prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/03_Train Flyvec.ipynb (unless otherwise specified). __all__ = ['BIN', 'init', 'main'] # Cell import os from pathlib import Path import ctypes from ctypes import * import array as arr import sys import argparse import time import numpy import flyvec.path_fixes as pf import subprocess as sp # Cell # Load binaries BIN = pf.CU_BIN # Cell from fastcore.script import * @call_parse def init(): sp.call(["sh", str(BIN / "short_make")], cwd=str(BIN)) # Cell @call_parse def main( encodings_source:Param("""Path to the tokens encoded as an ID. (eltype should be np.int32)""", str), offsets_source:Param("""Path to the offsets array indicating where each value of the array indicates where a chunk of text should start. (eltype should be np.uint64, first value should be 0)""",str), output_dir:Param("""Directory in which to save the checkpoints. Created if it does not exist""", str)=".", save_every:Param("""How many epochs to run before saving a checkpoint""", int)=1, ckpt_prefix:Param("""Prefix to name each checkpoint. Additional parameter choices are inserted into the checkpoint name.""", str)="flyvec_model", starting_checkpoint:Param("""Path to .npy file of saved checkpoint""", str)=None, W:Param("Size of the W-gram sliding window used to train the word vectors", int)=11, hid:Param("Number of hidden units (neurons). Do not change", int)=400, initial_learning_rate:Param("Initial learning rate", float)=0.002, delta:Param("From equation", float)=0., mu:Param("If no checkpoint provided, use this as mean for random normal initialization of synapses", float)=0., sigma:Param("If no checkpoint provided, use this as stdev for random normal initialization of synapses", float)=0.02, Nep:Param("Maximum number of epochs, fewer if starting from a checkpoint", int)=15, batch_size:Param("Minibatch size", int)=10000, prec:Param("Precision, avoid dividing by 0", float)=1.0E-30, ): # Obsolete Parameters stride = int(1) IM_HEIGHT = int(1) IM_WIDTH = int(11) Nchannels = int(1) # Unexposed Parameters frequency_scaling = 1 # 1 or 0, true or false Lmid = 1.0 Lbase = 1.0 sparse_input = 1 # 1 or 0, true or false, make input sparse and only store column # Load object files model_descriptor = ctypes.CDLL(str(BIN / 'model_descriptor.so')) model_arrays = ctypes.CDLL(str(BIN / 'model_arrays.so')) cuda_helpers = ctypes.CDLL(str(BIN / 'cuda_helpers.so')) model = ctypes.CDLL(str(BIN / 'cuda_funcs.so')) prune_input = ctypes.CDLL(str(BIN / 'prune_input.so')) # m = 2 # p = 2 # parser.add_argument("--stride", default=1, type=int, help="Stride. Do not change.") # parser.add_argument("--IM_HEIGHT", default=1, type=int, help="Height of the image data. Obsolete.") # parser.add_argument("--IM_WIDTH", default=11, type=int, help="Width of the image data. Obsolete.") # parser.add_argument("--Nchannels", default=1, type=int, help="Number of channels in the image data. Obsolete.") # parser.add_argument("--m", default=2, type=int, help="Parameter from equation. Obsolete.") # parser.add_argument("--p", default=2, type=int, help="Parameter from equation. Obsolete.") # Assign values to memory py_prune_input_data = prune_input.prune_input_data py_prune_input_data.rgtypes=[c_void_p,c_uint64,c_uint64] py_getnum_samples = prune_input.getnum_samples py_getnum_samples.rgtypes=[c_void_p,c_uint64,c_uint64] py_getnum_samples.restype = c_uint64 py_compute_offset_phrases = prune_input.compute_offset_phrases py_compute_offset_phrases.rgtypes=[c_void_p, c_void_p, c_uint64, c_uint64] py_model_create_descriptor = model_descriptor.model_create_descriptor py_model_create_descriptor.rgtypes=[c_int32] py_model_create_descriptor.restype = ctypes.c_void_p py_set_model_param_int = model_descriptor.set_model_param_int py_set_model_param_float = model_descriptor.set_model_param_float py_compute_model_derived_parameters = model_descriptor.compute_model_derived_parameters py_set_model_param_int.rgtypes=[c_uint64,c_char_p,c_void_p] py_set_model_param_float.rgtypes=[c_float,c_char_p,c_void_p] py_compute_model_derived_parameters.rgtypes=[c_void_p] py_copy_model_params = model_descriptor.copy_model_params py_copy_model_params.rgtypes=[c_void_p,c_int32,c_int32] py_model_create_arrays = model_arrays.model_create_arrays py_model_create_arrays.restype = ctypes.c_void_p py_model_create_arrays.rgtypes=[c_int32] py_model_arrays_allocate_memory = model_arrays.model_arrays_allocate_memory py_model_arrays_allocate_memory.rgtypes=[c_void_p,c_void_p,c_int32] py_model_arrays_reshuffle_indices = model_arrays.do_reshuffle_indices py_model_arrays_reshuffle_indices.rgtypes=[c_void_p,c_void_p,c_int32] py_compute_inverse_word_frequency = model_arrays.compute_inverse_word_frequency py_compute_inverse_word_frequency.rgtypes=[c_void_p,c_void_p,c_void_p,c_uint64,c_int32] python_get_cuda_pinned_memory = cuda_helpers.do_gpu_cudaHostAlloc python_get_cuda_pinned_memory.restype = ctypes.c_void_p python_get_cuda_managed_memory = cuda_helpers.do_gpu_cudaMallocManaged python_get_cuda_managed_memory.restype = ctypes.c_void_p py_run_epoch_INPUT_AS_IMAGE = model.launch_epoch_INPUT_AS_IMAGE py_run_epoch_INPUT_AS_IMAGE.rgtypes=[c_void_p,c_void_p,c_int32,c_uint64,c_uint64] py_run_epoch_INPUT_AS_FLOAT = model.launch_epoch_INPUT_AS_FLOAT py_run_epoch_INPUT_AS_FLOAT.rgtypes=[c_void_p,c_void_p,c_int32,c_uint64,c_uint64] py_run_epoch_INPUT_AS_INT = model.launch_epoch_INPUT_AS_INT py_run_epoch_INPUT_AS_INT.rgtypes=[c_void_p,c_void_p,c_int32,c_uint64,c_uint64] py_model_arrays_get_data_pointer = model_arrays.get_data_pointer py_model_arrays_get_data_pointer.restype = ctypes.c_void_p py_model_arrays_get_data_pointer.rgtypes = [c_char_p, c_void_p, c_int32] num_gpus = cuda_helpers.get_cuda_num_devices() print('num_gpus=', num_gpus) print("py_model_create_arrays and descriptor...") MODEL_DSCR = py_model_create_descriptor( c_int32(num_gpus) ) MODEL_DATA = py_model_create_arrays( c_int32(num_gpus) ) # Create output directory output_dir = Path(output_dir) if not output_dir.exists(): output_dir.mkdir(parents=True) OUTPUT_NAME=f"{ckpt_prefix}_H_{hid}_W_{W}_LR_{initial_learning_rate}_" OUTPUT = str(output_dir / OUTPUT_NAME) # Allocate memory for initial encodings input_data_on_disk_encoding = numpy.load(encodings_source, mmap_mode='r') Ns_1 = input_data_on_disk_encoding.shape[0] # Cannot push to GPU INPUT = python_get_cuda_pinned_memory(ctypes.c_uint64(Ns_1*ctypes.sizeof(ctypes.c_int32))) #create numpy array to store input data, use memory allocated for INPUT INPUT_data_pointer = ctypes.cast(INPUT,ctypes.POINTER(ctypes.c_int32)) INPUT_np_array = numpy.ctypeslib.as_array(INPUT_data_pointer,shape=(Ns_1,)) print('Copying input...') numpy.copyto(INPUT_np_array,input_data_on_disk_encoding) vocabulary_size = numpy.uint64(numpy.max(INPUT_np_array)+1) N = numpy.uint64(vocabulary_size*2) print(f"Determined a vocabulary size of {vocabulary_size}") input_data_on_disk_offsets = numpy.load(offsets_source,mmap_mode='r') Number_of_sentences = input_data_on_disk_offsets.shape[0] - 1 Number_of_phrases = prune_input.getnum_samples(ctypes.c_void_p(input_data_on_disk_offsets.__array_interface__['data'][0]), c_uint64(Number_of_sentences), c_uint64(W) ) print('Number of phrases: ', Number_of_phrases) #allocate memory for offsets for phrases of size W INPUT_phrases_offsets = python_get_cuda_pinned_memory(ctypes.c_uint64((Number_of_phrases+1)*ctypes.sizeof(ctypes.c_int64) )) #compute offsets py_compute_offset_phrases(c_void_p(INPUT_phrases_offsets), c_void_p(input_data_on_disk_offsets.__array_interface__['data'][0]), c_uint64(Number_of_sentences), c_uint64(W)) Ns_1 = Number_of_phrases model_descriptor.print_model_params(ctypes.c_void_p(MODEL_DSCR)) py_set_model_param_int(IM_HEIGHT,b'IM_HEIGHT',ctypes.c_void_p(MODEL_DSCR)) py_set_model_param_int(IM_WIDTH,b'IM_WIDTH',ctypes.c_void_p(MODEL_DSCR)) py_set_model_param_int(Nchannels,b'Nchannels',ctypes.c_void_p(MODEL_DSCR)) py_set_model_param_int(ctypes.c_uint64(Ns_1),b'Ns_1',ctypes.c_void_p(MODEL_DSCR)) # py_set_model_param_int(W, b'W', ctypes.c_void_p(MODEL_DSCR)) py_set_model_param_int(stride, b'ST', ctypes.c_void_p(MODEL_DSCR)) py_set_model_param_int(hid, b'hid', ctypes.c_void_p(MODEL_DSCR)) py_set_model_param_int(batch_size, b'Num', ctypes.c_void_p(MODEL_DSCR)) py_set_model_param_int(c_uint64(vocabulary_size), b'vocabulary_size',ctypes.c_void_p(MODEL_DSCR)) py_set_model_param_int(sparse_input, b'sparse_input',ctypes.c_void_p(MODEL_DSCR)) py_set_model_param_int(frequency_scaling, b'frequency_scaling',ctypes.c_void_p(MODEL_DSCR)) py_set_model_param_float(c_float(initial_learning_rate), b'initial_learning_rate', ctypes.c_void_p(MODEL_DSCR)) py_set_model_param_float(c_float(delta), b'delta', ctypes.c_void_p(MODEL_DSCR)) py_set_model_param_float(c_float(prec), b'prec', ctypes.c_void_p(MODEL_DSCR)) py_set_model_param_float(c_float(mu), b'mu', ctypes.c_void_p(MODEL_DSCR)) py_set_model_param_float(c_float(sigma), b'sigma', ctypes.c_void_p(MODEL_DSCR)) py_set_model_param_float(c_float(Lmid), b'Lmid', ctypes.c_void_p(MODEL_DSCR)) py_set_model_param_float(c_float(Lbase), b'Lbase', ctypes.c_void_p(MODEL_DSCR)) py_compute_model_derived_parameters(ctypes.c_void_p(MODEL_DSCR)) for gpu in range(1,num_gpus,1): py_copy_model_params( ctypes.c_void_p(MODEL_DSCR), c_int32(0), c_int32(gpu) ) model_descriptor.print_model_params(ctypes.c_void_p(MODEL_DSCR)) py_model_arrays_allocate_memory(ctypes.c_void_p(MODEL_DSCR), ctypes.c_void_p(MODEL_DATA),c_int32(num_gpus)) print('setting INPUT pointer') for gpu in range(0,num_gpus,1): model_arrays.set_up_INPUT_pointer(b'INPUT', ctypes.c_void_p(MODEL_DATA), ctypes.c_void_p(MODEL_DSCR), ctypes.c_void_p(INPUT),ctypes.c_void_p(INPUT_phrases_offsets), b'i4',c_int32(gpu)) if frequency_scaling==1 : print('Computing inverse word frequency...') for gpu in range(0,num_gpus,1): py_compute_inverse_word_frequency(ctypes.c_void_p(MODEL_DATA), ctypes.c_void_p(MODEL_DSCR), ctypes.c_void_p(INPUT), c_uint64(input_data_on_disk_encoding.shape[0]), c_int32(gpu) ) #model_arrays.push_INPUT_memory_to_GPU(ctypes.c_void_p(MODEL_DATA), ctypes.c_void_p(MODEL_DSCR),c_int32(0), b'i4') #initialize SYNAPSES print('Setting initial weights...') epoch_start = 0 if starting_checkpoint is not None: R=
numpy.load(starting_checkpoint,mmap_mode='r')
numpy.load
#!/usr/bin/python #-*- coding: <encoding name> -*- import numpy as np import pandas as pd import os import math def naca0012(x): return 0.6 * (-0.1015 * x ** 4 + 0.2843 * x ** 3 - 0.3576 \ * x ** 2 - 0.1221 * x + 0.2969 * x ** 0.5) def simpleIteration(alpha, beta, gamma, x): out = (alpha[1:-1, 1:-1] * (x[1:-1, 2:] + x[1:-1, 0:-2]) + \ gamma[1:-1, 1:-1] * (x[2:, 1:-1] + x[0:-2, 1:-1]) - \ beta[1:-1, 1:-1] / 2.0 * (x[2:, 2:] + x[0:-2, 0:-2] - x[0:-2, 2:] \ - x[2:, 0:-2])) / (2.0 * (alpha[1:-1, 1:-1] + gamma[1:-1, 1:-1])) return out def isConverg(dx, dy, errlimit): errx = np.abs(dx[1:-1, 1:-1]).max() erry = np.abs(dy[1:-1, 1:-1]).max() return (errx < errlimit) & (erry < errlimit) class Ogrid(): ''' This is a O-gird generater with: - Slitting, far field, airfoil, infield boundary - Radius of far field - Maximum of iteration and error limits - Number of points on the airfoil surface ''' def __init__(self, N, radius, iterlimit, errlimit): self.N = N self.radius = radius self.iterlimit = iterlimit self.errlimit = errlimit def initialGrid(self): n = self.N r = self.radius theta = np.array([2 * math.pi * (i - 1) / (n - 1) for i in range(0, n + 2)]) x = np.zeros((n, n + 2)) y = np.zeros((n, n + 2)) # Airfoil boundary x[0, 1:-1] = 0.5 * (1 + np.cos(theta[1:-1])) y[0, 1: int((n + 1) / 2)] = - naca0012(x[0, 1:int((n + 1) / 2)]) y[0, int((n + 1) / 2):-1] = naca0012(x[0, int((n + 1) / 2):-1]) # Far field boundary x[-1, 1:-1] = r * np.cos(- theta[1:-1]) y[-1, 1:-1] = r * np.sin(- theta[1:-1]) # In field boundary for i in range(1, n - 1): x[i, 1:-1] = x[0, 1:-1] + (x[-1, 1:-1] - x[0, 1:-1]) * i / (n - 1) y[i, 1:-1] = y[0, 1:-1] + (y[-1, 1:-1] - y[0, 1:-1]) * i / (n - 1) # Slitting (割缝) x[:, 0], x[:, -1] = x[:, -3], x[:, 2] y[:, 0], y[:, -1] = y[:, -3], y[:, 2] return x, y def gridGenerate(self): # Generate grid using simple iteration # Initial variables n = self.N alpha = np.zeros((n, n+2)) beta = np.zeros((n, n+2)) gamma = np.zeros((n, n+2)) x1 = np.zeros((n, n+2)) x2 = np.zeros((n, n+2)) y1 = np.zeros((n, n+2)) y2 = np.zeros((n, n+2)) x, y = self.initialGrid() for i in range(0, iterlimit): xs, ys = x.copy(), y.copy() # Very important point, with no np.copy(), xs will change with x x1[1:-1, 1:-1] = (xs[2:, 1:-1] - xs[0:-2, 1:-1]) / 2.0 y1[1:-1, 1:-1] = (ys[2:, 1:-1] - ys[0:-2, 1:-1]) / 2.0 x2[1:-1, 1:-1] = (xs[1:-1, 2:] - xs[1:-1, 0:-2]) / 2.0 y2[1:-1, 1:-1] = (ys[1:-1, 2:] - ys[1:-1, 0:-2]) / 2.0 # Calculate alpha, beta and gamma alpha[1:-1, 1:-1] = x1[1:-1, 1:-1] ** 2 + y1[1:-1, 1:-1] ** 2 beta[1:-1, 1:-1] = x2[1:-1, 1:-1] * x1[1:-1, 1:-1] + y2[1:-1, 1:-1] * y1[1:-1, 1:-1] gamma[1:-1, 1:-1] = x2[1:-1, 1:-1] ** 2 + y2[1:-1, 1:-1] ** 2 # Using simple iteration equation x[1:-1, 1:-1] = simpleIteration(alpha, beta, gamma, xs) y[1:-1, 1:-1] = simpleIteration(alpha, beta, gamma, ys) # Slitting x[:, 0], x[:, -1] = x[:, -3], x[:, 2] y[:, 0], y[:, -1] = y[:, -3], y[:, 2] if isConverg(x - xs, y - ys, self.errlimit): return x, y elif i == (iterlimit -1): return x, y def gridExport(self, x, y): # Export grid to a dat file np.savetxt('Result' + os.sep + 'o-grid.dat', np.transpose([x[:, 1:-1].flatten(), y[:, 1:-1].flatten()]), \ header='variables=x,y\nzone i=101,j=101,F=POINT', delimiter='\t', comments='') class GridSolver(): ''' This is a o-grid solver with: - Grid coordinates input - Freestream velocity input - Phi, u, v, Cp output ''' def __init__(self, x, y, Vf, errlimit, iterlimit): self.x = x self.y = y self.Vf = Vf self.errlimit = errlimit self.iterlimit = iterlimit def phiSolver(self): Vf = self.Vf errlimit = self.errlimit iterlimit = self.iterlimit x = self.x y = self.y phi, phii, ak = 0*x.copy(), 0*x.copy(), 0*x.copy() phi[:, 1:-1] = Vf * x[:, 1:-1] for i in range(0, iterlimit): phi[:, 0], phi[:, -1] = phi[:, -3], phi[:, 2] phis = phi.copy() x1 = (x[0, 2] - x[0, 0]) / 2.0 y1 = (y[0, 2] - y[0, 0]) / 2.0 x2 = (-x[2, 1] + 4.0 * x[1, 1] - 3.0 * x[0, 1]) / 2.0 y2 = (-y[2, 1] + 4.0 * y[1, 1] - 3.0 * y[0, 1]) / 2.0 phi[0, 1] = (4 * phi[1, 1] - phi[2, 1] - (y2 - x2) / (y1 - x1) * (phi[0, 2] - phi[0, 0])) / 3.0 phi[0, -1] = phi[0, 1] x1 = (x[0, 3:-1] - x[0, 1:-3]) / 2.0 y1 = (y[0, 3:-1] - y[0, 1:-3]) / 2.0 x2 = (-x[2, 2:-2] + 4.0 * x[1, 2:-2] - 3.0 * x[0, 2:-2]) / 2.0 y2 = (-y[2, 2:-2] + 4.0 * y[1, 2:-2] - 3.0 * y[0, 2:-2]) / 2.0 phii[0, 1:-3] = (phi[0, 3:-1] - phi[0, 1:-3]) / 2.0 ak[0, 1:-3] = (x1 * x2 + y1 * y2) / (x1 ** 2 + y1 ** 2) phi[0, 2:-2] = - (2.0 * phii[0, 1:-3] * ak[0, 1:-3] - 4.0 * phi[1, 2:-2] + phi[2, 2:-2]) / 3.0 phi[1:-1, 0], phi[1:-1, -1] = phi[1:-1, -3], phi[1:-1, 2] alpha = ((x[2:, 1:-1] - x[0:-2, 1:-1]) ** 2 + (y[2:, 1:-1] - y[0:-2, 1:-1]) ** 2) / 4.0 beta = -(((x[2:, 1:-1] - x[0:-2, 1:-1]) * (x[1:-1, 2:] - x[1:-1, 0:-2])) + \ ((y[2:, 1:-1] - y[0:-2, 1:-1]) * (y[1:-1, 2:] - y[1:-1, 0:-2]))) / 4.0 gamma = ((x[1:-1, 2:] - x[1:-1, 0:-2]) ** 2 + (y[1:-1, 2:] - y[1:-1, 0:-2]) ** 2) / 4.0 phi[1:-1, 1:-1] = 0.5 * (alpha * (phi[1:-1, 2:] + phi[1:-1, 0:-2]) + gamma * \ (phi[2:, 1:-1] + phi[0:-2, 1:-1]) + 0.5 * beta * (phi[2:, 2:] + phi[0:-2, 0:-2] -\ phi[0:-2, 2:] - phi[2:, 0:-2])) / (alpha + gamma) if (
np.abs((phi - phis)[1:-1,1:-1])
numpy.abs
