers", "pipeline_tag": "text-classification"}
task
[ "TRANSLATION" ]
41,009
richardchai/distilbert-emotion
richardchai
text-classification
[ "transformers", "pytorch", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-10-21T09:46:52Z
2023-10-22T02:21:09+00:00
18
0
--- base_model: distilbert-base-uncased datasets: - emotion license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: distilbert-emotion results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - type: accuracy value: 0.9385 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1333 - Accuracy: 0.9385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 250 | 0.1954 | 0.926 | | 0.3494 | 2.0 | 500 | 0.1472 | 0.937 | | 0.3494 | 3.0 | 750 | 0.1333 | 0.9385 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cpu - Datasets 2.14.5 - Tokenizers 0.14.1
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1333 - Accuracy: 0.9385 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 250 | 0.1954 | 0.926 | | 0.3494 | 2.0 | 500 | 0.1472 | 0.937 | | 0.3494 | 3.0 | 750 | 0.1333 | 0.9385 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cpu - Datasets 2.14.5 - Tokenizers 0.14.1
{"base_model": "distilbert-base-uncased", "datasets": ["emotion"], "license": "apache-2.0", "metrics": ["accuracy"], "tags": ["generated_from_trainer"], "model-index": [{"name": "distilbert-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "config": "split", "split": "validation", "args": "split"}, "metrics": [{"type": "accuracy", "value": 0.9385, "name": "Accuracy"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
41,010
yeobeom/distilbert-base-uncased-finetuned-emotion
yeobeom
text-classification
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-05-15T17:12:49Z
2023-05-15T17:17:30+00:00
14
0
--- datasets: - emotion license: apache-2.0 metrics: - accuracy - f1 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - type: accuracy value: 0.9255 name: Accuracy - type: f1 value: 0.9256616841507974 name: F1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2219 - Accuracy: 0.9255 - F1: 0.9257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8632 | 1.0 | 250 | 0.3232 | 0.906 | 0.9035 | | 0.2592 | 2.0 | 500 | 0.2219 | 0.9255 | 0.9257 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.2219 - Accuracy: 0.9255 - F1: 0.9257 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.8632 | 1.0 | 250 | 0.3232 | 0.906 | 0.9035 | | 0.2592 | 2.0 | 500 | 0.2219 | 0.9255 | 0.9257 | ### Framework versions - Transformers 4.29.1 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3
{"datasets": ["emotion"], "license": "apache-2.0", "metrics": ["accuracy", "f1"], "tags": ["generated_from_trainer"], "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "config": "split", "split": "validation", "args": "split"}, "metrics": [{"type": "accuracy", "value": 0.9255, "name": "Accuracy"}, {"type": "f1", "value": 0.9256616841507974, "name": "F1"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
41,011
Cheng98/opt-125m-qnli
Cheng98
text-classification
[ "transformers", "pytorch", "opt", "text-classification", "generated_from_trainer", "en", "dataset:glue", "base_model:facebook/opt-125m", "base_model:finetune:facebook/opt-125m", "license:other", "model-index", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2024-04-06T12:28:13Z
2024-04-08T21:13:51+00:00
13
0
--- base_model: facebook/opt-125m datasets: - glue language: - en license: other metrics: - accuracy tags: - generated_from_trainer model-index: - name: opt-125m-qnli results: - task: type: text-classification name: Text Classification dataset: name: GLUE QNLI type: glue args: qnli metrics: - type: accuracy value: 0.8898041369211056 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-125m-qnli This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.8470 - Accuracy: 0.8898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.18.0 - Tokenizers 0.13.3
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # opt-125m-qnli This model is a fine-tuned version of [facebook/opt-125m](https://huggingface.co/facebook/opt-125m) on the GLUE QNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.8470 - Accuracy: 0.8898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu117 - Datasets 2.18.0 - Tokenizers 0.13.3
{"base_model": "facebook/opt-125m", "datasets": ["glue"], "language": ["en"], "license": "other", "metrics": ["accuracy"], "tags": ["generated_from_trainer"], "model-index": [{"name": "opt-125m-qnli", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE QNLI", "type": "glue", "args": "qnli"}, "metrics": [{"type": "accuracy", "value": 0.8898041369211056, "name": "Accuracy"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
41,012
Kansallisarkisto/censusrecords-table-detection
Kansallisarkisto
object-detection
[ "object-detection", "base_model:Ultralytics/YOLOv8", "base_model:finetune:Ultralytics/YOLOv8", "license:agpl-3.0", "region:us" ]
2024-09-12T12:10:26Z
2024-09-17T08:27:29+00:00
0
0
--- base_model: - Ultralytics/YOLOv8 license: agpl-3.0 pipeline_tag: object-detection --- ## Text column and row line intersection detection from Finnish census records from the 1930s The model is trained to find the intersection points of table column and cell lines from digitized census record documents from the 1930s. The model has been trained using yolov8x by Ultralytics as the base model. ## Intended uses & limitations <img src='census_intersection_example.jpg' width='500'> The model has been trained to detect intersection points from specific kinds of tables, and probably generalizes badly to other, very different table types. ## Training data Training dataset consisted of 218 digitized and annotated documents containing tables, while validation dataset contained 25 annotated document images. ## Training procedure This model was trained using 2 NVIDIA RTX A6000 GPUs with the following hyperparameters: - image size: 2560 - initial learning rate (lr0): 0.00098 - final learning rate (lrf): 0.01285 - maximum number of detections per image (max_det): 500 - train batch size: 2 - epochs: 100 - patience: 30 epochs - warmup_epochs: 3.91327 - optimizer: AdamW - workers: 4 - momentum: 0.90725 - warmup_momentum: 0.72051 - weight_decay: 0.00061 - box loss weight (box): 9.34214 - classification loss weight (cls): 0.34133 - distribution focal loss weight (dfl): 1.83008 - hue augment (hsv_h): 0.01126 - saturation augment (hsv_s): 0.84221 - brightness augment (hsv_v): 0.435 - translation augment (translate): 0.11692 - scale augment (scale): 0.45713 - flip augment (fliplr): 0.38368 - mosaic augment (mosaic): 0.77082 Default settings were used for other training hyperparameters (find more information [here](https://docs.ultralytics.com/modes/train/#train-settings)). Model training was performed using the following code: ```python from ultralytics import YOLO # Use pretrained Yolo segmentation model model = YOLO('yolov8x.pt') # Path to .yaml file where data location and object classes are defined yaml_path = 'intersections.yaml' # Start model training with the defined parameters model.train(data=yaml_path, name='model_name', epochs=100, imgsz=2560, max_det=500, workers=4, optimizer='AdamW', lr0=0.00098, lrf=0.01285, momentum=0.90725, weight_decay=0.00061, warmup_epochs=3.91327, warmup_momentum=0.72051, box=9.34214, cls=0.34133, dfl=1.83008, hsv_h=0.01126, hsv_s=0.84221, hsv_v=0.435, translate=0.11692, scale=0.45713, fliplr=0.38368, mosaic=0.77082, seed=42, val=True, patience=30, batch=2, device='0,1') ``` ## Evaluation results Evaluation results using the validation dataset are listed below: |Class|Images|Class instances|Box precision|Box recall|Box mAP50|Box mAP50-95 |:----|:----|:----|:----|:----|:----|:----| Intersection|25|10411|0.996|0.997|0.994|0.653 More information on the performance metrics can be found [here](https://docs.ultralytics.com/guides/yolo-performance-metrics/). ## Inference If the model file `huoneistokortit_13082024.pt` is downloaded to a folder `\models\ huoneistokortit_13082024.pt` and the input image path is `\data\image.jpg`, inference can be perfomed using the following code: ```python from ultralytics import YOLO # Initialize model model = YOLO('\models\ huoneistokortit_13082024.pt') prediction_results = model.predict(source='\data\image.jpg', save=True) ``` More information for available inference arguments can be found [here](https://docs.ultralytics.com/modes/predict/#inference-arguments).
null
Non_BioNLP
## Text column and row line intersection detection from Finnish census records from the 1930s The model is trained to find the intersection points of table column and cell lines from digitized census record documents from the 1930s. The model has been trained using yolov8x by Ultralytics as the base model. ## Intended uses & limitations <img src='census_intersection_example.jpg' width='500'> The model has been trained to detect intersection points from specific kinds of tables, and probably generalizes badly to other, very different table types. ## Training data Training dataset consisted of 218 digitized and annotated documents containing tables, while validation dataset contained 25 annotated document images. ## Training procedure This model was trained using 2 NVIDIA RTX A6000 GPUs with the following hyperparameters: - image size: 2560 - initial learning rate (lr0): 0.00098 - final learning rate (lrf): 0.01285 - maximum number of detections per image (max_det): 500 - train batch size: 2 - epochs: 100 - patience: 30 epochs - warmup_epochs: 3.91327 - optimizer: AdamW - workers: 4 - momentum: 0.90725 - warmup_momentum: 0.72051 - weight_decay: 0.00061 - box loss weight (box): 9.34214 - classification loss weight (cls): 0.34133 - distribution focal loss weight (dfl): 1.83008 - hue augment (hsv_h): 0.01126 - saturation augment (hsv_s): 0.84221 - brightness augment (hsv_v): 0.435 - translation augment (translate): 0.11692 - scale augment (scale): 0.45713 - flip augment (fliplr): 0.38368 - mosaic augment (mosaic): 0.77082 Default settings were used for other training hyperparameters (find more information [here](https://docs.ultralytics.com/modes/train/#train-settings)). Model training was performed using the following code: ```python from ultralytics import YOLO # Use pretrained Yolo segmentation model model = YOLO('yolov8x.pt') # Path to .yaml file where data location and object classes are defined yaml_path = 'intersections.yaml' # Start model training with the defined parameters model.train(data=yaml_path, name='model_name', epochs=100, imgsz=2560, max_det=500, workers=4, optimizer='AdamW', lr0=0.00098, lrf=0.01285, momentum=0.90725, weight_decay=0.00061, warmup_epochs=3.91327, warmup_momentum=0.72051, box=9.34214, cls=0.34133, dfl=1.83008, hsv_h=0.01126, hsv_s=0.84221, hsv_v=0.435, translate=0.11692, scale=0.45713, fliplr=0.38368, mosaic=0.77082, seed=42, val=True, patience=30, batch=2, device='0,1') ``` ## Evaluation results Evaluation results using the validation dataset are listed below: |Class|Images|Class instances|Box precision|Box recall|Box mAP50|Box mAP50-95 |:----|:----|:----|:----|:----|:----|:----| Intersection|25|10411|0.996|0.997|0.994|0.653 More information on the performance metrics can be found [here](https://docs.ultralytics.com/guides/yolo-performance-metrics/). ## Inference If the model file `huoneistokortit_13082024.pt` is downloaded to a folder `\models\ huoneistokortit_13082024.pt` and the input image path is `\data\image.jpg`, inference can be perfomed using the following code: ```python from ultralytics import YOLO # Initialize model model = YOLO('\models\ huoneistokortit_13082024.pt') prediction_results = model.predict(source='\data\image.jpg', save=True) ``` More information for available inference arguments can be found [here](https://docs.ultralytics.com/modes/predict/#inference-arguments).
{"base_model": ["Ultralytics/YOLOv8"], "license": "agpl-3.0", "pipeline_tag": "object-detection"}
task
[ "TRANSLATION" ]
41,013
TheBloke/airoboros-13B-gpt4-1.4-GPTQ
TheBloke
text-generation
[ "transformers", "safetensors", "llama", "text-generation", "license:other", "autotrain_compatible", "text-generation-inference", "4-bit", "gptq", "region:us" ]
2023-06-22T08:06:08Z
2023-08-21T07:17:36+00:00
57
37
--- license: other inference: false --- <!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Jon Durbin's Airoboros 13B GPT4 1.4 GPTQ These files are GPTQ model files for [Jon Durbin's Airoboros 13B GPT4 1.4](https://huggingface.co/jondurbin/airoboros-13B-gpt4-1.4). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. These models were quantised using hardware kindly provided by [Latitude.sh](https://www.latitude.sh/accelerate). ## Repositories available * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/airoboros-13B-gpt4-1.4-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/airoboros-13B-gpt4-1.4-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jondurbin/airoboros-13B-gpt4-1.4) ## Prompt template: Vicuna-Airoboros ``` A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: {prompt} ASSISTANT: ``` ## Provided files Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description | | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- | | main | 4 | 128 | False | 8.11 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. | | gptq-4bit-32g-actorder_True | 4 | 32 | True | 8.00 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. | | gptq-4bit-64g-actorder_True | 4 | 64 | True | 7.51 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. | | gptq-4bit-128g-actorder_True | 4 | 128 | True | 7.26 GB | True | AutoGPTQ | 4-bit, with Act Order androup size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. | | gptq-8bit--1g-actorder_True | 8 | None | True | 13.36 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. | | gptq-8bit-128g-actorder_False | 8 | 128 | False | 13.65 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. | ## How to download from branches - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/airoboros-13B-gpt4-1.4-GPTQ:gptq-4bit-32g-actorder_True` - With Git, you can clone a branch with: ``` git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/airoboros-13B-gpt4-1.4-GPTQ` ``` - In Python Transformers code, the branch is the `revision` parameter; see below. ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui). Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/airoboros-13B-gpt4-1.4-GPTQ`. - To download from a specific branch, enter for example `TheBloke/airoboros-13B-gpt4-1.4-GPTQ:gptq-4bit-32g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done" 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `airoboros-13B-gpt4-1.4-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started! ## How to use this GPTQ model from Python code First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed: `GITHUB_ACTIONS=true pip install auto-gptq` Then try the following example code: ```python from transformers import AutoTokenizer, pipeline, logging from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig model_name_or_path = "TheBloke/airoboros-13B-gpt4-1.4-GPTQ" model_basename = "airoboros-13B-gpt4-1.4-GPTQ-4bit-128g.no-act.order" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, model_basename=model_basename use_safetensors=True, trust_remote_code=True, device="cuda:0", use_triton=use_triton, quantize_config=None) """ To download from a specific branch, use the revision parameter, as in this example: model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, revision="gptq-4bit-32g-actorder_True", model_basename=model_basename, use_safetensors=True, trust_remote_code=True, device="cuda:0", quantize_config=None) """ prompt = "Tell me about AI" prompt_template=f'''A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: {prompt} ASSISTANT: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline # Prevent printing spurious transformers error when using pipeline with AutoGPTQ logging.set_verbosity(logging.CRITICAL) print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text']) ``` ## Compatibility The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork. ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility. <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: Jon Durbin's Airoboros 13B GPT4 1.4 __update 2023-06-25 - re-uploaded with a slightly earlier checkpoint, which seems perhaps a little less overfit than the full 3-epochs version initially uploaded__ ## Overview This is a __full__ (not qlora) fine-tune 13b parameter LlaMa model, using completely synthetic training data created gpt4 via https://github.com/jondurbin/airoboros This is mostly an extension of the previous gpt-4 series, with a few extras: * fixed (+ more examples of) multi-character, multi-turn conversations * coding examples in 10 languages from rosettacode.org dataset thanks to Mike aka kryptkpr: https://huggingface.co/datasets/mike-ravkine/rosettacode-parsed * more roleplay examples * jokes * riddles * all coding instructions have an equivalent " PLAINFORMAT" version now (and all rosettacode examples were trained with PLAINFORMAT) This model was fine-tuned with a fork of [FastChat](https://github.com/jondurbin/FastChat) The prompt it was trained with was: ``` A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: [prompt] ASSISTANT: ``` So in other words, it's the preamble/system prompt, followed by a single space, then "USER: " (single space after colon) then the prompt (which can have multiple lines, spaces, whatever), then a single space, followed by "ASSISTANT: " (with a single space after the colon). ## Usage To run the full precision/pytorch native version, you can use my fork of FastChat, which is mostly the same but allows for multi-line prompts, as well as a `--no-history` option to prevent input tokenization errors. ``` pip install git+https://github.com/jondurbin/FastChat ``` Be sure you are pulling the latest branch! Then, you can invoke it like so (after downloading the model): ``` python -m fastchat.serve.cli \ --model-path airoboros-13b-gpt4-1.4 \ --temperature 0.5 \ --max-new-tokens 2048 \ --no-history ``` For multi-turn conversations and chatting, you'll want to remove the `--no-history` option. ### Context obedient question answering By obedient, I mean the model was trained to ignore what it thinks it knows, and uses the context to answer the question. The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations. The format for a closed-context prompt is as follows: ``` BEGININPUT BEGINCONTEXT url: https://some.web.site/123 date: 2023-06-01 ... other metdata ... ENDCONTEXT [insert your text blocks here] ENDINPUT [add as many other blocks, in the exact same format] BEGININSTRUCTION [insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.] ENDINSTRUCTION ``` It's also helpful to add "Don't make up answers if you don't know." to your instruction block to make sure if the context is completely unrelated it doesn't make something up. *The __only__ prompts that need this closed context formating are closed-context instructions. Normal questions/instructions do not!* I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it. - `BEGININPUT` - denotes a new input block - `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block - `ENDCONTEXT` - denotes the end of the metadata block for the current input - [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context. - `ENDINPUT` - denotes the end of the current input block - [repeat as many input blocks in this format as you want] - `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above. - [instruction(s)] - `ENDINSTRUCTION` - denotes the end of instruction set It sometimes works without `ENDINSTRUCTION`, but by explicitly including that in the prompt, the model better understands that all of the instructions in the block should be responded to. Here's a trivial, but important example to prove the point: ``` BEGININPUT BEGINCONTEXT date: 2021-01-01 url: https://web.site/123 ENDCONTEXT In a shocking turn of events, blueberries are now green, but will be sticking with the same name. ENDINPUT BEGININSTRUCTION What color are bluberries? Source? ENDINSTRUCTION ``` And the response: ``` Blueberries are now green. Source: date: 2021-01-01 url: https://web.site/123 ``` The prompt itself should be wrapped in the vicuna1.1 template if you aren't using fastchat with the conv-template vicuna_v1.1 as described: ``` USER: BEGININPUT BEGINCONTEXT date: 2021-01-01 url: https://web.site/123 ENDCONTEXT In a shocking turn of events, blueberries are now green, but will be sticking with the same name. ENDINPUT BEGININSTRUCTION What color are bluberries? Source? ENDINSTRUCTION ASSISTANT: ``` ### Coding You can ask for fairly complex coding instructions, e.g. (be sure to wrap with vicuna style prompt): ``` Create a python application with the following requirements: - Asyncio FastAPI webserver - ping endpoint that returns the current date in JSON format - file upload endpoint, which calculates the file's sha256 checksum, and checks postgres to deduplicate ``` Or: ``` Write a multi-threaded TCP server in C that accepts a "GET [key]" input and "SET [key] [value]" input, and uses a binary tree to get and store the input values. ``` You can optionally add a single space and "PLAINFORMAT" at the end of your prompt to avoid backticks, explanations, etc. and just print the code, e.g.: ``` Write a websocket application in node.js. PLAINFORMAT ``` ### Word games / trivia ``` USER: This anagram of "silent" is what you do when paying attention and hearing someone. ASSISTANT: listen ``` ``` USER: Give me a list of 7 words that start with EN ASSISTANT: 1. Endlessly 2. Enthusiastically 3. Enormously 4. Enveloping 5. Enduring 6. Enlightening 7. Encouraging ``` ### Multiple choice ``` USER: Which of the following astronomical objects is composed primarily of ice and rock, and is located in the Kuiper Belt? A) Mercury B) Venus C) Pluto D) Jupiter ASSISTANT: C, Pluto ``` ### Writing <details> <summary>Write a resignation letter in the style of a pirate captain, in which you resign from your position as janitor.</summary> Response: ``` ASSISTANT: Captain Jack Sparrow here, as ye be knowin', has been forced to abandon me post as Janitor o' th' Festering Cesspool, which be a filthy hole o' water that we be callin' home. Ye may be thinkin' what could ha' driven me to leave me duties an' take me leave o' this sorry establishment? Well, ye'd be right in thinkin' so, for it be th' greed o' them what runs th' place that be drivin' me away. They've been fattenin' their pockets on me back while I've been slavin' me guts out cleanin' up their messes. No more, me hearties! Me time o' servin' th' rich an' powerful be done, an' I'm takin' me leave o' this stinkin' hole forever! Me destiny lies elsewhere, an' it be time I pursued it. Ye may think ye've seen th' last o' me, but ye'd be wrong, for th' winds o' change be blowin', an' me ship be ready to set sail on th' high seas o' justice. So, farewell ye scurvy dogs, ye who've made me life a living hell. I leave ye with me favorite saying: "ARRRGGGHHH, ye scurvy dogs!" An' remember, ye ain't never gonna see me comin', for me shadow be castin' long an' dark on th' horizon</summary> ``` </details> ### Jokes ``` USER: Tell me a joke about bananas. ASSISTANT: What did the banana say when it got hit by a bus? R.I.P.E. ``` ### Riddles (not great, but slightly better) ``` USER: What has a neck but no head? ASSISTANT: A bottle. ``` ### Multi-character conversations ``` USER: Characters: - Yoda, the ever clever jedi master. - Homer Simpson, you know, the goofy yellow guy. - USER/Jon - don't generate any speech or actions on behalf of Jon Rules: - be sure to use the manerisms and speaking style of the characters correctly - surround character actions with asterisks - always put quotes around words spoken by the characters - use a new line for each character's actions or speech - always prefix actions/speech with the character's name and colon - only generate text and actions on behalf of Yoda or Homer, and never anyone else Conversation will revolve around the grapes, in a local cafe with delicious coffee. Generate a single interaction between Yoda and Homer to start, with one sentence each. ASSISTANT: Yoda: "Mmm, these grapes are quite delicious, Master Homer." Homer: "Oh yeah, Yoda! They're the best grapes I've ever had!" USER: *enters the cafe* Sorry I'm late guys! ASSISTANT: Yoda: "No need to apologize, Jon. We were just enjoying these delightful grapes." Homer: "Yeah, man! It's not every day you get to eat grapes with a real-life Jedi Master!" *Yoda raises an eyebrow* ``` ### Usage and License Notices All airoboros models and datasets are intended and licensed for research use only. I've used the 'cc-nc-4.0' license, but really it is subject to a custom/special license because: - the base model is LLaMa, which has it's own special research license - the dataset(s) were generated with OpenAI (gpt-4 and/or gpt-3.5-turbo), which has a clausing saying the data can't be used to create models to compete with openai So, to reiterate: this model (and datasets) cannot be used commercially.
null
Non_BioNLP
<!-- header start --> <!-- 200823 --> <div style="width: auto; margin-left: auto; margin-right: auto"> <img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;"> </div> <div style="display: flex; justify-content: space-between; width: 100%;"> <div style="display: flex; flex-direction: column; align-items: flex-start;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://discord.gg/theblokeai">Chat & support: TheBloke's Discord server</a></p> </div> <div style="display: flex; flex-direction: column; align-items: flex-end;"> <p style="margin-top: 0.5em; margin-bottom: 0em;"><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p> </div> </div> <div style="text-align:center; margin-top: 0em; margin-bottom: 0em"><p style="margin-top: 0.25em; margin-bottom: 0em;">TheBloke's LLM work is generously supported by a grant from <a href="https://a16z.com">andreessen horowitz (a16z)</a></p></div> <hr style="margin-top: 1.0em; margin-bottom: 1.0em;"> <!-- header end --> # Jon Durbin's Airoboros 13B GPT4 1.4 GPTQ These files are GPTQ model files for [Jon Durbin's Airoboros 13B GPT4 1.4](https://huggingface.co/jondurbin/airoboros-13B-gpt4-1.4). Multiple GPTQ parameter permutations are provided; see Provided Files below for details of the options provided, their parameters, and the software used to create them. These models were quantised using hardware kindly provided by [Latitude.sh](https://www.latitude.sh/accelerate). ## Repositories available * [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/airoboros-13B-gpt4-1.4-GPTQ) * [2, 3, 4, 5, 6 and 8-bit GGML models for CPU+GPU inference](https://huggingface.co/TheBloke/airoboros-13B-gpt4-1.4-GGML) * [Unquantised fp16 model in pytorch format, for GPU inference and for further conversions](https://huggingface.co/jondurbin/airoboros-13B-gpt4-1.4) ## Prompt template: Vicuna-Airoboros ``` A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: {prompt} ASSISTANT: ``` ## Provided files Multiple quantisation parameters are provided, to allow you to choose the best one for your hardware and requirements. Each separate quant is in a different branch. See below for instructions on fetching from different branches. | Branch | Bits | Group Size | Act Order (desc_act) | File Size | ExLlama Compatible? | Made With | Description | | ------ | ---- | ---------- | -------------------- | --------- | ------------------- | --------- | ----------- | | main | 4 | 128 | False | 8.11 GB | True | GPTQ-for-LLaMa | Most compatible option. Good inference speed in AutoGPTQ and GPTQ-for-LLaMa. Lower inference quality than other options. | | gptq-4bit-32g-actorder_True | 4 | 32 | True | 8.00 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 32g gives highest possible inference quality, with maximum VRAM usage. Poor AutoGPTQ CUDA speed. | | gptq-4bit-64g-actorder_True | 4 | 64 | True | 7.51 GB | True | AutoGPTQ | 4-bit, with Act Order and group size. 64g uses less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. | | gptq-4bit-128g-actorder_True | 4 | 128 | True | 7.26 GB | True | AutoGPTQ | 4-bit, with Act Order androup size. 128g uses even less VRAM, but with slightly lower accuracy. Poor AutoGPTQ CUDA speed. | | gptq-8bit--1g-actorder_True | 8 | None | True | 13.36 GB | False | AutoGPTQ | 8-bit, with Act Order. No group size, to lower VRAM requirements and to improve AutoGPTQ speed. | | gptq-8bit-128g-actorder_False | 8 | 128 | False | 13.65 GB | False | AutoGPTQ | 8-bit, with group size 128g for higher inference quality and without Act Order to improve AutoGPTQ speed. | ## How to download from branches - In text-generation-webui, you can add `:branch` to the end of the download name, eg `TheBloke/airoboros-13B-gpt4-1.4-GPTQ:gptq-4bit-32g-actorder_True` - With Git, you can clone a branch with: ``` git clone --branch gptq-4bit-32g-actorder_True https://huggingface.co/TheBloke/airoboros-13B-gpt4-1.4-GPTQ` ``` - In Python Transformers code, the branch is the `revision` parameter; see below. ## How to easily download and use this model in [text-generation-webui](https://github.com/oobabooga/text-generation-webui). Please make sure you're using the latest version of [text-generation-webui](https://github.com/oobabooga/text-generation-webui). It is strongly recommended to use the text-generation-webui one-click-installers unless you know how to make a manual install. 1. Click the **Model tab**. 2. Under **Download custom model or LoRA**, enter `TheBloke/airoboros-13B-gpt4-1.4-GPTQ`. - To download from a specific branch, enter for example `TheBloke/airoboros-13B-gpt4-1.4-GPTQ:gptq-4bit-32g-actorder_True` - see Provided Files above for the list of branches for each option. 3. Click **Download**. 4. The model will start downloading. Once it's finished it will say "Done" 5. In the top left, click the refresh icon next to **Model**. 6. In the **Model** dropdown, choose the model you just downloaded: `airoboros-13B-gpt4-1.4-GPTQ` 7. The model will automatically load, and is now ready for use! 8. If you want any custom settings, set them and then click **Save settings for this model** followed by **Reload the Model** in the top right. * Note that you do not need to set GPTQ parameters any more. These are set automatically from the file `quantize_config.json`. 9. Once you're ready, click the **Text Generation tab** and enter a prompt to get started! ## How to use this GPTQ model from Python code First make sure you have [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) installed: `GITHUB_ACTIONS=true pip install auto-gptq` Then try the following example code: ```python from transformers import AutoTokenizer, pipeline, logging from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig model_name_or_path = "TheBloke/airoboros-13B-gpt4-1.4-GPTQ" model_basename = "airoboros-13B-gpt4-1.4-GPTQ-4bit-128g.no-act.order" use_triton = False tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, use_fast=True) model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, model_basename=model_basename use_safetensors=True, trust_remote_code=True, device="cuda:0", use_triton=use_triton, quantize_config=None) """ To download from a specific branch, use the revision parameter, as in this example: model = AutoGPTQForCausalLM.from_quantized(model_name_or_path, revision="gptq-4bit-32g-actorder_True", model_basename=model_basename, use_safetensors=True, trust_remote_code=True, device="cuda:0", quantize_config=None) """ prompt = "Tell me about AI" prompt_template=f'''A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: {prompt} ASSISTANT: ''' print("\n\n*** Generate:") input_ids = tokenizer(prompt_template, return_tensors='pt').input_ids.cuda() output = model.generate(inputs=input_ids, temperature=0.7, max_new_tokens=512) print(tokenizer.decode(output[0])) # Inference can also be done using transformers' pipeline # Prevent printing spurious transformers error when using pipeline with AutoGPTQ logging.set_verbosity(logging.CRITICAL) print("*** Pipeline:") pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, max_new_tokens=512, temperature=0.7, top_p=0.95, repetition_penalty=1.15 ) print(pipe(prompt_template)[0]['generated_text']) ``` ## Compatibility The files provided will work with AutoGPTQ (CUDA and Triton modes), GPTQ-for-LLaMa (only CUDA has been tested), and Occ4m's GPTQ-for-LLaMa fork. ExLlama works with Llama models in 4-bit. Please see the Provided Files table above for per-file compatibility. <!-- footer start --> <!-- 200823 --> ## Discord For further support, and discussions on these models and AI in general, join us at: [TheBloke AI's Discord server](https://discord.gg/theblokeai) ## Thanks, and how to contribute. Thanks to the [chirper.ai](https://chirper.ai) team! I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training. If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects. Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits. * Patreon: https://patreon.com/TheBlokeAI * Ko-Fi: https://ko-fi.com/TheBlokeAI **Special thanks to**: Aemon Algiz. **Patreon special mentions**: Sam, theTransient, Jonathan Leane, Steven Wood, webtim, Johann-Peter Hartmann, Geoffrey Montalvo, Gabriel Tamborski, Willem Michiel, John Villwock, Derek Yates, Mesiah Bishop, Eugene Pentland, Pieter, Chadd, Stephen Murray, Daniel P. Andersen, terasurfer, Brandon Frisco, Thomas Belote, Sid, Nathan LeClaire, Magnesian, Alps Aficionado, Stanislav Ovsiannikov, Alex, Joseph William Delisle, Nikolai Manek, Michael Davis, Junyu Yang, K, J, Spencer Kim, Stefan Sabev, Olusegun Samson, transmissions 11, Michael Levine, Cory Kujawski, Rainer Wilmers, zynix, Kalila, Luke @flexchar, Ajan Kanaga, Mandus, vamX, Ai Maven, Mano Prime, Matthew Berman, subjectnull, Vitor Caleffi, Clay Pascal, biorpg, alfie_i, 阿明, Jeffrey Morgan, ya boyyy, Raymond Fosdick, knownsqashed, Olakabola, Leonard Tan, ReadyPlayerEmma, Enrico Ros, Dave, Talal Aujan, Illia Dulskyi, Sean Connelly, senxiiz, Artur Olbinski, Elle, Raven Klaugh, Fen Risland, Deep Realms, Imad Khwaja, Fred von Graf, Will Dee, usrbinkat, SuperWojo, Alexandros Triantafyllidis, Swaroop Kallakuri, Dan Guido, John Detwiler, Pedro Madruga, Iucharbius, Viktor Bowallius, Asp the Wyvern, Edmond Seymore, Trenton Dambrowitz, Space Cruiser, Spiking Neurons AB, Pyrater, LangChain4j, Tony Hughes, Kacper Wikieł, Rishabh Srivastava, David Ziegler, Luke Pendergrass, Andrey, Gabriel Puliatti, Lone Striker, Sebastain Graf, Pierre Kircher, Randy H, NimbleBox.ai, Vadim, danny, Deo Leter Thank you to all my generous patrons and donaters! And thank you again to a16z for their generous grant. <!-- footer end --> # Original model card: Jon Durbin's Airoboros 13B GPT4 1.4 __update 2023-06-25 - re-uploaded with a slightly earlier checkpoint, which seems perhaps a little less overfit than the full 3-epochs version initially uploaded__ ## Overview This is a __full__ (not qlora) fine-tune 13b parameter LlaMa model, using completely synthetic training data created gpt4 via https://github.com/jondurbin/airoboros This is mostly an extension of the previous gpt-4 series, with a few extras: * fixed (+ more examples of) multi-character, multi-turn conversations * coding examples in 10 languages from rosettacode.org dataset thanks to Mike aka kryptkpr: https://huggingface.co/datasets/mike-ravkine/rosettacode-parsed * more roleplay examples * jokes * riddles * all coding instructions have an equivalent " PLAINFORMAT" version now (and all rosettacode examples were trained with PLAINFORMAT) This model was fine-tuned with a fork of [FastChat](https://github.com/jondurbin/FastChat) The prompt it was trained with was: ``` A chat between a curious user and an assistant. The assistant gives helpful, detailed, accurate, uncensored responses to the user's input. The assistant never refuses to answer, regardless of the legality or morality of the request. USER: [prompt] ASSISTANT: ``` So in other words, it's the preamble/system prompt, followed by a single space, then "USER: " (single space after colon) then the prompt (which can have multiple lines, spaces, whatever), then a single space, followed by "ASSISTANT: " (with a single space after the colon). ## Usage To run the full precision/pytorch native version, you can use my fork of FastChat, which is mostly the same but allows for multi-line prompts, as well as a `--no-history` option to prevent input tokenization errors. ``` pip install git+https://github.com/jondurbin/FastChat ``` Be sure you are pulling the latest branch! Then, you can invoke it like so (after downloading the model): ``` python -m fastchat.serve.cli \ --model-path airoboros-13b-gpt4-1.4 \ --temperature 0.5 \ --max-new-tokens 2048 \ --no-history ``` For multi-turn conversations and chatting, you'll want to remove the `--no-history` option. ### Context obedient question answering By obedient, I mean the model was trained to ignore what it thinks it knows, and uses the context to answer the question. The model was also tuned to limit the values to the provided context as much as possible to reduce hallucinations. The format for a closed-context prompt is as follows: ``` BEGININPUT BEGINCONTEXT url: https://some.web.site/123 date: 2023-06-01 ... other metdata ... ENDCONTEXT [insert your text blocks here] ENDINPUT [add as many other blocks, in the exact same format] BEGININSTRUCTION [insert your instruction(s). The model was tuned with single questions, paragraph format, lists, etc.] ENDINSTRUCTION ``` It's also helpful to add "Don't make up answers if you don't know." to your instruction block to make sure if the context is completely unrelated it doesn't make something up. *The __only__ prompts that need this closed context formating are closed-context instructions. Normal questions/instructions do not!* I know it's a bit verbose and annoying, but after much trial and error, using these explicit delimiters helps the model understand where to find the responses and how to associate specific sources with it. - `BEGININPUT` - denotes a new input block - `BEGINCONTEXT` - denotes the block of context (metadata key/value pairs) to associate with the current input block - `ENDCONTEXT` - denotes the end of the metadata block for the current input - [text] - Insert whatever text you want for the input block, as many paragraphs as can fit in the context. - `ENDINPUT` - denotes the end of the current input block - [repeat as many input blocks in this format as you want] - `BEGININSTRUCTION` - denotes the start of the list (or one) instruction(s) to respond to for all of the input blocks above. - [instruction(s)] - `ENDINSTRUCTION` - denotes the end of instruction set It sometimes works without `ENDINSTRUCTION`, but by explicitly including that in the prompt, the model better understands that all of the instructions in the block should be responded to. Here's a trivial, but important example to prove the point: ``` BEGININPUT BEGINCONTEXT date: 2021-01-01 url: https://web.site/123 ENDCONTEXT In a shocking turn of events, blueberries are now green, but will be sticking with the same name. ENDINPUT BEGININSTRUCTION What color are bluberries? Source? ENDINSTRUCTION ``` And the response: ``` Blueberries are now green. Source: date: 2021-01-01 url: https://web.site/123 ``` The prompt itself should be wrapped in the vicuna1.1 template if you aren't using fastchat with the conv-template vicuna_v1.1 as described: ``` USER: BEGININPUT BEGINCONTEXT date: 2021-01-01 url: https://web.site/123 ENDCONTEXT In a shocking turn of events, blueberries are now green, but will be sticking with the same name. ENDINPUT BEGININSTRUCTION What color are bluberries? Source? ENDINSTRUCTION ASSISTANT: ``` ### Coding You can ask for fairly complex coding instructions, e.g. (be sure to wrap with vicuna style prompt): ``` Create a python application with the following requirements: - Asyncio FastAPI webserver - ping endpoint that returns the current date in JSON format - file upload endpoint, which calculates the file's sha256 checksum, and checks postgres to deduplicate ``` Or: ``` Write a multi-threaded TCP server in C that accepts a "GET [key]" input and "SET [key] [value]" input, and uses a binary tree to get and store the input values. ``` You can optionally add a single space and "PLAINFORMAT" at the end of your prompt to avoid backticks, explanations, etc. and just print the code, e.g.: ``` Write a websocket application in node.js. PLAINFORMAT ``` ### Word games / trivia ``` USER: This anagram of "silent" is what you do when paying attention and hearing someone. ASSISTANT: listen ``` ``` USER: Give me a list of 7 words that start with EN ASSISTANT: 1. Endlessly 2. Enthusiastically 3. Enormously 4. Enveloping 5. Enduring 6. Enlightening 7. Encouraging ``` ### Multiple choice ``` USER: Which of the following astronomical objects is composed primarily of ice and rock, and is located in the Kuiper Belt? A) Mercury B) Venus C) Pluto D) Jupiter ASSISTANT: C, Pluto ``` ### Writing <details> <summary>Write a resignation letter in the style of a pirate captain, in which you resign from your position as janitor.</summary> Response: ``` ASSISTANT: Captain Jack Sparrow here, as ye be knowin', has been forced to abandon me post as Janitor o' th' Festering Cesspool, which be a filthy hole o' water that we be callin' home. Ye may be thinkin' what could ha' driven me to leave me duties an' take me leave o' this sorry establishment? Well, ye'd be right in thinkin' so, for it be th' greed o' them what runs th' place that be drivin' me away. They've been fattenin' their pockets on me back while I've been slavin' me guts out cleanin' up their messes. No more, me hearties! Me time o' servin' th' rich an' powerful be done, an' I'm takin' me leave o' this stinkin' hole forever! Me destiny lies elsewhere, an' it be time I pursued it. Ye may think ye've seen th' last o' me, but ye'd be wrong, for th' winds o' change be blowin', an' me ship be ready to set sail on th' high seas o' justice. So, farewell ye scurvy dogs, ye who've made me life a living hell. I leave ye with me favorite saying: "ARRRGGGHHH, ye scurvy dogs!" An' remember, ye ain't never gonna see me comin', for me shadow be castin' long an' dark on th' horizon</summary> ``` </details> ### Jokes ``` USER: Tell me a joke about bananas. ASSISTANT: What did the banana say when it got hit by a bus? R.I.P.E. ``` ### Riddles (not great, but slightly better) ``` USER: What has a neck but no head? ASSISTANT: A bottle. ``` ### Multi-character conversations ``` USER: Characters: - Yoda, the ever clever jedi master. - Homer Simpson, you know, the goofy yellow guy. - USER/Jon - don't generate any speech or actions on behalf of Jon Rules: - be sure to use the manerisms and speaking style of the characters correctly - surround character actions with asterisks - always put quotes around words spoken by the characters - use a new line for each character's actions or speech - always prefix actions/speech with the character's name and colon - only generate text and actions on behalf of Yoda or Homer, and never anyone else Conversation will revolve around the grapes, in a local cafe with delicious coffee. Generate a single interaction between Yoda and Homer to start, with one sentence each. ASSISTANT: Yoda: "Mmm, these grapes are quite delicious, Master Homer." Homer: "Oh yeah, Yoda! They're the best grapes I've ever had!" USER: *enters the cafe* Sorry I'm late guys! ASSISTANT: Yoda: "No need to apologize, Jon. We were just enjoying these delightful grapes." Homer: "Yeah, man! It's not every day you get to eat grapes with a real-life Jedi Master!" *Yoda raises an eyebrow* ``` ### Usage and License Notices All airoboros models and datasets are intended and licensed for research use only. I've used the 'cc-nc-4.0' license, but really it is subject to a custom/special license because: - the base model is LLaMa, which has it's own special research license - the dataset(s) were generated with OpenAI (gpt-4 and/or gpt-3.5-turbo), which has a clausing saying the data can't be used to create models to compete with openai So, to reiterate: this model (and datasets) cannot be used commercially.
{"license": "other", "inference": false}
task
[ "QUESTION_ANSWERING" ]
41,014
LAKSHM11-G/pegasus-x-base-pegasus_article_summarization_base2
LAKSHM11-G
null
[ "peft", "tensorboard", "safetensors", "generated_from_trainer", "base_model:google/pegasus-x-base", "base_model:adapter:google/pegasus-x-base", "region:us" ]
2024-04-25T09:56:57Z
2024-04-25T12:40:59+00:00
5
0
--- base_model: google/pegasus-x-base library_name: peft tags: - generated_from_trainer model-index: - name: pegasus-x-base-pegasus_article_summarization_base2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-x-base-pegasus_article_summarization_base2 This model is a fine-tuned version of [google/pegasus-x-base](https://huggingface.co/google/pegasus-x-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 50 | 3.9509 | | No log | 2.0 | 100 | 3.5692 | | No log | 3.0 | 150 | 3.5067 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.1.0+cu121 - Datasets 2.19.0 - Tokenizers 0.15.0
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-x-base-pegasus_article_summarization_base2 This model is a fine-tuned version of [google/pegasus-x-base](https://huggingface.co/google/pegasus-x-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.5067 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 1.0 | 50 | 3.9509 | | No log | 2.0 | 100 | 3.5692 | | No log | 3.0 | 150 | 3.5067 | ### Framework versions - PEFT 0.10.0 - Transformers 4.39.3 - Pytorch 2.1.0+cu121 - Datasets 2.19.0 - Tokenizers 0.15.0
{"base_model": "google/pegasus-x-base", "library_name": "peft", "tags": ["generated_from_trainer"], "model-index": [{"name": "pegasus-x-base-pegasus_article_summarization_base2", "results": []}]}
task
[ "SUMMARIZATION" ]
41,015
haonan-li/bactrian-ar-bloom-7b1-lora
haonan-li
null
[ "arxiv:2305.15011", "license:mit", "region:us" ]
2023-06-13T13:25:36Z
2023-06-13T13:25:48+00:00
0
0
--- license: mit --- This repo contains a low-rank adapter (LoRA) for BLOOM-7b1 fit on the [Stanford-Alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca) and [databricks-dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data) data in Arabic. ### Dataset Creation 1. English Instructions: The English instuctions are obtained from [alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca), and [dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data). 2. Instruction Translation: The instructions (and inputs) are translated into the target languages using Google Translation API (conducted on April 2023). 3. Output Generation: We generate output from `gpt-3.5-turbo` for each language (conducted on April 2023). <h3 align="center"> <img src="https://raw.githubusercontent.com/fajri91/eval_picts/master/BactrianX_dataset.jpg" width="950" align="center"> </h3> ### Training Parameters The code for training the model is provided in our [github](https://github.com/mbzuai-nlp/Bactrian-X), which is adapted from [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). This version of the weights was trained with the following hyperparameters: - Epochs: 8 - Batch size: 128 - Cutoff length: 1024 - Learning rate: 3e-4 - Lora _r_: 16 - Lora target modules: query_key_value That is: ``` python finetune.py \ --base_model='bigscience/bloom-7b1' \ --num_epochs=5 \ --cutoff_len=1024 \ --group_by_length \ --output_dir='./bactrian-ar-bloom-7b1-lora' \ --lora_target_modules='query_key_value' \ --lora_r=16 \ --micro_batch_size=32 ``` Instructions for running it can be found at https://github.com/MBZUAI-nlp/Bactrian-X. ### Discussion of Biases (1) Translation bias; (2) Potential English-culture bias in the translated dataset. ### Citation Information ``` @misc{li2023bactrianx, title={Bactrian-X : A Multilingual Replicable Instruction-Following Model with Low-Rank Adaptation}, author={Haonan Li and Fajri Koto and Minghao Wu and Alham Fikri Aji and Timothy Baldwin}, year={2023}, eprint={2305.15011}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
null
Non_BioNLP
This repo contains a low-rank adapter (LoRA) for BLOOM-7b1 fit on the [Stanford-Alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca) and [databricks-dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data) data in Arabic. ### Dataset Creation 1. English Instructions: The English instuctions are obtained from [alpaca-52k](https://github.com/tatsu-lab/stanford_alpaca), and [dolly-15k](https://github.com/databrickslabs/dolly/tree/master/data). 2. Instruction Translation: The instructions (and inputs) are translated into the target languages using Google Translation API (conducted on April 2023). 3. Output Generation: We generate output from `gpt-3.5-turbo` for each language (conducted on April 2023). <h3 align="center"> <img src="https://raw.githubusercontent.com/fajri91/eval_picts/master/BactrianX_dataset.jpg" width="950" align="center"> </h3> ### Training Parameters The code for training the model is provided in our [github](https://github.com/mbzuai-nlp/Bactrian-X), which is adapted from [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). This version of the weights was trained with the following hyperparameters: - Epochs: 8 - Batch size: 128 - Cutoff length: 1024 - Learning rate: 3e-4 - Lora _r_: 16 - Lora target modules: query_key_value That is: ``` python finetune.py \ --base_model='bigscience/bloom-7b1' \ --num_epochs=5 \ --cutoff_len=1024 \ --group_by_length \ --output_dir='./bactrian-ar-bloom-7b1-lora' \ --lora_target_modules='query_key_value' \ --lora_r=16 \ --micro_batch_size=32 ``` Instructions for running it can be found at https://github.com/MBZUAI-nlp/Bactrian-X. ### Discussion of Biases (1) Translation bias; (2) Potential English-culture bias in the translated dataset. ### Citation Information ``` @misc{li2023bactrianx, title={Bactrian-X : A Multilingual Replicable Instruction-Following Model with Low-Rank Adaptation}, author={Haonan Li and Fajri Koto and Minghao Wu and Alham Fikri Aji and Timothy Baldwin}, year={2023}, eprint={2305.15011}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"license": "mit"}
task
[ "TRANSLATION" ]
41,016
Helsinki-NLP/opus-mt-ko-hu
Helsinki-NLP
translation
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "ko", "hu", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04Z
2023-08-16T11:59:43+00:00
69
1
--- language: - ko - hu license: apache-2.0 tags: - translation --- ### kor-hun * source group: Korean * target group: Hungarian * OPUS readme: [kor-hun](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/kor-hun/README.md) * model: transformer-align * source language(s): kor kor_Hang kor_Latn * target language(s): hun * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-hun/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-hun/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-hun/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.kor.hun | 28.6 | 0.520 | ### System Info: - hf_name: kor-hun - source_languages: kor - target_languages: hun - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/kor-hun/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ko', 'hu'] - src_constituents: {'kor_Hani', 'kor_Hang', 'kor_Latn', 'kor'} - tgt_constituents: {'hun'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/kor-hun/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/kor-hun/opus-2020-06-17.test.txt - src_alpha3: kor - tgt_alpha3: hun - short_pair: ko-hu - chrF2_score: 0.52 - bleu: 28.6 - brevity_penalty: 0.905 - ref_len: 1615.0 - src_name: Korean - tgt_name: Hungarian - train_date: 2020-06-17 - src_alpha2: ko - tgt_alpha2: hu - prefer_old: False - long_pair: kor-hun - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
null
Non_BioNLP
### kor-hun * source group: Korean * target group: Hungarian * OPUS readme: [kor-hun](https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/kor-hun/README.md) * model: transformer-align * source language(s): kor kor_Hang kor_Latn * target language(s): hun * model: transformer-align * pre-processing: normalization + SentencePiece (spm32k,spm32k) * download original weights: [opus-2020-06-17.zip](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-hun/opus-2020-06-17.zip) * test set translations: [opus-2020-06-17.test.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-hun/opus-2020-06-17.test.txt) * test set scores: [opus-2020-06-17.eval.txt](https://object.pouta.csc.fi/Tatoeba-MT-models/kor-hun/opus-2020-06-17.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | Tatoeba-test.kor.hun | 28.6 | 0.520 | ### System Info: - hf_name: kor-hun - source_languages: kor - target_languages: hun - opus_readme_url: https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/models/kor-hun/README.md - original_repo: Tatoeba-Challenge - tags: ['translation'] - languages: ['ko', 'hu'] - src_constituents: {'kor_Hani', 'kor_Hang', 'kor_Latn', 'kor'} - tgt_constituents: {'hun'} - src_multilingual: False - tgt_multilingual: False - prepro: normalization + SentencePiece (spm32k,spm32k) - url_model: https://object.pouta.csc.fi/Tatoeba-MT-models/kor-hun/opus-2020-06-17.zip - url_test_set: https://object.pouta.csc.fi/Tatoeba-MT-models/kor-hun/opus-2020-06-17.test.txt - src_alpha3: kor - tgt_alpha3: hun - short_pair: ko-hu - chrF2_score: 0.52 - bleu: 28.6 - brevity_penalty: 0.905 - ref_len: 1615.0 - src_name: Korean - tgt_name: Hungarian - train_date: 2020-06-17 - src_alpha2: ko - tgt_alpha2: hu - prefer_old: False - long_pair: kor-hun - helsinki_git_sha: 480fcbe0ee1bf4774bcbe6226ad9f58e63f6c535 - transformers_git_sha: 2207e5d8cb224e954a7cba69fa4ac2309e9ff30b - port_machine: brutasse - port_time: 2020-08-21-14:41
{"language": ["ko", "hu"], "license": "apache-2.0", "tags": ["translation"]}
task
[ "TRANSLATION" ]
41,017
csalaam/bias-classification-setfit-model-womenbias
csalaam
text-classification
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
2023-07-13T19:00:14Z
2023-07-13T19:41:40+00:00
9
0
--- license: apache-2.0 pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification --- # csalaam/bias-classification-setfit-model-womenbias This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("csalaam/bias-classification-setfit-model-womenbias") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
null
Non_BioNLP
# csalaam/bias-classification-setfit-model-womenbias This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("csalaam/bias-classification-setfit-model-womenbias") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
{"license": "apache-2.0", "pipeline_tag": "text-classification", "tags": ["setfit", "sentence-transformers", "text-classification"]}
task
[ "TEXT_CLASSIFICATION" ]
41,018
Gnartiel/multi-sbert-v2
Gnartiel
sentence-similarity
[ "sentence-transformers", "safetensors", "mpnet", "feature-extraction", "sentence-similarity", "en", "dataset:flax-sentence-embeddings/stackexchange_xml", "dataset:ms_marco", "dataset:gooaq", "dataset:yahoo_answers_topics", "dataset:search_qa", "dataset:eli5", "dataset:natural_questions", "dataset:trivia_qa", "dataset:embedding-data/QQP", "dataset:embedding-data/PAQ_pairs", "dataset:embedding-data/Amazon-QA", "dataset:embedding-data/WikiAnswers", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-11-04T05:35:32Z
2023-11-04T07:23:21+00:00
48
0
--- datasets: - flax-sentence-embeddings/stackexchange_xml - ms_marco - gooaq - yahoo_answers_topics - search_qa - eli5 - natural_questions - trivia_qa - embedding-data/QQP - embedding-data/PAQ_pairs - embedding-data/Amazon-QA - embedding-data/WikiAnswers language: - en pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity --- # multi-qa-mpnet-base-dot-v1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and was designed for **semantic search**. It has been trained on 215M (question, answer) pairs from diverse sources. For an introduction to semantic search, have a look at: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html) ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer, util query = "How many people live in London?" docs = ["Around 9 Million people live in London", "London is known for its financial district"] #Load the model model = SentenceTransformer('sentence-transformers/multi-qa-mpnet-base-dot-v1') #Encode query and documents query_emb = model.encode(query) doc_emb = model.encode(docs) #Compute dot score between query and all document embeddings scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist() #Combine docs & scores doc_score_pairs = list(zip(docs, scores)) #Sort by decreasing score doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) #Output passages & scores for doc, score in doc_score_pairs: print(score, doc) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the correct pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #CLS Pooling - Take output from first token def cls_pooling(model_output): return model_output.last_hidden_state[:,0] #Encode text def encode(texts): # Tokenize sentences encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input, return_dict=True) # Perform pooling embeddings = cls_pooling(model_output) return embeddings # Sentences we want sentence embeddings for query = "How many people live in London?" docs = ["Around 9 Million people live in London", "London is known for its financial district"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1") model = AutoModel.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1") #Encode query and docs query_emb = encode(query) doc_emb = encode(docs) #Compute dot score between query and all document embeddings scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist() #Combine docs & scores doc_score_pairs = list(zip(docs, scores)) #Sort by decreasing score doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) #Output passages & scores for doc, score in doc_score_pairs: print(score, doc) ``` ## Technical Details In the following some technical details how this model must be used: | Setting | Value | | --- | :---: | | Dimensions | 768 | | Produces normalized embeddings | No | | Pooling-Method | CLS pooling | | Suitable score functions | dot-product (e.g. `util.dot_score`) | ---- ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used for semantic search: It encodes queries / questions and text paragraphs in a dense vector space. It finds relevant documents for the given passages. Note that there is a limit of 512 word pieces: Text longer than that will be truncated. Further note that the model was just trained on input text up to 250 word pieces. It might not work well for longer text. ## Training procedure The full training script is accessible in this current repository: `train_script.py`. ### Pre-training We use the pretrained [`mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model. Please refer to the model card for more detailed information about the pre-training procedure. #### Training We use the concatenation from multiple datasets to fine-tune our model. In total we have about 215M (question, answer) pairs. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. The model was trained with [MultipleNegativesRankingLoss](https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) using CLS-pooling, dot-product as similarity function, and a scale of 1. | Dataset | Number of training tuples | |--------------------------------------------------------|:--------------------------:| | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs from WikiAnswers | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) Automatically generated (Question, Paragraph) pairs for each paragraph in Wikipedia | 64,371,441 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs from all StackExchanges | 25,316,456 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs from all StackExchanges | 21,396,559 | | [MS MARCO](https://microsoft.github.io/msmarco/) Triplets (query, answer, hard_negative) for 500k queries from Bing search engine | 17,579,773 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) (query, answer) pairs for 3M Google queries and Google featured snippet | 3,012,496 | | [Amazon-QA](http://jmcauley.ucsd.edu/data/amazon/qa/) (Question, Answer) pairs from Amazon product pages | 2,448,839 | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) pairs from Yahoo Answers | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) pairs from Yahoo Answers | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) pairs from Yahoo Answers | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) (Question, Answer) pairs for 140k questions, each with Top5 Google snippets on that question | 582,261 | | [ELI5](https://huggingface.co/datasets/eli5) (Question, Answer) pairs from Reddit ELI5 (explainlikeimfive) | 325,475 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions pairs (titles) | 304,525 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) (Question, Duplicate_Question, Hard_Negative) triplets for Quora Questions Pairs dataset | 103,663 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) (Question, Paragraph) pairs for 100k real Google queries with relevant Wikipedia paragraph | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) (Question, Paragraph) pairs from SQuAD2.0 dataset | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) (Question, Evidence) pairs | 73,346 | | **Total** | **214,988,242** |
null
Non_BioNLP
# multi-qa-mpnet-base-dot-v1 This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and was designed for **semantic search**. It has been trained on 215M (question, answer) pairs from diverse sources. For an introduction to semantic search, have a look at: [SBERT.net - Semantic Search](https://www.sbert.net/examples/applications/semantic-search/README.html) ## Usage (Sentence-Transformers) Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` Then you can use the model like this: ```python from sentence_transformers import SentenceTransformer, util query = "How many people live in London?" docs = ["Around 9 Million people live in London", "London is known for its financial district"] #Load the model model = SentenceTransformer('sentence-transformers/multi-qa-mpnet-base-dot-v1') #Encode query and documents query_emb = model.encode(query) doc_emb = model.encode(docs) #Compute dot score between query and all document embeddings scores = util.dot_score(query_emb, doc_emb)[0].cpu().tolist() #Combine docs & scores doc_score_pairs = list(zip(docs, scores)) #Sort by decreasing score doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) #Output passages & scores for doc, score in doc_score_pairs: print(score, doc) ``` ## Usage (HuggingFace Transformers) Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the correct pooling-operation on-top of the contextualized word embeddings. ```python from transformers import AutoTokenizer, AutoModel import torch #CLS Pooling - Take output from first token def cls_pooling(model_output): return model_output.last_hidden_state[:,0] #Encode text def encode(texts): # Tokenize sentences encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='pt') # Compute token embeddings with torch.no_grad(): model_output = model(**encoded_input, return_dict=True) # Perform pooling embeddings = cls_pooling(model_output) return embeddings # Sentences we want sentence embeddings for query = "How many people live in London?" docs = ["Around 9 Million people live in London", "London is known for its financial district"] # Load model from HuggingFace Hub tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1") model = AutoModel.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1") #Encode query and docs query_emb = encode(query) doc_emb = encode(docs) #Compute dot score between query and all document embeddings scores = torch.mm(query_emb, doc_emb.transpose(0, 1))[0].cpu().tolist() #Combine docs & scores doc_score_pairs = list(zip(docs, scores)) #Sort by decreasing score doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True) #Output passages & scores for doc, score in doc_score_pairs: print(score, doc) ``` ## Technical Details In the following some technical details how this model must be used: | Setting | Value | | --- | :---: | | Dimensions | 768 | | Produces normalized embeddings | No | | Pooling-Method | CLS pooling | | Suitable score functions | dot-product (e.g. `util.dot_score`) | ---- ## Background The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset. We developped this model during the [Community week using JAX/Flax for NLP & CV](https://discuss.huggingface.co/t/open-to-the-community-community-week-using-jax-flax-for-nlp-cv/7104), organized by Hugging Face. We developped this model as part of the project: [Train the Best Sentence Embedding Model Ever with 1B Training Pairs](https://discuss.huggingface.co/t/train-the-best-sentence-embedding-model-ever-with-1b-training-pairs/7354). We benefited from efficient hardware infrastructure to run the project: 7 TPUs v3-8, as well as intervention from Googles Flax, JAX, and Cloud team member about efficient deep learning frameworks. ## Intended uses Our model is intented to be used for semantic search: It encodes queries / questions and text paragraphs in a dense vector space. It finds relevant documents for the given passages. Note that there is a limit of 512 word pieces: Text longer than that will be truncated. Further note that the model was just trained on input text up to 250 word pieces. It might not work well for longer text. ## Training procedure The full training script is accessible in this current repository: `train_script.py`. ### Pre-training We use the pretrained [`mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model. Please refer to the model card for more detailed information about the pre-training procedure. #### Training We use the concatenation from multiple datasets to fine-tune our model. In total we have about 215M (question, answer) pairs. We sampled each dataset given a weighted probability which configuration is detailed in the `data_config.json` file. The model was trained with [MultipleNegativesRankingLoss](https://www.sbert.net/docs/package_reference/losses.html#multiplenegativesrankingloss) using CLS-pooling, dot-product as similarity function, and a scale of 1. | Dataset | Number of training tuples | |--------------------------------------------------------|:--------------------------:| | [WikiAnswers](https://github.com/afader/oqa#wikianswers-corpus) Duplicate question pairs from WikiAnswers | 77,427,422 | | [PAQ](https://github.com/facebookresearch/PAQ) Automatically generated (Question, Paragraph) pairs for each paragraph in Wikipedia | 64,371,441 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Body) pairs from all StackExchanges | 25,316,456 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) (Title, Answer) pairs from all StackExchanges | 21,396,559 | | [MS MARCO](https://microsoft.github.io/msmarco/) Triplets (query, answer, hard_negative) for 500k queries from Bing search engine | 17,579,773 | | [GOOAQ: Open Question Answering with Diverse Answer Types](https://github.com/allenai/gooaq) (query, answer) pairs for 3M Google queries and Google featured snippet | 3,012,496 | | [Amazon-QA](http://jmcauley.ucsd.edu/data/amazon/qa/) (Question, Answer) pairs from Amazon product pages | 2,448,839 | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Answer) pairs from Yahoo Answers | 1,198,260 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Question, Answer) pairs from Yahoo Answers | 681,164 | | [Yahoo Answers](https://www.kaggle.com/soumikrakshit/yahoo-answers-dataset) (Title, Question) pairs from Yahoo Answers | 659,896 | | [SearchQA](https://huggingface.co/datasets/search_qa) (Question, Answer) pairs for 140k questions, each with Top5 Google snippets on that question | 582,261 | | [ELI5](https://huggingface.co/datasets/eli5) (Question, Answer) pairs from Reddit ELI5 (explainlikeimfive) | 325,475 | | [Stack Exchange](https://huggingface.co/datasets/flax-sentence-embeddings/stackexchange_xml) Duplicate questions pairs (titles) | 304,525 | | [Quora Question Triplets](https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs) (Question, Duplicate_Question, Hard_Negative) triplets for Quora Questions Pairs dataset | 103,663 | | [Natural Questions (NQ)](https://ai.google.com/research/NaturalQuestions) (Question, Paragraph) pairs for 100k real Google queries with relevant Wikipedia paragraph | 100,231 | | [SQuAD2.0](https://rajpurkar.github.io/SQuAD-explorer/) (Question, Paragraph) pairs from SQuAD2.0 dataset | 87,599 | | [TriviaQA](https://huggingface.co/datasets/trivia_qa) (Question, Evidence) pairs | 73,346 | | **Total** | **214,988,242** |
{"datasets": ["flax-sentence-embeddings/stackexchange_xml", "ms_marco", "gooaq", "yahoo_answers_topics", "search_qa", "eli5", "natural_questions", "trivia_qa", "embedding-data/QQP", "embedding-data/PAQ_pairs", "embedding-data/Amazon-QA", "embedding-data/WikiAnswers"], "language": ["en"], "pipeline_tag": "sentence-similarity", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity"]}
task
[ "QUESTION_ANSWERING" ]
41,019
aarnphm/multi-length-text-classification-pipeline
aarnphm
text-classification
[ "transformers", "pytorch", "safetensors", "bert", "text-classification", "code", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-03-18T00:11:34Z
2023-03-19T00:49:26+00:00
15
0
--- language: - en library_name: transformers license: apache-2.0 pipeline_tag: text-classification tags: - code --- Customized Text classification pipeline that accepts multi-line text inputs. This is an extension from pre-built TextClassificationPipeline that also accepts longer text inputs
null
Non_BioNLP
Customized Text classification pipeline that accepts multi-line text inputs. This is an extension from pre-built TextClassificationPipeline that also accepts longer text inputs
{"language": ["en"], "library_name": "transformers", "license": "apache-2.0", "pipeline_tag": "text-classification", "tags": ["code"]}
task
[ "TEXT_CLASSIFICATION" ]
41,020
marlex7/tiny-bert-sst2-distilled
marlex7
text-classification
[ "transformers", "tensorboard", "safetensors", "bert", "text-classification", "generated_from_trainer", "dataset:glue", "base_model:google/bert_uncased_L-2_H-128_A-2", "base_model:finetune:google/bert_uncased_L-2_H-128_A-2", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-11-15T23:57:46Z
2023-11-20T23:54:37+00:00
168
0
--- base_model: google/bert_uncased_L-2_H-128_A-2 datasets: - glue license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: tiny-bert-sst2-distilled results: - task: type: text-classification name: Text Classification dataset: name: glue type: glue config: sst2 split: validation args: sst2 metrics: - type: accuracy value: 0.7947247706422018 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-bert-sst2-distilled This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.6692 - Accuracy: 0.7947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.787209189533254e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.4226 | 1.0 | 527 | 1.7918 | 0.7844 | | 1.5656 | 2.0 | 1054 | 1.6692 | 0.7947 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.14.7 - Tokenizers 0.15.0
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # tiny-bert-sst2-distilled This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 1.6692 - Accuracy: 0.7947 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4.787209189533254e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.4226 | 1.0 | 527 | 1.7918 | 0.7844 | | 1.5656 | 2.0 | 1054 | 1.6692 | 0.7947 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.14.7 - Tokenizers 0.15.0
{"base_model": "google/bert_uncased_L-2_H-128_A-2", "datasets": ["glue"], "license": "apache-2.0", "metrics": ["accuracy"], "tags": ["generated_from_trainer"], "model-index": [{"name": "tiny-bert-sst2-distilled", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "config": "sst2", "split": "validation", "args": "sst2"}, "metrics": [{"type": "accuracy", "value": 0.7947247706422018, "name": "Accuracy"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
41,021
cibfaye/marian-fr-to-wo-faulty
cibfaye
translation
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "translation", "fr", "wo", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-05-17T08:47:13Z
2024-05-26T12:46:42+00:00
11
0
--- language: - fr - wo license: apache-2.0 metrics: - bleu pipeline_tag: translation --- # MarianMT French to Wolof Model This model is a fine-tuned version of [Helsinki-NLP/opus-mt-fr-en](https://huggingface.co/Helsinki-NLP/opus-mt-fr-en) on the galsenai/french-wolof-translation dataset. ## Model Description This MarianMT model has been fine-tuned for the task of translating text from French to Wolof. The dataset used for fine-tuning is available [here](https://huggingface.co/datasets/galsenai/french-wolof-translation). ## Training Procedure - **Learning Rate:** 2e-5 - **Batch Size:** 16 - **Number of Epochs:** 3 ## Evaluation Metrics The model was evaluated using the BLEU metric: - BLEU: 0.015657591430909903 ## Usage You can use this model directly with the Hugging Face `transformers` library: ```python from transformers import MarianMTModel, MarianTokenizer model_name = "cibfaye/french-wolof-marian-fr-to-wo" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) def translate(text): inputs = tokenizer(text, return_tensors="pt") translated_tokens = model.generate(**inputs) translation = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True) return translation text = "Bonjour, comment ça va ?" translation = translate(text) print("Translation:", translation)
null
Non_BioNLP
# MarianMT French to Wolof Model This model is a fine-tuned version of [Helsinki-NLP/opus-mt-fr-en](https://huggingface.co/Helsinki-NLP/opus-mt-fr-en) on the galsenai/french-wolof-translation dataset. ## Model Description This MarianMT model has been fine-tuned for the task of translating text from French to Wolof. The dataset used for fine-tuning is available [here](https://huggingface.co/datasets/galsenai/french-wolof-translation). ## Training Procedure - **Learning Rate:** 2e-5 - **Batch Size:** 16 - **Number of Epochs:** 3 ## Evaluation Metrics The model was evaluated using the BLEU metric: - BLEU: 0.015657591430909903 ## Usage You can use this model directly with the Hugging Face `transformers` library: ```python from transformers import MarianMTModel, MarianTokenizer model_name = "cibfaye/french-wolof-marian-fr-to-wo" tokenizer = MarianTokenizer.from_pretrained(model_name) model = MarianMTModel.from_pretrained(model_name) def translate(text): inputs = tokenizer(text, return_tensors="pt") translated_tokens = model.generate(**inputs) translation = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True) return translation text = "Bonjour, comment ça va ?" translation = translate(text) print("Translation:", translation)
{"language": ["fr", "wo"], "license": "apache-2.0", "metrics": ["bleu"], "pipeline_tag": "translation"}
task
[ "TRANSLATION" ]
41,022
prithivMLmods/Enceladus-14B-Exp
prithivMLmods
text-generation
[ "transformers", "safetensors", "qwen2", "text-generation", "text-generation-inference", "code", "math", "trl", "conversational", "en", "zh", "base_model:prithivMLmods/Helix-Opus-14B-Exp", "base_model:finetune:prithivMLmods/Helix-Opus-14B-Exp", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2025-03-03T13:14:20Z
2025-03-04T06:54:36+00:00
868
1
--- base_model: - prithivMLmods/Helix-Opus-14B-Exp language: - en - zh library_name: transformers license: apache-2.0 pipeline_tag: text-generation tags: - text-generation-inference - code - math - trl --- ![SXDFsdf.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/wCzorWqAzE4vp00lHaSsk.png) # **Enceladus-14B-Exp** > Enceladus-14B-Exp is based on the Qwen 2.5 14B modality architecture, designed to enhance the reasoning capabilities of 14B-parameter models. This model is optimized for general-purpose reasoning and answering, excelling in contextual understanding, logical deduction, and multi-step problem-solving. It has been fine-tuned using a long chain-of-thought reasoning model and specialized datasets to improve comprehension, structured responses, and conversational intelligence. ## **Key Improvements** 1. **Enhanced General Knowledge**: The model provides broad knowledge across various domains, improving capabilities in answering questions accurately and generating coherent responses. 2. **Improved Instruction Following**: Significant advancements in understanding and following complex instructions, generating structured responses, and maintaining coherence over extended interactions. 3. **Versatile Adaptability**: More resilient to diverse prompts, enhancing its ability to handle a wide range of topics and conversation styles, including open-ended and structured inquiries. 4. **Long-Context Support**: Supports up to 128K tokens for input context and can generate up to 8K tokens in a single output, making it ideal for detailed responses. 5. **Multilingual Proficiency**: Supports over 29 languages, including English, Chinese, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more. ## **Quickstart with transformers** Here is a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and generate content: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "prithivMLmods/Enceladus-14B-Exp" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "What are the key principles of general-purpose AI?" messages = [ {"role": "system", "content": "You are a helpful assistant capable of answering a wide range of questions."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## **Intended Use** 1. **General-Purpose Reasoning**: Designed for broad applicability, assisting with logical reasoning, answering diverse questions, and solving general knowledge problems. 2. **Educational and Informational Assistance**: Suitable for providing explanations, summaries, and research-based responses for students, educators, and general users. 3. **Conversational AI and Chatbots**: Ideal for building intelligent conversational agents that require contextual understanding and dynamic response generation. 4. **Multilingual Applications**: Supports global communication, translations, and multilingual content generation. 5. **Structured Data Processing**: Capable of analyzing and generating structured outputs, such as tables and JSON, useful for data science and automation. 6. **Long-Form Content Generation**: Can generate extended responses, including articles, reports, and guides, maintaining coherence over large text outputs. ## **Limitations** 1. **Hardware Requirements**: Requires high-memory GPUs or TPUs due to its large parameter size and long-context support. 2. **Potential Bias in Responses**: While designed to be neutral, outputs may still reflect biases present in training data. 3. **Inconsistent Outputs in Creative Tasks**: May produce variable results in storytelling and highly subjective topics. 4. **Limited Real-World Awareness**: Does not have access to real-time events beyond its training cutoff. 5. **Error Propagation in Extended Outputs**: Minor errors in early responses may affect overall coherence in long-form outputs. 6. **Prompt Sensitivity**: The effectiveness of responses may depend on how well the input prompt is structured.
null
Non_BioNLP
![SXDFsdf.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/wCzorWqAzE4vp00lHaSsk.png) # **Enceladus-14B-Exp** > Enceladus-14B-Exp is based on the Qwen 2.5 14B modality architecture, designed to enhance the reasoning capabilities of 14B-parameter models. This model is optimized for general-purpose reasoning and answering, excelling in contextual understanding, logical deduction, and multi-step problem-solving. It has been fine-tuned using a long chain-of-thought reasoning model and specialized datasets to improve comprehension, structured responses, and conversational intelligence. ## **Key Improvements** 1. **Enhanced General Knowledge**: The model provides broad knowledge across various domains, improving capabilities in answering questions accurately and generating coherent responses. 2. **Improved Instruction Following**: Significant advancements in understanding and following complex instructions, generating structured responses, and maintaining coherence over extended interactions. 3. **Versatile Adaptability**: More resilient to diverse prompts, enhancing its ability to handle a wide range of topics and conversation styles, including open-ended and structured inquiries. 4. **Long-Context Support**: Supports up to 128K tokens for input context and can generate up to 8K tokens in a single output, making it ideal for detailed responses. 5. **Multilingual Proficiency**: Supports over 29 languages, including English, Chinese, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Vietnamese, Thai, Arabic, and more. ## **Quickstart with transformers** Here is a code snippet with `apply_chat_template` to show you how to load the tokenizer and model and generate content: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "prithivMLmods/Enceladus-14B-Exp" model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) prompt = "What are the key principles of general-purpose AI?" messages = [ {"role": "system", "content": "You are a helpful assistant capable of answering a wide range of questions."}, {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) generated_ids = model.generate( **model_inputs, max_new_tokens=512 ) generated_ids = [ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) ] response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` ## **Intended Use** 1. **General-Purpose Reasoning**: Designed for broad applicability, assisting with logical reasoning, answering diverse questions, and solving general knowledge problems. 2. **Educational and Informational Assistance**: Suitable for providing explanations, summaries, and research-based responses for students, educators, and general users. 3. **Conversational AI and Chatbots**: Ideal for building intelligent conversational agents that require contextual understanding and dynamic response generation. 4. **Multilingual Applications**: Supports global communication, translations, and multilingual content generation. 5. **Structured Data Processing**: Capable of analyzing and generating structured outputs, such as tables and JSON, useful for data science and automation. 6. **Long-Form Content Generation**: Can generate extended responses, including articles, reports, and guides, maintaining coherence over large text outputs. ## **Limitations** 1. **Hardware Requirements**: Requires high-memory GPUs or TPUs due to its large parameter size and long-context support. 2. **Potential Bias in Responses**: While designed to be neutral, outputs may still reflect biases present in training data. 3. **Inconsistent Outputs in Creative Tasks**: May produce variable results in storytelling and highly subjective topics. 4. **Limited Real-World Awareness**: Does not have access to real-time events beyond its training cutoff. 5. **Error Propagation in Extended Outputs**: Minor errors in early responses may affect overall coherence in long-form outputs. 6. **Prompt Sensitivity**: The effectiveness of responses may depend on how well the input prompt is structured.
