Dataset Viewer
The dataset viewer is not available for this dataset.
Cannot get the config names for the dataset.
Error code:   ConfigNamesError
Exception:    TypeError
Message:      List.__init__() got an unexpected keyword argument 'description'
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/dataset/config_names.py", line 66, in compute_config_names_response
                  config_names = get_dataset_config_names(
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/inspect.py", line 161, in get_dataset_config_names
                  dataset_module = dataset_module_factory(
                                   ^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1031, in dataset_module_factory
                  raise e1 from None
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1004, in dataset_module_factory
                  ).get_module()
                    ^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 605, in get_module
                  dataset_infos = DatasetInfosDict.from_dataset_card_data(dataset_card_data)
                                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/info.py", line 386, in from_dataset_card_data
                  dataset_info = DatasetInfo._from_yaml_dict(dataset_card_data["dataset_info"])
                                 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/info.py", line 317, in _from_yaml_dict
                  yaml_data["features"] = Features._from_yaml_list(yaml_data["features"])
                                          ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 2031, in _from_yaml_list
                  return cls.from_dict(from_yaml_inner(yaml_data))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1876, in from_dict
                  obj = generate_from_dict(dic)
                        ^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1463, in generate_from_dict
                  return {key: generate_from_dict(value) for key, value in obj.items()}
                               ^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/features/features.py", line 1476, in generate_from_dict
                  return List(generate_from_dict(feature), **obj)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
              TypeError: List.__init__() got an unexpected keyword argument 'description'

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

FastUMI Pro Dataset

FastUMI Dataset VLA

Enterprise-grade Robotic Manipulation Dataset for Universal Manipulation Interface

Project Homepage | Example Data

📖 Overview

FastUMI (Fast Universal Manipulation Interface) is a dataset and interface framework for general-purpose robotic manipulation tasks, designed to support hardware-agnostic, scalable, and efficient data collection and model training.

The project provides:

  • Physical prototype systems
  • Complete data collection codebase
  • Standardized data formats and utilities
  • Tools for real-world manipulation learning research

🚀 Features

FastUMI Pro Enhancements

  • Higher precision trajectory data
  • Diverse embodiment support for true "one-brain-multiple-forms"
  • Enterprise-ready pipeline and full-link data processing

FastUMI-150K

  • ~150,000 real-world manipulation trajectories
  • Used by research partners for large-scale VLA (Vision-Language-Action) model training
  • Demonstrated significant multi-task generalization capabilities

📊 Model Performance

VLA Model Results: [TBD]

🛠️ Toolchain

Tool Description Link
Single-Arm Demo Replay Single-arm data replay code GitHub
Dual-Arm Demo Replay Dual-arm data replay code GitHub
Hardware SDK FastUMI hardware development kit GitHub
Monitor Tool Real-time device monitoring GitHub
Data Collection Data collection utilities GitHub

Research & Applications

📥 Data Download

Example Dataset

# Direct download (may be slow in some regions)
huggingface-cli download FastUMIPro/example_data_fastumi_pro_raw --repo-type dataset --local-dir ~/fastumi_data/

Mirror Download (Recommended)

# Set mirror endpoint
export HF_ENDPOINT=https://hf-mirror.com

Download via mirror

huggingface-cli download --repo-type dataset --resume-download FastUMIPro/example_data_fastumi_pro_raw --local-dir ~/fastumi_data/ 📁 Data Structure Each session represents an independent operation "episode" containing observation data and action sequences.

Directory Structure
text
session_001/
└── device_label_xv_serial/
    └── session_timestamp/
        ├── RGB_Images/
        │   ├── timestamps.csv
        │   └── Frames/
        │       ├── frame_000001.jpg
        │       └── ...
        ├── SLAM_Poses/
        │   └── slam_raw.txt
        ├── Vive_Poses/
        │   └── vive_data_tum.txt
        ├── ToF_PointClouds/
        │   ├── timestamps.csv
        │   └── PointClouds/
        │       └── pointcloud_000001.pcd
        ├── Clamp_Data/
        │   └── clamp_data_tum.txt
        └── Merged_Trajectory/
            ├── merged_trajectory.txt
            └── merge_stats.txt

Data Specifications

Data Type Path Shape Type Description
RGB Images session_XXX/RGB_Images/Video.MP4 (frames, 1080, 1920, 3) uint8 Camera video data, 60 FPS
SLAM Poses session_XXX/SLAM_Poses/slam_raw.txt (timestamps, 7) float UMI end-effector poses
Vive Poses session_XXX/Vive_Poses/vive_data_tum.txt (timestamps, 7) float Vive base station poses
ToF PointClouds session_XXX/PointClouds/pointcloud_...pcd pcd format pcd Time-of-Flight point cloud data
Clamp Data session_XXX/Clamp_Data/clamp_data_tum.txt (timestamps, 1) float Gripper spacing (mm)
Merged Trajectory session_XXX/Merged_Trajectory/merged_trajectory.txt (timestamps, 7) float Fused trajectory (Vive/UMI based on velocity)

Pose Data Format

All pose data (SLAM, Vive, Merged) follow the same format:

Data Description
Timestamp Unix timestamp of the trajectory data
Pos X X-coordinate of position (meters)
Pos Y Y-coordinate of position (meters)
Pos Z Z-coordinate of position (meters)
Q_X X-component of orientation quaternion
Q_Y Y-component of orientation quaternion
Q_Z Z-component of orientation quaternion
Q_W W-component of orientation quaternion

🔄 Data Conversion

[TBD]

🤝 Collaboration

FastUMI Pro dataset is available for research collaboration. The full FastUMI-150K dataset has been provided to partner research teams for large-scale model training.

📞 Contact


☎️ 开发团队联系方式

对于任何问题或建议,请随时联系我们的开发团队。

负责人 (Lead) Ding Yan
Email [email protected]
WeChat Duke_dingyan

Downloads last month
85