"""module for complete independent games""" import functools import itertools import numpy as np from gameanalysis import rsgame from gameanalysis import utils class _MatrixGame(rsgame._CompleteGame): # pylint: disable=protected-access """Matrix game representation This represents a complete independent game more compactly than a Game, but only works for complete independent games. Parameters ---------- role_names : (str,) The name of each role. strat_names : ((str,),) The name of each strategy per role. payoff_matrix : ndarray The matrix of payoffs for an asymmetric game. The last axis is the payoffs for each player, the first axes are the strategies for each player. matrix.shape[:-1] must correspond to the number of strategies for each player. matrix.ndim - 1 must equal matrix.shape[-1]. """ def __init__(self, role_names, strat_names, payoff_matrix): super().__init__(role_names, strat_names, np.ones(len(role_names), int)) self._payoff_matrix = payoff_matrix self._payoff_matrix.setflags(write=False) self._prof_offset = np.zeros(self.num_strats, int) self._prof_offset[self.role_starts] = 1 self._prof_offset.setflags(write=False) self._payoff_view = self._payoff_matrix.view() self._payoff_view.shape = (self.num_profiles, self.num_roles) def payoff_matrix(self): """Return the payoff matrix""" return self._payoff_matrix.view() @utils.memoize def min_strat_payoffs(self): """Returns the minimum payoff for each role""" mpays = np.empty(self.num_strats) for role, (pays, min_pays, strats) in enumerate( zip( np.rollaxis(self._payoff_matrix, -1), np.split(mpays, self.role_starts[1:]), self.num_role_strats, ) ): np.rollaxis(pays, role).reshape((strats, -1)).min(1, min_pays) mpays.setflags(write=False) return mpays @utils.memoize def max_strat_payoffs(self): """Returns the minimum payoff for each role""" mpays = np.empty(self.num_strats) for role, (pays, max_pays, strats) in enumerate( zip( np.rollaxis(self._payoff_matrix, -1), np.split(mpays, self.role_starts[1:]), self.num_role_strats, ) ): np.rollaxis(pays, role).reshape((strats, -1)).max(1, max_pays) mpays.setflags(write=False) return mpays @functools.lru_cache(maxsize=1) def payoffs(self): profiles = self.profiles() payoffs = np.zeros(profiles.shape) payoffs[profiles > 0] = self._payoff_matrix.flat return payoffs def compress_profile(self, profile): """Compress profile in array of ints Normal profiles are an array of number of players playing a strategy. Since matrix games always have one player per role, this compresses each roles counts into a single int representing the played strategy per role. """ utils.check(self.is_profile(profile).all(), "must pass vaid profiles") profile = np.asarray(profile, int) return np.add.reduceat( np.cumsum(self._prof_offset - profile, -1), self.role_starts, -1 ) def uncompress_profile(self, comp_prof): """Uncompress a profile""" comp_prof = np.asarray(comp_prof, int) utils.check( np.all(comp_prof >= 0) and np.all(comp_prof < self.num_role_strats), "must pass valid compressed profiles", ) profile = np.zeros(comp_prof.shape[:-1] + (self.num_strats,), int) inds = ( comp_prof.reshape((-1, self.num_roles)) + self.role_starts + self.num_strats * np.arange(int(np.prod(comp_prof.shape[:-1])))[:, None] ) profile.flat[inds] = 1 return profile def get_payoffs(self, profiles): """Returns an array of profile payoffs""" profiles = np.asarray(profiles, int) ids = self.profile_to_id(profiles) payoffs = np.zeros_like(profiles, float) payoffs[profiles > 0] = self._payoff_view[ids].flat return payoffs def deviation_payoffs( self, mixture, *, jacobian=False, **_ ): # pylint: disable=too-many-locals """Computes the expected value of each pure strategy played against all opponents playing mix. Parameters ---------- mixture : ndarray The mix all other players are using jacobian : bool If true, the second returned argument will be the jacobian of the deviation payoffs with respect to the mixture. The first axis is the deviating strategy, the second axis is the strategy in the mix the jacobian is taken with respect to. """ rmixes = [] for role, rmix in enumerate(np.split(mixture, self.role_starts[1:])): shape = [1] * self.num_roles shape[role] = -1 rmixes.append(rmix.reshape(shape)) devpays = np.empty(self.num_strats) for role, (out, strats) in enumerate( zip(np.split(devpays, self.role_starts[1:]), self.num_role_strats) ): pays = self._payoff_matrix[..., role].copy() for rmix in (m for r, m in enumerate(rmixes) if r != role): pays *= rmix np.rollaxis(pays, role).reshape((strats, -1)).sum(1, out=out) if not jacobian: return devpays jac = np.zeros((self.num_strats, self.num_strats)) for role, (jout, rstrats) in enumerate( zip(np.split(jac, self.role_starts[1:]), self.num_role_strats) ): for dev, (out, dstrats) in enumerate( zip(np.split(jout, self.role_starts[1:], 1), self.num_role_strats) ): if role == dev: continue pays = self._payoff_matrix[..., role].copy() for rmix in (m for r, m in enumerate(rmixes) if r not in {role, dev}): pays *= rmix np.rollaxis(np.rollaxis(pays, role), dev + (role > dev), 1).reshape( (rstrats, dstrats, -1) ).sum(2, out=out) return devpays, jac def restrict(self, restriction): base = rsgame.empty_copy(self).restrict(restriction) matrix = self._payoff_matrix for i, mask in enumerate(np.split(restriction, self.role_starts[1:])): matrix = matrix[(slice(None),) * i + (mask,)] return _MatrixGame(base.role_names, base.strat_names, matrix.copy()) def _add_constant(self, constant): return _MatrixGame( self.role_names, self.strat_names, self._payoff_matrix + constant ) def _multiply_constant(self, constant): return _MatrixGame( self.role_names, self.strat_names, self._payoff_matrix * constant ) def _add_game(self, othr): if not othr.is_complete(): return NotImplemented try: othr_mat = othr.payoff_matrix() except AttributeError: othr_mat = othr.get_payoffs(self.all_profiles())[ self.all_profiles() > 0 ].reshape(self._payoff_matrix.shape) return _MatrixGame( self.role_names, self.strat_names, self._payoff_matrix + othr_mat ) def _mat_to_json(self, matrix, role_index): """Convert a sub matrix into json representation""" if role_index == self.num_roles: return {role: float(pay) for role, pay in zip(self.role_names, matrix)} strats = self.strat_names[role_index] role_index += 1 return { strat: self._mat_to_json(mat, role_index) for strat, mat in zip(strats, matrix) } def to_json(self): res = super().to_json() res["payoffs"] = self._mat_to_json(self._payoff_matrix, 0) res["type"] = "matrix.1" return res @utils.memoize def __hash__(self): return super().__hash__() def __eq__(self, othr): # pylint: disable-msg=protected-access return ( super().__eq__(othr) and # Identical payoffs np.allclose(self._payoff_matrix, othr._payoff_matrix) ) def __repr__(self): return "{}({})".format(self.__class__.__name__[1:], self.num_role_strats) def matgame(payoff_matrix): """Create a game from a dense matrix with default names Parameters ---------- payoff_matrix : ndarray-like The matrix of payoffs for an asymmetric game. """ payoff_matrix = np.ascontiguousarray(payoff_matrix, float) return matgame_replace( rsgame.empty( np.ones(payoff_matrix.ndim - 1, int),
np.array(payoff_matrix.shape[:-1], int)
numpy.array
import numpy as np import pandas as pd import random import sys import os import math import copy import pickle import pyclustering from pyclustering.cluster import xmeans from matplotlib import pyplot as plt import seaborn as sns sns.set_style(style="whitegrid") import warnings warnings.filterwarnings('ignore') if int(sys.argv[1])==0: if not os.path.exists("./figs"): os.mkdir("./figs") cluster_ls=[] for i in range(50): cluster_ls.append(i*10) def cluster(data): res=0 structure=0 data=np.array(data) clans=[] clusters=[] structure_path=[] for descent in [0,1]: try: init_center = xmeans.kmeans_plusplus_initializer(data[data[:,0]==descent], 2).initialize() xm = xmeans.xmeans(data[data[:,0]==descent], init_center, ccore=False) xm.process() sizes = [len(cluster) for cluster in xm.get_clusters()] centers=xm.get_centers() clusters_candidate=xm.get_clusters() for i in range(len(sizes)): if sizes[i]>num_lineage/10: clans.append(centers[i]) clusters.append(clusters_candidate[i]) # clans=xm.get_centers() except: continue if len(clans)>0: num_clans=len(clans) clan_ls=[] for i in range(num_clans): mate=0 child=0 cur_mate=100 cur_child=100 for j in range(num_clans): mate_cur=(clans[i][3]-clans[j][1])**2+(clans[i][4]-clans[j][2])**2 if mate_cur<cur_mate: mate=j cur_mate=mate_cur if clans[i][0]==0: clan_ls.append([i,mate,[i]]) else: clan_ls.append([i,mate,[]]) for i in range(len(clan_ls)): if clan_ls[i][2]==[]: mates=[mate for mate in clan_ls if mate[1]==i] children=[] for mate in mates: cur_child=100 for j in range(num_clans): if clans[j][0]==1: child_cur=(clans[i][1]-clans[j][1])**2+(clans[mate[0]][2]-clans[j][2])**2 if child_cur<cur_child: child=j cur_child=child_cur children.append(child) clan_ls[i][2]=children counter=1 for clan in clan_ls: if len(clan[2])==1: clan[2]=clan[2][0] elif len(clan[2])>1: counter=counter*len(clan[2]) clan_ls_ls=[] clan_ls_ori=copy.deepcopy(clan_ls[:]) for i in range(counter): clan_ls=copy.deepcopy(clan_ls_ori[:]) for clan in clan_ls: if type(clan[2])!=type(0): if len(clan[2])==0: clan[2]=-1 else: clan[2]=clan[2][counter%len(clan[2])] clan_ls_ls.append(clan_ls) cur_man_cycle=0 cur_cycle=0 cur_woman_cycle=0 num_clans=0 for clan_ls in clan_ls_ls: candidate=list(range(len(clans))) while len(candidate)>0: marriage_path=[] cur=candidate[-1] man_path=[cur] vill_ls=[] while True: next=clan_ls[cur][2] if next in man_path: man_path=man_path[man_path.index(next):] break elif next == -1: break else: man_path.append(next) cur=next cur_woman_cycle_cur=0 for clan in man_path: if clan not in marriage_path: cur_path=[clan] cur=clan while True: next=clan_ls[clan_ls[cur][1]][2] if next in cur_path: marriage_path.extend(cur_path[cur_path.index(next):]) if len(cur_path[cur_path.index(next):])>cur_woman_cycle_cur: cur_woman_cycle_cur=len(cur_path[cur_path.index(next):]) break elif next == -1: break else: cur_path.append(next) cur=next marriage_path=list(set(marriage_path)) candidate.pop() for man in man_path: if man not in marriage_path: man_path.remove(man) if man in candidate: candidate.remove(man) if len(marriage_path)>cur_cycle: structure_path=marriage_path cur_cycle=len(marriage_path) cur_man_cycle=len(man_path) cur_woman_cycle=cur_woman_cycle_cur elif len(marriage_path)==cur_cycle and len(man_path)>cur_man_cycle: structure_path=marriage_path cur_cycle=len(marriage_path) cur_man_cycle=len(man_path) cur_woman_cycle=cur_woman_cycle_cur elif len(marriage_path)==cur_cycle and len(man_path)==cur_man_cycle and cur_woman_cycle_cur>cur_woman_cycle: structure_path=marriage_path cur_cycle=len(marriage_path) cur_man_cycle=len(man_path) cur_woman_cycle=cur_woman_cycle_cur else: continue rest=0 for man in marriage_path: if len(clan_ls[man])==len(set(clan_ls[man])): rest+=1 if rest>=cur_cycle/2: rest=1 else: rest=0 clan_ls=np.array(clan_ls) ind_ls=[clan_ls[i,2] for i in list(set(clan_ls[:,1]))] clan_ls=[list(clan) for clan in clan_ls if clan[0] in ind_ls] if len(clan_ls)>num_clans: num_clans=len(clan_ls) if cur_cycle*cur_man_cycle*cur_woman_cycle!=0: if cur_woman_cycle>1 and cur_man_cycle>1 and cur_cycle>3: structure=4 elif cur_cycle==1: structure=1 elif cur_cycle<=num_clans/3: structure=5 elif cur_cycle==2: structure=2 elif cur_woman_cycle>2 or cur_man_cycle>2: structure=3 else: structure=6 # structures=["dead","incest", "dual", "generalized", "restricted", "vill division", "others"] res=[cur_cycle,cur_man_cycle,cur_woman_cycle,rest] return [structure,res,np.array(clusters)[structure_path],np.array(clans)[structure_path]] class Village: def __init__(self): self.lineages=[] self.population=0 class Lineage: def __init__(self,trait,preference,descent,num_couple): self.trait=trait self.preference=preference self.couple=num_couple self.man=0 self.woman=0 self.father=trait self.descent=descent self.candidate=[] def year(vill): vill.population=0 lineages=[lineage for lineage in vill.lineages if lineage.couple>0] traits=np.array([lineage.trait for lineage in lineages]) fathers=np.array([lineage.father for lineage in lineages]) preferences=np.array([lineage.preference for lineage in lineages]) for lineage in lineages: distance=np.array([np.sum((traits-lineage.trait)**2,axis=1),np.sum((traits-lineage.preference)**2,axis=1),np.sum((preferences-lineage.trait)**2,axis=1),np.sum((fathers-lineage.trait)**2,axis=1),np.sum((traits-lineage.father)**2,axis=1)]).min(axis=0) friend=np.sum(np.exp(-distance))/len(lineages) rate=1/(1+coop*(1-friend)) couple=birth*lineage.couple lineage.man=round(np.random.poisson(lam=couple)*rate) lineage.woman=round(np.random.poisson(lam=couple)*rate) lineage.couple=0 for lineage in lineages: if min(lineage.man,lineage.woman)>2*initial_pop: n=math.floor(math.log2(min(lineage.man,lineage.woman)/initial_pop)) lineage.man=round(lineage.man/2**n) lineage.woman=round(lineage.woman/2**n) for i in [0]*(2**n-1): lineages.append(Lineage(np.copy(lineage.trait),np.copy(lineage.preference),lineage.descent,0)) lineages[-1].man=lineage.man lineages[-1].woman=lineage.woman lineages=[lineage for lineage in lineages if lineage.man*lineage.woman>0] for lineage in lineages: if random.random()<descent_mut: lineage.descent=(lineage.descent+1)%2 lineage.trait+=np.random.uniform(-mutation,mutation,2) lineage.preference+=np.random.uniform(-mutation,mutation,2) preferences=np.array([lineage.preference for lineage in lineages]) for lineage in lineages: enemy=np.sum(np.exp(-np.sum((preferences-lineage.preference)**2,axis=1)))/len(lineages) rate=1/(1+conflict*enemy) lineage.man=round(lineage.man*rate) lineage.woman=round(lineage.woman*rate) vill.population+=lineage.man+lineage.woman vill.lineages=lineages[:] def mating(vill): lineages=vill.lineages mates=np.array([mate.preference for mate in lineages]) for lineage in lineages: if lineage.man>0: dist=np.exp(-np.sum((mates-lineage.trait)**2,axis=1)) dist=dist/np.sum(dist) mate = np.random.choice(lineages, p=dist) mate.candidate.append(lineage) for mate in lineages: if mate.woman<1 or len(mate.candidate)==0: mate.candidate=[] continue random.shuffle(mate.candidate) for lineage in mate.candidate: if mate.woman<1: break couple=min(lineage.man,mate.woman) lineage.man-=couple mate.woman-=couple if lineage.descent==1: lineages.append(Lineage(
np.array([lineage.trait[0],mate.trait[1]])
numpy.array
import tensorflow as tf import numpy as np import os.path from cossmo.data_pipeline import convert_to_tf_example, \ read_single_cossmo_example, dynamic_bucket_data_pipeline from cossmo.scoring_network import ScoringNetwork from cossmo.output_networks import RaggedOutputNetwork SEQ_LEN = 20 def sample_sequence(len): return ''.join(['ACGT'[k] for k in np.random.randint(0, 3, len)]) class TestDataPipeline(tf.test.TestCase): @staticmethod def sample_example(n_alt_ss, event_type=None): if event_type is None: event_type = ['acceptor', 'donor'][np.random.randint(0, 1)] assert event_type in ('acceptor', 'donor') const_exonic_seq = sample_sequence(SEQ_LEN) const_intronic_seq = sample_sequence(SEQ_LEN) alt_exonic_seq = [sample_sequence(SEQ_LEN) for _ in range(n_alt_ss)] alt_intronic_seq = [sample_sequence(SEQ_LEN) for _ in range(n_alt_ss)] psi_distribution = np.random.rand(n_alt_ss, 1) psi_distribution /= psi_distribution.sum(0, keepdims=True) psi_std = np.random.rand(n_alt_ss, 1) const_site_id = str(np.random.randint(1000)) const_site_pos = np.random.randint(100000) alt_ss_position =
np.random.randint(0, 100000, n_alt_ss)
numpy.random.randint