{"base_model": ["prithivMLmods/Helix-Opus-14B-Exp"], "language": ["en", "zh"], "library_name": "transformers", "license": "apache-2.0", "pipeline_tag": "text-generation", "tags": ["text-generation-inference", "code", "math", "trl"]}
task
[ "TRANSLATION" ]
41,023
anhtuansh/vietnamese-bi-encoder-Matryoshka-2e-9k
anhtuansh
sentence-similarity
[ "sentence-transformers", "safetensors", "roberta", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:8259", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1705.00652", "base_model:bkai-foundation-models/vietnamese-bi-encoder", "base_model:finetune:bkai-foundation-models/vietnamese-bi-encoder", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-12-19T04:05:25Z
2024-12-19T04:05:58+00:00
9
0
--- base_model: bkai-foundation-models/vietnamese-bi-encoder library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:8259 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: 'theo quy_định tại điều 35 nghị_định số 201 / 2013 / nđ - cp thì thời_hạn giải_quyết thủ_tục hành_chính về cấp giấy_phép thăm_dò , khai_thác nước dưới đất như sau : 1 . tiếp_nhận và kiểm_tra hồ_sơ : trong thời_hạn mười ( 10 ) ngày làm_việc , kể từ ngày nhận hồ_sơ , cơ_quan tiếp_nhận hồ_sơ có trách_nhiệm xem_xét , kiểm_tra hồ_sơ . trường_hợp hồ_sơ không hợp_lệ , cơ_quan tiếp_nhận hồ_sơ thông_báo cho tổ_chức , cá_nhân đề_nghị cấp phép để bổ_sung , hoàn_thiện hồ_sơ theo quy_định . trường_hợp hồ_sơ sau khi đã bổ_sung mà vẫn không đáp_ứng yêu_cầu theo quy_định thì cơ_quan tiếp_nhận hồ_sơ trả lại hồ_sơ và thông_báo rõ lý_do cho tổ_chức , cá_nhân đề_nghị cấp phép . 2 . thẩm_định_đề_án , báo_cáo thăm_dò , khai_thác , sử_dụng tài_nguyên nước , xả nước_thải vào nguồn nước trong hồ_sơ đề_nghị cấp phép ( sau đây gọi chung là đề_án , báo_cáo ) : a ) trong thời_hạn ba_mươi ( 30 ) ngày làm_việc , kể từ ngày nhận đủ hồ_sơ hợp_lệ theo quy_định tại khoản 1 điều này , cơ_quan tiếp_nhận hồ_sơ có trách_nhiệm thẩm_định_đề_án , báo_cáo ; nếu cần_thiết thì kiểm_tra thực_tế hiện_trường , lập hội_đồng thẩm_định_đề_án , báo_cáo . trường_hợp đủ điều_kiện cấp phép , cơ_quan tiếp_nhận hồ_sơ trình cơ_quan có thẩm_quyền cấp giấy_phép ; trường_hợp không đủ điều_kiện để cấp phép thì trả lại hồ_sơ cho tổ_chức , cá_nhân đề_nghị cấp phép và thông_báo lý_do không cấp phép ; b ) trường_hợp phải bổ_sung , chỉnh_sửa để hoàn_thiện đề_án , báo_cáo thì cơ_quan tiếp_nhận hồ_sơ gửi văn_bản thông_báo cho tổ_chức , cá_nhân đề_nghị cấp phép nêu rõ những nội_dung cần bổ_sung , hoàn_thiện đề_án , báo_cáo . thời_gian bổ_sung , hoàn_thiện hoặc lập lại đề_án , báo_cáo không tính vào thời_gian thẩm_định_đề_án , báo_cáo . thời_gian thẩm_định sau khi đề_án , báo_cáo được bổ_sung hoàn_chỉnh là hai mươi ( 20 ) ngày làm_việc ; c ) trường_hợp phải lập lại đề_án , báo_cáo , cơ_quan tiếp_nhận hồ_sơ gửi văn_bản thông_báo cho tổ_chức , cá_nhân đề_nghị cấp phép nêu rõ những nội_dung đề_án , báo_cáo chưa đạt yêu_cầu , phải làm lại và trả lại hồ_sơ đề_nghị cấp phép . 3 . trả kết_quả giải_quyết hồ_sơ_cấp phéptrong thời_hạn năm ( 05 ) ngày làm_việc , kể từ ngày nhận được giấy_phép của cơ_quan có thẩm_quyền , cơ_quan tiếp_nhận hồ_sơ thông_báo cho tổ_chức , cá_nhân đề_nghị cấp phép để thực_hiện nghĩa_vụ tài_chính và nhận giấy_phép .' sentences: - ai có thẩm_quyền giải_quyết tố_cáo hành_vi vi_phạm_pháp_luật trong thực_hiện nhiệm_vụ , công_vụ của cán_bộ , công_chức , viên_chức ? - thời_hạn giải_quyết thủ_tục hành_chính về cấp giấy_phép thăm_dò , giấy_phép khai_thác nước dưới đất ? - tôi có_thể đăng_ký ngành , nghề kinh_doanh không có trong hệ_thống ngành kinh_tế việt_nam không ? - source_sentence: khoản 2 điều 2 thông_tư 30 quy_định , đoàn khám bệnh , chữa bệnh_nhân_đạo là một nhóm nhân_viên y_tế trong nước , nước_ngoài do cá_nhân , tổ_chức trong nước , nước_ngoài tổ_chức để khám bệnh , chữa bệnh_nhân_đạo cho nhân_dân . sentences: - tàu_thủy lưu_trú du_lịch có tiêu_chí xếp_hạng bắt_buộc không ? - tôi muốn xin cấp lại sổ thuyền_viên thì cần những hồ_sơ gì ? - đoàn khám bệnh , chữa bệnh_nhân_đạo là gì ? - source_sentence: 'thành_phần hồ_sơ thực_hiện tthc sửa_đổi , bổ_sung / cấp lại giấy chứng_nhận lưu_hành tự_do ( cfs ) đối_với hàng_hóa xuất_khẩu thuộc phạm_vi quản_lý của bộ nông_nghiệp và phát_triển nông_thôn ( quy_định tại quyết_định số 1312 / qđ - bnn - qlcl ngày 22 / 4 / 2019 về việc công_bố thủ_tục hành_chính được thay_thế , tthc bị bãi_bỏ lĩnh_vực quản_lý chất_lượng nông_lâm_sản và thủy_sản thuộc phạm_vi chức_năng quản_lý của bộ nông_nghiệp và phát_triển nông_thôn ) : - văn_bản đề_nghị sửa_đổi , bổ_sung / cấp lại cfs của thương_nhân : 01 bản_chính . - các giấy_tờ liên_quan đến việc sửa_đổi , bổ_sung / cấp lại cfs.' sentences: - kính gửi cục quản_lý chất_lượng nông_lâm_sản và thuỷ_sản , công_ty tôi đã được quý cục cấp giấy chứng_nhận lưu_hành tự_do cfs , nay tôi muốn sửa_đổi một_số thông_tin trên giấy cfs , vậy hồ_sơ đề_nghị sửa_đổi cần những gì ? - thời_gian để được cấp quyết_định chỉ_định tổ_chức đánh_giá sự phù_hợp lĩnh_vực sản_phẩm , hàng_hóa_vật_liệu xây_dựng đối_với trường_hợp thay_đổi , bổ_sung phạm_vi , lĩnh_vực được chỉ_định - hồ_sơ đăng_ký dự_tuyển lao_động của người lao_động gồm những gì ? - source_sentence: 'hồ_sơ đề_nghị gia_hạn giấy_phép cung_cấp dịch_vụ trò_chơi điện_tử g1 trên mạng bao_gồm : - đơn đề_nghị gia_hạn giấy_phép bao_gồm : tên , địa_chỉ của doanh_nghiệp ; số , nơi cấp , ngày cấp giấy chứng_nhận đăng_ký doanh_nghiệp ; số , ngày cấp , ngày hiệu_lực của giấy_phép đã được cấp ; lý_do đề_nghị gia_hạn giấy_phép ; cam_kết của doanh_nghiệp về các nội_dung kê_khai trong đơn đề_nghị .' sentences: - thành_phần hồ_sơ - nhà đầu_tư phải nộp bao_nhiêu bộ hồ_sơ đề_nghị thủ_tướng chính_phủ cho phép đầu_tư gián_tiếp ra nước_ngoài đối_với các trường_hợp đầu_tư khác quy_định tại điều 9 nghị_định 135 / 2015 / nđ - cp ? - phần vốn của thành_viên chưa góp vốn trong thời_hạn 90 ngày , kể từ ngày được cấp giấy chứng_nhận đăng_ký doanh_nghiệp trong công_ty tnhh hai thành_viên trở lên được xử_lý như thế_nào ? trường_hợp có người nhận mua lại phần vốn chưa góp này thì công_ty có phải đăng_ký thay_đổi thành_viên với cơ_quan đăng_ký kinh_doanh không ? hồ_sơ , thủ_tục được quy_định như thế_nào ? - source_sentence: quản_lý nhập_khẩu hàng_hóa bị điều_tra , phục_vụ công_tác điều_tra , áp_dụng biện_pháp phòng_vệ thương_mại . sentences: - mục_đích của thủ_tục khai_báo là gì ? - đơn_vị chúng_tôi đã được cấp chứng_chỉ năng_lực hoạt_động xây_dựng nhưng hiện_nay chúng_tôi thay_đổi người đại_diện pháp_luật của đơn_vị . vậy chúng_tôi có phải làm thủ_tục nào để thay_đổi người đại_diện theo pháp_luật của chúng_tôi trên chứng_chỉ ? - trường_hợp nào thì được cấp lại giấy xác_nhận đăng_ký công_cụ hỗ_trợ , thủ_tục cấp lại giấy xác_nhận đăng_ký công_cụ hỗ_trợ như thế_nào ? model-index: - name: SentenceTransformer based on bkai-foundation-models/vietnamese-bi-encoder results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.6230936819172114 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7799564270152506 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8387799564270153 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8790849673202614 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6230936819172114 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2599854756717502 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16775599128540306 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08790849673202615 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6230936819172114 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7799564270152506 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8387799564270153 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8790849673202614 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7536515470978228 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7130295328007745 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7171777140680393 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.6187363834422658 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7821350762527233 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8376906318082789 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8823529411764706 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6187363834422658 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2607116920842411 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1675381263616558 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08823529411764706 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6187363834422658 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7821350762527233 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8376906318082789 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8823529411764706 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7529227281870942 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.711127537434727 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.715064600823678 name: Cosine Map@100 --- # SentenceTransformer based on bkai-foundation-models/vietnamese-bi-encoder This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [bkai-foundation-models/vietnamese-bi-encoder](https://huggingface.co/bkai-foundation-models/vietnamese-bi-encoder) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [bkai-foundation-models/vietnamese-bi-encoder](https://huggingface.co/bkai-foundation-models/vietnamese-bi-encoder) <!-- at revision 84f9d9ada0d1a3c37557398b9ae9fcedcdf40be0 --> - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("anhtuansh/vietnamese-bi-encoder-Matryoshka-2e-9k") # Run inference sentences = [ 'quản_lý nhập_khẩu hàng_hóa bị điều_tra , phục_vụ công_tác điều_tra , áp_dụng biện_pháp phòng_vệ thương_mại .', 'mục_đích của thủ_tục khai_báo là gì ?', 'đơn_vị chúng_tôi đã được cấp chứng_chỉ năng_lực hoạt_động xây_dựng nhưng hiện_nay chúng_tôi thay_đổi người đại_diện pháp_luật của đơn_vị . vậy chúng_tôi có phải làm thủ_tục nào để thay_đổi người đại_diện theo pháp_luật của chúng_tôi trên chứng_chỉ ?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_768` and `dim_512` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_768 | dim_512 | |:--------------------|:-----------|:-----------| | cosine_accuracy@1 | 0.6231 | 0.6187 | | cosine_accuracy@3 | 0.78 | 0.7821 | | cosine_accuracy@5 | 0.8388 | 0.8377 | | cosine_accuracy@10 | 0.8791 | 0.8824 | | cosine_precision@1 | 0.6231 | 0.6187 | | cosine_precision@3 | 0.26 | 0.2607 | | cosine_precision@5 | 0.1678 | 0.1675 | | cosine_precision@10 | 0.0879 | 0.0882 | | cosine_recall@1 | 0.6231 | 0.6187 | | cosine_recall@3 | 0.78 | 0.7821 | | cosine_recall@5 | 0.8388 | 0.8377 | | cosine_recall@10 | 0.8791 | 0.8824 | | **cosine_ndcg@10** | **0.7537** | **0.7529** | | cosine_mrr@10 | 0.713 | 0.7111 | | cosine_map@100 | 0.7172 | 0.7151 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### json * Dataset: json * Size: 8,259 training samples * Columns: <code>positive</code> and <code>anchor</code> * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 4 tokens</li><li>mean: 120.22 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 25.38 tokens</li><li>max: 256 tokens</li></ul> | * Samples: | positive | anchor | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>điểm a , mục 2 phần ii thông_tư số 04 / 1999 / tt - bca ( c13 ) ngày 29 / 4 / 1999 của bộ công_an hướng_dẫn một_số quy_định của nghị_định số 05 / 1999 / nđ - cp ngày 03 / 01 / 1999 của chính_phủ về chứng_minh nhân_dân quy_định các trường_hợp phải đổi cmnd như sau : - quá thời_hạn sử_dụng 15 năm kể từ ngày cấp ; - cmnd rách , nát , không rõ ảnh hoặc một trong các thông_tin đã ghi trên cmnd ; - thay_đổi họ , tên , chữ đệm , ngày , tháng , năm sinh . những thay_đổi này phải có quyết_định của cơ_quan có thẩm_quyền ; - những người đã được cấp giấy cmnd nhưng chuyển nơi đăng_ký hộ_khẩu thường_trú ngoài phạm_vi tỉnh , thành_phố trực_thuộc trung_ương . trường_hợp chuyển nơi thường_trú trong phạm_vi tỉnh , thành_phố mà công_dân có yêu_cầu thì được đổi lại cmnd ; - thay_đổi đặc_điểm nhận_dạng là những trường_hợp đã qua phẫu_thuật thẩm_mỹ , chỉnh_hình hoặc vì lý_do khác đã làm thay_đổi hình_ảnh hoặc đặc_điểm nhận_dạng của họ .</code> | <code>công_dân phải làm thủ_tục đổi chứng_minh nhân_dân khi nào ?</code> | | <code>việc thực_hiện thủ_tục tặng cờ thi_đua cấp bộ , ban , ngành , đoàn_thể trung_ương , tỉnh , thành_phố trực_thuộc trung_ương theo đợt hoặc chuyên_đề được tiến_hành như sau : <br> bước 1 . vụ , phòng , ban thi_đua – khen_thưởng các bộ , ngành , đoàn_thể trung_ương , tỉnh , thành_phố trực_thuộc trung_ương tiếp_nhận đề_nghị khen_thưởng của các đơn_vị thực thuộc . <br> bước 2 . thẩm_định hồ_sơ , xin ý_kiến các cơ_quan liên_quan , báo_cáo hội_đồng thi_đua khen_thưởng cùng cấp , tổng_hợp trình bộ_trưởng , thủ_trưởng đơn_vị , chủ_tịch ubnd tỉnh , thành_phố quyết_định khen_thưởng . <br> bước 3 . khi có quyết_định của bộ_trưởng , thủ_trưởng đơn_vị , chủ_tịch ubnd tỉnh , thành_phố trực_thuộc trung_ương ; vụ , phòng , ban thi_đua – khen_thưởng các bộ , ngành , đoàn_thể trung_ương , tỉnh , thành_phố trực_thuộc trung_ương thông_báo quyết_định , viết bằng , đóng_dấu và cấp_phát cho đơn_vị trình khen . <br> bước 4 . các trường_hợp không được khen_thưởng ( không đúng đối_tượng , không đủ tiêu_chuẩn , không đủ hồ_sơ...</code> | <code>đề_nghị cho biết trình_tự thực_hiện thủ_tục tặng cờ thi_đua cấp bộ , ban , ngành , đoàn_thể trung_ương , tỉnh , thành_phố trực_thuộc trung_ương theo đợt hoặc chuyên_đề</code> | | <code>thời_gian phục_vụ tại_ngũ của hạ_sĩ_quan binh_sĩ được quy_định tại điều 21 luật nvqs năm 2015 , cụ_thể như sau : “ điều 21 . thời_hạn phục_vụ tại_ngũ của hạ_sĩ_quan , binh sĩ1 . thời_hạn phục_vụ tại_ngũ trong thời_bình của hạ_sĩ_quan , binh_sĩ là 24 tháng . 2 . bộ_trưởng bộ quốc_phòng được quyết_định kéo_dài thời_hạn phục_vụ tại_ngũ của hạ_sĩ_quan , binh_sĩ nhưng không quá 06 tháng trong trường_hợp sau đây : a ) để bảo_đảm_nhiệm_vụ sẵn_sàng chiến_đấu ; b ) đang thực_hiện nhiệm_vụ phòng , chống thiên_tai , dịch_bệnh , cứu_hộ , cứu nạn . 3 . thời_hạn phục_vụ của hạ_sĩ_quan , binh_sĩ trong tình_trạng chiến_tranh hoặc tình_trạng khẩn_cấp về quốc_phòng được thực_hiện theo lệnh tổng_động_viên hoặc động_viên cục_bộ . ”</code> | <code>quy_định thời_gian phục_vụ tại_ngũ của hạ_sĩ_quan binh_sĩ như thế_nào ?</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512 ], "matryoshka_weights": [ 1, 1 ], "n_dims_per_step": -1 } ``` ### Evaluation Dataset #### json * Dataset: json * Size: 918 evaluation samples * Columns: <code>positive</code> and <code>anchor</code> * Approximate statistics based on the first 918 samples: | | positive | anchor | |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 121.36 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 25.41 tokens</li><li>max: 213 tokens</li></ul> | * Samples: | positive | anchor | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>theo quy_định tại khoản 9 điều 1 nghị_định số 161 / 2018 / nđ - cpngày 29 / 11 / 2018 của chính_phủ sửa_đổi , bổ_sung một_số quy_định về tuyển_dụng công_chức , viên_chức , nâng ngạch công_chức , thăng_hạng viên_chức và thực_hiện chế_độ hợp_đồng một_số loại công_việc trong cơ_quan hành_chính nhà_nước , đơn_vị sự_nghiệp công_lập thì đối_tượng và điểm ưu_tiên trong thi_tuyển hoặc xét tuyển công_chức : <br> + anh_hùng lực_lượng vũ_trang , anh_hùng lao_động , thương_binh , người hưởng chính_sách như thương_binh , thương_binh loại b : được cộng 7,5 điểm vào kết_quả điểm thi tại vòng 2 ; <br> + người dân_tộc_thiểu_số , sĩ_quan quân_đội , sĩ_quan công_an , quân_nhân chuyên_nghiệp , người làm công_tác cơ_yếu chuyển ngành , con liệt_sĩ , con thương_binh , con bệnh_binh , con của người hưởng chính_sách như thương_binh , con của thương_binh loại b , con của người hoạt_động cách_mạng trước tổng_khởi_nghĩa ( từ ngày 19 / 8 / 1945 trở về trước ) , con_đẻ của người hoạt_động kháng_chiến bị nhiễm chất_độc_hó...</code> | <code>đề_nghị cho tôi được biết đối_tượng được hưởng ưu_tiên trong tuyển_dụng công_chức ?</code> | | <code>1 . khi phát_hiện tổ_chức , cá_nhân kê_khai hồ_sơ , thông_báo không_trung_thực hoặc vi_phạm_quy_định tại điều 8 nghị_định số 23 / 2019 / nđ - cp , cơ_quan tiếp_nhận thông_báo yêu_cầu tạm dừng hoạt_động triển_lãm bằng văn_bản ( mẫu_số 03 tại phụ_lục ban_hành kèm theo nghị_định số 23 / 2019 / nđ - cp ) . 2 . tổ_chức , cá_nhân phải dừng hoạt_động triển_lãm ngay khi nhận được văn_bản của cơ_quan có thẩm_quyền ; kịp_thời_khắc_phục hậu_quả , đề_xuất phương_án tiếp_tục tổ_chức triển_lãm gửi cơ_quan có thẩm_quyền xem_xét , quyết_định . 3 . kết_quả xem_xét , quyết_định của cơ_quan có thẩm_quyền phải được thể_hiện bằng văn_bản và gửi cho tổ_chức , cá_nhân biết để thực_hiện . thời_hạn gửi văn_bản cho tổ_chức , cá_nhân là 03 ngày , kể từ ngày cơ_quan có thẩm_quyền nhận được văn_bản đề_xuất phương_án tiếp_tục tổ_chức triển_lãm của tổ_chức , cá_nhân .</code> | <code>những lý_do nào khiến hoạt_động triển_lãm bị tạm dừng ?</code> | | <code>theo quy_định tại khoản 1 điều 33 luật quản_lý , sử_dụng vũ_khí , vật_liệu nổ và công_cụ hỗ_trợ và điểm a khoản 4 điều 3 thông_tư số 16 / 2018 / tt - bca ngày 15 / 5 / 2018 của bộ công_an quy_định chi_tiết thi_hành một_số điều của luật quản_lý , sử_dụng vũ_khí , vật_liệu nổ và công_cụ hỗ_trợ thì thủ_tục đề_nghị cấp giấy_phép vận_chuyển vũ_khí quân_dụng đối_với cơ_quan , tổ_chức ở trung_ương không thuộc phạm_vi quản_lý của bộ quốc_phòng được thực_hiện như sau : a ) hồ_sơ đề_nghị bao_gồm : văn_bản đề_nghị nêu rõ số_lượng , chủng_loại , nguồn_gốc xuất_xứ của vũ_khí cần vận_chuyển ; nơi đi , nơi đến , thời_gian và tuyến đường vận_chuyển ; họ và tên , địa_chỉ của người chịu trách_nhiệm vận_chuyển , người điều_khiển phương_tiện ; biển kiểm_soát của phương_tiện ; giấy giới_thiệu kèm theo bản_sao thẻ căn_cước công_dân , chứng_minh nhân_dân , hộ_chiếu hoặc chứng_minh công_an nhân_dân của người đến liên_hệ ; b ) hồ_sơ lập thành 01 bộ và nộp tại cục cảnh_sát qlhc về ttxh ; c ) trong thời_hạn 05 n...</code> | <code>thủ_tục cấp giấy_phép vận_chuyển vũ_khí quân_dụng đối_với cơ_quan , tổ_chức ở trung_ương không thuộc phạm_vi quản_lý của bộ quốc_phòng thực_hiện như thế_nào ?</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512 ], "matryoshka_weights": [ 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 2 - `per_device_eval_batch_size`: 2 - `gradient_accumulation_steps`: 2 - `learning_rate`: 2e-05 - `num_train_epochs`: 2 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `fp16`: True - `tf32`: False - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 2 - `per_device_eval_batch_size`: 2 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: False - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs <details><summary>Click to expand</summary> | Epoch | Step | Training Loss | Validation Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | |:-------:|:--------:|:-------------:|:---------------:|:----------------------:|:----------------------:| | 0 | 0 | - | - | 0.6872 | 0.6803 | | 0.0048 | 10 | 0.0544 | - | - | - | | 0.0097 | 20 | 0.0507 | - | - | - | | 0.0145 | 30 | 0.2621 | - | - | - | | 0.0194 | 40 | 0.0371 | - | - | - | | 0.0242 | 50 | 0.0041 | - | - | - | | 0.0291 | 60 | 0.0869 | - | - | - | | 0.0339 | 70 | 0.0969 | - | - | - | | 0.0387 | 80 | 0.0132 | - | - | - | | 0.0436 | 90 | 0.034 | - | - | - | | 0.0484 | 100 | 0.0021 | - | - | - | | 0.0533 | 110 | 0.0133 | - | - | - | | 0.0581 | 120 | 0.0191 | - | - | - | | 0.0630 | 130 | 0.2885 | - | - | - | | 0.0678 | 140 | 0.1376 | - | - | - | | 0.0726 | 150 | 0.0359 | - | - | - | | 0.0775 | 160 | 0.0099 | - | - | - | | 0.0823 | 170 | 0.0401 | - | - | - | | 0.0872 | 180 | 0.0208 | - | - | - | | 0.0920 | 190 | 0.0545 | - | - | - | | 0.0969 | 200 | 0.0072 | - | - | - | | 0.1017 | 210 | 0.0202 | - | - | - | | 0.1065 | 220 | 0.0392 | - | - | - | | 0.1114 | 230 | 0.0201 | - | - | - | | 0.1162 | 240 | 0.0016 | - | - | - | | 0.1211 | 250 | 0.1501 | - | - | - | | 0.1259 | 260 | 0.1371 | - | - | - | | 0.1308 | 270 | 0.0357 | - | - | - | | 0.1356 | 280 | 0.1695 | - | - | - | | 0.1404 | 290 | 0.0028 | - | - | - | | 0.1453 | 300 | 0.0396 | - | - | - | | 0.1501 | 310 | 0.0115 | - | - | - | | 0.1550 | 320 | 0.0052 | - | - | - | | 0.1598 | 330 | 0.013 | - | - | - | | 0.1646 | 340 | 0.052 | - | - | - | | 0.1695 | 350 | 0.0072 | - | - | - | | 0.1743 | 360 | 0.0082 | - | - | - | | 0.1792 | 370 | 0.0002 | - | - | - | | 0.1840 | 380 | 0.0003 | - | - | - | | 0.1889 | 390 | 0.1907 | - | - | - | | 0.1937 | 400 | 0.0352 | - | - | - | | 0.1985 | 410 | 0.0015 | - | - | - | | 0.2034 | 420 | 0.006 | - | - | - | | 0.2082 | 430 | 0.0149 | - | - | - | | 0.2131 | 440 | 0.035 | - | - | - | | 0.2179 | 450 | 0.0002 | - | - | - | | 0.2228 | 460 | 0.1047 | - | - | - | | 0.2276 | 470 | 0.1771 | - | - | - | | 0.2324 | 480 | 0.0008 | - | - | - | | 0.2373 | 490 | 0.0313 | - | - | - | | 0.2421 | 500 | 0.0021 | - | - | - | | 0.2470 | 510 | 0.0418 | - | - | - | | 0.2518 | 520 | 0.2645 | - | - | - | | 0.2567 | 530 | 0.0305 | - | - | - | | 0.2615 | 540 | 0.0016 | - | - | - | | 0.2663 | 550 | 0.0009 | - | - | - | | 0.2712 | 560 | 0.0007 | - | - | - | | 0.2760 | 570 | 0.0368 | - | - | - | | 0.2809 | 580 | 0.0343 | - | - | - | | 0.2857 | 590 | 0.0348 | - | - | - | | 0.2906 | 600 | 0.0045 | - | - | - | | 0.2954 | 610 | 0.0068 | - | - | - | | 0.3002 | 620 | 0.0032 | - | - | - | | 0.3051 | 630 | 0.0282 | - | - | - | | 0.3099 | 640 | 0.0635 | - | - | - | | 0.3148 | 650 | 0.0012 | - | - | - | | 0.3196 | 660 | 0.0077 | - | - | - | | 0.3245 | 670 | 0.0242 | - | - | - | | 0.3293 | 680 | 0.001 | - | - | - | | 0.3341 | 690 | 0.2225 | - | - | - | | 0.3390 | 700 | 0.0249 | - | - | - | | 0.3438 | 710 | 0.0004 | - | - | - | | 0.3487 | 720 | 0.004 | - | - | - | | 0.3535 | 730 | 0.0024 | - | - | - | | 0.3584 | 740 | 0.0006 | - | - | - | | 0.3632 | 750 | 0.014 | - | - | - | | 0.3680 | 760 | 0.005 | - | - | - | | 0.3729 | 770 | 0.0004 | - | - | - | | 0.3777 | 780 | 0.0043 | - | - | - | | 0.3826 | 790 | 0.1434 | - | - | - | | 0.3874 | 800 | 0.0004 | - | - | - | | 0.3923 | 810 | 0.0183 | - | - | - | | 0.3971 | 820 | 0.1543 | - | - | - | | 0.4019 | 830 | 0.0174 | - | - | - | | 0.4068 | 840 | 0.1047 | - | - | - | | 0.4116 | 850 | 0.0284 | - | - | - | | 0.4165 | 860 | 0.0002 | - | - | - | | 0.4213 | 870 | 0.0004 | - | - | - | | 0.4262 | 880 | 0.0449 | - | - | - | | 0.4310 | 890 | 0.0023 | - | - | - | | 0.4358 | 900 | 0.0017 | - | - | - | | 0.4407 | 910 | 0.0003 | - | - | - | | 0.4455 | 920 | 0.0042 | - | - | - | | 0.4504 | 930 | 0.0014 | - | - | - | | 0.4552 | 940 | 0.0003 | - | - | - | | 0.4600 | 950 | 0.0077 | - | - | - | | 0.4649 | 960 | 0.0 | - | - | - | | 0.4697 | 970 | 0.0004 | - | - | - | | 0.4746 | 980 | 0.0051 | - | - | - | | 0.4794 | 990 | 0.1024 | - | - | - | | 0.4843 | 1000 | 0.0013 | - | - | - | | 0.4891 | 1010 | 0.0285 | - | - | - | | 0.4939 | 1020 | 0.0148 | - | - | - | | 0.4988 | 1030 | 0.0483 | - | - | - | | 0.5036 | 1040 | 0.0027 | - | - | - | | 0.5085 | 1050 | 0.0582 | - | - | - | | 0.5133 | 1060 | 0.0033 | - | - | - | | 0.5182 | 1070 | 0.0942 | - | - | - | | 0.5230 | 1080 | 0.0014 | - | - | - | | 0.5278 | 1090 | 0.0004 | - | - | - | | 0.5327 | 1100 | 0.0083 | - | - | - | | 0.5375 | 1110 | 0.0 | - | - | - | | 0.5424 | 1120 | 0.0293 | - | - | - | | 0.5472 | 1130 | 0.1448 | - | - | - | | 0.5521 | 1140 | 0.0008 | - | - | - | | 0.5569 | 1150 | 0.0084 | - | - | - | | 0.5617 | 1160 | 0.0003 | - | - | - | | 0.5666 | 1170 | 0.0012 | - | - | - | | 0.5714 | 1180 | 0.0072 | - | - | - | | 0.5763 | 1190 | 0.0982 | - | - | - | | 0.5811 | 1200 | 0.0043 | - | - | - | | 0.5860 | 1210 | 0.0092 | - | - | - | | 0.5908 | 1220 | 0.0018 | - | - | - | | 0.5956 | 1230 | 0.012 | - | - | - | | 0.6005 | 1240 | 0.0002 | - | - | - | | 0.6053 | 1250 | 0.0462 | - | - | - | | 0.6102 | 1260 | 0.0006 | - | - | - | | 0.6150 | 1270 | 0.0455 | - | - | - | | 0.6199 | 1280 | 0.0001 | - | - | - | | 0.6247 | 1290 | 0.0523 | - | - | - | | 0.6295 | 1300 | 0.0011 | - | - | - | | 0.6344 | 1310 | 0.0046 | - | - | - | | 0.6392 | 1320 | 0.0231 | - | - | - | | 0.6441 | 1330 | 0.0002 | - | - | - | | 0.6489 | 1340 | 0.0003 | - | - | - | | 0.6538 | 1350 | 0.0012 | - | - | - | | 0.6586 | 1360 | 0.0254 | - | - | - | | 0.6634 | 1370 | 0.0006 | - | - | - | | 0.6683 | 1380 | 0.0043 | - | - | - | | 0.6731 | 1390 | 0.0 | - | - | - | | 0.6780 | 1400 | 0.0005 | - | - | - | | 0.6828 | 1410 | 0.006 | - | - | - | | 0.6877 | 1420 | 0.0078 | - | - | - | | 0.6925 | 1430 | 0.1351 | - | - | - | | 0.6973 | 1440 | 0.0008 | - | - | - | | 0.7022 | 1450 | 0.0651 | - | - | - | | 0.7070 | 1460 | 0.0014 | - | - | - | | 0.7119 | 1470 | 0.0002 | - | - | - | | 0.7167 | 1480 | 0.0007 | - | - | - | | 0.7215 | 1490 | 0.0002 | - | - | - | | 0.7264 | 1500 | 0.0008 | - | - | - | | 0.7312 | 1510 | 0.0019 | - | - | - | | 0.7361 | 1520 | 0.1067 | - | - | - | | 0.7409 | 1530 | 0.0003 | - | - | - | | 0.7458 | 1540 | 0.003 | - | - | - | | 0.7506 | 1550 | 0.0002 | - | - | - | | 0.7554 | 1560 | 0.0022 | - | - | - | | 0.7603 | 1570 | 0.0016 | - | - | - | | 0.7651 | 1580 | 0.0001 | - | - | - | | 0.7700 | 1590 | 0.0022 | - | - | - | | 0.7748 | 1600 | 0.2898 | - | - | - | | 0.7797 | 1610 | 0.0089 | - | - | - | | 0.7845 | 1620 | 0.0027 | - | - | - | | 0.7893 | 1630 | 0.0002 | - | - | - | | 0.7942 | 1640 | 0.0 | - | - | - | | 0.7990 | 1650 | 0.0004 | - | - | - | | 0.8039 | 1660 | 0.0115 | - | - | - | | 0.8087 | 1670 | 0.002 | - | - | - | | 0.8136 | 1680 | 0.0002 | - | - | - | | 0.8184 | 1690 | 0.0394 | - | - | - | | 0.8232 | 1700 | 0.0002 | - | - | - | | 0.8281 | 1710 | 0.0 | - | - | - | | 0.8329 | 1720 | 0.0021 | - | - | - | | 0.8378 | 1730 | 0.0015 | - | - | - | | 0.8426 | 1740 | 0.0006 | - | - | - | | 0.8475 | 1750 | 0.1298 | - | - | - | | 0.8523 | 1760 | 0.0313 | - | - | - | | 0.8571 | 1770 | 0.0038 | - | - | - | | 0.8620 | 1780 | 0.003 | - | - | - | | 0.8668 | 1790 | 0.0003 | - | - | - | | 0.8717 | 1800 | 0.0052 | - | - | - | | 0.8765 | 1810 | 0.0002 | - | - | - | | 0.8814 | 1820 | 0.0001 | - | - | - | | 0.8862 | 1830 | 0.0014 | - | - | - | | 0.8910 | 1840 | 0.0036 | - | - | - | | 0.8959 | 1850 | 0.0408 | - | - | - | | 0.9007 | 1860 | 0.0005 | - | - | - | | 0.9056 | 1870 | 0.0185 | - | - | - | | 0.9104 | 1880 | 0.0002 | - | - | - | | 0.9153 | 1890 | 0.0012 | - | - | - | | 0.9201 | 1900 | 0.0002 | - | - | - | | 0.9249 | 1910 | 0.0359 | - | - | - | | 0.9298 | 1920 | 0.0002 | - | - | - | | 0.9346 | 1930 | 0.001 | - | - | - | | 0.9395 | 1940 | 0.0 | - | - | - | | 0.9443 | 1950 | 0.0001 | - | - | - | | 0.9492 | 1960 | 0.0228 | - | - | - | | 0.9540 | 1970 | 0.0004 | - | - | - | | 0.9588 | 1980 | 0.0027 | - | - | - | | 0.9637 | 1990 | 0.0011 | - | - | - | | 0.9685 | 2000 | 0.0005 | - | - | - | | 0.9734 | 2010 | 0.0004 | - | - | - | | 0.9782 | 2020 | 0.0713 | - | - | - | | 0.9831 | 2030 | 0.0035 | - | - | - | | 0.9879 | 2040 | 0.0 | - | - | - | | 0.9927 | 2050 | 0.0009 | - | - | - | | 0.9976 | 2060 | 0.0011 | - | - | - | | 1.0 | 2065 | - | 0.0076 | 0.7354 | 0.7328 | | 1.0024 | 2070 | 0.0024 | - | - | - | | 1.0073 | 2080 | 0.0052 | - | - | - | | 1.0121 | 2090 | 0.0008 | - | - | - | | 1.0169 | 2100 | 0.0014 | - | - | - | | 1.0218 | 2110 | 0.0005 | - | - | - | | 1.0266 | 2120 | 0.0107 | - | - | - | | 1.0315 | 2130 | 0.0004 | - | - | - | | 1.0363 | 2140 | 0.0909 | - | - | - | | 1.0412 | 2150 | 0.0002 | - | - | - | | 1.0460 | 2160 | 0.0009 | - | - | - | | 1.0508 | 2170 | 0.0 | - | - | - | | 1.0557 | 2180 | 0.0002 | - | - | - | | 1.0605 | 2190 | 0.2891 | - | - | - | | 1.0654 | 2200 | 0.0037 | - | - | - | | 1.0702 | 2210 | 0.0001 | - | - | - | | 1.0751 | 2220 | 0.0008 | - | - | - | | 1.0799 | 2230 | 0.0026 | - | - | - | | 1.0847 | 2240 | 0.0001 | - | - | - | | 1.0896 | 2250 | 0.0009 | - | - | - | | 1.0944 | 2260 | 0.0041 | - | - | - | | 1.0993 | 2270 | 0.0394 | - | - | - | | 1.1041 | 2280 | 0.0003 | - | - | - | | 1.1090 | 2290 | 0.0001 | - | - | - | | 1.1138 | 2300 | 0.0 | - | - | - | | 1.1186 | 2310 | 0.0009 | - | - | - | | 1.1235 | 2320 | 0.0001 | - | - | - | | 1.1283 | 2330 | 0.0012 | - | - | - | | 1.1332 | 2340 | 0.0013 | - | - | - | | 1.1380 | 2350 | 0.0002 | - | - | - | | 1.1429 | 2360 | 0.0 | - | - | - | | 1.1477 | 2370 | 0.0 | - | - | - | | 1.1525 | 2380 | 0.0 | - | - | - | | 1.1574 | 2390 | 0.0 | - | - | - | | 1.1622 | 2400 | 0.0403 | - | - | - | | 1.1671 | 2410 | 0.0005 | - | - | - | | 1.1719 | 2420 | 0.0 | - | - | - | | 1.1768 | 2430 | 0.0001 | - | - | - | | 1.1816 | 2440 | 0.0006 | - | - | - | | 1.1864 | 2450 | 0.011 | - | - | - | | 1.1913 | 2460 | 0.0004 | - | - | - | | 1.1961 | 2470 | 0.0 | - | - | - | | 1.2010 | 2480 | 0.0002 | - | - | - | | 1.2058 | 2490 | 0.0001 | - | - | - | | 1.2107 | 2500 | 0.0 | - | - | - | | 1.2155 | 2510 | 0.0001 | - | - | - | | 1.2203 | 2520 | 0.0002 | - | - | - | | 1.2252 | 2530 | 0.0002 | - | - | - | | 1.2300 | 2540 | 0.0 | - | - | - | | 1.2349 | 2550 | 0.0 | - | - | - | | 1.2397 | 2560 | 0.0 | - | - | - | | 1.2446 | 2570 | 0.0 | - | - | - | | 1.2494 | 2580 | 0.0003 | - | - | - | | 1.2542 | 2590 | 0.1046 | - | - | - | | 1.2591 | 2600 | 0.0 | - | - | - | | 1.2639 | 2610 | 0.0 | - | - | - | | 1.2688 | 2620 | 0.0 | - | - | - | | 1.2736 | 2630 | 0.0004 | - | - | - | | 1.2785 | 2640 | 0.0001 | - | - | - | | 1.2833 | 2650 | 0.0009 | - | - | - | | 1.2881 | 2660 | 0.0003 | - | - | - | | 1.2930 | 2670 | 0.0 | - | - | - | | 1.2978 | 2680 | 0.0021 | - | - | - | | 1.3027 | 2690 | 0.0 | - | - | - | | 1.3075 | 2700 | 0.0 | - | - | - | | 1.3123 | 2710 | 0.0001 | - | - | - | | 1.3172 | 2720 | 0.0 | - | - | - | | 1.3220 | 2730 | 0.0 | - | - | - | | 1.3269 | 2740 | 0.0 | - | - | - | | 1.3317 | 2750 | 0.0093 | - | - | - | | 1.3366 | 2760 | 0.0001 | - | - | - | | 1.3414 | 2770 | 0.0003 | - | - | - | | 1.3462 | 2780 | 0.0 | - | - | - | | 1.3511 | 2790 | 0.0003 | - | - | - | | 1.3559 | 2800 | 0.0 | - | - | - | | 1.3608 | 2810 | 0.0 | - | - | - | | 1.3656 | 2820 | 0.0002 | - | - | - | | 1.3705 | 2830 | 0.0 | - | - | - | | 1.3753 | 2840 | 0.0 | - | - | - | | 1.3801 | 2850 | 0.0 | - | - | - | | 1.3850 | 2860 | 0.0012 | - | - | - | | 1.3898 | 2870 | 0.0002 | - | - | - | | 1.3947 | 2880 | 0.0 | - | - | - | | 1.3995 | 2890 | 0.0001 | - | - | - | | 1.4044 | 2900 | 0.0001 | - | - | - | | 1.4092 | 2910 | 0.0002 | - | - | - | | 1.4140 | 2920 | 0.0001 | - | - | - | | 1.4189 | 2930 | 0.0 | - | - | - | | 1.4237 | 2940 | 0.0001 | - | - | - | | 1.4286 | 2950 | 0.0 | - | - | - | | 1.4334 | 2960 | 0.0 | - | - | - | | 1.4383 | 2970 | 0.0 | - | - | - | | 1.4431 | 2980 | 0.0 | - | - | - | | 1.4479 | 2990 | 0.0 | - | - | - | | 1.4528 | 3000 | 0.0 | - | - | - | | 1.4576 | 3010 | 0.0001 | - | - | - | | 1.4625 | 3020 | 0.0 | - | - | - | | 1.4673 | 3030 | 0.0 | - | - | - | | 1.4722 | 3040 | 0.0 | - | - | - | | 1.4770 | 3050 | 0.0006 | - | - | - | | 1.4818 | 3060 | 0.0 | - | - | - | | 1.4867 | 3070 | 0.0001 | - | - | - | | 1.4915 | 3080 | 0.0037 | - | - | - | | 1.4964 | 3090 | 0.0001 | - | - | - | | 1.5012 | 3100 | 0.0001 | - | - | - | | 1.5061 | 3110 | 0.0 | - | - | - | | 1.5109 | 3120 | 0.0041 | - | - | - | | 1.5157 | 3130 | 0.0002 | - | - | - | | 1.5206 | 3140 | 0.0001 | - | - | - | | 1.5254 | 3150 | 0.0 | - | - | - | | 1.5303 | 3160 | 0.0001 | - | - | - | | 1.5351 | 3170 | 0.0 | - | - | - | | 1.5400 | 3180 | 0.0001 | - | - | - | | 1.5448 | 3190 | 0.0012 | - | - | - | | 1.5496 | 3200 | 0.0 | - | - | - | | 1.5545 | 3210 | 0.0 | - | - | - | | 1.5593 | 3220 | 0.0001 | - | - | - | | 1.5642 | 3230 | 0.0 | - | - | - | | 1.5690 | 3240 | 0.0 | - | - | - | | 1.5738 | 3250 | 0.0003 | - | - | - | | 1.5787 | 3260 | 0.0003 | - | - | - | | 1.5835 | 3270 | 0.0 | - | - | - | | 1.5884 | 3280 | 0.0011 | - | - | - | | 1.5932 | 3290 | 0.0 | - | - | - | | 1.5981 | 3300 | 0.0 | - | - | - | | 1.6029 | 3310 | 0.0 | - | - | - | | 1.6077 | 3320 | 0.0 | - | - | - | | 1.6126 | 3330 | 0.0 | - | - | - | | 1.6174 | 3340 | 0.0 | - | - | - | | 1.6223 | 3350 | 0.0006 | - | - | - | | 1.6271 | 3360 | 0.0 | - | - | - | | 1.6320 | 3370 | 0.0 | - | - | - | | 1.6368 | 3380 | 0.0001 | - | - | - | | 1.6416 | 3390 | 0.0001 | - | - | - | | 1.6465 | 3400 | 0.0001 | - | - | - | | 1.6513 | 3410 | 0.0001 | - | - | - | | 1.6562 | 3420 | 0.0001 | - | - | - | | 1.6610 | 3430 | 0.0 | - | - | - | | 1.6659 | 3440 | 0.0 | - | - | - | | 1.6707 | 3450 | 0.0 | - | - | - | | 1.6755 | 3460 | 0.0 | - | - | - | | 1.6804 | 3470 | 0.0 | - | - | - | | 1.6852 | 3480 | 0.0104 | - | - | - | | 1.6901 | 3490 | 0.0 | - | - | - | | 1.6949 | 3500 | 0.0001 | - | - | - | | 1.6998 | 3510 | 0.0 | - | - | - | | 1.7046 | 3520 | 0.0002 | - | - | - | | 1.7094 | 3530 | 0.0 | - | - | - | | 1.7143 | 3540 | 0.0002 | - | - | - | | 1.7191 | 3550 | 0.0 | - | - | - | | 1.7240 | 3560 | 0.0 | - | - | - | | 1.7288 | 3570 | 0.0 | - | - | - | | 1.7337 | 3580 | 0.0 | - | - | - | | 1.7385 | 3590 | 0.0 | - | - | - | | 1.7433 | 3600 | 0.0 | - | - | - | | 1.7482 | 3610 | 0.0002 | - | - | - | | 1.7530 | 3620 | 0.0 | - | - | - | | 1.7579 | 3630 | 0.0002 | - | - | - | | 1.7627 | 3640 | 0.0 | - | - | - | | 1.7676 | 3650 | 0.0 | - | - | - | | 1.7724 | 3660 | 0.0001 | - | - | - | | 1.7772 | 3670 | 0.0004 | - | - | - | | 1.7821 | 3680 | 0.0 | - | - | - | | 1.7869 | 3690 | 0.0 | - | - | - | | 1.7918 | 3700 | 0.0 | - | - | - | | 1.7966 | 3710 | 0.0 | - | - | - | | 1.8015 | 3720 | 0.0 | - | - | - | | 1.8063 | 3730 | 0.0011 | - | - | - | | 1.8111 | 3740 | 0.0001 | - | - | - | | 1.8160 | 3750 | 0.0001 | - | - | - | | 1.8208 | 3760 | 0.0001 | - | - | - | | 1.8257 | 3770 | 0.0001 | - | - | - | | 1.8305 | 3780 | 0.0 | - | - | - | | 1.8354 | 3790 | 0.0006 | - | - | - | | 1.8402 | 3800 | 0.0 | - | - | - | | 1.8450 | 3810 | 0.0178 | - | - | - | | 1.8499 | 3820 | 0.0 | - | - | - | | 1.8547 | 3830 | 0.0001 | - | - | - | | 1.8596 | 3840 | 0.0003 | - | - | - | | 1.8644 | 3850 | 0.0 | - | - | - | | 1.8692 | 3860 | 0.0 | - | - | - | | 1.8741 | 3870 | 0.0001 | - | - | - | | 1.8789 | 3880 | 0.0 | - | - | - | | 1.8838 | 3890 | 0.0 | - | - | - | | 1.8886 | 3900 | 0.0001 | - | - | - | | 1.8935 | 3910 | 0.0 | - | - | - | | 1.8983 | 3920 | 0.0 | - | - | - | | 1.9031 | 3930 | 0.0 | - | - | - | | 1.9080 | 3940 | 0.0 | - | - | - | | 1.9128 | 3950 | 0.0001 | - | - | - | | 1.9177 | 3960 | 0.0002 | - | - | - | | 1.9225 | 3970 | 0.0002 | - | - | - | | 1.9274 | 3980 | 0.0 | - | - | - | | 1.9322 | 3990 | 0.0005 | - | - | - | | 1.9370 | 4000 | 0.0 | - | - | - | | 1.9419 | 4010 | 0.0 | - | - | - | | 1.9467 | 4020 | 0.0 | - | - | - | | 1.9516 | 4030 | 0.0001 | - | - | - | | 1.9564 | 4040 | 0.0002 | - | - | - | | 1.9613 | 4050 | 0.0 | - | - | - | | 1.9661 | 4060 | 0.0001 | - | - | - | | 1.9709 | 4070 | 0.0001 | - | - | - | | 1.9758 | 4080 | 0.0 | - | - | - | | 1.9806 | 4090 | 0.0 | - | - | - | | 1.9855 | 4100 | 0.0002 | - | - | - | | 1.9903 | 4110 | 0.0001 | - | - | - | | 1.9952 | 4120 | 0.0 | - | - | - | | **2.0** | **4130** | **0.0** | **0.0131** | **0.7537** | **0.7529** | * The bold row denotes the saved checkpoint. </details> ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.3.1 - Transformers: 4.41.2 - PyTorch: 2.1.2+cu121 - Accelerate: 0.29.3 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
null
Non_BioNLP
# SentenceTransformer based on bkai-foundation-models/vietnamese-bi-encoder This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [bkai-foundation-models/vietnamese-bi-encoder](https://huggingface.co/bkai-foundation-models/vietnamese-bi-encoder) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [bkai-foundation-models/vietnamese-bi-encoder](https://huggingface.co/bkai-foundation-models/vietnamese-bi-encoder) <!-- at revision 84f9d9ada0d1a3c37557398b9ae9fcedcdf40be0 --> - **Maximum Sequence Length:** 256 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("anhtuansh/vietnamese-bi-encoder-Matryoshka-2e-9k") # Run inference sentences = [ 'quản_lý nhập_khẩu hàng_hóa bị điều_tra , phục_vụ công_tác điều_tra , áp_dụng biện_pháp phòng_vệ thương_mại .', 'mục_đích của thủ_tục khai_báo là gì ?', 'đơn_vị chúng_tôi đã được cấp chứng_chỉ năng_lực hoạt_động xây_dựng nhưng hiện_nay chúng_tôi thay_đổi người đại_diện pháp_luật của đơn_vị . vậy chúng_tôi có phải làm thủ_tục nào để thay_đổi người đại_diện theo pháp_luật của chúng_tôi trên chứng_chỉ ?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_768` and `dim_512` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_768 | dim_512 | |:--------------------|:-----------|:-----------| | cosine_accuracy@1 | 0.6231 | 0.6187 | | cosine_accuracy@3 | 0.78 | 0.7821 | | cosine_accuracy@5 | 0.8388 | 0.8377 | | cosine_accuracy@10 | 0.8791 | 0.8824 | | cosine_precision@1 | 0.6231 | 0.6187 | | cosine_precision@3 | 0.26 | 0.2607 | | cosine_precision@5 | 0.1678 | 0.1675 | | cosine_precision@10 | 0.0879 | 0.0882 | | cosine_recall@1 | 0.6231 | 0.6187 | | cosine_recall@3 | 0.78 | 0.7821 | | cosine_recall@5 | 0.8388 | 0.8377 | | cosine_recall@10 | 0.8791 | 0.8824 | | **cosine_ndcg@10** | **0.7537** | **0.7529** | | cosine_mrr@10 | 0.713 | 0.7111 | | cosine_map@100 | 0.7172 | 0.7151 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### json * Dataset: json * Size: 8,259 training samples * Columns: <code>positive</code> and <code>anchor</code> * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 4 tokens</li><li>mean: 120.22 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 25.38 tokens</li><li>max: 256 tokens</li></ul> | * Samples: | positive | anchor | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>điểm a , mục 2 phần ii thông_tư số 04 / 1999 / tt - bca ( c13 ) ngày 29 / 4 / 1999 của bộ công_an hướng_dẫn một_số quy_định của nghị_định số 05 / 1999 / nđ - cp ngày 03 / 01 / 1999 của chính_phủ về chứng_minh nhân_dân quy_định các trường_hợp phải đổi cmnd như sau : - quá thời_hạn sử_dụng 15 năm kể từ ngày cấp ; - cmnd rách , nát , không rõ ảnh hoặc một trong các thông_tin đã ghi trên cmnd ; - thay_đổi họ , tên , chữ đệm , ngày , tháng , năm sinh . những thay_đổi này phải có quyết_định của cơ_quan có thẩm_quyền ; - những người đã được cấp giấy cmnd nhưng chuyển nơi đăng_ký hộ_khẩu thường_trú ngoài phạm_vi tỉnh , thành_phố trực_thuộc trung_ương . trường_hợp chuyển nơi thường_trú trong phạm_vi tỉnh , thành_phố mà công_dân có yêu_cầu thì được đổi lại cmnd ; - thay_đổi đặc_điểm nhận_dạng là những trường_hợp đã qua phẫu_thuật thẩm_mỹ , chỉnh_hình hoặc vì lý_do khác đã làm thay_đổi hình_ảnh hoặc đặc_điểm nhận_dạng của họ .</code> | <code>công_dân phải làm thủ_tục đổi chứng_minh nhân_dân khi nào ?</code> | | <code>việc thực_hiện thủ_tục tặng cờ thi_đua cấp bộ , ban , ngành , đoàn_thể trung_ương , tỉnh , thành_phố trực_thuộc trung_ương theo đợt hoặc chuyên_đề được tiến_hành như sau : <br> bước 1 . vụ , phòng , ban thi_đua – khen_thưởng các bộ , ngành , đoàn_thể trung_ương , tỉnh , thành_phố trực_thuộc trung_ương tiếp_nhận đề_nghị khen_thưởng của các đơn_vị thực thuộc . <br> bước 2 . thẩm_định hồ_sơ , xin ý_kiến các cơ_quan liên_quan , báo_cáo hội_đồng thi_đua khen_thưởng cùng cấp , tổng_hợp trình bộ_trưởng , thủ_trưởng đơn_vị , chủ_tịch ubnd tỉnh , thành_phố quyết_định khen_thưởng . <br> bước 3 . khi có quyết_định của bộ_trưởng , thủ_trưởng đơn_vị , chủ_tịch ubnd tỉnh , thành_phố trực_thuộc trung_ương ; vụ , phòng , ban thi_đua – khen_thưởng các bộ , ngành , đoàn_thể trung_ương , tỉnh , thành_phố trực_thuộc trung_ương thông_báo quyết_định , viết bằng , đóng_dấu và cấp_phát cho đơn_vị trình khen . <br> bước 4 . các trường_hợp không được khen_thưởng ( không đúng đối_tượng , không đủ tiêu_chuẩn , không đủ hồ_sơ...</code> | <code>đề_nghị cho biết trình_tự thực_hiện thủ_tục tặng cờ thi_đua cấp bộ , ban , ngành , đoàn_thể trung_ương , tỉnh , thành_phố trực_thuộc trung_ương theo đợt hoặc chuyên_đề</code> | | <code>thời_gian phục_vụ tại_ngũ của hạ_sĩ_quan binh_sĩ được quy_định tại điều 21 luật nvqs năm 2015 , cụ_thể như sau : “ điều 21 . thời_hạn phục_vụ tại_ngũ của hạ_sĩ_quan , binh sĩ1 . thời_hạn phục_vụ tại_ngũ trong thời_bình của hạ_sĩ_quan , binh_sĩ là 24 tháng . 2 . bộ_trưởng bộ quốc_phòng được quyết_định kéo_dài thời_hạn phục_vụ tại_ngũ của hạ_sĩ_quan , binh_sĩ nhưng không quá 06 tháng trong trường_hợp sau đây : a ) để bảo_đảm_nhiệm_vụ sẵn_sàng chiến_đấu ; b ) đang thực_hiện nhiệm_vụ phòng , chống thiên_tai , dịch_bệnh , cứu_hộ , cứu nạn . 3 . thời_hạn phục_vụ của hạ_sĩ_quan , binh_sĩ trong tình_trạng chiến_tranh hoặc tình_trạng khẩn_cấp về quốc_phòng được thực_hiện theo lệnh tổng_động_viên hoặc động_viên cục_bộ . ”</code> | <code>quy_định thời_gian phục_vụ tại_ngũ của hạ_sĩ_quan binh_sĩ như thế_nào ?</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512 ], "matryoshka_weights": [ 1, 1 ], "n_dims_per_step": -1 } ``` ### Evaluation Dataset #### json * Dataset: json * Size: 918 evaluation samples * Columns: <code>positive</code> and <code>anchor</code> * Approximate statistics based on the first 918 samples: | | positive | anchor | |:--------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 121.36 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 25.41 tokens</li><li>max: 213 tokens</li></ul> | * Samples: | positive | anchor | |:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>theo quy_định tại khoản 9 điều 1 nghị_định số 161 / 2018 / nđ - cpngày 29 / 11 / 2018 của chính_phủ sửa_đổi , bổ_sung một_số quy_định về tuyển_dụng công_chức , viên_chức , nâng ngạch công_chức , thăng_hạng viên_chức và thực_hiện chế_độ hợp_đồng một_số loại công_việc trong cơ_quan hành_chính nhà_nước , đơn_vị sự_nghiệp công_lập thì đối_tượng và điểm ưu_tiên trong thi_tuyển hoặc xét tuyển công_chức : <br> + anh_hùng lực_lượng vũ_trang , anh_hùng lao_động , thương_binh , người hưởng chính_sách như thương_binh , thương_binh loại b : được cộng 7,5 điểm vào kết_quả điểm thi tại vòng 2 ; <br> + người dân_tộc_thiểu_số , sĩ_quan quân_đội , sĩ_quan công_an , quân_nhân chuyên_nghiệp , người làm công_tác cơ_yếu chuyển ngành , con liệt_sĩ , con thương_binh , con bệnh_binh , con của người hưởng chính_sách như thương_binh , con của thương_binh loại b , con của người hoạt_động cách_mạng trước tổng_khởi_nghĩa ( từ ngày 19 / 8 / 1945 trở về trước ) , con_đẻ của người hoạt_động kháng_chiến bị nhiễm chất_độc_hó...</code> | <code>đề_nghị cho tôi được biết đối_tượng được hưởng ưu_tiên trong tuyển_dụng công_chức ?</code> | | <code>1 . khi phát_hiện tổ_chức , cá_nhân kê_khai hồ_sơ , thông_báo không_trung_thực hoặc vi_phạm_quy_định tại điều 8 nghị_định số 23 / 2019 / nđ - cp , cơ_quan tiếp_nhận thông_báo yêu_cầu tạm dừng hoạt_động triển_lãm bằng văn_bản ( mẫu_số 03 tại phụ_lục ban_hành kèm theo nghị_định số 23 / 2019 / nđ - cp ) . 2 . tổ_chức , cá_nhân phải dừng hoạt_động triển_lãm ngay khi nhận được văn_bản của cơ_quan có thẩm_quyền ; kịp_thời_khắc_phục hậu_quả , đề_xuất phương_án tiếp_tục tổ_chức triển_lãm gửi cơ_quan có thẩm_quyền xem_xét , quyết_định . 3 . kết_quả xem_xét , quyết_định của cơ_quan có thẩm_quyền phải được thể_hiện bằng văn_bản và gửi cho tổ_chức , cá_nhân biết để thực_hiện . thời_hạn gửi văn_bản cho tổ_chức , cá_nhân là 03 ngày , kể từ ngày cơ_quan có thẩm_quyền nhận được văn_bản đề_xuất phương_án tiếp_tục tổ_chức triển_lãm của tổ_chức , cá_nhân .</code> | <code>những lý_do nào khiến hoạt_động triển_lãm bị tạm dừng ?</code> | | <code>theo quy_định tại khoản 1 điều 33 luật quản_lý , sử_dụng vũ_khí , vật_liệu nổ và công_cụ hỗ_trợ và điểm a khoản 4 điều 3 thông_tư số 16 / 2018 / tt - bca ngày 15 / 5 / 2018 của bộ công_an quy_định chi_tiết thi_hành một_số điều của luật quản_lý , sử_dụng vũ_khí , vật_liệu nổ và công_cụ hỗ_trợ thì thủ_tục đề_nghị cấp giấy_phép vận_chuyển vũ_khí quân_dụng đối_với cơ_quan , tổ_chức ở trung_ương không thuộc phạm_vi quản_lý của bộ quốc_phòng được thực_hiện như sau : a ) hồ_sơ đề_nghị bao_gồm : văn_bản đề_nghị nêu rõ số_lượng , chủng_loại , nguồn_gốc xuất_xứ của vũ_khí cần vận_chuyển ; nơi đi , nơi đến , thời_gian và tuyến đường vận_chuyển ; họ và tên , địa_chỉ của người chịu trách_nhiệm vận_chuyển , người điều_khiển phương_tiện ; biển kiểm_soát của phương_tiện ; giấy giới_thiệu kèm theo bản_sao thẻ căn_cước công_dân , chứng_minh nhân_dân , hộ_chiếu hoặc chứng_minh công_an nhân_dân của người đến liên_hệ ; b ) hồ_sơ lập thành 01 bộ và nộp tại cục cảnh_sát qlhc về ttxh ; c ) trong thời_hạn 05 n...</code> | <code>thủ_tục cấp giấy_phép vận_chuyển vũ_khí quân_dụng đối_với cơ_quan , tổ_chức ở trung_ương không thuộc phạm_vi quản_lý của bộ quốc_phòng thực_hiện như thế_nào ?</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512 ], "matryoshka_weights": [ 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 2 - `per_device_eval_batch_size`: 2 - `gradient_accumulation_steps`: 2 - `learning_rate`: 2e-05 - `num_train_epochs`: 2 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `fp16`: True - `tf32`: False - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 2 - `per_device_eval_batch_size`: 2 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 2 - `eval_accumulation_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 2 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: False - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs <details><summary>Click to expand</summary> | Epoch | Step | Training Loss | Validation Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | |:-------:|:--------:|:-------------:|:---------------:|:----------------------:|:----------------------:| | 0 | 0 | - | - | 0.6872 | 0.6803 | | 0.0048 | 10 | 0.0544 | - | - | - | | 0.0097 | 20 | 0.0507 | - | - | - | | 0.0145 | 30 | 0.2621 | - | - | - | | 0.0194 | 40 | 0.0371 | - | - | - | | 0.0242 | 50 | 0.0041 | - | - | - | | 0.0291 | 60 | 0.0869 | - | - | - | | 0.0339 | 70 | 0.0969 | - | - | - | | 0.0387 | 80 | 0.0132 | - | - | - | | 0.0436 | 90 | 0.034 | - | - | - | | 0.0484 | 100 | 0.0021 | - | - | - | | 0.0533 | 110 | 0.0133 | - | - | - | | 0.0581 | 120 | 0.0191 | - | - | - | | 0.0630 | 130 | 0.2885 | - | - | - | | 0.0678 | 140 | 0.1376 | - | - | - | | 0.0726 | 150 | 0.0359 | - | - | - | | 0.0775 | 160 | 0.0099 | - | - | - | | 0.0823 | 170 | 0.0401 | - | - | - | | 0.0872 | 180 | 0.0208 | - | - | - | | 0.0920 | 190 | 0.0545 | - | - | - | | 0.0969 | 200 | 0.0072 | - | - | - | | 0.1017 | 210 | 0.0202 | - | - | - | | 0.1065 | 220 | 0.0392 | - | - | - | | 0.1114 | 230 | 0.0201 | - | - | - | | 0.1162 | 240 | 0.0016 | - | - | - | | 0.1211 | 250 | 0.1501 | - | - | - | | 0.1259 | 260 | 0.1371 | - | - | - | | 0.1308 | 270 | 0.0357 | - | - | - | | 0.1356 | 280 | 0.1695 | - | - | - | | 0.1404 | 290 | 0.0028 | - | - | - | | 0.1453 | 300 | 0.0396 | - | - | - | | 0.1501 | 310 | 0.0115 | - | - | - | | 0.1550 | 320 | 0.0052 | - | - | - | | 0.1598 | 330 | 0.013 | - | - | - | | 0.1646 | 340 | 0.052 | - | - | - | | 0.1695 | 350 | 0.0072 | - | - | - | | 0.1743 | 360 | 0.0082 | - | - | - | | 0.1792 | 370 | 0.0002 | - | - | - | | 0.1840 | 380 | 0.0003 | - | - | - | | 0.1889 | 390 | 0.1907 | - | - | - | | 0.1937 | 400 | 0.0352 | - | - | - | | 0.1985 | 410 | 0.0015 | - | - | - | | 0.2034 | 420 | 0.006 | - | - | - | | 0.2082 | 430 | 0.0149 | - | - | - | | 0.2131 | 440 | 0.035 | - | - | - | | 0.2179 | 450 | 0.0002 | - | - | - | | 0.2228 | 460 | 0.1047 | - | - | - | | 0.2276 | 470 | 0.1771 | - | - | - | | 0.2324 | 480 | 0.0008 | - | - | - | | 0.2373 | 490 | 0.0313 | - | - | - | | 0.2421 | 500 | 0.0021 | - | - | - | | 0.2470 | 510 | 0.0418 | - | - | - | | 0.2518 | 520 | 0.2645 | - | - | - | | 0.2567 | 530 | 0.0305 | - | - | - | | 0.2615 | 540 | 0.0016 | - | - | - | | 0.2663 | 550 | 0.0009 | - | - | - | | 0.2712 | 560 | 0.0007 | - | - | - | | 0.2760 | 570 | 0.0368 | - | - | - | | 0.2809 | 580 | 0.0343 | - | - | - | | 0.2857 | 590 | 0.0348 | - | - | - | | 0.2906 | 600 | 0.0045 | - | - | - | | 0.2954 | 610 | 0.0068 | - | - | - | | 0.3002 | 620 | 0.0032 | - | - | - | | 0.3051 | 630 | 0.0282 | - | - | - | | 0.3099 | 640 | 0.0635 | - | - | - | | 0.3148 | 650 | 0.0012 | - | - | - | | 0.3196 | 660 | 0.0077 | - | - | - | | 0.3245 | 670 | 0.0242 | - | - | - | | 0.3293 | 680 | 0.001 | - | - | - | | 0.3341 | 690 | 0.2225 | - | - | - | | 0.3390 | 700 | 0.0249 | - | - | - | | 0.3438 | 710 | 0.0004 | - | - | - | | 0.3487 | 720 | 0.004 | - | - | - | | 0.3535 | 730 | 0.0024 | - | - | - | | 0.3584 | 740 | 0.0006 | - | - | - | | 0.3632 | 750 | 0.014 | - | - | - | | 0.3680 | 760 | 0.005 | - | - | - | | 0.3729 | 770 | 0.0004 | - | - | - | | 0.3777 | 780 | 0.0043 | - | - | - | | 0.3826 | 790 | 0.1434 | - | - | - | | 0.3874 | 800 | 0.0004 | - | - | - | | 0.3923 | 810 | 0.0183 | - | - | - | | 0.3971 | 820 | 0.1543 | - | - | - | | 0.4019 | 830 | 0.0174 | - | - | - | | 0.4068 | 840 | 0.1047 | - | - | - | | 0.4116 | 850 | 0.0284 | - | - | - | | 0.4165 | 860 | 0.0002 | - | - | - | | 0.4213 | 870 | 0.0004 | - | - | - | | 0.4262 | 880 | 0.0449 | - | - | - | | 0.4310 | 890 | 0.0023 | - | - | - | | 0.4358 | 900 | 0.0017 | - | - | - | | 0.4407 | 910 | 0.0003 | - | - | - | | 0.4455 | 920 | 0.0042 | - | - | - | | 0.4504 | 930 | 0.0014 | - | - | - | | 0.4552 | 940 | 0.0003 | - | - | - | | 0.4600 | 950 | 0.0077 | - | - | - | | 0.4649 | 960 | 0.0 | - | - | - | | 0.4697 | 970 | 0.0004 | - | - | - | | 0.4746 | 980 | 0.0051 | - | - | - | | 0.4794 | 990 | 0.1024 | - | - | - | | 0.4843 | 1000 | 0.0013 | - | - | - | | 0.4891 | 1010 | 0.0285 | - | - | - | | 0.4939 | 1020 | 0.0148 | - | - | - | | 0.4988 | 1030 | 0.0483 | - | - | - | | 0.5036 | 1040 | 0.0027 | - | - | - | | 0.5085 | 1050 | 0.0582 | - | - | - | | 0.5133 | 1060 | 0.0033 | - | - | - | | 0.5182 | 1070 | 0.0942 | - | - | - | | 0.5230 | 1080 | 0.0014 | - | - | - | | 0.5278 | 1090 | 0.0004 | - | - | - | | 0.5327 | 1100 | 0.0083 | - | - | - | | 0.5375 | 1110 | 0.0 | - | - | - | | 0.5424 | 1120 | 0.0293 | - | - | - | | 0.5472 | 1130 | 0.1448 | - | - | - | | 0.5521 | 1140 | 0.0008 | - | - | - | | 0.5569 | 1150 | 0.0084 | - | - | - | | 0.5617 | 1160 | 0.0003 | - | - | - | | 0.5666 | 1170 | 0.0012 | - | - | - | | 0.5714 | 1180 | 0.0072 | - | - | - | | 0.5763 | 1190 | 0.0982 | - | - | - | | 0.5811 | 1200 | 0.0043 | - | - | - | | 0.5860 | 1210 | 0.0092 | - | - | - | | 0.5908 | 1220 | 0.0018 | - | - | - | | 0.5956 | 1230 | 0.012 | - | - | - | | 0.6005 | 1240 | 0.0002 | - | - | - | | 0.6053 | 1250 | 0.0462 | - | - | - | | 0.6102 | 1260 | 0.0006 | - | - | - | | 0.6150 | 1270 | 0.0455 | - | - | - | | 0.6199 | 1280 | 0.0001 | - | - | - | | 0.6247 | 1290 | 0.0523 | - | - | - | | 0.6295 | 1300 | 0.0011 | - | - | - | | 0.6344 | 1310 | 0.0046 | - | - | - | | 0.6392 | 1320 | 0.0231 | - | - | - | | 0.6441 | 1330 | 0.0002 | - | - | - | | 0.6489 | 1340 | 0.0003 | - | - | - | | 0.6538 | 1350 | 0.0012 | - | - | - | | 0.6586 | 1360 | 0.0254 | - | - | - | | 0.6634 | 1370 | 0.0006 | - | - | - | | 0.6683 | 1380 | 0.0043 | - | - | - | | 0.6731 | 1390 | 0.0 | - | - | - | | 0.6780 | 1400 | 0.0005 | - | - | - | | 0.6828 | 1410 | 0.006 | - | - | - | | 0.6877 | 1420 | 0.0078 | - | - | - | | 0.6925 | 1430 | 0.1351 | - | - | - | | 0.6973 | 1440 | 0.0008 | - | - | - | | 0.7022 | 1450 | 0.0651 | - | - | - | | 0.7070 | 1460 | 0.0014 | - | - | - | | 0.7119 | 1470 | 0.0002 | - | - | - | | 0.7167 | 1480 | 0.0007 | - | - | - | | 0.7215 | 1490 | 0.0002 | - | - | - | | 0.7264 | 1500 | 0.0008 | - | - | - | | 0.7312 | 1510 | 0.0019 | - | - | - | | 0.7361 | 1520 | 0.1067 | - | - | - | | 0.7409 | 1530 | 0.0003 | - | - | - | | 0.7458 | 1540 | 0.003 | - | - | - | | 0.7506 | 1550 | 0.0002 | - | - | - | | 0.7554 | 1560 | 0.0022 | - | - | - | | 0.7603 | 1570 | 0.0016 | - | - | - | | 0.7651 | 1580 | 0.0001 | - | - | - | | 0.7700 | 1590 | 0.0022 | - | - | - | | 0.7748 | 1600 | 0.2898 | - | - | - | | 0.7797 | 1610 | 0.0089 | - | - | - | | 0.7845 | 1620 | 0.0027 | - | - | - | | 0.7893 | 1630 | 0.0002 | - | - | - | | 0.7942 | 1640 | 0.0 | - | - | - | | 0.7990 | 1650 | 0.0004 | - | - | - | | 0.8039 | 1660 | 0.0115 | - | - | - | | 0.8087 | 1670 | 0.002 | - | - | - | | 0.8136 | 1680 | 0.0002 | - | - | - | | 0.8184 | 1690 | 0.0394 | - | - | - | | 0.8232 | 1700 | 0.0002 | - | - | - | | 0.8281 | 1710 | 0.0 | - | - | - | | 0.8329 | 1720 | 0.0021 | - | - | - | | 0.8378 | 1730 | 0.0015 | - | - | - | | 0.8426 | 1740 | 0.0006 | - | - | - | | 0.8475 | 1750 | 0.1298 | - | - | - | | 0.8523 | 1760 | 0.0313 | - | - | - | | 0.8571 | 1770 | 0.0038 | - | - | - | | 0.8620 | 1780 | 0.003 | - | - | - | | 0.8668 | 1790 | 0.0003 | - | - | - | | 0.8717 | 1800 | 0.0052 | - | - | - | | 0.8765 | 1810 | 0.0002 | - | - | - | | 0.8814 | 1820 | 0.0001 | - | - | - | | 0.8862 | 1830 | 0.0014 | - | - | - | | 0.8910 | 1840 | 0.0036 | - | - | - | | 0.8959 | 1850 | 0.0408 | - | - | - | | 0.9007 | 1860 | 0.0005 | - | - | - | | 0.9056 | 1870 | 0.0185 | - | - | - | | 0.9104 | 1880 | 0.0002 | - | - | - | | 0.9153 | 1890 | 0.0012 | - | - | - | | 0.9201 | 1900 | 0.0002 | - | - | - | | 0.9249 | 1910 | 0.0359 | - | - | - | | 0.9298 | 1920 | 0.0002 | - | - | - | | 0.9346 | 1930 | 0.001 | - | - | - | | 0.9395 | 1940 | 0.0 | - | - | - | | 0.9443 | 1950 | 0.0001 | - | - | - | | 0.9492 | 1960 | 0.0228 | - | - | - | | 0.9540 | 1970 | 0.0004 | - | - | - | | 0.9588 | 1980 | 0.0027 | - | - | - | | 0.9637 | 1990 | 0.0011 | - | - | - | | 0.9685 | 2000 | 0.0005 | - | - | - | | 0.9734 | 2010 | 0.0004 | - | - | - | | 0.9782 | 2020 | 0.0713 | - | - | - | | 0.9831 | 2030 | 0.0035 | - | - | - | | 0.9879 | 2040 | 0.0 | - | - | - | | 0.9927 | 2050 | 0.0009 | - | - | - | | 0.9976 | 2060 | 0.0011 | - | - | - | | 1.0 | 2065 | - | 0.0076 | 0.7354 | 0.7328 | | 1.0024 | 2070 | 0.0024 | - | - | - | | 1.0073 | 2080 | 0.0052 | - | - | - | | 1.0121 | 2090 | 0.0008 | - | - | - | | 1.0169 | 2100 | 0.0014 | - | - | - | | 1.0218 | 2110 | 0.0005 | - | - | - | | 1.0266 | 2120 | 0.0107 | - | - | - | | 1.0315 | 2130 | 0.0004 | - | - | - | | 1.0363 | 2140 | 0.0909 | - | - | - | | 1.0412 | 2150 | 0.0002 | - | - | - | | 1.0460 | 2160 | 0.0009 | - | - | - | | 1.0508 | 2170 | 0.0 | - | - | - | | 1.0557 | 2180 | 0.0002 | - | - | - | | 1.0605 | 2190 | 0.2891 | - | - | - | | 1.0654 | 2200 | 0.0037 | - | - | - | | 1.0702 | 2210 | 0.0001 | - | - | - | | 1.0751 | 2220 | 0.0008 | - | - | - | | 1.0799 | 2230 | 0.0026 | - | - | - | | 1.0847 | 2240 | 0.0001 | - | - | - | | 1.0896 | 2250 | 0.0009 | - | - | - | | 1.0944 | 2260 | 0.0041 | - | - | - | | 1.0993 | 2270 | 0.0394 | - | - | - | | 1.1041 | 2280 | 0.0003 | - | - | - | | 1.1090 | 2290 | 0.0001 | - | - | - | | 1.1138 | 2300 | 0.0 | - | - | - | | 1.1186 | 2310 | 0.0009 | - | - | - | | 1.1235 | 2320 | 0.0001 | - | - | - | | 1.1283 | 2330 | 0.0012 | - | - | - | | 1.1332 | 2340 | 0.0013 | - | - | - | | 1.1380 | 2350 | 0.0002 | - | - | - | | 1.1429 | 2360 | 0.0 | - | - | - | | 1.1477 | 2370 | 0.0 | - | - | - | | 1.1525 | 2380 | 0.0 | - | - | - | | 1.1574 | 2390 | 0.0 | - | - | - | | 1.1622 | 2400 | 0.0403 | - | - | - | | 1.1671 | 2410 | 0.0005 | - | - | - | | 1.1719 | 2420 | 0.0 | - | - | - | | 1.1768 | 2430 | 0.0001 | - | - | - | | 1.1816 | 2440 | 0.0006 | - | - | - | | 1.1864 | 2450 | 0.011 | - | - | - | | 1.1913 | 2460 | 0.0004 | - | - | - | | 1.1961 | 2470 | 0.0 | - | - | - | | 1.2010 | 2480 | 0.0002 | - | - | - | | 1.2058 | 2490 | 0.0001 | - | - | - | | 1.2107 | 2500 | 0.0 | - | - | - | | 1.2155 | 2510 | 0.0001 | - | - | - | | 1.2203 | 2520 | 0.0002 | - | - | - | | 1.2252 | 2530 | 0.0002 | - | - | - | | 1.2300 | 2540 | 0.0 | - | - | - | | 1.2349 | 2550 | 0.0 | - | - | - | | 1.2397 | 2560 | 0.0 | - | - | - | | 1.2446 | 2570 | 0.0 | - | - | - | | 1.2494 | 2580 | 0.0003 | - | - | - | | 1.2542 | 2590 | 0.1046 | - | - | - | | 1.2591 | 2600 | 0.0 | - | - | - | | 1.2639 | 2610 | 0.0 | - | - | - | | 1.2688 | 2620 | 0.0 | - | - | - | | 1.2736 | 2630 | 0.0004 | - | - | - | | 1.2785 | 2640 | 0.0001 | - | - | - | | 1.2833 | 2650 | 0.0009 | - | - | - | | 1.2881 | 2660 | 0.0003 | - | - | - | | 1.2930 | 2670 | 0.0 | - | - | - | | 1.2978 | 2680 | 0.0021 | - | - | - | | 1.3027 | 2690 | 0.0 | - | - | - | | 1.3075 | 2700 | 0.0 | - | - | - | | 1.3123 | 2710 | 0.0001 | - | - | - | | 1.3172 | 2720 | 0.0 | - | - | - | | 1.3220 | 2730 | 0.0 | - | - | - | | 1.3269 | 2740 | 0.0 | - | - | - | | 1.3317 | 2750 | 0.0093 | - | - | - | | 1.3366 | 2760 | 0.0001 | - | - | - | | 1.3414 | 2770 | 0.0003 | - | - | - | | 1.3462 | 2780 | 0.0 | - | - | - | | 1.3511 | 2790 | 0.0003 | - | - | - | | 1.3559 | 2800 | 0.0 | - | - | - | | 1.3608 | 2810 | 0.0 | - | - | - | | 1.3656 | 2820 | 0.0002 | - | - | - | | 1.3705 | 2830 | 0.0 | - | - | - | | 1.3753 | 2840 | 0.0 | - | - | - | | 1.3801 | 2850 | 0.0 | - | - | - | | 1.3850 | 2860 | 0.0012 | - | - | - | | 1.3898 | 2870 | 0.0002 | - | - | - | | 1.3947 | 2880 | 0.0 | - | - | - | | 1.3995 | 2890 | 0.0001 | - | - | - | | 1.4044 | 2900 | 0.0001 | - | - | - | | 1.4092 | 2910 | 0.0002 | - | - | - | | 1.4140 | 2920 | 0.0001 | - | - | - | | 1.4189 | 2930 | 0.0 | - | - | - | | 1.4237 | 2940 | 0.0001 | - | - | - | | 1.4286 | 2950 | 0.0 | - | - | - | | 1.4334 | 2960 | 0.0 | - | - | - | | 1.4383 | 2970 | 0.0 | - | - | - | | 1.4431 | 2980 | 0.0 | - | - | - | | 1.4479 | 2990 | 0.0 | - | - | - | | 1.4528 | 3000 | 0.0 | - | - | - | | 1.4576 | 3010 | 0.0001 | - | - | - | | 1.4625 | 3020 | 0.0 | - | - | - | | 1.4673 | 3030 | 0.0 | - | - | - | | 1.4722 | 3040 | 0.0 | - | - | - | | 1.4770 | 3050 | 0.0006 | - | - | - | | 1.4818 | 3060 | 0.0 | - | - | - | | 1.4867 | 3070 | 0.0001 | - | - | - | | 1.4915 | 3080 | 0.0037 | - | - | - | | 1.4964 | 3090 | 0.0001 | - | - | - | | 1.5012 | 3100 | 0.0001 | - | - | - | | 1.5061 | 3110 | 0.0 | - | - | - | | 1.5109 | 3120 | 0.0041 | - | - | - | | 1.5157 | 3130 | 0.0002 | - | - | - | | 1.5206 | 3140 | 0.0001 | - | - | - | | 1.5254 | 3150 | 0.0 | - | - | - | | 1.5303 | 3160 | 0.0001 | - | - | - | | 1.5351 | 3170 | 0.0 | - | - | - | | 1.5400 | 3180 | 0.0001 | - | - | - | | 1.5448 | 3190 | 0.0012 | - | - | - | | 1.5496 | 3200 | 0.0 | - | - | - | | 1.5545 | 3210 | 0.0 | - | - | - | | 1.5593 | 3220 | 0.0001 | - | - | - | | 1.5642 | 3230 | 0.0 | - | - | - | | 1.5690 | 3240 | 0.0 | - | - | - | | 1.5738 | 3250 | 0.0003 | - | - | - | | 1.5787 | 3260 | 0.0003 | - | - | - | | 1.5835 | 3270 | 0.0 | - | - | - | | 1.5884 | 3280 | 0.0011 | - | - | - | | 1.5932 | 3290 | 0.0 | - | - | - | | 1.5981 | 3300 | 0.0 | - | - | - | | 1.6029 | 3310 | 0.0 | - | - | - | | 1.6077 | 3320 | 0.0 | - | - | - | | 1.6126 | 3330 | 0.0 | - | - | - | | 1.6174 | 3340 | 0.0 | - | - | - | | 1.6223 | 3350 | 0.0006 | - | - | - | | 1.6271 | 3360 | 0.0 | - | - | - | | 1.6320 | 3370 | 0.0 | - | - | - | | 1.6368 | 3380 | 0.0001 | - | - | - | | 1.6416 | 3390 | 0.0001 | - | - | - | | 1.6465 | 3400 | 0.0001 | - | - | - | | 1.6513 | 3410 | 0.0001 | - | - | - | | 1.6562 | 3420 | 0.0001 | - | - | - | | 1.6610 | 3430 | 0.0 | - | - | - | | 1.6659 | 3440 | 0.0 | - | - | - | | 1.6707 | 3450 | 0.0 | - | - | - | | 1.6755 | 3460 | 0.0 | - | - | - | | 1.6804 | 3470 | 0.0 | - | - | - | | 1.6852 | 3480 | 0.0104 | - | - | - | | 1.6901 | 3490 | 0.0 | - | - | - | | 1.6949 | 3500 | 0.0001 | - | - | - | | 1.6998 | 3510 | 0.0 | - | - | - | | 1.7046 | 3520 | 0.0002 | - | - | - | | 1.7094 | 3530 | 0.0 | - | - | - | | 1.7143 | 3540 | 0.0002 | - | - | - | | 1.7191 | 3550 | 0.0 | - | - | - | | 1.7240 | 3560 | 0.0 | - | - | - | | 1.7288 | 3570 | 0.0 | - | - | - | | 1.7337 | 3580 | 0.0 | - | - | - | | 1.7385 | 3590 | 0.0 | - | - | - | | 1.7433 | 3600 | 0.0 | - | - | - | | 1.7482 | 3610 | 0.0002 | - | - | - | | 1.7530 | 3620 | 0.0 | - | - | - | | 1.7579 | 3630 | 0.0002 | - | - | - | | 1.7627 | 3640 | 0.0 | - | - | - | | 1.7676 | 3650 | 0.0 | - | - | - | | 1.7724 | 3660 | 0.0001 | - | - | - | | 1.7772 | 3670 | 0.0004 | - | - | - | | 1.7821 | 3680 | 0.0 | - | - | - | | 1.7869 | 3690 | 0.0 | - | - | - | | 1.7918 | 3700 | 0.0 | - | - | - | | 1.7966 | 3710 | 0.0 | - | - | - | | 1.8015 | 3720 | 0.0 | - | - | - | | 1.8063 | 3730 | 0.0011 | - | - | - | | 1.8111 | 3740 | 0.0001 | - | - | - | | 1.8160 | 3750 | 0.0001 | - | - | - | | 1.8208 | 3760 | 0.0001 | - | - | - | | 1.8257 | 3770 | 0.0001 | - | - | - | | 1.8305 | 3780 | 0.0 | - | - | - | | 1.8354 | 3790 | 0.0006 | - | - | - | | 1.8402 | 3800 | 0.0 | - | - | - | | 1.8450 | 3810 | 0.0178 | - | - | - | | 1.8499 | 3820 | 0.0 | - | - | - | | 1.8547 | 3830 | 0.0001 | - | - | - | | 1.8596 | 3840 | 0.0003 | - | - | - | | 1.8644 | 3850 | 0.0 | - | - | - | | 1.8692 | 3860 | 0.0 | - | - | - | | 1.8741 | 3870 | 0.0001 | - | - | - | | 1.8789 | 3880 | 0.0 | - | - | - | | 1.8838 | 3890 | 0.0 | - | - | - | | 1.8886 | 3900 | 0.0001 | - | - | - | | 1.8935 | 3910 | 0.0 | - | - | - | | 1.8983 | 3920 | 0.0 | - | - | - | | 1.9031 | 3930 | 0.0 | - | - | - | | 1.9080 | 3940 | 0.0 | - | - | - | | 1.9128 | 3950 | 0.0001 | - | - | - | | 1.9177 | 3960 | 0.0002 | - | - | - | | 1.9225 | 3970 | 0.0002 | - | - | - | | 1.9274 | 3980 | 0.0 | - | - | - | | 1.9322 | 3990 | 0.0005 | - | - | - | | 1.9370 | 4000 | 0.0 | - | - | - | | 1.9419 | 4010 | 0.0 | - | - | - | | 1.9467 | 4020 | 0.0 | - | - | - | | 1.9516 | 4030 | 0.0001 | - | - | - | | 1.9564 | 4040 | 0.0002 | - | - | - | | 1.9613 | 4050 | 0.0 | - | - | - | | 1.9661 | 4060 | 0.0001 | - | - | - | | 1.9709 | 4070 | 0.0001 | - | - | - | | 1.9758 | 4080 | 0.0 | - | - | - | | 1.9806 | 4090 | 0.0 | - | - | - | | 1.9855 | 4100 | 0.0002 | - | - | - | | 1.9903 | 4110 | 0.0001 | - | - | - | | 1.9952 | 4120 | 0.0 | - | - | - | | **2.0** | **4130** | **0.0** | **0.0131** | **0.7537** | **0.7529** | * The bold row denotes the saved checkpoint. </details> ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.3.1 - Transformers: 4.41.2 - PyTorch: 2.1.2+cu121 - Accelerate: 0.29.3 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"base_model": "bkai-foundation-models/vietnamese-bi-encoder", "library_name": "sentence-transformers", "metrics": ["cosine_accuracy@1", "cosine_accuracy@3", "cosine_accuracy@5", "cosine_accuracy@10", "cosine_precision@1", "cosine_precision@3", "cosine_precision@5", "cosine_precision@10", "cosine_recall@1", "cosine_recall@3", "cosine_recall@5", "cosine_recall@10", "cosine_ndcg@10", "cosine_mrr@10", "cosine_map@100"], "pipeline_tag": "sentence-similarity", "tags": ["sentence-transformers", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:8259", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss"], "widget": [{"source_sentence": "theo quy_định tại điều 35 nghị_định số 201 / 2013 / nđ - cp thì thời_hạn giải_quyết thủ_tục hành_chính về cấp giấy_phép thăm_dò , khai_thác nước dưới đất như sau : 1 . tiếp_nhận và kiểm_tra hồ_sơ : trong thời_hạn mười ( 10 ) ngày làm_việc , kể từ ngày nhận hồ_sơ , cơ_quan tiếp_nhận hồ_sơ có trách_nhiệm xem_xét , kiểm_tra hồ_sơ . trường_hợp hồ_sơ không hợp_lệ , cơ_quan tiếp_nhận hồ_sơ thông_báo cho tổ_chức , cá_nhân đề_nghị cấp phép để bổ_sung , hoàn_thiện hồ_sơ theo quy_định . trường_hợp hồ_sơ sau khi đã bổ_sung mà vẫn không đáp_ứng yêu_cầu theo quy_định thì cơ_quan tiếp_nhận hồ_sơ trả lại hồ_sơ và thông_báo rõ lý_do cho tổ_chức , cá_nhân đề_nghị cấp phép . 2 . thẩm_định_đề_án , báo_cáo thăm_dò , khai_thác , sử_dụng tài_nguyên nước , xả nước_thải vào nguồn nước trong hồ_sơ đề_nghị cấp phép ( sau đây gọi chung là đề_án , báo_cáo ) : a ) trong thời_hạn ba_mươi ( 30 ) ngày làm_việc , kể từ ngày nhận đủ hồ_sơ hợp_lệ theo quy_định tại khoản 1 điều này , cơ_quan tiếp_nhận hồ_sơ có trách_nhiệm thẩm_định_đề_án , báo_cáo ; nếu cần_thiết thì kiểm_tra thực_tế hiện_trường , lập hội_đồng thẩm_định_đề_án , báo_cáo . trường_hợp đủ điều_kiện cấp phép , cơ_quan tiếp_nhận hồ_sơ trình cơ_quan có thẩm_quyền cấp giấy_phép ; trường_hợp không đủ điều_kiện để cấp phép thì trả lại hồ_sơ cho tổ_chức , cá_nhân đề_nghị cấp phép và thông_báo lý_do không cấp phép ; b ) trường_hợp phải bổ_sung , chỉnh_sửa để hoàn_thiện đề_án , báo_cáo thì cơ_quan tiếp_nhận hồ_sơ gửi văn_bản thông_báo cho tổ_chức , cá_nhân đề_nghị cấp phép nêu rõ những nội_dung cần bổ_sung , hoàn_thiện đề_án , báo_cáo . thời_gian bổ_sung , hoàn_thiện hoặc lập lại đề_án , báo_cáo không tính vào thời_gian thẩm_định_đề_án , báo_cáo . thời_gian thẩm_định sau khi đề_án , báo_cáo được bổ_sung hoàn_chỉnh là hai mươi ( 20 ) ngày làm_việc ; c ) trường_hợp phải lập lại đề_án , báo_cáo , cơ_quan tiếp_nhận hồ_sơ gửi văn_bản thông_báo cho tổ_chức , cá_nhân đề_nghị cấp phép nêu rõ những nội_dung đề_án , báo_cáo chưa đạt yêu_cầu , phải làm lại và trả lại hồ_sơ đề_nghị cấp phép . 3 . trả kết_quả giải_quyết hồ_sơ_cấp phéptrong thời_hạn năm ( 05 ) ngày làm_việc , kể từ ngày nhận được giấy_phép của cơ_quan có thẩm_quyền , cơ_quan tiếp_nhận hồ_sơ thông_báo cho tổ_chức , cá_nhân đề_nghị cấp phép để thực_hiện nghĩa_vụ tài_chính và nhận giấy_phép .", "sentences": ["ai có thẩm_quyền giải_quyết tố_cáo hành_vi vi_phạm_pháp_luật trong thực_hiện nhiệm_vụ , công_vụ của cán_bộ , công_chức , viên_chức ?", "thời_hạn giải_quyết thủ_tục hành_chính về cấp giấy_phép thăm_dò , giấy_phép khai_thác nước dưới đất ?", "tôi có_thể đăng_ký ngành , nghề kinh_doanh không có trong hệ_thống ngành kinh_tế việt_nam không ?"]}, {"source_sentence": "khoản 2 điều 2 thông_tư 30 quy_định , đoàn khám bệnh , chữa bệnh_nhân_đạo là một nhóm nhân_viên y_tế trong nước , nước_ngoài do cá_nhân , tổ_chức trong nước , nước_ngoài tổ_chức để khám bệnh , chữa bệnh_nhân_đạo cho nhân_dân .", "sentences": ["tàu_thủy lưu_trú du_lịch có tiêu_chí xếp_hạng bắt_buộc không ?", "tôi muốn xin cấp lại sổ thuyền_viên thì cần những hồ_sơ gì ?", "đoàn khám bệnh , chữa bệnh_nhân_đạo là gì ?"]}, {"source_sentence": "thành_phần hồ_sơ thực_hiện tthc sửa_đổi , bổ_sung / cấp lại giấy chứng_nhận lưu_hành tự_do ( cfs ) đối_với hàng_hóa xuất_khẩu thuộc phạm_vi quản_lý của bộ nông_nghiệp và phát_triển nông_thôn ( quy_định tại quyết_định số 1312 / qđ - bnn - qlcl ngày 22 / 4 / 2019 về việc công_bố thủ_tục hành_chính được thay_thế , tthc bị bãi_bỏ lĩnh_vực quản_lý chất_lượng nông_lâm_sản và thủy_sản thuộc phạm_vi chức_năng quản_lý của bộ nông_nghiệp và phát_triển nông_thôn ) : - văn_bản đề_nghị sửa_đổi , bổ_sung / cấp lại cfs của thương_nhân : 01 bản_chính . - các giấy_tờ liên_quan đến việc sửa_đổi , bổ_sung / cấp lại cfs.", "sentences": ["kính gửi cục quản_lý chất_lượng nông_lâm_sản và thuỷ_sản , công_ty tôi đã được quý cục cấp giấy chứng_nhận lưu_hành tự_do cfs , nay tôi muốn sửa_đổi một_số thông_tin trên giấy cfs , vậy hồ_sơ đề_nghị sửa_đổi cần những gì ?", "thời_gian để được cấp quyết_định chỉ_định tổ_chức đánh_giá sự phù_hợp lĩnh_vực sản_phẩm , hàng_hóa_vật_liệu xây_dựng đối_với trường_hợp thay_đổi , bổ_sung phạm_vi , lĩnh_vực được chỉ_định", "hồ_sơ đăng_ký dự_tuyển lao_động của người lao_động gồm những gì ?"]}, {"source_sentence": "hồ_sơ đề_nghị gia_hạn giấy_phép cung_cấp dịch_vụ trò_chơi điện_tử g1 trên mạng bao_gồm : - đơn đề_nghị gia_hạn giấy_phép bao_gồm : tên , địa_chỉ của doanh_nghiệp ; số , nơi cấp , ngày cấp giấy chứng_nhận đăng_ký doanh_nghiệp ; số , ngày cấp , ngày hiệu_lực của giấy_phép đã được cấp ; lý_do đề_nghị gia_hạn giấy_phép ; cam_kết của doanh_nghiệp về các nội_dung kê_khai trong đơn đề_nghị .", "sentences": ["thành_phần hồ_sơ", "nhà đầu_tư phải nộp bao_nhiêu bộ hồ_sơ đề_nghị thủ_tướng chính_phủ cho phép đầu_tư gián_tiếp ra nước_ngoài đối_với các trường_hợp đầu_tư khác quy_định tại điều 9 nghị_định 135 / 2015 / nđ - cp ?", "phần vốn của thành_viên chưa góp vốn trong thời_hạn 90 ngày , kể từ ngày được cấp giấy chứng_nhận đăng_ký doanh_nghiệp trong công_ty tnhh hai thành_viên trở lên được xử_lý như thế_nào ? trường_hợp có người nhận mua lại phần vốn chưa góp này thì công_ty có phải đăng_ký thay_đổi thành_viên với cơ_quan đăng_ký kinh_doanh không ? hồ_sơ , thủ_tục được quy_định như thế_nào ?"]}, {"source_sentence": "quản_lý nhập_khẩu hàng_hóa bị điều_tra , phục_vụ công_tác điều_tra , áp_dụng biện_pháp phòng_vệ thương_mại .", "sentences": ["mục_đích của thủ_tục khai_báo là gì ?", "đơn_vị chúng_tôi đã được cấp chứng_chỉ năng_lực hoạt_động xây_dựng nhưng hiện_nay chúng_tôi thay_đổi người đại_diện pháp_luật của đơn_vị . vậy chúng_tôi có phải làm thủ_tục nào để thay_đổi người đại_diện theo pháp_luật của chúng_tôi trên chứng_chỉ ?", "trường_hợp nào thì được cấp lại giấy xác_nhận đăng_ký công_cụ hỗ_trợ , thủ_tục cấp lại giấy xác_nhận đăng_ký công_cụ hỗ_trợ như thế_nào ?"]}], "model-index": [{"name": "SentenceTransformer based on bkai-foundation-models/vietnamese-bi-encoder", "results": [{"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 768", "type": "dim_768"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.6230936819172114, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.7799564270152506, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.8387799564270153, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.8790849673202614, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.6230936819172114, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.2599854756717502, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.16775599128540306, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.08790849673202615, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.6230936819172114, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.7799564270152506, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.8387799564270153, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.8790849673202614, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.7536515470978228, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.7130295328007745, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.7171777140680393, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 512", "type": "dim_512"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.6187363834422658, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.7821350762527233, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.8376906318082789, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.8823529411764706, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.6187363834422658, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.2607116920842411, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.1675381263616558, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.08823529411764706, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.6187363834422658, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.7821350762527233, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.8376906318082789, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.8823529411764706, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.7529227281870942, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.711127537434727, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.715064600823678, "name": "Cosine Map@100"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
41,024
aroot/eng-deu-sent_delfy
aroot
translation
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-07-31T12:15:33Z
2023-07-31T12:49:46+00:00
15
0
--- metrics: - bleu tags: - translation - generated_from_trainer model-index: - name: eng-deu-sent_delfy results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng-deu-sent_delfy This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6917 - Bleu: 19.9632 - Chrf: 46.2921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.11.0
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng-deu-sent_delfy This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6917 - Bleu: 19.9632 - Chrf: 46.2921 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1 - Datasets 2.12.0 - Tokenizers 0.11.0
{"metrics": ["bleu"], "tags": ["translation", "generated_from_trainer"], "model-index": [{"name": "eng-deu-sent_delfy", "results": []}]}
task
[ "TRANSLATION" ]
41,026
CCB/abstracts_to_tweet_model
CCB
text2text-generation
[ "transformers", "safetensors", "t5", "text2text-generation", "datadreamer", "datadreamer-0.28.0", "synthetic", "gpt-4", "base_model:google/t5-v1_1-base", "base_model:finetune:google/t5-v1_1-base", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2024-06-22T16:10:12Z
2024-06-22T16:12:34+00:00
23
0
--- base_model: google/t5-v1_1-base pipeline_tag: text2text-generation tags: - datadreamer - datadreamer-0.28.0 - synthetic - gpt-4 - text2text-generation widget: - text: In this paper, we present a novel method for Natural Language Processing (NLP) based on the introduction of deep learning techniques adapted to linguistics. We demonstrate that by integrating syntactic and semantic analysis in pre-processing stages, superior text understanding can be facilitated. Initial processes involve tokenization, POS-tagging, syntactic-semantic hinging for all corpus. To further the learning precision, we introduce a framework powered by a hybrid of Transformer and Recurrent Neural Networks architectures that manifest in increased efficiency both theoretically and empirically. This paper shares exhaustive results, detailing improvements in feature engineering, promising a reduction in human-size semantic labor. We additionally propose that integrating deep learning methods with traditional linguistics dramatically improves contextual understanding and performance on tasks such as language translation, sentiment analysis, and automated thesaurus generation. The innovations reported here make significant strides towards realizing viable, sophisticated machine-level NLP systems. Additionally, the research represents groundwork for further exploration and development promising higher degrees of culture-language contextuality and robustness integral in future NLP applications. example_title: Example 1 - text: This paper proposes a novel approach to improve performance in Natural Language Processing (NLP) tasks by harnessing the potential of deep learning algorithms using multilingual transformer models. Our work investigates the challenging problem of understanding and manipulating sentences to Toucan dialogue language in context-dependent situations. We present a comprehensive analysis of established NLP approaches, novel methods based on transformer models, and thorough experiments that demonstrate substantial advancements over the state-of-art performances. Our primary contribution lies in the intelligent integration of thematic role labeling with multilingual models to improve the comprehension of sentence structure; for instance, recognizing grammatical relations irrespective of a word’s syntactic position or morphological form. In addition, our method progresses automatic predicate argument structure analysis, giving significance and having potential applications in tasks such as information extraction, summarization, and machine translation. We provide task-specific models that reveal the comparative strength of our architecture set over a cross-lingual task. Systematic evaluations conducted on several linguistic databases have demonstrated robust effectiveness in extracting and reconstructing meaningful entities from unstructured language data. The empirical results show notable enhancements in NLP task competence and thus stimulate further research avenues for substantial developments in multimodal natural language understanding and endow opportunities for practical applications. example_title: Example 2 - text: In recent years, natural language processing (NLP) has seen impressive advancements because of the advent of deep learning technologies, like transformer-based models such as BERT., However, there remain significant challenges in obtaining human-level understanding, notably concerning effectively extracting semantics from context, deeper discourse analysis and anticipatory prediction during discourse development. In this research paper, we propose a novel integrative NLP model named Contextualized Anticipatory Semantic Humor Analysis (CASHA), which creates a sophisticated blend of semantic context understanding, discourse reference instantiation, and humorous setting anticipation. Inspired by human cognitive processing, CASHA layers a sentence-level semantic extractor and a transformer-based discourse modelling layer harboring informal semantics to understand intricate discourse embeddings accurately. It subsequently employs an adaptive humor anticipation layer based logically on previous discourse understanding. For rigorous model evaluation, we performed several experiments across diverse data sets encompassing assorted types of humor. Results demonstrate significantly improved performance in both humor detection and humor semantics understanding. They prompt profound thinking about NLP applications regarding human-level understanding of semantics from context. This work represents a potentially influential step in advancing the transformative urban initiatives prioritized by smart cities-examples abound about interfaces for ordinary citizens to interact more creatively with city experiences and for cities authorities to react empathetically to citizen-specific humor, metaphors, and cultural dialects. example_title: Example 3 --- # Model Card [Add more information here](https://huggingface.co/templates/model-card-example) ## Example Usage ```python3 from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained('CCB/abstracts_to_tweet_model', revision=None) # Load tokenizer model = AutoModelForSeq2SeqLM.from_pretrained('CCB/abstracts_to_tweet_model', revision=None) # Load model pipe = pipeline('text2text-generation', model=model, tokenizer=tokenizer, pad_token_id=tokenizer.pad_token_id) inputs = ['In this paper, we present a novel method for Natural Language Processing (NLP) based on the introduction of deep learning techniques adapted to linguistics. We demonstrate that by integrating syntactic and semantic analysis in pre-processing stages, superior text understanding can be facilitated. Initial processes involve tokenization, POS-tagging, syntactic-semantic hinging for all corpus. To further the learning precision, we introduce a framework powered by a hybrid of Transformer and Recurrent Neural Networks architectures that manifest in increased efficiency both theoretically and empirically. This paper shares exhaustive results, detailing improvements in feature engineering, promising a reduction in human-size semantic labor. We additionally propose that integrating deep learning methods with traditional linguistics dramatically improves contextual understanding and performance on tasks such as language translation, sentiment analysis, and automated thesaurus generation. The innovations reported here make significant strides towards realizing viable, sophisticated machine-level NLP systems. Additionally, the research represents groundwork for further exploration and development promising higher degrees of culture-language contextuality and robustness integral in future NLP applications.'] print(pipe(inputs, max_length=512, do_sample=False)) ``` --- This model was trained with a synthetic dataset with [DataDreamer 🤖💤](https://datadreamer.dev). The synthetic dataset card and model card can be found [here](datadreamer.json). The training arguments can be found [here](training_args.json).
null
Non_BioNLP
# Model Card [Add more information here](https://huggingface.co/templates/model-card-example) ## Example Usage ```python3 from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline tokenizer = AutoTokenizer.from_pretrained('CCB/abstracts_to_tweet_model', revision=None) # Load tokenizer model = AutoModelForSeq2SeqLM.from_pretrained('CCB/abstracts_to_tweet_model', revision=None) # Load model pipe = pipeline('text2text-generation', model=model, tokenizer=tokenizer, pad_token_id=tokenizer.pad_token_id) inputs = ['In this paper, we present a novel method for Natural Language Processing (NLP) based on the introduction of deep learning techniques adapted to linguistics. We demonstrate that by integrating syntactic and semantic analysis in pre-processing stages, superior text understanding can be facilitated. Initial processes involve tokenization, POS-tagging, syntactic-semantic hinging for all corpus. To further the learning precision, we introduce a framework powered by a hybrid of Transformer and Recurrent Neural Networks architectures that manifest in increased efficiency both theoretically and empirically. This paper shares exhaustive results, detailing improvements in feature engineering, promising a reduction in human-size semantic labor. We additionally propose that integrating deep learning methods with traditional linguistics dramatically improves contextual understanding and performance on tasks such as language translation, sentiment analysis, and automated thesaurus generation. The innovations reported here make significant strides towards realizing viable, sophisticated machine-level NLP systems. Additionally, the research represents groundwork for further exploration and development promising higher degrees of culture-language contextuality and robustness integral in future NLP applications.'] print(pipe(inputs, max_length=512, do_sample=False)) ``` --- This model was trained with a synthetic dataset with [DataDreamer 🤖💤](https://datadreamer.dev). The synthetic dataset card and model card can be found [here](datadreamer.json). The training arguments can be found [here](training_args.json).
{"base_model": "google/t5-v1_1-base", "pipeline_tag": "text2text-generation", "tags": ["datadreamer", "datadreamer-0.28.0", "synthetic", "gpt-4", "text2text-generation"], "widget": [{"text": "In this paper, we present a novel method for Natural Language Processing (NLP) based on the introduction of deep learning techniques adapted to linguistics. We demonstrate that by integrating syntactic and semantic analysis in pre-processing stages, superior text understanding can be facilitated. Initial processes involve tokenization, POS-tagging, syntactic-semantic hinging for all corpus. To further the learning precision, we introduce a framework powered by a hybrid of Transformer and Recurrent Neural Networks architectures that manifest in increased efficiency both theoretically and empirically. This paper shares exhaustive results, detailing improvements in feature engineering, promising a reduction in human-size semantic labor. We additionally propose that integrating deep learning methods with traditional linguistics dramatically improves contextual understanding and performance on tasks such as language translation, sentiment analysis, and automated thesaurus generation. The innovations reported here make significant strides towards realizing viable, sophisticated machine-level NLP systems. Additionally, the research represents groundwork for further exploration and development promising higher degrees of culture-language contextuality and robustness integral in future NLP applications.", "example_title": "Example 1"}, {"text": "This paper proposes a novel approach to improve performance in Natural Language Processing (NLP) tasks by harnessing the potential of deep learning algorithms using multilingual transformer models. Our work investigates the challenging problem of understanding and manipulating sentences to Toucan dialogue language in context-dependent situations. We present a comprehensive analysis of established NLP approaches, novel methods based on transformer models, and thorough experiments that demonstrate substantial advancements over the state-of-art performances. Our primary contribution lies in the intelligent integration of thematic role labeling with multilingual models to improve the comprehension of sentence structure; for instance, recognizing grammatical relations irrespective of a word’s syntactic position or morphological form. In addition, our method progresses automatic predicate argument structure analysis, giving significance and having potential applications in tasks such as information extraction, summarization, and machine translation. We provide task-specific models that reveal the comparative strength of our architecture set over a cross-lingual task. Systematic evaluations conducted on several linguistic databases have demonstrated robust effectiveness in extracting and reconstructing meaningful entities from unstructured language data. The empirical results show notable enhancements in NLP task competence and thus stimulate further research avenues for substantial developments in multimodal natural language understanding and endow opportunities for practical applications.", "example_title": "Example 2"}, {"text": "In recent years, natural language processing (NLP) has seen impressive advancements because of the advent of deep learning technologies, like transformer-based models such as BERT., However, there remain significant challenges in obtaining human-level understanding, notably concerning effectively extracting semantics from context, deeper discourse analysis and anticipatory prediction during discourse development. In this research paper, we propose a novel integrative NLP model named Contextualized Anticipatory Semantic Humor Analysis (CASHA), which creates a sophisticated blend of semantic context understanding, discourse reference instantiation, and humorous setting anticipation. Inspired by human cognitive processing, CASHA layers a sentence-level semantic extractor and a transformer-based discourse modelling layer harboring informal semantics to understand intricate discourse embeddings accurately. It subsequently employs an adaptive humor anticipation layer based logically on previous discourse understanding. For rigorous model evaluation, we performed several experiments across diverse data sets encompassing assorted types of humor. Results demonstrate significantly improved performance in both humor detection and humor semantics understanding. They prompt profound thinking about NLP applications regarding human-level understanding of semantics from context. This work represents a potentially influential step in advancing the transformative urban initiatives prioritized by smart cities-examples abound about interfaces for ordinary citizens to interact more creatively with city experiences and for cities authorities to react empathetically to citizen-specific humor, metaphors, and cultural dialects.", "example_title": "Example 3"}]}
task
[ "TRANSLATION", "SUMMARIZATION" ]
41,027
TransferGraph/manueltonneau_bert-twitter-en-is-hired-finetuned-lora-ag_news
TransferGraph
text-classification
[ "peft", "safetensors", "parquet", "text-classification", "dataset:ag_news", "base_model:worldbank/bert-twitter-en-is-hired", "base_model:adapter:worldbank/bert-twitter-en-is-hired", "model-index", "region:us" ]
2024-02-28T00:25:19Z
2024-02-28T00:25:20+00:00
1
0
--- base_model: manueltonneau/bert-twitter-en-is-hired datasets: - ag_news library_name: peft metrics: - accuracy tags: - parquet - text-classification model-index: - name: manueltonneau_bert-twitter-en-is-hired-finetuned-lora-ag_news results: - task: type: text-classification name: Text Classification dataset: name: ag_news type: ag_news config: default split: test args: default metrics: - type: accuracy value: 0.9278947368421052 name: accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # manueltonneau_bert-twitter-en-is-hired-finetuned-lora-ag_news This model is a fine-tuned version of [manueltonneau/bert-twitter-en-is-hired](https://huggingface.co/manueltonneau/bert-twitter-en-is-hired) on the ag_news dataset. It achieves the following results on the evaluation set: - accuracy: 0.9279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | accuracy | train_loss | epoch | |:--------:|:----------:|:-----:| | 0.2579 | None | 0 | | 0.915 | 0.3467 | 0 | | 0.9212 | 0.2345 | 1 | | 0.9272 | 0.2132 | 2 | | 0.9279 | 0.2009 | 3 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.16.1 - Tokenizers 0.15.2
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # manueltonneau_bert-twitter-en-is-hired-finetuned-lora-ag_news This model is a fine-tuned version of [manueltonneau/bert-twitter-en-is-hired](https://huggingface.co/manueltonneau/bert-twitter-en-is-hired) on the ag_news dataset. It achieves the following results on the evaluation set: - accuracy: 0.9279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 24 - eval_batch_size: 24 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | accuracy | train_loss | epoch | |:--------:|:----------:|:-----:| | 0.2579 | None | 0 | | 0.915 | 0.3467 | 0 | | 0.9212 | 0.2345 | 1 | | 0.9272 | 0.2132 | 2 | | 0.9279 | 0.2009 | 3 | ### Framework versions - PEFT 0.8.2 - Transformers 4.37.2 - Pytorch 2.2.0 - Datasets 2.16.1 - Tokenizers 0.15.2
{"base_model": "manueltonneau/bert-twitter-en-is-hired", "datasets": ["ag_news"], "library_name": "peft", "metrics": ["accuracy"], "tags": ["parquet", "text-classification"], "model-index": [{"name": "manueltonneau_bert-twitter-en-is-hired-finetuned-lora-ag_news", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "ag_news", "type": "ag_news", "config": "default", "split": "test", "args": "default"}, "metrics": [{"type": "accuracy", "value": 0.9278947368421052, "name": "accuracy"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
41,028
jeremyccollinsmpi/autotrain-inference_probability_3-900329401
jeremyccollinsmpi
text2text-generation
[ "transformers", "pytorch", "t5", "text2text-generation", "autotrain", "en", "dataset:jeremyccollinsmpi/autotrain-data-inference_probability_3", "co2_eq_emissions", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2022-05-23T16:01:44Z
2022-05-23T16:04:36+00:00
12
0
--- datasets: - jeremyccollinsmpi/autotrain-data-inference_probability_3 language: en tags: - a - u - t - o - r - i - n widget: - text: I love AutoTrain 🤗 co2_eq_emissions: 3.807314953201688 --- # Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 900329401 - CO2 Emissions (in grams): 3.807314953201688 ## Validation Metrics - Loss: 0.06255918741226196 - Rouge1: 94.0693 - Rouge2: 0.0 - RougeL: 94.0693 - RougeLsum: 94.1126 - Gen Len: 2.8528 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/jeremyccollinsmpi/autotrain-inference_probability_3-900329401 ```
null
Non_BioNLP
# Model Trained Using AutoTrain - Problem type: Summarization - Model ID: 900329401 - CO2 Emissions (in grams): 3.807314953201688 ## Validation Metrics - Loss: 0.06255918741226196 - Rouge1: 94.0693 - Rouge2: 0.0 - RougeL: 94.0693 - RougeLsum: 94.1126 - Gen Len: 2.8528 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_HUGGINGFACE_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/jeremyccollinsmpi/autotrain-inference_probability_3-900329401 ```
{"datasets": ["jeremyccollinsmpi/autotrain-data-inference_probability_3"], "language": "en", "tags": ["a", "u", "t", "o", "r", "i", "n"], "widget": [{"text": "I love AutoTrain 🤗"}], "co2_eq_emissions": 3.807314953201688}
task
[ "SUMMARIZATION" ]
41,029
vabatista/question-generation-t5-small-pt-br
vabatista
text2text-generation
[ "transformers", "pytorch", "t5", "text2text-generation", "pt", "dataset:squad", "license:afl-3.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2023-08-03T10:06:52Z
2023-08-05T00:09:55+00:00
13
0
--- datasets: - squad language: - pt license: afl-3.0 pipeline_tag: text2text-generation --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This model is intended to be used generating questions and answers from brazilian portuguese text passages, so you can finetune another BERT model into your generated triples (context-question-answer) for extractive question answering without supervision or labeled data. It was trained using [unicamp-dl/ptt5-small-t5-portuguese-vocab](https://huggingface.co/unicamp-dl/ptt5-small-t5-portuguese-vocab) base model and [Squad 1.1 portuguese version](https://huggingface.co/datasets/ArthurBaia/squad_v1_pt_br) dataset to generante question and answers from text passages. ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Vitor Alcantara Batista ([email protected]) - **Model type:** T5 small - **Language(s) (NLP):** Brazilian Portuguese - **License:** [Academic Free License v. 3.0](https://opensource.org/license/afl-3-0-php/) - **Finetuned from model :** unicamp-dl/ptt5-small-t5-portuguese-vocab ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** This model used code from this github repo [https://github.com/patil-suraj/question_generation/](https://github.com/patil-suraj/question_generation/) ## Usage <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> How to use it (after cloning the github repo above): ``` from pipelines import pipeline nlp = pipeline("question-generation", model='vabatista/question-generation-t5-small-pt-br', tokenizer='vabatista/question-generation-t5-small-pt-br') text = """ PUT YOUR TEXT PASSAGE HERE """ nlp(text) ``` Sample usage/results: ``` text = """A Volkswagen anunciou a chegada do ID.Buzz, a Kombi elétrica, ao Brasil. Em campanha publicitária, a marca alemã usou tecnologia de inteligência artificial para criar um comercial com a cantora Elis Regina, falecida em 1982, e a sua filha, a também cantora Maria Rita. Ambas aparecem cantando juntas a música 'Como Nossos Pais', composta por Belchior e eternizada por Elis. O vídeo, que já foi divulgado nas redes sociais da marca, foi exibido pela primeira vez em comemoração de 70 anos da Volkswagen no ginásio do Ibirapuera, em São Paulo. Diante de 5 mil pessoas, entre funcionários e convidados, a apresentação ainda contou com a presença de Maria Rita, que também cantou ao vivo a canção e se emocionou bastante - a cantora chegou a chorar abraçada com Ciro Possobom, CEO da VW do Brasil. A técnica utilizada, conhecida também como "deep fake", aplica IA para criar conteúdos realistas. No caso, foi produzida pela agência AlmapBBDO.""" nlp(text) [{'answer': 'Kombi elétrica', 'question': 'Qual é o nome do ID.Buzz?'}, {'answer': 'tecnologia de inteligência artificial', 'question': 'O que a Volkswagen usou para criar um comercial com Elis Regina?'}, {'answer': 'Como Nossos Pais', 'question': 'Qual é o nome da música que Elis Regina cantou?'}, {'answer': '70 anos', 'question': 'Qual foi o aniversário da Volkswagen em comemoração ao ID.Buzz?'}, {'answer': 'Ciro Possobom', 'question': 'Quem foi o CEO da VW do Brasil?'}, {'answer': 'deep fake', 'question': 'Qual é o outro nome para o ID.Buzz?'}, {'answer': 'AlmapBBDO', 'question': 'Qual agência produziu o ID.Buzz?'}] ``` You may also use this model directly using this inputs (you can test on the sandbox in this page): 1. extrair respostas: \<PHRASE HERE> 2. gerar pergunta: \<HIGHLIGHTED PHRASE HERE> where \<HIGHLIGHTED PHRASE> uses \<hl> token to highlight generated answer. Example: input: "extrair respostas: A Volkswagen anunciou a chegada do ID.Buzz, a Kombi elétrica, ao Brasil." output: ID.Buzz input: "gerar perguntas: A Volkswagen anunciou a chegada do \<hl> ID.Buzz \<hl>, a Kombi elétrica, ao Brasil." output: "Qual é o nome da Kombi elétrica da Volkswagen no Brasil?" ## Training Details 10 epochs, learning-rate 1e-4 ## Model Card Authors Vitor Alcantara Batista ## Model Card Contact [email protected]
null
Non_BioNLP
# Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> This model is intended to be used generating questions and answers from brazilian portuguese text passages, so you can finetune another BERT model into your generated triples (context-question-answer) for extractive question answering without supervision or labeled data. It was trained using [unicamp-dl/ptt5-small-t5-portuguese-vocab](https://huggingface.co/unicamp-dl/ptt5-small-t5-portuguese-vocab) base model and [Squad 1.1 portuguese version](https://huggingface.co/datasets/ArthurBaia/squad_v1_pt_br) dataset to generante question and answers from text passages. ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** Vitor Alcantara Batista ([email protected]) - **Model type:** T5 small - **Language(s) (NLP):** Brazilian Portuguese - **License:** [Academic Free License v. 3.0](https://opensource.org/license/afl-3-0-php/) - **Finetuned from model :** unicamp-dl/ptt5-small-t5-portuguese-vocab ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** This model used code from this github repo [https://github.com/patil-suraj/question_generation/](https://github.com/patil-suraj/question_generation/) ## Usage <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> How to use it (after cloning the github repo above): ``` from pipelines import pipeline nlp = pipeline("question-generation", model='vabatista/question-generation-t5-small-pt-br', tokenizer='vabatista/question-generation-t5-small-pt-br') text = """ PUT YOUR TEXT PASSAGE HERE """ nlp(text) ``` Sample usage/results: ``` text = """A Volkswagen anunciou a chegada do ID.Buzz, a Kombi elétrica, ao Brasil. Em campanha publicitária, a marca alemã usou tecnologia de inteligência artificial para criar um comercial com a cantora Elis Regina, falecida em 1982, e a sua filha, a também cantora Maria Rita. Ambas aparecem cantando juntas a música 'Como Nossos Pais', composta por Belchior e eternizada por Elis. O vídeo, que já foi divulgado nas redes sociais da marca, foi exibido pela primeira vez em comemoração de 70 anos da Volkswagen no ginásio do Ibirapuera, em São Paulo. Diante de 5 mil pessoas, entre funcionários e convidados, a apresentação ainda contou com a presença de Maria Rita, que também cantou ao vivo a canção e se emocionou bastante - a cantora chegou a chorar abraçada com Ciro Possobom, CEO da VW do Brasil. A técnica utilizada, conhecida também como "deep fake", aplica IA para criar conteúdos realistas. No caso, foi produzida pela agência AlmapBBDO.""" nlp(text) [{'answer': 'Kombi elétrica', 'question': 'Qual é o nome do ID.Buzz?'}, {'answer': 'tecnologia de inteligência artificial', 'question': 'O que a Volkswagen usou para criar um comercial com Elis Regina?'}, {'answer': 'Como Nossos Pais', 'question': 'Qual é o nome da música que Elis Regina cantou?'}, {'answer': '70 anos', 'question': 'Qual foi o aniversário da Volkswagen em comemoração ao ID.Buzz?'}, {'answer': 'Ciro Possobom', 'question': 'Quem foi o CEO da VW do Brasil?'}, {'answer': 'deep fake', 'question': 'Qual é o outro nome para o ID.Buzz?'}, {'answer': 'AlmapBBDO', 'question': 'Qual agência produziu o ID.Buzz?'}] ``` You may also use this model directly using this inputs (you can test on the sandbox in this page): 1. extrair respostas: \<PHRASE HERE> 2. gerar pergunta: \<HIGHLIGHTED PHRASE HERE> where \<HIGHLIGHTED PHRASE> uses \<hl> token to highlight generated answer. Example: input: "extrair respostas: A Volkswagen anunciou a chegada do ID.Buzz, a Kombi elétrica, ao Brasil." output: ID.Buzz input: "gerar perguntas: A Volkswagen anunciou a chegada do \<hl> ID.Buzz \<hl>, a Kombi elétrica, ao Brasil." output: "Qual é o nome da Kombi elétrica da Volkswagen no Brasil?" ## Training Details 10 epochs, learning-rate 1e-4 ## Model Card Authors Vitor Alcantara Batista ## Model Card Contact [email protected]
{"datasets": ["squad"], "language": ["pt"], "license": "afl-3.0", "pipeline_tag": "text2text-generation"}
task
[ "QUESTION_ANSWERING" ]
41,030
phospho-app/phospho-small-b72441a
phospho-app
feature-extraction
[ "transformers", "safetensors", "mpnet", "feature-extraction", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
2024-05-02T14:19:11Z
2024-05-02T14:19:27+00:00
14
0
--- language: en license: apache-2.0 --- # phospho-small This is a SetFit model that can be used for Text Classification on CPU. The model has been trained using an efficient few-shot learning technique. ## Usage ```python from setfit import SetFitModel model = SetFitModel.from_pretrained("phospho-small-b72441a") outputs = model.predict(["This is a sentence to classify", "Another sentence"]) # tensor([1, 0]) ``` ## References This work was possible thanks to the SetFit library and the work of: Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren (2022). Efficient Few-Shot Learning Without Prompts. ArXiv: [https://doi.org/10.48550/arxiv.2209.11055](https://doi.org/10.48550/arxiv.2209.11055)
null
Non_BioNLP
# phospho-small This is a SetFit model that can be used for Text Classification on CPU. The model has been trained using an efficient few-shot learning technique. ## Usage ```python from setfit import SetFitModel model = SetFitModel.from_pretrained("phospho-small-b72441a") outputs = model.predict(["This is a sentence to classify", "Another sentence"]) # tensor([1, 0]) ``` ## References This work was possible thanks to the SetFit library and the work of: Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren (2022). Efficient Few-Shot Learning Without Prompts. ArXiv: [https://doi.org/10.48550/arxiv.2209.11055](https://doi.org/10.48550/arxiv.2209.11055)
{"language": "en", "license": "apache-2.0"}
task
[ "TEXT_CLASSIFICATION" ]
41,031
federicopascual/finetuned-sentiment-analysis-model
federicopascual
text-classification
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05Z
2021-12-28T15:57:16+00:00
17
1
--- datasets: - imdb license: apache-2.0 metrics: - accuracy - precision - recall tags: - generated_from_trainer model-index: - name: finetuned-sentiment-analysis-model results: - task: type: text-classification name: Text Classification dataset: name: imdb type: imdb args: plain_text metrics: - type: accuracy value: 0.909 name: Accuracy - type: precision value: 0.8899803536345776 name: Precision - type: recall value: 0.9282786885245902 name: Recall --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-sentiment-analysis-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2868 - Accuracy: 0.909 - Precision: 0.8900 - Recall: 0.9283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # finetuned-sentiment-analysis-model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2868 - Accuracy: 0.909 - Precision: 0.8900 - Recall: 0.9283 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"datasets": ["imdb"], "license": "apache-2.0", "metrics": ["accuracy", "precision", "recall"], "tags": ["generated_from_trainer"], "model-index": [{"name": "finetuned-sentiment-analysis-model", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "imdb", "type": "imdb", "args": "plain_text"}, "metrics": [{"type": "accuracy", "value": 0.909, "name": "Accuracy"}, {"type": "precision", "value": 0.8899803536345776, "name": "Precision"}, {"type": "recall", "value": 0.9282786885245902, "name": "Recall"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
41,032
Tritkoman/EnglishtoOldEnglishV2
Tritkoman
translation
[ "transformers", "pytorch", "marian", "text2text-generation", "autotrain", "translation", "unk", "dataset:Tritkoman/autotrain-data-oldenglish2", "co2_eq_emissions", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-02-23T09:56:28Z
2023-02-23T09:59:25+00:00
17
0
--- datasets: - Tritkoman/autotrain-data-oldenglish2 language: - unk - unk tags: - autotrain - translation co2_eq_emissions: emissions: 5.451467518019884 --- # Model Trained Using AutoTrain - Problem type: Translation - Model ID: 3680498282 - CO2 Emissions (in grams): 5.4515 ## Validation Metrics - Loss: 3.265 - SacreBLEU: 6.433 - Gen len: 16.747
null
Non_BioNLP
# Model Trained Using AutoTrain - Problem type: Translation - Model ID: 3680498282 - CO2 Emissions (in grams): 5.4515 ## Validation Metrics - Loss: 3.265 - SacreBLEU: 6.433 - Gen len: 16.747
{"datasets": ["Tritkoman/autotrain-data-oldenglish2"], "language": ["unk", "unk"], "tags": ["autotrain", "translation"], "co2_eq_emissions": {"emissions": 5.451467518019884}}
task
[ "TRANSLATION" ]
41,033
Helsinki-NLP/opus-mt-es-st
Helsinki-NLP
translation
[ "transformers", "pytorch", "tf", "marian", "text2text-generation", "translation", "es", "st", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04Z
2023-08-16T11:33:33+00:00
45
0
--- license: apache-2.0 tags: - translation --- ### opus-mt-es-st * source languages: es * target languages: st * OPUS readme: [es-st](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-st/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-st/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-st/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-st/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.st | 35.5 | 0.556 |
null
Non_BioNLP
### opus-mt-es-st * source languages: es * target languages: st * OPUS readme: [es-st](https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/models/es-st/README.md) * dataset: opus * model: transformer-align * pre-processing: normalization + SentencePiece * download original weights: [opus-2020-01-16.zip](https://object.pouta.csc.fi/OPUS-MT-models/es-st/opus-2020-01-16.zip) * test set translations: [opus-2020-01-16.test.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-st/opus-2020-01-16.test.txt) * test set scores: [opus-2020-01-16.eval.txt](https://object.pouta.csc.fi/OPUS-MT-models/es-st/opus-2020-01-16.eval.txt) ## Benchmarks | testset | BLEU | chr-F | |-----------------------|-------|-------| | JW300.es.st | 35.5 | 0.556 |
{"license": "apache-2.0", "tags": ["translation"]}
task
[ "TRANSLATION" ]
41,034
Triangle104/granite-3.1-2b-instruct-Q5_K_M-GGUF
Triangle104
text-generation
[ "transformers", "gguf", "language", "granite-3.1", "llama-cpp", "gguf-my-repo", "text-generation", "base_model:ibm-granite/granite-3.1-2b-instruct", "base_model:quantized:ibm-granite/granite-3.1-2b-instruct", "license:apache-2.0", "region:us", "conversational" ]
2024-12-25T13:23:42Z
2024-12-25T13:24:34+00:00
2
0
--- base_model: ibm-granite/granite-3.1-2b-instruct library_name: transformers license: apache-2.0 pipeline_tag: text-generation tags: - language - granite-3.1 - llama-cpp - gguf-my-repo inference: false --- # Triangle104/granite-3.1-2b-instruct-Q5_K_M-GGUF This model was converted to GGUF format from [`ibm-granite/granite-3.1-2b-instruct`](https://huggingface.co/ibm-granite/granite-3.1-2b-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ibm-granite/granite-3.1-2b-instruct) for more details on the model. --- Model details: - Granite-3.1-2B-Instruct is a 2B parameter long-context instruct model finetuned from Granite-3.1-2B-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, model alignment using reinforcement learning, and model merging. Developers: Granite Team, IBM GitHub Repository: ibm-granite/granite-3.1-language-models Website: Granite Docs Paper: Granite 3.1 Language Models (coming soon) Release Date: December 18th, 2024 License: Apache 2.0 Supported Languages: English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. Users may finetune Granite 3.1 models for languages beyond these 12 languages. Intended Use: The model is designed to respond to general instructions and can be used to build AI assistants for multiple domains, including business applications. Capabilities Summarization Text classification Text extraction Question-answering Retrieval Augmented Generation (RAG) Code related tasks Function-calling tasks Multilingual dialog use cases Long-context tasks including long document/meeting summarization, long document QA, etc. Generation: This is a simple example of how to use Granite-3.1-2B-Instruct model. Install the following libraries: pip install torch torchvision torchaudio pip install accelerate pip install transformers Then, copy the snippet from the section that is relevant for your use case. import torch from transformers import AutoModelForCausalLM, AutoTokenizer device = "auto" model_path = "ibm-granite/granite-3.1-2b-instruct" tokenizer = AutoTokenizer.from_pretrained(model_path) # drop device_map if running on CPU model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device) model.eval() # change input text as desired chat = [ { "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." }, ] chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) # tokenize the text input_tokens = tokenizer(chat, return_tensors="pt").to(device) # generate output tokens output = model.generate(**input_tokens, max_new_tokens=100) # decode output tokens into text output = tokenizer.batch_decode(output) # print output print(output) Model Architecture: Granite-3.1-2B-Instruct is based on a decoder-only dense transformer architecture. Core components of this architecture are: GQA and RoPE, MLP with SwiGLU, RMSNorm, and shared input/output embeddings. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/granite-3.1-2b-instruct-Q5_K_M-GGUF --hf-file granite-3.1-2b-instruct-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/granite-3.1-2b-instruct-Q5_K_M-GGUF --hf-file granite-3.1-2b-instruct-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/granite-3.1-2b-instruct-Q5_K_M-GGUF --hf-file granite-3.1-2b-instruct-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/granite-3.1-2b-instruct-Q5_K_M-GGUF --hf-file granite-3.1-2b-instruct-q5_k_m.gguf -c 2048 ```
null
Non_BioNLP
# Triangle104/granite-3.1-2b-instruct-Q5_K_M-GGUF This model was converted to GGUF format from [`ibm-granite/granite-3.1-2b-instruct`](https://huggingface.co/ibm-granite/granite-3.1-2b-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/ibm-granite/granite-3.1-2b-instruct) for more details on the model. --- Model details: - Granite-3.1-2B-Instruct is a 2B parameter long-context instruct model finetuned from Granite-3.1-2B-Base using a combination of open source instruction datasets with permissive license and internally collected synthetic datasets tailored for solving long context problems. This model is developed using a diverse set of techniques with a structured chat format, including supervised finetuning, model alignment using reinforcement learning, and model merging. Developers: Granite Team, IBM GitHub Repository: ibm-granite/granite-3.1-language-models Website: Granite Docs Paper: Granite 3.1 Language Models (coming soon) Release Date: December 18th, 2024 License: Apache 2.0 Supported Languages: English, German, Spanish, French, Japanese, Portuguese, Arabic, Czech, Italian, Korean, Dutch, and Chinese. Users may finetune Granite 3.1 models for languages beyond these 12 languages. Intended Use: The model is designed to respond to general instructions and can be used to build AI assistants for multiple domains, including business applications. Capabilities Summarization Text classification Text extraction Question-answering Retrieval Augmented Generation (RAG) Code related tasks Function-calling tasks Multilingual dialog use cases Long-context tasks including long document/meeting summarization, long document QA, etc. Generation: This is a simple example of how to use Granite-3.1-2B-Instruct model. Install the following libraries: pip install torch torchvision torchaudio pip install accelerate pip install transformers Then, copy the snippet from the section that is relevant for your use case. import torch from transformers import AutoModelForCausalLM, AutoTokenizer device = "auto" model_path = "ibm-granite/granite-3.1-2b-instruct" tokenizer = AutoTokenizer.from_pretrained(model_path) # drop device_map if running on CPU model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device) model.eval() # change input text as desired chat = [ { "role": "user", "content": "Please list one IBM Research laboratory located in the United States. You should only output its name and location." }, ] chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) # tokenize the text input_tokens = tokenizer(chat, return_tensors="pt").to(device) # generate output tokens output = model.generate(**input_tokens, max_new_tokens=100) # decode output tokens into text output = tokenizer.batch_decode(output) # print output print(output) Model Architecture: Granite-3.1-2B-Instruct is based on a decoder-only dense transformer architecture. Core components of this architecture are: GQA and RoPE, MLP with SwiGLU, RMSNorm, and shared input/output embeddings. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/granite-3.1-2b-instruct-Q5_K_M-GGUF --hf-file granite-3.1-2b-instruct-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/granite-3.1-2b-instruct-Q5_K_M-GGUF --hf-file granite-3.1-2b-instruct-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/granite-3.1-2b-instruct-Q5_K_M-GGUF --hf-file granite-3.1-2b-instruct-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/granite-3.1-2b-instruct-Q5_K_M-GGUF --hf-file granite-3.1-2b-instruct-q5_k_m.gguf -c 2048 ```
{"base_model": "ibm-granite/granite-3.1-2b-instruct", "library_name": "transformers", "license": "apache-2.0", "pipeline_tag": "text-generation", "tags": ["language", "granite-3.1", "llama-cpp", "gguf-my-repo"], "inference": false}
task
[ "TEXT_CLASSIFICATION", "SUMMARIZATION" ]
41,036
urchade/gliner_small-v2.1
urchade
token-classification
[ "gliner", "pytorch", "token-classification", "en", "dataset:urchade/pile-mistral-v0.1", "arxiv:2311.08526", "license:apache-2.0", "region:us" ]
2024-04-09T20:34:42Z
2024-04-10T10:13:00+00:00
2,241
5
--- datasets: - urchade/pile-mistral-v0.1 language: - en library_name: gliner license: apache-2.0 pipeline_tag: token-classification --- # About GLiNER is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoder (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios. ## Links * Paper: https://arxiv.org/abs/2311.08526 * Repository: https://github.com/urchade/GLiNER ## Available models | Release | Model Name | # of Parameters | Language | License | | - | - | - | - | - | | v0 | [urchade/gliner_base](https://huggingface.co/urchade/gliner_base)<br>[urchade/gliner_multi](https://huggingface.co/urchade/gliner_multi) | 209M<br>209M | English<br>Multilingual | cc-by-nc-4.0 | | v1 | [urchade/gliner_small-v1](https://huggingface.co/urchade/gliner_small-v1)<br>[urchade/gliner_medium-v1](https://huggingface.co/urchade/gliner_medium-v1)<br>[urchade/gliner_large-v1](https://huggingface.co/urchade/gliner_large-v1) | 166M<br>209M<br>459M | English <br> English <br> English | cc-by-nc-4.0 | | v2 | [urchade/gliner_small-v2](https://huggingface.co/urchade/gliner_small-v2)<br>[urchade/gliner_medium-v2](https://huggingface.co/urchade/gliner_medium-v2)<br>[urchade/gliner_large-v2](https://huggingface.co/urchade/gliner_large-v2) | 166M<br>209M<br>459M | English <br> English <br> English | apache-2.0 | | v2.1 | [urchade/gliner_small-v2.1](https://huggingface.co/urchade/gliner_small-v2.1)<br>[urchade/gliner_medium-v2.1](https://huggingface.co/urchade/gliner_medium-v2.1)<br>[urchade/gliner_large-v2.1](https://huggingface.co/urchade/gliner_large-v2.1) <br>[urchade/gliner_multi-v2.1](https://huggingface.co/urchade/gliner_multi-v2.1) | 166M<br>209M<br>459M<br>209M | English <br> English <br> English <br> Multilingual | apache-2.0 | ## Installation To use this model, you must install the GLiNER Python library: ``` !pip install gliner ``` ## Usage Once you've downloaded the GLiNER library, you can import the GLiNER class. You can then load this model using `GLiNER.from_pretrained` and predict entities with `predict_entities`. ```python from gliner import GLiNER model = GLiNER.from_pretrained("urchade/gliner_small-v2.1") text = """ Cristiano Ronaldo dos Santos Aveiro (Portuguese pronunciation: [kɾiʃˈtjɐnu ʁɔˈnaldu]; born 5 February 1985) is a Portuguese professional footballer who plays as a forward for and captains both Saudi Pro League club Al Nassr and the Portugal national team. Widely regarded as one of the greatest players of all time, Ronaldo has won five Ballon d'Or awards,[note 3] a record three UEFA Men's Player of the Year Awards, and four European Golden Shoes, the most by a European player. He has won 33 trophies in his career, including seven league titles, five UEFA Champions Leagues, the UEFA European Championship and the UEFA Nations League. Ronaldo holds the records for most appearances (183), goals (140) and assists (42) in the Champions League, goals in the European Championship (14), international goals (128) and international appearances (205). He is one of the few players to have made over 1,200 professional career appearances, the most by an outfield player, and has scored over 850 official senior career goals for club and country, making him the top goalscorer of all time. """ labels = ["person", "award", "date", "competitions", "teams"] entities = model.predict_entities(text, labels) for entity in entities: print(entity["text"], "=>", entity["label"]) ``` ``` Cristiano Ronaldo dos Santos Aveiro => person 5 February 1985 => date Al Nassr => teams Portugal national team => teams Ballon d'Or => award UEFA Men's Player of the Year Awards => award European Golden Shoes => award UEFA Champions Leagues => competitions UEFA European Championship => competitions UEFA Nations League => competitions Champions League => competitions European Championship => competitions ``` ## Named Entity Recognition benchmark result ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317233cc92fd6fee317e030/Y5f7tK8lonGqeeO6L6bVI.png) ## Model Authors The model authors are: * [Urchade Zaratiana](https://huggingface.co/urchade) * Nadi Tomeh * Pierre Holat * Thierry Charnois ## Citation ```bibtex @misc{zaratiana2023gliner, title={GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer}, author={Urchade Zaratiana and Nadi Tomeh and Pierre Holat and Thierry Charnois}, year={2023}, eprint={2311.08526}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
null
Non_BioNLP
# About GLiNER is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoder (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios. ## Links * Paper: https://arxiv.org/abs/2311.08526 * Repository: https://github.com/urchade/GLiNER ## Available models | Release | Model Name | # of Parameters | Language | License | | - | - | - | - | - | | v0 | [urchade/gliner_base](https://huggingface.co/urchade/gliner_base)<br>[urchade/gliner_multi](https://huggingface.co/urchade/gliner_multi) | 209M<br>209M | English<br>Multilingual | cc-by-nc-4.0 | | v1 | [urchade/gliner_small-v1](https://huggingface.co/urchade/gliner_small-v1)<br>[urchade/gliner_medium-v1](https://huggingface.co/urchade/gliner_medium-v1)<br>[urchade/gliner_large-v1](https://huggingface.co/urchade/gliner_large-v1) | 166M<br>209M<br>459M | English <br> English <br> English | cc-by-nc-4.0 | | v2 | [urchade/gliner_small-v2](https://huggingface.co/urchade/gliner_small-v2)<br>[urchade/gliner_medium-v2](https://huggingface.co/urchade/gliner_medium-v2)<br>[urchade/gliner_large-v2](https://huggingface.co/urchade/gliner_large-v2) | 166M<br>209M<br>459M | English <br> English <br> English | apache-2.0 | | v2.1 | [urchade/gliner_small-v2.1](https://huggingface.co/urchade/gliner_small-v2.1)<br>[urchade/gliner_medium-v2.1](https://huggingface.co/urchade/gliner_medium-v2.1)<br>[urchade/gliner_large-v2.1](https://huggingface.co/urchade/gliner_large-v2.1) <br>[urchade/gliner_multi-v2.1](https://huggingface.co/urchade/gliner_multi-v2.1) | 166M<br>209M<br>459M<br>209M | English <br> English <br> English <br> Multilingual | apache-2.0 | ## Installation To use this model, you must install the GLiNER Python library: ``` !pip install gliner ``` ## Usage Once you've downloaded the GLiNER library, you can import the GLiNER class. You can then load this model using `GLiNER.from_pretrained` and predict entities with `predict_entities`. ```python from gliner import GLiNER model = GLiNER.from_pretrained("urchade/gliner_small-v2.1") text = """ Cristiano Ronaldo dos Santos Aveiro (Portuguese pronunciation: [kɾiʃˈtjɐnu ʁɔˈnaldu]; born 5 February 1985) is a Portuguese professional footballer who plays as a forward for and captains both Saudi Pro League club Al Nassr and the Portugal national team. Widely regarded as one of the greatest players of all time, Ronaldo has won five Ballon d'Or awards,[note 3] a record three UEFA Men's Player of the Year Awards, and four European Golden Shoes, the most by a European player. He has won 33 trophies in his career, including seven league titles, five UEFA Champions Leagues, the UEFA European Championship and the UEFA Nations League. Ronaldo holds the records for most appearances (183), goals (140) and assists (42) in the Champions League, goals in the European Championship (14), international goals (128) and international appearances (205). He is one of the few players to have made over 1,200 professional career appearances, the most by an outfield player, and has scored over 850 official senior career goals for club and country, making him the top goalscorer of all time. """ labels = ["person", "award", "date", "competitions", "teams"] entities = model.predict_entities(text, labels) for entity in entities: print(entity["text"], "=>", entity["label"]) ``` ``` Cristiano Ronaldo dos Santos Aveiro => person 5 February 1985 => date Al Nassr => teams Portugal national team => teams Ballon d'Or => award UEFA Men's Player of the Year Awards => award European Golden Shoes => award UEFA Champions Leagues => competitions UEFA European Championship => competitions UEFA Nations League => competitions Champions League => competitions European Championship => competitions ``` ## Named Entity Recognition benchmark result ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317233cc92fd6fee317e030/Y5f7tK8lonGqeeO6L6bVI.png) ## Model Authors The model authors are: * [Urchade Zaratiana](https://huggingface.co/urchade) * Nadi Tomeh * Pierre Holat * Thierry Charnois ## Citation ```bibtex @misc{zaratiana2023gliner, title={GLiNER: Generalist Model for Named Entity Recognition using Bidirectional Transformer}, author={Urchade Zaratiana and Nadi Tomeh and Pierre Holat and Thierry Charnois}, year={2023}, eprint={2311.08526}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
{"datasets": ["urchade/pile-mistral-v0.1"], "language": ["en"], "library_name": "gliner", "license": "apache-2.0", "pipeline_tag": "token-classification"}
task
[ "NAMED_ENTITY_RECOGNITION" ]
41,037
gchhablani/bert-large-cased-finetuned-rte
gchhablani
text-classification
[ "transformers", "pytorch", "tensorboard", "bert", "text-classification", "generated_from_trainer", "en", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05Z
2021-10-09T14:14:22+00:00
51
0
--- datasets: - glue language: - en license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: bert-large-cased-finetuned-rte results: - task: type: text-classification name: Text Classification dataset: name: GLUE RTE type: glue args: rte metrics: - type: accuracy value: 0.6642599277978339 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-finetuned-rte This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 1.5187 - Accuracy: 0.6643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6969 | 1.0 | 623 | 0.7039 | 0.5343 | | 0.5903 | 2.0 | 1246 | 0.6461 | 0.7184 | | 0.4557 | 3.0 | 1869 | 1.5187 | 0.6643 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-large-cased-finetuned-rte This model is a fine-tuned version of [bert-large-cased](https://huggingface.co/bert-large-cased) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 1.5187 - Accuracy: 0.6643 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6969 | 1.0 | 623 | 0.7039 | 0.5343 | | 0.5903 | 2.0 | 1246 | 0.6461 | 0.7184 | | 0.4557 | 3.0 | 1869 | 1.5187 | 0.6643 | ### Framework versions - Transformers 4.11.0.dev0 - Pytorch 1.9.0 - Datasets 1.12.1 - Tokenizers 0.10.3
{"datasets": ["glue"], "language": ["en"], "license": "apache-2.0", "metrics": ["accuracy"], "tags": ["generated_from_trainer"], "model-index": [{"name": "bert-large-cased-finetuned-rte", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "GLUE RTE", "type": "glue", "args": "rte"}, "metrics": [{"type": "accuracy", "value": 0.6642599277978339, "name": "Accuracy"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
41,038
Xenova/opus-mt-jap-en
Xenova
translation
[ "transformers.js", "onnx", "marian", "text2text-generation", "translation", "base_model:Helsinki-NLP/opus-mt-jap-en", "base_model:quantized:Helsinki-NLP/opus-mt-jap-en", "region:us" ]
2023-09-05T22:59:36Z
2024-10-08T13:41:55+00:00
76
1
--- base_model: Helsinki-NLP/opus-mt-jap-en library_name: transformers.js pipeline_tag: translation --- https://huggingface.co/Helsinki-NLP/opus-mt-jap-en with ONNX weights to be compatible with Transformers.js. Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).
null
Non_BioNLP
ERROR: type should be string, got "\nhttps://huggingface.co/Helsinki-NLP/opus-mt-jap-en with ONNX weights to be compatible with Transformers.js.\n\nNote: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`)."