import os import gdal import numpy as np import warnings def main(input_folder, output_folder, Date): # Do not show warnings warnings.filterwarnings('ignore') import pyWAPOR.ETLook as ETLook import pyWAPOR.Functions.Processing_Functions as PF import pyWAPOR.ETLook.outputs as out # Define Date string Date_str = "%d%02d%02d" %(Date.year, Date.month, Date.day) # Input folder Date input_folder_date = os.path.join(input_folder, Date_str) ############################ Define inputs ################################ #input_files ALBEDO_filename = os.path.join(input_folder_date, "ALBEDO_%s.tif" %Date_str) NDVI_filename = os.path.join(input_folder_date, "NDVI_%s.tif" %Date_str) LST_filename = os.path.join(input_folder_date, "LST_%s.tif" %Date_str) Time_filename = os.path.join(input_folder_date, "Time_%s.tif" %Date_str) Lat_filename = os.path.join(input_folder_date, "Lat_%s.tif" %Date_str) Lon_filename = os.path.join(input_folder_date, "Lon_%s.tif" %Date_str) DEM_filename = os.path.join(input_folder_date, "DEM.tif") Slope_filename = os.path.join(input_folder_date, "Slope.tif") Aspect_filename = os.path.join(input_folder_date, "Aspect.tif") LandMask_filename = os.path.join(input_folder_date, "LandMask.tif") Bulk_filename =os.path.join(input_folder_date, "Bulk_Stomatal_resistance.tif") MaxObs_filename = os.path.join(input_folder_date, "Maximum_Obstacle_Height.tif") Pair_24_0_filename = os.path.join(input_folder_date, "Pair_24_0_%s.tif" %Date_str) Pair_inst_0_filename = os.path.join(input_folder_date, "Pair_inst_0_%s.tif" %Date_str) Pair_inst_filename = os.path.join(input_folder_date, "Pair_inst_%s.tif" %Date_str) Pre_filename = os.path.join(input_folder_date, "Precipitation_%s.tif" %Date_str) Hum_24_filename = os.path.join(input_folder_date, "qv_24_%s.tif" %Date_str) Hum_inst_filename = os.path.join(input_folder_date, "qv_inst_%s.tif" %Date_str) Tair_24_filename = os.path.join(input_folder_date, "tair_24_%s.tif" %Date_str) Tair_inst_filename = os.path.join(input_folder_date,"tair_inst_%s.tif" %Date_str) Tair_amp_filename = os.path.join(input_folder_date, "Tair_amp_%s.tif" %Date_str) Wind_24_filename = os.path.join(input_folder_date, "wind_24_%s.tif" %Date_str) Wind_inst_filename = os.path.join(input_folder_date, "wind_inst_%s.tif" %Date_str) WatCol_inst_filename = os.path.join(input_folder_date, "wv_inst_%s.tif" %Date_str) Trans_24_filename = os.path.join(input_folder_date, "Trans_24_%s.tif" %Date_str) ############################ Define outputs ############################### # Output folder Date output_folder_date = os.path.join(output_folder, Date_str) if not os.path.exists(output_folder_date): os.makedirs(output_folder_date) #output_files vc_filename = os.path.join(output_folder_date, "vc_%s.tif" %Date_str) lai_filename = os.path.join(output_folder_date, "LAI_%s.tif" %Date_str) lai_eff_filename= os.path.join(output_folder_date, "LAI_eff_%s.tif" %Date_str) sf_soil_filename = os.path.join(output_folder_date, "sf_soil_%s.tif" %Date_str) lat_filename= os.path.join(output_folder_date, "lat_%s.tif" %Date_str) slope_filename= os.path.join(output_folder_date, "slope_%s.tif" %Date_str) aspect_filename = os.path.join(output_folder_date, "aspect_%s.tif" %Date_str) ra_24_toa_filename = os.path.join(output_folder_date, "ra_24_toa_%s.tif" %Date_str) ws_filename = os.path.join(output_folder_date, "ws_%s.tif" %Date_str) diffusion_index_filename = os.path.join(output_folder_date, "diffusion_index_%s.tif" %Date_str) ra_24_filename = os.path.join(output_folder_date, "ra_24_%s.tif" %Date_str) stress_rad_filename = os.path.join(output_folder_date, "stress_rad_%s.tif" %Date_str) p_air_24_filename = os.path.join(output_folder_date, "p_air_24_%s.tif" %Date_str) vp_24_filename = os.path.join(output_folder_date, "vp_24_%s.tif" %Date_str) svp_24_filename = os.path.join(output_folder_date, "svp_24_%s.tif" %Date_str) vpd_24_filename = os.path.join(output_folder_date, "vpd_24_%s.tif" %Date_str) stress_vpd_filename = os.path.join(output_folder_date, "stress_vpd_%s.tif" %Date_str) stress_temp_filename = os.path.join(output_folder_date, "stress_temp_%s.tif" %Date_str) r_canopy_0_filename= os.path.join(output_folder_date, "r_canopy_0_%s.tif" %Date_str) t_air_k_24_filename = os.path.join(output_folder_date, "t_air_k_24_%s.tif" %Date_str) l_net_filename = os.path.join(output_folder_date, "l_net_%s.tif" %Date_str) int_mm_filename = os.path.join(output_folder_date, "int_mm_%s.tif" %Date_str) lh_24_filename = os.path.join(output_folder_date, "lh_24_%s.tif" %Date_str) int_wm2_filename = os.path.join(output_folder_date, "int_wm2_%s.tif" %Date_str) rn_24_filename = os.path.join(output_folder_date, "rn_24_%s.tif" %Date_str) rn_24_canopy_filename= os.path.join(output_folder_date, "rn_24_canopy_%s.tif" %Date_str) t_air_k_i_filename = os.path.join(output_folder_date, "t_air_k_i_%s.tif" %Date_str) vp_i_filename = os.path.join(output_folder_date, "vp_i_%s.tif" %Date_str) ad_moist_i_filename= os.path.join(output_folder_date, "ad_moist_i_%s.tif" %Date_str) ad_dry_i_filename = os.path.join(output_folder_date, "ad_dry_i_%s.tif" %Date_str) ad_i_filename= os.path.join(output_folder_date, "ad_i_%s.tif" %Date_str) u_b_i_bare_filename= os.path.join(output_folder_date, "u_b_i_bare_%s.tif" %Date_str) lon_filename= os.path.join(output_folder_date, "lon_%s.tif" %Date_str) ha_filename= os.path.join(output_folder_date, "ha_%s.tif" %Date_str) ied_filename= os.path.join(output_folder_date, "ied_%s.tif" %Date_str) h0_filename = os.path.join(output_folder_date, "h0_%s.tif" %Date_str) h0ref_filename = os.path.join(output_folder_date, "h0ref_%s.tif" %Date_str) m_filename = os.path.join(output_folder_date, "m_%s.tif" %Date_str) rotm_filename = os.path.join(output_folder_date, "rotm_%s.tif" %Date_str) Tl2_filename = os.path.join(output_folder_date, "Tl2_%s.tif" %Date_str) B0c_filename = os.path.join(output_folder_date, "B0c_%s.tif" %Date_str) Bhc_filename = os.path.join(output_folder_date, "Bhc_%s.tif" %Date_str) Dhc_filename = os.path.join(output_folder_date, "Dhc_%s.tif" %Date_str) ra_hor_clear_i_filename = os.path.join(output_folder_date, "ra_hor_clear_i_%s.tif" %Date_str) emiss_atm_i_filename = os.path.join(output_folder_date, "emiss_atm_i_%s.tif" %Date_str) rn_bare_filename = os.path.join(output_folder_date, "rn_bare_%s.tif" %Date_str) rn_full_filename= os.path.join(output_folder_date, "rn_full_%s.tif" %Date_str) u_b_i_full_filename = os.path.join(output_folder_date, "u_b_i_full_%s.tif" %Date_str) u_star_i_bare_filename = os.path.join(output_folder_date, "u_star_i_bare_%s.tif" %Date_str) u_star_i_full_filename = os.path.join(output_folder_date, "u_star_i_full_%s.tif" %Date_str) u_i_soil_filename = os.path.join(output_folder_date, "u_i_soil_%s.tif" %Date_str) ras_filename = os.path.join(output_folder_date, "ras_%s.tif" %Date_str) raa_filename = os.path.join(output_folder_date, "raa_%s.tif" %Date_str) rac_filename= os.path.join(output_folder_date, "rac_%s.tif" %Date_str) t_max_bare_filename = os.path.join(output_folder_date, "t_max_bare_%s.tif" %Date_str) t_max_full_filename= os.path.join(output_folder_date, "t_max_full_%s.tif" %Date_str) w_i_filename = os.path.join(output_folder_date, "w_i_%s.tif" %Date_str) t_dew_i_filename = os.path.join(output_folder_date, "t_dew_i_%s.tif" %Date_str) t_wet_i_filename = os.path.join(output_folder_date, "t_wet_i_%s.tif" %Date_str) t_wet_k_i_filename = os.path.join(output_folder_date, "t_wet_k_i_%s.tif" %Date_str) lst_max_filename = os.path.join(output_folder_date, "lst_max_%s.tif" %Date_str) se_root_filename = os.path.join(output_folder_date, "se_root_%s.tif" %Date_str) stress_moist_filename= os.path.join(output_folder_date, "stress_moist_%s.tif" %Date_str) r_canopy_0_filename= os.path.join(output_folder_date, "r_canopy_0_%s.tif" %Date_str) r_canopy_filename= os.path.join(output_folder_date, "r_canopy_%s.tif" %Date_str) z_obst_filename = os.path.join(output_folder_date, "z_obst_%s.tif" %Date_str) z_oro_filename = os.path.join(output_folder_date, "z_oro_%s.tif" %Date_str) z0m_filename = os.path.join(output_folder_date, "z0m_%s.tif" %Date_str) ra_canopy_init_filename = os.path.join(output_folder_date, "ra_canopy_init_%s.tif" %Date_str) u_b_24_filename = os.path.join(output_folder_date, "u_b_24_%s.tif" %Date_str) disp_filename = os.path.join(output_folder_date, "disp_%s.tif" %Date_str) u_star_24_init_filename = os.path.join(output_folder_date, "u_star_24_init_%s.tif" %Date_str) ad_dry_24_filename = os.path.join(output_folder_date, "ad_dry_24_%s.tif" %Date_str) ad_moist_24_filename = os.path.join(output_folder_date, "ad_moist_24_%s.tif" %Date_str) ad_24_filename = os.path.join(output_folder_date, "ad_24_%s.tif" %Date_str) psy_24_filename = os.path.join(output_folder_date, "psy_24_%s.tif" %Date_str) ssvp_24_filename = os.path.join(output_folder_date, "ssvp_24_%s.tif" %Date_str) t_24_init_filename = os.path.join(output_folder_date, "t_24_init_%s.tif" %Date_str) h_canopy_24_init_filename= os.path.join(output_folder_date, "h_canopy_24_init_%s.tif" %Date_str) t_24_filename= os.path.join(output_folder_date, "t_24_%s.tif" %Date_str) t_24_mm_filename= os.path.join(output_folder_date, "t_24_mm_%s.tif" %Date_str) sf_soil_filename= os.path.join(output_folder_date, "sf_soil_%s.tif" %Date_str) rn_24_soil_filename= os.path.join(output_folder_date, "rn_24_soil_%s.tif" %Date_str) r_soil_filename= os.path.join(output_folder_date, "r_soil_%s.tif" %Date_str) ra_soil_init_filename= os.path.join(output_folder_date, "ra_soil_init_%s.tif" %Date_str) u_b_24_filename= os.path.join(output_folder_date, "u_b_24_%s.tif" %Date_str) u_star_24_soil_init_filename= os.path.join(output_folder_date, "u_star_24_soil_init_%s.tif" %Date_str) g0_bs_filename= os.path.join(output_folder_date, "g0_bs_%s.tif" %Date_str) g0_24_filename= os.path.join(output_folder_date, "g0_24_%s.tif" %Date_str) e_24_init_filename= os.path.join(output_folder_date, "e_24_init_%s.tif" %Date_str) h_soil_24_init_filename= os.path.join(output_folder_date, "h_soil_24_init_%s.tif" %Date_str) e_24_filename= os.path.join(output_folder_date, "e_24_%s.tif" %Date_str) e_24_mm_filename= os.path.join(output_folder_date, "e_24_mm_%s.tif" %Date_str) et_24_mm_filename= os.path.join(output_folder_date, "et_24_mm_%s.tif" %Date_str) rn_24_grass_filename= os.path.join(output_folder_date, "rn_24_grass_%s.tif" %Date_str) et_ref_24_filename= os.path.join(output_folder_date, "et_ref_24_%s.tif" %Date_str) et_ref_24_mm_filename= os.path.join(output_folder_date, "et_ref_24_mm_%s.tif" %Date_str) ########################## Open input rasters ############################# dest_lst = gdal.Open(LST_filename) lst = dest_lst.GetRasterBand(1).ReadAsArray() lst[lst == -9999] = np.nan dest_albedo = gdal.Open(ALBEDO_filename) r0 = dest_albedo.GetRasterBand(1).ReadAsArray() r0[np.isnan(lst)] = np.nan dest_ndvi = gdal.Open(NDVI_filename) ndvi = dest_ndvi.GetRasterBand(1).ReadAsArray() ndvi[np.isnan(lst)] = np.nan desttime = gdal.Open(Time_filename) dtime = desttime.GetRasterBand(1).ReadAsArray() dtime[np.isnan(lst)] = np.nan dest_lat = gdal.Open(Lat_filename) lat_deg = dest_lat.GetRasterBand(1).ReadAsArray() lat_deg[np.isnan(lst)] = np.nan dest_lon = gdal.Open(Lon_filename) lon_deg = dest_lon.GetRasterBand(1).ReadAsArray() lon_deg[np.isnan(lst)] = np.nan dest_dem = gdal.Open(DEM_filename) z = dest_dem.GetRasterBand(1).ReadAsArray() z[np.isnan(lst)] = np.nan dest_slope = gdal.Open(Slope_filename) slope_deg = dest_slope.GetRasterBand(1).ReadAsArray() slope_deg[np.isnan(lst)] = np.nan dest_aspect = gdal.Open(Aspect_filename) aspect_deg = dest_aspect.GetRasterBand(1).ReadAsArray() aspect_deg[np.isnan(lst)] = np.nan dest_lm = gdal.Open(LandMask_filename) land_mask = dest_lm.GetRasterBand(1).ReadAsArray() land_mask[np.isnan(lst)] = np.nan #dest_bulk = gdal.Open(Bulk_filename) #bulk = dest_bulk.GetRasterBand(1).ReadAsArray() dest_maxobs = gdal.Open(MaxObs_filename) z_obst_max = dest_maxobs.GetRasterBand(1).ReadAsArray() z_obst_max[np.isnan(lst)] = np.nan dest_pairsea24 = gdal.Open(Pair_24_0_filename) p_air_0_24 = dest_pairsea24.GetRasterBand(1).ReadAsArray() p_air_0_24 = ETLook.meteo.air_pressure_kpa2mbar(p_air_0_24) p_air_0_24[np.isnan(lst)] = np.nan dest_pairseainst = gdal.Open(Pair_inst_0_filename) p_air_0_i = dest_pairseainst.GetRasterBand(1).ReadAsArray() p_air_0_i = ETLook.meteo.air_pressure_kpa2mbar(p_air_0_i) p_air_0_i[np.isnan(lst)] = np.nan dest_pairinst = gdal.Open(Pair_inst_filename) p_air_i = dest_pairinst.GetRasterBand(1).ReadAsArray() p_air_i = ETLook.meteo.air_pressure_kpa2mbar(p_air_i) p_air_i[np.isnan(lst)] = np.nan dest_precip = gdal.Open(Pre_filename) P_24 = dest_precip.GetRasterBand(1).ReadAsArray() P_24[np.isnan(lst)] = np.nan dest_hum24 = gdal.Open(Hum_24_filename) qv_24 = dest_hum24.GetRasterBand(1).ReadAsArray() qv_24[np.isnan(lst)] = np.nan dest_huminst = gdal.Open(Hum_inst_filename) qv_i = dest_huminst.GetRasterBand(1).ReadAsArray() qv_i[np.isnan(lst)] = np.nan dest_tair24 = gdal.Open(Tair_24_filename) t_air_k_24 = dest_tair24.GetRasterBand(1).ReadAsArray() t_air_24 = ETLook.meteo.air_temperature_celcius(t_air_k_24) #t_air_24 = ETLook.meteo.disaggregate_air_temperature_daily(t_air_24_coarse, z, z_coarse, lapse) t_air_24[np.isnan(lst)] = np.nan dest_tairinst = gdal.Open(Tair_inst_filename) t_air_k_i = dest_tairinst.GetRasterBand(1).ReadAsArray() t_air_i = ETLook.meteo.air_temperature_celcius(t_air_k_i) t_air_i[np.isnan(lst)] = np.nan dest_tairamp = gdal.Open(Tair_amp_filename) t_amp_year = dest_tairamp.GetRasterBand(1).ReadAsArray() t_amp_year[np.isnan(lst)] = np.nan dest_wind24 = gdal.Open(Wind_24_filename) u_24 = dest_wind24.GetRasterBand(1).ReadAsArray() u_24[np.isnan(lst)] = np.nan dest_windinst = gdal.Open(Wind_inst_filename) u_i = dest_windinst.GetRasterBand(1).ReadAsArray() u_i[np.isnan(lst)] = np.nan dest_watcol = gdal.Open(WatCol_inst_filename) wv_i = dest_watcol.GetRasterBand(1).ReadAsArray() wv_i[np.isnan(lst)] = np.nan dest_trans = gdal.Open(Trans_24_filename) trans_24 = dest_trans.GetRasterBand(1).ReadAsArray() trans_24[np.isnan(lst)] = np.nan # example file geo_ex = dest_albedo.GetGeoTransform() proj_ex = dest_albedo.GetProjection() ########################## Open input constants ########################### doy = int(Date.strftime("%j")) aod550_i = 0.01 # https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/61/MOD04_L2 heb niet echt een standaard product hiervan gevonden se_top = 0.5 porosity = 0.4 ''' http://lawr.ucdavis.edu/classes/SSC100/probsets/pset01.html 6. Calculate the porosity of a soil sample that has a bulk density of 1.35 g/cm3. Assume the particle density is 2.65 g/cm3. Porosity = (1-(r b/r d) x 100 = (1-(1.35/2.65)) x 100 = 49% ''' # Create QC array QC = np.ones(lst.shape) QC[np.isnan(lst)] = np.nan # page 31 flow diagram # **effective_leaf_area_index************************************************** # constants or predefined: nd_min = 0.125 nd_max = 0.8 vc_pow = 0.7 vc_min = 0 vc_max = 0.9677324224821418 lai_pow = -0.45 # **atmospheric canopy resistance*********************************************** # constants or predefined: diffusion_slope = -1.33 diffusion_intercept = 1.15 t_opt = 25 # optimal temperature for plant growth t_min = 0 # minimal temperature for plant growth t_max = 50 # maximal temperature for plant growth vpd_slope = -0.3 rs_min = 70 rcan_max = 1000000 # **net radiation canopy****************************************************** # constants or predefined: vp_slope = 0.14 vp_offset = 0.34 lw_slope = 1.35 lw_offset = 0.35 int_max = 0.2 # **canopy resistance*********************************************************** # constants or predefined: z_obs = 2 z_b = 100 z0m_bare = 0.001 r0_bare = 0.38 r0_full = 0.18 tenacity = 1.5 disp_bare = 0.0 disp_full = 0.667 fraction_h_bare = 0.65 fraction_h_full = 0.95 z0m_full = 0.1 # **initial canopy aerodynamic resistance*********************************************************** # constants or predefined: ndvi_obs_min = 0.25 ndvi_obs_max = 0.75 obs_fr = 0.25 dem_resolution = 250 # **ETLook.unstable.initial_friction_velocity_daily*********************************************************** # constants or predefined: c1 = 1 # **ETLook.unstable.transpiration*********************************************************** # constants or predefined: iter_h = 3 # **ETLook.resistance.soil_resistance*********************************************************** # constants or predefined: r_soil_pow = -2.1 r_soil_min = 800 # **ETLook.unstable.initial_sensible_heat_flux_soil_daily*********************************************************** # constants or predefined: #porosity = 0.4 #Note: soil dependent #se_top = 1.0 #Note should be input ! rn_slope = 0.92 rn_offset = -61.0 # **ETLook.unstable.evaporation*********************************************************** # constants or predefined: r0_grass = 0.23 ######################## MODEL ETLOOK ######################################### # **effective_leaf_area_index************************************************** vc = ETLook.leaf.vegetation_cover(ndvi, nd_min, nd_max, vc_pow) lai = ETLook.leaf.leaf_area_index(vc, vc_min, vc_max, lai_pow) lai_eff = ETLook.leaf.effective_leaf_area_index(lai) vc[np.isnan(QC)] = np.nan lai[np.isnan(QC)] = np.nan lai_eff[np.isnan(QC)] = np.nan if out.vc == 1: PF.Save_as_tiff(vc_filename, vc, geo_ex, proj_ex) if out.lai == 1: PF.Save_as_tiff(lai_filename, lai, geo_ex, proj_ex) if out.lai_eff == 1: PF.Save_as_tiff(lai_eff_filename, lai_eff, geo_ex, proj_ex) #*******TRANSPIRATION COMPONENT**************************************************************** # **soil fraction************************************************************** sf_soil = ETLook.radiation.soil_fraction(lai) sf_soil[np.isnan(QC)] = np.nan