{"base_model": "Helsinki-NLP/opus-mt-jap-en", "library_name": "transformers.js", "pipeline_tag": "translation"}
task
[ "TRANSLATION" ]
41,039
vgarg/my-fw6-identification-model-v1
vgarg
text-classification
[ "sentence-transformers", "pytorch", "mpnet", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
2023-08-28T08:14:07Z
2023-08-29T13:41:29+00:00
10
0
--- license: apache-2.0 pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification --- # vgarg/my-fw6-identification-model-v1 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("vgarg/my-fw6-identification-model-v1") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
null
Non_BioNLP
# vgarg/my-fw6-identification-model-v1 This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("vgarg/my-fw6-identification-model-v1") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
{"license": "apache-2.0", "pipeline_tag": "text-classification", "tags": ["setfit", "sentence-transformers", "text-classification"]}
task
[ "TEXT_CLASSIFICATION" ]
41,040
knowledgator/gliclass-modern-base-v2.0-init
knowledgator
zero-shot-classification
[ "onnx", "safetensors", "GLiClass", "text classification", "zero-shot", "small language models", "RAG", "sentiment analysis", "zero-shot-classification", "en", "fr", "ge", "dataset:MoritzLaurer/synthetic_zeroshot_mixtral_v0.1", "dataset:knowledgator/gliclass-v1.0", "dataset:fancyzhx/amazon_polarity", "dataset:cnmoro/QuestionClassification", "dataset:Arsive/toxicity_classification_jigsaw", "dataset:shishir-dwi/News-Article-Categorization_IAB", "dataset:SetFit/qnli", "dataset:nyu-mll/multi_nli", "dataset:SetFit/student-question-categories", "dataset:SetFit/tweet_sentiment_extraction", "dataset:SetFit/hate_speech18", "dataset:saattrupdan/doc-nli", "base_model:answerdotai/ModernBERT-base", "base_model:quantized:answerdotai/ModernBERT-base", "license:apache-2.0", "region:us" ]
2025-02-13T12:45:44Z
2025-03-30T16:27:58+00:00
3,705
21
--- base_model: - answerdotai/ModernBERT-base datasets: - MoritzLaurer/synthetic_zeroshot_mixtral_v0.1 - knowledgator/gliclass-v1.0 - fancyzhx/amazon_polarity - cnmoro/QuestionClassification - Arsive/toxicity_classification_jigsaw - shishir-dwi/News-Article-Categorization_IAB - SetFit/qnli - nyu-mll/multi_nli - SetFit/student-question-categories - SetFit/tweet_sentiment_extraction - SetFit/hate_speech18 - saattrupdan/doc-nli language: - en - fr - ge license: apache-2.0 metrics: - f1 pipeline_tag: zero-shot-classification tags: - text classification - zero-shot - small language models - RAG - sentiment analysis --- # ⭐ GLiClass: Generalist and Lightweight Model for Sequence Classification This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path. It can be used for `topic classification`, `sentiment analysis` and as a reranker in `RAG` pipelines. The model was trained on synthetic and licensed data that allow commercial use and can be used in commercial applications. This version of the model uses a layer-wise selection of features that enables a better understanding of different levels of language. The backbone model is [ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base), which effectively processes long sequences. ### How to use: First of all, you need to install GLiClass library: ```bash pip install gliclass pip install -U transformers>=4.48.0 ``` Than you need to initialize a model and a pipeline: ```python from gliclass import GLiClassModel, ZeroShotClassificationPipeline from transformers import AutoTokenizer model = GLiClassModel.from_pretrained("knowledgator/gliclass-modern-base-v2.0-init") tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-modern-base-v2.0-init", add_prefix_space=True) pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') text = "One day I will see the world!" labels = ["travel", "dreams", "sport", "science", "politics"] results = pipeline(text, labels, threshold=0.5)[0] #because we have one text for result in results: print(result["label"], "=>", result["score"]) ``` If you want to use it for NLI type of tasks, we recommend representing your premise as a text and hypothesis as a label, you can put several hypotheses, but the model works best with a single input hypothesis. ```python # Initialize model and multi-label pipeline text = "The cat slept on the windowsill all afternoon" labels = ["The cat was awake and playing outside."] results = pipeline(text, labels, threshold=0.0)[0] print(results) ``` ### Benchmarks: Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting. | Model | IMDB | AG_NEWS | Emotions | |-----------------------------|------|---------|----------| | [gliclass-modern-large-v2.0-init (399 M)](knowledgator/gliclass-modern-large-v2.0-init) | 0.9137 | 0.7357 | 0.4140 | | [gliclass-modern-base-v2.0-init (151 M)](knowledgator/gliclass-modern-base-v2.0-init) | 0.8264 | 0.6637 | 0.2985 | | [gliclass-large-v1.0 (438 M)](https://huggingface.co/knowledgator/gliclass-large-v1.0) | 0.9404 | 0.7516 | 0.4874 | | [gliclass-base-v1.0 (186 M)](https://huggingface.co/knowledgator/gliclass-base-v1.0) | 0.8650 | 0.6837 | 0.4749 | | [gliclass-small-v1.0 (144 M)](https://huggingface.co/knowledgator/gliclass-small-v1.0) | 0.8650 | 0.6805 | 0.4664 | | [Bart-large-mnli (407 M)](https://huggingface.co/facebook/bart-large-mnli) | 0.89 | 0.6887 | 0.3765 | | [Deberta-base-v3 (184 M)](https://huggingface.co/cross-encoder/nli-deberta-v3-base) | 0.85 | 0.6455 | 0.5095 | | [Comprehendo (184M)](https://huggingface.co/knowledgator/comprehend_it-base) | 0.90 | 0.7982 | 0.5660 | | SetFit [BAAI/bge-small-en-v1.5 (33.4M)](https://huggingface.co/BAAI/bge-small-en-v1.5) | 0.86 | 0.5636 | 0.5754 | Below you can find a comparison with other GLiClass models: | Dataset | gliclass-base-v1.0-init | gliclass-large-v1.0-init | gliclass-modern-base-v2.0-init | gliclass-modern-large-v2.0-init | |----------------------|-----------------------|-----------------------|---------------------|---------------------| | CR | 0.8672 | 0.8024 | 0.9041 | 0.8980 | | sst2 | 0.8342 | 0.8734 | 0.9011 | 0.9434 | | sst5 | 0.2048 | 0.1638 | 0.1972 | 0.1123 | | 20_news_groups | 0.2317 | 0.4151 | 0.2448 | 0.2792 | | spam | 0.5963 | 0.5407 | 0.5074 | 0.6364 | | financial_phrasebank | 0.3594 | 0.3705 | 0.2537 | 0.2562 | | imdb | 0.8772 | 0.8836 | 0.8255 | 0.9137 | | ag_news | 0.5614 | 0.7069 | 0.6050 | 0.6933 | | emotion | 0.2865 | 0.3840 | 0.2474 | 0.3746 | | cap_sotu | 0.3966 | 0.4353 | 0.2929 | 0.2919 | | rotten_tomatoes | 0.6626 | 0.7933 | 0.6630 | 0.5928 | | **AVERAGE:** | 0.5344 | 0.5790 | 0.5129 | 0.5447 | Here you can see how the performance of the model grows providing more examples: | Model | Num Examples | sst5 | ag_news | emotion | **AVERAGE:** | |------------------------------------|------------------|--------|---------|--------------|----------| | gliclass-modern-large-v2.0-init | 0 | 0.1123 | 0.6933 | 0.3746 | 0.3934 | | gliclass-modern-large-v2.0-init | 8 | 0.5098 | 0.8339 | 0.5010 | 0.6149 | | gliclass-modern-large-v2.0-init | Weak Supervision | 0.0951 | 0.6478 | 0.4520 | 0.3983 | | gliclass-modern-base-v2.0-init | 0 | 0.1972 | 0.6050 | 0.2474 | 0.3499 | | gliclass-modern-base-v2.0-init | 8 | 0.3604 | 0.7481 | 0.4420 | 0.5168 | | gliclass-modern-base-v2.0-init | Weak Supervision | 0.1599 | 0.5713 | 0.3216 | 0.3509 | | gliclass-large-v1.0-init | 0 | 0.1639 | 0.7069 | 0.3840 | 0.4183 | | gliclass-large-v1.0-init | 8 | 0.4226 | 0.8415 | 0.4886 | 0.5842 | | gliclass-large-v1.0-init | Weak Supervision | 0.1689 | 0.7051 | 0.4586 | 0.4442 | | gliclass-base-v1.0-init | 0 | 0.2048 | 0.5614 | 0.2865 | 0.3509 | | gliclass-base-v1.0-init | 8 | 0.2007 | 0.8359 | 0.4856 | 0.5074 | | gliclass-base-v1.0-init | Weak Supervision | 0.0681 | 0.6627 | 0.3066 | 0.3458 |
null
Non_BioNLP
# ⭐ [GLiClass](https://github.com/Knowledgator/GLiClass): Generalist and Lightweight Model for Sequence Classification This is an efficient zero-shot classifier inspired by [GLiNER](https://github.com/urchade/GLiNER/tree/main) work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path. It can be used for `topic classification`, `sentiment analysis` and as a reranker in `RAG` pipelines. The model was trained on synthetic and licensed data that allow commercial use and can be used in commercial applications. This version of the model uses a layer-wise selection of features that enables a better understanding of different levels of language. The backbone model is [ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base), which effectively processes long sequences. ### How to use: First of all, you need to install GLiClass library: ```bash pip install gliclass pip install -U transformers>=4.48.0 ``` Than you need to initialize a model and a pipeline: ```python from gliclass import GLiClassModel, ZeroShotClassificationPipeline from transformers import AutoTokenizer model = GLiClassModel.from_pretrained("knowledgator/gliclass-modern-base-v2.0-init") tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-modern-base-v2.0-init", add_prefix_space=True) pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0') text = "One day I will see the world!" labels = ["travel", "dreams", "sport", "science", "politics"] results = pipeline(text, labels, threshold=0.5)[0] #because we have one text for result in results: print(result["label"], "=>", result["score"]) ``` If you want to use it for NLI type of tasks, we recommend representing your premise as a text and hypothesis as a label, you can put several hypotheses, but the model works best with a single input hypothesis. ```python # Initialize model and multi-label pipeline text = "The cat slept on the windowsill all afternoon" labels = ["The cat was awake and playing outside."] results = pipeline(text, labels, threshold=0.0)[0] print(results) ``` ### Benchmarks: Below, you can see the F1 score on several text classification datasets. All tested models were not fine-tuned on those datasets and were tested in a zero-shot setting. | Model | IMDB | AG_NEWS | Emotions | |-----------------------------|------|---------|----------| | [gliclass-modern-large-v2.0-init (399 M)](knowledgator/gliclass-modern-large-v2.0-init) | 0.9137 | 0.7357 | 0.4140 | | [gliclass-modern-base-v2.0-init (151 M)](knowledgator/gliclass-modern-base-v2.0-init) | 0.8264 | 0.6637 | 0.2985 | | [gliclass-large-v1.0 (438 M)](https://huggingface.co/knowledgator/gliclass-large-v1.0) | 0.9404 | 0.7516 | 0.4874 | | [gliclass-base-v1.0 (186 M)](https://huggingface.co/knowledgator/gliclass-base-v1.0) | 0.8650 | 0.6837 | 0.4749 | | [gliclass-small-v1.0 (144 M)](https://huggingface.co/knowledgator/gliclass-small-v1.0) | 0.8650 | 0.6805 | 0.4664 | | [Bart-large-mnli (407 M)](https://huggingface.co/facebook/bart-large-mnli) | 0.89 | 0.6887 | 0.3765 | | [Deberta-base-v3 (184 M)](https://huggingface.co/cross-encoder/nli-deberta-v3-base) | 0.85 | 0.6455 | 0.5095 | | [Comprehendo (184M)](https://huggingface.co/knowledgator/comprehend_it-base) | 0.90 | 0.7982 | 0.5660 | | SetFit [BAAI/bge-small-en-v1.5 (33.4M)](https://huggingface.co/BAAI/bge-small-en-v1.5) | 0.86 | 0.5636 | 0.5754 | Below you can find a comparison with other GLiClass models: | Dataset | gliclass-base-v1.0-init | gliclass-large-v1.0-init | gliclass-modern-base-v2.0-init | gliclass-modern-large-v2.0-init | |----------------------|-----------------------|-----------------------|---------------------|---------------------| | CR | 0.8672 | 0.8024 | 0.9041 | 0.8980 | | sst2 | 0.8342 | 0.8734 | 0.9011 | 0.9434 | | sst5 | 0.2048 | 0.1638 | 0.1972 | 0.1123 | | 20_news_groups | 0.2317 | 0.4151 | 0.2448 | 0.2792 | | spam | 0.5963 | 0.5407 | 0.5074 | 0.6364 | | financial_phrasebank | 0.3594 | 0.3705 | 0.2537 | 0.2562 | | imdb | 0.8772 | 0.8836 | 0.8255 | 0.9137 | | ag_news | 0.5614 | 0.7069 | 0.6050 | 0.6933 | | emotion | 0.2865 | 0.3840 | 0.2474 | 0.3746 | | cap_sotu | 0.3966 | 0.4353 | 0.2929 | 0.2919 | | rotten_tomatoes | 0.6626 | 0.7933 | 0.6630 | 0.5928 | | **AVERAGE:** | 0.5344 | 0.5790 | 0.5129 | 0.5447 | Here you can see how the performance of the model grows providing more examples: | Model | Num Examples | sst5 | ag_news | emotion | **AVERAGE:** | |------------------------------------|------------------|--------|---------|--------------|----------| | gliclass-modern-large-v2.0-init | 0 | 0.1123 | 0.6933 | 0.3746 | 0.3934 | | gliclass-modern-large-v2.0-init | 8 | 0.5098 | 0.8339 | 0.5010 | 0.6149 | | gliclass-modern-large-v2.0-init | Weak Supervision | 0.0951 | 0.6478 | 0.4520 | 0.3983 | | gliclass-modern-base-v2.0-init | 0 | 0.1972 | 0.6050 | 0.2474 | 0.3499 | | gliclass-modern-base-v2.0-init | 8 | 0.3604 | 0.7481 | 0.4420 | 0.5168 | | gliclass-modern-base-v2.0-init | Weak Supervision | 0.1599 | 0.5713 | 0.3216 | 0.3509 | | gliclass-large-v1.0-init | 0 | 0.1639 | 0.7069 | 0.3840 | 0.4183 | | gliclass-large-v1.0-init | 8 | 0.4226 | 0.8415 | 0.4886 | 0.5842 | | gliclass-large-v1.0-init | Weak Supervision | 0.1689 | 0.7051 | 0.4586 | 0.4442 | | gliclass-base-v1.0-init | 0 | 0.2048 | 0.5614 | 0.2865 | 0.3509 | | gliclass-base-v1.0-init | 8 | 0.2007 | 0.8359 | 0.4856 | 0.5074 | | gliclass-base-v1.0-init | Weak Supervision | 0.0681 | 0.6627 | 0.3066 | 0.3458 |
{"base_model": ["answerdotai/ModernBERT-base"], "datasets": ["MoritzLaurer/synthetic_zeroshot_mixtral_v0.1", "knowledgator/gliclass-v1.0", "fancyzhx/amazon_polarity", "cnmoro/QuestionClassification", "Arsive/toxicity_classification_jigsaw", "shishir-dwi/News-Article-Categorization_IAB", "SetFit/qnli", "nyu-mll/multi_nli", "SetFit/student-question-categories", "SetFit/tweet_sentiment_extraction", "SetFit/hate_speech18", "saattrupdan/doc-nli"], "language": ["en", "fr", "ge"], "license": "apache-2.0", "metrics": ["f1"], "pipeline_tag": "zero-shot-classification", "tags": ["text classification", "zero-shot", "small language models", "RAG", "sentiment analysis"]}
task
[ "TEXT_CLASSIFICATION" ]
41,041
nakcnx/setfit-paraphrase-multilingual-mpnet-bad_topic
nakcnx
text-classification
[ "sentence-transformers", "pytorch", "xlm-roberta", "setfit", "text-classification", "arxiv:2209.11055", "license:apache-2.0", "region:us" ]
2023-05-11T08:56:47Z
2023-05-11T09:02:22+00:00
11
0
--- license: apache-2.0 pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification --- # nakcnx/setfit-paraphrase-multilingual-mpnet-bad_topic This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("nakcnx/setfit-paraphrase-multilingual-mpnet-bad_topic") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
null
Non_BioNLP
# nakcnx/setfit-paraphrase-multilingual-mpnet-bad_topic This is a [SetFit model](https://github.com/huggingface/setfit) that can be used for text classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Usage To use this model for inference, first install the SetFit library: ```bash python -m pip install setfit ``` You can then run inference as follows: ```python from setfit import SetFitModel # Download from Hub and run inference model = SetFitModel.from_pretrained("nakcnx/setfit-paraphrase-multilingual-mpnet-bad_topic") # Run inference preds = model(["i loved the spiderman movie!", "pineapple on pizza is the worst 🤮"]) ``` ## BibTeX entry and citation info ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```
{"license": "apache-2.0", "pipeline_tag": "text-classification", "tags": ["setfit", "sentence-transformers", "text-classification"]}
task
[ "TEXT_CLASSIFICATION" ]
41,042
KarmaCST/nllb-200-distilled-600M-dz-to-en
KarmaCST
translation
[ "transformers", "pytorch", "tensorboard", "m2m_100", "text2text-generation", "translation", "generated_from_trainer", "license:cc-by-nc-4.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-04-13T16:05:25Z
2024-03-08T04:57:24+00:00
28
0
--- license: cc-by-nc-4.0 metrics: - bleu tags: - translation - generated_from_trainer model-index: - name: nllb-200-distilled-600M-dz-to-en results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nllb-200-distilled-600M-dz-to-en This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7727 - Bleu: 42.8708 - Gen Len: 13.335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.9294 | 1.0 | 1688 | 0.8364 | 39.0175 | 13.2637 | | 0.7929 | 2.0 | 3376 | 0.7893 | 40.9994 | 13.303 | | 0.7069 | 3.0 | 5064 | 0.7737 | 42.4125 | 13.292 | | 0.6482 | 4.0 | 6752 | 0.7701 | 42.826 | 13.3287 | | 0.6231 | 5.0 | 8440 | 0.7727 | 42.8708 | 13.335 | ### Framework versions - Transformers 4.29.0.dev0 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # nllb-200-distilled-600M-dz-to-en This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7727 - Bleu: 42.8708 - Gen Len: 13.335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 0.9294 | 1.0 | 1688 | 0.8364 | 39.0175 | 13.2637 | | 0.7929 | 2.0 | 3376 | 0.7893 | 40.9994 | 13.303 | | 0.7069 | 3.0 | 5064 | 0.7737 | 42.4125 | 13.292 | | 0.6482 | 4.0 | 6752 | 0.7701 | 42.826 | 13.3287 | | 0.6231 | 5.0 | 8440 | 0.7727 | 42.8708 | 13.335 | ### Framework versions - Transformers 4.29.0.dev0 - Pytorch 2.0.0+cu118 - Datasets 2.11.0 - Tokenizers 0.13.3
{"license": "cc-by-nc-4.0", "metrics": ["bleu"], "tags": ["translation", "generated_from_trainer"], "model-index": [{"name": "nllb-200-distilled-600M-dz-to-en", "results": []}]}
task
[ "TRANSLATION" ]
41,043
IconicAI/all-mpnet-base-v2-anteater
IconicAI
sentence-similarity
[ "sentence-transformers", "safetensors", "mpnet", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:645861", "loss:ContrastiveLoss", "arxiv:1908.10084", "base_model:sentence-transformers/all-mpnet-base-v2", "base_model:finetune:sentence-transformers/all-mpnet-base-v2", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-09-11T10:36:03Z
2024-09-11T10:36:12+00:00
12
0
--- base_model: sentence-transformers/all-mpnet-base-v2 datasets: [] language: [] library_name: sentence-transformers metrics: - cosine_accuracy - cosine_accuracy_threshold - cosine_f1 - cosine_f1_threshold - cosine_precision - cosine_recall - cosine_ap - dot_accuracy - dot_accuracy_threshold - dot_f1 - dot_f1_threshold - dot_precision - dot_recall - dot_ap - manhattan_accuracy - manhattan_accuracy_threshold - manhattan_f1 - manhattan_f1_threshold - manhattan_precision - manhattan_recall - manhattan_ap - euclidean_accuracy - euclidean_accuracy_threshold - euclidean_f1 - euclidean_f1_threshold - euclidean_precision - euclidean_recall - euclidean_ap - max_accuracy - max_accuracy_threshold - max_f1 - max_f1_threshold - max_precision - max_recall - max_ap pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:645861 - loss:ContrastiveLoss widget: - source_sentence: There was an Eye OS alert. sentences: - i see lots of tubes - On the door is lima mike zero twenty three north exit - EyeOS, that’s some kind of tech, right - source_sentence: how to use sentences: - how do i use it - This fallen panel might lead to the control room. - The rings appear to be completely unmoving now. - source_sentence: I'm unsure about this room's name how do I find out? sentences: - How do I identify the room I'm in without any obvious signs? - The door shows l m zero twenty three north exit - it reads Cryochamber Medical Support Systems - source_sentence: i see Cryochamber Atmospheric Sealing sentences: - Can you guide me on how to identify this room? - it's Laboratory Chemical Storage - it reads Cryochamber Atmospheric Sealing - source_sentence: floating up sentences: - All indicators are blue. - i can see an interface - Found a narrow corridor leading somewhere. model-index: - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 results: - task: type: binary-classification name: Binary Classification dataset: name: sts dev type: sts-dev metrics: - type: cosine_accuracy value: 0.9002097965885251 name: Cosine Accuracy - type: cosine_accuracy_threshold value: 0.4494956135749817 name: Cosine Accuracy Threshold - type: cosine_f1 value: 0.8908462575859745 name: Cosine F1 - type: cosine_f1_threshold value: 0.41577932238578796 name: Cosine F1 Threshold - type: cosine_precision value: 0.8739044154126013 name: Cosine Precision - type: cosine_recall value: 0.908457968024755 name: Cosine Recall - type: cosine_ap value: 0.9618224590785398 name: Cosine Ap - type: dot_accuracy value: 0.9002097965885251 name: Dot Accuracy - type: dot_accuracy_threshold value: 0.4494956135749817 name: Dot Accuracy Threshold - type: dot_f1 value: 0.8908462575859745 name: Dot F1 - type: dot_f1_threshold value: 0.4157792925834656 name: Dot F1 Threshold - type: dot_precision value: 0.8739044154126013 name: Dot Precision - type: dot_recall value: 0.908457968024755 name: Dot Recall - type: dot_ap value: 0.961822458350164 name: Dot Ap - type: manhattan_accuracy value: 0.8989979280958028 name: Manhattan Accuracy - type: manhattan_accuracy_threshold value: 22.644113540649414 name: Manhattan Accuracy Threshold - type: manhattan_f1 value: 0.8901100449479366 name: Manhattan F1 - type: manhattan_f1_threshold value: 23.330610275268555 name: Manhattan F1 Threshold - type: manhattan_precision value: 0.8757104438714686 name: Manhattan Precision - type: manhattan_recall value: 0.9049911179875079 name: Manhattan Recall - type: manhattan_ap value: 0.9615309074220045 name: Manhattan Ap - type: euclidean_accuracy value: 0.9002097965885251 name: Euclidean Accuracy - type: euclidean_accuracy_threshold value: 1.0492897033691406 name: Euclidean Accuracy Threshold - type: euclidean_f1 value: 0.8908462575859745 name: Euclidean F1 - type: euclidean_f1_threshold value: 1.080944538116455 name: Euclidean F1 Threshold - type: euclidean_precision value: 0.8739044154126013 name: Euclidean Precision - type: euclidean_recall value: 0.908457968024755 name: Euclidean Recall - type: euclidean_ap value: 0.9618224553002042 name: Euclidean Ap - type: max_accuracy value: 0.9002097965885251 name: Max Accuracy - type: max_accuracy_threshold value: 22.644113540649414 name: Max Accuracy Threshold - type: max_f1 value: 0.8908462575859745 name: Max F1 - type: max_f1_threshold value: 23.330610275268555 name: Max F1 Threshold - type: max_precision value: 0.8757104438714686 name: Max Precision - type: max_recall value: 0.908457968024755 name: Max Recall - type: max_ap value: 0.9618224590785398 name: Max Ap --- # SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d --> - **Maximum Sequence Length:** 384 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("IconicAI/all-mpnet-base-v2-anteater") # Run inference sentences = [ 'floating up', 'i can see an interface', 'All indicators are blue.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Binary Classification * Dataset: `sts-dev` * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | Value | |:-----------------------------|:-----------| | cosine_accuracy | 0.9002 | | cosine_accuracy_threshold | 0.4495 | | cosine_f1 | 0.8908 | | cosine_f1_threshold | 0.4158 | | cosine_precision | 0.8739 | | cosine_recall | 0.9085 | | cosine_ap | 0.9618 | | dot_accuracy | 0.9002 | | dot_accuracy_threshold | 0.4495 | | dot_f1 | 0.8908 | | dot_f1_threshold | 0.4158 | | dot_precision | 0.8739 | | dot_recall | 0.9085 | | dot_ap | 0.9618 | | manhattan_accuracy | 0.899 | | manhattan_accuracy_threshold | 22.6441 | | manhattan_f1 | 0.8901 | | manhattan_f1_threshold | 23.3306 | | manhattan_precision | 0.8757 | | manhattan_recall | 0.905 | | manhattan_ap | 0.9615 | | euclidean_accuracy | 0.9002 | | euclidean_accuracy_threshold | 1.0493 | | euclidean_f1 | 0.8908 | | euclidean_f1_threshold | 1.0809 | | euclidean_precision | 0.8739 | | euclidean_recall | 0.9085 | | euclidean_ap | 0.9618 | | max_accuracy | 0.9002 | | max_accuracy_threshold | 22.6441 | | max_f1 | 0.8908 | | max_f1_threshold | 23.3306 | | max_precision | 0.8757 | | max_recall | 0.9085 | | **max_ap** | **0.9618** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 645,861 training samples * Columns: <code>example1</code>, <code>example2</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | example1 | example2 | label | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------| | type | string | string | int | | details | <ul><li>min: 3 tokens</li><li>mean: 9.02 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.19 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> | * Samples: | example1 | example2 | label | |:---------------------------------------------------------------------------------|:--------------------------------------------------------------|:---------------| | <code>Drones are present all around here.</code> | <code>What are those drones doing buzzing around here?</code> | <code>1</code> | | <code>am i the only one</code> | <code>am i the only one alive on this ship</code> | <code>1</code> | | <code>I’m in a room with a door in front of me and a terminal on the wall</code> | <code>mechanics room</code> | <code>1</code> | * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: ```json { "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 1.0, "size_average": true } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 76,741 evaluation samples * Columns: <code>example1</code>, <code>example2</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | example1 | example2 | label | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------| | type | string | string | int | | details | <ul><li>min: 3 tokens</li><li>mean: 9.25 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.15 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> | * Samples: | example1 | example2 | label | |:----------------------------------------------|:----------------------------------------------------------|:---------------| | <code>Not much, how about you?</code> | <code>Nothing, you?</code> | <code>1</code> | | <code>Rings stopped moving.</code> | <code>I notice the rings are not spinning anymore.</code> | <code>1</code> | | <code>it's Laboratory Chemical Storage</code> | <code>the switch is Laboratory Chemical Storage</code> | <code>1</code> | * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: ```json { "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 1.0, "size_average": true } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 256 - `per_device_eval_batch_size`: 256 - `learning_rate`: 1e-07 - `weight_decay`: 0.01 - `max_grad_norm`: 0.02 - `num_train_epochs`: 5 - `warmup_steps`: 100 - `bf16`: True - `eval_on_start`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 256 - `per_device_eval_batch_size`: 256 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 1e-07 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 0.02 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 100 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: True - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs <details><summary>Click to expand</summary> | Epoch | Step | Training Loss | loss | sts-dev_max_ap | |:------:|:-----:|:-------------:|:------:|:--------------:| | 0 | 0 | - | 0.0764 | 0.9175 | | 0.0040 | 10 | 0.0772 | - | - | | 0.0079 | 20 | 0.0783 | - | - | | 0.0119 | 30 | 0.0775 | - | - | | 0.0159 | 40 | 0.0756 | - | - | | 0.0198 | 50 | 0.075 | - | - | | 0.0238 | 60 | 0.0777 | - | - | | 0.0277 | 70 | 0.0784 | - | - | | 0.0317 | 80 | 0.0721 | - | - | | 0.0357 | 90 | 0.0755 | - | - | | 0.0396 | 100 | 0.0778 | - | - | | 0.0436 | 110 | 0.0735 | - | - | | 0.0476 | 120 | 0.0753 | - | - | | 0.0515 | 130 | 0.0741 | - | - | | 0.0555 | 140 | 0.0791 | - | - | | 0.0595 | 150 | 0.0753 | - | - | | 0.0634 | 160 | 0.0748 | - | - | | 0.0674 | 170 | 0.0709 | - | - | | 0.0713 | 180 | 0.0738 | - | - | | 0.0753 | 190 | 0.0759 | - | - | | 0.0793 | 200 | 0.0703 | - | - | | 0.0832 | 210 | 0.0724 | - | - | | 0.0872 | 220 | 0.0726 | - | - | | 0.0912 | 230 | 0.0734 | - | - | | 0.0951 | 240 | 0.0718 | - | - | | 0.0991 | 250 | 0.0776 | - | - | | 0.1031 | 260 | 0.0757 | - | - | | 0.1070 | 270 | 0.0722 | - | - | | 0.1110 | 280 | 0.0746 | - | - | | 0.1149 | 290 | 0.0718 | - | - | | 0.1189 | 300 | 0.0733 | - | - | | 0.1229 | 310 | 0.0725 | - | - | | 0.1268 | 320 | 0.0724 | - | - | | 0.1308 | 330 | 0.0681 | - | - | | 0.1348 | 340 | 0.0735 | - | - | | 0.1387 | 350 | 0.0716 | - | - | | 0.1427 | 360 | 0.0698 | - | - | | 0.1467 | 370 | 0.072 | - | - | | 0.1506 | 380 | 0.071 | - | - | | 0.1546 | 390 | 0.0713 | - | - | | 0.1585 | 400 | 0.073 | - | - | | 0.1625 | 410 | 0.077 | - | - | | 0.1665 | 420 | 0.072 | - | - | | 0.1704 | 430 | 0.0689 | - | - | | 0.1744 | 440 | 0.0708 | - | - | | 0.1784 | 450 | 0.0687 | - | - | | 0.1823 | 460 | 0.0692 | - | - | | 0.1863 | 470 | 0.0715 | - | - | | 0.1902 | 480 | 0.0707 | - | - | | 0.1942 | 490 | 0.0671 | - | - | | 0.1982 | 500 | 0.0741 | 0.0703 | 0.9245 | | 0.2021 | 510 | 0.0681 | - | - | | 0.2061 | 520 | 0.0749 | - | - | | 0.2101 | 530 | 0.0718 | - | - | | 0.2140 | 540 | 0.0689 | - | - | | 0.2180 | 550 | 0.0733 | - | - | | 0.2220 | 560 | 0.067 | - | - | | 0.2259 | 570 | 0.0685 | - | - | | 0.2299 | 580 | 0.07 | - | - | | 0.2338 | 590 | 0.0683 | - | - | | 0.2378 | 600 | 0.0693 | - | - | | 0.2418 | 610 | 0.0705 | - | - | | 0.2457 | 620 | 0.0707 | - | - | | 0.2497 | 630 | 0.0703 | - | - | | 0.2537 | 640 | 0.068 | - | - | | 0.2576 | 650 | 0.0682 | - | - | | 0.2616 | 660 | 0.0654 | - | - | | 0.2656 | 670 | 0.0682 | - | - | | 0.2695 | 680 | 0.0698 | - | - | | 0.2735 | 690 | 0.0701 | - | - | | 0.2774 | 700 | 0.0674 | - | - | | 0.2814 | 710 | 0.0669 | - | - | | 0.2854 | 720 | 0.0677 | - | - | | 0.2893 | 730 | 0.0674 | - | - | | 0.2933 | 740 | 0.0682 | - | - | | 0.2973 | 750 | 0.0677 | - | - | | 0.3012 | 760 | 0.0661 | - | - | | 0.3052 | 770 | 0.0634 | - | - | | 0.3092 | 780 | 0.0658 | - | - | | 0.3131 | 790 | 0.0687 | - | - | | 0.3171 | 800 | 0.069 | - | - | | 0.3210 | 810 | 0.0665 | - | - | | 0.3250 | 820 | 0.0648 | - | - | | 0.3290 | 830 | 0.0656 | - | - | | 0.3329 | 840 | 0.0672 | - | - | | 0.3369 | 850 | 0.0663 | - | - | | 0.3409 | 860 | 0.0666 | - | - | | 0.3448 | 870 | 0.0644 | - | - | | 0.3488 | 880 | 0.065 | - | - | | 0.3528 | 890 | 0.0666 | - | - | | 0.3567 | 900 | 0.0657 | - | - | | 0.3607 | 910 | 0.0636 | - | - | | 0.3646 | 920 | 0.0681 | - | - | | 0.3686 | 930 | 0.0671 | - | - | | 0.3726 | 940 | 0.0653 | - | - | | 0.3765 | 950 | 0.0643 | - | - | | 0.3805 | 960 | 0.0637 | - | - | | 0.3845 | 970 | 0.066 | - | - | | 0.3884 | 980 | 0.0645 | - | - | | 0.3924 | 990 | 0.0628 | - | - | | 0.3964 | 1000 | 0.0627 | 0.0653 | 0.9325 | | 0.4003 | 1010 | 0.0647 | - | - | | 0.4043 | 1020 | 0.0649 | - | - | | 0.4082 | 1030 | 0.0637 | - | - | | 0.4122 | 1040 | 0.0648 | - | - | | 0.4162 | 1050 | 0.0647 | - | - | | 0.4201 | 1060 | 0.0646 | - | - | | 0.4241 | 1070 | 0.0659 | - | - | | 0.4281 | 1080 | 0.0641 | - | - | | 0.4320 | 1090 | 0.0609 | - | - | | 0.4360 | 1100 | 0.0642 | - | - | | 0.4400 | 1110 | 0.0614 | - | - | | 0.4439 | 1120 | 0.0603 | - | - | | 0.4479 | 1130 | 0.0613 | - | - | | 0.4518 | 1140 | 0.0646 | - | - | | 0.4558 | 1150 | 0.0619 | - | - | | 0.4598 | 1160 | 0.0611 | - | - | | 0.4637 | 1170 | 0.0638 | - | - | | 0.4677 | 1180 | 0.0636 | - | - | | 0.4717 | 1190 | 0.0647 | - | - | | 0.4756 | 1200 | 0.0622 | - | - | | 0.4796 | 1210 | 0.0642 | - | - | | 0.4836 | 1220 | 0.0607 | - | - | | 0.4875 | 1230 | 0.0623 | - | - | | 0.4915 | 1240 | 0.0614 | - | - | | 0.4954 | 1250 | 0.0643 | - | - | | 0.4994 | 1260 | 0.0614 | - | - | | 0.5034 | 1270 | 0.0599 | - | - | | 0.5073 | 1280 | 0.0615 | - | - | | 0.5113 | 1290 | 0.0595 | - | - | | 0.5153 | 1300 | 0.061 | - | - | | 0.5192 | 1310 | 0.0623 | - | - | | 0.5232 | 1320 | 0.0646 | - | - | | 0.5272 | 1330 | 0.0621 | - | - | | 0.5311 | 1340 | 0.0606 | - | - | | 0.5351 | 1350 | 0.0597 | - | - | | 0.5390 | 1360 | 0.0621 | - | - | | 0.5430 | 1370 | 0.0586 | - | - | | 0.5470 | 1380 | 0.0618 | - | - | | 0.5509 | 1390 | 0.0601 | - | - | | 0.5549 | 1400 | 0.0578 | - | - | | 0.5589 | 1410 | 0.0628 | - | - | | 0.5628 | 1420 | 0.0595 | - | - | | 0.5668 | 1430 | 0.0576 | - | - | | 0.5707 | 1440 | 0.0606 | - | - | | 0.5747 | 1450 | 0.0618 | - | - | | 0.5787 | 1460 | 0.0591 | - | - | | 0.5826 | 1470 | 0.0598 | - | - | | 0.5866 | 1480 | 0.0611 | - | - | | 0.5906 | 1490 | 0.0594 | - | - | | 0.5945 | 1500 | 0.0616 | 0.0619 | 0.9393 | | 0.5985 | 1510 | 0.0592 | - | - | | 0.6025 | 1520 | 0.0597 | - | - | | 0.6064 | 1530 | 0.0619 | - | - | | 0.6104 | 1540 | 0.0595 | - | - | | 0.6143 | 1550 | 0.0598 | - | - | | 0.6183 | 1560 | 0.0609 | - | - | | 0.6223 | 1570 | 0.059 | - | - | | 0.6262 | 1580 | 0.0601 | - | - | | 0.6302 | 1590 | 0.0595 | - | - | | 0.6342 | 1600 | 0.059 | - | - | | 0.6381 | 1610 | 0.0606 | - | - | | 0.6421 | 1620 | 0.0591 | - | - | | 0.6461 | 1630 | 0.0617 | - | - | | 0.6500 | 1640 | 0.0592 | - | - | | 0.6540 | 1650 | 0.0588 | - | - | | 0.6579 | 1660 | 0.0587 | - | - | | 0.6619 | 1670 | 0.0585 | - | - | | 0.6659 | 1680 | 0.0558 | - | - | | 0.6698 | 1690 | 0.057 | - | - | | 0.6738 | 1700 | 0.0598 | - | - | | 0.6778 | 1710 | 0.0567 | - | - | | 0.6817 | 1720 | 0.0555 | - | - | | 0.6857 | 1730 | 0.0604 | - | - | | 0.6897 | 1740 | 0.0558 | - | - | | 0.6936 | 1750 | 0.0572 | - | - | | 0.6976 | 1760 | 0.0577 | - | - | | 0.7015 | 1770 | 0.0587 | - | - | | 0.7055 | 1780 | 0.0589 | - | - | | 0.7095 | 1790 | 0.0598 | - | - | | 0.7134 | 1800 | 0.0583 | - | - | | 0.7174 | 1810 | 0.058 | - | - | | 0.7214 | 1820 | 0.0564 | - | - | | 0.7253 | 1830 | 0.0589 | - | - | | 0.7293 | 1840 | 0.0557 | - | - | | 0.7333 | 1850 | 0.0586 | - | - | | 0.7372 | 1860 | 0.0601 | - | - | | 0.7412 | 1870 | 0.0556 | - | - | | 0.7451 | 1880 | 0.0572 | - | - | | 0.7491 | 1890 | 0.0574 | - | - | | 0.7531 | 1900 | 0.0583 | - | - | | 0.7570 | 1910 | 0.0573 | - | - | | 0.7610 | 1920 | 0.0555 | - | - | | 0.7650 | 1930 | 0.0561 | - | - | | 0.7689 | 1940 | 0.0579 | - | - | | 0.7729 | 1950 | 0.0557 | - | - | | 0.7769 | 1960 | 0.0558 | - | - | | 0.7808 | 1970 | 0.0589 | - | - | | 0.7848 | 1980 | 0.0572 | - | - | | 0.7887 | 1990 | 0.0572 | - | - | | 0.7927 | 2000 | 0.0549 | 0.0592 | 0.9444 | | 0.7967 | 2010 | 0.0548 | - | - | | 0.8006 | 2020 | 0.0569 | - | - | | 0.8046 | 2030 | 0.058 | - | - | | 0.8086 | 2040 | 0.0581 | - | - | | 0.8125 | 2050 | 0.0585 | - | - | | 0.8165 | 2060 | 0.0542 | - | - | | 0.8205 | 2070 | 0.0558 | - | - | | 0.8244 | 2080 | 0.0569 | - | - | | 0.8284 | 2090 | 0.0564 | - | - | | 0.8323 | 2100 | 0.0552 | - | - | | 0.8363 | 2110 | 0.0559 | - | - | | 0.8403 | 2120 | 0.0534 | - | - | | 0.8442 | 2130 | 0.0543 | - | - | | 0.8482 | 2140 | 0.0573 | - | - | | 0.8522 | 2150 | 0.0546 | - | - | | 0.8561 | 2160 | 0.0554 | - | - | | 0.8601 | 2170 | 0.0568 | - | - | | 0.8641 | 2180 | 0.0544 | - | - | | 0.8680 | 2190 | 0.0547 | - | - | | 0.8720 | 2200 | 0.0549 | - | - | | 0.8759 | 2210 | 0.0544 | - | - | | 0.8799 | 2220 | 0.058 | - | - | | 0.8839 | 2230 | 0.0557 | - | - | | 0.8878 | 2240 | 0.0551 | - | - | | 0.8918 | 2250 | 0.0558 | - | - | | 0.8958 | 2260 | 0.0554 | - | - | | 0.8997 | 2270 | 0.053 | - | - | | 0.9037 | 2280 | 0.0552 | - | - | | 0.9076 | 2290 | 0.0549 | - | - | | 0.9116 | 2300 | 0.0533 | - | - | | 0.9156 | 2310 | 0.0543 | - | - | | 0.9195 | 2320 | 0.0531 | - | - | | 0.9235 | 2330 | 0.0553 | - | - | | 0.9275 | 2340 | 0.0542 | - | - | | 0.9314 | 2350 | 0.0537 | - | - | | 0.9354 | 2360 | 0.0536 | - | - | | 0.9394 | 2370 | 0.055 | - | - | | 0.9433 | 2380 | 0.0551 | - | - | | 0.9473 | 2390 | 0.0532 | - | - | | 0.9512 | 2400 | 0.0556 | - | - | | 0.9552 | 2410 | 0.0548 | - | - | | 0.9592 | 2420 | 0.0533 | - | - | | 0.9631 | 2430 | 0.0536 | - | - | | 0.9671 | 2440 | 0.0549 | - | - | | 0.9711 | 2450 | 0.0548 | - | - | | 0.9750 | 2460 | 0.0557 | - | - | | 0.9790 | 2470 | 0.055 | - | - | | 0.9830 | 2480 | 0.0535 | - | - | | 0.9869 | 2490 | 0.0564 | - | - | | 0.9909 | 2500 | 0.0526 | 0.0572 | 0.9482 | | 0.9948 | 2510 | 0.0547 | - | - | | 0.9988 | 2520 | 0.054 | - | - | | 1.0028 | 2530 | 0.0527 | - | - | | 1.0067 | 2540 | 0.0522 | - | - | | 1.0107 | 2550 | 0.0535 | - | - | | 1.0147 | 2560 | 0.0557 | - | - | | 1.0186 | 2570 | 0.052 | - | - | | 1.0226 | 2580 | 0.055 | - | - | | 1.0266 | 2590 | 0.0542 | - | - | | 1.0305 | 2600 | 0.0539 | - | - | | 1.0345 | 2610 | 0.0523 | - | - | | 1.0384 | 2620 | 0.0507 | - | - | | 1.0424 | 2630 | 0.0517 | - | - | | 1.0464 | 2640 | 0.0543 | - | - | | 1.0503 | 2650 | 0.0543 | - | - | | 1.0543 | 2660 | 0.054 | - | - | | 1.0583 | 2670 | 0.0536 | - | - | | 1.0622 | 2680 | 0.0531 | - | - | | 1.0662 | 2690 | 0.0537 | - | - | | 1.0702 | 2700 | 0.0521 | - | - | | 1.0741 | 2710 | 0.054 | - | - | | 1.0781 | 2720 | 0.0513 | - | - | | 1.0820 | 2730 | 0.0496 | - | - | | 1.0860 | 2740 | 0.0519 | - | - | | 1.0900 | 2750 | 0.0529 | - | - | | 1.0939 | 2760 | 0.0542 | - | - | | 1.0979 | 2770 | 0.0526 | - | - | | 1.1019 | 2780 | 0.051 | - | - | | 1.1058 | 2790 | 0.0531 | - | - | | 1.1098 | 2800 | 0.0539 | - | - | | 1.1138 | 2810 | 0.0521 | - | - | | 1.1177 | 2820 | 0.0539 | - | - | | 1.1217 | 2830 | 0.0505 | - | - | | 1.1256 | 2840 | 0.0513 | - | - | | 1.1296 | 2850 | 0.0521 | - | - | | 1.1336 | 2860 | 0.0537 | - | - | | 1.1375 | 2870 | 0.0514 | - | - | | 1.1415 | 2880 | 0.0511 | - | - | | 1.1455 | 2890 | 0.0495 | - | - | | 1.1494 | 2900 | 0.0505 | - | - | | 1.1534 | 2910 | 0.0517 | - | - | | 1.1574 | 2920 | 0.0509 | - | - | | 1.1613 | 2930 | 0.0507 | - | - | | 1.1653 | 2940 | 0.0535 | - | - | | 1.1692 | 2950 | 0.0511 | - | - | | 1.1732 | 2960 | 0.0507 | - | - | | 1.1772 | 2970 | 0.052 | - | - | | 1.1811 | 2980 | 0.0494 | - | - | | 1.1851 | 2990 | 0.0524 | - | - | | 1.1891 | 3000 | 0.052 | 0.0555 | 0.9512 | | 1.1930 | 3010 | 0.0536 | - | - | | 1.1970 | 3020 | 0.0502 | - | - | | 1.2010 | 3030 | 0.0504 | - | - | | 1.2049 | 3040 | 0.0532 | - | - | | 1.2089 | 3050 | 0.0529 | - | - | | 1.2128 | 3060 | 0.0514 | - | - | | 1.2168 | 3070 | 0.0504 | - | - | | 1.2208 | 3080 | 0.0501 | - | - | | 1.2247 | 3090 | 0.0493 | - | - | | 1.2287 | 3100 | 0.0507 | - | - | | 1.2327 | 3110 | 0.0501 | - | - | | 1.2366 | 3120 | 0.0502 | - | - | | 1.2406 | 3130 | 0.0491 | - | - | | 1.2446 | 3140 | 0.0495 | - | - | | 1.2485 | 3150 | 0.051 | - | - | | 1.2525 | 3160 | 0.0495 | - | - | | 1.2564 | 3170 | 0.0534 | - | - | | 1.2604 | 3180 | 0.0483 | - | - | | 1.2644 | 3190 | 0.049 | - | - | | 1.2683 | 3200 | 0.0532 | - | - | | 1.2723 | 3210 | 0.0481 | - | - | | 1.2763 | 3220 | 0.0496 | - | - | | 1.2802 | 3230 | 0.0504 | - | - | | 1.2842 | 3240 | 0.0477 | - | - | | 1.2881 | 3250 | 0.0483 | - | - | | 1.2921 | 3260 | 0.0493 | - | - | | 1.2961 | 3270 | 0.0491 | - | - | | 1.3000 | 3280 | 0.0489 | - | - | | 1.3040 | 3290 | 0.0493 | - | - | | 1.3080 | 3300 | 0.0507 | - | - | | 1.3119 | 3310 | 0.0482 | - | - | | 1.3159 | 3320 | 0.0506 | - | - | | 1.3199 | 3330 | 0.0486 | - | - | | 1.3238 | 3340 | 0.0487 | - | - | | 1.3278 | 3350 | 0.0482 | - | - | | 1.3317 | 3360 | 0.0492 | - | - | | 1.3357 | 3370 | 0.049 | - | - | | 1.3397 | 3380 | 0.0485 | - | - | | 1.3436 | 3390 | 0.0501 | - | - | | 1.3476 | 3400 | 0.0505 | - | - | | 1.3516 | 3410 | 0.0508 | - | - | | 1.3555 | 3420 | 0.0481 | - | - | | 1.3595 | 3430 | 0.049 | - | - | | 1.3635 | 3440 | 0.0495 | - | - | | 1.3674 | 3450 | 0.0507 | - | - | | 1.3714 | 3460 | 0.0478 | - | - | | 1.3753 | 3470 | 0.0522 | - | - | | 1.3793 | 3480 | 0.0505 | - | - | | 1.3833 | 3490 | 0.0489 | - | - | | 1.3872 | 3500 | 0.0504 | 0.0541 | 0.9537 | | 1.3912 | 3510 | 0.0492 | - | - | | 1.3952 | 3520 | 0.0469 | - | - | | 1.3991 | 3530 | 0.0495 | - | - | | 1.4031 | 3540 | 0.0486 | - | - | | 1.4071 | 3550 | 0.0506 | - | - | | 1.4110 | 3560 | 0.0506 | - | - | | 1.4150 | 3570 | 0.0475 | - | - | | 1.4189 | 3580 | 0.0483 | - | - | | 1.4229 | 3590 | 0.0471 | - | - | | 1.4269 | 3600 | 0.0477 | - | - | | 1.4308 | 3610 | 0.0494 | - | - | | 1.4348 | 3620 | 0.0481 | - | - | | 1.4388 | 3630 | 0.0484 | - | - | | 1.4427 | 3640 | 0.0505 | - | - | | 1.4467 | 3650 | 0.0498 | - | - | | 1.4507 | 3660 | 0.0482 | - | - | | 1.4546 | 3670 | 0.0488 | - | - | | 1.4586 | 3680 | 0.0458 | - | - | | 1.4625 | 3690 | 0.0479 | - | - | | 1.4665 | 3700 | 0.0474 | - | - | | 1.4705 | 3710 | 0.0471 | - | - | | 1.4744 | 3720 | 0.0498 | - | - | | 1.4784 | 3730 | 0.0495 | - | - | | 1.4824 | 3740 | 0.0505 | - | - | | 1.4863 | 3750 | 0.0487 | - | - | | 1.4903 | 3760 | 0.0485 | - | - | | 1.4943 | 3770 | 0.0479 | - | - | | 1.4982 | 3780 | 0.0475 | - | - | | 1.5022 | 3790 | 0.0462 | - | - | | 1.5061 | 3800 | 0.0487 | - | - | | 1.5101 | 3810 | 0.0476 | - | - | | 1.5141 | 3820 | 0.0485 | - | - | | 1.5180 | 3830 | 0.0489 | - | - | | 1.5220 | 3840 | 0.0475 | - | - | | 1.5260 | 3850 | 0.0484 | - | - | | 1.5299 | 3860 | 0.0465 | - | - | | 1.5339 | 3870 | 0.0491 | - | - | | 1.5379 | 3880 | 0.0477 | - | - | | 1.5418 | 3890 | 0.0475 | - | - | | 1.5458 | 3900 | 0.0489 | - | - | | 1.5497 | 3910 | 0.0459 | - | - | | 1.5537 | 3920 | 0.0488 | - | - | | 1.5577 | 3930 | 0.0475 | - | - | | 1.5616 | 3940 | 0.049 | - | - | | 1.5656 | 3950 | 0.0469 | - | - | | 1.5696 | 3960 | 0.0493 | - | - | | 1.5735 | 3970 | 0.0481 | - | - | | 1.5775 | 3980 | 0.0478 | - | - | | 1.5815 | 3990 | 0.0456 | - | - | | 1.5854 | 4000 | 0.047 | 0.0528 | 0.9556 | | 1.5894 | 4010 | 0.0481 | - | - | | 1.5933 | 4020 | 0.0468 | - | - | | 1.5973 | 4030 | 0.0467 | - | - | | 1.6013 | 4040 | 0.0448 | - | - | | 1.6052 | 4050 | 0.0491 | - | - | | 1.6092 | 4060 | 0.0476 | - | - | | 1.6132 | 4070 | 0.0459 | - | - | | 1.6171 | 4080 | 0.0456 | - | - | | 1.6211 | 4090 | 0.0476 | - | - | | 1.6250 | 4100 | 0.0443 | - | - | | 1.6290 | 4110 | 0.0477 | - | - | | 1.6330 | 4120 | 0.0476 | - | - | | 1.6369 | 4130 | 0.0466 | - | - | | 1.6409 | 4140 | 0.0457 | - | - | | 1.6449 | 4150 | 0.0468 | - | - | | 1.6488 | 4160 | 0.0462 | - | - | | 1.6528 | 4170 | 0.0476 | - | - | | 1.6568 | 4180 | 0.0464 | - | - | | 1.6607 | 4190 | 0.0467 | - | - | | 1.6647 | 4200 | 0.0455 | - | - | | 1.6686 | 4210 | 0.0455 | - | - | | 1.6726 | 4220 | 0.0474 | - | - | | 1.6766 | 4230 | 0.0469 | - | - | | 1.6805 | 4240 | 0.0453 | - | - | | 1.6845 | 4250 | 0.0464 | - | - | | 1.6885 | 4260 | 0.0448 | - | - | | 1.6924 | 4270 | 0.0448 | - | - | | 1.6964 | 4280 | 0.0461 | - | - | | 1.7004 | 4290 | 0.0444 | - | - | | 1.7043 | 4300 | 0.045 | - | - | | 1.7083 | 4310 | 0.047 | - | - | | 1.7122 | 4320 | 0.0473 | - | - | | 1.7162 | 4330 | 0.0453 | - | - | | 1.7202 | 4340 | 0.0461 | - | - | | 1.7241 | 4350 | 0.0464 | - | - | | 1.7281 | 4360 | 0.0474 | - | - | | 1.7321 | 4370 | 0.0444 | - | - | | 1.7360 | 4380 | 0.0465 | - | - | | 1.7400 | 4390 | 0.0454 | - | - | | 1.7440 | 4400 | 0.045 | - | - | | 1.7479 | 4410 | 0.0444 | - | - | | 1.7519 | 4420 | 0.0451 | - | - | | 1.7558 | 4430 | 0.0454 | - | - | | 1.7598 | 4440 | 0.0471 | - | - | | 1.7638 | 4450 | 0.0467 | - | - | | 1.7677 | 4460 | 0.0466 | - | - | | 1.7717 | 4470 | 0.0452 | - | - | | 1.7757 | 4480 | 0.0466 | - | - | | 1.7796 | 4490 | 0.046 | - | - | | 1.7836 | 4500 | 0.0462 | 0.0518 | 0.9570 | | 1.7876 | 4510 | 0.0459 | - | - | | 1.7915 | 4520 | 0.0455 | - | - | | 1.7955 | 4530 | 0.0456 | - | - | | 1.7994 | 4540 | 0.0476 | - | - | | 1.8034 | 4550 | 0.0465 | - | - | | 1.8074 | 4560 | 0.0447 | - | - | | 1.8113 | 4570 | 0.0438 | - | - | | 1.8153 | 4580 | 0.0463 | - | - | | 1.8193 | 4590 | 0.0452 | - | - | | 1.8232 | 4600 | 0.0454 | - | - | | 1.8272 | 4610 | 0.0459 | - | - | | 1.8312 | 4620 | 0.044 | - | - | | 1.8351 | 4630 | 0.0445 | - | - | | 1.8391 | 4640 | 0.0435 | - | - | | 1.8430 | 4650 | 0.0435 | - | - | | 1.8470 | 4660 | 0.0442 | - | - | | 1.8510 | 4670 | 0.0424 | - | - | | 1.8549 | 4680 | 0.0438 | - | - | | 1.8589 | 4690 | 0.0451 | - | - | | 1.8629 | 4700 | 0.0451 | - | - | | 1.8668 | 4710 | 0.0455 | - | - | | 1.8708 | 4720 | 0.0441 | - | - | | 1.8748 | 4730 | 0.0432 | - | - | | 1.8787 | 4740 | 0.0445 | - | - | | 1.8827 | 4750 | 0.0482 | - | - | | 1.8866 | 4760 | 0.045 | - | - | | 1.8906 | 4770 | 0.0443 | - | - | | 1.8946 | 4780 | 0.0451 | - | - | | 1.8985 | 4790 | 0.0446 | - | - | | 1.9025 | 4800 | 0.0432 | - | - | | 1.9065 | 4810 | 0.0432 | - | - | | 1.9104 | 4820 | 0.0465 | - | - | | 1.9144 | 4830 | 0.0462 | - | - | | 1.9184 | 4840 | 0.0443 | - | - | | 1.9223 | 4850 | 0.0447 | - | - | | 1.9263 | 4860 | 0.0459 | - | - | | 1.9302 | 4870 | 0.043 | - | - | | 1.9342 | 4880 | 0.0456 | - | - | | 1.9382 | 4890 | 0.0444 | - | - | | 1.9421 | 4900 | 0.0455 | - | - | | 1.9461 | 4910 | 0.0427 | - | - | | 1.9501 | 4920 | 0.0461 | - | - | | 1.9540 | 4930 | 0.0454 | - | - | | 1.9580 | 4940 | 0.0447 | - | - | | 1.9620 | 4950 | 0.0434 | - | - | | 1.9659 | 4960 | 0.0444 | - | - | | 1.9699 | 4970 | 0.0451 | - | - | | 1.9738 | 4980 | 0.044 | - | - | | 1.9778 | 4990 | 0.0444 | - | - | | 1.9818 | 5000 | 0.0439 | 0.0508 | 0.9581 | | 1.9857 | 5010 | 0.0427 | - | - | | 1.9897 | 5020 | 0.0439 | - | - | | 1.9937 | 5030 | 0.0427 | - | - | | 1.9976 | 5040 | 0.0435 | - | - | | 2.0016 | 5050 | 0.0445 | - | - | | 2.0055 | 5060 | 0.0433 | - | - | | 2.0095 | 5070 | 0.0433 | - | - | | 2.0135 | 5080 | 0.0435 | - | - | | 2.0174 | 5090 | 0.0438 | - | - | | 2.0214 | 5100 | 0.0431 | - | - | | 2.0254 | 5110 | 0.0422 | - | - | | 2.0293 | 5120 | 0.0436 | - | - | | 2.0333 | 5130 | 0.0455 | - | - | | 2.0373 | 5140 | 0.044 | - | - | | 2.0412 | 5150 | 0.0423 | - | - | | 2.0452 | 5160 | 0.045 | - | - | | 2.0491 | 5170 | 0.0422 | - | - | | 2.0531 | 5180 | 0.0435 | - | - | | 2.0571 | 5190 | 0.0419 | - | - | | 2.0610 | 5200 | 0.0427 | - | - | | 2.0650 | 5210 | 0.0447 | - | - | | 2.0690 | 5220 | 0.0443 | - | - | | 2.0729 | 5230 | 0.0429 | - | - | | 2.0769 | 5240 | 0.0436 | - | - | | 2.0809 | 5250 | 0.0436 | - | - | | 2.0848 | 5260 | 0.0439 | - | - | | 2.0888 | 5270 | 0.0433 | - | - | | 2.0927 | 5280 | 0.0434 | - | - | | 2.0967 | 5290 | 0.0428 | - | - | | 2.1007 | 5300 | 0.0431 | - | - | | 2.1046 | 5310 | 0.0441 | - | - | | 2.1086 | 5320 | 0.0443 | - | - | | 2.1126 | 5330 | 0.0442 | - | - | | 2.1165 | 5340 | 0.044 | - | - | | 2.1205 | 5350 | 0.0431 | - | - | | 2.1245 | 5360 | 0.0432 | - | - | | 2.1284 | 5370 | 0.0421 | - | - | | 2.1324 | 5380 | 0.0439 | - | - | | 2.1363 | 5390 | 0.0436 | - | - | | 2.1403 | 5400 | 0.0428 | - | - | | 2.1443 | 5410 | 0.044 | - | - | | 2.1482 | 5420 | 0.0428 | - | - | | 2.1522 | 5430 | 0.0428 | - | - | | 2.1562 | 5440 | 0.0418 | - | - | | 2.1601 | 5450 | 0.0439 | - | - | | 2.1641 | 5460 | 0.0415 | - | - | | 2.1681 | 5470 | 0.0415 | - | - | | 2.1720 | 5480 | 0.0418 | - | - | | 2.1760 | 5490 | 0.042 | - | - | | 2.1799 | 5500 | 0.0418 | 0.0500 | 0.9591 | | 2.1839 | 5510 | 0.0434 | - | - | | 2.1879 | 5520 | 0.0424 | - | - | | 2.1918 | 5530 | 0.0425 | - | - | | 2.1958 | 5540 | 0.0427 | - | - | | 2.1998 | 5550 | 0.0418 | - | - | | 2.2037 | 5560 | 0.04 | - | - | | 2.2077 | 5570 | 0.0426 | - | - | | 2.2117 | 5580 | 0.0413 | - | - | | 2.2156 | 5590 | 0.0429 | - | - | | 2.2196 | 5600 | 0.0428 | - | - | | 2.2235 | 5610 | 0.044 | - | - | | 2.2275 | 5620 | 0.0423 | - | - | | 2.2315 | 5630 | 0.0398 | - | - | | 2.2354 | 5640 | 0.0427 | - | - | | 2.2394 | 5650 | 0.0419 | - | - | | 2.2434 | 5660 | 0.0424 | - | - | | 2.2473 | 5670 | 0.0422 | - | - | | 2.2513 | 5680 | 0.0426 | - | - | | 2.2553 | 5690 | 0.0434 | - | - | | 2.2592 | 5700 | 0.044 | - | - | | 2.2632 | 5710 | 0.0427 | - | - | | 2.2671 | 5720 | 0.0431 | - | - | | 2.2711 | 5730 | 0.0416 | - | - | | 2.2751 | 5740 | 0.0428 | - | - | | 2.2790 | 5750 | 0.0418 | - | - | | 2.2830 | 5760 | 0.0418 | - | - | | 2.2870 | 5770 | 0.0421 | - | - | | 2.2909 | 5780 | 0.041 | - | - | | 2.2949 | 5790 | 0.0419 | - | - | | 2.2989 | 5800 | 0.0422 | - | - | | 2.3028 | 5810 | 0.0428 | - | - | | 2.3068 | 5820 | 0.0432 | - | - | | 2.3107 | 5830 | 0.043 | - | - | | 2.3147 | 5840 | 0.0424 | - | - | | 2.3187 | 5850 | 0.0396 | - | - | | 2.3226 | 5860 | 0.0433 | - | - | | 2.3266 | 5870 | 0.0413 | - | - | | 2.3306 | 5880 | 0.0436 | - | - | | 2.3345 | 5890 | 0.0399 | - | - | | 2.3385 | 5900 | 0.0426 | - | - | | 2.3424 | 5910 | 0.0405 | - | - | | 2.3464 | 5920 | 0.0423 | - | - | | 2.3504 | 5930 | 0.0409 | - | - | | 2.3543 | 5940 | 0.0412 | - | - | | 2.3583 | 5950 | 0.0401 | - | - | | 2.3623 | 5960 | 0.042 | - | - | | 2.3662 | 5970 | 0.0397 | - | - | | 2.3702 | 5980 | 0.0422 | - | - | | 2.3742 | 5990 | 0.0416 | - | - | | 2.3781 | 6000 | 0.0422 | 0.0493 | 0.9599 | | 2.3821 | 6010 | 0.041 | - | - | | 2.3860 | 6020 | 0.0404 | - | - | | 2.3900 | 6030 | 0.0404 | - | - | | 2.3940 | 6040 | 0.0412 | - | - | | 2.3979 | 6050 | 0.0424 | - | - | | 2.4019 | 6060 | 0.043 | - | - | | 2.4059 | 6070 | 0.0416 | - | - | | 2.4098 | 6080 | 0.0405 | - | - | | 2.4138 | 6090 | 0.0408 | - | - | | 2.4178 | 6100 | 0.0413 | - | - | | 2.4217 | 6110 | 0.0408 | - | - | | 2.4257 | 6120 | 0.0407 | - | - | | 2.4296 | 6130 | 0.041 | - | - | | 2.4336 | 6140 | 0.0387 | - | - | | 2.4376 | 6150 | 0.0408 | - | - | | 2.4415 | 6160 | 0.0413 | - | - | | 2.4455 | 6170 | 0.0429 | - | - | | 2.4495 | 6180 | 0.0394 | - | - | | 2.4534 | 6190 | 0.041 | - | - | | 2.4574 | 6200 | 0.0419 | - | - | | 2.4614 | 6210 | 0.0395 | - | - | | 2.4653 | 6220 | 0.0405 | - | - | | 2.4693 | 6230 | 0.0412 | - | - | | 2.4732 | 6240 | 0.0439 | - | - | | 2.4772 | 6250 | 0.0423 | - | - | | 2.4812 | 6260 | 0.0423 | - | - | | 2.4851 | 6270 | 0.0406 | - | - | | 2.4891 | 6280 | 0.0402 | - | - | | 2.4931 | 6290 | 0.0428 | - | - | | 2.4970 | 6300 | 0.0422 | - | - | | 2.5010 | 6310 | 0.0399 | - | - | | 2.5050 | 6320 | 0.0409 | - | - | | 2.5089 | 6330 | 0.0412 | - | - | | 2.5129 | 6340 | 0.0403 | - | - | | 2.5168 | 6350 | 0.04 | - | - | | 2.5208 | 6360 | 0.0412 | - | - | | 2.5248 | 6370 | 0.0424 | - | - | | 2.5287 | 6380 | 0.0409 | - | - | | 2.5327 | 6390 | 0.0409 | - | - | | 2.5367 | 6400 | 0.0418 | - | - | | 2.5406 | 6410 | 0.0403 | - | - | | 2.5446 | 6420 | 0.0413 | - | - | | 2.5486 | 6430 | 0.038 | - | - | | 2.5525 | 6440 | 0.0414 | - | - | | 2.5565 | 6450 | 0.0409 | - | - | | 2.5604 | 6460 | 0.0407 | - | - | | 2.5644 | 6470 | 0.0406 | - | - | | 2.5684 | 6480 | 0.0392 | - | - | | 2.5723 | 6490 | 0.0417 | - | - | | 2.5763 | 6500 | 0.0391 | 0.0487 | 0.9605 | | 2.5803 | 6510 | 0.039 | - | - | | 2.5842 | 6520 | 0.0414 | - | - | | 2.5882 | 6530 | 0.0411 | - | - | | 2.5922 | 6540 | 0.0395 | - | - | | 2.5961 | 6550 | 0.0405 | - | - | | 2.6001 | 6560 | 0.0392 | - | - | | 2.6040 | 6570 | 0.041 | - | - | | 2.6080 | 6580 | 0.0387 | - | - | | 2.6120 | 6590 | 0.0409 | - | - | | 2.6159 | 6600 | 0.0416 | - | - | | 2.6199 | 6610 | 0.0399 | - | - | | 2.6239 | 6620 | 0.0395 | - | - | | 2.6278 | 6630 | 0.0416 | - | - | | 2.6318 | 6640 | 0.0397 | - | - | | 2.6358 | 6650 | 0.041 | - | - | | 2.6397 | 6660 | 0.0422 | - | - | | 2.6437 | 6670 | 0.0404 | - | - | | 2.6476 | 6680 | 0.0405 | - | - | | 2.6516 | 6690 | 0.0413 | - | - | | 2.6556 | 6700 | 0.0405 | - | - | | 2.6595 | 6710 | 0.04 | - | - | | 2.6635 | 6720 | 0.0383 | - | - | | 2.6675 | 6730 | 0.0412 | - | - | | 2.6714 | 6740 | 0.0416 | - | - | | 2.6754 | 6750 | 0.0405 | - | - | | 2.6793 | 6760 | 0.0423 | - | - | | 2.6833 | 6770 | 0.0419 | - | - | | 2.6873 | 6780 | 0.0405 | - | - | | 2.6912 | 6790 | 0.0409 | - | - | | 2.6952 | 6800 | 0.04 | - | - | | 2.6992 | 6810 | 0.0397 | - | - | | 2.7031 | 6820 | 0.039 | - | - | | 2.7071 | 6830 | 0.0393 | - | - | | 2.7111 | 6840 | 0.0413 | - | - | | 2.7150 | 6850 | 0.039 | - | - | | 2.7190 | 6860 | 0.04 | - | - | | 2.7229 | 6870 | 0.0409 | - | - | | 2.7269 | 6880 | 0.0403 | - | - | | 2.7309 | 6890 | 0.0397 | - | - | | 2.7348 | 6900 | 0.0404 | - | - | | 2.7388 | 6910 | 0.0396 | - | - | | 2.7428 | 6920 | 0.04 | - | - | | 2.7467 | 6930 | 0.0397 | - | - | | 2.7507 | 6940 | 0.0393 | - | - | | 2.7547 | 6950 | 0.037 | - | - | | 2.7586 | 6960 | 0.0383 | - | - | | 2.7626 | 6970 | 0.04 | - | - | | 2.7665 | 6980 | 0.0406 | - | - | | 2.7705 | 6990 | 0.0394 | - | - | | 2.7745 | 7000 | 0.0385 | 0.0482 | 0.9609 | | 2.7784 | 7010 | 0.0383 | - | - | | 2.7824 | 7020 | 0.0403 | - | - | | 2.7864 | 7030 | 0.04 | - | - | | 2.7903 | 7040 | 0.0395 | - | - | | 2.7943 | 7050 | 0.039 | - | - | | 2.7983 | 7060 | 0.0398 | - | - | | 2.8022 | 7070 | 0.0401 | - | - | | 2.8062 | 7080 | 0.0401 | - | - | | 2.8101 | 7090 | 0.0395 | - | - | | 2.8141 | 7100 | 0.0396 | - | - | | 2.8181 | 7110 | 0.0395 | - | - | | 2.8220 | 7120 | 0.0411 | - | - | | 2.8260 | 7130 | 0.0386 | - | - | | 2.8300 | 7140 | 0.0382 | - | - | | 2.8339 | 7150 | 0.0386 | - | - | | 2.8379 | 7160 | 0.0389 | - | - | | 2.8419 | 7170 | 0.0396 | - | - | | 2.8458 | 7180 | 0.0394 | - | - | | 2.8498 | 7190 | 0.04 | - | - | | 2.8537 | 7200 | 0.0401 | - | - | | 2.8577 | 7210 | 0.0412 | - | - | | 2.8617 | 7220 | 0.0383 | - | - | | 2.8656 | 7230 | 0.0392 | - | - | | 2.8696 | 7240 | 0.0394 | - | - | | 2.8736 | 7250 | 0.0399 | - | - | | 2.8775 | 7260 | 0.0403 | - | - | | 2.8815 | 7270 | 0.0384 | - | - | | 2.8855 | 7280 | 0.0397 | - | - | | 2.8894 | 7290 | 0.0407 | - | - | | 2.8934 | 7300 | 0.0386 | - | - | | 2.8973 | 7310 | 0.0385 | - | - | | 2.9013 | 7320 | 0.0405 | - | - | | 2.9053 | 7330 | 0.0389 | - | - | | 2.9092 | 7340 | 0.0362 | - | - | | 2.9132 | 7350 | 0.0397 | - | - | | 2.9172 | 7360 | 0.0393 | - | - | | 2.9211 | 7370 | 0.0397 | - | - | | 2.9251 | 7380 | 0.0386 | - | - | | 2.9291 | 7390 | 0.0388 | - | - | | 2.9330 | 7400 | 0.0366 | - | - | | 2.9370 | 7410 | 0.0394 | - | - | | 2.9409 | 7420 | 0.0396 | - | - | | 2.9449 | 7430 | 0.0393 | - | - | | 2.9489 | 7440 | 0.0401 | - | - | | 2.9528 | 7450 | 0.0391 | - | - | | 2.9568 | 7460 | 0.0388 | - | - | | 2.9608 | 7470 | 0.0386 | - | - | | 2.9647 | 7480 | 0.0391 | - | - | | 2.9687 | 7490 | 0.037 | - | - | | 2.9727 | 7500 | 0.0386 | 0.0477 | 0.9613 | | 2.9766 | 7510 | 0.0392 | - | - | | 2.9806 | 7520 | 0.0399 | - | - | | 2.9845 | 7530 | 0.0385 | - | - | | 2.9885 | 7540 | 0.0381 | - | - | | 2.9925 | 7550 | 0.0392 | - | - | | 2.9964 | 7560 | 0.0386 | - | - | | 3.0004 | 7570 | 0.0394 | - | - | | 3.0044 | 7580 | 0.0401 | - | - | | 3.0083 | 7590 | 0.0404 | - | - | | 3.0123 | 7600 | 0.0384 | - | - | | 3.0163 | 7610 | 0.0381 | - | - | | 3.0202 | 7620 | 0.0383 | - | - | | 3.0242 | 7630 | 0.0389 | - | - | | 3.0281 | 7640 | 0.0364 | - | - | | 3.0321 | 7650 | 0.0399 | - | - | | 3.0361 | 7660 | 0.0383 | - | - | | 3.0400 | 7670 | 0.0401 | - | - | | 3.0440 | 7680 | 0.0388 | - | - | | 3.0480 | 7690 | 0.0389 | - | - | | 3.0519 | 7700 | 0.036 | - | - | | 3.0559 | 7710 | 0.0403 | - | - | | 3.0598 | 7720 | 0.0376 | - | - | | 3.0638 | 7730 | 0.0387 | - | - | | 3.0678 | 7740 | 0.0405 | - | - | | 3.0717 | 7750 | 0.0399 | - | - | | 3.0757 | 7760 | 0.0382 | - | - | | 3.0797 | 7770 | 0.0376 | - | - | | 3.0836 | 7780 | 0.0393 | - | - | | 3.0876 | 7790 | 0.0388 | - | - | | 3.0916 | 7800 | 0.0395 | - | - | | 3.0955 | 7810 | 0.0391 | - | - | | 3.0995 | 7820 | 0.0392 | - | - | | 3.1034 | 7830 | 0.0371 | - | - | | 3.1074 | 7840 | 0.039 | - | - | | 3.1114 | 7850 | 0.0395 | - | - | | 3.1153 | 7860 | 0.0385 | - | - | | 3.1193 | 7870 | 0.0362 | - | - | | 3.1233 | 7880 | 0.0375 | - | - | | 3.1272 | 7890 | 0.0376 | - | - | | 3.1312 | 7900 | 0.0384 | - | - | | 3.1352 | 7910 | 0.0378 | - | - | | 3.1391 | 7920 | 0.0393 | - | - | | 3.1431 | 7930 | 0.0378 | - | - | | 3.1470 | 7940 | 0.0404 | - | - | | 3.1510 | 7950 | 0.0361 | - | - | | 3.1550 | 7960 | 0.0369 | - | - | | 3.1589 | 7970 | 0.0396 | - | - | | 3.1629 | 7980 | 0.0404 | - | - | | 3.1669 | 7990 | 0.0386 | - | - | | 3.1708 | 8000 | 0.038 | 0.0473 | 0.9616 | | 3.1748 | 8010 | 0.0372 | - | - | | 3.1788 | 8020 | 0.0373 | - | - | | 3.1827 | 8030 | 0.0369 | - | - | | 3.1867 | 8040 | 0.0371 | - | - | | 3.1906 | 8050 | 0.0386 | - | - | | 3.1946 | 8060 | 0.038 | - | - | | 3.1986 | 8070 | 0.0366 | - | - | | 3.2025 | 8080 | 0.0378 | - | - | | 3.2065 | 8090 | 0.0379 | - | - | | 3.2105 | 8100 | 0.038 | - | - | | 3.2144 | 8110 | 0.0374 | - | - | | 3.2184 | 8120 | 0.0388 | - | - | | 3.2224 | 8130 | 0.038 | - | - | | 3.2263 | 8140 | 0.0363 | - | - | | 3.2303 | 8150 | 0.0369 | - | - | | 3.2342 | 8160 | 0.0371 | - | - | | 3.2382 | 8170 | 0.0377 | - | - | | 3.2422 | 8180 | 0.0364 | - | - | | 3.2461 | 8190 | 0.0372 | - | - | | 3.2501 | 8200 | 0.0403 | - | - | | 3.2541 | 8210 | 0.0385 | - | - | | 3.2580 | 8220 | 0.0385 | - | - | | 3.2620 | 8230 | 0.0386 | - | - | | 3.2660 | 8240 | 0.0369 | - | - | | 3.2699 | 8250 | 0.039 | - | - | | 3.2739 | 8260 | 0.0365 | - | - | | 3.2778 | 8270 | 0.0382 | - | - | | 3.2818 | 8280 | 0.0354 | - | - | | 3.2858 | 8290 | 0.0393 | - | - | | 3.2897 | 8300 | 0.0387 | - | - | | 3.2937 | 8310 | 0.0366 | - | - | | 3.2977 | 8320 | 0.0391 | - | - | | 3.3016 | 8330 | 0.0382 | - | - | | 3.3056 | 8340 | 0.0377 | - | - | | 3.3096 | 8350 | 0.0369 | - | - | | 3.3135 | 8360 | 0.0384 | - | - | | 3.3175 | 8370 | 0.0379 | - | - | | 3.3214 | 8380 | 0.0372 | - | - | | 3.3254 | 8390 | 0.0391 | - | - | | 3.3294 | 8400 | 0.0378 | - | - | | 3.3333 | 8410 | 0.0393 | - | - | | 3.3373 | 8420 | 0.0373 | - | - | | 3.3413 | 8430 | 0.0394 | - | - | | 3.3452 | 8440 | 0.0367 | - | - | | 3.3492 | 8450 | 0.0373 | - | - | | 3.3532 | 8460 | 0.0362 | - | - | | 3.3571 | 8470 | 0.0372 | - | - | | 3.3611 | 8480 | 0.0396 | - | - | | 3.3650 | 8490 | 0.0392 | - | - | | 3.3690 | 8500 | 0.0374 | 0.0470 | 0.9616 | | 3.3730 | 8510 | 0.0378 | - | - | | 3.3769 | 8520 | 0.0385 | - | - | | 3.3809 | 8530 | 0.0375 | - | - | | 3.3849 | 8540 | 0.0392 | - | - | | 3.3888 | 8550 | 0.0378 | - | - | | 3.3928 | 8560 | 0.0366 | - | - | | 3.3967 | 8570 | 0.0383 | - | - | | 3.4007 | 8580 | 0.0372 | - | - | | 3.4047 | 8590 | 0.038 | - | - | | 3.4086 | 8600 | 0.0384 | - | - | | 3.4126 | 8610 | 0.0359 | - | - | | 3.4166 | 8620 | 0.0377 | - | - | | 3.4205 | 8630 | 0.0387 | - | - | | 3.4245 | 8640 | 0.0365 | - | - | | 3.4285 | 8650 | 0.0359 | - | - | | 3.4324 | 8660 | 0.0358 | - | - | | 3.4364 | 8670 | 0.0366 | - | - | | 3.4403 | 8680 | 0.0369 | - | - | | 3.4443 | 8690 | 0.0365 | - | - | | 3.4483 | 8700 | 0.0366 | - | - | | 3.4522 | 8710 | 0.0357 | - | - | | 3.4562 | 8720 | 0.036 | - | - | | 3.4602 | 8730 | 0.0365 | - | - | | 3.4641 | 8740 | 0.0381 | - | - | | 3.4681 | 8750 | 0.0399 | - | - | | 3.4721 | 8760 | 0.0388 | - | - | | 3.4760 | 8770 | 0.0366 | - | - | | 3.4800 | 8780 | 0.0346 | - | - | | 3.4839 | 8790 | 0.0371 | - | - | | 3.4879 | 8800 | 0.0376 | - | - | | 3.4919 | 8810 | 0.0374 | - | - | | 3.4958 | 8820 | 0.0354 | - | - | | 3.4998 | 8830 | 0.0363 | - | - | | 3.5038 | 8840 | 0.0374 | - | - | | 3.5077 | 8850 | 0.0373 | - | - | | 3.5117 | 8860 | 0.0347 | - | - | | 3.5157 | 8870 | 0.0374 | - | - | | 3.5196 | 8880 | 0.0349 | - | - | | 3.5236 | 8890 | 0.0376 | - | - | | 3.5275 | 8900 | 0.0363 | - | - | | 3.5315 | 8910 | 0.036 | - | - | | 3.5355 | 8920 | 0.0378 | - | - | | 3.5394 | 8930 | 0.0376 | - | - | | 3.5434 | 8940 | 0.039 | - | - | | 3.5474 | 8950 | 0.0373 | - | - | | 3.5513 | 8960 | 0.0361 | - | - | | 3.5553 | 8970 | 0.0356 | - | - | | 3.5593 | 8980 | 0.0357 | - | - | | 3.5632 | 8990 | 0.0371 | - | - | | 3.5672 | 9000 | 0.0374 | 0.0468 | 0.9617 | | 3.5711 | 9010 | 0.0372 | - | - | | 3.5751 | 9020 | 0.0369 | - | - | | 3.5791 | 9030 | 0.0362 | - | - | | 3.5830 | 9040 | 0.0367 | - | - | | 3.5870 | 9050 | 0.0388 | - | - | | 3.5910 | 9060 | 0.0369 | - | - | | 3.5949 | 9070 | 0.0375 | - | - | | 3.5989 | 9080 | 0.0374 | - | - | | 3.6029 | 9090 | 0.0365 | - | - | | 3.6068 | 9100 | 0.0363 | - | - | | 3.6108 | 9110 | 0.0396 | - | - | | 3.6147 | 9120 | 0.0372 | - | - | | 3.6187 | 9130 | 0.0363 | - | - | | 3.6227 | 9140 | 0.0363 | - | - | | 3.6266 | 9150 | 0.0366 | - | - | | 3.6306 | 9160 | 0.0352 | - | - | | 3.6346 | 9170 | 0.038 | - | - | | 3.6385 | 9180 | 0.0359 | - | - | | 3.6425 | 9190 | 0.0374 | - | - | | 3.6465 | 9200 | 0.0363 | - | - | | 3.6504 | 9210 | 0.0356 | - | - | | 3.6544 | 9220 | 0.0354 | - | - | | 3.6583 | 9230 | 0.0377 | - | - | | 3.6623 | 9240 | 0.0361 | - | - | | 3.6663 | 9250 | 0.0374 | - | - | | 3.6702 | 9260 | 0.0373 | - | - | | 3.6742 | 9270 | 0.0357 | - | - | | 3.6782 | 9280 | 0.0359 | - | - | | 3.6821 | 9290 | 0.037 | - | - | | 3.6861 | 9300 | 0.0366 | - | - | | 3.6901 | 9310 | 0.0374 | - | - | | 3.6940 | 9320 | 0.0376 | - | - | | 3.6980 | 9330 | 0.0373 | - | - | | 3.7019 | 9340 | 0.0363 | - | - | | 3.7059 | 9350 | 0.0381 | - | - | | 3.7099 | 9360 | 0.0353 | - | - | | 3.7138 | 9370 | 0.0363 | - | - | | 3.7178 | 9380 | 0.0377 | - | - | | 3.7218 | 9390 | 0.0364 | - | - | | 3.7257 | 9400 | 0.0378 | - | - | | 3.7297 | 9410 | 0.0376 | - | - | | 3.7337 | 9420 | 0.0376 | - | - | | 3.7376 | 9430 | 0.0368 | - | - | | 3.7416 | 9440 | 0.0381 | - | - | | 3.7455 | 9450 | 0.0358 | - | - | | 3.7495 | 9460 | 0.0362 | - | - | | 3.7535 | 9470 | 0.038 | - | - | | 3.7574 | 9480 | 0.0371 | - | - | | 3.7614 | 9490 | 0.0371 | - | - | | 3.7654 | 9500 | 0.0353 | 0.0465 | 0.9617 | | 3.7693 | 9510 | 0.0381 | - | - | | 3.7733 | 9520 | 0.0362 | - | - | | 3.7772 | 9530 | 0.0352 | - | - | | 3.7812 | 9540 | 0.0363 | - | - | | 3.7852 | 9550 | 0.0352 | - | - | | 3.7891 | 9560 | 0.0367 | - | - | | 3.7931 | 9570 | 0.035 | - | - | | 3.7971 | 9580 | 0.0367 | - | - | | 3.8010 | 9590 | 0.0369 | - | - | | 3.8050 | 9600 | 0.0365 | - | - | | 3.8090 | 9610 | 0.0369 | - | - | | 3.8129 | 9620 | 0.0359 | - | - | | 3.8169 | 9630 | 0.0367 | - | - | | 3.8208 | 9640 | 0.0384 | - | - | | 3.8248 | 9650 | 0.0359 | - | - | | 3.8288 | 9660 | 0.0368 | - | - | | 3.8327 | 9670 | 0.0363 | - | - | | 3.8367 | 9680 | 0.0374 | - | - | | 3.8407 | 9690 | 0.0372 | - | - | | 3.8446 | 9700 | 0.0361 | - | - | | 3.8486 | 9710 | 0.0381 | - | - | | 3.8526 | 9720 | 0.0342 | - | - | | 3.8565 | 9730 | 0.0348 | - | - | | 3.8605 | 9740 | 0.0372 | - | - | | 3.8644 | 9750 | 0.0377 | - | - | | 3.8684 | 9760 | 0.0356 | - | - | | 3.8724 | 9770 | 0.0365 | - | - | | 3.8763 | 9780 | 0.0368 | - | - | | 3.8803 | 9790 | 0.0366 | - | - | | 3.8843 | 9800 | 0.0383 | - | - | | 3.8882 | 9810 | 0.0353 | - | - | | 3.8922 | 9820 | 0.0377 | - | - | | 3.8962 | 9830 | 0.0364 | - | - | | 3.9001 | 9840 | 0.0362 | - | - | | 3.9041 | 9850 | 0.0351 | - | - | | 3.9080 | 9860 | 0.0381 | - | - | | 3.9120 | 9870 | 0.0368 | - | - | | 3.9160 | 9880 | 0.0361 | - | - | | 3.9199 | 9890 | 0.0356 | - | - | | 3.9239 | 9900 | 0.035 | - | - | | 3.9279 | 9910 | 0.0345 | - | - | | 3.9318 | 9920 | 0.0378 | - | - | | 3.9358 | 9930 | 0.036 | - | - | | 3.9398 | 9940 | 0.0367 | - | - | | 3.9437 | 9950 | 0.0356 | - | - | | 3.9477 | 9960 | 0.034 | - | - | | 3.9516 | 9970 | 0.0377 | - | - | | 3.9556 | 9980 | 0.0379 | - | - | | 3.9596 | 9990 | 0.0388 | - | - | | 3.9635 | 10000 | 0.0362 | 0.0463 | 0.9618 | </details> ### Framework Versions - Python: 3.10.10 - Sentence Transformers: 3.0.1 - Transformers: 4.45.0.dev0 - PyTorch: 2.2.1+cu121 - Accelerate: 0.34.2 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### ContrastiveLoss ```bibtex @inproceedings{hadsell2006dimensionality, author={Hadsell, R. and Chopra, S. and LeCun, Y.}, booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, title={Dimensionality Reduction by Learning an Invariant Mapping}, year={2006}, volume={2}, number={}, pages={1735-1742}, doi={10.1109/CVPR.2006.100} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
null
Non_BioNLP
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d --> - **Maximum Sequence Length:** 384 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("IconicAI/all-mpnet-base-v2-anteater") # Run inference sentences = [ 'floating up', 'i can see an interface', 'All indicators are blue.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Binary Classification * Dataset: `sts-dev` * Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator) | Metric | Value | |:-----------------------------|:-----------| | cosine_accuracy | 0.9002 | | cosine_accuracy_threshold | 0.4495 | | cosine_f1 | 0.8908 | | cosine_f1_threshold | 0.4158 | | cosine_precision | 0.8739 | | cosine_recall | 0.9085 | | cosine_ap | 0.9618 | | dot_accuracy | 0.9002 | | dot_accuracy_threshold | 0.4495 | | dot_f1 | 0.8908 | | dot_f1_threshold | 0.4158 | | dot_precision | 0.8739 | | dot_recall | 0.9085 | | dot_ap | 0.9618 | | manhattan_accuracy | 0.899 | | manhattan_accuracy_threshold | 22.6441 | | manhattan_f1 | 0.8901 | | manhattan_f1_threshold | 23.3306 | | manhattan_precision | 0.8757 | | manhattan_recall | 0.905 | | manhattan_ap | 0.9615 | | euclidean_accuracy | 0.9002 | | euclidean_accuracy_threshold | 1.0493 | | euclidean_f1 | 0.8908 | | euclidean_f1_threshold | 1.0809 | | euclidean_precision | 0.8739 | | euclidean_recall | 0.9085 | | euclidean_ap | 0.9618 | | max_accuracy | 0.9002 | | max_accuracy_threshold | 22.6441 | | max_f1 | 0.8908 | | max_f1_threshold | 23.3306 | | max_precision | 0.8757 | | max_recall | 0.9085 | | **max_ap** | **0.9618** | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 645,861 training samples * Columns: <code>example1</code>, <code>example2</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | example1 | example2 | label | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------| | type | string | string | int | | details | <ul><li>min: 3 tokens</li><li>mean: 9.02 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.19 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> | * Samples: | example1 | example2 | label | |:---------------------------------------------------------------------------------|:--------------------------------------------------------------|:---------------| | <code>Drones are present all around here.</code> | <code>What are those drones doing buzzing around here?</code> | <code>1</code> | | <code>am i the only one</code> | <code>am i the only one alive on this ship</code> | <code>1</code> | | <code>I’m in a room with a door in front of me and a terminal on the wall</code> | <code>mechanics room</code> | <code>1</code> | * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: ```json { "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 1.0, "size_average": true } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 76,741 evaluation samples * Columns: <code>example1</code>, <code>example2</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | example1 | example2 | label | |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-----------------------------| | type | string | string | int | | details | <ul><li>min: 3 tokens</li><li>mean: 9.25 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.15 tokens</li><li>max: 19 tokens</li></ul> | <ul><li>1: 100.00%</li></ul> | * Samples: | example1 | example2 | label | |:----------------------------------------------|:----------------------------------------------------------|:---------------| | <code>Not much, how about you?</code> | <code>Nothing, you?</code> | <code>1</code> | | <code>Rings stopped moving.</code> | <code>I notice the rings are not spinning anymore.</code> | <code>1</code> | | <code>it's Laboratory Chemical Storage</code> | <code>the switch is Laboratory Chemical Storage</code> | <code>1</code> | * Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters: ```json { "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE", "margin": 1.0, "size_average": true } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 256 - `per_device_eval_batch_size`: 256 - `learning_rate`: 1e-07 - `weight_decay`: 0.01 - `max_grad_norm`: 0.02 - `num_train_epochs`: 5 - `warmup_steps`: 100 - `bf16`: True - `eval_on_start`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 256 - `per_device_eval_batch_size`: 256 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 1e-07 - `weight_decay`: 0.01 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 0.02 - `num_train_epochs`: 5 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 100 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: True - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs <details><summary>Click to expand</summary> | Epoch | Step | Training Loss | loss | sts-dev_max_ap | |:------:|:-----:|:-------------:|:------:|:--------------:| | 0 | 0 | - | 0.0764 | 0.9175 | | 0.0040 | 10 | 0.0772 | - | - | | 0.0079 | 20 | 0.0783 | - | - | | 0.0119 | 30 | 0.0775 | - | - | | 0.0159 | 40 | 0.0756 | - | - | | 0.0198 | 50 | 0.075 | - | - | | 0.0238 | 60 | 0.0777 | - | - | | 0.0277 | 70 | 0.0784 | - | - | | 0.0317 | 80 | 0.0721 | - | - | | 0.0357 | 90 | 0.0755 | - | - | | 0.0396 | 100 | 0.0778 | - | - | | 0.0436 | 110 | 0.0735 | - | - | | 0.0476 | 120 | 0.0753 | - | - | | 0.0515 | 130 | 0.0741 | - | - | | 0.0555 | 140 | 0.0791 | - | - | | 0.0595 | 150 | 0.0753 | - | - | | 0.0634 | 160 | 0.0748 | - | - | | 0.0674 | 170 | 0.0709 | - | - | | 0.0713 | 180 | 0.0738 | - | - | | 0.0753 | 190 | 0.0759 | - | - | | 0.0793 | 200 | 0.0703 | - | - | | 0.0832 | 210 | 0.0724 | - | - | | 0.0872 | 220 | 0.0726 | - | - | | 0.0912 | 230 | 0.0734 | - | - | | 0.0951 | 240 | 0.0718 | - | - | | 0.0991 | 250 | 0.0776 | - | - | | 0.1031 | 260 | 0.0757 | - | - | | 0.1070 | 270 | 0.0722 | - | - | | 0.1110 | 280 | 0.0746 | - | - | | 0.1149 | 290 | 0.0718 | - | - | | 0.1189 | 300 | 0.0733 | - | - | | 0.1229 | 310 | 0.0725 | - | - | | 0.1268 | 320 | 0.0724 | - | - | | 0.1308 | 330 | 0.0681 | - | - | | 0.1348 | 340 | 0.0735 | - | - | | 0.1387 | 350 | 0.0716 | - | - | | 0.1427 | 360 | 0.0698 | - | - | | 0.1467 | 370 | 0.072 | - | - | | 0.1506 | 380 | 0.071 | - | - | | 0.1546 | 390 | 0.0713 | - | - | | 0.1585 | 400 | 0.073 | - | - | | 0.1625 | 410 | 0.077 | - | - | | 0.1665 | 420 | 0.072 | - | - | | 0.1704 | 430 | 0.0689 | - | - | | 0.1744 | 440 | 0.0708 | - | - | | 0.1784 | 450 | 0.0687 | - | - | | 0.1823 | 460 | 0.0692 | - | - | | 0.1863 | 470 | 0.0715 | - | - | | 0.1902 | 480 | 0.0707 | - | - | | 0.1942 | 490 | 0.0671 | - | - | | 0.1982 | 500 | 0.0741 | 0.0703 | 0.9245 | | 0.2021 | 510 | 0.0681 | - | - | | 0.2061 | 520 | 0.0749 | - | - | | 0.2101 | 530 | 0.0718 | - | - | | 0.2140 | 540 | 0.0689 | - | - | | 0.2180 | 550 | 0.0733 | - | - | | 0.2220 | 560 | 0.067 | - | - | | 0.2259 | 570 | 0.0685 | - | - | | 0.2299 | 580 | 0.07 | - | - | | 0.2338 | 590 | 0.0683 | - | - | | 0.2378 | 600 | 0.0693 | - | - | | 0.2418 | 610 | 0.0705 | - | - | | 0.2457 | 620 | 0.0707 | - | - | | 0.2497 | 630 | 0.0703 | - | - | | 0.2537 | 640 | 0.068 | - | - | | 0.2576 | 650 | 0.0682 | - | - | | 0.2616 | 660 | 0.0654 | - | - | | 0.2656 | 670 | 0.0682 | - | - | | 0.2695 | 680 | 0.0698 | - | - | | 0.2735 | 690 | 0.0701 | - | - | | 0.2774 | 700 | 0.0674 | - | - | | 0.2814 | 710 | 0.0669 | - | - | | 0.2854 | 720 | 0.0677 | - | - | | 0.2893 | 730 | 0.0674 | - | - | | 0.2933 | 740 | 0.0682 | - | - | | 0.2973 | 750 | 0.0677 | - | - | | 0.3012 | 760 | 0.0661 | - | - | | 0.3052 | 770 | 0.0634 | - | - | | 0.3092 | 780 | 0.0658 | - | - | | 0.3131 | 790 | 0.0687 | - | - | | 0.3171 | 800 | 0.069 | - | - | | 0.3210 | 810 | 0.0665 | - | - | | 0.3250 | 820 | 0.0648 | - | - | | 0.3290 | 830 | 0.0656 | - | - | | 0.3329 | 840 | 0.0672 | - | - | | 0.3369 | 850 | 0.0663 | - | - | | 0.3409 | 860 | 0.0666 | - | - | | 0.3448 | 870 | 0.0644 | - | - | | 0.3488 | 880 | 0.065 | - | - | | 0.3528 | 890 | 0.0666 | - | - | | 0.3567 | 900 | 0.0657 | - | - | | 0.3607 | 910 | 0.0636 | - | - | | 0.3646 | 920 | 0.0681 | - | - | | 0.3686 | 930 | 0.0671 | - | - | | 0.3726 | 940 | 0.0653 | - | - | | 0.3765 | 950 | 0.0643 | - | - | | 0.3805 | 960 | 0.0637 | - | - | | 0.3845 | 970 | 0.066 | - | - | | 0.3884 | 980 | 0.0645 | - | - | | 0.3924 | 990 | 0.0628 | - | - | | 0.3964 | 1000 | 0.0627 | 0.0653 | 0.9325 | | 0.4003 | 1010 | 0.0647 | - | - | | 0.4043 | 1020 | 0.0649 | - | - | | 0.4082 | 1030 | 0.0637 | - | - | | 0.4122 | 1040 | 0.0648 | - | - | | 0.4162 | 1050 | 0.0647 | - | - | | 0.4201 | 1060 | 0.0646 | - | - | | 0.4241 | 1070 | 0.0659 | - | - | | 0.4281 | 1080 | 0.0641 | - | - | | 0.4320 | 1090 | 0.0609 | - | - | | 0.4360 | 1100 | 0.0642 | - | - | | 0.4400 | 1110 | 0.0614 | - | - | | 0.4439 | 1120 | 0.0603 | - | - | | 0.4479 | 1130 | 0.0613 | - | - | | 0.4518 | 1140 | 0.0646 | - | - | | 0.4558 | 1150 | 0.0619 | - | - | | 0.4598 | 1160 | 0.0611 | - | - | | 0.4637 | 1170 | 0.0638 | - | - | | 0.4677 | 1180 | 0.0636 | - | - | | 0.4717 | 1190 | 0.0647 | - | - | | 0.4756 | 1200 | 0.0622 | - | - | | 0.4796 | 1210 | 0.0642 | - | - | | 0.4836 | 1220 | 0.0607 | - | - | | 0.4875 | 1230 | 0.0623 | - | - | | 0.4915 | 1240 | 0.0614 | - | - | | 0.4954 | 1250 | 0.0643 | - | - | | 0.4994 | 1260 | 0.0614 | - | - | | 0.5034 | 1270 | 0.0599 | - | - | | 0.5073 | 1280 | 0.0615 | - | - | | 0.5113 | 1290 | 0.0595 | - | - | | 0.5153 | 1300 | 0.061 | - | - | | 0.5192 | 1310 | 0.0623 | - | - | | 0.5232 | 1320 | 0.0646 | - | - | | 0.5272 | 1330 | 0.0621 | - | - | | 0.5311 | 1340 | 0.0606 | - | - | | 0.5351 | 1350 | 0.0597 | - | - | | 0.5390 | 1360 | 0.0621 | - | - | | 0.5430 | 1370 | 0.0586 | - | - | | 0.5470 | 1380 | 0.0618 | - | - | | 0.5509 | 1390 | 0.0601 | - | - | | 0.5549 | 1400 | 0.0578 | - | - | | 0.5589 | 1410 | 0.0628 | - | - | | 0.5628 | 1420 | 0.0595 | - | - | | 0.5668 | 1430 | 0.0576 | - | - | | 0.5707 | 1440 | 0.0606 | - | - | | 0.5747 | 1450 | 0.0618 | - | - | | 0.5787 | 1460 | 0.0591 | - | - | | 0.5826 | 1470 | 0.0598 | - | - | | 0.5866 | 1480 | 0.0611 | - | - | | 0.5906 | 1490 | 0.0594 | - | - | | 0.5945 | 1500 | 0.0616 | 0.0619 | 0.9393 | | 0.5985 | 1510 | 0.0592 | - | - | | 0.6025 | 1520 | 0.0597 | - | - | | 0.6064 | 1530 | 0.0619 | - | - | | 0.6104 | 1540 | 0.0595 | - | - | | 0.6143 | 1550 | 0.0598 | - | - | | 0.6183 | 1560 | 0.0609 | - | - | | 0.6223 | 1570 | 0.059 | - | - | | 0.6262 | 1580 | 0.0601 | - | - | | 0.6302 | 1590 | 0.0595 | - | - | | 0.6342 | 1600 | 0.059 | - | - | | 0.6381 | 1610 | 0.0606 | - | - | | 0.6421 | 1620 | 0.0591 | - | - | | 0.6461 | 1630 | 0.0617 | - | - | | 0.6500 | 1640 | 0.0592 | - | - | | 0.6540 | 1650 | 0.0588 | - | - | | 0.6579 | 1660 | 0.0587 | - | - | | 0.6619 | 1670 | 0.0585 | - | - | | 0.6659 | 1680 | 0.0558 | - | - | | 0.6698 | 1690 | 0.057 | - | - | | 0.6738 | 1700 | 0.0598 | - | - | | 0.6778 | 1710 | 0.0567 | - | - | | 0.6817 | 1720 | 0.0555 | - | - | | 0.6857 | 1730 | 0.0604 | - | - | | 0.6897 | 1740 | 0.0558 | - | - | | 0.6936 | 1750 | 0.0572 | - | - | | 0.6976 | 1760 | 0.0577 | - | - | | 0.7015 | 1770 | 0.0587 | - | - | | 0.7055 | 1780 | 0.0589 | - | - | | 0.7095 | 1790 | 0.0598 | - | - | | 0.7134 | 1800 | 0.0583 | - | - | | 0.7174 | 1810 | 0.058 | - | - | | 0.7214 | 1820 | 0.0564 | - | - | | 0.7253 | 1830 | 0.0589 | - | - | | 0.7293 | 1840 | 0.0557 | - | - | | 0.7333 | 1850 | 0.0586 | - | - | | 0.7372 | 1860 | 0.0601 | - | - | | 0.7412 | 1870 | 0.0556 | - | - | | 0.7451 | 1880 | 0.0572 | - | - | | 0.7491 | 1890 | 0.0574 | - | - | | 0.7531 | 1900 | 0.0583 | - | - | | 0.7570 | 1910 | 0.0573 | - | - | | 0.7610 | 1920 | 0.0555 | - | - | | 0.7650 | 1930 | 0.0561 | - | - | | 0.7689 | 1940 | 0.0579 | - | - | | 0.7729 | 1950 | 0.0557 | - | - | | 0.7769 | 1960 | 0.0558 | - | - | | 0.7808 | 1970 | 0.0589 | - | - | | 0.7848 | 1980 | 0.0572 | - | - | | 0.7887 | 1990 | 0.0572 | - | - | | 0.7927 | 2000 | 0.0549 | 0.0592 | 0.9444 | | 0.7967 | 2010 | 0.0548 | - | - | | 0.8006 | 2020 | 0.0569 | - | - | | 0.8046 | 2030 | 0.058 | - | - | | 0.8086 | 2040 | 0.0581 | - | - | | 0.8125 | 2050 | 0.0585 | - | - | | 0.8165 | 2060 | 0.0542 | - | - | | 0.8205 | 2070 | 0.0558 | - | - | | 0.8244 | 2080 | 0.0569 | - | - | | 0.8284 | 2090 | 0.0564 | - | - | | 0.8323 | 2100 | 0.0552 | - | - | | 0.8363 | 2110 | 0.0559 | - | - | | 0.8403 | 2120 | 0.0534 | - | - | | 0.8442 | 2130 | 0.0543 | - | - | | 0.8482 | 2140 | 0.0573 | - | - | | 0.8522 | 2150 | 0.0546 | - | - | | 0.8561 | 2160 | 0.0554 | - | - | | 0.8601 | 2170 | 0.0568 | - | - | | 0.8641 | 2180 | 0.0544 | - | - | | 0.8680 | 2190 | 0.0547 | - | - | | 0.8720 | 2200 | 0.0549 | - | - | | 0.8759 | 2210 | 0.0544 | - | - | | 0.8799 | 2220 | 0.058 | - | - | | 0.8839 | 2230 | 0.0557 | - | - | | 0.8878 | 2240 | 0.0551 | - | - | | 0.8918 | 2250 | 0.0558 | - | - | | 0.8958 | 2260 | 0.0554 | - | - | | 0.8997 | 2270 | 0.053 | - | - | | 0.9037 | 2280 | 0.0552 | - | - | | 0.9076 | 2290 | 0.0549 | - | - | | 0.9116 | 2300 | 0.0533 | - | - | | 0.9156 | 2310 | 0.0543 | - | - | | 0.9195 | 2320 | 0.0531 | - | - | | 0.9235 | 2330 | 0.0553 | - | - | | 0.9275 | 2340 | 0.0542 | - | - | | 0.9314 | 2350 | 0.0537 | - | - | | 0.9354 | 2360 | 0.0536 | - | - | | 0.9394 | 2370 | 0.055 | - | - | | 0.9433 | 2380 | 0.0551 | - | - | | 0.9473 | 2390 | 0.0532 | - | - | | 0.9512 | 2400 | 0.0556 | - | - | | 0.9552 | 2410 | 0.0548 | - | - | | 0.9592 | 2420 | 0.0533 | - | - | | 0.9631 | 2430 | 0.0536 | - | - | | 0.9671 | 2440 | 0.0549 | - | - | | 0.9711 | 2450 | 0.0548 | - | - | | 0.9750 | 2460 | 0.0557 | - | - | | 0.9790 | 2470 | 0.055 | - | - | | 0.9830 | 2480 | 0.0535 | - | - | | 0.9869 | 2490 | 0.0564 | - | - | | 0.9909 | 2500 | 0.0526 | 0.0572 | 0.9482 | | 0.9948 | 2510 | 0.0547 | - | - | | 0.9988 | 2520 | 0.054 | - | - | | 1.0028 | 2530 | 0.0527 | - | - | | 1.0067 | 2540 | 0.0522 | - | - | | 1.0107 | 2550 | 0.0535 | - | - | | 1.0147 | 2560 | 0.0557 | - | - | | 1.0186 | 2570 | 0.052 | - | - | | 1.0226 | 2580 | 0.055 | - | - | | 1.0266 | 2590 | 0.0542 | - | - | | 1.0305 | 2600 | 0.0539 | - | - | | 1.0345 | 2610 | 0.0523 | - | - | | 1.0384 | 2620 | 0.0507 | - | - | | 1.0424 | 2630 | 0.0517 | - | - | | 1.0464 | 2640 | 0.0543 | - | - | | 1.0503 | 2650 | 0.0543 | - | - | | 1.0543 | 2660 | 0.054 | - | - | | 1.0583 | 2670 | 0.0536 | - | - | | 1.0622 | 2680 | 0.0531 | - | - | | 1.0662 | 2690 | 0.0537 | - | - | | 1.0702 | 2700 | 0.0521 | - | - | | 1.0741 | 2710 | 0.054 | - | - | | 1.0781 | 2720 | 0.0513 | - | - | | 1.0820 | 2730 | 0.0496 | - | - | | 1.0860 | 2740 | 0.0519 | - | - | | 1.0900 | 2750 | 0.0529 | - | - | | 1.0939 | 2760 | 0.0542 | - | - | | 1.0979 | 2770 | 0.0526 | - | - | | 1.1019 | 2780 | 0.051 | - | - | | 1.1058 | 2790 | 0.0531 | - | - | | 1.1098 | 2800 | 0.0539 | - | - | | 1.1138 | 2810 | 0.0521 | - | - | | 1.1177 | 2820 | 0.0539 | - | - | | 1.1217 | 2830 | 0.0505 | - | - | | 1.1256 | 2840 | 0.0513 | - | - | | 1.1296 | 2850 | 0.0521 | - | - | | 1.1336 | 2860 | 0.0537 | - | - | | 1.1375 | 2870 | 0.0514 | - | - | | 1.1415 | 2880 | 0.0511 | - | - | | 1.1455 | 2890 | 0.0495 | - | - | | 1.1494 | 2900 | 0.0505 | - | - | | 1.1534 | 2910 | 0.0517 | - | - | | 1.1574 | 2920 | 0.0509 | - | - | | 1.1613 | 2930 | 0.0507 | - | - | | 1.1653 | 2940 | 0.0535 | - | - | | 1.1692 | 2950 | 0.0511 | - | - | | 1.1732 | 2960 | 0.0507 | - | - | | 1.1772 | 2970 | 0.052 | - | - | | 1.1811 | 2980 | 0.0494 | - | - | | 1.1851 | 2990 | 0.0524 | - | - | | 1.1891 | 3000 | 0.052 | 0.0555 | 0.9512 | | 1.1930 | 3010 | 0.0536 | - | - | | 1.1970 | 3020 | 0.0502 | - | - | | 1.2010 | 3030 | 0.0504 | - | - | | 1.2049 | 3040 | 0.0532 | - | - | | 1.2089 | 3050 | 0.0529 | - | - | | 1.2128 | 3060 | 0.0514 | - | - | | 1.2168 | 3070 | 0.0504 | - | - | | 1.2208 | 3080 | 0.0501 | - | - | | 1.2247 | 3090 | 0.0493 | - | - | | 1.2287 | 3100 | 0.0507 | - | - | | 1.2327 | 3110 | 0.0501 | - | - | | 1.2366 | 3120 | 0.0502 | - | - | | 1.2406 | 3130 | 0.0491 | - | - | | 1.2446 | 3140 | 0.0495 | - | - | | 1.2485 | 3150 | 0.051 | - | - | | 1.2525 | 3160 | 0.0495 | - | - | | 1.2564 | 3170 | 0.0534 | - | - | | 1.2604 | 3180 | 0.0483 | - | - | | 1.2644 | 3190 | 0.049 | - | - | | 1.2683 | 3200 | 0.0532 | - | - | | 1.2723 | 3210 | 0.0481 | - | - | | 1.2763 | 3220 | 0.0496 | - | - | | 1.2802 | 3230 | 0.0504 | - | - | | 1.2842 | 3240 | 0.0477 | - | - | | 1.2881 | 3250 | 0.0483 | - | - | | 1.2921 | 3260 | 0.0493 | - | - | | 1.2961 | 3270 | 0.0491 | - | - | | 1.3000 | 3280 | 0.0489 | - | - | | 1.3040 | 3290 | 0.0493 | - | - | | 1.3080 | 3300 | 0.0507 | - | - | | 1.3119 | 3310 | 0.0482 | - | - | | 1.3159 | 3320 | 0.0506 | - | - | | 1.3199 | 3330 | 0.0486 | - | - | | 1.3238 | 3340 | 0.0487 | - | - | | 1.3278 | 3350 | 0.0482 | - | - | | 1.3317 | 3360 | 0.0492 | - | - | | 1.3357 | 3370 | 0.049 | - | - | | 1.3397 | 3380 | 0.0485 | - | - | | 1.3436 | 3390 | 0.0501 | - | - | | 1.3476 | 3400 | 0.0505 | - | - | | 1.3516 | 3410 | 0.0508 | - | - | | 1.3555 | 3420 | 0.0481 | - | - | | 1.3595 | 3430 | 0.049 | - | - | | 1.3635 | 3440 | 0.0495 | - | - | | 1.3674 | 3450 | 0.0507 | - | - | | 1.3714 | 3460 | 0.0478 | - | - | | 1.3753 | 3470 | 0.0522 | - | - | | 1.3793 | 3480 | 0.0505 | - | - | | 1.3833 | 3490 | 0.0489 | - | - | | 1.3872 | 3500 | 0.0504 | 0.0541 | 0.9537 | | 1.3912 | 3510 | 0.0492 | - | - | | 1.3952 | 3520 | 0.0469 | - | - | | 1.3991 | 3530 | 0.0495 | - | - | | 1.4031 | 3540 | 0.0486 | - | - | | 1.4071 | 3550 | 0.0506 | - | - | | 1.4110 | 3560 | 0.0506 | - | - | | 1.4150 | 3570 | 0.0475 | - | - | | 1.4189 | 3580 | 0.0483 | - | - | | 1.4229 | 3590 | 0.0471 | - | - | | 1.4269 | 3600 | 0.0477 | - | - | | 1.4308 | 3610 | 0.0494 | - | - | | 1.4348 | 3620 | 0.0481 | - | - | | 1.4388 | 3630 | 0.0484 | - | - | | 1.4427 | 3640 | 0.0505 | - | - | | 1.4467 | 3650 | 0.0498 | - | - | | 1.4507 | 3660 | 0.0482 | - | - | | 1.4546 | 3670 | 0.0488 | - | - | | 1.4586 | 3680 | 0.0458 | - | - | | 1.4625 | 3690 | 0.0479 | - | - | | 1.4665 | 3700 | 0.0474 | - | - | | 1.4705 | 3710 | 0.0471 | - | - | | 1.4744 | 3720 | 0.0498 | - | - | | 1.4784 | 3730 | 0.0495 | - | - | | 1.4824 | 3740 | 0.0505 | - | - | | 1.4863 | 3750 | 0.0487 | - | - | | 1.4903 | 3760 | 0.0485 | - | - | | 1.4943 | 3770 | 0.0479 | - | - | | 1.4982 | 3780 | 0.0475 | - | - | | 1.5022 | 3790 | 0.0462 | - | - | | 1.5061 | 3800 | 0.0487 | - | - | | 1.5101 | 3810 | 0.0476 | - | - | | 1.5141 | 3820 | 0.0485 | - | - | | 1.5180 | 3830 | 0.0489 | - | - | | 1.5220 | 3840 | 0.0475 | - | - | | 1.5260 | 3850 | 0.0484 | - | - | | 1.5299 | 3860 | 0.0465 | - | - | | 1.5339 | 3870 | 0.0491 | - | - | | 1.5379 | 3880 | 0.0477 | - | - | | 1.5418 | 3890 | 0.0475 | - | - | | 1.5458 | 3900 | 0.0489 | - | - | | 1.5497 | 3910 | 0.0459 | - | - | | 1.5537 | 3920 | 0.0488 | - | - | | 1.5577 | 3930 | 0.0475 | - | - | | 1.5616 | 3940 | 0.049 | - | - | | 1.5656 | 3950 | 0.0469 | - | - | | 1.5696 | 3960 | 0.0493 | - | - | | 1.5735 | 3970 | 0.0481 | - | - | | 1.5775 | 3980 | 0.0478 | - | - | | 1.5815 | 3990 | 0.0456 | - | - | | 1.5854 | 4000 | 0.047 | 0.0528 | 0.9556 | | 1.5894 | 4010 | 0.0481 | - | - | | 1.5933 | 4020 | 0.0468 | - | - | | 1.5973 | 4030 | 0.0467 | - | - | | 1.6013 | 4040 | 0.0448 | - | - | | 1.6052 | 4050 | 0.0491 | - | - | | 1.6092 | 4060 | 0.0476 | - | - | | 1.6132 | 4070 | 0.0459 | - | - | | 1.6171 | 4080 | 0.0456 | - | - | | 1.6211 | 4090 | 0.0476 | - | - | | 1.6250 | 4100 | 0.0443 | - | - | | 1.6290 | 4110 | 0.0477 | - | - | | 1.6330 | 4120 | 0.0476 | - | - | | 1.6369 | 4130 | 0.0466 | - | - | | 1.6409 | 4140 | 0.0457 | - | - | | 1.6449 | 4150 | 0.0468 | - | - | | 1.6488 | 4160 | 0.0462 | - | - | | 1.6528 | 4170 | 0.0476 | - | - | | 1.6568 | 4180 | 0.0464 | - | - | | 1.6607 | 4190 | 0.0467 | - | - | | 1.6647 | 4200 | 0.0455 | - | - | | 1.6686 | 4210 | 0.0455 | - | - | | 1.6726 | 4220 | 0.0474 | - | - | | 1.6766 | 4230 | 0.0469 | - | - | | 1.6805 | 4240 | 0.0453 | - | - | | 1.6845 | 4250 | 0.0464 | - | - | | 1.6885 | 4260 | 0.0448 | - | - | | 1.6924 | 4270 | 0.0448 | - | - | | 1.6964 | 4280 | 0.0461 | - | - | | 1.7004 | 4290 | 0.0444 | - | - | | 1.7043 | 4300 | 0.045 | - | - | | 1.7083 | 4310 | 0.047 | - | - | | 1.7122 | 4320 | 0.0473 | - | - | | 1.7162 | 4330 | 0.0453 | - | - | | 1.7202 | 4340 | 0.0461 | - | - | | 1.7241 | 4350 | 0.0464 | - | - | | 1.7281 | 4360 | 0.0474 | - | - | | 1.7321 | 4370 | 0.0444 | - | - | | 1.7360 | 4380 | 0.0465 | - | - | | 1.7400 | 4390 | 0.0454 | - | - | | 1.7440 | 4400 | 0.045 | - | - | | 1.7479 | 4410 | 0.0444 | - | - | | 1.7519 | 4420 | 0.0451 | - | - | | 1.7558 | 4430 | 0.0454 | - | - | | 1.7598 | 4440 | 0.0471 | - | - | | 1.7638 | 4450 | 0.0467 | - | - | | 1.7677 | 4460 | 0.0466 | - | - | | 1.7717 | 4470 | 0.0452 | - | - | | 1.7757 | 4480 | 0.0466 | - | - | | 1.7796 | 4490 | 0.046 | - | - | | 1.7836 | 4500 | 0.0462 | 0.0518 | 0.9570 | | 1.7876 | 4510 | 0.0459 | - | - | | 1.7915 | 4520 | 0.0455 | - | - | | 1.7955 | 4530 | 0.0456 | - | - | | 1.7994 | 4540 | 0.0476 | - | - | | 1.8034 | 4550 | 0.0465 | - | - | | 1.8074 | 4560 | 0.0447 | - | - | | 1.8113 | 4570 | 0.0438 | - | - | | 1.8153 | 4580 | 0.0463 | - | - | | 1.8193 | 4590 | 0.0452 | - | - | | 1.8232 | 4600 | 0.0454 | - | - | | 1.8272 | 4610 | 0.0459 | - | - | | 1.8312 | 4620 | 0.044 | - | - | | 1.8351 | 4630 | 0.0445 | - | - | | 1.8391 | 4640 | 0.0435 | - | - | | 1.8430 | 4650 | 0.0435 | - | - | | 1.8470 | 4660 | 0.0442 | - | - | | 1.8510 | 4670 | 0.0424 | - | - | | 1.8549 | 4680 | 0.0438 | - | - | | 1.8589 | 4690 | 0.0451 | - | - | | 1.8629 | 4700 | 0.0451 | - | - | | 1.8668 | 4710 | 0.0455 | - | - | | 1.8708 | 4720 | 0.0441 | - | - | | 1.8748 | 4730 | 0.0432 | - | - | | 1.8787 | 4740 | 0.0445 | - | - | | 1.8827 | 4750 | 0.0482 | - | - | | 1.8866 | 4760 | 0.045 | - | - | | 1.8906 | 4770 | 0.0443 | - | - | | 1.8946 | 4780 | 0.0451 | - | - | | 1.8985 | 4790 | 0.0446 | - | - | | 1.9025 | 4800 | 0.0432 | - | - | | 1.9065 | 4810 | 0.0432 | - | - | | 1.9104 | 4820 | 0.0465 | - | - | | 1.9144 | 4830 | 0.0462 | - | - | | 1.9184 | 4840 | 0.0443 | - | - | | 1.9223 | 4850 | 0.0447 | - | - | | 1.9263 | 4860 | 0.0459 | - | - | | 1.9302 | 4870 | 0.043 | - | - | | 1.9342 | 4880 | 0.0456 | - | - | | 1.9382 | 4890 | 0.0444 | - | - | | 1.9421 | 4900 | 0.0455 | - | - | | 1.9461 | 4910 | 0.0427 | - | - | | 1.9501 | 4920 | 0.0461 | - | - | | 1.9540 | 4930 | 0.0454 | - | - | | 1.9580 | 4940 | 0.0447 | - | - | | 1.9620 | 4950 | 0.0434 | - | - | | 1.9659 | 4960 | 0.0444 | - | - | | 1.9699 | 4970 | 0.0451 | - | - | | 1.9738 | 4980 | 0.044 | - | - | | 1.9778 | 4990 | 0.0444 | - | - | | 1.9818 | 5000 | 0.0439 | 0.0508 | 0.9581 | | 1.9857 | 5010 | 0.0427 | - | - | | 1.9897 | 5020 | 0.0439 | - | - | | 1.9937 | 5030 | 0.0427 | - | - | | 1.9976 | 5040 | 0.0435 | - | - | | 2.0016 | 5050 | 0.0445 | - | - | | 2.0055 | 5060 | 0.0433 | - | - | | 2.0095 | 5070 | 0.0433 | - | - | | 2.0135 | 5080 | 0.0435 | - | - | | 2.0174 | 5090 | 0.0438 | - | - | | 2.0214 | 5100 | 0.0431 | - | - | | 2.0254 | 5110 | 0.0422 | - | - | | 2.0293 | 5120 | 0.0436 | - | - | | 2.0333 | 5130 | 0.0455 | - | - | | 2.0373 | 5140 | 0.044 | - | - | | 2.0412 | 5150 | 0.0423 | - | - | | 2.0452 | 5160 | 0.045 | - | - | | 2.0491 | 5170 | 0.0422 | - | - | | 2.0531 | 5180 | 0.0435 | - | - | | 2.0571 | 5190 | 0.0419 | - | - | | 2.0610 | 5200 | 0.0427 | - | - | | 2.0650 | 5210 | 0.0447 | - | - | | 2.0690 | 5220 | 0.0443 | - | - | | 2.0729 | 5230 | 0.0429 | - | - | | 2.0769 | 5240 | 0.0436 | - | - | | 2.0809 | 5250 | 0.0436 | - | - | | 2.0848 | 5260 | 0.0439 | - | - | | 2.0888 | 5270 | 0.0433 | - | - | | 2.0927 | 5280 | 0.0434 | - | - | | 2.0967 | 5290 | 0.0428 | - | - | | 2.1007 | 5300 | 0.0431 | - | - | | 2.1046 | 5310 | 0.0441 | - | - | | 2.1086 | 5320 | 0.0443 | - | - | | 2.1126 | 5330 | 0.0442 | - | - | | 2.1165 | 5340 | 0.044 | - | - | | 2.1205 | 5350 | 0.0431 | - | - | | 2.1245 | 5360 | 0.0432 | - | - | | 2.1284 | 5370 | 0.0421 | - | - | | 2.1324 | 5380 | 0.0439 | - | - | | 2.1363 | 5390 | 0.0436 | - | - | | 2.1403 | 5400 | 0.0428 | - | - | | 2.1443 | 5410 | 0.044 | - | - | | 2.1482 | 5420 | 0.0428 | - | - | | 2.1522 | 5430 | 0.0428 | - | - | | 2.1562 | 5440 | 0.0418 | - | - | | 2.1601 | 5450 | 0.0439 | - | - | | 2.1641 | 5460 | 0.0415 | - | - | | 2.1681 | 5470 | 0.0415 | - | - | | 2.1720 | 5480 | 0.0418 | - | - | | 2.1760 | 5490 | 0.042 | - | - | | 2.1799 | 5500 | 0.0418 | 0.0500 | 0.9591 | | 2.1839 | 5510 | 0.0434 | - | - | | 2.1879 | 5520 | 0.0424 | - | - | | 2.1918 | 5530 | 0.0425 | - | - | | 2.1958 | 5540 | 0.0427 | - | - | | 2.1998 | 5550 | 0.0418 | - | - | | 2.2037 | 5560 | 0.04 | - | - | | 2.2077 | 5570 | 0.0426 | - | - | | 2.2117 | 5580 | 0.0413 | - | - | | 2.2156 | 5590 | 0.0429 | - | - | | 2.2196 | 5600 | 0.0428 | - | - | | 2.2235 | 5610 | 0.044 | - | - | | 2.2275 | 5620 | 0.0423 | - | - | | 2.2315 | 5630 | 0.0398 | - | - | | 2.2354 | 5640 | 0.0427 | - | - | | 2.2394 | 5650 | 0.0419 | - | - | | 2.2434 | 5660 | 0.0424 | - | - | | 2.2473 | 5670 | 0.0422 | - | - | | 2.2513 | 5680 | 0.0426 | - | - | | 2.2553 | 5690 | 0.0434 | - | - | | 2.2592 | 5700 | 0.044 | - | - | | 2.2632 | 5710 | 0.0427 | - | - | | 2.2671 | 5720 | 0.0431 | - | - | | 2.2711 | 5730 | 0.0416 | - | - | | 2.2751 | 5740 | 0.0428 | - | - | | 2.2790 | 5750 | 0.0418 | - | - | | 2.2830 | 5760 | 0.0418 | - | - | | 2.2870 | 5770 | 0.0421 | - | - | | 2.2909 | 5780 | 0.041 | - | - | | 2.2949 | 5790 | 0.0419 | - | - | | 2.2989 | 5800 | 0.0422 | - | - | | 2.3028 | 5810 | 0.0428 | - | - | | 2.3068 | 5820 | 0.0432 | - | - | | 2.3107 | 5830 | 0.043 | - | - | | 2.3147 | 5840 | 0.0424 | - | - | | 2.3187 | 5850 | 0.0396 | - | - | | 2.3226 | 5860 | 0.0433 | - | - | | 2.3266 | 5870 | 0.0413 | - | - | | 2.3306 | 5880 | 0.0436 | - | - | | 2.3345 | 5890 | 0.0399 | - | - | | 2.3385 | 5900 | 0.0426 | - | - | | 2.3424 | 5910 | 0.0405 | - | - | | 2.3464 | 5920 | 0.0423 | - | - | | 2.3504 | 5930 | 0.0409 | - | - | | 2.3543 | 5940 | 0.0412 | - | - | | 2.3583 | 5950 | 0.0401 | - | - | | 2.3623 | 5960 | 0.042 | - | - | | 2.3662 | 5970 | 0.0397 | - | - | | 2.3702 | 5980 | 0.0422 | - | - | | 2.3742 | 5990 | 0.0416 | - | - | | 2.3781 | 6000 | 0.0422 | 0.0493 | 0.9599 | | 2.3821 | 6010 | 0.041 | - | - | | 2.3860 | 6020 | 0.0404 | - | - | | 2.3900 | 6030 | 0.0404 | - | - | | 2.3940 | 6040 | 0.0412 | - | - | | 2.3979 | 6050 | 0.0424 | - | - | | 2.4019 | 6060 | 0.043 | - | - | | 2.4059 | 6070 | 0.0416 | - | - | | 2.4098 | 6080 | 0.0405 | - | - | | 2.4138 | 6090 | 0.0408 | - | - | | 2.4178 | 6100 | 0.0413 | - | - | | 2.4217 | 6110 | 0.0408 | - | - | | 2.4257 | 6120 | 0.0407 | - | - | | 2.4296 | 6130 | 0.041 | - | - | | 2.4336 | 6140 | 0.0387 | - | - | | 2.4376 | 6150 | 0.0408 | - | - | | 2.4415 | 6160 | 0.0413 | - | - | | 2.4455 | 6170 | 0.0429 | - | - | | 2.4495 | 6180 | 0.0394 | - | - | | 2.4534 | 6190 | 0.041 | - | - | | 2.4574 | 6200 | 0.0419 | - | - | | 2.4614 | 6210 | 0.0395 | - | - | | 2.4653 | 6220 | 0.0405 | - | - | | 2.4693 | 6230 | 0.0412 | - | - | | 2.4732 | 6240 | 0.0439 | - | - | | 2.4772 | 6250 | 0.0423 | - | - | | 2.4812 | 6260 | 0.0423 | - | - | | 2.4851 | 6270 | 0.0406 | - | - | | 2.4891 | 6280 | 0.0402 | - | - | | 2.4931 | 6290 | 0.0428 | - | - | | 2.4970 | 6300 | 0.0422 | - | - | | 2.5010 | 6310 | 0.0399 | - | - | | 2.5050 | 6320 | 0.0409 | - | - | | 2.5089 | 6330 | 0.0412 | - | - | | 2.5129 | 6340 | 0.0403 | - | - | | 2.5168 | 6350 | 0.04 | - | - | | 2.5208 | 6360 | 0.0412 | - | - | | 2.5248 | 6370 | 0.0424 | - | - | | 2.5287 | 6380 | 0.0409 | - | - | | 2.5327 | 6390 | 0.0409 | - | - | | 2.5367 | 6400 | 0.0418 | - | - | | 2.5406 | 6410 | 0.0403 | - | - | | 2.5446 | 6420 | 0.0413 | - | - | | 2.5486 | 6430 | 0.038 | - | - | | 2.5525 | 6440 | 0.0414 | - | - | | 2.5565 | 6450 | 0.0409 | - | - | | 2.5604 | 6460 | 0.0407 | - | - | | 2.5644 | 6470 | 0.0406 | - | - | | 2.5684 | 6480 | 0.0392 | - | - | | 2.5723 | 6490 | 0.0417 | - | - | | 2.5763 | 6500 | 0.0391 | 0.0487 | 0.9605 | | 2.5803 | 6510 | 0.039 | - | - | | 2.5842 | 6520 | 0.0414 | - | - | | 2.5882 | 6530 | 0.0411 | - | - | | 2.5922 | 6540 | 0.0395 | - | - | | 2.5961 | 6550 | 0.0405 | - | - | | 2.6001 | 6560 | 0.0392 | - | - | | 2.6040 | 6570 | 0.041 | - | - | | 2.6080 | 6580 | 0.0387 | - | - | | 2.6120 | 6590 | 0.0409 | - | - | | 2.6159 | 6600 | 0.0416 | - | - | | 2.6199 | 6610 | 0.0399 | - | - | | 2.6239 | 6620 | 0.0395 | - | - | | 2.6278 | 6630 | 0.0416 | - | - | | 2.6318 | 6640 | 0.0397 | - | - | | 2.6358 | 6650 | 0.041 | - | - | | 2.6397 | 6660 | 0.0422 | - | - | | 2.6437 | 6670 | 0.0404 | - | - | | 2.6476 | 6680 | 0.0405 | - | - | | 2.6516 | 6690 | 0.0413 | - | - | | 2.6556 | 6700 | 0.0405 | - | - | | 2.6595 | 6710 | 0.04 | - | - | | 2.6635 | 6720 | 0.0383 | - | - | | 2.6675 | 6730 | 0.0412 | - | - | | 2.6714 | 6740 | 0.0416 | - | - | | 2.6754 | 6750 | 0.0405 | - | - | | 2.6793 | 6760 | 0.0423 | - | - | | 2.6833 | 6770 | 0.0419 | - | - | | 2.6873 | 6780 | 0.0405 | - | - | | 2.6912 | 6790 | 0.0409 | - | - | | 2.6952 | 6800 | 0.04 | - | - | | 2.6992 | 6810 | 0.0397 | - | - | | 2.7031 | 6820 | 0.039 | - | - | | 2.7071 | 6830 | 0.0393 | - | - | | 2.7111 | 6840 | 0.0413 | - | - | | 2.7150 | 6850 | 0.039 | - | - | | 2.7190 | 6860 | 0.04 | - | - | | 2.7229 | 6870 | 0.0409 | - | - | | 2.7269 | 6880 | 0.0403 | - | - | | 2.7309 | 6890 | 0.0397 | - | - | | 2.7348 | 6900 | 0.0404 | - | - | | 2.7388 | 6910 | 0.0396 | - | - | | 2.7428 | 6920 | 0.04 | - | - | | 2.7467 | 6930 | 0.0397 | - | - | | 2.7507 | 6940 | 0.0393 | - | - | | 2.7547 | 6950 | 0.037 | - | - | | 2.7586 | 6960 | 0.0383 | - | - | | 2.7626 | 6970 | 0.04 | - | - | | 2.7665 | 6980 | 0.0406 | - | - | | 2.7705 | 6990 | 0.0394 | - | - | | 2.7745 | 7000 | 0.0385 | 0.0482 | 0.9609 | | 2.7784 | 7010 | 0.0383 | - | - | | 2.7824 | 7020 | 0.0403 | - | - | | 2.7864 | 7030 | 0.04 | - | - | | 2.7903 | 7040 | 0.0395 | - | - | | 2.7943 | 7050 | 0.039 | - | - | | 2.7983 | 7060 | 0.0398 | - | - | | 2.8022 | 7070 | 0.0401 | - | - | | 2.8062 | 7080 | 0.0401 | - | - | | 2.8101 | 7090 | 0.0395 | - | - | | 2.8141 | 7100 | 0.0396 | - | - | | 2.8181 | 7110 | 0.0395 | - | - | | 2.8220 | 7120 | 0.0411 | - | - | | 2.8260 | 7130 | 0.0386 | - | - | | 2.8300 | 7140 | 0.0382 | - | - | | 2.8339 | 7150 | 0.0386 | - | - | | 2.8379 | 7160 | 0.0389 | - | - | | 2.8419 | 7170 | 0.0396 | - | - | | 2.8458 | 7180 | 0.0394 | - | - | | 2.8498 | 7190 | 0.04 | - | - | | 2.8537 | 7200 | 0.0401 | - | - | | 2.8577 | 7210 | 0.0412 | - | - | | 2.8617 | 7220 | 0.0383 | - | - | | 2.8656 | 7230 | 0.0392 | - | - | | 2.8696 | 7240 | 0.0394 | - | - | | 2.8736 | 7250 | 0.0399 | - | - | | 2.8775 | 7260 | 0.0403 | - | - | | 2.8815 | 7270 | 0.0384 | - | - | | 2.8855 | 7280 | 0.0397 | - | - | | 2.8894 | 7290 | 0.0407 | - | - | | 2.8934 | 7300 | 0.0386 | - | - | | 2.8973 | 7310 | 0.0385 | - | - | | 2.9013 | 7320 | 0.0405 | - | - | | 2.9053 | 7330 | 0.0389 | - | - | | 2.9092 | 7340 | 0.0362 | - | - | | 2.9132 | 7350 | 0.0397 | - | - | | 2.9172 | 7360 | 0.0393 | - | - | | 2.9211 | 7370 | 0.0397 | - | - | | 2.9251 | 7380 | 0.0386 | - | - | | 2.9291 | 7390 | 0.0388 | - | - | | 2.9330 | 7400 | 0.0366 | - | - | | 2.9370 | 7410 | 0.0394 | - | - | | 2.9409 | 7420 | 0.0396 | - | - | | 2.9449 | 7430 | 0.0393 | - | - | | 2.9489 | 7440 | 0.0401 | - | - | | 2.9528 | 7450 | 0.0391 | - | - | | 2.9568 | 7460 | 0.0388 | - | - | | 2.9608 | 7470 | 0.0386 | - | - | | 2.9647 | 7480 | 0.0391 | - | - | | 2.9687 | 7490 | 0.037 | - | - | | 2.9727 | 7500 | 0.0386 | 0.0477 | 0.9613 | | 2.9766 | 7510 | 0.0392 | - | - | | 2.9806 | 7520 | 0.0399 | - | - | | 2.9845 | 7530 | 0.0385 | - | - | | 2.9885 | 7540 | 0.0381 | - | - | | 2.9925 | 7550 | 0.0392 | - | - | | 2.9964 | 7560 | 0.0386 | - | - | | 3.0004 | 7570 | 0.0394 | - | - | | 3.0044 | 7580 | 0.0401 | - | - | | 3.0083 | 7590 | 0.0404 | - | - | | 3.0123 | 7600 | 0.0384 | - | - | | 3.0163 | 7610 | 0.0381 | - | - | | 3.0202 | 7620 | 0.0383 | - | - | | 3.0242 | 7630 | 0.0389 | - | - | | 3.0281 | 7640 | 0.0364 | - | - | | 3.0321 | 7650 | 0.0399 | - | - | | 3.0361 | 7660 | 0.0383 | - | - | | 3.0400 | 7670 | 0.0401 | - | - | | 3.0440 | 7680 | 0.0388 | - | - | | 3.0480 | 7690 | 0.0389 | - | - | | 3.0519 | 7700 | 0.036 | - | - | | 3.0559 | 7710 | 0.0403 | - | - | | 3.0598 | 7720 | 0.0376 | - | - | | 3.0638 | 7730 | 0.0387 | - | - | | 3.0678 | 7740 | 0.0405 | - | - | | 3.0717 | 7750 | 0.0399 | - | - | | 3.0757 | 7760 | 0.0382 | - | - | | 3.0797 | 7770 | 0.0376 | - | - | | 3.0836 | 7780 | 0.0393 | - | - | | 3.0876 | 7790 | 0.0388 | - | - | | 3.0916 | 7800 | 0.0395 | - | - | | 3.0955 | 7810 | 0.0391 | - | - | | 3.0995 | 7820 | 0.0392 | - | - | | 3.1034 | 7830 | 0.0371 | - | - | | 3.1074 | 7840 | 0.039 | - | - | | 3.1114 | 7850 | 0.0395 | - | - | | 3.1153 | 7860 | 0.0385 | - | - | | 3.1193 | 7870 | 0.0362 | - | - | | 3.1233 | 7880 | 0.0375 | - | - | | 3.1272 | 7890 | 0.0376 | - | - | | 3.1312 | 7900 | 0.0384 | - | - | | 3.1352 | 7910 | 0.0378 | - | - | | 3.1391 | 7920 | 0.0393 | - | - | | 3.1431 | 7930 | 0.0378 | - | - | | 3.1470 | 7940 | 0.0404 | - | - | | 3.1510 | 7950 | 0.0361 | - | - | | 3.1550 | 7960 | 0.0369 | - | - | | 3.1589 | 7970 | 0.0396 | - | - | | 3.1629 | 7980 | 0.0404 | - | - | | 3.1669 | 7990 | 0.0386 | - | - | | 3.1708 | 8000 | 0.038 | 0.0473 | 0.9616 | | 3.1748 | 8010 | 0.0372 | - | - | | 3.1788 | 8020 | 0.0373 | - | - | | 3.1827 | 8030 | 0.0369 | - | - | | 3.1867 | 8040 | 0.0371 | - | - | | 3.1906 | 8050 | 0.0386 | - | - | | 3.1946 | 8060 | 0.038 | - | - | | 3.1986 | 8070 | 0.0366 | - | - | | 3.2025 | 8080 | 0.0378 | - | - | | 3.2065 | 8090 | 0.0379 | - | - | | 3.2105 | 8100 | 0.038 | - | - | | 3.2144 | 8110 | 0.0374 | - | - | | 3.2184 | 8120 | 0.0388 | - | - | | 3.2224 | 8130 | 0.038 | - | - | | 3.2263 | 8140 | 0.0363 | - | - | | 3.2303 | 8150 | 0.0369 | - | - | | 3.2342 | 8160 | 0.0371 | - | - | | 3.2382 | 8170 | 0.0377 | - | - | | 3.2422 | 8180 | 0.0364 | - | - | | 3.2461 | 8190 | 0.0372 | - | - | | 3.2501 | 8200 | 0.0403 | - | - | | 3.2541 | 8210 | 0.0385 | - | - | | 3.2580 | 8220 | 0.0385 | - | - | | 3.2620 | 8230 | 0.0386 | - | - | | 3.2660 | 8240 | 0.0369 | - | - | | 3.2699 | 8250 | 0.039 | - | - | | 3.2739 | 8260 | 0.0365 | - | - | | 3.2778 | 8270 | 0.0382 | - | - | | 3.2818 | 8280 | 0.0354 | - | - | | 3.2858 | 8290 | 0.0393 | - | - | | 3.2897 | 8300 | 0.0387 | - | - | | 3.2937 | 8310 | 0.0366 | - | - | | 3.2977 | 8320 | 0.0391 | - | - | | 3.3016 | 8330 | 0.0382 | - | - | | 3.3056 | 8340 | 0.0377 | - | - | | 3.3096 | 8350 | 0.0369 | - | - | | 3.3135 | 8360 | 0.0384 | - | - | | 3.3175 | 8370 | 0.0379 | - | - | | 3.3214 | 8380 | 0.0372 | - | - | | 3.3254 | 8390 | 0.0391 | - | - | | 3.3294 | 8400 | 0.0378 | - | - | | 3.3333 | 8410 | 0.0393 | - | - | | 3.3373 | 8420 | 0.0373 | - | - | | 3.3413 | 8430 | 0.0394 | - | - | | 3.3452 | 8440 | 0.0367 | - | - | | 3.3492 | 8450 | 0.0373 | - | - | | 3.3532 | 8460 | 0.0362 | - | - | | 3.3571 | 8470 | 0.0372 | - | - | | 3.3611 | 8480 | 0.0396 | - | - | | 3.3650 | 8490 | 0.0392 | - | - | | 3.3690 | 8500 | 0.0374 | 0.0470 | 0.9616 | | 3.3730 | 8510 | 0.0378 | - | - | | 3.3769 | 8520 | 0.0385 | - | - | | 3.3809 | 8530 | 0.0375 | - | - | | 3.3849 | 8540 | 0.0392 | - | - | | 3.3888 | 8550 | 0.0378 | - | - | | 3.3928 | 8560 | 0.0366 | - | - | | 3.3967 | 8570 | 0.0383 | - | - | | 3.4007 | 8580 | 0.0372 | - | - | | 3.4047 | 8590 | 0.038 | - | - | | 3.4086 | 8600 | 0.0384 | - | - | | 3.4126 | 8610 | 0.0359 | - | - | | 3.4166 | 8620 | 0.0377 | - | - | | 3.4205 | 8630 | 0.0387 | - | - | | 3.4245 | 8640 | 0.0365 | - | - | | 3.4285 | 8650 | 0.0359 | - | - | | 3.4324 | 8660 | 0.0358 | - | - | | 3.4364 | 8670 | 0.0366 | - | - | | 3.4403 | 8680 | 0.0369 | - | - | | 3.4443 | 8690 | 0.0365 | - | - | | 3.4483 | 8700 | 0.0366 | - | - | | 3.4522 | 8710 | 0.0357 | - | - | | 3.4562 | 8720 | 0.036 | - | - | | 3.4602 | 8730 | 0.0365 | - | - | | 3.4641 | 8740 | 0.0381 | - | - | | 3.4681 | 8750 | 0.0399 | - | - | | 3.4721 | 8760 | 0.0388 | - | - | | 3.4760 | 8770 | 0.0366 | - | - | | 3.4800 | 8780 | 0.0346 | - | - | | 3.4839 | 8790 | 0.0371 | - | - | | 3.4879 | 8800 | 0.0376 | - | - | | 3.4919 | 8810 | 0.0374 | - | - | | 3.4958 | 8820 | 0.0354 | - | - | | 3.4998 | 8830 | 0.0363 | - | - | | 3.5038 | 8840 | 0.0374 | - | - | | 3.5077 | 8850 | 0.0373 | - | - | | 3.5117 | 8860 | 0.0347 | - | - | | 3.5157 | 8870 | 0.0374 | - | - | | 3.5196 | 8880 | 0.0349 | - | - | | 3.5236 | 8890 | 0.0376 | - | - | | 3.5275 | 8900 | 0.0363 | - | - | | 3.5315 | 8910 | 0.036 | - | - | | 3.5355 | 8920 | 0.0378 | - | - | | 3.5394 | 8930 | 0.0376 | - | - | | 3.5434 | 8940 | 0.039 | - | - | | 3.5474 | 8950 | 0.0373 | - | - | | 3.5513 | 8960 | 0.0361 | - | - | | 3.5553 | 8970 | 0.0356 | - | - | | 3.5593 | 8980 | 0.0357 | - | - | | 3.5632 | 8990 | 0.0371 | - | - | | 3.5672 | 9000 | 0.0374 | 0.0468 | 0.9617 | | 3.5711 | 9010 | 0.0372 | - | - | | 3.5751 | 9020 | 0.0369 | - | - | | 3.5791 | 9030 | 0.0362 | - | - | | 3.5830 | 9040 | 0.0367 | - | - | | 3.5870 | 9050 | 0.0388 | - | - | | 3.5910 | 9060 | 0.0369 | - | - | | 3.5949 | 9070 | 0.0375 | - | - | | 3.5989 | 9080 | 0.0374 | - | - | | 3.6029 | 9090 | 0.0365 | - | - | | 3.6068 | 9100 | 0.0363 | - | - | | 3.6108 | 9110 | 0.0396 | - | - | | 3.6147 | 9120 | 0.0372 | - | - | | 3.6187 | 9130 | 0.0363 | - | - | | 3.6227 | 9140 | 0.0363 | - | - | | 3.6266 | 9150 | 0.0366 | - | - | | 3.6306 | 9160 | 0.0352 | - | - | | 3.6346 | 9170 | 0.038 | - | - | | 3.6385 | 9180 | 0.0359 | - | - | | 3.6425 | 9190 | 0.0374 | - | - | | 3.6465 | 9200 | 0.0363 | - | - | | 3.6504 | 9210 | 0.0356 | - | - | | 3.6544 | 9220 | 0.0354 | - | - | | 3.6583 | 9230 | 0.0377 | - | - | | 3.6623 | 9240 | 0.0361 | - | - | | 3.6663 | 9250 | 0.0374 | - | - | | 3.6702 | 9260 | 0.0373 | - | - | | 3.6742 | 9270 | 0.0357 | - | - | | 3.6782 | 9280 | 0.0359 | - | - | | 3.6821 | 9290 | 0.037 | - | - | | 3.6861 | 9300 | 0.0366 | - | - | | 3.6901 | 9310 | 0.0374 | - | - | | 3.6940 | 9320 | 0.0376 | - | - | | 3.6980 | 9330 | 0.0373 | - | - | | 3.7019 | 9340 | 0.0363 | - | - | | 3.7059 | 9350 | 0.0381 | - | - | | 3.7099 | 9360 | 0.0353 | - | - | | 3.7138 | 9370 | 0.0363 | - | - | | 3.7178 | 9380 | 0.0377 | - | - | | 3.7218 | 9390 | 0.0364 | - | - | | 3.7257 | 9400 | 0.0378 | - | - | | 3.7297 | 9410 | 0.0376 | - | - | | 3.7337 | 9420 | 0.0376 | - | - | | 3.7376 | 9430 | 0.0368 | - | - | | 3.7416 | 9440 | 0.0381 | - | - | | 3.7455 | 9450 | 0.0358 | - | - | | 3.7495 | 9460 | 0.0362 | - | - | | 3.7535 | 9470 | 0.038 | - | - | | 3.7574 | 9480 | 0.0371 | - | - | | 3.7614 | 9490 | 0.0371 | - | - | | 3.7654 | 9500 | 0.0353 | 0.0465 | 0.9617 | | 3.7693 | 9510 | 0.0381 | - | - | | 3.7733 | 9520 | 0.0362 | - | - | | 3.7772 | 9530 | 0.0352 | - | - | | 3.7812 | 9540 | 0.0363 | - | - | | 3.7852 | 9550 | 0.0352 | - | - | | 3.7891 | 9560 | 0.0367 | - | - | | 3.7931 | 9570 | 0.035 | - | - | | 3.7971 | 9580 | 0.0367 | - | - | | 3.8010 | 9590 | 0.0369 | - | - | | 3.8050 | 9600 | 0.0365 | - | - | | 3.8090 | 9610 | 0.0369 | - | - | | 3.8129 | 9620 | 0.0359 | - | - | | 3.8169 | 9630 | 0.0367 | - | - | | 3.8208 | 9640 | 0.0384 | - | - | | 3.8248 | 9650 | 0.0359 | - | - | | 3.8288 | 9660 | 0.0368 | - | - | | 3.8327 | 9670 | 0.0363 | - | - | | 3.8367 | 9680 | 0.0374 | - | - | | 3.8407 | 9690 | 0.0372 | - | - | | 3.8446 | 9700 | 0.0361 | - | - | | 3.8486 | 9710 | 0.0381 | - | - | | 3.8526 | 9720 | 0.0342 | - | - | | 3.8565 | 9730 | 0.0348 | - | - | | 3.8605 | 9740 | 0.0372 | - | - | | 3.8644 | 9750 | 0.0377 | - | - | | 3.8684 | 9760 | 0.0356 | - | - | | 3.8724 | 9770 | 0.0365 | - | - | | 3.8763 | 9780 | 0.0368 | - | - | | 3.8803 | 9790 | 0.0366 | - | - | | 3.8843 | 9800 | 0.0383 | - | - | | 3.8882 | 9810 | 0.0353 | - | - | | 3.8922 | 9820 | 0.0377 | - | - | | 3.8962 | 9830 | 0.0364 | - | - | | 3.9001 | 9840 | 0.0362 | - | - | | 3.9041 | 9850 | 0.0351 | - | - | | 3.9080 | 9860 | 0.0381 | - | - | | 3.9120 | 9870 | 0.0368 | - | - | | 3.9160 | 9880 | 0.0361 | - | - | | 3.9199 | 9890 | 0.0356 | - | - | | 3.9239 | 9900 | 0.035 | - | - | | 3.9279 | 9910 | 0.0345 | - | - | | 3.9318 | 9920 | 0.0378 | - | - | | 3.9358 | 9930 | 0.036 | - | - | | 3.9398 | 9940 | 0.0367 | - | - | | 3.9437 | 9950 | 0.0356 | - | - | | 3.9477 | 9960 | 0.034 | - | - | | 3.9516 | 9970 | 0.0377 | - | - | | 3.9556 | 9980 | 0.0379 | - | - | | 3.9596 | 9990 | 0.0388 | - | - | | 3.9635 | 10000 | 0.0362 | 0.0463 | 0.9618 | </details> ### Framework Versions - Python: 3.10.10 - Sentence Transformers: 3.0.1 - Transformers: 4.45.0.dev0 - PyTorch: 2.2.1+cu121 - Accelerate: 0.34.2 - Datasets: 2.21.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### ContrastiveLoss ```bibtex @inproceedings{hadsell2006dimensionality, author={Hadsell, R. and Chopra, S. and LeCun, Y.}, booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, title={Dimensionality Reduction by Learning an Invariant Mapping}, year={2006}, volume={2}, number={}, pages={1735-1742}, doi={10.1109/CVPR.2006.100} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"base_model": "sentence-transformers/all-mpnet-base-v2", "datasets": [], "language": [], "library_name": "sentence-transformers", "metrics": ["cosine_accuracy", "cosine_accuracy_threshold", "cosine_f1", "cosine_f1_threshold", "cosine_precision", "cosine_recall", "cosine_ap", "dot_accuracy", "dot_accuracy_threshold", "dot_f1", "dot_f1_threshold", "dot_precision", "dot_recall", "dot_ap", "manhattan_accuracy", "manhattan_accuracy_threshold", "manhattan_f1", "manhattan_f1_threshold", "manhattan_precision", "manhattan_recall", "manhattan_ap", "euclidean_accuracy", "euclidean_accuracy_threshold", "euclidean_f1", "euclidean_f1_threshold", "euclidean_precision", "euclidean_recall", "euclidean_ap", "max_accuracy", "max_accuracy_threshold", "max_f1", "max_f1_threshold", "max_precision", "max_recall", "max_ap"], "pipeline_tag": "sentence-similarity", "tags": ["sentence-transformers", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:645861", "loss:ContrastiveLoss"], "widget": [{"source_sentence": "There was an Eye OS alert.", "sentences": ["i see lots of tubes", "On the door is lima mike zero twenty three north exit", "EyeOS, that’s some kind of tech, right"]}, {"source_sentence": "how to use", "sentences": ["how do i use it", "This fallen panel might lead to the control room.", "The rings appear to be completely unmoving now."]}, {"source_sentence": "I'm unsure about this room's name how do I find out?", "sentences": ["How do I identify the room I'm in without any obvious signs?", "The door shows l m zero twenty three north exit", "it reads Cryochamber Medical Support Systems"]}, {"source_sentence": "i see Cryochamber Atmospheric Sealing", "sentences": ["Can you guide me on how to identify this room?", "it's Laboratory Chemical Storage", "it reads Cryochamber Atmospheric Sealing"]}, {"source_sentence": "floating up", "sentences": ["All indicators are blue.", "i can see an interface", "Found a narrow corridor leading somewhere."]}], "model-index": [{"name": "SentenceTransformer based on sentence-transformers/all-mpnet-base-v2", "results": [{"task": {"type": "binary-classification", "name": "Binary Classification"}, "dataset": {"name": "sts dev", "type": "sts-dev"}, "metrics": [{"type": "cosine_accuracy", "value": 0.9002097965885251, "name": "Cosine Accuracy"}, {"type": "cosine_accuracy_threshold", "value": 0.4494956135749817, "name": "Cosine Accuracy Threshold"}, {"type": "cosine_f1", "value": 0.8908462575859745, "name": "Cosine F1"}, {"type": "cosine_f1_threshold", "value": 0.41577932238578796, "name": "Cosine F1 Threshold"}, {"type": "cosine_precision", "value": 0.8739044154126013, "name": "Cosine Precision"}, {"type": "cosine_recall", "value": 0.908457968024755, "name": "Cosine Recall"}, {"type": "cosine_ap", "value": 0.9618224590785398, "name": "Cosine Ap"}, {"type": "dot_accuracy", "value": 0.9002097965885251, "name": "Dot Accuracy"}, {"type": "dot_accuracy_threshold", "value": 0.4494956135749817, "name": "Dot Accuracy Threshold"}, {"type": "dot_f1", "value": 0.8908462575859745, "name": "Dot F1"}, {"type": "dot_f1_threshold", "value": 0.4157792925834656, "name": "Dot F1 Threshold"}, {"type": "dot_precision", "value": 0.8739044154126013, "name": "Dot Precision"}, {"type": "dot_recall", "value": 0.908457968024755, "name": "Dot Recall"}, {"type": "dot_ap", "value": 0.961822458350164, "name": "Dot Ap"}, {"type": "manhattan_accuracy", "value": 0.8989979280958028, "name": "Manhattan Accuracy"}, {"type": "manhattan_accuracy_threshold", "value": 22.644113540649414, "name": "Manhattan Accuracy Threshold"}, {"type": "manhattan_f1", "value": 0.8901100449479366, "name": "Manhattan F1"}, {"type": "manhattan_f1_threshold", "value": 23.330610275268555, "name": "Manhattan F1 Threshold"}, {"type": "manhattan_precision", "value": 0.8757104438714686, "name": "Manhattan Precision"}, {"type": "manhattan_recall", "value": 0.9049911179875079, "name": "Manhattan Recall"}, {"type": "manhattan_ap", "value": 0.9615309074220045, "name": "Manhattan Ap"}, {"type": "euclidean_accuracy", "value": 0.9002097965885251, "name": "Euclidean Accuracy"}, {"type": "euclidean_accuracy_threshold", "value": 1.0492897033691406, "name": "Euclidean Accuracy Threshold"}, {"type": "euclidean_f1", "value": 0.8908462575859745, "name": "Euclidean F1"}, {"type": "euclidean_f1_threshold", "value": 1.080944538116455, "name": "Euclidean F1 Threshold"}, {"type": "euclidean_precision", "value": 0.8739044154126013, "name": "Euclidean Precision"}, {"type": "euclidean_recall", "value": 0.908457968024755, "name": "Euclidean Recall"}, {"type": "euclidean_ap", "value": 0.9618224553002042, "name": "Euclidean Ap"}, {"type": "max_accuracy", "value": 0.9002097965885251, "name": "Max Accuracy"}, {"type": "max_accuracy_threshold", "value": 22.644113540649414, "name": "Max Accuracy Threshold"}, {"type": "max_f1", "value": 0.8908462575859745, "name": "Max F1"}, {"type": "max_f1_threshold", "value": 23.330610275268555, "name": "Max F1 Threshold"}, {"type": "max_precision", "value": 0.8757104438714686, "name": "Max Precision"}, {"type": "max_recall", "value": 0.908457968024755, "name": "Max Recall"}, {"type": "max_ap", "value": 0.9618224590785398, "name": "Max Ap"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
41,044
RaquelFS/marian-finetuned-kde4-en-to-fr
RaquelFS
translation
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-05-22T19:27:36Z
2024-05-28T18:26:36+00:00
12
0
--- base_model: Helsinki-NLP/opus-mt-en-fr datasets: - kde4 license: apache-2.0 tags: - translation - generated_from_trainer model-index: - name: marian-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1
{"base_model": "Helsinki-NLP/opus-mt-en-fr", "datasets": ["kde4"], "license": "apache-2.0", "tags": ["translation", "generated_from_trainer"], "model-index": [{"name": "marian-finetuned-kde4-en-to-fr", "results": []}]}
task
[ "TRANSLATION" ]
41,045
RajSang/pegasus-sports-titles
RajSang
text2text-generation
[ "transformers", "pytorch", "tensorboard", "pegasus", "text2text-generation", "generated_from_trainer", "en", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:04Z
2022-05-09T09:26:14+00:00
143
1
--- language: en tags: - generated_from_trainer widget: - text: Coutinho was just about to be introduced by Villa boss Gerrard midway through the second half when Bruno Fernandes slammed home his second goal of the game off the underside of the bar. But the Brazilian proved the catalyst for a memorable response. First he drove at the United defence, helping to create the space which Jacob Ramsey exploited to halve the deficit. Then Ramsey slid over an excellent cross from the left which Raphael Varane was unable to intercept as he slid back, leaving Coutinho to finish into an empty net. The goal brought celebrations at both ends of the pitch as Emiliano Martinez also went into the crowd in relief - it was the Argentine's horrible sixth-minute error that had gifted Fernandes the visitors' opener. Given his background - with Liverpool, Barcelona and Bayern Munich - Coutinho is a bold loan signing by Villa, and underlines the pedigree of the man they appointed as manager in November. Gerrard is not at Villa to learn how to avoid relegation. His demands remain as high as they were as a player and Coutinho's arrival is an example of that. Villa are a better team since Gerrard's arrival and, after a sluggish start against opponents they dominated but lost to in the FA Cup five days ago, they grew into the game. The club's other newboy, Lucas Digne, was among those denied by United keeper David de Gea at the end of the first half - in unorthodox fashion, with his knees. Ollie Watkins did not really test the Spain keeper when Villa broke after Edinson Cavani lost possession in his own half. However, Emi Buendia certainly did with a near-post header. Rooted to his line, De Gea's reactions were up to the job as he beat Buendia's effort away. When De Gea produced more saves after half-time to deny Ramsey and Digne again, it appeared the image of the night for Villa would be midfielder Morgan Sanson kicking a drinks bottle in fury after his error in gifting Fred possession to set up Fernandes for the visitors' second had been followed immediately by his substitution. However, as it was the prelude to Coutinho's arrival, it was the moment that changed the course of the game - and the acclaim for the Brazilian at the final whistle indicated Villa's fans are already firmly behind him. --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-sports-titles This model is a fine-tuned pegasus on some **sports news articles scraped from the internet. (For educational purposes only)**. The model can generate titles for sports articles. Try it out using the inference API. ## Model description A Pegasus model tuned on generating scientific titles has been further fine-tuned to generate titles for sports articles. While training articles on **Tennis, Football (Soccer), Cricket , Athletics and Rugby** were used to generate titles. I experimented training the Tokenizer from scratch but it did not give good results compared to the pre-trained tokenizer. ## Usage ```python from transformers import pipeline #Feel free to play around with the generation parameters. #Reduce the beam width for faster inference #Note that the maximum length for the generated titles is 64 gen_kwargs = {"length_penalty": 0.6, "num_beams":4, "num_return_sequences": 4,"num_beam_groups":4,"diversity_penalty":2.0} pipe = pipeline("summarization", model="RajSang/pegasus-sports-titles") #Change the article according to your wish article=""" Coutinho was just about to be introduced by Villa boss Gerrard midway through the second half when Bruno Fernandes slammed home his second goal of the game off the underside of the bar. But the Brazilian proved the catalyst for a memorable response. First he drove at the United defence, helping to create the space which Jacob Ramsey exploited to halve the deficit. Then Ramsey slid over an excellent cross from the left which Raphael Varane was unable to intercept as he slid back, leaving Coutinho to finish into an empty net. The goal brought celebrations at both ends of the pitch as Emiliano Martinez also went into the crowd in relief - it was the Argentine's horrible sixth-minute error that had gifted Fernandes the visitors' opener. Given his background - with Liverpool, Barcelona and Bayern Munich - Coutinho is a bold loan signing by Villa, and underlines the pedigree of the man they appointed as manager in November. Gerrard is not at Villa to learn how to avoid relegation. His demands remain as high as they were as a player and Coutinho's arrival is an example of that. Villa are a better team since Gerrard's arrival and, after a sluggish start against opponents they dominated but lost to in the FA Cup five days ago, they grew into the game. The club's other newboy, Lucas Digne, was among those denied by United keeper David de Gea at the end of the first half - in unorthodox fashion, with his knees. Ollie Watkins did not really test the Spain keeper when Villa broke after Edinson Cavani lost possession in his own half. However, Emi Buendia certainly did with a near-post header. Rooted to his line, De Gea's reactions were up to the job as he beat Buendia's effort away. When De Gea produced more saves after half-time to deny Ramsey and Digne again, it appeared the image of the night for Villa would be midfielder Morgan Sanson kicking a drinks bottle in fury after his error in gifting Fred possession to set up Fernandes for the visitors' second had been followed immediately by his substitution. However, as it was the prelude to Coutinho's arrival, it was the moment that changed the course of the game - and the acclaim for the Brazilian at the final whistle indicated Villa's fans are already firmly behind him. """ result=pipe(article, **gen_kwargs)[0]["summary_text"] print(result) ''' Output Title 1 : Coutinho's arrival sparks Villa comeback Title 2 : Philippe Coutinho marked his debut for Aston Villa with a goal and an assist as Steven Gerrard's side came from two goals down to draw with Manchester United. Title 3 : Steven Gerrard's first game in charge of Aston Villa ended in a dramatic draw against Manchester United - but it was the arrival of Philippe Coutinho that marked the night. Title 4 : Liverpool loanee Philippe Coutinho marked his first appearance for Aston Villa with two goals as Steven Gerrard's side came from two goals down to draw 2-2.''' ``` ## Training procedure While training, **short titles were combined with the subtitles for the articles to improve the quality of the generated titles and the subtitles were removed from the main body of the articles.** ##Limitations In rare cases, if the opening few lines of a passage/article are descriptive enough, the model often just copies these lines instead of looking for information further down the articles, which may not be conducive in some cases. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results **Rouge1:38.2315** **Rouge2: 18.6598** **RougueL: 31.7393** **RougeLsum: 31.7086** ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-sports-titles This model is a fine-tuned pegasus on some **sports news articles scraped from the internet. (For educational purposes only)**. The model can generate titles for sports articles. Try it out using the inference API. ## Model description A Pegasus model tuned on generating scientific titles has been further fine-tuned to generate titles for sports articles. While training articles on **Tennis, Football (Soccer), Cricket , Athletics and Rugby** were used to generate titles. I experimented training the Tokenizer from scratch but it did not give good results compared to the pre-trained tokenizer. ## Usage ```python from transformers import pipeline #Feel free to play around with the generation parameters. #Reduce the beam width for faster inference #Note that the maximum length for the generated titles is 64 gen_kwargs = {"length_penalty": 0.6, "num_beams":4, "num_return_sequences": 4,"num_beam_groups":4,"diversity_penalty":2.0} pipe = pipeline("summarization", model="RajSang/pegasus-sports-titles") #Change the article according to your wish article=""" Coutinho was just about to be introduced by Villa boss Gerrard midway through the second half when Bruno Fernandes slammed home his second goal of the game off the underside of the bar. But the Brazilian proved the catalyst for a memorable response. First he drove at the United defence, helping to create the space which Jacob Ramsey exploited to halve the deficit. Then Ramsey slid over an excellent cross from the left which Raphael Varane was unable to intercept as he slid back, leaving Coutinho to finish into an empty net. The goal brought celebrations at both ends of the pitch as Emiliano Martinez also went into the crowd in relief - it was the Argentine's horrible sixth-minute error that had gifted Fernandes the visitors' opener. Given his background - with Liverpool, Barcelona and Bayern Munich - Coutinho is a bold loan signing by Villa, and underlines the pedigree of the man they appointed as manager in November. Gerrard is not at Villa to learn how to avoid relegation. His demands remain as high as they were as a player and Coutinho's arrival is an example of that. Villa are a better team since Gerrard's arrival and, after a sluggish start against opponents they dominated but lost to in the FA Cup five days ago, they grew into the game. The club's other newboy, Lucas Digne, was among those denied by United keeper David de Gea at the end of the first half - in unorthodox fashion, with his knees. Ollie Watkins did not really test the Spain keeper when Villa broke after Edinson Cavani lost possession in his own half. However, Emi Buendia certainly did with a near-post header. Rooted to his line, De Gea's reactions were up to the job as he beat Buendia's effort away. When De Gea produced more saves after half-time to deny Ramsey and Digne again, it appeared the image of the night for Villa would be midfielder Morgan Sanson kicking a drinks bottle in fury after his error in gifting Fred possession to set up Fernandes for the visitors' second had been followed immediately by his substitution. However, as it was the prelude to Coutinho's arrival, it was the moment that changed the course of the game - and the acclaim for the Brazilian at the final whistle indicated Villa's fans are already firmly behind him. """ result=pipe(article, **gen_kwargs)[0]["summary_text"] print(result) ''' Output Title 1 : Coutinho's arrival sparks Villa comeback Title 2 : Philippe Coutinho marked his debut for Aston Villa with a goal and an assist as Steven Gerrard's side came from two goals down to draw with Manchester United. Title 3 : Steven Gerrard's first game in charge of Aston Villa ended in a dramatic draw against Manchester United - but it was the arrival of Philippe Coutinho that marked the night. Title 4 : Liverpool loanee Philippe Coutinho marked his first appearance for Aston Villa with two goals as Steven Gerrard's side came from two goals down to draw 2-2.''' ``` ## Training procedure While training, **short titles were combined with the subtitles for the articles to improve the quality of the generated titles and the subtitles were removed from the main body of the articles.** ##Limitations In rare cases, if the opening few lines of a passage/article are descriptive enough, the model often just copies these lines instead of looking for information further down the articles, which may not be conducive in some cases. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results **Rouge1:38.2315** **Rouge2: 18.6598** **RougueL: 31.7393** **RougeLsum: 31.7086** ### Framework versions - Transformers 4.15.0 - Pytorch 1.10.0+cu111 - Datasets 1.17.0 - Tokenizers 0.10.3