if out.sf_soil == 1: PF.Save_as_tiff(sf_soil_filename, sf_soil, geo_ex, proj_ex) # **atmospheric canopy resistance*********************************************** iesd = ETLook.solar_radiation.inverse_earth_sun_distance(doy) sc = ETLook.solar_radiation.seasonal_correction(doy) day_angle = ETLook.clear_sky_radiation.day_angle(doy) decl = ETLook.solar_radiation.declination(doy) lat = ETLook.solar_radiation.latitude_rad(lat_deg) slope = ETLook.solar_radiation.slope_rad(slope_deg) aspect = ETLook.solar_radiation.aspect_rad(aspect_deg) ra_24_toa = ETLook.solar_radiation.daily_solar_radiation_toa(sc, decl, iesd, lat, slope, aspect) ws = ETLook.solar_radiation.sunset_hour_angle(lat, decl) ra_24_toa_flat = ETLook.solar_radiation.daily_solar_radiation_toa_flat(decl, iesd, lat, ws) diffusion_index = ETLook.solar_radiation.diffusion_index(trans_24, diffusion_slope, diffusion_intercept) # choose one of the two options below #ra_24 = ETLook.solar_radiation.daily_solar_radiation_flat(ra_24_toa_flat, trans_24) ra_24 = ETLook.solar_radiation.daily_total_solar_radiation(ra_24_toa, ra_24_toa_flat, diffusion_index, trans_24) stress_rad = ETLook.stress.stress_radiation(ra_24) p_air_24 = ETLook.meteo.air_pressure_daily(z, p_air_0_24) vp_24 = ETLook.meteo.vapour_pressure_from_specific_humidity_daily(qv_24, p_air_24) svp_24 = ETLook.meteo.saturated_vapour_pressure_daily(t_air_24) vpd_24 = ETLook.meteo.vapour_pressure_deficit_daily(svp_24, vp_24) stress_vpd = ETLook.stress.stress_vpd(vpd_24, vpd_slope) stress_temp = ETLook.stress.stress_temperature(t_air_24, t_opt, t_min, t_max) r_canopy_0 = ETLook.resistance.atmospheric_canopy_resistance(lai_eff, stress_rad, stress_vpd, stress_temp, rs_min, rcan_max) # Save as tiff files lat[np.isnan(QC)] = np.nan slope[np.isnan(QC)] = np.nan aspect[np.isnan(QC)] = np.nan ra_24_toa[np.isnan(QC)] = np.nan ws[np.isnan(QC)] = np.nan ra_24_toa_flat[np.isnan(QC)] = np.nan diffusion_index[np.isnan(QC)] = np.nan ra_24[np.isnan(QC)] = np.nan stress_rad[np.isnan(QC)] = np.nan p_air_24[np.isnan(QC)] = np.nan vp_24[np.isnan(QC)] = np.nan svp_24[np.isnan(QC)] = np.nan vpd_24[np.isnan(QC)] = np.nan stress_vpd[np.isnan(QC)] = np.nan stress_temp[np.isnan(QC)] = np.nan r_canopy_0[np.isnan(QC)] = np.nan if out.lat == 1: PF.Save_as_tiff(lat_filename, lat, geo_ex, proj_ex) if out.slope == 1: PF.Save_as_tiff(slope_filename, slope, geo_ex, proj_ex) if out.aspect == 1: PF.Save_as_tiff(aspect_filename, aspect, geo_ex, proj_ex) if out.ws == 1: PF.Save_as_tiff(ws_filename, ws, geo_ex, proj_ex) if out.ra_24_toa == 1: PF.Save_as_tiff(ra_24_toa_filename, ra_24_toa, geo_ex, proj_ex) if out.diffusion_index == 1: PF.Save_as_tiff(diffusion_index_filename, diffusion_index, geo_ex, proj_ex) if out.ra_24 == 1: PF.Save_as_tiff(ra_24_filename, ra_24, geo_ex, proj_ex) if out.stress_rad == 1: PF.Save_as_tiff(stress_rad_filename, stress_rad, geo_ex, proj_ex) if out.p_air_24 == 1: PF.Save_as_tiff(p_air_24_filename, p_air_24, geo_ex, proj_ex) if out.vp_24 == 1: PF.Save_as_tiff(vp_24_filename, vp_24, geo_ex, proj_ex) if out.svp_24 == 1: PF.Save_as_tiff(svp_24_filename, svp_24, geo_ex, proj_ex) if out.vpd_24 == 1: PF.Save_as_tiff(vpd_24_filename, vpd_24, geo_ex, proj_ex) if out.stress_vpd == 1: PF.Save_as_tiff(stress_vpd_filename, stress_vpd, geo_ex, proj_ex) if out.stress_temp == 1: PF.Save_as_tiff(stress_temp_filename, stress_temp, geo_ex, proj_ex) if out.r_canopy_0 == 1: PF.Save_as_tiff(r_canopy_0_filename, r_canopy_0, geo_ex, proj_ex) # **net radiation canopy****************************************************** t_air_k_24 = ETLook.meteo.air_temperature_kelvin_daily(t_air_24) # select one of the below two #l_net = ETLook.radiation.longwave_radiation_fao_etref(t_air_k_24, vp_24, trans_24) l_net = ETLook.radiation.longwave_radiation_fao(t_air_k_24, vp_24, trans_24, vp_slope, vp_offset, lw_slope, lw_offset) int_mm = ETLook.evapotranspiration.interception_mm(P_24, vc, lai, int_max) lh_24 = ETLook.meteo.latent_heat_daily(t_air_24) int_wm2 = ETLook.radiation.interception_wm2(int_mm, lh_24) rn_24 = ETLook.radiation.net_radiation(r0, ra_24, l_net, int_wm2) rn_24_canopy = ETLook.radiation.net_radiation_canopy(rn_24, sf_soil) # Save as tiff files t_air_k_24[np.isnan(QC)] = np.nan l_net[np.isnan(QC)] = np.nan int_mm[np.isnan(QC)] = np.nan lh_24[np.isnan(QC)] = np.nan int_wm2[np.isnan(QC)] = np.nan rn_24[np.isnan(QC)] = np.nan rn_24_canopy[np.isnan(QC)] = np.nan if out.t_air_k_24 == 1: PF.Save_as_tiff(t_air_k_24_filename, t_air_k_24, geo_ex, proj_ex) if out.l_net == 1: PF.Save_as_tiff(l_net_filename, l_net, geo_ex, proj_ex) if out.int_mm == 1: PF.Save_as_tiff(int_mm_filename, int_mm, geo_ex, proj_ex) if out.lh_24 == 1: PF.Save_as_tiff(lh_24_filename, lh_24, geo_ex, proj_ex) if out.int_wm2 == 1: PF.Save_as_tiff(int_wm2_filename, int_wm2, geo_ex, proj_ex) if out.rn_24 == 1: PF.Save_as_tiff(rn_24_filename, rn_24, geo_ex, proj_ex) if out.rn_24_canopy == 1: PF.Save_as_tiff(rn_24_canopy_filename, rn_24_canopy, geo_ex, proj_ex) # **canopy resistance*********************************************************** t_air_k_i = ETLook.meteo.air_temperature_kelvin_inst(t_air_i) vp_i = ETLook.meteo.vapour_pressure_from_specific_humidity_inst(qv_i, p_air_i) ad_moist_i = ETLook.meteo.moist_air_density_inst(vp_i, t_air_k_i) ad_dry_i = ETLook.meteo.dry_air_density_inst(p_air_i, vp_i, t_air_k_i) ad_i = ETLook.meteo.air_density_inst(ad_dry_i, ad_moist_i) u_b_i_bare = ETLook.soil_moisture.wind_speed_blending_height_bare(u_i, z0m_bare, z_obs, z_b) lon = ETLook.solar_radiation.longitude_rad(lon_deg) ha = ETLook.solar_radiation.hour_angle(sc, dtime, lon) I0 = ETLook.clear_sky_radiation.solar_constant() ied = ETLook.clear_sky_radiation.inverse_earth_sun_distance(day_angle) h0 = ETLook.clear_sky_radiation.solar_elevation_angle(lat, decl, ha) h0ref = ETLook.clear_sky_radiation.solar_elevation_angle_refracted(h0) m = ETLook.clear_sky_radiation.relative_optical_airmass(p_air_i, p_air_0_i, h0ref) rotm = ETLook.clear_sky_radiation.rayleigh_optical_thickness(m) Tl2 = ETLook.clear_sky_radiation.linke_turbidity(wv_i, aod550_i, p_air_i, p_air_0_i) G0 = ETLook.clear_sky_radiation.extraterrestrial_irradiance_normal(I0, ied) B0c = ETLook.clear_sky_radiation.beam_irradiance_normal_clear(G0, Tl2, m, rotm, h0) Bhc = ETLook.clear_sky_radiation.beam_irradiance_horizontal_clear(B0c, h0) Dhc = ETLook.clear_sky_radiation.diffuse_irradiance_horizontal_clear(G0, Tl2, h0) ra_hor_clear_i = ETLook.clear_sky_radiation.ra_clear_horizontal(Bhc, Dhc) emiss_atm_i = ETLook.soil_moisture.atmospheric_emissivity_inst(vp_i, t_air_k_i) rn_bare = ETLook.soil_moisture.net_radiation_bare(ra_hor_clear_i, emiss_atm_i, t_air_k_i, lst, r0_bare) rn_full = ETLook.soil_moisture.net_radiation_full(ra_hor_clear_i, emiss_atm_i, t_air_k_i, lst, r0_full) h_bare = ETLook.soil_moisture.sensible_heat_flux_bare(rn_bare, fraction_h_bare) h_full = ETLook.soil_moisture.sensible_heat_flux_full(rn_full, fraction_h_full) u_b_i_full = ETLook.soil_moisture.wind_speed_blending_height_full_inst(u_i, z0m_full, z_obs, z_b) u_star_i_bare = ETLook.soil_moisture.friction_velocity_bare_inst(u_b_i_bare, z0m_bare, disp_bare, z_b) u_star_i_full = ETLook.soil_moisture.friction_velocity_full_inst(u_b_i_full, z0m_full, disp_full, z_b) L_bare = ETLook.soil_moisture.monin_obukhov_length_bare(h_bare, ad_i, u_star_i_bare, t_air_k_i) L_full = ETLook.soil_moisture.monin_obukhov_length_full(h_full, ad_i, u_star_i_full, t_air_k_i) u_i_soil = ETLook.soil_moisture.wind_speed_soil_inst(u_i, L_bare, z_obs) ras = ETLook.soil_moisture.aerodynamical_resistance_soil(u_i_soil) raa = ETLook.soil_moisture.aerodynamical_resistance_bare(u_i, L_bare, z0m_bare, disp_bare, z_obs) rac = ETLook.soil_moisture.aerodynamical_resistance_full(u_i, L_full, z0m_full, disp_full, z_obs) t_max_bare = ETLook.soil_moisture.maximum_temperature_bare(ra_hor_clear_i, emiss_atm_i, t_air_k_i, ad_i, raa, ras, r0_bare) t_max_full = ETLook.soil_moisture.maximum_temperature_full(ra_hor_clear_i, emiss_atm_i, t_air_k_i, ad_i, rac, r0_full) w_i = ETLook.soil_moisture.dew_point_temperature_inst(vp_i) t_dew_i = ETLook.soil_moisture.dew_point_temperature_inst(vp_i) t_wet_i = ETLook.soil_moisture.wet_bulb_temperature_inst(t_air_i, t_dew_i) t_wet_k_i = ETLook.meteo.wet_bulb_temperature_kelvin_inst(t_wet_i) lst_max = ETLook.soil_moisture.maximum_temperature(t_max_bare, t_max_full, vc) se_root = ETLook.soil_moisture.soil_moisture_from_maximum_temperature(lst_max, lst, t_wet_k_i) stress_moist = ETLook.stress.stress_moisture(se_root, tenacity) r_canopy_0 = ETLook.resistance.atmospheric_canopy_resistance(lai_eff, stress_rad, stress_vpd, stress_temp, rs_min, rcan_max) r_canopy = ETLook.resistance.canopy_resistance(r_canopy_0, stress_moist, rcan_max) # Save as tiff files t_air_k_i[np.isnan(QC)] = np.nan vp_i[np.isnan(QC)] = np.nan ad_moist_i[np.isnan(QC)] = np.nan ad_dry_i[np.isnan(QC)] = np.nan ad_i[np.isnan(QC)] = np.nan u_b_i_bare[np.isnan(QC)] = np.nan lon[np.isnan(QC)] = np.nan ha[np.isnan(QC)] = np.nan h0[np.isnan(QC)] = np.nan h0ref[np.isnan(QC)] = np.nan m[np.isnan(QC)] = np.nan rotm[np.isnan(QC)] = np.nan Tl2[np.isnan(QC)] = np.nan B0c[np.isnan(QC)] = np.nan Bhc[np.isnan(QC)] = np.nan Dhc[np.isnan(QC)] = np.nan ra_hor_clear_i[np.isnan(QC)] = np.nan emiss_atm_i[np.isnan(QC)] = np.nan rn_bare[np.isnan(QC)] = np.nan rn_full[np.isnan(QC)] = np.nan u_b_i_full[np.isnan(QC)] = np.nan u_star_i_bare[np.isnan(QC)] = np.nan u_star_i_full[np.isnan(QC)] = np.nan u_i_soil[np.isnan(QC)] = np.nan ras[np.isnan(QC)] = np.nan raa[np.isnan(QC)] = np.nan rac[np.isnan(QC)] = np.nan t_max_bare[np.isnan(QC)] = np.nan t_max_full[np.isnan(QC)] = np.nan w_i[np.isnan(QC)] = np.nan t_dew_i[np.isnan(QC)] = np.nan t_wet_i[np.isnan(QC)] = np.nan t_wet_k_i[np.isnan(QC)] = np.nan lst_max[np.isnan(QC)] = np.nan se_root[np.isnan(QC)] = np.nan stress_moist[np.isnan(QC)] = np.nan r_canopy_0[np.isnan(QC)] = np.nan r_canopy[np.isnan(QC)] = np.nan if out.t_air_k_i == 1: PF.Save_as_tiff(t_air_k_i_filename, t_air_k_i, geo_ex, proj_ex) if out.vp_i == 1: PF.Save_as_tiff(vp_i_filename, vp_i, geo_ex, proj_ex) if out.ad_moist_i == 1: PF.Save_as_tiff(ad_moist_i_filename, ad_moist_i, geo_ex, proj_ex) if out.ad_dry_i == 1: PF.Save_as_tiff(ad_dry_i_filename, ad_dry_i, geo_ex, proj_ex) if out.ad_i == 1: PF.Save_as_tiff(ad_i_filename, ad_i, geo_ex, proj_ex) if out.u_b_i_bare == 1: PF.Save_as_tiff(u_b_i_bare_filename, u_b_i_bare, geo_ex, proj_ex) if out.lon == 1: PF.Save_as_tiff(lon_filename, lon, geo_ex, proj_ex) if out.ha == 1: PF.Save_as_tiff(ha_filename, ha, geo_ex, proj_ex) if out.ied == 1: PF.Save_as_tiff(ied_filename, ied, geo_ex, proj_ex) if out.h0 == 1: PF.Save_as_tiff(h0_filename, h0, geo_ex, proj_ex) if out.h0ref == 1: PF.Save_as_tiff(h0ref_filename, h0ref, geo_ex, proj_ex) if out.m == 1: PF.Save_as_tiff(m_filename, m, geo_ex, proj_ex) if out.rotm == 1: PF.Save_as_tiff(rotm_filename, rotm, geo_ex, proj_ex) if out.Tl2 == 1: PF.Save_as_tiff(Tl2_filename, Tl2, geo_ex, proj_ex) if out.B0c == 1: PF.Save_as_tiff(B0c_filename, B0c, geo_ex, proj_ex) if out.Bhc == 1: PF.Save_as_tiff(Bhc_filename, Bhc, geo_ex, proj_ex) if out.Dhc == 1: PF.Save_as_tiff(Dhc_filename, Dhc, geo_ex, proj_ex) if out.ra_hor_clear_i == 1: PF.Save_as_tiff(ra_hor_clear_i_filename, ra_hor_clear_i, geo_ex, proj_ex) if out.emiss_atm_i == 1: PF.Save_as_tiff(emiss_atm_i_filename, emiss_atm_i, geo_ex, proj_ex) if out.rn_bare == 1: PF.Save_as_tiff(rn_bare_filename, rn_bare, geo_ex, proj_ex) if out.rn_full == 1: PF.Save_as_tiff(rn_full_filename, rn_full, geo_ex, proj_ex) if out.u_b_i_full == 1: PF.Save_as_tiff(u_b_i_full_filename, u_b_i_full, geo_ex, proj_ex) if out.u_star_i_bare == 1: PF.Save_as_tiff(u_star_i_bare_filename, u_star_i_bare, geo_ex, proj_ex) if out.u_star_i_full == 1: PF.Save_as_tiff(u_star_i_full_filename, u_star_i_full, geo_ex, proj_ex) if out.u_i_soil == 1: PF.Save_as_tiff(u_i_soil_filename, u_i_soil, geo_ex, proj_ex) if out.ras == 1: PF.Save_as_tiff(ras_filename, ras, geo_ex, proj_ex) if out.raa == 1: PF.Save_as_tiff(raa_filename, raa, geo_ex, proj_ex) if out.rac == 1: PF.Save_as_tiff(rac_filename, rac, geo_ex, proj_ex) if out.t_max_bare == 1: PF.Save_as_tiff(t_max_bare_filename, t_max_bare, geo_ex, proj_ex) if out.t_max_full == 1: PF.Save_as_tiff(t_max_full_filename, t_max_full, geo_ex, proj_ex) if out.w_i == 1: PF.Save_as_tiff(w_i_filename, w_i, geo_ex, proj_ex) if out.t_dew_i == 1: PF.Save_as_tiff(t_dew_i_filename, t_dew_i, geo_ex, proj_ex) if out.t_wet_i == 1: PF.Save_as_tiff(t_wet_i_filename, t_wet_i, geo_ex, proj_ex) if out.t_wet_k_i == 1: PF.Save_as_tiff(t_wet_k_i_filename, t_wet_k_i, geo_ex, proj_ex) if out.lst_max == 1: PF.Save_as_tiff(lst_max_filename, lst_max, geo_ex, proj_ex) if out.se_root == 1: PF.Save_as_tiff(se_root_filename, se_root, geo_ex, proj_ex) if out.stress_moist == 1: PF.Save_as_tiff(stress_moist_filename, stress_moist, geo_ex, proj_ex) if out.r_canopy_0 == 1: PF.Save_as_tiff(r_canopy_0_filename, r_canopy_0, geo_ex, proj_ex) if out.r_canopy == 1: PF.Save_as_tiff(r_canopy_filename, r_canopy, geo_ex, proj_ex) # **initial canopy aerodynamic resistance*********************************************************** z_obst = ETLook.roughness.obstacle_height(ndvi, z_obst_max, ndvi_obs_min, ndvi_obs_max, obs_fr) z_oro = ETLook.roughness.orographic_roughness(slope, dem_resolution) #careful - standard res is set to 250 # !!! z0m = ETLook.roughness.roughness_length(lai, z_oro, z_obst, z_obst_max, land_mask) ra_canopy_init = ETLook.neutral.initial_canopy_aerodynamic_resistance(u_24, z0m, z_obs) # Save as tiff files z_obst[np.isnan(QC)] = np.nan z_oro[np.isnan(QC)] = np.nan z0m[np.isnan(QC)] = np.nan ra_canopy_init[np.isnan(QC)] = np.nan if out.z_obst == 1: PF.Save_as_tiff(z_obst_filename, z_obst, geo_ex, proj_ex) if out.z_oro == 1: PF.Save_as_tiff(z_oro_filename, z_oro, geo_ex, proj_ex) if out.z0m == 1: PF.Save_as_tiff(z0m_filename, z0m, geo_ex, proj_ex) if out.ra_canopy_init == 1: PF.Save_as_tiff(ra_canopy_init_filename, ra_canopy_init, geo_ex, proj_ex) # **windspeed blending height daily*********************************************************** u_b_24 = ETLook.meteo.wind_speed_blending_height_daily(u_24, z_obs, z_b) # Save as tiff files u_b_24[np.isnan(QC)] = np.nan if out.u_b_24 == 1: PF.Save_as_tiff(u_b_24_filename, u_b_24, geo_ex, proj_ex) # **ETLook.unstable.initial_friction_velocity_daily*********************************************************** disp = ETLook.roughness.displacement_height(lai, z_obst, land_mask, c1) u_star_24_init = ETLook.unstable.initial_friction_velocity_daily(u_b_24, z0m, disp, z_b) # Save as tiff files disp[
np.isnan(QC)
numpy.isnan
# #!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import torch from torch import nn dtype = torch.FloatTensor from torch.autograd import Variable import torch.nn.functional as F import numpy as np import warnings from datetime import datetime with warnings.catch_warnings(): warnings.simplefilter('ignore') import h5py from scipy import constants speedoflight = constants.c / 1000.0 from scipy.interpolate import UnivariateSpline import Payne from ..utils.smoothing import smoothspec class Net(nn.Module): def __init__(self, D_in, H, D_out): super(Net, self).__init__() self.lin1 = nn.Linear(D_in, H) self.lin2 = nn.Linear(H,H) self.lin3 = nn.Linear(H,H) self.lin4 = nn.Linear(H, D_out) # self.lin3 = nn.Linear(H,D_out) """ def forward(self, x): x_i = self.encode(x) out1 = F.sigmoid(self.lin1(x_i)) out2 = F.sigmoid(self.lin2(out1)) # out3 = F.sigmoid(self.lin3(out2)) # y_i = self.lin4(out3) y_i = self.lin3(out2) return y_i """ def forward(self, x): x_i = self.encode(x) out1 = torch.sigmoid(self.lin1(x_i)) out2 = torch.sigmoid(self.lin2(out1)) out3 = torch.sigmoid(self.lin3(out2)) y_i = self.lin4(out3) # y_i = self.lin3(out2) return y_i def encode(self,x): # convert x into numpy to do math x_np = x.data.cpu().numpy() try: self.xmin self.xmax except (NameError,AttributeError): self.xmin = np.amin(x_np,axis=0) self.xmax = np.amax(x_np,axis=0) x = (x_np-self.xmin)/(self.xmax-self.xmin) return Variable(torch.from_numpy(x).type(dtype)) class readNN(object): """docstring for nnBC""" def __init__(self, nnh5=None,xmin=None,xmax=None): super(readNN, self).__init__() D_in = nnh5['model/lin1.weight'].shape[1] H = nnh5['model/lin1.weight'].shape[0] D_out = nnh5['model/lin4.weight'].shape[0] self.model = Net(D_in,H,D_out) self.model.xmin = xmin#torch.from_numpy(xmin).type(dtype) self.model.xmax = xmax#torch.from_numpy(xmax).type(dtype) newmoddict = {} for kk in nnh5['model'].keys(): nparr = np.array(nnh5['model'][kk]) torarr = torch.from_numpy(nparr).type(dtype) newmoddict[kk] = torarr self.model.load_state_dict(newmoddict) self.model.eval() def eval(self,x): if type(x) == type([]): x = np.array(x) if len(x.shape) == 1: inputD = 1 else: inputD = x.shape[0] inputVar = Variable( torch.from_numpy(x).type(dtype), requires_grad=False).reshape(inputD,4) outpars = self.model(inputVar) return outpars.data.numpy().squeeze() class fastreadNN(object): def __init__(self, nnlist, wavearr, xmin=None, xmax=None): self.wavearr = wavearr self.w1 = np.array([nn.model.lin1.weight.data.numpy() for nn in nnlist]) self.b1 = np.expand_dims(np.array([nn.model.lin1.bias.data.numpy() for nn in nnlist]), -1) self.w2 = np.array([nn.model.lin2.weight.data.numpy() for nn in nnlist]) self.b2 = np.expand_dims(np.array([nn.model.lin2.bias.data.numpy() for nn in nnlist]), -1) self.w3 = np.array([nn.model.lin3.weight.data.numpy() for nn in nnlist]) self.b3 = np.expand_dims(np.array([nn.model.lin3.bias.data.numpy() for nn in nnlist]), -1) self.w4 = np.array([nn.model.lin4.weight.data.numpy() for nn in nnlist]) self.b4 = np.expand_dims(np.array([nn.model.lin4.bias.data.numpy() for nn in nnlist]), -1) self.set_minmax(nnlist[0]) def set_minmax(self, nn): try: self.xmin = nn.model.xmin self.xmax = nn.model.xmax except (NameError,AttributeError): self.xmin = np.amin(nn.model.x.data.numpy(),axis=0) self.xmax = np.amax(nn.model.x.data.numpy(),axis=0) self.range = (self.xmax - self.xmin) def encode(self, x): xp = (np.atleast_2d(x) - self.xmin) / self.range return xp.T def sigmoid(self, a): with np.errstate(over='ignore'): return 1. / (1 + np.exp(-a)) def eval(self, x): """With some annying shape changes """ a1 = self.sigmoid(np.matmul(self.w1, self.encode(x)) + self.b1) a2 = self.sigmoid(np.matmul(self.w2, a1) + self.b2) a3 = self.sigmoid(np.matmul(self.w3, a2) + self.b3) y = np.matmul(self.w4, a3) + self.b4 return np.squeeze(y).ravel() class PayneSpecPredict(object): """ Class for taking a Payne-learned NN and predicting spectrum. """ def __init__(self, nnpath, **kwargs): self.NN = {} if nnpath != None: self.nnpath = nnpath else: # define aliases for the MIST isochrones and C3K/CKC files self.nnpath = Payne.__abspath__+'data/specANN/C3KANN_RVS31.h5' self.carbon_bool = kwargs.get('carbon_bool',False) # name of file that contains the neural-net output self.NN['filename'] = self.nnpath # restrore hdf5 file with the NN self.NN['file'] = h5py.File(self.NN['filename'],'r') # wavelength N-D array for predicted spectrum self.NN['wavelength_arr'] = self.NN['file']['wavelength'] # array of ANN index since to match up wave and model self.NN['ANN_ind'] = [int(x) for x in self.NN['wavelength_arr']] self.NN['ANN_ind'].sort() self.NN['ANN_ind'] = ['{}'.format(x) for x in self.NN['ANN_ind']] # flattened wavelength array self.NN['wavelength'] = np.concatenate( [self.NN['wavelength_arr'][ii].__array__() for ii in self.NN['ANN_ind']] ) # resolution that network was trained at self.NN['resolution'] = np.array(self.NN['file']['resolution'])[0] # min and max for trained ANN self.NN['x_min'] = np.array(self.NN['file']['xmin']) self.NN['x_max'] = np.array(self.NN['file']['xmax']) # # OLD SLOW PYTORCH CODE # # dictionary of trained NN models for predictions # self.NN['model'] = {} # for ii in self.NN['ANN_ind']: # self.NN['model'][ii] = readNN( # nnh5=self.NN['file']['model/{0}'.format(ii)], # xmin=self.NN['x_min'], # xmax=self.NN['x_max'], # ) # NEW SMART MATRIX APPROACH nnlist = ( [readNN( nnh5=self.NN['file']['model/{0}'.format(ii)], xmin=self.NN['x_min'], xmax=self.NN['x_max']) for ii in self.NN['ANN_ind'] ] ) self.anns = fastreadNN(nnlist, self.NN['wavelength']) # Turn on C2 absorption feature in RV31 if self.carbon_bool: from ..utils.carbonmod import carbonmod self.carbonfun = carbonmod( inres=500000.0, outres=self.NN['resolution'], outwave=self.NN['wavelength'], ) # close the HDF5 file self.NN['file'].close() def predictspec(self,labels): ''' predict spectra using set of labels and trained NN output :params labels: list of label values for the labels used to train the NN ex. [Teff,log(g),[Fe/H],[alpha/Fe]] :returns predict_flux: predicted flux from the NN ''' # # OLD SLOW PYTORCH CODE # self.predict_flux = np.array([]) # for ii in self.NN['ANN_ind']: # predval = self.NN['model'][ii].eval(labels) # if predval.shape == np.array(1).shape: # predval = np.array([predval]) # self.predict_flux = np.concatenate([self.predict_flux,predval]) # if self.predict_flux.ndim == 1: # self.predict_flux = self.predict_flux.reshape(1,len(self.NN['ANN_ind'])) # self.predict_flux = np.concatenate(self.predict_flux) # NEW SMART MATRIX APPROACH self.predict_flux = self.anns.eval(labels) return self.predict_flux def getspec(self,**kwargs): ''' function to take a set of kwarg based on labels and return the predicted spectrum default returns solar spectrum, rotating at 2 km/s, and at R=32K : returns modwave: Wavelength array from the NN :returns modspec: Predicted spectrum from the NN ''' self.inputdict = {} if 'Teff' in kwargs: self.inputdict['logt'] = np.log10(kwargs['Teff']) elif 'logt' in kwargs: self.inputdict['logt'] = kwargs['logt'] else: self.inputdict['logt'] =
np.log10(5770.0)
numpy.log10
import open3d as o3d import numpy as np import scipy.linalg as la from skimage import measure import pycuda.autoinit import pycuda.driver as cuda from pycuda import gpuarray from .cuda_kernels import source_module class TSDFVolume: def __init__(self, voxel_size, vol_bnds=None, vol_origin=None, vol_dim=None, trunc_margin=0.015): """ Args: vol_bnds (ndarray): An ndarray of shape (3, 2). Specifies the xyz bounds (min/max) in meters. voxel_size (float): The volume discretization in meters. """ if vol_dim is not None and vol_origin is not None: self._vol_dim = vol_dim self._vol_origin = vol_origin elif vol_bnds is not None: self._vol_bnds = np.ascontiguousarray(vol_bnds, dtype=np.float32) self._vol_dim = np.round((self._vol_bnds[:, 1] - self._vol_bnds[:, 0]) / voxel_size).astype(np.int32) self._vol_origin = self._vol_bnds[:, 0].copy() else: raise ValueError("must either provide 'vol_dim' or (both 'vol_bnds' and 'vol_origin')") self._voxel_size = voxel_size self._trunc_margin = trunc_margin self._color_const = np.float32(256 * 256) print(f"TSDF volume dim: {self._vol_dim}, # points: {np.prod(self._vol_dim)}") # Copy voxel volumes to GPU self.block_x, self.block_y, self.block_z = 8, 8, 16 # block_x * block_y * block_z must equal to 1024 x_dim, y_dim, z_dim = int(self._vol_dim[0]), int(self._vol_dim[1]), int(self._vol_dim[2]) self.grid_x = int(np.ceil(x_dim / self.block_x)) self.grid_y = int(np.ceil(y_dim / self.block_y)) self.grid_z = int(np.ceil(z_dim / self.block_z)) # initialize tsdf values to be -1 xyz = x_dim * y_dim * z_dim self._tsdf_vol_gpu = gpuarray.zeros(shape=(xyz), dtype=np.float32) - 1 self._weight_vol_gpu = gpuarray.zeros(shape=(xyz), dtype=np.float32) self._color_vol_gpu= gpuarray.zeros(shape=(xyz), dtype=np.float32) # integrate function using PyCuda self._cuda_integrate = source_module.get_function("integrate") self._cuda_ray_casting = source_module.get_function("rayCasting") self._cuda_batch_ray_casting = source_module.get_function("batchRayCasting") def integrate(self, color_im, depth_im, cam_intr, cam_pose, weight=1.0): """ Integrate an RGB-D frame into the TSDF volume. Args: color_im (np.ndarray): input RGB image of shape (H, W, 3) depth_im (np.ndarray): input depth image of shape (H, W) cam_intr (np.ndarray): Camera intrinsics matrix of shape (3, 3) cam_pose (np.ndarray): Camera pose of shape (4, 4) weight (float, optional): weight to be assigned for the current observation. Defaults to 1.0. """ im_h, im_w = depth_im.shape # color image is always from host color_im = color_im.astype(np.float32) color_im = np.floor(color_im[...,2]*self._color_const + color_im[...,1]*256 + color_im[...,0]) if isinstance(depth_im, np.ndarray): depth_im_gpu = gpuarray.to_gpu(depth_im.astype(np.float32)) self._cuda_integrate( self._tsdf_vol_gpu, self._weight_vol_gpu, self._color_vol_gpu, cuda.InOut(self._vol_dim.astype(np.int32)), cuda.InOut(self._vol_origin.astype(np.float32)), np.float32(self._voxel_size), cuda.InOut(cam_intr.reshape(-1).astype(np.float32)), cuda.InOut(cam_pose.reshape(-1).astype(np.float32)), np.int32(im_h), np.int32(im_w), cuda.InOut(color_im.astype(np.float32)), depth_im_gpu, np.float32(self._trunc_margin), np.float32(weight), block=(self.block_x, self.block_y, self.block_z), grid=(self.grid_x, self.grid_y, self.grid_z) ) def batch_ray_casting(self, im_w, im_h, cam_intr, cam_poses, inv_cam_poses, start_row=0, start_col=0, batch_size=1, to_host=True): batch_color_im_gpu = gpuarray.zeros(shape=(batch_size, 3, im_h, im_w), dtype=np.uint8) batch_depth_im_gpu = gpuarray.zeros(shape=(batch_size, im_h, im_w), dtype=np.float32) self._cuda_batch_ray_casting( self._tsdf_vol_gpu, self._color_vol_gpu, self._weight_vol_gpu, cuda.InOut(self._vol_dim.astype(np.int32)), cuda.InOut(self._vol_origin.astype(np.float32)),
np.float32(self._voxel_size)
numpy.float32
from abc import ABCMeta, abstractmethod import numpy as np from scipy.special import lpmv, factorial, eval_legendre from scipy.integrate import simps, odeint from scipy.optimize import brentq from eos import Polytrope from rotation_laws import JConstantRotation class Solver(metaclass=ABCMeta): def __init__(self, star): self.star = star self.initialized = False @abstractmethod def initialize_solver(self, parameters): pass @abstractmethod def solve(self, max_steps=100, delta=1e-3): pass @abstractmethod def calc_mass(self): pass @abstractmethod def calc_gravitational_energy(self): pass class Roxburgh(Solver): def initialize_solver(self, parameters): self.theta_m = 0 self.Ro = 0.9 self.Rs = self.star.r_coords[-1] # inverted coordinate system is driving me mad so I am .T'ing them all. self.star.rho = self.star.rho.T self.star.Phi = self.star.Phi.T self.star.Omega2 = parameters['Omega']**2 self.rhom = self.star.rho[:, 0] self.gm = np.zeros_like(self.star.rho) def step(self): # solve Poisson for Phi given rho Phi = self.Phi_given_rho(self.star.rho) # solve for rho given Phi subject to rho(r,0) = rhom(r) rho = self.rho_given_Phi(Phi) # test conversion rho_err = np.max(np.abs(rho - self.star.rho)) / np.max(rho) print(f"Error: rho_err = {rho_err}") # print(f"rho = {rho}") # print(f"Phi = {Phi}") self.star.rho = rho self.star.Phi = Phi return rho_err def Phi_given_rho(self, rho): r = self.star.r_coords th = self.star.theta_coords nth = len(th) nr = len(r) nk = min(20, nth) Phi = np.zeros_like(self.star.Phi) W = np.array([[eval_legendre(2 * k, np.cos(th[n])) for k in range(nk)] for n in range(nk)]) ck = np.zeros((nr, nk)) fk = np.zeros((nr, nk)) for i in range(nr): ck[i, :] = np.linalg.inv(W) @ rho[i, :nk] # for k in range(nth): # solve equation 12 using shooting # def dfdr(x, _r, dfdr0): # if _r == 0: # return np.array([0, dfdr0]) # else: # _ck = np.interp(_r, r, ck[:,k]) # print(_ck) # return np.array([4 * np.pi * self.star.G * _ck - 2 / # _r * x[0] + 2 * k * (k + 1) * x[1] / _r**2, # x[0]]) # # def shoot_me(dfdr0): # _fk = odeint(dfdr, [dfdr0, 0], r, args=(dfdr0,)) # # print(f"_fk = {_fk[-1,:]}") # # # calculate boundary condition at r=Rs # return (2 * k + 1) * _fk[-1, 1] + r[-1] * _fk[-1, 0] # # s_min = -1 # s_max = 1 # # if shoot_me(s_min) * shoot_me(s_max) > 0: # s_min *= 10 # # # if shoot_me(s_min) * shoot_me(s_max) > 0: # # s_max *= 10 # # print(f"shoot_me({s_min}) = {shoot_me(s_min)}, shoot_me({s_max}) = {shoot_me(s_max)}") # dfdr0 = brentq(shoot_me, s_min, s_max) # # fk[:, k] = odeint(dfdr, [dfdr0, 0], r)[:, 1] for i in range(1,nr): for k in range(nk): I = ck[:, k] * r**(2*k+2) lk = 4 * np.pi * self.star.G / ((4 * k + 1) * self.Rs**(4*k+1)) * simps(I, r) outer_I = np.zeros_like(r[i:]) for j in range(i, nr): inner_I = np.zeros_like(r[:j+1]) for n in range(j+1): inner_I[n] = ck[n, k] * r[n]**(2*k+2) outer_I[j-i] = 4 * np.pi * self.star.G / r[j]**(4*k+2) * simps(inner_I, r[:j+1]) fk[i, k] = -r[i]**(2*k) * simps(outer_I, r[i:]) - lk * r[i]**(2*k) # now given fk we can find Phi for i in range(nr): for j in range(nth): Phi[i, j] = np.sum( [fk[i, k] * eval_legendre(2 * k, np.cos(th[j])) for k in range(nk)]) return Phi def rho_given_Phi(self, Phi): r = self.star.r_coords th = self.star.theta_coords dr = r[1] - r[0] dth = th[1] - th[0] nth = len(th) nr = len(r) rho = np.zeros_like(Phi) dPhidr = np.zeros_like(Phi) dPhidth = np.zeros_like(Phi) dPhidr[1:-1, :] = (Phi[2:, :] - Phi[:-2, :]) / (2 * dr) dPhidth[:, 1:-1] = (Phi[:, 2:] - Phi[:, :-2]) / (2 * dth) # do boundaries by copying. At r=0, we want the derivative of the potential to be 0, so we'll leave that. dPhidr[-1, :] = dPhidr[-2, :] dPhidth[:, 0] = dPhidth[:, 1] dPhidth[:, -1] = dPhidth[:, -2] gm = np.zeros_like(Phi) for i in range(1,nr): for j in range(1,nth): I = -1 / r[i] * (dPhidth[i, :j] - self.star.Omega2 * r[i]**2 * np.sin(th[:j]) * np.cos( th[:j])) / (dPhidr[i, :j] - self.star.Omega2 * r[i] * np.sin(th[:j]**2)) # print(f"I = {I}") log_gm = simps(I, th[:j]) gm[i, j] = np.exp(log_gm) if self.star.Omega2 == 0: rho[i, :] = self.rhom[i] else: for j in range(1,nth): dgdth = -1 / r[i] * (dPhidth[i, :j] - self.star.Omega2 * r[i]**2 * np.sin( th[:j]) * np.cos(th[:j])) / (dPhidr[i, :j] - self.star.Omega2 * r[i] * np.sin(th[:j]**2)) I = np.zeros(j) for k in range(j): if not dgdth[k] == 0: I[k] = -r[i] * self.star.Omega2 * np.cos(th[k]) / ( dPhidr[i, k] - self.star.Omega2 * r[i] * np.sin(th[k])**2) * 1 / dgdth[k] # print(f"I = {I}") log_rho = simps(I, gm[i, :j]) #+ np.log(self.rhom[i]) # print(f"log_rho = {log_rho}") rho[i, j] = np.exp(log_rho) * self.rhom[i] # save characteristics for later self.gm = gm return rho def P_given_rho_Phi(self, rho, Phi): r = self.star.r_coords th = self.star.theta_coords dr = r[1] - r[0] dth = th[1] - th[0] nth = len(th) nr = len(r) dPhidr = np.zeros_like(Phi) dPhidr[1:-1, :] = (Phi[2:, :] - Phi[:-2, :]) / (2 * dr) dPhidr[-1, :] = dPhidr[-2, :] P = np.zeros((nr, nth)) # NOTE: used the fact that theta_m = 0 Ro_index = self.star.eos.A[1] for i in range(Ro_index): P[i, 0] = simps(rho[i:Ro_index, 0] * dPhidr[i:Ro_index, 0], r[i:Ro_index]) # now we have to do something clever and interpolate these along the characteristics. eurgh. # given the value of gm(theta) and r at some theta, we can find the corresponding point # rm along theta = thetam. We can then look up what the pressure is at this point for j in range(1, nth): rm = self.gm[1:, j] / r[1:] P[1:, j] = np.interp(rm, r[1:], P[1:, 0]) return P def solve(self, max_steps=100, delta=1e-3): for i in range(max_steps): print(f"Step {i}") rho_err = self.step() if rho_err <= delta: print("Solution found!") break self.star.p = self.P_given_rho_Phi(self.star.rho, self.star.Phi) # untranspose self.star.rho = self.star.rho.T self.star.Phi = self.star.Phi.T self.star.p = self.star.p.T def calc_mass(self): pass def calc_gravitational_energy(self): pass class SCF(Solver): def initialize_solver(self, parameters): self.star.r_coords = np.array( range(1, self.star.mesh_size[1] + 1)) / (self.star.mesh_size[1] - 1) self.star.mu_coords = np.array( range(self.star.mesh_size[0])) / (self.star.mesh_size[0] - 1) self.star.Psi = np.zeros(self.star.mesh_size) self.star.Psi[:, :] = -0.5 * self.star.r_coords[np.newaxis, :]**2 * \ (1 - self.star.mu_coords[:, np.newaxis]**2) self.star.omegabar = np.sqrt(-2 * self.star.Psi) def step(self): """ Implements 2d self-consistent field algorithm """ lmax = 32 star = self.star K, N = star.mesh_size mu = star.mu_coords r = star.r_coords def D1(k, n): return 1 / 6 * np.sum((mu[2::2] - mu[:-2:2]) * (eval_legendre(2 * n, mu[:-2:2]) * star.rho[:-2:2, k] + 4 * eval_legendre(2 * n, mu[1:-1:2]) * star.rho[1:-1:2, k] + eval_legendre(2 * n, mu[2::2]) * star.rho[2::2, k])) def D2(n, j): sum = 0 def fl(r_dash, r, l=2 * n): if r_dash < r: return r_dash**(l + 2) / r**(l + 1) else: return r**l / r_dash**(l - 1) for k in range(0, N - 2, 2): sum += (r[k + 2] - r[k]) * (fl(r[k], r[j]) * D1(k, n) + 4 * fl(r[k + 1], r[j]) * D1(k + 1, n) + fl(r[k + 2], r[j]) * D1(k + 2, n)) return sum / 6 def calc_Phi(i, j): Phi = 0 for n in range(lmax + 1): Phi -= 4 * np.pi * D2(n, j) * eval_legendre(2 * n, mu[i]) return Phi # calculate Phi across grid for n in range(N): for k in range(K): star.Phi[k, n] = calc_Phi(k, n) # print(f'Phi = {star.Phi[0,:]}') # update the enthalpy Omega2 = star.eos.Omega2(star.Phi, star.Psi) C = star.eos.C(star.Phi, star.Psi) H = C - star.Phi - Omega2 * star.Psi # use new enthalpy and Phi to calculate the density star.rho = star.eos.rho_from_h(H) star.rho /= np.max(star.rho) # print(f"rho = {np.average(star.rho, axis=0)}") # calculate the errors H_err = np.max(np.abs(H - star.H)) / np.max(np.abs(H)) if