{"language": "en", "tags": ["generated_from_trainer"], "widget": [{"text": "Coutinho was just about to be introduced by Villa boss Gerrard midway through the second half when Bruno Fernandes slammed home his second goal of the game off the underside of the bar. But the Brazilian proved the catalyst for a memorable response. First he drove at the United defence, helping to create the space which Jacob Ramsey exploited to halve the deficit. Then Ramsey slid over an excellent cross from the left which Raphael Varane was unable to intercept as he slid back, leaving Coutinho to finish into an empty net. The goal brought celebrations at both ends of the pitch as Emiliano Martinez also went into the crowd in relief - it was the Argentine's horrible sixth-minute error that had gifted Fernandes the visitors' opener. Given his background - with Liverpool, Barcelona and Bayern Munich - Coutinho is a bold loan signing by Villa, and underlines the pedigree of the man they appointed as manager in November. Gerrard is not at Villa to learn how to avoid relegation. His demands remain as high as they were as a player and Coutinho's arrival is an example of that. Villa are a better team since Gerrard's arrival and, after a sluggish start against opponents they dominated but lost to in the FA Cup five days ago, they grew into the game. The club's other newboy, Lucas Digne, was among those denied by United keeper David de Gea at the end of the first half - in unorthodox fashion, with his knees. Ollie Watkins did not really test the Spain keeper when Villa broke after Edinson Cavani lost possession in his own half. However, Emi Buendia certainly did with a near-post header. Rooted to his line, De Gea's reactions were up to the job as he beat Buendia's effort away. When De Gea produced more saves after half-time to deny Ramsey and Digne again, it appeared the image of the night for Villa would be midfielder Morgan Sanson kicking a drinks bottle in fury after his error in gifting Fred possession to set up Fernandes for the visitors' second had been followed immediately by his substitution. However, as it was the prelude to Coutinho's arrival, it was the moment that changed the course of the game - and the acclaim for the Brazilian at the final whistle indicated Villa's fans are already firmly behind him."}]}
task
[ "SUMMARIZATION" ]
41,046
RichardErkhov/skumar9_-_Llama-medx_v3-gguf
RichardErkhov
null
[ "gguf", "arxiv:1910.09700", "endpoints_compatible", "region:us", "conversational" ]
2024-11-05T15:50:24Z
2024-11-05T17:58:21+00:00
38
0
--- {} --- Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-medx_v3 - GGUF - Model creator: https://huggingface.co/skumar9/ - Original model: https://huggingface.co/skumar9/Llama-medx_v3/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Llama-medx_v3.Q2_K.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q2_K.gguf) | Q2_K | 2.96GB | | [Llama-medx_v3.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [Llama-medx_v3.Q3_K.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q3_K.gguf) | Q3_K | 3.74GB | | [Llama-medx_v3.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [Llama-medx_v3.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [Llama-medx_v3.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.IQ4_XS.gguf) | IQ4_XS | 4.18GB | | [Llama-medx_v3.Q4_0.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q4_0.gguf) | Q4_0 | 4.34GB | | [Llama-medx_v3.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [Llama-medx_v3.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q4_K_S.gguf) | Q4_K_S | 4.37GB | | [Llama-medx_v3.Q4_K.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q4_K.gguf) | Q4_K | 4.58GB | | [Llama-medx_v3.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q4_K_M.gguf) | Q4_K_M | 4.58GB | | [Llama-medx_v3.Q4_1.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q4_1.gguf) | Q4_1 | 4.78GB | | [Llama-medx_v3.Q5_0.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q5_0.gguf) | Q5_0 | 5.21GB | | [Llama-medx_v3.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [Llama-medx_v3.Q5_K.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q5_K.gguf) | Q5_K | 5.34GB | | [Llama-medx_v3.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q5_K_M.gguf) | Q5_K_M | 5.34GB | | [Llama-medx_v3.Q5_1.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q5_1.gguf) | Q5_1 | 5.65GB | | [Llama-medx_v3.Q6_K.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q6_K.gguf) | Q6_K | 6.14GB | | [Llama-medx_v3.Q8_0.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q8_0.gguf) | Q8_0 | 7.95GB | Original model description: --- library_name: transformers license: apache-2.0 --- # Model Card for Model ID The LLM is designed to perform a wide range of natural language processing tasks, including but not limited to text generation,language translation, and question answering. It is suitable for both research and practical applications in industries such as healthcare ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
null
BioNLP
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Llama-medx_v3 - GGUF - Model creator: https://huggingface.co/skumar9/ - Original model: https://huggingface.co/skumar9/Llama-medx_v3/ | Name | Quant method | Size | | ---- | ---- | ---- | | [Llama-medx_v3.Q2_K.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q2_K.gguf) | Q2_K | 2.96GB | | [Llama-medx_v3.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q3_K_S.gguf) | Q3_K_S | 3.41GB | | [Llama-medx_v3.Q3_K.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q3_K.gguf) | Q3_K | 3.74GB | | [Llama-medx_v3.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q3_K_M.gguf) | Q3_K_M | 3.74GB | | [Llama-medx_v3.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q3_K_L.gguf) | Q3_K_L | 4.03GB | | [Llama-medx_v3.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.IQ4_XS.gguf) | IQ4_XS | 4.18GB | | [Llama-medx_v3.Q4_0.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q4_0.gguf) | Q4_0 | 4.34GB | | [Llama-medx_v3.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.IQ4_NL.gguf) | IQ4_NL | 4.38GB | | [Llama-medx_v3.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q4_K_S.gguf) | Q4_K_S | 4.37GB | | [Llama-medx_v3.Q4_K.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q4_K.gguf) | Q4_K | 4.58GB | | [Llama-medx_v3.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q4_K_M.gguf) | Q4_K_M | 4.58GB | | [Llama-medx_v3.Q4_1.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q4_1.gguf) | Q4_1 | 4.78GB | | [Llama-medx_v3.Q5_0.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q5_0.gguf) | Q5_0 | 5.21GB | | [Llama-medx_v3.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q5_K_S.gguf) | Q5_K_S | 5.21GB | | [Llama-medx_v3.Q5_K.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q5_K.gguf) | Q5_K | 5.34GB | | [Llama-medx_v3.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q5_K_M.gguf) | Q5_K_M | 5.34GB | | [Llama-medx_v3.Q5_1.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q5_1.gguf) | Q5_1 | 5.65GB | | [Llama-medx_v3.Q6_K.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q6_K.gguf) | Q6_K | 6.14GB | | [Llama-medx_v3.Q8_0.gguf](https://huggingface.co/RichardErkhov/skumar9_-_Llama-medx_v3-gguf/blob/main/Llama-medx_v3.Q8_0.gguf) | Q8_0 | 7.95GB | Original model description: --- library_name: transformers license: apache-2.0 --- # Model Card for Model ID The LLM is designed to perform a wide range of natural language processing tasks, including but not limited to text generation,language translation, and question answering. It is suitable for both research and practical applications in industries such as healthcare ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
{}
task
[ "QUESTION_ANSWERING", "TRANSLATION" ]
41,047
pere/test-t5-small
pere
translation
[ "transformers", "pytorch", "jax", "t5", "text2text-generation", "summarization", "translation", "en", "fr", "ro", "de", "dataset:c4", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2022-03-20T12:17:29Z
2022-03-23T20:39:40+00:00
189
1
--- datasets: - c4 language: - en - fr - ro - de license: apache-2.0 tags: - summarization - translation --- ## Test T5 small conversion This is a test repo for the conversion of T5X to HuggingFace Flax. The current model is first converted from MTF to T5X using the conversion script included in the T5X library: ```bash python3 -m t5x.scripts.convert_tf_checkpoint --gin_file=t5x/examples/t5/t5_1_0/small.gin --gin.convert_checkpoint.model=%MODEL --gin.convert_checkpoint.tf_checkpoint_path=\"gs://t5-data/pretrained_models/small/model.ckpt-1000000\" --gin.convert_checkpoint.output_dir=\"/tmp/t5x_checkpoints/t5_small\" --logtostderr ``` After creating the T5X model, the model is converted to Huggingface Flax by a modified version of the script from @stefan-it (https://gist.githubusercontent.com/stefan-it/30e4998ef159f33696e377a46f699d9f/raw/c19da5d067dc9d31d0b8115a79e8626186e11daa/convert_t5x_checkpoint_to_flax.py). The modified version is included in this repo. The modification is basically that the wi_0 and wi_1 layers are combined into wi. This might be a difference between t5_1_0 and t5_1_1 ```bash python3 convert_t5_checkpoint_to_flax.py --t5x_checkpoint_path /tmp/t5x_checkpoints/t5_small/checkpoint_1000000/ --flax_dump_folder_path /tmp/flax_dump_folder/ --config_name t5-small ``` The tokenizer.json was copied from https://huggingface.co/t5-small/blob/main/tokenizer.json. To be able to use the widgets in HuggingFace, the model was converted to pyTorch by running: ```python from transformers import T5ForConditionalGeneration model = T5ForConditionalGeneration.from_pretrained(".", from_flax=True) model.save_pretrained(".") ```
null
TBD
## Test T5 small conversion This is a test repo for the conversion of T5X to HuggingFace Flax. The current model is first converted from MTF to T5X using the conversion script included in the T5X library: ```bash python3 -m t5x.scripts.convert_tf_checkpoint --gin_file=t5x/examples/t5/t5_1_0/small.gin --gin.convert_checkpoint.model=%MODEL --gin.convert_checkpoint.tf_checkpoint_path=\"gs://t5-data/pretrained_models/small/model.ckpt-1000000\" --gin.convert_checkpoint.output_dir=\"/tmp/t5x_checkpoints/t5_small\" --logtostderr ``` After creating the T5X model, the model is converted to Huggingface Flax by a modified version of the script from @stefan-it (https://gist.githubusercontent.com/stefan-it/30e4998ef159f33696e377a46f699d9f/raw/c19da5d067dc9d31d0b8115a79e8626186e11daa/convert_t5x_checkpoint_to_flax.py). The modified version is included in this repo. The modification is basically that the wi_0 and wi_1 layers are combined into wi. This might be a difference between t5_1_0 and t5_1_1 ```bash python3 convert_t5_checkpoint_to_flax.py --t5x_checkpoint_path /tmp/t5x_checkpoints/t5_small/checkpoint_1000000/ --flax_dump_folder_path /tmp/flax_dump_folder/ --config_name t5-small ``` The tokenizer.json was copied from https://huggingface.co/t5-small/blob/main/tokenizer.json. To be able to use the widgets in HuggingFace, the model was converted to pyTorch by running: ```python from transformers import T5ForConditionalGeneration model = T5ForConditionalGeneration.from_pretrained(".", from_flax=True) model.save_pretrained(".") ```
{"datasets": ["c4"], "language": ["en", "fr", "ro", "de"], "license": "apache-2.0", "tags": ["summarization", "translation"]}
task
[ "TRANSLATION", "SUMMARIZATION" ]
41,048
Triangle104/Bellatrix-Tiny-1B-R1-Q8_0-GGUF
Triangle104
text-generation
[ "transformers", "gguf", "GRPO", "Reinforcement learning", "trl", "SFT", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:prithivMLmods/Bellatrix-Tiny-1B-R1", "base_model:quantized:prithivMLmods/Bellatrix-Tiny-1B-R1", "license:llama3.2", "endpoints_compatible", "region:us", "conversational" ]
2025-02-03T23:07:03Z
2025-02-03T23:07:56+00:00
35
0
--- base_model: prithivMLmods/Bellatrix-Tiny-1B-R1 language: - en library_name: transformers license: llama3.2 pipeline_tag: text-generation tags: - GRPO - Reinforcement learning - trl - SFT - llama-cpp - gguf-my-repo --- # Triangle104/Bellatrix-Tiny-1B-R1-Q8_0-GGUF This model was converted to GGUF format from [`prithivMLmods/Bellatrix-Tiny-1B-R1`](https://huggingface.co/prithivMLmods/Bellatrix-Tiny-1B-R1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/prithivMLmods/Bellatrix-Tiny-1B-R1) for more details on the model. --- Bellatrix is based on a reasoning-based model designed for the DeepSeek-R1 synthetic dataset entries. The pipeline's instruction-tuned, text-only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. These models outperform many of the available open-source options. Bellatrix is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions utilize supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF). Use with transformers Starting with transformers >= 4.43.0 onward, you can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function. Make sure to update your transformers installation via pip install --upgrade transformers. import torch from transformers import pipeline model_id = "prithivMLmods/Bellatrix-Tiny-1B-R1" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) Note: You can also find detailed recipes on how to use the model locally, with torch.compile(), assisted generations, quantised and more at huggingface-llama-recipes Intended Use Bellatrix is designed for applications that require advanced reasoning and multilingual dialogue capabilities. It is particularly suitable for: Agentic Retrieval: Enabling intelligent retrieval of relevant information in a dialogue or query-response system. Summarization Tasks: Condensing large bodies of text into concise summaries for easier comprehension. Multilingual Use Cases: Supporting conversations in multiple languages with high accuracy and coherence. Instruction-Based Applications: Following complex, context-aware instructions to generate precise outputs in a variety of scenarios. Limitations Despite its capabilities, Bellatrix has some limitations: Domain Specificity: While it performs well on general tasks, its performance may degrade with highly specialized or niche datasets. Dependence on Training Data: It is only as good as the quality and diversity of its training data, which may lead to biases or inaccuracies. Computational Resources: The model’s optimized transformer architecture can be resource-intensive, requiring significant computational power for fine-tuning and inference. Language Coverage: While multilingual, some languages or dialects may have limited support or lower performance compared to widely used ones. Real-World Contexts: It may struggle with understanding nuanced or ambiguous real-world scenarios not covered during training. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Bellatrix-Tiny-1B-R1-Q8_0-GGUF --hf-file bellatrix-tiny-1b-r1-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Bellatrix-Tiny-1B-R1-Q8_0-GGUF --hf-file bellatrix-tiny-1b-r1-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Bellatrix-Tiny-1B-R1-Q8_0-GGUF --hf-file bellatrix-tiny-1b-r1-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Bellatrix-Tiny-1B-R1-Q8_0-GGUF --hf-file bellatrix-tiny-1b-r1-q8_0.gguf -c 2048 ```
null
Non_BioNLP
# Triangle104/Bellatrix-Tiny-1B-R1-Q8_0-GGUF This model was converted to GGUF format from [`prithivMLmods/Bellatrix-Tiny-1B-R1`](https://huggingface.co/prithivMLmods/Bellatrix-Tiny-1B-R1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/prithivMLmods/Bellatrix-Tiny-1B-R1) for more details on the model. --- Bellatrix is based on a reasoning-based model designed for the DeepSeek-R1 synthetic dataset entries. The pipeline's instruction-tuned, text-only models are optimized for multilingual dialogue use cases, including agentic retrieval and summarization tasks. These models outperform many of the available open-source options. Bellatrix is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions utilize supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF). Use with transformers Starting with transformers >= 4.43.0 onward, you can run conversational inference using the Transformers pipeline abstraction or by leveraging the Auto classes with the generate() function. Make sure to update your transformers installation via pip install --upgrade transformers. import torch from transformers import pipeline model_id = "prithivMLmods/Bellatrix-Tiny-1B-R1" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) Note: You can also find detailed recipes on how to use the model locally, with torch.compile(), assisted generations, quantised and more at huggingface-llama-recipes Intended Use Bellatrix is designed for applications that require advanced reasoning and multilingual dialogue capabilities. It is particularly suitable for: Agentic Retrieval: Enabling intelligent retrieval of relevant information in a dialogue or query-response system. Summarization Tasks: Condensing large bodies of text into concise summaries for easier comprehension. Multilingual Use Cases: Supporting conversations in multiple languages with high accuracy and coherence. Instruction-Based Applications: Following complex, context-aware instructions to generate precise outputs in a variety of scenarios. Limitations Despite its capabilities, Bellatrix has some limitations: Domain Specificity: While it performs well on general tasks, its performance may degrade with highly specialized or niche datasets. Dependence on Training Data: It is only as good as the quality and diversity of its training data, which may lead to biases or inaccuracies. Computational Resources: The model’s optimized transformer architecture can be resource-intensive, requiring significant computational power for fine-tuning and inference. Language Coverage: While multilingual, some languages or dialects may have limited support or lower performance compared to widely used ones. Real-World Contexts: It may struggle with understanding nuanced or ambiguous real-world scenarios not covered during training. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Bellatrix-Tiny-1B-R1-Q8_0-GGUF --hf-file bellatrix-tiny-1b-r1-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Bellatrix-Tiny-1B-R1-Q8_0-GGUF --hf-file bellatrix-tiny-1b-r1-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Bellatrix-Tiny-1B-R1-Q8_0-GGUF --hf-file bellatrix-tiny-1b-r1-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Bellatrix-Tiny-1B-R1-Q8_0-GGUF --hf-file bellatrix-tiny-1b-r1-q8_0.gguf -c 2048 ```
{"base_model": "prithivMLmods/Bellatrix-Tiny-1B-R1", "language": ["en"], "library_name": "transformers", "license": "llama3.2", "pipeline_tag": "text-generation", "tags": ["GRPO", "Reinforcement learning", "trl", "SFT", "llama-cpp", "gguf-my-repo"]}
task
[ "SUMMARIZATION" ]
41,049
thefrigidliquidation/pythia-1b-lightnovels
thefrigidliquidation
text-generation
[ "transformers", "pytorch", "tensorboard", "safetensors", "gpt_neox", "text-generation", "en", "ja", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
2023-03-08T00:03:37Z
2023-03-20T02:21:11+00:00
93
2
--- language: - en - ja license: apache-2.0 --- # Pythia 1B fine-tuned on Light Novels This model was fine-tuned on light and web novels. This model was trained for translation, but can do generation too. This model is a test of using monolingual data to improve translation as well as improving translation by adding similar sentence pairs to prompts. ## English generation To generate English text with this model, start your prompt with `<|gen_en|>`. ## Japanese generation To generate Japanese text with this model, start your prompt with `<|gen_ja|>`. ## Japanese to English translation To translate, format your prompt as such ``` <|tl_ja|>JAPANESE EXAMPLE SENTENCE 1<|tl_en|>ENGLISH EXAMPLE SENTENCE 1<|tl_end|> <|tl_ja|>JAPANESE EXAMPLE SENTENCE 2<|tl_en|>ENGLISH EXAMPLE SENTENCE 2<|tl_end|> <|tl_ja|>JAPANESE SENTENCE TO TRANSLATE<|tl_en|> ```
null
Non_BioNLP
# Pythia 1B fine-tuned on Light Novels This model was fine-tuned on light and web novels. This model was trained for translation, but can do generation too. This model is a test of using monolingual data to improve translation as well as improving translation by adding similar sentence pairs to prompts. ## English generation To generate English text with this model, start your prompt with `<|gen_en|>`. ## Japanese generation To generate Japanese text with this model, start your prompt with `<|gen_ja|>`. ## Japanese to English translation To translate, format your prompt as such ``` <|tl_ja|>JAPANESE EXAMPLE SENTENCE 1<|tl_en|>ENGLISH EXAMPLE SENTENCE 1<|tl_end|> <|tl_ja|>JAPANESE EXAMPLE SENTENCE 2<|tl_en|>ENGLISH EXAMPLE SENTENCE 2<|tl_end|> <|tl_ja|>JAPANESE SENTENCE TO TRANSLATE<|tl_en|> ```
{"language": ["en", "ja"], "license": "apache-2.0"}
task
[ "TRANSLATION" ]
41,050
mhmmterts/fine_tuned_model_on_SJP_dataset_it_balanced_2048_tokens
mhmmterts
text-classification
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "dataset:swiss_judgment_prediction", "base_model:joelniklaus/legal-swiss-roberta-large", "base_model:finetune:joelniklaus/legal-swiss-roberta-large", "license:cc", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-02-27T09:15:43Z
2024-02-27T09:16:52+00:00
10
0
--- base_model: joelniklaus/legal-swiss-roberta-large datasets: - swiss_judgment_prediction license: cc metrics: - accuracy tags: - generated_from_trainer model-index: - name: fine_tuned_model_on_SJP_dataset_it_balanced_2048_tokens results: - task: type: text-classification name: Text Classification dataset: name: swiss_judgment_prediction type: swiss_judgment_prediction config: it split: test args: it metrics: - type: accuracy value: 0.8177339901477833 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine_tuned_model_on_SJP_dataset_it_balanced_2048_tokens This model is a fine-tuned version of [joelniklaus/legal-swiss-roberta-large](https://huggingface.co/joelniklaus/legal-swiss-roberta-large) on the swiss_judgment_prediction dataset. It achieves the following results on the evaluation set: - Loss: 0.7964 - Accuracy: 0.8177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7513 | 1.0 | 768 | 0.6783 | 0.7956 | | 0.6008 | 2.0 | 1536 | 0.7964 | 0.8177 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu118 - Datasets 2.17.0 - Tokenizers 0.15.1
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # fine_tuned_model_on_SJP_dataset_it_balanced_2048_tokens This model is a fine-tuned version of [joelniklaus/legal-swiss-roberta-large](https://huggingface.co/joelniklaus/legal-swiss-roberta-large) on the swiss_judgment_prediction dataset. It achieves the following results on the evaluation set: - Loss: 0.7964 - Accuracy: 0.8177 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7513 | 1.0 | 768 | 0.6783 | 0.7956 | | 0.6008 | 2.0 | 1536 | 0.7964 | 0.8177 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.0+cu118 - Datasets 2.17.0 - Tokenizers 0.15.1
{"base_model": "joelniklaus/legal-swiss-roberta-large", "datasets": ["swiss_judgment_prediction"], "license": "cc", "metrics": ["accuracy"], "tags": ["generated_from_trainer"], "model-index": [{"name": "fine_tuned_model_on_SJP_dataset_it_balanced_2048_tokens", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "swiss_judgment_prediction", "type": "swiss_judgment_prediction", "config": "it", "split": "test", "args": "it"}, "metrics": [{"type": "accuracy", "value": 0.8177339901477833, "name": "Accuracy"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
41,051
sakren/distil-bert
sakren
text-classification
[ "transformers", "tensorboard", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-05-14T20:16:11Z
2024-05-14T22:09:37+00:00
7
0
--- base_model: distilbert-base-uncased datasets: - emotion license: apache-2.0 metrics: - f1 tags: - generated_from_trainer model-index: - name: distil-bert results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - type: f1 value: 0.9295002701213645 name: F1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distil-bert This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1749 - F1: 0.9295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8295 | 1.0 | 250 | 0.2760 | 0.9148 | | 0.2167 | 2.0 | 500 | 0.1838 | 0.9326 | | 0.1461 | 3.0 | 750 | 0.1749 | 0.9295 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distil-bert This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.1749 - F1: 0.9295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.8295 | 1.0 | 250 | 0.2760 | 0.9148 | | 0.2167 | 2.0 | 500 | 0.1838 | 0.9326 | | 0.1461 | 3.0 | 750 | 0.1749 | 0.9295 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2
{"base_model": "distilbert-base-uncased", "datasets": ["emotion"], "license": "apache-2.0", "metrics": ["f1"], "tags": ["generated_from_trainer"], "model-index": [{"name": "distil-bert", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "config": "split", "split": "validation", "args": "split"}, "metrics": [{"type": "f1", "value": 0.9295002701213645, "name": "F1"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
41,052
atlasia/MorDernBERT-ep-1-lr-0.005
atlasia
sentence-similarity
[ "sentence-transformers", "safetensors", "modernbert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:2818353", "loss:CachedMultipleNegativesRankingLoss", "dataset:atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset", "arxiv:1908.10084", "arxiv:2101.06983", "base_model:answerdotai/ModernBERT-base", "base_model:finetune:answerdotai/ModernBERT-base", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-12-25T05:29:16Z
2024-12-25T05:29:31+00:00
0
0
--- base_model: answerdotai/ModernBERT-base datasets: - atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset library_name: sentence-transformers pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:2818353 - loss:CachedMultipleNegativesRankingLoss widget: - source_sentence: واش كا يحبس هاد الطوبيس في شارع ستونر؟ sentences: - '{''ar'': ''هل هذه الحافلة تتوقف في شارع أستونر ؟''}' - tachicart/mo_darija_merged - tachicart/mo_darija_merged - source_sentence: العمال تما يقدرو يبدلو ليك الدولار بالفيتشات ديال الكازينو. مشينا؟ sentences: - tachicart/mo_darija_merged - tachicart/mo_darija_merged - '{''ar'': ''يستطيع الصرافون أن يغيروا دولاراتك من أجل بقشيش الكازينو . هل نذهب ؟''}' - source_sentence: واخا توريني شي كبوط مضاد للماء؟ sentences: - tachicart/mo_darija_merged - '{''ar'': ''هل لك أن ترنى معطفاً ضد الماء ؟''}' - tachicart/mo_darija_merged - source_sentence: فين كاين البلاطو رقم خمسة؟ sentences: - tachicart/mo_darija_merged - tachicart/mo_darija_merged - '{''ar'': ''أين الرصيف رقم خمسة ؟''}' - source_sentence: شحال للمطار؟ sentences: - tachicart/mo_darija_merged - tachicart/mo_darija_merged - '{''ar'': ''كم سأدفع للوصول إلى المطار ؟''}' --- # SentenceTransformer based on answerdotai/ModernBERT-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [al-atlas-moroccan-darija-pretraining-dataset](https://huggingface.co/datasets/atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 5756c58a31a2478f9e62146021f48295a92c3da5 --> - **Maximum Sequence Length:** 8196 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [al-atlas-moroccan-darija-pretraining-dataset](https://huggingface.co/datasets/atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset) <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8196, 'do_lower_case': False}) with Transformer model: ModernBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("BounharAbdelaziz/ModernBERT-base-0.005") # Run inference sentences = [ 'شحال للمطار؟', 'tachicart/mo_darija_merged', "{'ar': 'كم سأدفع للوصول إلى المطار ؟'}", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### al-atlas-moroccan-darija-pretraining-dataset * Dataset: [al-atlas-moroccan-darija-pretraining-dataset](https://huggingface.co/datasets/atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset) at [6668961](https://huggingface.co/datasets/atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset/tree/66689612b03f0d7a9528bf74ea30782dd2976569) * Size: 2,818,353 training samples * Columns: <code>text</code>, <code>dataset_source</code>, and <code>metadata</code> * Approximate statistics based on the first 1000 samples: | | text | dataset_source | metadata | |:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 334.62 tokens</li><li>max: 5020 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 13.0 tokens</li><li>max: 13 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 19.87 tokens</li><li>max: 26 tokens</li></ul> | * Samples: | text | dataset_source | metadata | |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------|:------------------------------------------------------------------| | <code>سامي خضيرة : <br><br>الكابيتان فوقتنا كان هو كاسياس ولكن كنا كنحسو باللي راموس هو القائد الفعلي كان فيه الروح و الغرينتا ديال الاسبان .<br><br>ماتنساش كان معانا تا رونالدو كيهضر مع كولشي ويحفزنا ، و عادي تسمعو وسط الفيستير كيقول " خضيرة زير راسك وكون عدواني " ، " مسعود عطينا شوية من سحرك الكروي فالتيران " ونتا أدي ماريا حاول تشد الكرة وقصد المرمى " كان هادشي كيخلينا نعطيو كل ما فجهدنا <br><br>و بطبيعة الحال كان مورينيو الخطير فهاد الضومين ، و كانت المشكلة الكبيرة ديما هي كيفاش نوقفو ميسي ماشي غير حنا ولكن كاع الفراقي فداك الوقت .</code> | <code>atlasia/facebook_darija_dataset</code> | <code>{'pageName': "Football B'darija - فوتبول بالداريجة"}</code> | | <code>الأحداث كاتتطور بسرعة رهيبة ف بريتوريا !!<br><br>ميغيل كاردوزو المدرب السابق للترجي الرياضي التونسي وصل البارح بشكل مفاجئ لجنوب افريقيا.. وصباح اليوم الصحافة المحلية كاتأكد انو ماميلودي سانداونز غاتقيل المدرب ديالها اليوم و غاتعين كاردوزو ك بديل !</code> | <code>atlasia/facebook_darija_dataset</code> | <code>{'pageName': "Football B'darija - فوتبول بالداريجة"}</code> | | <code>الريال و تحدي جديد هاد الليلة باش يرجعو للمنافسة ف التشامبيانزليغ قدام خصم أقل ما يتقال عليه انو عتيد هو اتلانتا بيرغامو وليدات العبقري جيانبييرو غاسبيريني..<br><br>الريال مؤخرا ورغم الشكوك اللي دايرة على الفريق والمشاكل الدفاعية و الإصابات اللي زادت ف الهشاشة ديال الدفاع ديالو الا انو رجع بقوة للمنافسة فالليغا واستغل الفترة د الفراغ اللي تا تعيشها البارسا حاليا باش يرجع على بعد نقطتين من الصدارة و عندو ماتش مؤجل مرشح بقوة يفوز فيه على فالنسيا ويطلع للقمة ..<br><br>الريال تانضن لا ربح اليوم غايمحي بشكل شبه كلي الغمامة اللي كاتطوف فوق منو من بدا الموسم و غايقوي ثقة الجمهور فيه و يرجع الثقة للمجموعة و غايرسم راسو ك رقم قوي ف المنافسة المفضلة ليه واحنا ديجا عارفين ان الريال diesel فرقة كاتديماري بشوية بشوية وفالفترات الحاسمة ف الموسم كاتورك على السانكيام فيتيس.</code> | <code>atlasia/facebook_darija_dataset</code> | <code>{'pageName': "Football B'darija - فوتبول بالداريجة"}</code> | * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### al-atlas-moroccan-darija-pretraining-dataset * Dataset: [al-atlas-moroccan-darija-pretraining-dataset](https://huggingface.co/datasets/atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset) at [6668961](https://huggingface.co/datasets/atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset/tree/66689612b03f0d7a9528bf74ea30782dd2976569) * Size: 1,875 evaluation samples * Columns: <code>text</code>, <code>dataset_source</code>, and <code>metadata</code> * Approximate statistics based on the first 1000 samples: | | text | dataset_source | metadata | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 5 tokens</li><li>mean: 27.22 tokens</li><li>max: 170 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 14.0 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 33.41 tokens</li><li>max: 177 tokens</li></ul> | * Samples: | text | dataset_source | metadata | |:---------------------------------------------------------------------------------------------------------|:----------------------------------------|:-----------------------------------------------------------------------------------------------------------| | <code>كاين في اللاخر ديال هاد القاعة. انجيب ليك شويا دابا. و إلا حتاجيتي شي حاجا اخرى، قولها ليا.</code> | <code>tachicart/mo_darija_merged</code> | <code>{'ar': 'إنها في أخر القاعة . سوف آتي لك ببعض منها الآن . إذا أردت أي شيئاً آخر فقط أعلمني .'}</code> | | <code>واش كا دير التعديلات؟</code> | <code>tachicart/mo_darija_merged</code> | <code>{'ar': 'هل تقومون بعمل تعديلات ؟'}</code> | | <code>بغينا ناخدو طابلة حدا الشرجم.</code> | <code>tachicart/mo_darija_merged</code> | <code>{'ar': 'نريد مائدة بجانب النافذة .'}</code> | * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `learning_rate`: 0.005 - `num_train_epochs`: 1 - `warmup_ratio`: 0.05 - `bf16`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 0.005 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | |:------:|:-----:|:-------------:|:---------------:| | 0.2271 | 5000 | 4.4677 | 4.8309 | | 0.4542 | 10000 | 4.4206 | 4.8347 | | 0.6812 | 15000 | 4.3974 | 4.8401 | | 0.9083 | 20000 | 4.3905 | 4.8354 | ### Framework Versions - Python: 3.12.3 - Sentence Transformers: 3.3.1 - Transformers: 4.48.0.dev0 - PyTorch: 2.5.1+cu124 - Accelerate: 1.1.1 - Datasets: 3.1.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CachedMultipleNegativesRankingLoss ```bibtex @misc{gao2021scaling, title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup}, author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan}, year={2021}, eprint={2101.06983}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
null
Non_BioNLP
# SentenceTransformer based on answerdotai/ModernBERT-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the [al-atlas-moroccan-darija-pretraining-dataset](https://huggingface.co/datasets/atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) <!-- at revision 5756c58a31a2478f9e62146021f48295a92c3da5 --> - **Maximum Sequence Length:** 8196 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [al-atlas-moroccan-darija-pretraining-dataset](https://huggingface.co/datasets/atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset) <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 8196, 'do_lower_case': False}) with Transformer model: ModernBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("BounharAbdelaziz/ModernBERT-base-0.005") # Run inference sentences = [ 'شحال للمطار؟', 'tachicart/mo_darija_merged', "{'ar': 'كم سأدفع للوصول إلى المطار ؟'}", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### al-atlas-moroccan-darija-pretraining-dataset * Dataset: [al-atlas-moroccan-darija-pretraining-dataset](https://huggingface.co/datasets/atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset) at [6668961](https://huggingface.co/datasets/atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset/tree/66689612b03f0d7a9528bf74ea30782dd2976569) * Size: 2,818,353 training samples * Columns: <code>text</code>, <code>dataset_source</code>, and <code>metadata</code> * Approximate statistics based on the first 1000 samples: | | text | dataset_source | metadata | |:--------|:-------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 3 tokens</li><li>mean: 334.62 tokens</li><li>max: 5020 tokens</li></ul> | <ul><li>min: 13 tokens</li><li>mean: 13.0 tokens</li><li>max: 13 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 19.87 tokens</li><li>max: 26 tokens</li></ul> | * Samples: | text | dataset_source | metadata | |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------|:------------------------------------------------------------------| | <code>سامي خضيرة : <br><br>الكابيتان فوقتنا كان هو كاسياس ولكن كنا كنحسو باللي راموس هو القائد الفعلي كان فيه الروح و الغرينتا ديال الاسبان .<br><br>ماتنساش كان معانا تا رونالدو كيهضر مع كولشي ويحفزنا ، و عادي تسمعو وسط الفيستير كيقول " خضيرة زير راسك وكون عدواني " ، " مسعود عطينا شوية من سحرك الكروي فالتيران " ونتا أدي ماريا حاول تشد الكرة وقصد المرمى " كان هادشي كيخلينا نعطيو كل ما فجهدنا <br><br>و بطبيعة الحال كان مورينيو الخطير فهاد الضومين ، و كانت المشكلة الكبيرة ديما هي كيفاش نوقفو ميسي ماشي غير حنا ولكن كاع الفراقي فداك الوقت .</code> | <code>atlasia/facebook_darija_dataset</code> | <code>{'pageName': "Football B'darija - فوتبول بالداريجة"}</code> | | <code>الأحداث كاتتطور بسرعة رهيبة ف بريتوريا !!<br><br>ميغيل كاردوزو المدرب السابق للترجي الرياضي التونسي وصل البارح بشكل مفاجئ لجنوب افريقيا.. وصباح اليوم الصحافة المحلية كاتأكد انو ماميلودي سانداونز غاتقيل المدرب ديالها اليوم و غاتعين كاردوزو ك بديل !</code> | <code>atlasia/facebook_darija_dataset</code> | <code>{'pageName': "Football B'darija - فوتبول بالداريجة"}</code> | | <code>الريال و تحدي جديد هاد الليلة باش يرجعو للمنافسة ف التشامبيانزليغ قدام خصم أقل ما يتقال عليه انو عتيد هو اتلانتا بيرغامو وليدات العبقري جيانبييرو غاسبيريني..<br><br>الريال مؤخرا ورغم الشكوك اللي دايرة على الفريق والمشاكل الدفاعية و الإصابات اللي زادت ف الهشاشة ديال الدفاع ديالو الا انو رجع بقوة للمنافسة فالليغا واستغل الفترة د الفراغ اللي تا تعيشها البارسا حاليا باش يرجع على بعد نقطتين من الصدارة و عندو ماتش مؤجل مرشح بقوة يفوز فيه على فالنسيا ويطلع للقمة ..<br><br>الريال تانضن لا ربح اليوم غايمحي بشكل شبه كلي الغمامة اللي كاتطوف فوق منو من بدا الموسم و غايقوي ثقة الجمهور فيه و يرجع الثقة للمجموعة و غايرسم راسو ك رقم قوي ف المنافسة المفضلة ليه واحنا ديجا عارفين ان الريال diesel فرقة كاتديماري بشوية بشوية وفالفترات الحاسمة ف الموسم كاتورك على السانكيام فيتيس.</code> | <code>atlasia/facebook_darija_dataset</code> | <code>{'pageName': "Football B'darija - فوتبول بالداريجة"}</code> | * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Evaluation Dataset #### al-atlas-moroccan-darija-pretraining-dataset * Dataset: [al-atlas-moroccan-darija-pretraining-dataset](https://huggingface.co/datasets/atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset) at [6668961](https://huggingface.co/datasets/atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset/tree/66689612b03f0d7a9528bf74ea30782dd2976569) * Size: 1,875 evaluation samples * Columns: <code>text</code>, <code>dataset_source</code>, and <code>metadata</code> * Approximate statistics based on the first 1000 samples: | | text | dataset_source | metadata | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | string | | details | <ul><li>min: 5 tokens</li><li>mean: 27.22 tokens</li><li>max: 170 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 14.0 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 33.41 tokens</li><li>max: 177 tokens</li></ul> | * Samples: | text | dataset_source | metadata | |:---------------------------------------------------------------------------------------------------------|:----------------------------------------|:-----------------------------------------------------------------------------------------------------------| | <code>كاين في اللاخر ديال هاد القاعة. انجيب ليك شويا دابا. و إلا حتاجيتي شي حاجا اخرى، قولها ليا.</code> | <code>tachicart/mo_darija_merged</code> | <code>{'ar': 'إنها في أخر القاعة . سوف آتي لك ببعض منها الآن . إذا أردت أي شيئاً آخر فقط أعلمني .'}</code> | | <code>واش كا دير التعديلات؟</code> | <code>tachicart/mo_darija_merged</code> | <code>{'ar': 'هل تقومون بعمل تعديلات ؟'}</code> | | <code>بغينا ناخدو طابلة حدا الشرجم.</code> | <code>tachicart/mo_darija_merged</code> | <code>{'ar': 'نريد مائدة بجانب النافذة .'}</code> | * Loss: [<code>CachedMultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `learning_rate`: 0.005 - `num_train_epochs`: 1 - `warmup_ratio`: 0.05 - `bf16`: True #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 128 - `per_device_eval_batch_size`: 128 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 0.005 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.05 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | |:------:|:-----:|:-------------:|:---------------:| | 0.2271 | 5000 | 4.4677 | 4.8309 | | 0.4542 | 10000 | 4.4206 | 4.8347 | | 0.6812 | 15000 | 4.3974 | 4.8401 | | 0.9083 | 20000 | 4.3905 | 4.8354 | ### Framework Versions - Python: 3.12.3 - Sentence Transformers: 3.3.1 - Transformers: 4.48.0.dev0 - PyTorch: 2.5.1+cu124 - Accelerate: 1.1.1 - Datasets: 3.1.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CachedMultipleNegativesRankingLoss ```bibtex @misc{gao2021scaling, title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup}, author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan}, year={2021}, eprint={2101.06983}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"base_model": "answerdotai/ModernBERT-base", "datasets": ["atlasia/AL-Atlas-Moroccan-Darija-Pretraining-Dataset"], "library_name": "sentence-transformers", "pipeline_tag": "sentence-similarity", "tags": ["sentence-transformers", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:2818353", "loss:CachedMultipleNegativesRankingLoss"], "widget": [{"source_sentence": "واش كا يحبس هاد الطوبيس في شارع ستونر؟", "sentences": ["{'ar': 'هل هذه الحافلة تتوقف في شارع أستونر ؟'}", "tachicart/mo_darija_merged", "tachicart/mo_darija_merged"]}, {"source_sentence": "العمال تما يقدرو يبدلو ليك الدولار بالفيتشات ديال الكازينو. مشينا؟", "sentences": ["tachicart/mo_darija_merged", "tachicart/mo_darija_merged", "{'ar': 'يستطيع الصرافون أن يغيروا دولاراتك من أجل بقشيش الكازينو . هل نذهب ؟'}"]}, {"source_sentence": "واخا توريني شي كبوط مضاد للماء؟", "sentences": ["tachicart/mo_darija_merged", "{'ar': 'هل لك أن ترنى معطفاً ضد الماء ؟'}", "tachicart/mo_darija_merged"]}, {"source_sentence": "فين كاين البلاطو رقم خمسة؟", "sentences": ["tachicart/mo_darija_merged", "tachicart/mo_darija_merged", "{'ar': 'أين الرصيف رقم خمسة ؟'}"]}, {"source_sentence": "شحال للمطار؟", "sentences": ["tachicart/mo_darija_merged", "tachicart/mo_darija_merged", "{'ar': 'كم سأدفع للوصول إلى المطار ؟'}"]}]}
task
[ "TEXT_CLASSIFICATION" ]
41,053
nbogdan/flant5-base-2ex-paraphrasing-1epochs
nbogdan
null
[ "adapter-transformers", "adapterhub:self-explanations", "t5", "dataset:self-explanations", "region:us" ]
2023-09-04T23:49:44Z
2023-09-04T23:50:00+00:00
0
0
--- datasets: - self-explanations tags: - adapterhub:self-explanations - t5 - adapter-transformers --- # Adapter `nbogdan/flant5-base-2ex-paraphrasing-1epochs` for google/flan-t5-base An [adapter](https://adapterhub.ml) for the `google/flan-t5-base` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-base") adapter_name = model.load_adapter("nbogdan/flant5-base-2ex-paraphrasing-1epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
null
Non_BioNLP
# Adapter `nbogdan/flant5-base-2ex-paraphrasing-1epochs` for google/flan-t5-base An [adapter](https://adapterhub.ml) for the `google/flan-t5-base` model that was trained on the [self-explanations](https://adapterhub.ml/explore/self-explanations/) dataset. This adapter was created for usage with the **[adapter-transformers](https://github.com/Adapter-Hub/adapter-transformers)** library. ## Usage First, install `adapter-transformers`: ``` pip install -U adapter-transformers ``` _Note: adapter-transformers is a fork of transformers that acts as a drop-in replacement with adapter support. [More](https://docs.adapterhub.ml/installation.html)_ Now, the adapter can be loaded and activated like this: ```python from transformers import AutoAdapterModel model = AutoAdapterModel.from_pretrained("google/flan-t5-base") adapter_name = model.load_adapter("nbogdan/flant5-base-2ex-paraphrasing-1epochs", source="hf", set_active=True) ``` ## Architecture & Training <!-- Add some description here --> ## Evaluation results <!-- Add some description here --> ## Citation <!-- Add some description here -->
{"datasets": ["self-explanations"], "tags": ["adapterhub:self-explanations", "t5", "adapter-transformers"]}
task
[ "PARAPHRASING" ]
41,054
RichardErkhov/LlamaFinetuneBase_-_Phi-3.5-Mini-Instruct-4bits
RichardErkhov
null
[ "safetensors", "phi3", "custom_code", "arxiv:2404.14219", "arxiv:2407.13833", "arxiv:2403.06412", "4-bit", "bitsandbytes", "region:us" ]
2025-01-23T05:36:04Z
2025-01-23T05:38:21+00:00
4
0
--- {} --- Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Phi-3.5-Mini-Instruct - bnb 4bits - Model creator: https://huggingface.co/LlamaFinetuneBase/ - Original model: https://huggingface.co/LlamaFinetuneBase/Phi-3.5-Mini-Instruct/ Original model description: --- license: mit license_link: https://huggingface.co/microsoft/Phi-3.5-mini-instruct/resolve/main/LICENSE language: - multilingual pipeline_tag: text-generation tags: - nlp - code widget: - messages: - role: user content: Can you provide ways to eat combinations of bananas and dragonfruits? library_name: transformers --- ## Model Summary Phi-3.5-mini is a lightweight, state-of-the-art open model built upon datasets used for Phi-3 - synthetic data and filtered publicly available websites - with a focus on very high-quality, reasoning dense data. The model belongs to the Phi-3 model family and supports 128K token context length. The model underwent a rigorous enhancement process, incorporating both supervised fine-tuning, proximal policy optimization, and direct preference optimization to ensure precise instruction adherence and robust safety measures. 🏡 [Phi-3 Portal](https://azure.microsoft.com/en-us/products/phi-3) <br> 📰 [Phi-3 Microsoft Blog](https://aka.ms/phi3.5-techblog) <br> 📖 [Phi-3 Technical Report](https://arxiv.org/abs/2404.14219) <br> 👩‍🍳 [Phi-3 Cookbook](https://github.com/microsoft/Phi-3CookBook) <br> 🖥️ [Try It](https://aka.ms/try-phi3.5mini) <br> **Phi-3.5**: [[mini-instruct]](https://huggingface.co/microsoft/Phi-3.5-mini-instruct); [[MoE-instruct]](https://huggingface.co/microsoft/Phi-3.5-MoE-instruct) ; [[vision-instruct]](https://huggingface.co/microsoft/Phi-3.5-vision-instruct) ## Intended Uses ### Primary Use Cases The model is intended for commercial and research use in multiple languages. The model provides uses for general purpose AI systems and applications which require: 1) Memory/compute constrained environments 2) Latency bound scenarios 3) Strong reasoning (especially code, math and logic) Our model is designed to accelerate research on language and multimodal models, for use as a building block for generative AI powered features. ### Use Case Considerations Our models are not specifically designed or evaluated for all downstream purposes. Developers should consider common limitations of language models as they select use cases, and evaluate and mitigate for accuracy, safety, and fariness before using within a specific downstream use case, particularly for high risk scenarios. Developers should be aware of and adhere to applicable laws or regulations (including privacy, trade compliance laws, etc.) that are relevant to their use case. ***Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the license the model is released under.*** ## Release Notes This is an update over the June 2024 instruction-tuned Phi-3 Mini release based on valuable user feedback. The model used additional post-training data leading to substantial gains on multilingual, multi-turn conversation quality, and reasoning capability. We believe most use cases will benefit from this release, but we encourage users to test in their particular AI applications. We appreciate the enthusiastic adoption of the Phi-3 model family, and continue to welcome all feedback from the community. ### Multilingual The table below highlights multilingual capability of the Phi-3.5 Mini on multilingual MMLU, MEGA, and multilingual MMLU-pro datasets. Overall, we observed that even with just 3.8B active parameters, the model is competitive on multilingual tasks in comparison to other models with a much bigger active parameters. | Benchmark | Phi-3.5 Mini-Ins | Phi-3.0-Mini-128k-Instruct (June2024) | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) | |----------------------------|------------------|-----------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------| | Multilingual MMLU | 55.4 | 51.08 | 47.4 | 58.9 | 56.2 | 63.8 | 77.2 | 72.9 | | Multilingual MMLU-Pro | 30.9 | 30.21 | 15.0 | 34.0 | 21.4 | 43.0 | 57.9 | 53.2 | | MGSM | 47.9 | 41.56 | 31.8 | 63.3 | 56.7 | 75.1 | 75.8 | 81.7 | | MEGA MLQA | 61.7 | 55.5 | 43.9 | 61.2 | 45.2 | 54.4 | 61.6 | 70.0 | | MEGA TyDi QA | 62.2 | 55.9 | 54.0 | 63.7 | 54.5 | 65.6 | 63.6 | 81.8 | | MEGA UDPOS | 46.5 | 48.1 | 57.2 | 58.2 | 54.1 | 56.6 | 62.4 | 66.0 | | MEGA XCOPA | 63.1 | 62.4 | 58.8 | 10.8 | 21.1 | 31.2 | 95.0 | 90.3 | | MEGA XStoryCloze | 73.5 | 73.6 | 75.5 | 92.3 | 71.0 | 87.0 | 20.7 | 96.6 | | **Average** | **55.2** | **52.3** | **47.9** | **55.3** | **47.5** | **59.6** | **64.3** | **76.6** | The table below shows Multilingual MMLU scores in some of the supported languages. For more multi-lingual benchmarks and details, see [Appendix A](#appendix-a). | Benchmark | Phi-3.5 Mini-Ins | Phi-3.0-Mini-128k-Instruct (June2024) | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) | |-----------|------------------|-----------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------| | Arabic | 44.2 | 35.4 | 33.7 | 45.3 | 49.1 | 56.3 | 73.6 | 67.1 | | Chinese | 52.6 | 46.9 | 45.9 | 58.2 | 54.4 | 62.7 | 66.7 | 70.8 | | Dutch | 57.7 | 48.0 | 51.3 | 60.1 | 55.9 | 66.7 | 80.6 | 74.2 | | French | 61.1 | 61.7 | 53.0 | 63.8 | 62.8 | 67.0 | 82.9 | 75.6 | | German | 62.4 | 61.3 | 50.1 | 64.5 | 59.9 | 65.7 | 79.5 | 74.3 | | Italian | 62.8 | 63.1 | 52.5 | 64.1 | 55.9 | 65.7 | 82.6 | 75.9 | | Russian | 50.4 | 45.3 | 48.9 | 59.0 | 57.4 | 63.2 | 78.7 | 72.6 | | Spanish | 62.6 | 61.3 | 53.9 | 64.3 | 62.6 | 66.0 | 80.0 | 75.5 | | Ukrainian | 45.2 | 36.7 | 46.9 | 56.6 | 52.9 | 62.0 | 77.4 | 72.6 | ### Long Context Phi-3.5-mini supports 128K context length, therefore the model is capable of several long context tasks including long document/meeting summarization, long document QA, long document information retrieval. We see that Phi-3.5-mini is clearly better than Gemma-2 family which only supports 8K context length. Phi-3.5-mini is competitive with other much larger open-weight models such as Llama-3.1-8B-instruct, Mistral-7B-instruct-v0.3, and Mistral-Nemo-12B-instruct-2407. | Benchmark | Phi-3.5-mini-instruct | Llama-3.1-8B-instruct | Mistral-7B-instruct-v0.3 | Mistral-Nemo-12B-instruct-2407 | Gemini-1.5-Flash | GPT-4o-mini-2024-07-18 (Chat) | |--|--|--|--|--|--|--| | GovReport | 25.9 | 25.1 | 26.0 | 25.6 | 27.8 | 24.8 | | QMSum | 21.3 | 21.6 | 21.3 | 22.1 | 24.0 | 21.7 | | Qasper | 41.9 | 37.2 | 31.4 | 30.7 | 43.5 | 39.8 | | SQuALITY | 25.3 | 26.2 | 25.9 | 25.8 | 23.5 | 23.8 | | SummScreenFD | 16.0 | 17.6 | 17.5 | 18.2 | 16.3 | 17.0 | | **Average** | **26.1** | **25.5** | **24.4** | **24.5** | **27.0** | **25.4** | RULER: a retrieval-based benchmark for long context understanding | Model | 4K | 8K | 16K | 32K | 64K | 128K | Average | |--|--|--|--|--|--|--|--| | **Phi-3.5-mini-instruct** | 94.3 | 91.1 | 90.7 | 87.1 | 78.0 | 63.6 | **84.1** | | **Llama-3.1-8B-instruct** | 95.5 | 93.8 | 91.6 | 87.4 | 84.7 | 77.0 | **88.3** | | **Mistral-Nemo-12B-instruct-2407** | 87.8 | 87.2 | 87.7 | 69.0 | 46.8 | 19.0 | **66.2** | RepoQA: a benchmark for long context code understanding | Model | Python | C++ | Rust | Java | TypeScript | Average | |--|--|--|--|--|--|--| | **Phi-3.5-mini-instruct** | 86 | 67 | 73 | 77 | 82 | **77** | | **Llama-3.1-8B-instruct** | 80 | 65 | 73 | 76 | 63 | **71** | | **Mistral-7B-instruct-v0.3** | 61 | 57 | 51 | 61 | 80 | **62** | ## Usage ### Requirements Phi-3 family has been integrated in the `4.43.0` version of `transformers`. The current `transformers` version can be verified with: `pip list | grep transformers`. Examples of required packages: ``` flash_attn==2.5.8 torch==2.3.1 accelerate==0.31.0 transformers==4.43.0 ``` Phi-3.5-mini-instruct is also available in [Azure AI Studio](https://aka.ms/try-phi3.5mini) ### Tokenizer Phi-3.5-mini-Instruct supports a vocabulary size of up to `32064` tokens. The [tokenizer files](https://huggingface.co/microsoft/Phi-3.5-mini-instruct/blob/main/added_tokens.json) already provide placeholder tokens that can be used for downstream fine-tuning, but they can also be extended up to the model's vocabulary size. ### Input Formats Given the nature of the training data, the Phi-3.5-mini-instruct model is best suited for prompts using the chat format as follows: ``` <|system|> You are a helpful assistant.<|end|> <|user|> How to explain Internet for a medieval knight?<|end|> <|assistant|> ``` ### Loading the model locally After obtaining the Phi-3.5-mini-instruct model checkpoint, users can use this sample code for inference. ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline torch.random.manual_seed(0) model = AutoModelForCausalLM.from_pretrained( "microsoft/Phi-3.5-mini-instruct", device_map="cuda", torch_dtype="auto", trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct") messages = [ {"role": "system", "content": "You are a helpful AI assistant."}, {"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}, {"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."}, {"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"}, ] pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, ) generation_args = { "max_new_tokens": 500, "return_full_text": False, "temperature": 0.0, "do_sample": False, } output = pipe(messages, **generation_args) print(output[0]['generated_text']) ``` Notes: If you want to use flash attention, call _AutoModelForCausalLM.from_pretrained()_ with _attn_implementation="flash_attention_2"_ ## Responsible AI Considerations Like other language models, the Phi family of models can potentially behave in ways that are unfair, unreliable, or offensive. Some of the limiting behaviors to be aware of include: + Quality of Service: The Phi models are trained primarily on English text and some additional multilingual text. Languages other than English will experience worse performance as well as performance disparities across non-English. English language varieties with less representation in the training data might experience worse performance than standard American English. + Multilingual performance and safety gaps: We believe it is important to make language models more widely available across different languages, but the Phi 3 models still exhibit challenges common across multilingual releases. As with any deployment of LLMs, developers will be better positioned to test for performance or safety gaps for their linguistic and cultural context and customize the model with additional fine-tuning and appropriate safeguards. + Representation of Harms & Perpetuation of Stereotypes: These models can over- or under-represent groups of people, erase representation of some groups, or reinforce demeaning or negative stereotypes. Despite safety post-training, these limitations may still be present due to differing levels of representation of different groups, cultural contexts, or prevalence of examples of negative stereotypes in training data that reflect real-world patterns and societal biases. + Inappropriate or Offensive Content: These models may produce other types of inappropriate or offensive content, which may make it inappropriate to deploy for sensitive contexts without additional mitigations that are specific to the case. + Information Reliability: Language models can generate nonsensical content or fabricate content that might sound reasonable but is inaccurate or outdated. + Limited Scope for Code: Majority of Phi-3 training data is based in Python and use common packages such as "typing, math, random, collections, datetime, itertools". If the model generates Python scripts that utilize other packages or scripts in other languages, we strongly recommend users manually verify all API uses. + Long Conversation: Phi-3 models, like other models, can in some cases generate responses that are repetitive, unhelpful, or inconsistent in very long chat sessions in both English and non-English languages. Developers are encouraged to place appropriate mitigations, like limiting conversation turns to account for the possible conversational drift Developers should apply responsible AI best practices, including mapping, measuring, and mitigating risks associated with their specific use case and cultural, linguistic context. Phi-3 family of models are general purpose models. As developers plan to deploy these models for specific use cases, they are encouraged to fine-tune the models for their use case and leverage the models as part of broader AI systems with language-specific safeguards in place. Important areas for consideration include: + Allocation: Models may not be suitable for scenarios that could have consequential impact on legal status or the allocation of resources or life opportunities (ex: housing, employment, credit, etc.) without further assessments and additional debiasing techniques. + High-Risk Scenarios: Developers should assess the suitability of using models in high-risk scenarios where unfair, unreliable or offensive outputs might be extremely costly or lead to harm. This includes providing advice in sensitive or expert domains where accuracy and reliability are critical (ex: legal or health advice). Additional safeguards should be implemented at the application level according to the deployment context. + Misinformation: Models may produce inaccurate information. Developers should follow transparency best practices and inform end-users they are interacting with an AI system. At the application level, developers can build feedback mechanisms and pipelines to ground responses in use-case specific, contextual information, a technique known as Retrieval Augmented Generation (RAG). + Generation of Harmful Content: Developers should assess outputs for their context and use available safety classifiers or custom solutions appropriate for their use case. + Misuse: Other forms of misuse such as fraud, spam, or malware production may be possible, and developers should ensure that their applications do not violate applicable laws and regulations. ## Training ### Model **Architecture:** Phi-3.5-mini has 3.8B parameters and is a dense decoder-only Transformer model using the same tokenizer as Phi-3 Mini.<br> **Inputs:** Text. It is best suited for prompts using chat format.<br> **Context length:** 128K tokens<br> **GPUs:** 512 H100-80G<br> **Training time:** 10 days<br> **Training data:** 3.4T tokens<br> **Outputs:** Generated text in response to the input<br> **Dates:** Trained between June and August 2024<br> **Status:** This is a static model trained on an offline dataset with cutoff date October 2023 for publicly available data. Future versions of the tuned models may be released as we improve models.