np.max(Omega2)
numpy.max
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as pl import george from george.kernels import ExpSquaredKernel np.random.seed(1234) # Generate some fake noisy data. x = 10 * np.sort(np.random.rand(10)) yerr = 0.2 * np.ones_like(x) y =
np.sin(x)
numpy.sin
import argparse import json from rlkit.envs.wrappers import NormalizedBoxEnv import numpy as np from envs.cloth import ClothEnvPickled as ClothEnv import cv2 import os import pandas as pd import time import shutil def rollout(variant, output_folder, deltas): try: os.makedirs(output_folder) cnn_path = f"{output_folder}/sim_eval_images/cnn" corners_path = f"{output_folder}/sim_eval_images/corners" eval_path = f"{output_folder}/sim_eval_images/eval" os.makedirs(cnn_path) os.makedirs(corners_path) os.makedirs(eval_path) except: print("folders exist already") env = ClothEnv(**variant['env_kwargs'], has_viewer=True, save_folder=output_folder, initial_xml_dump=True) env = NormalizedBoxEnv(env) smallest_reached_goal = np.inf got_done = False env_timestep = env.timestep steps_per_second = 1 / env.timestep new_action_every_ctrl_step = steps_per_second / variant['env_kwargs']['control_frequency'] o = env.reset() trajectory_log = [] trajectory_log.append(np.concatenate([env.desired_pos_step_W, env.desired_pos_ctrl_W, env.get_ee_position_I(), env.get_ee_position_W(), np.zeros(9)])) for path_length, delta in enumerate(deltas): train_image, eval_image = env.capture_image(None) cv2.imwrite(f'{output_folder}/sim_eval_images/corners/{str(path_length).zfill(3)}.png', train_image) cv2.imwrite(f'{output_folder}/sim_eval_images/eval/{str(path_length).zfill(3)}.png', eval_image) if "image" in o.keys(): data = o['image'].copy().reshape((100, 100, 1)) cv2.imwrite(f'{output_folder}/sim_eval_images/cnn/{str(path_length).zfill(3)}.png', data*255) o, r, d, env_info = env.step(delta[:3]) if d: got_done = True reached_goal = np.linalg.norm(o['achieved_goal']-o['desired_goal']) print(path_length, "Reached goal", reached_goal, "Done", got_done) if reached_goal < smallest_reached_goal: smallest_reached_goal = reached_goal delta = env.get_ee_position_W() - trajectory_log[-1][9:12] velocity = delta / (env_timestep*new_action_every_ctrl_step) acceleration = (velocity - trajectory_log[-1][15:18]) / (env_timestep*new_action_every_ctrl_step) trajectory_log.append(np.concatenate([env.desired_pos_step_W, env.desired_pos_ctrl_W, env.get_ee_position_I(), env.get_ee_position_W(), delta, velocity, acceleration])) np.savetxt(f"{output_folder}/sim_trajectory.csv", trajectory_log, delimiter=",", fmt='%f') return got_done, smallest_reached_goal, reached_goal def main(variant, input_folder, base_output_folder): deltas = np.genfromtxt(f"{input_folder}/executable_deltas.csv", delimiter=',')[20:] variant['env_kwargs']['output_max'] = 1 del variant['env_kwargs']['timestep'] joint_solimp_low_range = np.linspace(0.98, 0.9999, 10) joint_solimp_high_range = np.linspace(0.99, 0.9999, 10) joint_solimp_width_range = np.linspace(0.001, 0.03, 10) joint_solref_timeconst_range = np.linspace(0.005, 0.05, 10) joint_solref_dampratio_range = np.linspace(0.98, 1.02, 10) tendon_shear_solimp_low_range = np.linspace(0.98, 0.9999, 10) tendon_shear_solimp_high_range = np.linspace(0.99, 0.9999, 10) tendon_shear_solimp_width_range = np.linspace(0.001, 0.03, 10) tendon_shear_solref_timeconst_range = np.linspace(0.005, 0.05, 10) tendon_shear_solref_dampratio_range = np.linspace(0.98, 1.02, 10) tendon_main_solimp_low_range = np.linspace(0.98, 0.9999, 10) tendon_main_solimp_high_range = np.linspace(0.99, 0.9999, 10) tendon_main_solimp_width_range = np.linspace(0.001, 0.03, 10) tendon_main_solref_timeconst_range = np.linspace(0.005, 0.05, 10) tendon_main_solref_dampratio_range = np.linspace(0.98, 1.02, 10) geom_solimp_low_range = np.linspace(0.98, 0.9999, 10) geom_solimp_high_range = np.linspace(0.99, 0.9999, 10) geom_solimp_width_range = np.linspace(0.001, 0.03, 10) geom_solref_timeconst_range = np.linspace(0.005, 0.05, 10) geom_solref_dampratio_range = np.linspace(0.98, 1.02, 10) grasp_solimp_low_range = np.linspace(0.98, 0.9999, 10) grasp_solimp_high_range = np.linspace(0.99, 0.9999, 10) grasp_solimp_width_range = np.linspace(0.001, 0.03, 10) grasp_solref_timeconst_range = np.linspace(0.005, 0.05, 10) grasp_solref_dampratio_range = np.linspace(0.98, 1.02, 10) geom_size_range = np.linspace(0.008, 0.011, 10) friction_range = np.linspace(0.05, 1, 10) cone_type_range = ["pyramidal", "elliptic"] stats_df = pd.DataFrame() tests = 0 while True: model_kwargs = dict( joint_solimp_low = np.random.choice(joint_solimp_low_range), joint_solimp_high = np.random.choice(joint_solimp_high_range), joint_solimp_width = np.random.choice(joint_solimp_width_range), joint_solref_timeconst = np.random.choice(joint_solref_timeconst_range), joint_solref_dampratio = np.random.choice(joint_solref_dampratio_range), tendon_shear_solimp_low = np.random.choice(tendon_shear_solimp_low_range), tendon_shear_solimp_high = np.random.choice(tendon_shear_solimp_high_range), tendon_shear_solimp_width = np.random.choice(tendon_shear_solimp_width_range), tendon_shear_solref_timeconst = np.random.choice(tendon_shear_solref_timeconst_range), tendon_shear_solref_dampratio =
np.random.choice(tendon_shear_solref_dampratio_range)
numpy.random.choice
from __future__ import print_function ################################################################################################### # Libraries ################################################################################################### import os import numpy as np from pysam import Samfile, Fastafile from Bio import motifs import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from scipy.signal import savgol_filter from scipy.stats import scoreatpercentile from argparse import SUPPRESS import pyx # Internal from rgt.Util import GenomeData, AuxiliaryFunctions from rgt.HINT.signalProcessing import GenomicSignal from rgt.GenomicRegionSet import GenomicRegionSet from rgt.HINT.biasTable import BiasTable def plotting_args(parser): # Parameters Options parser.add_argument("--organism", type=str, metavar="STRING", default="hg19", help=("Organism considered on the analysis. Check our full documentation for all available " "options. All default files such as genomes will be based on the chosen organism " "and the data.config file.")) parser.add_argument("--reads-file", type=str, metavar="FILE", default=None) parser.add_argument("--region-file", type=str, metavar="FILE", default=None) parser.add_argument("--reads-file1", type=str, metavar="FILE", default=None) parser.add_argument("--reads-file2", type=str, metavar="FILE", default=None) parser.add_argument("--motif-file", type=str, metavar="FILE", default=None) parser.add_argument("--bias-table", type=str, metavar="FILE1_F,FILE1_R", default=None) parser.add_argument("--bias-table1", type=str, metavar="FILE1_F,FILE1_R", default=None) parser.add_argument("--bias-table2", type=str, metavar="FILE1_F,FILE1_R", default=None) parser.add_argument("--window-size", type=int, metavar="INT", default=400) # Hidden Options parser.add_argument("--initial-clip", type=int, metavar="INT", default=50, help=SUPPRESS) parser.add_argument("--downstream-ext", type=int, metavar="INT", default=1, help=SUPPRESS) parser.add_argument("--upstream-ext", type=int, metavar="INT", default=0, help=SUPPRESS) parser.add_argument("--forward-shift", type=int, metavar="INT", default=5, help=SUPPRESS) parser.add_argument("--reverse-shift", type=int, metavar="INT", default=-5, help=SUPPRESS) parser.add_argument("--k-nb", type=int, metavar="INT", default=6, help=SUPPRESS) parser.add_argument("--y-lim", type=float, metavar="FLOAT", default=0.3, help=SUPPRESS) # Output Options parser.add_argument("--output-location", type=str, metavar="PATH", default=os.getcwd(), help="Path where the output bias table files will be written.") parser.add_argument("--output-prefix", type=str, metavar="STRING", default=None, help="The prefix for results files.") # plot type parser.add_argument("--seq-logo", default=False, action='store_true') parser.add_argument("--bias-raw-bc-line", default=False, action='store_true') parser.add_argument("--raw-bc-line", default=False, action='store_true') parser.add_argument("--strand-line", default=False, action='store_true') parser.add_argument("--unstrand-line", default=False, action='store_true') parser.add_argument("--bias-line", default=False, action='store_true') parser.add_argument("--atac-dnase-line", default=False, action='store_true') parser.add_argument("--bias-raw-bc-strand-line2", default=False, action='store_true') parser.add_argument("--fragment-raw-size-line", default=False, action='store_true') parser.add_argument("--fragment-bc-size-line", default=False, action='store_true') def plotting_run(args): if args.seq_logo: seq_logo(args) if args.bias_raw_bc_line: bias_raw_bc_strand_line(args) if args.strand_line: strand_line(args) if args.unstrand_line: unstrand_line(args) if args.raw_bc_line: raw_bc_line(args) if args.bias_raw_bc_strand_line2: bias_raw_bc_strand_line2(args) if args.fragment_raw_size_line: fragment_size_raw_line(args) if args.fragment_bc_size_line: fragment_size_bc_line(args) def seq_logo(args): logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)) pwm_file = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix)) pwm_dict = dict( [("A", [0.0] * args.window_size), ("C", [0.0] * args.window_size), ("G", [0.0] * args.window_size), ("T", [0.0] * args.window_size), ("N", [0.0] * args.window_size)]) genome_data = GenomeData(args.organism) fasta_file = Fastafile(genome_data.get_genome()) bam = Samfile(args.reads_file, "rb") regions = GenomicRegionSet("Peaks") regions.read(args.region_file) for region in regions: for r in bam.fetch(region.chrom, region.initial, region.final): if not r.is_reverse: cut_site = r.pos - 1 p1 = cut_site - int(args.window_size / 2) else: cut_site = r.aend + 1 p1 = cut_site - int(args.window_size / 2) p2 = p1 + args.window_size # Fetching k-mer currStr = str(fasta_file.fetch(region.chrom, p1, p2)).upper() if r.is_reverse: continue for i in range(0, len(currStr)): pwm_dict[currStr[i]][i] += 1 with open(pwm_file, "w") as f: for e in ["A", "C", "G", "T"]: f.write(" ".join([str(int(c)) for c in pwm_dict[e]]) + "\n") pwm = motifs.read(open(pwm_file), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False, yaxis_scale=args.y_lim) start = -(args.window_size / 2) end = (args.window_size / 2) - 1 x = np.linspace(start, end, num=args.window_size).tolist() fig = plt.figure(figsize=(8, 2)) ax = fig.add_subplot(111) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_position(('outward', 15)) ax.tick_params(direction='out') ax.xaxis.set_ticks(map(int, x)) x1 = map(int, x) ax.set_xticklabels(map(str, x1), rotation=90) ax.set_xlabel("Coordinates from Read Start", fontweight='bold') ax.set_ylim([0, args.y_lim]) ax.yaxis.set_ticks([0, args.y_lim]) ax.set_yticklabels([str(0), str(args.y_lim)], rotation=90) ax.set_ylabel("bits", rotation=90) figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(1.5, 1.5, logo_fname, width=18.8, height=3.5)) c.writeEPSfile(output_fname) os.system("epstopdf " + output_fname) os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix))) def bias_raw_bc_line(args): signal = GenomicSignal(args.reads_file) signal.load_sg_coefs(slope_window_size=9) bias_table = BiasTable() bias_table_list = args.bias_table.split(",") table = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) genome_data = GenomeData(args.organism) fasta = Fastafile(genome_data.get_genome()) pwm_dict = dict([("A", [0.0] * args.window_size), ("C", [0.0] * args.window_size), ("G", [0.0] * args.window_size), ("T", [0.0] * args.window_size), ("N", [0.0] * args.window_size)]) num_sites = 0 mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(args.motif_file) bam = Samfile(args.reads_file, "rb") mean_signal_bias_f = np.zeros(args.window_size) mean_signal_bias_r = np.zeros(args.window_size) mean_signal_raw = np.zeros(args.window_size) mean_signal_raw_f = np.zeros(args.window_size) mean_signal_raw_r = np.zeros(args.window_size) mean_signal_bc = np.zeros(args.window_size) mean_signal_bc_f = np.zeros(args.window_size) mean_signal_bc_r = np.zeros(args.window_size) motif_len = 0 for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": # Extend by window_size mid = (region.initial + region.final) / 2 p1 = mid - (args.window_size / 2) p2 = mid + (args.window_size / 2) motif_len = region.final - region.initial signal_bias_f, signal_bias_r, raw, raw_f, raw_r, bc, bc_f, bc_r = \ signal.get_bias_raw_bc_signal(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift, strand=True) num_sites += 1 mean_signal_bias_f = np.add(mean_signal_bias_f, np.array(signal_bias_f)) mean_signal_bias_r = np.add(mean_signal_bias_r, np.array(signal_bias_r)) mean_signal_raw = np.add(mean_signal_raw, np.array(raw)) mean_signal_raw_f = np.add(mean_signal_raw_f, np.array(raw_f)) mean_signal_raw_r = np.add(mean_signal_raw_r, np.array(raw_r)) mean_signal_bc = np.add(mean_signal_bc, np.array(bc)) mean_signal_bc_f = np.add(mean_signal_bc_f, np.array(bc_f)) mean_signal_bc_r = np.add(mean_signal_bc_r, np.array(bc_r)) # Update pwm aux_plus = 1 dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper() if (region.final - region.initial) % 2 == 0: aux_plus = 0 if region.orientation == "+": for i in range(len(dna_seq)): pwm_dict[dna_seq[i]][i] += 1 mean_signal_bias_f = mean_signal_bias_f / num_sites mean_signal_bias_r = mean_signal_bias_r / num_sites mean_signal_raw = mean_signal_raw / num_sites mean_signal_bc = mean_signal_bc / num_sites mean_signal_bc_f = mean_signal_bc_f / num_sites mean_signal_bc_r = mean_signal_bc_r / num_sites # Output the norm and slope signal output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, mean_signal_bias_f))) + "\n") f.write("\t".join((map(str, mean_signal_bias_r))) + "\n") f.write("\t".join((map(str, mean_signal_raw))) + "\n") f.write("\t".join((map(str, mean_signal_bc))) + "\n") f.close() # Output PWM and create logo pwm_fname = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix)) pwm_file = open(pwm_fname, "w") for e in ["A", "C", "G", "T"]: pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n") pwm_file.close() logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)) pwm = motifs.read(open(pwm_fname), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False) fig, (ax1, ax2, ax3) = plt.subplots(3, figsize=(8, 6)) start = -(args.window_size / 2) end = (args.window_size / 2) - 1 x = np.linspace(start, end, num=args.window_size) if motif_len % 2 == 0: x1 = int(- (motif_len / 2)) x2 = int(motif_len / 2) else: x1 = int(-(motif_len / 2) - 1) x2 = int((motif_len / 2) + 1) ############################################################ # bias signal per strand fp_score = sum(mean_signal_raw[args.window_size / 2 + x1: args.window_size / 2 + x2]) shoulder_l = sum(mean_signal_raw[args.window_size / 2 + x1 - motif_len:args.window_size / 2 + x1]) shoulder_r = sum(mean_signal_raw[args.window_size / 2 + x2:args.window_size / 2 + x2 + motif_len]) sfr = (shoulder_l + shoulder_r) / (2 * fp_score) min_ax1 = min(mean_signal_raw) max_ax1 = max(mean_signal_raw) ax1.plot(x, mean_signal_raw, color='blue', label='Uncorrected') ax1.text(0.15, 0.9, 'n = {}'.format(num_sites), verticalalignment='bottom', horizontalalignment='right', transform=ax1.transAxes, fontweight='bold') ax1.text(0.35, 0.15, 'SFR = {}'.format(round(sfr, 2)), verticalalignment='bottom', horizontalalignment='right', transform=ax1.transAxes, fontweight='bold') ax1.xaxis.set_ticks_position('bottom') ax1.yaxis.set_ticks_position('left') ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.spines['left'].set_position(('outward', 15)) ax1.spines['bottom'].set_position(('outward', 5)) ax1.tick_params(direction='out') ax1.set_xticks([start, 0, end]) ax1.set_xticklabels([str(start), 0, str(end)]) ax1.set_yticks([min_ax1, max_ax1]) ax1.set_yticklabels([str(round(min_ax1, 2)), str(round(max_ax1, 2))], rotation=90) ax1.set_title(args.output_prefix, fontweight='bold') ax1.set_xlim(start, end) ax1.set_ylim([min_ax1, max_ax1]) ax1.legend(loc="lower right", frameon=False) #################################################################### ##################################################################### # Bias corrected, non-bias corrected (not strand specific) fp_score = sum(mean_signal_bc[args.window_size / 2 + x1: args.window_size / 2 + x2]) shoulder_l = sum(mean_signal_bc[args.window_size / 2 + x1 - motif_len:args.window_size / 2 + x1]) shoulder_r = sum(mean_signal_bc[args.window_size / 2 + x2:args.window_size / 2 + x2 + motif_len]) sfr = (shoulder_l + shoulder_r) / (2 * fp_score) min_ax2 = min(mean_signal_bc) max_ax2 = max(mean_signal_bc) ax2.plot(x, mean_signal_bc, color='red', label='Corrected') ax2.text(0.35, 0.15, 'SFR = {}'.format(round(sfr, 2)), verticalalignment='bottom', horizontalalignment='right', transform=ax2.transAxes, fontweight='bold') ax2.xaxis.set_ticks_position('bottom') ax2.yaxis.set_ticks_position('left') ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.spines['left'].set_position(('outward', 15)) ax2.tick_params(direction='out') ax2.set_xticks([start, 0, end]) ax2.set_xticklabels([str(start), 0, str(end)]) ax2.set_yticks([min_ax2, max_ax2]) ax2.set_yticklabels([str(round(min_ax2, 2)), str(round(max_ax2, 2))], rotation=90) ax2.set_xlim(start, end) ax2.set_ylim([min_ax2, max_ax2]) ax2.legend(loc="lower right", frameon=False) fp_score_f = sum(mean_signal_bc_f[args.window_size / 2 + x1: args.window_size / 2 + x2]) shoulder_l_f = sum(mean_signal_bc_f[args.window_size / 2 + x1 - motif_len:args.window_size / 2 + x1]) shoulder_r_f = sum(mean_signal_bc_f[args.window_size / 2 + x2:args.window_size / 2 + x2 + motif_len]) sfr_f = (shoulder_l_f + shoulder_r_f) / (2 * fp_score_f) fp_score_r = sum(mean_signal_bc_r[args.window_size / 2 + x1: args.window_size / 2 + x2]) shoulder_l_r = sum(mean_signal_bc_r[args.window_size / 2 + x1 - motif_len:args.window_size / 2 + x1]) shoulder_r_r = sum(mean_signal_bc_r[args.window_size / 2 + x2:args.window_size / 2 + x2 + motif_len]) sfr_r = (shoulder_l_r + shoulder_r_r) / (2 * fp_score_r) min_ax3 = min(min(mean_signal_bc_f), min(mean_signal_bc_r)) max_ax3 = max(max(mean_signal_bc_f), max(mean_signal_bc_r)) ax3.plot(x, mean_signal_bc_f, color='purple', label='Forward') ax3.plot(x, mean_signal_bc_r, color='green', label='Reverse') ax3.text(0.35, 0.15, 'SFR_f = {}'.format(round(sfr_f, 2)), verticalalignment='bottom', horizontalalignment='right', transform=ax3.transAxes, fontweight='bold') ax3.text(0.35, 0.05, 'SFR_r = {}'.format(round(sfr_r, 2)), verticalalignment='bottom', horizontalalignment='right', transform=ax3.transAxes, fontweight='bold') ax3.xaxis.set_ticks_position('bottom') ax3.yaxis.set_ticks_position('left') ax3.spines['top'].set_visible(False) ax3.spines['right'].set_visible(False) ax3.spines['left'].set_position(('outward', 15)) ax3.tick_params(direction='out') ax3.set_xticks([start, 0, end]) ax3.set_xticklabels([str(start), 0, str(end)]) ax3.set_yticks([min_ax3, max_ax3]) ax3.set_yticklabels([str(round(min_ax3, 2)), str(round(max_ax3, 2))], rotation=90) ax3.set_xlim(start, end) ax3.set_ylim([min_ax3, max_ax3]) ax3.legend(loc="lower right", frameon=False) ax3.spines['bottom'].set_position(('outward', 40)) ax1.axvline(x=x1, ymin=-0.3, ymax=1, c="black", lw=0.5, ls='dashed', zorder=0, clip_on=False) ax1.axvline(x=x2, ymin=-0.3, ymax=1, c="black", lw=0.5, ls='dashed', zorder=0, clip_on=False) ax2.axvline(x=x1, ymin=-0.5, ymax=1.2, c="black", lw=0.5, ls='dashed', zorder=0, clip_on=False) ax2.axvline(x=x2, ymin=-0.5, ymax=1.2, c="black", lw=0.5, ls='dashed', zorder=0, clip_on=False) ############################################################################### # merge the above figures figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(1.45, 0.89, logo_fname, width=18.3, height=1.75)) c.writeEPSfile(output_fname) os.system("epstopdf " + figure_name) os.system("epstopdf " + logo_fname) os.system("epstopdf " + output_fname) os.remove(pwm_fname) os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.line.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix))) def raw_bc_line(args): signal = GenomicSignal(args.reads_file) signal.load_sg_coefs(slope_window_size=9) bias_table = BiasTable() bias_table_list = args.bias_table.split(",") table = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) genome_data = GenomeData(args.organism) fasta = Fastafile(genome_data.get_genome()) pwm_dict = dict([("A", [0.0] * args.window_size), ("C", [0.0] * args.window_size), ("G", [0.0] * args.window_size), ("T", [0.0] * args.window_size), ("N", [0.0] * args.window_size)]) num_sites = 0 mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(args.motif_file) bam = Samfile(args.reads_file, "rb") mean_signal_raw = np.zeros(args.window_size) mean_signal_bc = np.zeros(args.window_size) for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": # Extend by window_size mid = (region.initial + region.final) / 2 p1 = mid - (args.window_size / 2) p2 = mid + (args.window_size / 2) signal_bias_f, signal_bias_r, raw, raw_f, raw_r, bc, bc_f, bc_r = \ signal.get_bias_raw_bc_signal(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift, strand=True) num_sites += 1 mean_signal_raw = np.add(mean_signal_raw, np.array(raw)) mean_signal_bc = np.add(mean_signal_bc, np.array(bc)) # Update pwm aux_plus = 1 dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper() if (region.final - region.initial) % 2 == 0: aux_plus = 0 if region.orientation == "+": for i in range(len(dna_seq)): pwm_dict[dna_seq[i]][i] += 1 mean_signal_raw = mean_signal_raw / num_sites mean_signal_bc = mean_signal_bc / num_sites # Output the norm and slope signal output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, mean_signal_raw))) + "\n") f.write("\t".join((map(str, mean_signal_bc))) + "\n") f.close() # Output PWM and create logo pwm_fname = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix)) pwm_file = open(pwm_fname, "w") for e in ["A", "C", "G", "T"]: pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n") pwm_file.close() logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)) pwm = motifs.read(open(pwm_fname), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False) fig = plt.figure(figsize=(8, 4)) ax = fig.add_subplot(111) start = -(args.window_size / 2) end = (args.window_size / 2) - 1 x = np.linspace(start, end, num=args.window_size) ############################################################ min_ = min(min(mean_signal_raw), min(mean_signal_bc)) max_ = max(max(mean_signal_raw), max(mean_signal_bc)) ax.plot(x, mean_signal_raw, color='red', label='Uncorrected') ax.plot(x, mean_signal_bc, color='blue', label='Corrected') ax.text(0.15, 0.9, 'n = {}'.format(num_sites), verticalalignment='bottom', horizontalalignment='right', transform=ax.transAxes, fontweight='bold') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_position(('outward', 15)) ax.spines['bottom'].set_position(('outward', 5)) ax.tick_params(direction='out') ax.set_xticks([start, 0, end]) ax.set_xticklabels([str(start), 0, str(end)]) ax.set_yticks([min_, max_]) ax.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90) ax.set_title(args.output_prefix, fontweight='bold') ax.set_xlim(start, end) ax.set_ylim(min_, max_) ax.legend(loc="lower right", frameon=False) ax.spines['bottom'].set_position(('outward', 40)) ############################################################################### # merge the above figures figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(1.45, 0.89, logo_fname, width=18.3, height=1.75)) c.writeEPSfile(output_fname) os.system("epstopdf " + figure_name) os.system("epstopdf " + logo_fname) os.system("epstopdf " + output_fname) os.remove(pwm_fname) os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.line.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix))) def bias_raw_bc_strand_line(args): signal = GenomicSignal(args.reads_file) signal.load_sg_coefs(slope_window_size=9) bias_table = BiasTable() bias_table_list = args.bias_table.split(",") table = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) genome_data = GenomeData(args.organism) fasta = Fastafile(genome_data.get_genome()) pwm_dict = dict([("A", [0.0] * args.window_size), ("C", [0.0] * args.window_size), ("G", [0.0] * args.window_size), ("T", [0.0] * args.window_size), ("N", [0.0] * args.window_size)]) num_sites = 0 mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(args.motif_file) bam = Samfile(args.reads_file, "rb") mean_signal_bias_f = np.zeros(args.window_size) mean_signal_bias_r = np.zeros(args.window_size) mean_signal_raw = np.zeros(args.window_size) mean_signal_bc = np.zeros(args.window_size) for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": mid = (region.initial + region.final) / 2 p1 = mid - (args.window_size / 2) p2 = mid + (args.window_size / 2) signal_bias_f, signal_bias_r, signal_raw, signal_bc = \ signal.get_bias_raw_bc_signal(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift) num_sites += 1 mean_signal_bias_f = np.add(mean_signal_bias_f, np.array(signal_bias_f)) mean_signal_bias_r = np.add(mean_signal_bias_r, np.array(signal_bias_r)) mean_signal_raw = np.add(mean_signal_raw, np.array(signal_raw)) mean_signal_bc = np.add(mean_signal_bc, np.array(signal_bc)) # Update pwm aux_plus = 1 dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper() if (region.final - region.initial) % 2 == 0: aux_plus = 0 dna_seq_rev = AuxiliaryFunctions.revcomp(str(fasta.fetch(region.chrom, p1 + aux_plus, p2 + aux_plus)).upper()) if region.orientation == "+": for i in range(0, len(dna_seq)): pwm_dict[dna_seq[i]][i] += 1 mean_signal_bias_f = mean_signal_bias_f / num_sites mean_signal_bias_r = mean_signal_bias_r / num_sites mean_signal_raw = mean_signal_raw / num_sites mean_signal_bc = mean_signal_bc / num_sites # Output the norm and slope signal output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, mean_signal_bias_f))) + "\n") f.write("\t".join((map(str, mean_signal_bias_r))) + "\n") f.write("\t".join((map(str, mean_signal_raw))) + "\n") f.write("\t".join((map(str, mean_signal_bc))) + "\n") f.close() # Output PWM and create logo pwm_fname = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix)) pwm_file = open(pwm_fname, "w") for e in ["A", "C", "G", "T"]: pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n") pwm_file.close() logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)) pwm = motifs.read(open(pwm_fname), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False) fig, (ax1, ax2) = plt.subplots(2, figsize=(8, 4)) start = -(args.window_size / 2) end = (args.window_size / 2) - 1 x = np.linspace(start, end, num=args.window_size) ############################################################ # bias signal per strand min_ = min(min(mean_signal_bias_f), min(mean_signal_bias_r)) max_ = max(max(mean_signal_bias_f), max(mean_signal_bias_r)) ax1.plot(x, mean_signal_bias_f, color='purple', label='Forward') ax1.plot(x, mean_signal_bias_r, color='green', label='Reverse') ax1.text(0.15, 0.9, 'n = {}'.format(num_sites), verticalalignment='bottom', horizontalalignment='right', transform=ax1.transAxes, fontweight='bold') ax1.xaxis.set_ticks_position('bottom') ax1.yaxis.set_ticks_position('left') ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.spines['left'].set_position(('outward', 15)) ax1.spines['bottom'].set_position(('outward', 5)) ax1.tick_params(direction='out') ax1.set_xticks([start, 0, end]) ax1.set_xticklabels([str(start), 0, str(end)]) ax1.set_yticks([min_, max_]) ax1.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90) ax1.set_title(args.output_prefix, fontweight='bold') ax1.set_xlim(start, end) ax1.set_ylim([min_, max_]) ax1.legend(loc="upper right", frameon=False) #################################################################### ##################################################################### # Bias corrected, non-bias corrected (not strand specific) min_ = min(min(mean_signal_raw), min(mean_signal_bc)) max_ = max(max(mean_signal_raw), max(mean_signal_bc)) ax2.plot(x, mean_signal_raw, color='blue', label='Uncorrected') ax2.plot(x, mean_signal_bc, color='red', label='Corrected') ax2.xaxis.set_ticks_position('bottom') ax2.yaxis.set_ticks_position('left') ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.spines['left'].set_position(('outward', 15)) ax2.tick_params(direction='out') ax2.set_xticks([start, 0, end]) ax2.set_xticklabels([str(start), 0, str(end)]) ax2.set_yticks([min_, max_]) ax2.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90) ax2.set_xlim(start, end) ax2.set_ylim([min_, max_]) ax2.legend(loc="upper right", frameon=False) ax2.spines['bottom'].set_position(('outward', 40)) ############################################################################### # merge the above figures figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(1.51, 0.89, logo_fname, width=18.3, height=1.75)) c.writeEPSfile(output_fname) os.system("epstopdf " + figure_name) os.system("epstopdf " + logo_fname) os.system("epstopdf " + output_fname) os.remove(pwm_fname) os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.line.