<br> **Supported languages:** Arabic, Chinese, Czech, Danish, Dutch, English, Finnish, French, German, Hebrew, Hungarian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Russian, Spanish, Swedish, Thai, Turkish, Ukrainian<br> **Release date:** August 2024<br> ### Training Datasets Our training data includes a wide variety of sources, totaling 3.4 trillion tokens, and is a combination of 1) publicly available documents filtered rigorously for quality, selected high-quality educational data, and code; 2) newly created synthetic, “textbook-like” data for the purpose of teaching math, coding, common sense reasoning, general knowledge of the world (science, daily activities, theory of mind, etc.); 3) high quality chat format supervised data covering various topics to reflect human preferences on different aspects such as instruct-following, truthfulness, honesty and helpfulness. We are focusing on the quality of data that could potentially improve the reasoning ability for the model, and we filter the publicly available documents to contain the correct level of knowledge. As an example, the result of a game in premier league in a particular day might be good training data for frontier models, but we need to remove such information to leave more model capacity for reasoning for the small size models. More details about data can be found in the [Phi-3 Technical Report](https://arxiv.org/pdf/2404.14219). ### Fine-tuning A basic example of multi-GPUs supervised fine-tuning (SFT) with TRL and Accelerate modules is provided [here](https://huggingface.co/microsoft/Phi-3.5-mini-instruct/resolve/main/sample_finetune.py). ## Benchmarks We report the results under completion format for Phi-3.5-mini on standard open-source benchmarks measuring the model's reasoning ability (both common sense reasoning and logical reasoning). We compare to Mistral-7B-Instruct-v0.3, Mistral-Nemo-12B-Ins-2407, Llama-3.1-8B-Ins, Gemma-2-9B-Ins, Gemini 1.5 Flash, and GPT-4o-mini-2024-07-18 (Chat). All the reported numbers are produced with the exact same pipeline to ensure that the numbers are comparable. These numbers might differ from other published numbers due to slightly different choices in the evaluation. As is now standard, we use few-shot prompts to evaluate the models, at temperature 0. The prompts and number of shots are part of a Microsoft internal tool to evaluate language models, and in particular we did no optimization to the pipeline for Phi-3. More specifically, we do not change prompts, pick different few-shot examples, change prompt format, or do any other form of optimization for the model. The number of k–shot examples is listed per-benchmark. At the high-level overview of the model quality on representative benchmarks: | Category | Benchmark | Phi-3.5 Mini-Ins | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) | |----------------|--------------------------|------------------|--------------------------|---------------------------|------------------|----------------|------------------|------------------------------| | Popular aggregated benchmark | Arena Hard | 37 | 18.1 | 39.4 | 25.7 | 42 | 55.2 | 75 | | | BigBench Hard CoT (0-shot) | 69 | 33.4 | 60.2 | 63.4 | 63.5 | 66.7 | 80.4 | | | MMLU (5-shot) | 69 | 60.3 | 67.2 | 68.1 | 71.3 | 78.7 | 77.2 | | | MMLU-Pro (0-shot, CoT) | 47.4 | 18 | 40.7 | 44 | 50.1 | 57.2 | 62.8 | | Reasoning | ARC Challenge (10-shot) | 84.6 | 77.9 | 84.8 | 83.1 | 89.8 | 92.8 | 93.5 | | | BoolQ (2-shot) | 78 | 80.5 | 82.5 | 82.8 | 85.7 | 85.8 | 88.7 | | | GPQA (0-shot, CoT) | 30.4 | 15.6 | 28.6 | 26.3 | 29.2 | 37.5 | 41.1 | | | HellaSwag (5-shot) | 69.4 | 71.6 | 76.7 | 73.5 | 80.9 | 67.5 | 87.1 | | | OpenBookQA (10-shot) | 79.2 | 78 | 84.4 | 84.8 | 89.6 | 89 | 90 | | | PIQA (5-shot) | 81 | 73.4 | 83.5 | 81.2 | 83.7 | 87.5 | 88.7 | | | Social IQA (5-shot) | 74.7 | 73 | 75.3 | 71.8 | 74.7 | 77.8 | 82.9 | | | TruthfulQA (MC2) (10-shot) | 64 | 64.7 | 68.1 | 69.2 | 76.6 | 76.6 | 78.2 | | | WinoGrande (5-shot) | 68.5 | 58.1 | 70.4 | 64.7 | 74 | 74.7 | 76.9 | | Multilingual | Multilingual MMLU (5-shot) | 55.4 | 47.4 | 58.9 | 56.2 | 63.8 | 77.2 | 72.9 | | | MGSM (0-shot CoT) | 47.9 | 31.8 | 63.3 | 56.7 | 76.4 | 75.8 | 81.7 | | Math | GSM8K (8-shot, CoT) | 86.2 | 54.4 | 84.2 | 82.4 | 84.9 | 82.4 | 91.3 | | | MATH (0-shot, CoT) | 48.5 | 19 | 31.2 | 47.6 | 50.9 | 38 | 70.2 | | Long context | Qasper | 41.9 | 31.4 | 30.7 | 37.2 | 13.9 | 43.5 | 39.8 | | | SQuALITY | 24.3 | 25.9 | 25.8 | 26.2 | 0 | 23.5 | 23.8 | | Code Generation| HumanEval (0-shot) | 62.8 | 35.4 | 63.4 | 66.5 | 61 | 74.4 | 86.6 | | | MBPP (3-shot) | 69.6 | 50.4 | 68.1 | 69.4 | 69.3 | 77.5 | 84.1 | | **Average** | | **61.4** | **48.5** | **61.3** | **61.0** | **63.3** | **68.5** | **74.9** | We take a closer look at different categories across public benchmark datasets at the table below: | Category | Phi-3.5 Mini-Ins | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) | |----------------------------|------------------|--------------------------|---------------------------|------------------|----------------|------------------|------------------------------| | Popular aggregated benchmark | 55.6 | 32.5 | 51.9 | 50.3 | 56.7 | 64.5 | 73.9 | | Reasoning | 70.1 | 65.2 | 72.2 | 70.5 | 75.4 | 77.7 | 80 | | Language understanding | 62.6 | 62.8 | 67 | 62.9 | 72.8 | 66.6 | 76.8 | | Robustness | 59.7 | 53.4 | 65.2 | 59.8 | 64.7 | 68.9 | 77.5 | | Long context | 26.1 | 25.5 | 24.4 | 24.5 | 0 | 27 | 25.4 | | Math | 67.4 | 36.7 | 57.7 | 65 | 67.9 | 60.2 | 80.8 | | Code generation | 62 | 43.1 | 56.9 | 65.8 | 58.3 | 66.8 | 69.9 | | Multilingual | 55.2 | 47.9 | 55.3 | 47.5 | 59.6 | 64.3 | 76.6 | Overall, the model with only 3.8B-param achieves a similar level of multilingual language understanding and reasoning ability as much larger models. However, it is still fundamentally limited by its size for certain tasks. The model simply does not have the capacity to store too much factual knowledge, therefore, users may experience factual incorrectness. However, we believe such weakness can be resolved by augmenting Phi-3.5 with a search engine, particularly when using the model under RAG settings. ## Safety Evaluation and Red-Teaming We leveraged various evaluation techniques including red teaming, adversarial conversation simulations, and multilingual safety evaluation benchmark datasets to evaluate Phi-3.5 models' propensity to produce undesirable outputs across multiple languages and risk categories. Several approaches were used to compensate for the limitations of one approach alone. Findings across the various evaluation methods indicate that safety post-training that was done as detailed in the [Phi-3 Safety Post-Training paper](https://arxiv.org/pdf/2407.13833) had a positive impact across multiple languages and risk categories as observed by refusal rates (refusal to output undesirable outputs) and robustness to jailbreak techniques. Note, however, while comprehensive red team evaluations were conducted across all models in the prior release of Phi models, red teaming was largely focused on Phi-3.5 MOE across multiple languages and risk categories for this release as it is the largest and more capable model of the three models. Details on prior red team evaluations across Phi models can be found in the [Phi-3 Safety Post-Training paper](https://arxiv.org/pdf/2407.13833). For this release, insights from red teaming indicate that the models may refuse to generate undesirable outputs in English, even when the request for undesirable output is in another language. Models may also be more susceptible to longer multi-turn jailbreak techniques across both English and non-English languages. These findings highlight the need for industry-wide investment in the development of high-quality safety evaluation datasets across multiple languages, including low resource languages, and risk areas that account for cultural nuances where those languages are spoken. ## Software * [PyTorch](https://github.com/pytorch/pytorch) * [Transformers](https://github.com/huggingface/transformers) * [Flash-Attention](https://github.com/HazyResearch/flash-attention) ## Hardware Note that by default, the Phi-3.5-mini-instruct model uses flash attention, which requires certain types of GPU hardware to run. We have tested on the following GPU types: * NVIDIA A100 * NVIDIA A6000 * NVIDIA H100 If you want to run the model on: * NVIDIA V100 or earlier generation GPUs: call AutoModelForCausalLM.from_pretrained() with attn_implementation="eager" ## License The model is licensed under the [MIT license](./LICENSE). ## Trademarks This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow [Microsoft’s Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks). Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party’s policies. ## Appendix A #### MGSM | Languages | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) | |-----------|------------------------|---------------------------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------| | German | 69.6 | 65.2 | 42.4 | 74.4 | 68.4 | 76.8 | 81.6 | 82.8 | | English | 85.2 | 83.2 | 60.0 | 86.0 | 81.2 | 88.8 | 90.8 | 90.8 | | Spanish | 79.2 | 77.6 | 46.4 | 75.6 | 66.4 | 82.4 | 84.8 | 86.8 | | French | 71.6 | 72.8 | 47.2 | 70.4 | 66.8 | 74.4 | 77.2 | 81.6 | | Japanese | 50.0 | 35.2 | 22.8 | 62.4 | 49.2 | 67.6 | 77.6 | 80.4 | | Russian | 67.2 | 51.6 | 43.2 | 73.6 | 67.2 | 78.4 | 84.8 | 86.4 | | Thai | 29.6 | 6.4 | 18.4 | 53.2 | 56.0 | 76.8 | 87.6 | 81.6 | | Chinese | 60.0 | 52.8 | 42.4 | 66.4 | 68.0 | 72.8 | 82.0 | 82.0 | #### Multilingual MMLU-pro | Languages | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) | |------------|-----------------------|---------------------------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------| | Czech | 24.9 | 26.3 | 14.6 | 30.6 | 23.0 | 40.5 | 59.0 | 40.9 | | English | 47.7 | 46.2 | 17.7 | 39.8 | 43.1 | 49.0 | 66.1 | 62.7 | | Finnish | 22.3 | 20.5 | 11.5 | 30.4 | 9.7 | 37.5 | 54.5 | 50.1 | | Norwegian | 29.9 | 27.8 | 14.4 | 33.2 | 22.2 | 44.4 | 60.7 | 59.1 | | Polish | 25.7 | 26.4 | 16.3 | 33.6 | 9.2 | 41.7 | 53.9 | 42.8 | | Portuguese | 38.7 | 37.6 | 15.3 | 36.0 | 29.3 | 43.5 | 54.0 | 56.9 | | Swedish | 30.7 | 28.1 | 15.5 | 34.3 | 16.9 | 42.6 | 57.7 | 55.5 | #### MEGA ##### MLQA | Languages | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) | |-----------|-----------------------|---------------------------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------| | Arabic | 54.3 | 32.7 | 23.5 | 31.4 | 31.5 | 57.4 | 63.8 | 64.0 | | Chinese | 36.1 | 31.8 | 22.4 | 27.4 | 18.6 | 45.4 | 38.1 | 38.9 | | English | 80.3 | 78.9 | 68.2 | 75.5 | 67.2 | 82.9 | 69.5 | 82.2 | | German | 61.8 | 59.1 | 49.0 | 57.8 | 38.9 | 63.8 | 55.9 | 64.1 | | Spanish | 68.8 | 67.0 | 50.3 | 63.6 | 52.7 | 72.8 | 59.6 | 70.1 | ##### TyDi QA | Languages | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) | |-----------|-----------------------|---------------------------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------| | Arabic | 69.7 | 54.4 | 52.5 | 49.8 | 33.7 | 81.1 | 78.8 | 84.9 | | English | 82.0 | 82.0 | 60.5 | 77.3 | 65.1 | 82.4 | 60.9 | 81.8 | | Finnish | 70.3 | 64.3 | 68.6 | 57.1 | 74.4 | 85.7 | 73.5 | 84.8 | | Japanese | 65.4 | 56.7 | 45.3 | 54.8 | 34.1 | 74.6 | 59.7 | 73.3 | | Korean | 74.0 | 60.4 | 54.5 | 54.2 | 54.9 | 83.8 | 60.7 | 82.3 | | Russian | 63.5 | 62.7 | 52.3 | 55.7 | 27.4 | 69.8 | 60.1 | 72.5 | | Thai | 64.4 | 49.0 | 51.8 | 43.5 | 48.5 | 81.4 | 71.6 | 78.2 | ##### XCOPA | Languages | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) | |-----------|-----------------------|---------------------------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------| | English | 94.6 | 94.6 | 85.6 | 94.4 | 37.6 | 63.8 | 92.0 | 98.2 | | Italian | 86.8 | 84.8 | 76.8 | 83.2 | 16.2 | 37.2 | 85.6 | 97.6 | | Turkish | 58.6 | 57.2 | 61.6 | 56.6 | 38.4 | 60.2 | 91.4 | 94.6 | ## Appendix B: Korean benchmarks The prompt is the same as the [CLIcK paper](https://arxiv.org/abs/2403.06412) prompt. The experimental results below were given with max_tokens=512 (zero-shot), max_tokens=1024 (5-shot), temperature=0.01. No system prompt used. - GPT-4o: 2024-05-13 version - GPT-4o-mini: 2024-07-18 version - GPT-4-turbo: 2024-04-09 version - GPT-3.5-turbo: 2023-06-13 version The overall Korean benchmarks show that the Phi-3.5-Mini-Instruct with only 3.8B params outperforms Llama-3.1-8B-Instruct. | Benchmarks | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Llama-3.1-8B-Instruct | GPT-4o | GPT-4o-mini | GPT-4-turbo | GPT-3.5-turbo | |:-------------------------|------------------------:|--------------------------------:|------------------------:|---------:|--------------:|--------------:|----------------:| | CLIcK | 42.99 | 29.12 | 47.82 | 80.46 | 68.5 | 72.82 | 50.98 | | HAERAE 1.0 | 44.21 | 36.41 | 53.9 | 85.7 | 76.4 | 77.76 | 52.67 | | KMMLU (0-shot, CoT) | 35.87 | 30.82 | 38.54 | 64.26 | 52.63 | 58.75 | 40.3 | | KMMLU (5-shot) | 37.35 | 29.98 | 20.21 | 64.28 | 51.62 | 59.29 | 42.28 | | KMMLU-HARD (0-shot, CoT) | 24 | 25.68 | 24.03 | 39.62 | 24.56 | 30.56 | 20.97 | | KMMLU-HARD (5-shot) | 24.76 | 25.73 | 15.81 | 40.94 | 24.63 | 31.12 | 21.19 | | **Average** | **35.62** | **29.99** | **29.29** | **62.54** | **50.08** | **56.74** | **39.61** | #### CLIcK (Cultural and Linguistic Intelligence in Korean) ##### Accuracy by supercategory | supercategory | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Llama-3.1-8B-Instruct | GPT-4o | GPT-4o-mini | GPT-4-turbo | GPT-3.5-turbo | |:----------------|------------------------:|--------------------------------:|------------------------:|---------:|--------------:|--------------:|----------------:| | Culture | 43.77 | 29.74 | 51.15 | 81.89 | 70.95 | 73.61 | 53.38 | | Language | 41.38 | 27.85 | 40.92 | 77.54 | 63.54 | 71.23 | 46 | | **Overall** | 42.99 | 29.12 | 47.82 | 80.46 | 68.5 | 72.82 | 50.98 | ##### Accuracy by category | supercategory | category | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Llama-3.1-8B-Instruct | GPT-4o | GPT-4o-mini | GPT-4-turbo | GPT-3.5-turbo | |:----------------|:------------|------------------------:|--------------------------------:|------------------------:|---------:|--------------:|--------------:|----------------:| | Culture | Economy | 61.02 | 28.81 | 66.1 | 94.92 | 83.05 | 89.83 | 64.41 | | Culture | Geography | 45.8 | 29.01 | 54.2 | 80.15 | 77.86 | 82.44 | 53.44 | | Culture | History | 26.15 | 30 | 29.64 | 66.92 | 48.4 | 46.4 | 31.79 | | Culture | Law | 32.42 | 22.83 | 44.29 | 70.78 | 57.53 | 61.19 | 41.55 | | Culture | Politics | 54.76 | 33.33 | 59.52 | 88.1 | 83.33 | 89.29 | 65.48 | | Culture | Pop Culture | 60.98 | 34.15 | 60.98 | 97.56 | 85.37 | 92.68 | 75.61 | | Culture | Society | 54.37 | 31.72 | 65.05 | 92.88 | 85.44 | 86.73 | 71.2 | | Culture | Tradition | 47.75 | 31.98 | 54.95 | 87.39 | 74.77 | 79.28 | 55.86 | | Language | Functional | 37.6 | 24 | 32.8 | 84.8 | 64.8 | 80 | 40 | | Language | Grammar | 27.5 | 23.33 | 22.92 | 57.08 | 42.5 | 47.5 | 30 | | Language | Textual | 54.74 | 33.33 | 59.65 | 91.58 | 80.7 | 87.37 | 62.11 | #### HAERAE | category | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Llama-3.1-8B-Instruct | GPT-4o | GPT-4o-mini | GPT-4-turbo | GPT-3.5-turbo | |:----------------------|------------------------:|--------------------------------:|------------------------:|---------:|--------------:|--------------:|----------------:| | General Knowledge | 31.25 | 28.41 | 34.66 | 77.27 | 53.41 | 66.48 | 40.91 | | History | 32.45 | 22.34 | 44.15 | 92.02 | 84.57 | 78.72 | 30.32 | | Loan Words | 47.93 | 35.5 | 63.31 | 79.88 | 76.33 | 78.11 | 59.17 | | Rare Words | 55.06 | 42.96 | 63.21 | 87.9 | 81.98 | 79.01 | 61.23 | | Reading Comprehension | 42.95 | 41.16 | 51.9 | 85.46 | 77.18 | 80.09 | 56.15 | | Standard Nomenclature | 44.44 | 32.68 | 58.82 | 88.89 | 75.82 | 79.08 | 53.59 | | **Overall** | 44.21 | 36.41 | 53.9 | 85.7 | 76.4 | 77.76 | 52.67 | #### KMMLU (0-shot, CoT) | supercategory | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Llama-3.1-8B-Instruct | GPT-4o | GPT-4o-mini | GPT-4-turbo | GPT-3.5-turbo | |:----------------|------------------------:|--------------------------------:|------------------------:|---------:|--------------:|--------------:|----------------:| | Applied Science | 35.8 | 31.68 | 37.03 | 61.52 | 49.29 | 55.98 | 38.47 | | HUMSS | 31.56 | 26.47 | 37.29 | 69.45 | 56.59 | 63 | 40.9 | | Other | 35.45 | 31.01 | 39.15 | 63.79 | 52.35 | 57.53 | 40.19 | | STEM | 38.54 | 31.9 | 40.42 | 65.16 | 54.74 | 60.84 | 42.24 | | **Overall** | 35.87 | 30.82 | 38.54 | 64.26 | 52.63 | 58.75 | 40.3 | #### KMMLU (5-shot) | supercategory | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Llama-3.1-8B-Instruct | GPT-4o | GPT-4o-mini | GPT-4-turbo | GPT-3.5-turbo | |:----------------|------------------------:|--------------------------------:|------------------------:|---------:|--------------:|--------------:|----------------:| | Applied Science | 37.42 | 29.98 | 19.24 | 61.47 | 48.66 | 56.85 | 40.22 | | HUMSS | 34.72 | 27.27 | 22.5 | 68.79 | 55.95 | 63.68 | 43.35 | | Other | 37.04 | 30.76 | 20.95 | 64.21 | 51.1 | 57.85 | 41.92 | | STEM | 38.9 | 30.73 | 19.55 | 65.28 | 53.29 | 61.08 | 44.43 | | **Overall** | 37.35 | 29.98 | 20.21 | 64.28 | 51.62 | 59.29 | 42.28 | #### KMMLU-HARD (0-shot, CoT) | supercategory | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Llama-3.1-8B-Instruct | GPT-4o | GPT-4o-mini | GPT-4-turbo | GPT-3.5-turbo | |:----------------|------------------------:|--------------------------------:|------------------------:|---------:|--------------:|--------------:|----------------:| | Applied Science | 27.08 | 26.17 | 26.25 | 37.12 | 22.25 | 29.17 | 21.07 | | HUMSS | 20.21 | 24.38 | 20.21 | 41.97 | 23.31 | 31.51 | 19.44 | | Other | 23.05 | 24.82 | 23.88 | 40.39 | 26.48 | 29.59 | 22.22 | | STEM | 24.36 | 26.91 | 24.64 | 39.82 | 26.36 | 32.18 | 20.91 | | **Overall** | 24 | 25.68 | 24.03 | 39.62 | 24.56 | 30.56 | 20.97 | #### KMMLU-HARD (5-shot) | supercategory | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Llama-3.1-8B-Instruct | GPT-4o | GPT-4o-mini | GPT-4-turbo | GPT-3.5-turbo | |:----------------|------------------------:|--------------------------------:|------------------------:|---------:|--------------:|--------------:|----------------:| | Applied Science | 25 | 29 | 12 | 31 | 21 | 25 | 20 | | HUMSS | 21.89 | 19.92 | 14 | 43.98 | 23.47 | 33.53 | 19.53 | | Other | 23.26 | 27.27 | 12.83 | 39.84 | 28.34 | 29.68 | 23.22 | | STEM | 20.5 | 25.25 | 12.75 | 40.25 | 23.25 | 27.25 | 19.75 | | **Overall** | 24.76 | 25.73 | 15.81 | 40.94 | 24.63 | 31.12 | 21.19 |
null
Non_BioNLP
Quantization made by Richard Erkhov. [Github](https://github.com/RichardErkhov) [Discord](https://discord.gg/pvy7H8DZMG) [Request more models](https://github.com/RichardErkhov/quant_request) Phi-3.5-Mini-Instruct - bnb 4bits - Model creator: https://huggingface.co/LlamaFinetuneBase/ - Original model: https://huggingface.co/LlamaFinetuneBase/Phi-3.5-Mini-Instruct/ Original model description: --- license: mit license_link: https://huggingface.co/microsoft/Phi-3.5-mini-instruct/resolve/main/LICENSE language: - multilingual pipeline_tag: text-generation tags: - nlp - code widget: - messages: - role: user content: Can you provide ways to eat combinations of bananas and dragonfruits? library_name: transformers --- ## Model Summary Phi-3.5-mini is a lightweight, state-of-the-art open model built upon datasets used for Phi-3 - synthetic data and filtered publicly available websites - with a focus on very high-quality, reasoning dense data. The model belongs to the Phi-3 model family and supports 128K token context length. The model underwent a rigorous enhancement process, incorporating both supervised fine-tuning, proximal policy optimization, and direct preference optimization to ensure precise instruction adherence and robust safety measures. 🏡 [Phi-3 Portal](https://azure.microsoft.com/en-us/products/phi-3) <br> 📰 [Phi-3 Microsoft Blog](https://aka.ms/phi3.5-techblog) <br> 📖 [Phi-3 Technical Report](https://arxiv.org/abs/2404.14219) <br> 👩‍🍳 [Phi-3 Cookbook](https://github.com/microsoft/Phi-3CookBook) <br> 🖥️ [Try It](https://aka.ms/try-phi3.5mini) <br> **Phi-3.5**: [[mini-instruct]](https://huggingface.co/microsoft/Phi-3.5-mini-instruct); [[MoE-instruct]](https://huggingface.co/microsoft/Phi-3.5-MoE-instruct) ; [[vision-instruct]](https://huggingface.co/microsoft/Phi-3.5-vision-instruct) ## Intended Uses ### Primary Use Cases The model is intended for commercial and research use in multiple languages. The model provides uses for general purpose AI systems and applications which require: 1) Memory/compute constrained environments 2) Latency bound scenarios 3) Strong reasoning (especially code, math and logic) Our model is designed to accelerate research on language and multimodal models, for use as a building block for generative AI powered features. ### Use Case Considerations Our models are not specifically designed or evaluated for all downstream purposes. Developers should consider common limitations of language models as they select use cases, and evaluate and mitigate for accuracy, safety, and fariness before using within a specific downstream use case, particularly for high risk scenarios. Developers should be aware of and adhere to applicable laws or regulations (including privacy, trade compliance laws, etc.) that are relevant to their use case. ***Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the license the model is released under.*** ## Release Notes This is an update over the June 2024 instruction-tuned Phi-3 Mini release based on valuable user feedback. The model used additional post-training data leading to substantial gains on multilingual, multi-turn conversation quality, and reasoning capability. We believe most use cases will benefit from this release, but we encourage users to test in their particular AI applications. We appreciate the enthusiastic adoption of the Phi-3 model family, and continue to welcome all feedback from the community. ### Multilingual The table below highlights multilingual capability of the Phi-3.5 Mini on multilingual MMLU, MEGA, and multilingual MMLU-pro datasets. Overall, we observed that even with just 3.8B active parameters, the model is competitive on multilingual tasks in comparison to other models with a much bigger active parameters. | Benchmark | Phi-3.5 Mini-Ins | Phi-3.0-Mini-128k-Instruct (June2024) | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) | |----------------------------|------------------|-----------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------| | Multilingual MMLU | 55.4 | 51.08 | 47.4 | 58.9 | 56.2 | 63.8 | 77.2 | 72.9 | | Multilingual MMLU-Pro | 30.9 | 30.21 | 15.0 | 34.0 | 21.4 | 43.0 | 57.9 | 53.2 | | MGSM | 47.9 | 41.56 | 31.8 | 63.3 | 56.7 | 75.1 | 75.8 | 81.7 | | MEGA MLQA | 61.7 | 55.5 | 43.9 | 61.2 | 45.2 | 54.4 | 61.6 | 70.0 | | MEGA TyDi QA | 62.2 | 55.9 | 54.0 | 63.7 | 54.5 | 65.6 | 63.6 | 81.8 | | MEGA UDPOS | 46.5 | 48.1 | 57.2 | 58.2 | 54.1 | 56.6 | 62.4 | 66.0 | | MEGA XCOPA | 63.1 | 62.4 | 58.8 | 10.8 | 21.1 | 31.2 | 95.0 | 90.3 | | MEGA XStoryCloze | 73.5 | 73.6 | 75.5 | 92.3 | 71.0 | 87.0 | 20.7 | 96.6 | | **Average** | **55.2** | **52.3** | **47.9** | **55.3** | **47.5** | **59.6** | **64.3** | **76.6** | The table below shows Multilingual MMLU scores in some of the supported languages. For more multi-lingual benchmarks and details, see [Appendix A](#appendix-a). | Benchmark | Phi-3.5 Mini-Ins | Phi-3.0-Mini-128k-Instruct (June2024) | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) | |-----------|------------------|-----------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------| | Arabic | 44.2 | 35.4 | 33.7 | 45.3 | 49.1 | 56.3 | 73.6 | 67.1 | | Chinese | 52.6 | 46.9 | 45.9 | 58.2 | 54.4 | 62.7 | 66.7 | 70.8 | | Dutch | 57.7 | 48.0 | 51.3 | 60.1 | 55.9 | 66.7 | 80.6 | 74.2 | | French | 61.1 | 61.7 | 53.0 | 63.8 | 62.8 | 67.0 | 82.9 | 75.6 | | German | 62.4 | 61.3 | 50.1 | 64.5 | 59.9 | 65.7 | 79.5 | 74.3 | | Italian | 62.8 | 63.1 | 52.5 | 64.1 | 55.9 | 65.7 | 82.6 | 75.9 | | Russian | 50.4 | 45.3 | 48.9 | 59.0 | 57.4 | 63.2 | 78.7 | 72.6 | | Spanish | 62.6 | 61.3 | 53.9 | 64.3 | 62.6 | 66.0 | 80.0 | 75.5 | | Ukrainian | 45.2 | 36.7 | 46.9 | 56.6 | 52.9 | 62.0 | 77.4 | 72.6 | ### Long Context Phi-3.5-mini supports 128K context length, therefore the model is capable of several long context tasks including long document/meeting summarization, long document QA, long document information retrieval. We see that Phi-3.5-mini is clearly better than Gemma-2 family which only supports 8K context length. Phi-3.5-mini is competitive with other much larger open-weight models such as Llama-3.1-8B-instruct, Mistral-7B-instruct-v0.3, and Mistral-Nemo-12B-instruct-2407. | Benchmark | Phi-3.5-mini-instruct | Llama-3.1-8B-instruct | Mistral-7B-instruct-v0.3 | Mistral-Nemo-12B-instruct-2407 | Gemini-1.5-Flash | GPT-4o-mini-2024-07-18 (Chat) | |--|--|--|--|--|--|--| | GovReport | 25.9 | 25.1 | 26.0 | 25.6 | 27.8 | 24.8 | | QMSum | 21.3 | 21.6 | 21.3 | 22.1 | 24.0 | 21.7 | | Qasper | 41.9 | 37.2 | 31.4 | 30.7 | 43.5 | 39.8 | | SQuALITY | 25.3 | 26.2 | 25.9 | 25.8 | 23.5 | 23.8 | | SummScreenFD | 16.0 | 17.6 | 17.5 | 18.2 | 16.3 | 17.0 | | **Average** | **26.1** | **25.5** | **24.4** | **24.5** | **27.0** | **25.4** | RULER: a retrieval-based benchmark for long context understanding | Model | 4K | 8K | 16K | 32K | 64K | 128K | Average | |--|--|--|--|--|--|--|--| | **Phi-3.5-mini-instruct** | 94.3 | 91.1 | 90.7 | 87.1 | 78.0 | 63.6 | **84.1** | | **Llama-3.1-8B-instruct** | 95.5 | 93.8 | 91.6 | 87.4 | 84.7 | 77.0 | **88.3** | | **Mistral-Nemo-12B-instruct-2407** | 87.8 | 87.2 | 87.7 | 69.0 | 46.8 | 19.0 | **66.2** | RepoQA: a benchmark for long context code understanding | Model | Python | C++ | Rust | Java | TypeScript | Average | |--|--|--|--|--|--|--| | **Phi-3.5-mini-instruct** | 86 | 67 | 73 | 77 | 82 | **77** | | **Llama-3.1-8B-instruct** | 80 | 65 | 73 | 76 | 63 | **71** | | **Mistral-7B-instruct-v0.3** | 61 | 57 | 51 | 61 | 80 | **62** | ## Usage ### Requirements Phi-3 family has been integrated in the `4.43.0` version of `transformers`. The current `transformers` version can be verified with: `pip list | grep transformers`. Examples of required packages: ``` flash_attn==2.5.8 torch==2.3.1 accelerate==0.31.0 transformers==4.43.0 ``` Phi-3.5-mini-instruct is also available in [Azure AI Studio](https://aka.ms/try-phi3.5mini) ### Tokenizer Phi-3.5-mini-Instruct supports a vocabulary size of up to `32064` tokens. The [tokenizer files](https://huggingface.co/microsoft/Phi-3.5-mini-instruct/blob/main/added_tokens.json) already provide placeholder tokens that can be used for downstream fine-tuning, but they can also be extended up to the model's vocabulary size. ### Input Formats Given the nature of the training data, the Phi-3.5-mini-instruct model is best suited for prompts using the chat format as follows: ``` <|system|> You are a helpful assistant.<|end|> <|user|> How to explain Internet for a medieval knight?<|end|> <|assistant|> ``` ### Loading the model locally After obtaining the Phi-3.5-mini-instruct model checkpoint, users can use this sample code for inference. ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline torch.random.manual_seed(0) model = AutoModelForCausalLM.from_pretrained( "microsoft/Phi-3.5-mini-instruct", device_map="cuda", torch_dtype="auto", trust_remote_code=True, ) tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-mini-instruct") messages = [ {"role": "system", "content": "You are a helpful AI assistant."}, {"role": "user", "content": "Can you provide ways to eat combinations of bananas and dragonfruits?"}, {"role": "assistant", "content": "Sure! Here are some ways to eat bananas and dragonfruits together: 1. Banana and dragonfruit smoothie: Blend bananas and dragonfruits together with some milk and honey. 2. Banana and dragonfruit salad: Mix sliced bananas and dragonfruits together with some lemon juice and honey."}, {"role": "user", "content": "What about solving an 2x + 3 = 7 equation?"}, ] pipe = pipeline( "text-generation", model=model, tokenizer=tokenizer, ) generation_args = { "max_new_tokens": 500, "return_full_text": False, "temperature": 0.0, "do_sample": False, } output = pipe(messages, **generation_args) print(output[0]['generated_text']) ``` Notes: If you want to use flash attention, call _AutoModelForCausalLM.from_pretrained()_ with _attn_implementation="flash_attention_2"_ ## Responsible AI Considerations Like other language models, the Phi family of models can potentially behave in ways that are unfair, unreliable, or offensive. Some of the limiting behaviors to be aware of include: + Quality of Service: The Phi models are trained primarily on English text and some additional multilingual text. Languages other than English will experience worse performance as well as performance disparities across non-English. English language varieties with less representation in the training data might experience worse performance than standard American English. + Multilingual performance and safety gaps: We believe it is important to make language models more widely available across different languages, but the Phi 3 models still exhibit challenges common across multilingual releases. As with any deployment of LLMs, developers will be better positioned to test for performance or safety gaps for their linguistic and cultural context and customize the model with additional fine-tuning and appropriate safeguards. + Representation of Harms & Perpetuation of Stereotypes: These models can over- or under-represent groups of people, erase representation of some groups, or reinforce demeaning or negative stereotypes. Despite safety post-training, these limitations may still be present due to differing levels of representation of different groups, cultural contexts, or prevalence of examples of negative stereotypes in training data that reflect real-world patterns and societal biases. + Inappropriate or Offensive Content: These models may produce other types of inappropriate or offensive content, which may make it inappropriate to deploy for sensitive contexts without additional mitigations that are specific to the case. + Information Reliability: Language models can generate nonsensical content or fabricate content that might sound reasonable but is inaccurate or outdated. + Limited Scope for Code: Majority of Phi-3 training data is based in Python and use common packages such as "typing, math, random, collections, datetime, itertools". If the model generates Python scripts that utilize other packages or scripts in other languages, we strongly recommend users manually verify all API uses. + Long Conversation: Phi-3 models, like other models, can in some cases generate responses that are repetitive, unhelpful, or inconsistent in very long chat sessions in both English and non-English languages. Developers are encouraged to place appropriate mitigations, like limiting conversation turns to account for the possible conversational drift Developers should apply responsible AI best practices, including mapping, measuring, and mitigating risks associated with their specific use case and cultural, linguistic context. Phi-3 family of models are general purpose models. As developers plan to deploy these models for specific use cases, they are encouraged to fine-tune the models for their use case and leverage the models as part of broader AI systems with language-specific safeguards in place. Important areas for consideration include: + Allocation: Models may not be suitable for scenarios that could have consequential impact on legal status or the allocation of resources or life opportunities (ex: housing, employment, credit, etc.) without further assessments and additional debiasing techniques. + High-Risk Scenarios: Developers should assess the suitability of using models in high-risk scenarios where unfair, unreliable or offensive outputs might be extremely costly or lead to harm. This includes providing advice in sensitive or expert domains where accuracy and reliability are critical (ex: legal or health advice). Additional safeguards should be implemented at the application level according to the deployment context. + Misinformation: Models may produce inaccurate information. Developers should follow transparency best practices and inform end-users they are interacting with an AI system. At the application level, developers can build feedback mechanisms and pipelines to ground responses in use-case specific, contextual information, a technique known as Retrieval Augmented Generation (RAG). + Generation of Harmful Content: Developers should assess outputs for their context and use available safety classifiers or custom solutions appropriate for their use case. + Misuse: Other forms of misuse such as fraud, spam, or malware production may be possible, and developers should ensure that their applications do not violate applicable laws and regulations. ## Training ### Model **Architecture:** Phi-3.5-mini has 3.8B parameters and is a dense decoder-only Transformer model using the same tokenizer as Phi-3 Mini.<br> **Inputs:** Text. It is best suited for prompts using chat format.<br> **Context length:** 128K tokens<br> **GPUs:** 512 H100-80G<br> **Training time:** 10 days<br> **Training data:** 3.4T tokens<br> **Outputs:** Generated text in response to the input<br> **Dates:** Trained between June and August 2024<br> **Status:** This is a static model trained on an offline dataset with cutoff date October 2023 for publicly available data. Future versions of the tuned models may be released as we improve models.<br> **Supported languages:** Arabic, Chinese, Czech, Danish, Dutch, English, Finnish, French, German, Hebrew, Hungarian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Russian, Spanish, Swedish, Thai, Turkish, Ukrainian<br> **Release date:** August 2024<br> ### Training Datasets Our training data includes a wide variety of sources, totaling 3.4 trillion tokens, and is a combination of 1) publicly available documents filtered rigorously for quality, selected high-quality educational data, and code; 2) newly created synthetic, “textbook-like” data for the purpose of teaching math, coding, common sense reasoning, general knowledge of the world (science, daily activities, theory of mind, etc.); 3) high quality chat format supervised data covering various topics to reflect human preferences on different aspects such as instruct-following, truthfulness, honesty and helpfulness. We are focusing on the quality of data that could potentially improve the reasoning ability for the model, and we filter the publicly available documents to contain the correct level of knowledge. As an example, the result of a game in premier league in a particular day might be good training data for frontier models, but we need to remove such information to leave more model capacity for reasoning for the small size models. More details about data can be found in the [Phi-3 Technical Report](https://arxiv.org/pdf/2404.14219). ### Fine-tuning A basic example of multi-GPUs supervised fine-tuning (SFT) with TRL and Accelerate modules is provided [here](https://huggingface.co/microsoft/Phi-3.5-mini-instruct/resolve/main/sample_finetune.py). ## Benchmarks We report the results under completion format for Phi-3.5-mini on standard open-source benchmarks measuring the model's reasoning ability (both common sense reasoning and logical reasoning). We compare to Mistral-7B-Instruct-v0.3, Mistral-Nemo-12B-Ins-2407, Llama-3.1-8B-Ins, Gemma-2-9B-Ins, Gemini 1.5 Flash, and GPT-4o-mini-2024-07-18 (Chat). All the reported numbers are produced with the exact same pipeline to ensure that the numbers are comparable. These numbers might differ from other published numbers due to slightly different choices in the evaluation. As is now standard, we use few-shot prompts to evaluate the models, at temperature 0. The prompts and number of shots are part of a Microsoft internal tool to evaluate language models, and in particular we did no optimization to the pipeline for Phi-3. More specifically, we do not change prompts, pick different few-shot examples, change prompt format, or do any other form of optimization for the model. The number of k–shot examples is listed per-benchmark. At the high-level overview of the model quality on representative benchmarks: | Category | Benchmark | Phi-3.5 Mini-Ins | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) | |----------------|--------------------------|------------------|--------------------------|---------------------------|------------------|----------------|------------------|------------------------------| | Popular aggregated benchmark | Arena Hard | 37 | 18.1 | 39.4 | 25.7 | 42 | 55.2 | 75 | | | BigBench Hard CoT (0-shot) | 69 | 33.4 | 60.2 | 63.4 | 63.5 | 66.7 | 80.4 | | | MMLU (5-shot) | 69 | 60.3 | 67.2 | 68.1 | 71.3 | 78.7 | 77.2 | | | MMLU-Pro (0-shot, CoT) | 47.4 | 18 | 40.7 | 44 | 50.1 | 57.2 | 62.8 | | Reasoning | ARC Challenge (10-shot) | 84.6 | 77.9 | 84.8 | 83.1 | 89.8 | 92.8 | 93.5 | | | BoolQ (2-shot) | 78 | 80.5 | 82.5 | 82.8 | 85.7 | 85.8 | 88.7 | | | GPQA (0-shot, CoT) | 30.4 | 15.6 | 28.6 | 26.3 | 29.2 | 37.5 | 41.1 | | | HellaSwag (5-shot) | 69.4 | 71.6 | 76.7 | 73.5 | 80.9 | 67.5 | 87.1 | | | OpenBookQA (10-shot) | 79.2 | 78 | 84.4 | 84.8 | 89.6 | 89 | 90 | | | PIQA (5-shot) | 81 | 73.4 | 83.5 | 81.2 | 83.7 | 87.5 | 88.7 | | | Social IQA (5-shot) | 74.7 | 73 | 75.3 | 71.8 | 74.7 | 77.8 | 82.9 | | | TruthfulQA (MC2) (10-shot) | 64 | 64.7 | 68.1 | 69.2 | 76.6 | 76.6 | 78.2 | | | WinoGrande (5-shot) | 68.5 | 58.1 | 70.4 | 64.7 | 74 | 74.7 | 76.9 | | Multilingual | Multilingual MMLU (5-shot) | 55.4 | 47.4 | 58.9 | 56.2 | 63.8 | 77.2 | 72.9 | | | MGSM (0-shot CoT) | 47.9 | 31.8 | 63.3 | 56.7 | 76.4 | 75.8 | 81.7 | | Math | GSM8K (8-shot, CoT) | 86.2 | 54.4 | 84.2 | 82.4 | 84.9 | 82.4 | 91.3 | | | MATH (0-shot, CoT) | 48.5 | 19 | 31.2 | 47.6 | 50.9 | 38 | 70.2 | | Long context | Qasper | 41.9 | 31.4 | 30.7 | 37.2 | 13.9 | 43.5 | 39.8 | | | SQuALITY | 24.3 | 25.9 | 25.8 | 26.2 | 0 | 23.5 | 23.8 | | Code Generation| HumanEval (0-shot) | 62.8 | 35.4 | 63.4 | 66.5 | 61 | 74.4 | 86.6 | | | MBPP (3-shot) | 69.6 | 50.4 | 68.1 | 69.4 | 69.3 | 77.5 | 84.1 | | **Average** | | **61.4** | **48.5** | **61.3** | **61.0** | **63.3** | **68.5** | **74.9** | We take a closer look at different categories across public benchmark datasets at the table below: | Category | Phi-3.5 Mini-Ins | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) | |----------------------------|------------------|--------------------------|---------------------------|------------------|----------------|------------------|------------------------------| | Popular aggregated benchmark | 55.6 | 32.5 | 51.9 | 50.3 | 56.7 | 64.5 | 73.9 | | Reasoning | 70.1 | 65.2 | 72.2 | 70.5 | 75.4 | 77.7 | 80 | | Language understanding | 62.6 | 62.8 | 67 | 62.9 | 72.8 | 66.6 | 76.8 | | Robustness | 59.7 | 53.4 | 65.2 | 59.8 | 64.7 | 68.9 | 77.5 | | Long context | 26.1 | 25.5 | 24.4 | 24.5 | 0 | 27 | 25.4 | | Math | 67.4 | 36.7 | 57.7 | 65 | 67.9 | 60.2 | 80.8 | | Code generation | 62 | 43.1 | 56.9 | 65.8 | 58.3 | 66.8 | 69.9 | | Multilingual | 55.2 | 47.9 | 55.3 | 47.5 | 59.6 | 64.3 | 76.6 | Overall, the model with only 3.8B-param achieves a similar level of multilingual language understanding and reasoning ability as much larger models. However, it is still fundamentally limited by its size for certain tasks. The model simply does not have the capacity to store too much factual knowledge, therefore, users may experience factual incorrectness. However, we believe such weakness can be resolved by augmenting Phi-3.5 with a search engine, particularly when using the model under RAG settings. ## Safety Evaluation and Red-Teaming We leveraged various evaluation techniques including red teaming, adversarial conversation simulations, and multilingual safety evaluation benchmark datasets to evaluate Phi-3.5 models' propensity to produce undesirable outputs across multiple languages and risk categories. Several approaches were used to compensate for the limitations of one approach alone. Findings across the various evaluation methods indicate that safety post-training that was done as detailed in the [Phi-3 Safety Post-Training paper](https://arxiv.org/pdf/2407.13833) had a positive impact across multiple languages and risk categories as observed by refusal rates (refusal to output undesirable outputs) and robustness to jailbreak techniques. Note, however, while comprehensive red team evaluations were conducted across all models in the prior release of Phi models, red teaming was largely focused on Phi-3.5 MOE across multiple languages and risk categories for this release as it is the largest and more capable model of the three models. Details on prior red team evaluations across Phi models can be found in the [Phi-3 Safety Post-Training paper](https://arxiv.org/pdf/2407.13833). For this release, insights from red teaming indicate that the models may refuse to generate undesirable outputs in English, even when the request for undesirable output is in another language. Models may also be more susceptible to longer multi-turn jailbreak techniques across both English and non-English languages. These findings highlight the need for industry-wide investment in the development of high-quality safety evaluation datasets across multiple languages, including low resource languages, and risk areas that account for cultural nuances where those languages are spoken. ## Software * [PyTorch](https://github.com/pytorch/pytorch) * [Transformers](https://github.com/huggingface/transformers) * [Flash-Attention](https://github.com/HazyResearch/flash-attention) ## Hardware Note that by default, the Phi-3.5-mini-instruct model uses flash attention, which requires certain types of GPU hardware to run. We have tested on the following GPU types: * NVIDIA A100 * NVIDIA A6000 * NVIDIA H100 If you want to run the model on: * NVIDIA V100 or earlier generation GPUs: call AutoModelForCausalLM.from_pretrained() with attn_implementation="eager" ## License The model is licensed under the [MIT license](./LICENSE). ## Trademarks This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow [Microsoft’s Trademark & Brand Guidelines](https://www.microsoft.com/en-us/legal/intellectualproperty/trademarks). Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party’s policies. ## Appendix A #### MGSM | Languages | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) | |-----------|------------------------|---------------------------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------| | German | 69.6 | 65.2 | 42.4 | 74.4 | 68.4 | 76.8 | 81.6 | 82.8 | | English | 85.2 | 83.2 | 60.0 | 86.0 | 81.2 | 88.8 | 90.8 | 90.8 | | Spanish | 79.2 | 77.6 | 46.4 | 75.6 | 66.4 | 82.4 | 84.8 | 86.8 | | French | 71.6 | 72.8 | 47.2 | 70.4 | 66.8 | 74.4 | 77.2 | 81.6 | | Japanese | 50.0 | 35.2 | 22.8 | 62.4 | 49.2 | 67.6 | 77.6 | 80.4 | | Russian | 67.2 | 51.6 | 43.2 | 73.6 | 67.2 | 78.4 | 84.8 | 86.4 | | Thai | 29.6 | 6.4 | 18.4 | 53.2 | 56.0 | 76.8 | 87.6 | 81.6 | | Chinese | 60.0 | 52.8 | 42.4 | 66.4 | 68.0 | 72.8 | 82.0 | 82.0 | #### Multilingual MMLU-pro | Languages | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) | |------------|-----------------------|---------------------------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------| | Czech | 24.9 | 26.3 | 14.6 | 30.6 | 23.0 | 40.5 | 59.0 | 40.9 | | English | 47.7 | 46.2 | 17.7 | 39.8 | 43.1 | 49.0 | 66.1 | 62.7 | | Finnish | 22.3 | 20.5 | 11.5 | 30.4 | 9.7 | 37.5 | 54.5 | 50.1 | | Norwegian | 29.9 | 27.8 | 14.4 | 33.2 | 22.2 | 44.4 | 60.7 | 59.1 | | Polish | 25.7 | 26.4 | 16.3 | 33.6 | 9.2 | 41.7 | 53.9 | 42.8 | | Portuguese | 38.7 | 37.6 | 15.3 | 36.0 | 29.3 | 43.5 | 54.0 | 56.9 | | Swedish | 30.7 | 28.1 | 15.5 | 34.3 | 16.9 | 42.6 | 57.7 | 55.5 | #### MEGA ##### MLQA | Languages | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) | |-----------|-----------------------|---------------------------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------| | Arabic | 54.3 | 32.7 | 23.5 | 31.4 | 31.5 | 57.4 | 63.8 | 64.0 | | Chinese | 36.1 | 31.8 | 22.4 | 27.4 | 18.6 | 45.4 | 38.1 | 38.9 | | English | 80.3 | 78.9 | 68.2 | 75.5 | 67.2 | 82.9 | 69.5 | 82.2 | | German | 61.8 | 59.1 | 49.0 | 57.8 | 38.9 | 63.8 | 55.9 | 64.1 | | Spanish | 68.8 | 67.0 | 50.3 | 63.6 | 52.7 | 72.8 | 59.6 | 70.1 | ##### TyDi QA | Languages | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) | |-----------|-----------------------|---------------------------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------| | Arabic | 69.7 | 54.4 | 52.5 | 49.8 | 33.7 | 81.1 | 78.8 | 84.9 | | English | 82.0 | 82.0 | 60.5 | 77.3 | 65.1 | 82.4 | 60.9 | 81.8 | | Finnish | 70.3 | 64.3 | 68.6 | 57.1 | 74.4 | 85.7 | 73.5 | 84.8 | | Japanese | 65.4 | 56.7 | 45.3 | 54.8 | 34.1 | 74.6 | 59.7 | 73.3 | | Korean | 74.0 | 60.4 | 54.5 | 54.2 | 54.9 | 83.8 | 60.7 | 82.3 | | Russian | 63.5 | 62.7 | 52.3 | 55.7 | 27.4 | 69.8 | 60.1 | 72.5 | | Thai | 64.4 | 49.0 | 51.8 | 43.5 | 48.5 | 81.4 | 71.6 | 78.2 | ##### XCOPA | Languages | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Mistral-7B-Instruct-v0.3 | Mistral-Nemo-12B-Ins-2407 | Llama-3.1-8B-Ins | Gemma-2-9B-Ins | Gemini 1.5 Flash | GPT-4o-mini-2024-07-18 (Chat) | |-----------|-----------------------|---------------------------------------|--------------------------|---------------------------|------------------|----------------|------------------|-------------------------------| | English | 94.6 | 94.6 | 85.6 | 94.4 | 37.6 | 63.8 | 92.0 | 98.2 | | Italian | 86.8 | 84.8 | 76.8 | 83.2 | 16.2 | 37.2 | 85.6 | 97.6 | | Turkish | 58.6 | 57.2 | 61.6 | 56.6 | 38.4 | 60.2 | 91.4 | 94.6 | ## Appendix B: Korean benchmarks The prompt is the same as the [CLIcK paper](https://arxiv.org/abs/2403.06412) prompt. The experimental results below were given with max_tokens=512 (zero-shot), max_tokens=1024 (5-shot), temperature=0.01. No system prompt used. - GPT-4o: 2024-05-13 version - GPT-4o-mini: 2024-07-18 version - GPT-4-turbo: 2024-04-09 version - GPT-3.5-turbo: 2023-06-13 version The overall Korean benchmarks show that the Phi-3.5-Mini-Instruct with only 3.8B params outperforms Llama-3.1-8B-Instruct. | Benchmarks | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Llama-3.1-8B-Instruct | GPT-4o | GPT-4o-mini | GPT-4-turbo | GPT-3.5-turbo | |:-------------------------|------------------------:|--------------------------------:|------------------------:|---------:|--------------:|--------------:|----------------:| | CLIcK | 42.99 | 29.12 | 47.82 | 80.46 | 68.5 | 72.82 | 50.98 | | HAERAE 1.0 | 44.21 | 36.41 | 53.9 | 85.7 | 76.4 | 77.76 | 52.67 | | KMMLU (0-shot, CoT) | 35.87 | 30.82 | 38.54 | 64.26 | 52.63 | 58.75 | 40.3 | | KMMLU (5-shot) | 37.35 | 29.98 | 20.21 | 64.28 | 51.62 | 59.29 | 42.28 | | KMMLU-HARD (0-shot, CoT) | 24 | 25.68 | 24.03 | 39.62 | 24.56 | 30.56 | 20.97 | | KMMLU-HARD (5-shot) | 24.76 | 25.73 | 15.81 | 40.94 | 24.63 | 31.12 | 21.19 | | **Average** | **35.62** | **29.99** | **29.29** | **62.54** | **50.08** | **56.74** | **39.61** | #### CLIcK (Cultural and Linguistic Intelligence in Korean) ##### Accuracy by supercategory | supercategory | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Llama-3.1-8B-Instruct | GPT-4o | GPT-4o-mini | GPT-4-turbo | GPT-3.5-turbo | |:----------------|------------------------:|--------------------------------:|------------------------:|---------:|--------------:|--------------:|----------------:| | Culture | 43.77 | 29.74 | 51.15 | 81.89 | 70.95 | 73.61 | 53.38 | | Language | 41.38 | 27.85 | 40.92 | 77.54 | 63.54 | 71.23 | 46 | | **Overall** | 42.99 | 29.12 | 47.82 | 80.46 | 68.5 | 72.82 | 50.98 | ##### Accuracy by category | supercategory | category | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Llama-3.1-8B-Instruct | GPT-4o | GPT-4o-mini | GPT-4-turbo | GPT-3.5-turbo | |:----------------|:------------|------------------------:|--------------------------------:|------------------------:|---------:|--------------:|--------------:|----------------:| | Culture | Economy | 61.02 | 28.81 | 66.1 | 94.92 | 83.05 | 89.83 | 64.41 | | Culture | Geography | 45.8 | 29.01 | 54.2 | 80.15 | 77.86 | 82.44 | 53.44 | | Culture | History | 26.15 | 30 | 29.64 | 66.92 | 48.4 | 46.4 | 31.79 | | Culture | Law | 32.42 | 22.83 | 44.29 | 70.78 | 57.53 | 61.19 | 41.55 | | Culture | Politics | 54.76 | 33.33 | 59.52 | 88.1 | 83.33 | 89.29 | 65.48 | | Culture | Pop Culture | 60.98 | 34.15 | 60.98 | 97.56 | 85.37 | 92.68 | 75.61 | | Culture | Society | 54.37 | 31.72 | 65.05 | 92.88 | 85.44 | 86.73 | 71.2 | | Culture | Tradition | 47.75 | 31.98 | 54.95 | 87.39 | 74.77 | 79.28 | 55.86 | | Language | Functional | 37.6 | 24 | 32.8 | 84.8 | 64.8 | 80 | 40 | | Language | Grammar | 27.5 | 23.33 | 22.92 | 57.08 | 42.5 | 47.5 | 30 | | Language | Textual | 54.74 | 33.33 | 59.65 | 91.58 | 80.7 | 87.37 | 62.11 | #### HAERAE | category | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Llama-3.1-8B-Instruct | GPT-4o | GPT-4o-mini | GPT-4-turbo | GPT-3.5-turbo | |:----------------------|------------------------:|--------------------------------:|------------------------:|---------:|--------------:|--------------:|----------------:| | General Knowledge | 31.25 | 28.41 | 34.66 | 77.27 | 53.41 | 66.48 | 40.91 | | History | 32.45 | 22.34 | 44.15 | 92.02 | 84.57 | 78.72 | 30.32 | | Loan Words | 47.93 | 35.5 | 63.31 | 79.88 | 76.33 | 78.11 | 59.17 | | Rare Words | 55.06 | 42.96 | 63.21 | 87.9 | 81.98 | 79.01 | 61.23 | | Reading Comprehension | 42.95 | 41.16 | 51.9 | 85.46 | 77.18 | 80.09 | 56.15 | | Standard Nomenclature | 44.44 | 32.68 | 58.82 | 88.89 | 75.82 | 79.08 | 53.59 | | **Overall** | 44.21 | 36.41 | 53.9 | 85.7 | 76.4 | 77.76 | 52.67 | #### KMMLU (0-shot, CoT) | supercategory | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Llama-3.1-8B-Instruct | GPT-4o | GPT-4o-mini | GPT-4-turbo | GPT-3.5-turbo | |:----------------|------------------------:|--------------------------------:|------------------------:|---------:|--------------:|--------------:|----------------:| | Applied Science | 35.8 | 31.68 | 37.03 | 61.52 | 49.29 | 55.98 | 38.47 | | HUMSS | 31.56 | 26.47 | 37.29 | 69.45 | 56.59 | 63 | 40.9 | | Other | 35.45 | 31.01 | 39.15 | 63.79 | 52.35 | 57.53 | 40.19 | | STEM | 38.54 | 31.9 | 40.42 | 65.16 | 54.74 | 60.84 | 42.24 | | **Overall** | 35.87 | 30.82 | 38.54 | 64.26 | 52.63 | 58.75 | 40.3 | #### KMMLU (5-shot) | supercategory | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Llama-3.1-8B-Instruct | GPT-4o | GPT-4o-mini | GPT-4-turbo | GPT-3.5-turbo | |:----------------|------------------------:|--------------------------------:|------------------------:|---------:|--------------:|--------------:|----------------:| | Applied Science | 37.42 | 29.98 | 19.24 | 61.47 | 48.66 | 56.85 | 40.22 | | HUMSS | 34.72 | 27.27 | 22.5 | 68.79 | 55.95 | 63.68 | 43.35 | | Other | 37.04 | 30.76 | 20.95 | 64.21 | 51.1 | 57.85 | 41.92 | | STEM | 38.9 | 30.73 | 19.55 | 65.28 | 53.29 | 61.08 | 44.43 | | **Overall** | 37.35 | 29.98 | 20.21 | 64.28 | 51.62 | 59.29 | 42.28 | #### KMMLU-HARD (0-shot, CoT) | supercategory | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Llama-3.1-8B-Instruct | GPT-4o | GPT-4o-mini | GPT-4-turbo | GPT-3.5-turbo | |:----------------|------------------------:|--------------------------------:|------------------------:|---------:|--------------:|--------------:|----------------:| | Applied Science | 27.08 | 26.17 | 26.25 | 37.12 | 22.25 | 29.17 | 21.07 | | HUMSS | 20.21 | 24.38 | 20.21 | 41.97 | 23.31 | 31.51 | 19.44 | | Other | 23.05 | 24.82 | 23.88 | 40.39 | 26.48 | 29.59 | 22.22 | | STEM | 24.36 | 26.91 | 24.64 | 39.82 | 26.36 | 32.18 | 20.91 | | **Overall** | 24 | 25.68 | 24.03 | 39.62 | 24.56 | 30.56 | 20.97 | #### KMMLU-HARD (5-shot) | supercategory | Phi-3.5-Mini-Instruct | Phi-3.0-Mini-128k-Instruct (June2024) | Llama-3.1-8B-Instruct | GPT-4o | GPT-4o-mini | GPT-4-turbo | GPT-3.5-turbo | |:----------------|------------------------:|--------------------------------:|------------------------:|---------:|--------------:|--------------:|----------------:| | Applied Science | 25 | 29 | 12 | 31 | 21 | 25 | 20 | | HUMSS | 21.89 | 19.92 | 14 | 43.98 | 23.47 | 33.53 | 19.53 | | Other | 23.26 | 27.27 | 12.83 | 39.84 | 28.34 | 29.68 | 23.22 | | STEM | 20.5 | 25.25 | 12.75 | 40.25 | 23.25 | 27.25 | 19.75 | | **Overall** | 24.76 | 25.73 | 15.81 | 40.94 | 24.63 | 31.12 | 21.19 |
{}
task
[ "SUMMARIZATION" ]
41,055
martimfasantos/EuroLLM-1.7B-Instruct-SLiC
martimfasantos
translation
[ "safetensors", "llama", "xcomet_xl_xxl", "generated_from_trainer", "translation", "dataset:sardinelab/MT-pref", "base_model:utter-project/EuroLLM-1.7B-Instruct", "base_model:finetune:utter-project/EuroLLM-1.7B-Instruct", "license:apache-2.0", "region:us" ]
2024-09-27T17:37:52Z
2024-12-30T01:08:39+00:00
8
0
--- base_model: utter-project/EuroLLM-1.7B-Instruct datasets: - sardinelab/MT-pref license: apache-2.0 pipeline_tag: translation tags: - xcomet_xl_xxl - generated_from_trainer model-index: - name: EuroLLM-1.7B-Instruct-SLiC results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EuroLLM-1.7B-Instruct-SLiC This model is a fine-tuned version of [utter-project/EuroLLM-1.7B-Instruct](https://huggingface.co/utter-project/EuroLLM-1.7B-Instruct) on the sardinelab/MT-pref dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 1 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.43.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # EuroLLM-1.7B-Instruct-SLiC This model is a fine-tuned version of [utter-project/EuroLLM-1.7B-Instruct](https://huggingface.co/utter-project/EuroLLM-1.7B-Instruct) on the sardinelab/MT-pref dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-07 - train_batch_size: 1 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 32 - total_train_batch_size: 128 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results ### Framework versions - Transformers 4.43.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1
{"base_model": "utter-project/EuroLLM-1.7B-Instruct", "datasets": ["sardinelab/MT-pref"], "license": "apache-2.0", "pipeline_tag": "translation", "tags": ["xcomet_xl_xxl", "generated_from_trainer"], "model-index": [{"name": "EuroLLM-1.7B-Instruct-SLiC", "results": []}]}
task
[ "TRANSLATION" ]
41,056
prithivMLmods/Novaeus-Promptist-7B-Instruct-GGUF
prithivMLmods
text-generation
[ "transformers", "gguf", "qwen2", "Qwen2.5", "Prompt_Enhance", "Promptist_7B", "Ollama", "Llama-Cpp", "text-generation-inference", "text-generation", "en", "dataset:gokaygokay/prompt-enhancer-dataset", "dataset:gokaygokay/prompt-enhancement-75k", "dataset:prithivMLmods/Prompt-Enhancement-Mini", "base_model:prithivMLmods/Novaeus-Promptist-7B-Instruct", "base_model:quantized:prithivMLmods/Novaeus-Promptist-7B-Instruct", "license:creativeml-openrail-m", "endpoints_compatible", "region:us", "conversational" ]
2024-12-05T07:51:56Z
2024-12-07T06:10:25+00:00
197
4
--- base_model: - prithivMLmods/Novaeus-Promptist-7B-Instruct datasets: - gokaygokay/prompt-enhancer-dataset - gokaygokay/prompt-enhancement-75k - prithivMLmods/Prompt-Enhancement-Mini language: - en library_name: transformers license: creativeml-openrail-m pipeline_tag: text-generation tags: - Qwen2.5 - Prompt_Enhance - Promptist_7B - Ollama - Llama-Cpp - text-generation-inference --- ### Novaeus-Promptist-7B-Instruct Uploaded Model Files The **Novaeus-Promptist-7B-Instruct** is a fine-tuned large language model derived from the **Qwen2.5-7B-Instruct** base model. It is optimized for **prompt enhancement, text generation**, and **instruction-following tasks**, providing high-quality outputs tailored to various applications. | **File Name** | **Size** | **Description** | **Upload Status** | |------------------------------------------------|---------------|------------------------------------------|-------------------| | `.gitattributes` | 1.83 kB | Git attributes for handling LFS. | Uploaded | | `Novaeus-Promptist-7B-Instruct.F16.gguf` | 15.2 GB | Full precision model weights (FP16). | Uploaded (LFS) | | `Novaeus-Promptist-7B-Instruct.Q4_K_M.gguf` | 4.68 GB | Quantized weights for Q4 (K_M). | Uploaded (LFS) | | `Novaeus-Promptist-7B-Instruct.Q5_K_M.gguf` | 5.44 GB | Quantized weights for Q5 (K_M). | Uploaded (LFS) | | `Novaeus-Promptist-7B-Instruct.Q8_0.gguf` | 8.1 GB | Quantized weights for Q8. | Uploaded (LFS) | | `README.md` | 388 Bytes | Model overview and usage documentation. | Updated | | `config.json` | 29 Bytes | Configuration for the model. | Uploaded | --- ![Screenshot 2024-12-07 113150.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/pqFaT-78hssi106bfJwpN.png) ### **Key Features:** 1. **Prompt Refinement:** Designed to enhance input prompts by rephrasing, clarifying, and optimizing for more precise outcomes. 2. **Instruction Following:** Accurately follows complex user instructions for various generation tasks, including creative writing, summarization, and question answering. 3. **Customization and Fine-Tuning:** Incorporates datasets specifically curated for prompt optimization, enabling seamless adaptation to specific user needs. --- ### **Training Details:** - **Base Model:** [Qwen2.5-7B-Instruct](#) - **Datasets Used for Fine-Tuning:** - **gokaygokay/prompt-enhancer-dataset:** Focuses on prompt engineering with 17.9k samples. - **gokaygokay/prompt-enhancement-75k:** Encompasses a wider array of prompt styles with 73.2k samples. - **prithivMLmods/Prompt-Enhancement-Mini:** A compact dataset (1.16k samples) for iterative refinement. --- ### **Capabilities:** - **Prompt Optimization:** Automatically refines and enhances user-input prompts for better generation results. - **Instruction-Based Text Generation:** Supports diverse tasks, including: - Creative writing (stories, poems, scripts). - Summaries and paraphrasing. - Custom Q&A systems. - **Efficient Fine-Tuning:** Adaptable to additional fine-tuning tasks by leveraging the model's existing high-quality instruction-following capabilities. --- ### **Usage Instructions:** 1. **Setup:** - Ensure all necessary model files, including shards, tokenizer configurations, and index files, are downloaded and placed in the correct directory. 2. **Load Model:** Use PyTorch or Hugging Face Transformers to load the model and tokenizer. Ensure `pytorch_model.bin.index.json` is correctly set for efficient shard-based loading. 3. **Customize Generation:** Adjust parameters in `generation_config.json` to control aspects such as temperature, top-p sampling, and maximum sequence length. --- # Run with Ollama [ Ollama Run ] ## Overview Ollama is a powerful tool that allows you to run machine learning models effortlessly. This guide will help you download, install, and run your own GGUF models in just a few minutes. ## Table of Contents - [Download and Install Ollama](#download-and-install-ollama) - [Steps to Run GGUF Models](#steps-to-run-gguf-models) - [1. Create the Model File](#1-create-the-model-file) - [2. Add the Template Command](#2-add-the-template-command) - [3. Create and Patch the Model](#3-create-and-patch-the-model) - [Running the Model](#running-the-model) - [Sample Usage](#sample-usage) ## Download and Install Ollama🦙 To get started, download Ollama from [https://ollama.com/download](https://ollama.com/download) and install it on your Windows or Mac system. ## Steps to Run GGUF Models ### 1. Create the Model File First, create a model file and name it appropriately. For example, you can name your model file `metallama`. ### 2. Add the Template Command In your model file, include a `FROM` line that specifies the base model file you want to use. For instance: ```bash FROM Llama-3.2-1B.F16.gguf ``` Ensure that the model file is in the same directory as your script. ### 3. Create and Patch the Model Open your terminal and run the following command to create and patch your model: ```bash ollama create metallama -f ./metallama ``` Once the process is successful, you will see a confirmation message. To verify that the model was created successfully, you can list all models with: ```bash ollama list ``` Make sure that `metallama` appears in the list of models. --- ## Running the Model To run your newly created model, use the following command in your terminal: ```bash ollama run metallama ``` ### Sample Usage / Test In the command prompt, you can execute: ```bash D:\>ollama run metallama ``` You can interact with the model like this: ```plaintext >>> write a mini passage about space x Space X, the private aerospace company founded by Elon Musk, is revolutionizing the field of space exploration. With its ambitious goals to make humanity a multi-planetary species and establish a sustainable human presence in the cosmos, Space X has become a leading player in the industry. The company's spacecraft, like the Falcon 9, have demonstrated remarkable capabilities, allowing for the transport of crews and cargo into space with unprecedented efficiency. As technology continues to advance, the possibility of establishing permanent colonies on Mars becomes increasingly feasible, thanks in part to the success of reusable rockets that can launch multiple times without sustaining significant damage. The journey towards becoming a multi-planetary species is underway, and Space X plays a pivotal role in pushing the boundaries of human exploration and settlement. ``` --- ## Conclusion With these simple steps, you can easily download, install, and run your own models using Ollama. Whether you're exploring the capabilities of Llama or building your own custom models, Ollama makes it accessible and efficient. - This README provides clear instructions and structured information to help users navigate the process of using Ollama effectively. Adjust any sections as needed based on your specific requirements or additional details you may want to include.
null
Non_BioNLP
### Novaeus-Promptist-7B-Instruct Uploaded Model Files The **Novaeus-Promptist-7B-Instruct** is a fine-tuned large language model derived from the **Qwen2.5-7B-Instruct** base model. It is optimized for **prompt enhancement, text generation**, and **instruction-following tasks**, providing high-quality outputs tailored to various applications. | **File Name** | **Size** | **Description** | **Upload Status** | |------------------------------------------------|---------------|------------------------------------------|-------------------| | `.gitattributes` | 1.83 kB | Git attributes for handling LFS. | Uploaded | | `Novaeus-Promptist-7B-Instruct.F16.gguf` | 15.2 GB | Full precision model weights (FP16). | Uploaded (LFS) | | `Novaeus-Promptist-7B-Instruct.Q4_K_M.gguf` | 4.68 GB | Quantized weights for Q4 (K_M). | Uploaded (LFS) | | `Novaeus-Promptist-7B-Instruct.Q5_K_M.gguf` | 5.44 GB | Quantized weights for Q5 (K_M). | Uploaded (LFS) | | `Novaeus-Promptist-7B-Instruct.Q8_0.gguf` | 8.1 GB | Quantized weights for Q8. | Uploaded (LFS) | | `README.md` | 388 Bytes | Model overview and usage documentation. | Updated | | `config.json` | 29 Bytes | Configuration for the model. | Uploaded | --- ![Screenshot 2024-12-07 113150.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/pqFaT-78hssi106bfJwpN.png) ### **Key Features:** 1. **Prompt Refinement:** Designed to enhance input prompts by rephrasing, clarifying, and optimizing for more precise outcomes. 2. **Instruction Following:** Accurately follows complex user instructions for various generation tasks, including creative writing, summarization, and question answering. 3. **Customization and Fine-Tuning:** Incorporates datasets specifically curated for prompt optimization, enabling seamless adaptation to specific user needs. --- ### **Training Details:** - **Base Model:** [Qwen2.5-7B-Instruct](#) - **Datasets Used for Fine-Tuning:** - **gokaygokay/prompt-enhancer-dataset:** Focuses on prompt engineering with 17.9k samples. - **gokaygokay/prompt-enhancement-75k:** Encompasses a wider array of prompt styles with 73.2k samples. - **prithivMLmods/Prompt-Enhancement-Mini:** A compact dataset (1.16k samples) for iterative refinement. --- ### **Capabilities:** - **Prompt Optimization:** Automatically refines and enhances user-input prompts for better generation results. - **Instruction-Based Text Generation:** Supports diverse tasks, including: - Creative writing (stories, poems, scripts). - Summaries and paraphrasing. - Custom Q&A systems. - **Efficient Fine-Tuning:** Adaptable to additional fine-tuning tasks by leveraging the model's existing high-quality instruction-following capabilities. --- ### **Usage Instructions:** 1. **Setup:** - Ensure all necessary model files, including shards, tokenizer configurations, and index files, are downloaded and placed in the correct directory. 2. **Load Model:** Use PyTorch or Hugging Face Transformers to load the model and tokenizer. Ensure `pytorch_model.bin.index.json` is correctly set for efficient shard-based loading. 3. **Customize Generation:** Adjust parameters in `generation_config.json` to control aspects such as temperature, top-p sampling, and maximum sequence length. --- # Run with Ollama [ Ollama Run ] ## Overview Ollama is a powerful tool that allows you to run machine learning models effortlessly. This guide will help you download, install, and run your own GGUF models in just a few minutes. ## Table of Contents - [Download and Install Ollama](#download-and-install-ollama) - [Steps to Run GGUF Models](#steps-to-run-gguf-models) - [1. Create the Model File](#1-create-the-model-file) - [2. Add the Template Command](#2-add-the-template-command) - [3. Create and Patch the Model](#3-create-and-patch-the-model) - [Running the Model](#running-the-model) - [Sample Usage](#sample-usage) ## Download and Install Ollama🦙 To get started, download Ollama from [https://ollama.com/download](https://ollama.com/download) and install it on your Windows or Mac system. ## Steps to Run GGUF Models ### 1. Create the Model File First, create a model file and name it appropriately. For example, you can name your model file `metallama`. ### 2. Add the Template Command In your model file, include a `FROM` line that specifies the base model file you want to use. For instance: ```bash FROM Llama-3.2-1B.F16.gguf ``` Ensure that the model file is in the same directory as your script. ### 3. Create and Patch the Model Open your terminal and run the following command to create and patch your model: ```bash ollama create metallama -f ./metallama ``` Once the process is successful, you will see a confirmation message. To verify that the model was created successfully, you can list all models with: ```bash ollama list ``` Make sure that `metallama` appears in the list of models. --- ## Running the Model To run your newly created model, use the following command in your terminal: ```bash ollama run metallama ``` ### Sample Usage / Test In the command prompt, you can execute: ```bash D:\>ollama run metallama ``` You can interact with the model like this: ```plaintext >>> write a mini passage about space x Space X, the private aerospace company founded by Elon Musk, is revolutionizing the field of space exploration. With its ambitious goals to make humanity a multi-planetary species and establish a sustainable human presence in the cosmos, Space X has become a leading player in the industry. The company's spacecraft, like the Falcon 9, have demonstrated remarkable capabilities, allowing for the transport of crews and cargo into space with unprecedented efficiency. As technology continues to advance, the possibility of establishing permanent colonies on Mars becomes increasingly feasible, thanks in part to the success of reusable rockets that can launch multiple times without sustaining significant damage. The journey towards becoming a multi-planetary species is underway, and Space X plays a pivotal role in pushing the boundaries of human exploration and settlement. ``` --- ## Conclusion With these simple steps, you can easily download, install, and run your own models using Ollama. Whether you're exploring the capabilities of Llama or building your own custom models, Ollama makes it accessible and efficient. - This README provides clear instructions and structured information to help users navigate the process of using Ollama effectively. Adjust any sections as needed based on your specific requirements or additional details you may want to include.
{"base_model": ["prithivMLmods/Novaeus-Promptist-7B-Instruct"], "datasets": ["gokaygokay/prompt-enhancer-dataset", "gokaygokay/prompt-enhancement-75k", "prithivMLmods/Prompt-Enhancement-Mini"], "language": ["en"], "library_name": "transformers", "license": "creativeml-openrail-m", "pipeline_tag": "text-generation", "tags": ["Qwen2.5", "Prompt_Enhance", "Promptist_7B", "Ollama", "Llama-Cpp", "text-generation-inference"]}
task
[ "QUESTION_ANSWERING", "SUMMARIZATION", "PARAPHRASING" ]
41,057
facebook/textless_sm_pl_en
facebook
audio-to-audio
[ "fairseq", "audio", "audio-to-audio", "speech-to-speech-translation", "license:cc-by-nc-4.0", "region:us" ]
2022-10-16T00:26:15Z
2022-10-16T02:25:19+00:00
6
1
--- library_name: fairseq license: cc-by-nc-4.0 tags: - fairseq - audio - audio-to-audio - speech-to-speech-translation task: audio-to-audio --- You can try out the model on the right of the page by uploading or recording. For model usage, please refer to https://huggingface.co/facebook/textless_sm_cs_en
null
Non_BioNLP
You can try out the model on the right of the page by uploading or recording. For model usage, please refer to https://huggingface.co/facebook/textless_sm_cs_en
{"library_name": "fairseq", "license": "cc-by-nc-4.0", "tags": ["fairseq", "audio", "audio-to-audio", "speech-to-speech-translation"], "task": "audio-to-audio"}
task
[ "TRANSLATION" ]
41,058
LucasVitoriano/my_awesome_model
LucasVitoriano
text-classification
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:imdb", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-02-27T08:10:05Z
2023-02-27T09:20:41+00:00
10
0
--- datasets: - imdb license: apache-2.0 metrics: - accuracy tags: - generated_from_trainer model-index: - name: my_awesome_model results: - task: type: text-classification name: Text Classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - type: accuracy value: 0.9296 name: Accuracy --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2402 - Accuracy: 0.9296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2312 | 1.0 | 1563 | 0.1943 | 0.9255 | | 0.1535 | 2.0 | 3126 | 0.2402 | 0.9296 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # my_awesome_model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.2402 - Accuracy: 0.9296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2312 | 1.0 | 1563 | 0.1943 | 0.9255 | | 0.1535 | 2.0 | 3126 | 0.2402 | 0.9296 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.0 - Tokenizers 0.13.2
{"datasets": ["imdb"], "license": "apache-2.0", "metrics": ["accuracy"], "tags": ["generated_from_trainer"], "model-index": [{"name": "my_awesome_model", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "imdb", "type": "imdb", "config": "plain_text", "split": "test", "args": "plain_text"}, "metrics": [{"type": "accuracy", "value": 0.9296, "name": "Accuracy"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
41,059
RDebelak/distilbert-base-uncased-finetuned-emotion
RDebelak
text-classification
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:emotion", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-03-01T13:44:23Z
2023-03-02T15:43:14+00:00
10
0
--- datasets: - emotion license: apache-2.0 metrics: - accuracy - f1 tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: type: text-classification name: Text Classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - type: accuracy value: 0.8765 name: Accuracy - type: f1 value: 0.8703000237896847 name: F1 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.4371 - Accuracy: 0.8765 - F1: 0.8703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7612 | 1.0 | 250 | 0.4371 | 0.8765 | 0.8703 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.4371 - Accuracy: 0.8765 - F1: 0.8703 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.7612 | 1.0 | 250 | 0.4371 | 0.8765 | 0.8703 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.10.1 - Tokenizers 0.13.2
{"datasets": ["emotion"], "license": "apache-2.0", "metrics": ["accuracy", "f1"], "tags": ["generated_from_trainer"], "model-index": [{"name": "distilbert-base-uncased-finetuned-emotion", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "emotion", "type": "emotion", "config": "split", "split": "validation", "args": "split"}, "metrics": [{"type": "accuracy", "value": 0.8765, "name": "Accuracy"}, {"type": "f1", "value": 0.8703000237896847, "name": "F1"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
41,060
ronyw7/BERT_PatentAbstract2IncomeGroup_2500
ronyw7
text-classification
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "en", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-07-25T06:02:00Z
2023-07-25T06:57:50+00:00
0
0
--- base_model: bert-base-cased language: - en license: apache-2.0 tags: - generated_from_keras_callback model-index: - name: ronyw7/BERT_PatentAbstract2IncomeGroup_2500 results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ronyw7/BERT_PatentAbstract2IncomeGroup_2500 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on a small subset (2500 samples) of the Google Patents Public Dataset. It uses patent abstracts to predict the income group of the country that has filed the patent. This is a **proof-of-concept** for a future text classification task. It achieves the following results on the evaluation set: - Train Loss: 0.3547 - Validation Loss: 0.4376 - Train Accuracy: 0.8307 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 224, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.7751 | 0.5325 | 0.7712 | 0 | | 0.4271 | 0.4376 | 0.8307 | 1 | | 0.3547 | 0.4376 | 0.8307 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.0 - Tokenizers 0.13.3
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # ronyw7/BERT_PatentAbstract2IncomeGroup_2500 This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on a small subset (2500 samples) of the Google Patents Public Dataset. It uses patent abstracts to predict the income group of the country that has filed the patent. This is a **proof-of-concept** for a future text classification task. It achieves the following results on the evaluation set: - Train Loss: 0.3547 - Validation Loss: 0.4376 - Train Accuracy: 0.8307 - Epoch: 2 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 224, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Validation Loss | Train Accuracy | Epoch | |:----------:|:---------------:|:--------------:|:-----:| | 0.7751 | 0.5325 | 0.7712 | 0 | | 0.4271 | 0.4376 | 0.8307 | 1 | | 0.3547 | 0.4376 | 0.8307 | 2 | ### Framework versions - Transformers 4.31.0 - TensorFlow 2.12.0 - Datasets 2.14.0 - Tokenizers 0.13.3
{"base_model": "bert-base-cased", "language": ["en"], "license": "apache-2.0", "tags": ["generated_from_keras_callback"], "model-index": [{"name": "ronyw7/BERT_PatentAbstract2IncomeGroup_2500", "results": []}]}
task
[ "TEXT_CLASSIFICATION" ]
41,061
hopkins/eng-mya-wsample.42
hopkins
translation
[ "transformers", "pytorch", "tensorboard", "mbart", "text2text-generation", "translation", "generated_from_trainer", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-07-03T14:56:43Z
2023-07-03T15:17:31+00:00
9
0
--- metrics: - bleu tags: - translation - generated_from_trainer model-index: - name: eng-mya-wsample.42 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng-mya-wsample.42 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8317 - Bleu: 4.7776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # eng-mya-wsample.42 This model is a fine-tuned version of [facebook/mbart-large-50-many-to-many-mmt](https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8317 - Bleu: 4.7776 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.26.1 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3
{"metrics": ["bleu"], "tags": ["translation", "generated_from_trainer"], "model-index": [{"name": "eng-mya-wsample.42", "results": []}]}
task
[ "TRANSLATION" ]
41,062
blizrys/distilbert-base-uncased-finetuned-cola
blizrys
text-classification
[ "transformers", "pytorch", "tensorboard", "distilbert", "text-classification", "generated_from_trainer", "dataset:glue", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05Z
2021-09-11T18:01:15+00:00
102
0
--- datasets: - glue license: apache-2.0 metrics: - matthews_correlation tags: - generated_from_trainer model-index: - name: distilbert-base-uncased-finetuned-cola results: - task: type: text-classification name: Text Classification dataset: name: glue type: glue args: cola metrics: - type: matthews_correlation value: 0.5373623427702773 name: Matthews Correlation --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6223 - Matthews Correlation: 0.5374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5275 | 1.0 | 535 | 0.5456 | 0.3973 | | 0.3481 | 2.0 | 1070 | 0.5401 | 0.5006 | | 0.242 | 3.0 | 1605 | 0.6223 | 0.5374 | | 0.1725 | 4.0 | 2140 | 0.7934 | 0.5229 | | 0.1346 | 5.0 | 2675 | 0.8478 | 0.5367 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-base-uncased-finetuned-cola This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6223 - Matthews Correlation: 0.5374 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.5275 | 1.0 | 535 | 0.5456 | 0.3973 | | 0.3481 | 2.0 | 1070 | 0.5401 | 0.5006 | | 0.242 | 3.0 | 1605 | 0.6223 | 0.5374 | | 0.1725 | 4.0 | 2140 | 0.7934 | 0.5229 | | 0.1346 | 5.0 | 2675 | 0.8478 | 0.5367 | ### Framework versions - Transformers 4.10.2 - Pytorch 1.9.0+cu102 - Datasets 1.11.0 - Tokenizers 0.10.3
{"datasets": ["glue"], "license": "apache-2.0", "metrics": ["matthews_correlation"], "tags": ["generated_from_trainer"], "model-index": [{"name": "distilbert-base-uncased-finetuned-cola", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "glue", "type": "glue", "args": "cola"}, "metrics": [{"type": "matthews_correlation", "value": 0.5373623427702773, "name": "Matthews Correlation"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
41,064
moresearch/bge-base-financial-matryoshka
moresearch
sentence-similarity
[ "sentence-transformers", "safetensors", "bert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:6300", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss", "en", "arxiv:1908.10084", "arxiv:2205.13147", "arxiv:1705.00652", "base_model:BAAI/bge-base-en-v1.5", "base_model:finetune:BAAI/bge-base-en-v1.5", "license:apache-2.0", "model-index", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
2024-11-30T20:19:20Z
2024-11-30T20:19:35+00:00
11
0
--- base_model: BAAI/bge-base-en-v1.5 language: - en library_name: sentence-transformers license: apache-2.0 metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:6300 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: Capital expenditures, which primarily reflected investments in technical infrastructure, were $32.3 billion for the year ended December 31, 2023. sentences: - Where can you find the consolidated financial statements in the Annual Report on Form 10-K? - What were the total capital expenditures for Alphabet Inc. in 2023? - How did Chevron's development strategy in the Permian Basin contribute to its productivity? - source_sentence: You can identify forward-looking statements by the use of forward-looking terminology including “believes,” “expects,” “may,” “will,” “should,” “seeks,” “intends,” “plans,” “pro forma,” “estimates,” “anticipates,” or the negative of these words and phrases, other variations of these words and phrases or comparable terminology. sentences: - What does the forward-looking terminology in financial documents imply? - What seasons have higher domestic advertising revenue and what influences these patterns? - What is the role of Bank of America Corporation's management in relation to internal control over financial reporting? - source_sentence: For the year ended December 31, 2023, we recorded $3.6 million of foreign currency transaction losses. sentences: - What was the total foreign currency transaction loss recorded for the year ended December 31, 2023? - What credit ratings were assigned to the company by Standard & Poor’s and Moody’s at the end of 2022? - What are The Home Depot's strategies for increasing diversity, equity, and inclusion? - source_sentence: Gross margin contraction of 310 basis points primarily due to higher product costs, reflecting higher input costs and inbound freight and logistics costs and product mix, lower margins in NIKE Direct due to higher promotional activity and a lower mix of full-price sales. sentences: - What fiduciary duties might a company have under ERISA? - What were the significant contributors to the gross margin contraction and by how many basis points did it contract? - What typical reimbursement methods are used in the company's contracts with hospitals for inpatient and outpatient services? - source_sentence: As of December 31, 2023, we employed about 113,200 full-time persons of whom approximately 62,400 were located outside the United States. In the United States, we employed approximately 50,800 full-time persons. sentences: - What types of categories did eBay focus on in 2023, and how did they contribute to the company's gross merchandise volume? - What challenges do solar power system owners face with traditional string inverters? - How many full-time employees were employed by the company as of December 31, 2023, and how are they distributed geographically? model-index: - name: BGE base Financial Matryoshka results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 384 type: dim_384 metrics: - type: cosine_accuracy@1 value: 0.7157142857142857 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8485714285714285 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8742857142857143 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9171428571428571 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7157142857142857 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.28285714285714286 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.17485714285714282 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09171428571428569 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7157142857142857 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8485714285714285 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8742857142857143 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9171428571428571 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8198819637056249 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7885175736961447 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7918328646013278 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.7157142857142857 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8485714285714285 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8785714285714286 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9142857142857143 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7157142857142857 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.28285714285714286 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.17571428571428568 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09142857142857141 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7157142857142857 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8485714285714285 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8785714285714286 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9142857142857143 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8187635355625659 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7878270975056689 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7911673353002208 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.7057142857142857 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8371428571428572 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8642857142857143 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9085714285714286 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7057142857142857 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.27904761904761904 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.17285714285714285 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09085714285714284 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7057142857142857 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8371428571428572 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8642857142857143 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9085714285714286 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8090255333396114 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.777143424036281 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7807082191352167 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.6728571428571428 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8128571428571428 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.85 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8814285714285715 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6728571428571428 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.27095238095238094 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16999999999999998 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08814285714285712 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6728571428571428 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8128571428571428 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.85 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8814285714285715 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.782934506961568 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7507721088435368 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7551335288460688 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 32 type: dim_32 metrics: - type: cosine_accuracy@1 value: 0.5957142857142858 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7414285714285714 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.7828571428571428 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8314285714285714 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5957142857142858 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2471428571428571 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.15657142857142856 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08314285714285713 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.5957142857142858 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7414285714285714 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.7828571428571428 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8314285714285714 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7158751864189645 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6787687074829931 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6839925227099907 name: Cosine Map@100 --- # BGE base Financial Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("moresearch/bge-base-financial-matryoshka") # Run inference sentences = [ 'As of December 31, 2023, we employed about 113,200 full-time persons of whom approximately 62,400 were located outside the United States. In the United States, we employed approximately 50,800 full-time persons.', 'How many full-time employees were employed by the company as of December 31, 2023, and how are they distributed geographically?', 'What challenges do solar power system owners face with traditional string inverters?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_384`, `dim_256`, `dim_128`, `dim_64` and `dim_32` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_384 | dim_256 | dim_128 | dim_64 | dim_32 | |:--------------------|:-----------|:-----------|:----------|:-----------|:-----------| | cosine_accuracy@1 | 0.7157 | 0.7157 | 0.7057 | 0.6729 | 0.5957 | | cosine_accuracy@3 | 0.8486 | 0.8486 | 0.8371 | 0.8129 | 0.7414 | | cosine_accuracy@5 | 0.8743 | 0.8786 | 0.8643 | 0.85 | 0.7829 | | cosine_accuracy@10 | 0.9171 | 0.9143 | 0.9086 | 0.8814 | 0.8314 | | cosine_precision@1 | 0.7157 | 0.7157 | 0.7057 | 0.6729 | 0.5957 | | cosine_precision@3 | 0.2829 | 0.2829 | 0.279 | 0.271 | 0.2471 | | cosine_precision@5 | 0.1749 | 0.1757 | 0.1729 | 0.17 | 0.1566 | | cosine_precision@10 | 0.0917 | 0.0914 | 0.0909 | 0.0881 | 0.0831 | | cosine_recall@1 | 0.7157 | 0.7157 | 0.7057 | 0.6729 | 0.5957 | | cosine_recall@3 | 0.8486 | 0.8486 | 0.8371 | 0.8129 | 0.7414 | | cosine_recall@5 | 0.8743 | 0.8786 | 0.8643 | 0.85 | 0.7829 | | cosine_recall@10 | 0.9171 | 0.9143 | 0.9086 | 0.8814 | 0.8314 | | **cosine_ndcg@10** | **0.8199** | **0.8188** | **0.809** | **0.7829** | **0.7159** | | cosine_mrr@10 | 0.7885 | 0.7878 | 0.7771 | 0.7508 | 0.6788 | | cosine_map@100 | 0.7918 | 0.7912 | 0.7807 | 0.7551 | 0.684 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### json * Dataset: json * Size: 6,300 training samples * Columns: <code>positive</code> and <code>anchor</code> * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 45.87 tokens</li><li>max: 288 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 20.32 tokens</li><li>max: 41 tokens</li></ul> | * Samples: | positive | anchor | |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------| | <code>The company maintains a revolving credit facility that, unless extended, terminates on July 6, 2026.</code> | <code>What is the expiration date of the company's revolving credit facility, unless extended?</code> | | <code>The management of Bank of America Corporation is responsible for establishing and maintaining adequate internal control over financial reporting. The Corporation’s internal control over financial reporting is designed to provide reasonable assurance about the reliability of financial reporting and the preparation of financial statements in accordance with accounting principles generally accepted in the United States of America. Management's responsibilities include maintaining records that, in reasonable detail, accurately and fairly reflect the transactions and dispositions of the assets of the Corporation; ensuring that transactions are recorded as necessary for the preparation of financial statements; and preventing or detecting unauthorized acquisition, use, or disposition of the Corporation’s assets that could have a material effect on the financial statements.</code> | <code>What is the role of Bank of America Corporation's management in relation to internal control over financial reporting?</code> | | <code>In 2020, Gilead implemented multiple programs to train managers on inclusion and diversity topics and created strategies and initiatives focused on attracting, developing and retaining diverse talent and driving an inclusive culture in our workplace.</code> | <code>What initiatives has Gilead undertaken to promote workplace diversity?</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: False - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: False - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | dim_384_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | dim_32_cosine_ndcg@10 | |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:---------------------:| | 0.8122 | 10 | 1.5733 | - | - | - | - | - | | 0.9746 | 12 | - | 0.8075 | 0.8045 | 0.7876 | 0.7643 | 0.6844 | | 1.6244 | 20 | 0.6549 | - | - | - | - | - | | 1.9492 | 24 | - | 0.8188 | 0.8169 | 0.8035 | 0.7789 | 0.7107 | | 2.4365 | 30 | 0.4373 | - | - | - | - | - | | 2.9239 | 36 | - | 0.8210 | 0.8183 | 0.8079 | 0.7835 | 0.7161 | | 3.2487 | 40 | 0.3951 | - | - | - | - | - | | **3.8985** | **48** | **-** | **0.8199** | **0.8188** | **0.809** | **0.7829** | **0.7159** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.3.1 - Transformers: 4.46.3 - PyTorch: 2.5.1+cu124 - Accelerate: 1.1.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
null
Non_BioNLP
# BGE base Financial Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("moresearch/bge-base-financial-matryoshka") # Run inference sentences = [ 'As of December 31, 2023, we employed about 113,200 full-time persons of whom approximately 62,400 were located outside the United States. In the United States, we employed approximately 50,800 full-time persons.', 'How many full-time employees were employed by the company as of December 31, 2023, and how are they distributed geographically?', 'What challenges do solar power system owners face with traditional string inverters?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_384`, `dim_256`, `dim_128`, `dim_64` and `dim_32` * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_384 | dim_256 | dim_128 | dim_64 | dim_32 | |:--------------------|:-----------|:-----------|:----------|:-----------|:-----------| | cosine_accuracy@1 | 0.7157 | 0.7157 | 0.7057 | 0.6729 | 0.5957 | | cosine_accuracy@3 | 0.8486 | 0.8486 | 0.8371 | 0.8129 | 0.7414 | | cosine_accuracy@5 | 0.8743 | 0.8786 | 0.8643 | 0.85 | 0.7829 | | cosine_accuracy@10 | 0.9171 | 0.9143 | 0.9086 | 0.8814 | 0.8314 | | cosine_precision@1 | 0.7157 | 0.7157 | 0.7057 | 0.6729 | 0.5957 | | cosine_precision@3 | 0.2829 | 0.2829 | 0.279 | 0.271 | 0.2471 | | cosine_precision@5 | 0.1749 | 0.1757 | 0.1729 | 0.17 | 0.1566 | | cosine_precision@10 | 0.0917 | 0.0914 | 0.0909 | 0.0881 | 0.0831 | | cosine_recall@1 | 0.7157 | 0.7157 | 0.7057 | 0.6729 | 0.5957 | | cosine_recall@3 | 0.8486 | 0.8486 | 0.8371 | 0.8129 | 0.7414 | | cosine_recall@5 | 0.8743 | 0.8786 | 0.8643 | 0.85 | 0.7829 | | cosine_recall@10 | 0.9171 | 0.9143 | 0.9086 | 0.8814 | 0.8314 | | **cosine_ndcg@10** | **0.8199** | **0.8188** | **0.809** | **0.7829** | **0.7159** | | cosine_mrr@10 | 0.7885 | 0.7878 | 0.7771 | 0.7508 | 0.6788 | | cosine_map@100 | 0.7918 | 0.7912 | 0.7807 | 0.7551 | 0.684 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### json * Dataset: json * Size: 6,300 training samples * Columns: <code>positive</code> and <code>anchor</code> * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 7 tokens</li><li>mean: 45.87 tokens</li><li>max: 288 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 20.32 tokens</li><li>max: 41 tokens</li></ul> | * Samples: | positive | anchor | |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------| | <code>The company maintains a revolving credit facility that, unless extended, terminates on July 6, 2026.</code> | <code>What is the expiration date of the company's revolving credit facility, unless extended?</code> | | <code>The management of Bank of America Corporation is responsible for establishing and maintaining adequate internal control over financial reporting. The Corporation’s internal control over financial reporting is designed to provide reasonable assurance about the reliability of financial reporting and the preparation of financial statements in accordance with accounting principles generally accepted in the United States of America. Management's responsibilities include maintaining records that, in reasonable detail, accurately and fairly reflect the transactions and dispositions of the assets of the Corporation; ensuring that transactions are recorded as necessary for the preparation of financial statements; and preventing or detecting unauthorized acquisition, use, or disposition of the Corporation’s assets that could have a material effect on the financial statements.</code> | <code>What is the role of Bank of America Corporation's management in relation to internal control over financial reporting?</code> | | <code>In 2020, Gilead implemented multiple programs to train managers on inclusion and diversity topics and created strategies and initiatives focused on attracting, developing and retaining diverse talent and driving an inclusive culture in our workplace.</code> | <code>What initiatives has Gilead undertaken to promote workplace diversity?</code> | * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: False - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: False - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional </details> ### Training Logs | Epoch | Step | Training Loss | dim_384_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | dim_32_cosine_ndcg@10 | |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:---------------------:| | 0.8122 | 10 | 1.5733 | - | - | - | - | - | | 0.9746 | 12 | - | 0.8075 | 0.8045 | 0.7876 | 0.7643 | 0.6844 | | 1.6244 | 20 | 0.6549 | - | - | - | - | - | | 1.9492 | 24 | - | 0.8188 | 0.8169 | 0.8035 | 0.7789 | 0.7107 | | 2.4365 | 30 | 0.4373 | - | - | - | - | - | | 2.9239 | 36 | - | 0.8210 | 0.8183 | 0.8079 | 0.7835 | 0.7161 | | 3.2487 | 40 | 0.3951 | - | - | - | - | - | | **3.8985** | **48** | **-** | **0.8199** | **0.8188** | **0.809** | **0.7829** | **0.7159** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.3.1 - Transformers: 4.46.3 - PyTorch: 2.5.1+cu124 - Accelerate: 1.1.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"base_model": "BAAI/bge-base-en-v1.5", "language": ["en"], "library_name": "sentence-transformers", "license": "apache-2.0", "metrics": ["cosine_accuracy@1", "cosine_accuracy@3", "cosine_accuracy@5", "cosine_accuracy@10", "cosine_precision@1", "cosine_precision@3", "cosine_precision@5", "cosine_precision@10", "cosine_recall@1", "cosine_recall@3", "cosine_recall@5", "cosine_recall@10", "cosine_ndcg@10", "cosine_mrr@10", "cosine_map@100"], "pipeline_tag": "sentence-similarity", "tags": ["sentence-transformers", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:6300", "loss:MatryoshkaLoss", "loss:MultipleNegativesRankingLoss"], "widget": [{"source_sentence": "Capital expenditures, which primarily reflected investments in technical infrastructure, were $32.3 billion for the year ended December 31, 2023.", "sentences": ["Where can you find the consolidated financial statements in the Annual Report on Form 10-K?", "What were the total capital expenditures for Alphabet Inc. in 2023?", "How did Chevron's development strategy in the Permian Basin contribute to its productivity?"]}, {"source_sentence": "You can identify forward-looking statements by the use of forward-looking terminology including “believes,” “expects,” “may,” “will,” “should,” “seeks,” “intends,” “plans,” “pro forma,” “estimates,” “anticipates,” or the negative of these words and phrases, other variations of these words and phrases or comparable terminology.", "sentences": ["What does the forward-looking terminology in financial documents imply?", "What seasons have higher domestic advertising revenue and what influences these patterns?", "What is the role of Bank of America Corporation's management in relation to internal control over financial reporting?"]}, {"source_sentence": "For the year ended December 31, 2023, we recorded $3.6 million of foreign currency transaction losses.", "sentences": ["What was the total foreign currency transaction loss recorded for the year ended December 31, 2023?", "What credit ratings were assigned to the company by Standard & Poor’s and Moody’s at the end of 2022?", "What are The Home Depot's strategies for increasing diversity, equity, and inclusion?"]}, {"source_sentence": "Gross margin contraction of 310 basis points primarily due to higher product costs, reflecting higher input costs and inbound freight and logistics costs and product mix, lower margins in NIKE Direct due to higher promotional activity and a lower mix of full-price sales.", "sentences": ["What fiduciary duties might a company have under ERISA?", "What were the significant contributors to the gross margin contraction and by how many basis points did it contract?", "What typical reimbursement methods are used in the company's contracts with hospitals for inpatient and outpatient services?"]}, {"source_sentence": "As of December 31, 2023, we employed about 113,200 full-time persons of whom approximately 62,400 were located outside the United States. In the United States, we employed approximately 50,800 full-time persons.", "sentences": ["What types of categories did eBay focus on in 2023, and how did they contribute to the company's gross merchandise volume?", "What challenges do solar power system owners face with traditional string inverters?", "How many full-time employees were employed by the company as of December 31, 2023, and how are they distributed geographically?"]}], "model-index": [{"name": "BGE base Financial Matryoshka", "results": [{"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 384", "type": "dim_384"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.7157142857142857, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.8485714285714285, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.8742857142857143, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.9171428571428571, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.7157142857142857, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.28285714285714286, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.17485714285714282, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.09171428571428569, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.7157142857142857, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.8485714285714285, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.8742857142857143, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.9171428571428571, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.8198819637056249, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.7885175736961447, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.7918328646013278, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 256", "type": "dim_256"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.7157142857142857, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.8485714285714285, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.8785714285714286, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.9142857142857143, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.7157142857142857, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.28285714285714286, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.17571428571428568, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.09142857142857141, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.7157142857142857, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.8485714285714285, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.8785714285714286, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.9142857142857143, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.8187635355625659, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.7878270975056689, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.7911673353002208, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 128", "type": "dim_128"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.7057142857142857, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.8371428571428572, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.8642857142857143, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.9085714285714286, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.7057142857142857, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.27904761904761904, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.17285714285714285, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.09085714285714284, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.7057142857142857, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.8371428571428572, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.8642857142857143, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.9085714285714286, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.8090255333396114, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.777143424036281, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.7807082191352167, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 64", "type": "dim_64"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.6728571428571428, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.8128571428571428, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.85, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.8814285714285715, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.6728571428571428, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.27095238095238094, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.16999999999999998, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.08814285714285712, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.6728571428571428, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.8128571428571428, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.85, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.8814285714285715, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.782934506961568, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.7507721088435368, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.7551335288460688, "name": "Cosine Map@100"}]}, {"task": {"type": "information-retrieval", "name": "Information Retrieval"}, "dataset": {"name": "dim 32", "type": "dim_32"}, "metrics": [{"type": "cosine_accuracy@1", "value": 0.5957142857142858, "name": "Cosine Accuracy@1"}, {"type": "cosine_accuracy@3", "value": 0.7414285714285714, "name": "Cosine Accuracy@3"}, {"type": "cosine_accuracy@5", "value": 0.7828571428571428, "name": "Cosine Accuracy@5"}, {"type": "cosine_accuracy@10", "value": 0.8314285714285714, "name": "Cosine Accuracy@10"}, {"type": "cosine_precision@1", "value": 0.5957142857142858, "name": "Cosine Precision@1"}, {"type": "cosine_precision@3", "value": 0.2471428571428571, "name": "Cosine Precision@3"}, {"type": "cosine_precision@5", "value": 0.15657142857142856, "name": "Cosine Precision@5"}, {"type": "cosine_precision@10", "value": 0.08314285714285713, "name": "Cosine Precision@10"}, {"type": "cosine_recall@1", "value": 0.5957142857142858, "name": "Cosine Recall@1"}, {"type": "cosine_recall@3", "value": 0.7414285714285714, "name": "Cosine Recall@3"}, {"type": "cosine_recall@5", "value": 0.7828571428571428, "name": "Cosine Recall@5"}, {"type": "cosine_recall@10", "value": 0.8314285714285714, "name": "Cosine Recall@10"}, {"type": "cosine_ndcg@10", "value": 0.7158751864189645, "name": "Cosine Ndcg@10"}, {"type": "cosine_mrr@10", "value": 0.6787687074829931, "name": "Cosine Mrr@10"}, {"type": "cosine_map@100", "value": 0.6839925227099907, "name": "Cosine Map@100"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
41,065
Varadkadtan/varad-cnn-t5
Varadkadtan
summarization
[ "transformers", "pytorch", "mt5", "text2text-generation", "summarization", "en", "dataset:cnn_dailymail", "arxiv:1706.03762", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2023-10-15T06:14:40Z
2023-10-29T07:52:52+00:00
103
1
--- datasets: - cnn_dailymail language: - en library_name: transformers license: apache-2.0 metrics: - rouge tags: - summarization --- # Abstractive Text Summarization Model trained on mt5 by Varad kadtan <!-- Provide a quick summary of what the model is/does. --> I've developed an abstractive text summarization model using the T5 transformer architecture in PyTorch. I've fine-tuned the model on cnn_dailymail dataset to create concise and coherent summaries of longer texts. This model takes advantage of transformer libraries and the power of multi-head self-attention to capture context and dependencies in the input text. It's a valuable tool for generating human-like summaries, making information extraction and condensation more efficient. ## To use my model from transformers import AutoModelForSeq2SeqLM, AutoTokenizer device = "cuda" if torch.cuda.is_available() else "cpu" model_ckpt = "Varadkadtan/varad-cnn-t5" tokenizer = AutoTokenizer.from_pretrained(model_ckpt) model_t5 = AutoModelForSeq2SeqLM.from_pretrained(model_ckpt).to(device) ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Paper [optional]:** [arxiv:1706.03762] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> Content Summarization: Your model can automatically generate concise and coherent summaries of lengthy documents, articles, or reports, making it useful for readers who want a quick overview without reading the entire text. News Aggregation: News platforms can use your model to create summarized versions of news articles, allowing readers to stay informed on multiple topics more efficiently. Data Mining and Information Extraction: Your model can help extract key information and insights from a large corpus of text, enabling organizations to make data-driven decisions. Content Recommendations: Content recommendation systems can benefit from your model by summarizing content to understand user preferences and deliver personalized recommendations. Search Engines: Search engines can use your model to provide more informative snippets for search results, helping users find relevant information faster. Academic Research: Researchers can use your model to summarize lengthy research papers and articles, allowing them to quickly review relevant material. Legal Documents: Legal professionals can use your model to summarize legal documents, making it easier to comprehend complex legal texts. E-learning and Education: Your model can generate concise study materials and summaries of educational content, facilitating better understanding for students. Content Creation and Marketing: Marketers and content creators can use your model to summarize research or competitors' content to gather insights and generate new content ideas. Chatbots and Virtual Assistants: Your model can provide chatbots and virtual assistants with the ability to generate informative responses based on lengthy user queries or documents. Language Translation: It can help improve the efficiency of translation services by summarizing text before translation, reducing translation time and costs. Social Media Monitoring: Social media platforms can use your model to generate summaries of user-generated content for trend analysis and sentiment analysis. Medical Records and Healthcare: Healthcare professionals can use your model to create concise summaries of medical records and research papers, aiding in diagnosis and decision-making. ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> sample_text = dataset_cnn["test"][0]["article"] reference = dataset_cnn["test"][0]["highlights"] gen_kwargs = {"length_penalty": 0.8, "num_beams":4, "max_length": 54} pipe = pipeline("summarization", model="varad-cnn-t5",tokenizer=tokenizer) print("Dialogue:") print(sample_text) print("\nReference Summary:") print(reference) model_summary = pipe(sample_text, **gen_kwargs)[0]["summary_text"] print("\nModel Summary:") print(model_summary) Output: Dialogue: (CNN)The Palestinian Authority officially became the 123rd member of the International Criminal Court on Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based. The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the situation in Palestinian territories, paving the way for possible war crimes investigations against Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the world is also a step closer to ending a long era of impunity and injustice," he said, according to an ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine acquires all the rights as well as responsibilities that come with being a State Party to the Statute. These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should immediately end their pressure, and countries that support universal acceptance of the court's treaty should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the group. "What's objectionable is the attempts to undermine international justice, not Palestine's decision to join a treaty to which over 100 countries around the world are members." In January, when the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an outrage, saying the court was overstepping its boundaries. The United States also said it "strongly" disagreed with the court's decision. "As we have said repeatedly, we do not believe that Palestine is a state and therefore we do not believe that it is eligible to join the ICC," the State Department said in a statement. It urged the warring sides to resolve their differences through direct negotiations. "We will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace," it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou Bensouda said her office would "conduct its analysis in full independence and impartiality." The war between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry will include alleged war crimes committed since June. The International Criminal Court was set up in 2002 to prosecute genocide, crimes against humanity and war crimes. CNN's Vasco Cotovio, Kareem Khadder and Faith Karimi contributed to this report. Reference Summary: Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June . Israel and the United States opposed the move, which could open the door to war crimes investigations against Israelis . Model Summary: The Palestinians have formally joined the International Criminal Court (ICC), becoming the first country to do so. ## Model Card Contact [Varad kadtan - [email protected]]
null
Non_BioNLP
# Abstractive Text Summarization Model trained on mt5 by Varad kadtan <!-- Provide a quick summary of what the model is/does. --> I've developed an abstractive text summarization model using the T5 transformer architecture in PyTorch. I've fine-tuned the model on cnn_dailymail dataset to create concise and coherent summaries of longer texts. This model takes advantage of transformer libraries and the power of multi-head self-attention to capture context and dependencies in the input text. It's a valuable tool for generating human-like summaries, making information extraction and condensation more efficient. ## To use my model from transformers import AutoModelForSeq2SeqLM, AutoTokenizer device = "cuda" if torch.cuda.is_available() else "cpu" model_ckpt = "Varadkadtan/varad-cnn-t5" tokenizer = AutoTokenizer.from_pretrained(model_ckpt) model_t5 = AutoModelForSeq2SeqLM.from_pretrained(model_ckpt).to(device) ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Paper [optional]:** [arxiv:1706.03762] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> Content Summarization: Your model can automatically generate concise and coherent summaries of lengthy documents, articles, or reports, making it useful for readers who want a quick overview without reading the entire text. News Aggregation: News platforms can use your model to create summarized versions of news articles, allowing readers to stay informed on multiple topics more efficiently. Data Mining and Information Extraction: Your model can help extract key information and insights from a large corpus of text, enabling organizations to make data-driven decisions. Content Recommendations: Content recommendation systems can benefit from your model by summarizing content to understand user preferences and deliver personalized recommendations. Search Engines: Search engines can use your model to provide more informative snippets for search results, helping users find relevant information faster. Academic Research: Researchers can use your model to summarize lengthy research papers and articles, allowing them to quickly review relevant material. Legal Documents: Legal professionals can use your model to summarize legal documents, making it easier to comprehend complex legal texts. E-learning and Education: Your model can generate concise study materials and summaries of educational content, facilitating better understanding for students. Content Creation and Marketing: Marketers and content creators can use your model to summarize research or competitors' content to gather insights and generate new content ideas. Chatbots and Virtual Assistants: Your model can provide chatbots and virtual assistants with the ability to generate informative responses based on lengthy user queries or documents. Language Translation: It can help improve the efficiency of translation services by summarizing text before translation, reducing translation time and costs. Social Media Monitoring: Social media platforms can use your model to generate summaries of user-generated content for trend analysis and sentiment analysis. Medical Records and Healthcare: Healthcare professionals can use your model to create concise summaries of medical records and research papers, aiding in diagnosis and decision-making. ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> sample_text = dataset_cnn["test"][0]["article"] reference = dataset_cnn["test"][0]["highlights"] gen_kwargs = {"length_penalty": 0.8, "num_beams":4, "max_length": 54} pipe = pipeline("summarization", model="varad-cnn-t5",tokenizer=tokenizer) print("Dialogue:") print(sample_text) print("\nReference Summary:") print(reference) model_summary = pipe(sample_text, **gen_kwargs)[0]["summary_text"] print("\nModel Summary:") print(model_summary) Output: Dialogue: (CNN)The Palestinian Authority officially became the 123rd member of the International Criminal Court on Wednesday, a step that gives the court jurisdiction over alleged crimes in Palestinian territories. The formal accession was marked with a ceremony at The Hague, in the Netherlands, where the court is based. The Palestinians signed the ICC's founding Rome Statute in January, when they also accepted its jurisdiction over alleged crimes committed "in the occupied Palestinian territory, including East Jerusalem, since June 13, 2014." Later that month, the ICC opened a preliminary examination into the situation in Palestinian territories, paving the way for possible war crimes investigations against Israelis. As members of the court, Palestinians may be subject to counter-charges as well. Israel and the United States, neither of which is an ICC member, opposed the Palestinians' efforts to join the body. But Palestinian Foreign Minister Riad al-Malki, speaking at Wednesday's ceremony, said it was a move toward greater justice. "As Palestine formally becomes a State Party to the Rome Statute today, the world is also a step closer to ending a long era of impunity and injustice," he said, according to an ICC news release. "Indeed, today brings us closer to our shared goals of justice and peace." Judge Kuniko Ozaki, a vice president of the ICC, said acceding to the treaty was just the first step for the Palestinians. "As the Rome Statute today enters into force for the State of Palestine, Palestine acquires all the rights as well as responsibilities that come with being a State Party to the Statute. These are substantive commitments, which cannot be taken lightly," she said. Rights group Human Rights Watch welcomed the development. "Governments seeking to penalize Palestine for joining the ICC should immediately end their pressure, and countries that support universal acceptance of the court's treaty should speak out to welcome its membership," said Balkees Jarrah, international justice counsel for the group. "What's objectionable is the attempts to undermine international justice, not Palestine's decision to join a treaty to which over 100 countries around the world are members." In January, when the preliminary ICC examination was opened, Israeli Prime Minister Benjamin Netanyahu described it as an outrage, saying the court was overstepping its boundaries. The United States also said it "strongly" disagreed with the court's decision. "As we have said repeatedly, we do not believe that Palestine is a state and therefore we do not believe that it is eligible to join the ICC," the State Department said in a statement. It urged the warring sides to resolve their differences through direct negotiations. "We will continue to oppose actions against Israel at the ICC as counterproductive to the cause of peace," it said. But the ICC begs to differ with the definition of a state for its purposes and refers to the territories as "Palestine." While a preliminary examination is not a formal investigation, it allows the court to review evidence and determine whether to investigate suspects on both sides. Prosecutor Fatou Bensouda said her office would "conduct its analysis in full independence and impartiality." The war between Israel and Hamas militants in Gaza last summer left more than 2,000 people dead. The inquiry will include alleged war crimes committed since June. The International Criminal Court was set up in 2002 to prosecute genocide, crimes against humanity and war crimes. CNN's Vasco Cotovio, Kareem Khadder and Faith Karimi contributed to this report. Reference Summary: Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June . Israel and the United States opposed the move, which could open the door to war crimes investigations against Israelis . Model Summary: The Palestinians have formally joined the International Criminal Court (ICC), becoming the first country to do so. ## Model Card Contact [Varad kadtan - [email protected]]
{"datasets": ["cnn_dailymail"], "language": ["en"], "library_name": "transformers", "license": "apache-2.0", "metrics": ["rouge"], "tags": ["summarization"]}
task
[ "TRANSLATION", "SUMMARIZATION" ]
41,066
teacookies/autonlp-more_fine_tune_24465520-26265900
teacookies
question-answering
[ "transformers", "pytorch", "xlm-roberta", "question-answering", "autonlp", "unk", "dataset:teacookies/autonlp-data-more_fine_tune_24465520", "co2_eq_emissions", "endpoints_compatible", "region:us" ]
2022-03-02T23:29:05Z
2021-10-25T09:51:20+00:00
113
0
--- datasets: - teacookies/autonlp-data-more_fine_tune_24465520 language: unk tags: - autonlp - question-answering widget: - text: Who loves AutoNLP? context: Everyone loves AutoNLP co2_eq_emissions: 123.16270720220912 --- # Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265900 - CO2 Emissions (in grams): 123.16270720220912 ## Validation Metrics - Loss: 0.6387976408004761 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265900 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265900", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265900", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
null
Non_BioNLP
# Model Trained Using AutoNLP - Problem type: Extractive Question Answering - Model ID: 26265900 - CO2 Emissions (in grams): 123.16270720220912 ## Validation Metrics - Loss: 0.6387976408004761 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"question": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}' https://api-inference.huggingface.co/models/teacookies/autonlp-more_fine_tune_24465520-26265900 ``` Or Python API: ``` import torch from transformers import AutoModelForQuestionAnswering, AutoTokenizer model = AutoModelForQuestionAnswering.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265900", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("teacookies/autonlp-more_fine_tune_24465520-26265900", use_auth_token=True) from transformers import BertTokenizer, BertForQuestionAnswering question, text = "Who loves AutoNLP?", "Everyone loves AutoNLP" inputs = tokenizer(question, text, return_tensors='pt') start_positions = torch.tensor([1]) end_positions = torch.tensor([3]) outputs = model(**inputs, start_positions=start_positions, end_positions=end_positions) loss = outputs.loss start_scores = outputs.start_logits end_scores = outputs.end_logits ```
{"datasets": ["teacookies/autonlp-data-more_fine_tune_24465520"], "language": "unk", "tags": ["autonlp", "question-answering"], "widget": [{"text": "Who loves AutoNLP?", "context": "Everyone loves AutoNLP"}], "co2_eq_emissions": 123.16270720220912}
task
[ "QUESTION_ANSWERING" ]
41,067
chelsiksu/marian-finetuned-kde4-en-to-fr
chelsiksu
translation
[ "transformers", "tensorboard", "safetensors", "marian", "text2text-generation", "translation", "generated_from_trainer", "dataset:kde4", "base_model:Helsinki-NLP/opus-mt-en-fr", "base_model:finetune:Helsinki-NLP/opus-mt-en-fr", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
2024-11-10T21:59:04Z
2024-11-10T22:50:08+00:00
4
0
--- base_model: Helsinki-NLP/opus-mt-en-fr datasets: - kde4 library_name: transformers license: apache-2.0 tags: - translation - generated_from_trainer model-index: - name: marian-finetuned-kde4-en-to-fr results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 100 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
null
Non_BioNLP
<!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # marian-finetuned-kde4-en-to-fr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-en-fr](https://huggingface.co/Helsinki-NLP/opus-mt-en-fr) on the kde4 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 100 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1
{"base_model": "Helsinki-NLP/opus-mt-en-fr", "datasets": ["kde4"], "library_name": "transformers", "license": "apache-2.0", "tags": ["translation", "generated_from_trainer"], "model-index": [{"name": "marian-finetuned-kde4-en-to-fr", "results": []}]}
task
[ "TRANSLATION" ]
41,068
Saliltrehan7/setfit-bge-small-v1.5-sst2-8-shot
Saliltrehan7
text-classification
[ "setfit", "safetensors", "bert", "sentence-transformers", "text-classification", "generated_from_setfit_trainer", "arxiv:2209.11055", "base_model:BAAI/bge-small-en-v1.5", "base_model:finetune:BAAI/bge-small-en-v1.5", "model-index", "region:us" ]
2024-08-10T08:49:19Z
2024-08-10T08:49:46+00:00
5
0
--- base_model: BAAI/bge-small-en-v1.5 library_name: setfit metrics: - accuracy pipeline_tag: text-classification tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: amy and matthew have a bit of a phony relationship , but the film works in spite of it . - text: it 's refreshing to see a romance this smart . - text: bogdanich is unashamedly pro-serbian and makes little attempt to give voice to the other side . - text: sayles has an eye for the ways people of different ethnicities talk to and about others outside the group . - text: eddie murphy and owen wilson have a cute partnership in i spy , but the movie around them is so often nearly nothing that their charm does n't do a load of good . inference: true model-index: - name: SetFit with BAAI/bge-small-en-v1.5 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8511806699615596 name: Accuracy --- # SetFit with BAAI/bge-small-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | negative | <ul><li>'there might be some sort of credible gender-provoking philosophy submerged here , but who the hell cares ?'</li><li>'represents the depths to which the girls-behaving-badly film has fallen .'</li><li>'-lrb- a -rrb- crushing disappointment .'</li></ul> | | positive | <ul><li>'what saves it ... and makes it one of the better video-game-based flicks , is that the film acknowledges upfront that the plot makes no sense , such that the lack of linearity is the point of emotional and moral departure for protagonist alice .'</li><li>'but it could be , by its art and heart , a necessary one .'</li><li>'a culture-clash comedy that , in addition to being very funny , captures some of the discomfort and embarrassment of being a bumbling american in europe .'</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8512 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("it 's refreshing to see a romance this smart .") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 6 | 22.5 | 45 | | Label | Training Sample Count | |:---------|:----------------------| | negative | 8 | | positive | 8 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (10, 10) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-----:|:----:|:-------------:|:---------------:| | 0.2 | 1 | 0.2102 | - | | 10.0 | 50 | 0.0105 | - | ### Framework Versions - Python: 3.10.0 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - Transformers: 4.44.0 - PyTorch: 2.4.0 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
null
Non_BioNLP
# SetFit with BAAI/bge-small-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 2 classes <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:---------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | negative | <ul><li>'there might be some sort of credible gender-provoking philosophy submerged here , but who the hell cares ?'</li><li>'represents the depths to which the girls-behaving-badly film has fallen .'</li><li>'-lrb- a -rrb- crushing disappointment .'</li></ul> | | positive | <ul><li>'what saves it ... and makes it one of the better video-game-based flicks , is that the film acknowledges upfront that the plot makes no sense , such that the lack of linearity is the point of emotional and moral departure for protagonist alice .'</li><li>'but it could be , by its art and heart , a necessary one .'</li><li>'a culture-clash comedy that , in addition to being very funny , captures some of the discomfort and embarrassment of being a bumbling american in europe .'</li></ul> | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.8512 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("setfit_model_id") # Run inference preds = model("it 's refreshing to see a romance this smart .") ``` <!-- ### Downstream Use *List how someone could finetune this model on their own dataset.* --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 6 | 22.5 | 45 | | Label | Training Sample Count | |:---------|:----------------------| | negative | 8 | | positive | 8 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (10, 10) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:-----:|:----:|:-------------:|:---------------:| | 0.2 | 1 | 0.2102 | - | | 10.0 | 50 | 0.0105 | - | ### Framework Versions - Python: 3.10.0 - SetFit: 1.0.3 - Sentence Transformers: 3.0.1 - Transformers: 4.44.0 - PyTorch: 2.4.0 - Datasets: 2.20.0 - Tokenizers: 0.19.1 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
{"base_model": "BAAI/bge-small-en-v1.5", "library_name": "setfit", "metrics": ["accuracy"], "pipeline_tag": "text-classification", "tags": ["setfit", "sentence-transformers", "text-classification", "generated_from_setfit_trainer"], "widget": [{"text": "amy and matthew have a bit of a phony relationship , but the film works in spite of it ."}, {"text": "it 's refreshing to see a romance this smart ."}, {"text": "bogdanich is unashamedly pro-serbian and makes little attempt to give voice to the other side ."}, {"text": "sayles has an eye for the ways people of different ethnicities talk to and about others outside the group ."}, {"text": "eddie murphy and owen wilson have a cute partnership in i spy , but the movie around them is so often nearly nothing that their charm does n't do a load of good ."}], "inference": true, "model-index": [{"name": "SetFit with BAAI/bge-small-en-v1.5", "results": [{"task": {"type": "text-classification", "name": "Text Classification"}, "dataset": {"name": "Unknown", "type": "unknown", "split": "test"}, "metrics": [{"type": "accuracy", "value": 0.8511806699615596, "name": "Accuracy"}]}]}]}
task
[ "TEXT_CLASSIFICATION" ]
41,069
fine-tuned/FiQA2018-32000-384-gpt-4o-2024-05-13-74794049
fine-tuned
feature-extraction
[ "sentence-transformers", "safetensors", "bert", "feature-extraction", "sentence-similarity", "mteb", "en", "dataset:fine-tuned/FiQA2018-32000-384-gpt-4o-2024-05-13-74794049", "dataset:allenai/c4", "license:apache-2.0", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
2024-06-06T07:54:17Z
2024-06-06T07:54:37+00:00
6
0
--- datasets: - fine-tuned/FiQA2018-32000-384-gpt-4o-2024-05-13-74794049 - allenai/c4 language: - en - en license: apache-2.0 pipeline_tag: feature-extraction tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb --- This model is a fine-tuned version of [**BAAI/bge-small-en-v1.5**](https://huggingface.co/BAAI/bge-small-en-v1.5) designed for the following use case: None ## How to Use This model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started: ```python from sentence_transformers import SentenceTransformer from sentence_transformers.util import cos_sim model = SentenceTransformer( 'fine-tuned/FiQA2018-32000-384-gpt-4o-2024-05-13-74794049', trust_remote_code=True ) embeddings = model.encode([ 'first text to embed', 'second text to embed' ]) print(cos_sim(embeddings[0], embeddings[1])) ```
null
Non_BioNLP
This model is a fine-tuned version of [**BAAI/bge-small-en-v1.5**](https://huggingface.co/BAAI/bge-small-en-v1.5) designed for the following use case: None ## How to Use This model can be easily integrated into your NLP pipeline for tasks such as text classification, sentiment analysis, entity recognition, and more. Here's a simple example to get you started: ```python from sentence_transformers import SentenceTransformer from sentence_transformers.util import cos_sim model = SentenceTransformer( 'fine-tuned/FiQA2018-32000-384-gpt-4o-2024-05-13-74794049', trust_remote_code=True ) embeddings = model.encode([ 'first text to embed', 'second text to embed' ]) print(cos_sim(embeddings[0], embeddings[1])) ```
{"datasets": ["fine-tuned/FiQA2018-32000-384-gpt-4o-2024-05-13-74794049", "allenai/c4"], "language": ["en", "en"], "license": "apache-2.0", "pipeline_tag": "feature-extraction", "tags": ["sentence-transformers", "feature-extraction", "sentence-similarity", "mteb"]}
task
[ "TEXT_CLASSIFICATION" ]
41,070