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix))) def bias_raw_bc_strand_line2(args): signal = GenomicSignal(args.reads_file) signal.load_sg_coefs(slope_window_size=9) bias_table = BiasTable() bias_table_list = args.bias_table.split(",") table = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) genome_data = GenomeData(args.organism) fasta = Fastafile(genome_data.get_genome()) pwm_dict = dict([("A", [0.0] * args.window_size), ("C", [0.0] * args.window_size), ("G", [0.0] * args.window_size), ("T", [0.0] * args.window_size), ("N", [0.0] * args.window_size)]) num_sites = 0 mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(args.motif_file) bam = Samfile(args.reads_file, "rb") mean_signal_bias_f = np.zeros(args.window_size) mean_signal_bias_r = np.zeros(args.window_size) mean_signal_raw = np.zeros(args.window_size) mean_signal_raw_f = np.zeros(args.window_size) mean_signal_raw_r = np.zeros(args.window_size) mean_signal_bc = np.zeros(args.window_size) mean_signal_bc_f = np.zeros(args.window_size) mean_signal_bc_r = np.zeros(args.window_size) for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": mid = (region.initial + region.final) / 2 p1 = mid - (args.window_size / 2) p2 = mid + (args.window_size / 2) signal_bias_f, signal_bias_r, signal_raw, signal_raw_f, signal_raw_r, signal_bc, signal_bc_f, signal_bc_r = \ signal.get_bias_raw_bc_signal(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift, strand=True) num_sites += 1 mean_signal_bias_f = np.add(mean_signal_bias_f, np.array(signal_bias_f)) mean_signal_bias_r = np.add(mean_signal_bias_r, np.array(signal_bias_r)) mean_signal_raw = np.add(mean_signal_raw, np.array(signal_raw)) mean_signal_raw_f = np.add(mean_signal_raw_f, np.array(signal_raw_f)) mean_signal_raw_r = np.add(mean_signal_raw_r, np.array(signal_raw_r)) mean_signal_bc = np.add(mean_signal_bc, np.array(signal_bc)) mean_signal_bc_f = np.add(mean_signal_bc_f, np.array(signal_bc_f)) mean_signal_bc_r = np.add(mean_signal_bc_r, np.array(signal_bc_r)) # Update pwm aux_plus = 1 dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper() if (region.final - region.initial) % 2 == 0: aux_plus = 0 dna_seq_rev = AuxiliaryFunctions.revcomp(str(fasta.fetch(region.chrom, p1 + aux_plus, p2 + aux_plus)).upper()) if region.orientation == "+": for i in range(0, len(dna_seq)): pwm_dict[dna_seq[i]][i] += 1 mean_signal_bias_f = mean_signal_bias_f / num_sites mean_signal_bias_r = mean_signal_bias_r / num_sites mean_signal_raw = mean_signal_raw / num_sites mean_signal_raw_f = mean_signal_raw_f / num_sites mean_signal_raw_r = mean_signal_raw_r / num_sites mean_signal_bc = mean_signal_bc / num_sites mean_signal_bc_f = mean_signal_bc_f / num_sites mean_signal_bc_r = mean_signal_bc_r / num_sites # mean_signal_raw = rescaling(mean_signal_raw) # mean_signal_bc = rescaling(mean_signal_bc) # Output the norm and slope signal output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, mean_signal_bias_f))) + "\n") f.write("\t".join((map(str, mean_signal_bias_r))) + "\n") f.write("\t".join((map(str, mean_signal_raw))) + "\n") f.write("\t".join((map(str, mean_signal_raw_f))) + "\n") f.write("\t".join((map(str, mean_signal_raw_r))) + "\n") f.write("\t".join((map(str, mean_signal_bc))) + "\n") f.write("\t".join((map(str, mean_signal_bc_f))) + "\n") f.write("\t".join((map(str, mean_signal_bc_r))) + "\n") f.close() # Output PWM and create logo pwm_fname = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix)) pwm_file = open(pwm_fname, "w") for e in ["A", "C", "G", "T"]: pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n") pwm_file.close() logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)) pwm = motifs.read(open(pwm_fname), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False) # fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, figsize=(8, 8)) fig, (ax1, ax4) = plt.subplots(2, figsize=(8, 4)) start = -(args.window_size / 2) end = (args.window_size / 2) - 1 x = np.linspace(start, end, num=args.window_size) ############################################################ # bias signal per strand min_ = min(min(mean_signal_bias_f), min(mean_signal_bias_r)) max_ = max(max(mean_signal_bias_f), max(mean_signal_bias_r)) ax1.plot(x, mean_signal_bias_f, color='purple', label='Forward') ax1.plot(x, mean_signal_bias_r, color='green', label='Reverse') ax1.text(0.15, 0.9, 'n = {}'.format(num_sites), verticalalignment='bottom', horizontalalignment='right', transform=ax1.transAxes, fontweight='bold') ax1.xaxis.set_ticks_position('bottom') ax1.yaxis.set_ticks_position('left') ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.spines['left'].set_position(('outward', 15)) ax1.spines['bottom'].set_position(('outward', 5)) ax1.tick_params(direction='out') ax1.set_xticks([start, 0, end]) ax1.set_xticklabels([str(start), 0, str(end)]) ax1.set_yticks([min_, max_]) ax1.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90) ax1.set_title(args.output_prefix, fontweight='bold') ax1.set_xlim(start, end) ax1.set_ylim([min_, max_]) ax1.legend(loc="upper right", frameon=False) #################################################################### ##################################################################### # Bias corrected, non-bias corrected (not strand specific) # min_ = min(min(mean_signal_raw_f), min(mean_signal_raw_r)) # max_ = max(max(mean_signal_raw_f), max(mean_signal_raw_r)) # ax2.plot(x, mean_signal_raw_f, color='red', label='Forward') # ax2.plot(x, mean_signal_raw_r, color='green', label='Reverse') # ax2.xaxis.set_ticks_position('bottom') # ax2.yaxis.set_ticks_position('left') # ax2.spines['top'].set_visible(False) # ax2.spines['right'].set_visible(False) # ax2.spines['left'].set_position(('outward', 15)) # ax2.tick_params(direction='out') # ax2.set_xticks([start, -1, 0, 1, end]) # ax2.set_xticklabels([str(start), -1, 0,1, str(end)]) # ax2.set_yticks([min_, max_]) # ax2.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90) # ax2.set_xlim(start, end) # ax2.set_ylim([min_, max_]) # ax2.legend(loc="upper right", frameon=False) ##################################################################### # Bias corrected and strand specific # min_ = min(min(mean_signal_bc_f), min(mean_signal_bc_r)) # max_ = max(max(mean_signal_bc_f), max(mean_signal_bc_r)) # ax3.plot(x, mean_signal_bc_f, color='red', label='Forward') # ax3.plot(x, mean_signal_bc_r, color='green', label='Reverse') # ax3.xaxis.set_ticks_position('bottom') # ax3.yaxis.set_ticks_position('left') # ax3.spines['top'].set_visible(False) # ax3.spines['right'].set_visible(False) # ax3.spines['left'].set_position(('outward', 15)) # ax3.tick_params(direction='out') # ax3.set_xticks([start, 0, end]) # ax3.set_xticklabels([str(start), 0, str(end)]) # ax3.set_yticks([min_, max_]) # ax3.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90) # ax3.set_xlim(start, end) # ax3.set_ylim([min_, max_]) # ax3.legend(loc="upper right", frameon=False) ##################################################################### # Bias corrected, non-bias corrected (not strand specific) min_ = min(min(mean_signal_raw), min(mean_signal_bc)) max_ = max(max(mean_signal_raw), max(mean_signal_bc)) ax4.plot(x, mean_signal_raw, color='blue', label='Uncorrected') ax4.plot(x, mean_signal_bc, color='red', label='Corrected') ax4.xaxis.set_ticks_position('bottom') ax4.yaxis.set_ticks_position('left') ax4.spines['top'].set_visible(False) ax4.spines['right'].set_visible(False) ax4.spines['left'].set_position(('outward', 15)) ax4.tick_params(direction='out') ax4.set_xticks([start, 0, end]) ax4.set_xticklabels([str(start), 0, str(end)]) ax4.set_yticks([min_, max_]) ax4.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90) ax4.set_xlim(start, end) ax4.set_ylim([min_, max_]) ax4.legend(loc="upper right", frameon=False) ax4.spines['bottom'].set_position(('outward', 40)) ############################################################################### # merge the above figures figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(1.45, 0.89, logo_fname, width=18.3, height=1.75)) c.writeEPSfile(output_fname) os.system("epstopdf " + figure_name) os.system("epstopdf " + logo_fname) os.system("epstopdf " + output_fname) os.remove(pwm_fname) os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.line.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix))) def strand_line(args): genomic_signal = GenomicSignal(args.reads_file) genomic_signal.load_sg_coefs(slope_window_size=9) table = None if args.bias_table is not None: bias_table = BiasTable() bias_table_list = args.bias_table.split(",") table = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) genome_data = GenomeData(args.organism) fasta = Fastafile(genome_data.get_genome()) num_sites = 0 mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(args.motif_file) bam = Samfile(args.reads_file, "rb") mean_signal_f = np.zeros(args.window_size) mean_signal_r = np.zeros(args.window_size) pwm_dict = None for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": # Extend by 50 bp mid = (region.initial + region.final) / 2 p1 = mid - (args.window_size / 2) p2 = mid + (args.window_size / 2) if args.bias_table is not None: signal_f, signal_r = genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift) else: signal_f, signal_r = genomic_signal.get_raw_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift) num_sites += 1 mean_signal_f = np.add(mean_signal_f, signal_f) mean_signal_r = np.add(mean_signal_r, signal_r) # Update pwm if pwm_dict is None: pwm_dict = dict([("A", [0.0] * (p2 - p1)), ("C", [0.0] * (p2 - p1)), ("G", [0.0] * (p2 - p1)), ("T", [0.0] * (p2 - p1)), ("N", [0.0] * (p2 - p1))]) aux_plus = 1 dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper() if (region.final - region.initial) % 2 == 0: aux_plus = 0 dna_seq_rev = AuxiliaryFunctions.revcomp(str(fasta.fetch(region.chrom, p1 + aux_plus, p2 + aux_plus)).upper()) if region.orientation == "+": for i in range(0, len(dna_seq)): pwm_dict[dna_seq[i]][i] += 1 elif region.orientation == "-": for i in range(0, len(dna_seq_rev)): pwm_dict[dna_seq_rev[i]][i] += 1 mean_norm_signal_f = genomic_signal.boyle_norm(mean_signal_f) perc = scoreatpercentile(mean_norm_signal_f, 98) std = np.std(mean_norm_signal_f) mean_norm_signal_f = genomic_signal.hon_norm_atac(mean_norm_signal_f, perc, std) mean_norm_signal_r = genomic_signal.boyle_norm(mean_signal_r) perc = scoreatpercentile(mean_norm_signal_r, 98) std = np.std(mean_norm_signal_r) mean_norm_signal_r = genomic_signal.hon_norm_atac(mean_norm_signal_r, perc, std) mean_slope_signal_f = genomic_signal.slope(mean_norm_signal_f, genomic_signal.sg_coefs) mean_slope_signal_r = genomic_signal.slope(mean_norm_signal_r, genomic_signal.sg_coefs) # Output the norm and slope signal output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, mean_norm_signal_f))) + "\n") f.write("\t".join((map(str, mean_slope_signal_f))) + "\n") f.write("\t".join((map(str, mean_norm_signal_r))) + "\n") f.write("\t".join((map(str, mean_slope_signal_r))) + "\n") f.close() # Output PWM and create logo pwm_fname = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix)) pwm_file = open(pwm_fname, "w") for e in ["A", "C", "G", "T"]: pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n") pwm_file.close() logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)) pwm = motifs.read(open(pwm_fname), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False) start = -(args.window_size / 2) end = (args.window_size / 2) - 1 x = np.linspace(start, end, num=args.window_size) fig = plt.figure(figsize=(8, 4)) ax = fig.add_subplot(111) min_signal = min(min(mean_signal_f), min(mean_signal_r)) max_signal = max(max(mean_signal_f), max(mean_signal_r)) ax.plot(x, mean_signal_f, color='red', label='Forward') ax.plot(x, mean_signal_r, color='green', label='Reverse') ax.set_title(args.output_prefix, fontweight='bold') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_position(('outward', 15)) ax.tick_params(direction='out') ax.set_xticks([start, 0, end]) ax.set_xticklabels([str(start), 0, str(end)]) ax.set_yticks([min_signal, max_signal]) ax.set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax.set_xlim(start, end) ax.set_ylim([min_signal, max_signal]) ax.legend(loc="upper right", frameon=False) ax.spines['bottom'].set_position(('outward', 40)) figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(1.37, 0.89, logo_fname, width=18.5, height=1.75)) c.writeEPSfile(output_fname) os.system("epstopdf " + figure_name) os.system("epstopdf " + logo_fname) os.system("epstopdf " + output_fname) # os.remove(pwm_fname) os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.line.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix))) def unstrand_line(args): genomic_signal = GenomicSignal(args.reads_file) genomic_signal.load_sg_coefs(slope_window_size=9) table = None if args.bias_table is not None: bias_table = BiasTable() bias_table_list = args.bias_table.split(",") table = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) genome_data = GenomeData(args.organism) fasta = Fastafile(genome_data.get_genome()) num_sites = 0 mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(args.motif_file) bam = Samfile(args.reads_file, "rb") mean_signal = np.zeros(args.window_size) pwm_dict = None output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix)) with open(output_fname, "w") as output_f: for region in mpbs_regions: mid = (region.initial + region.final) / 2 p1 = mid - (args.window_size / 2) p2 = mid + (args.window_size / 2) if args.bias_table is not None: signal = genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift, strand=False) else: signal = genomic_signal.get_raw_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift, strand=False) if region.orientation == "-": signal = np.flip(signal) name = "{}_{}_{}".format(region.chrom, str(region.initial), str(region.final)) output_f.write(name + "\t" + "\t".join(map(str, map(int, signal))) + "\n") num_sites += 1 mean_signal = np.add(mean_signal, signal) # Update pwm if pwm_dict is None: pwm_dict = dict([("A", [0.0] * (p2 - p1)), ("C", [0.0] * (p2 - p1)), ("G", [0.0] * (p2 - p1)), ("T", [0.0] * (p2 - p1)), ("N", [0.0] * (p2 - p1))]) aux_plus = 1 dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper() if (region.final - region.initial) % 2 == 0: aux_plus = 0 dna_seq_rev = AuxiliaryFunctions.revcomp( str(fasta.fetch(region.chrom, p1 + aux_plus, p2 + aux_plus)).upper()) if region.orientation == "+": for i in range(0, len(dna_seq)): pwm_dict[dna_seq[i]][i] += 1 elif region.orientation == "-": for i in range(0, len(dna_seq_rev)): pwm_dict[dna_seq_rev[i]][i] += 1 mean_signal = mean_signal / num_sites # Output PWM and create logo pwm_fname = os.path.join(args.output_location, "{}.pwm".format(args.output_prefix)) pwm_file = open(pwm_fname, "w") for e in ["A", "C", "G", "T"]: pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n") pwm_file.close() logo_fname = os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix)) pwm = motifs.read(open(pwm_fname), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(args.window_size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False) start = -(args.window_size / 2) end = (args.window_size / 2) - 1 x = np.linspace(start, end, num=args.window_size) fig = plt.figure(figsize=(8, 4)) ax = fig.add_subplot(111) min_signal = min(mean_signal) max_signal = max(mean_signal) ax.plot(x, mean_signal, color='red') ax.set_title(args.output_prefix, fontweight='bold') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_position(('outward', 15)) ax.tick_params(direction='out') ax.set_xticks([start, 0, end]) ax.set_xticklabels([str(start), 0, str(end)]) ax.set_yticks([min_signal, max_signal]) ax.set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax.set_xlim(start, end) ax.set_ylim([min_signal, max_signal]) ax.legend(loc="upper right", frameon=False) ax.spines['bottom'].set_position(('outward', 40)) figure_name = os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(args.output_location, "{}.eps".format(args.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(1.31, 0.89, logo_fname, width=18.5, height=1.75)) c.writeEPSfile(output_fname) os.system("epstopdf " + figure_name) os.system("epstopdf " + logo_fname) os.system("epstopdf " + output_fname) os.remove(pwm_fname) os.remove(os.path.join(args.output_location, "{}.line.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.logo.eps".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.line.pdf".format(args.output_prefix))) # os.remove(os.path.join(args.output_location, "{}.logo.pdf".format(args.output_prefix))) os.remove(os.path.join(args.output_location, "{}.eps".format(args.output_prefix))) def fragment_size_raw_line(args): mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(args.motif_file) bam = Samfile(args.reads_file, "rb") signal_f_max_145 = np.zeros(args.window_size) signal_r_max_145 = np.zeros(args.window_size) signal_f_146_307 = np.zeros(args.window_size) signal_r_146_307 = np.zeros(args.window_size) signal_f_min_307 = np.zeros(args.window_size) signal_r_min_307 = np.zeros(args.window_size) signal_f = np.zeros(args.window_size) signal_r = np.zeros(args.window_size) for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": # Extend by 50 bp mid = (region.initial + region.final) / 2 p1 = mid - (args.window_size / 2) p2 = mid + (args.window_size / 2) # Fetch raw signal for read in bam.fetch(region.chrom, p1, p2): # All reads if not read.is_reverse: cut_site = read.pos + args.forward_shift if p1 <= cut_site < p2: signal_f[cut_site - p1] += 1.0 else: cut_site = read.aend + args.reverse_shift - 1 if p1 <= cut_site < p2: signal_r[cut_site - p1] += 1.0 # length <= 145 if abs(read.template_length) <= 145: if not read.is_reverse: cut_site = read.pos + args.forward_shift if p1 <= cut_site < p2: signal_f_max_145[cut_site - p1] += 1.0 else: cut_site = read.aend + args.reverse_shift - 1 if p1 <= cut_site < p2: signal_r_max_145[cut_site - p1] += 1.0 # length > 145 and <= 307 if 145 < abs(read.template_length) <= 307: if not read.is_reverse: cut_site = read.pos + args.forward_shift if p1 <= cut_site < p2: signal_f_146_307[cut_site - p1] += 1.0 else: cut_site = read.aend + args.reverse_shift - 1 if p1 <= cut_site < p2: signal_r_146_307[cut_site - p1] += 1.0 # length > 307 if abs(read.template_length) > 307: if not read.is_reverse: cut_site = read.pos + args.forward_shift if p1 <= cut_site < p2: signal_f_min_307[cut_site - p1] += 1.0 else: cut_site = read.aend + args.reverse_shift - 1 if p1 <= cut_site < p2: signal_r_min_307[cut_site - p1] += 1.0 # Output the norm and slope signal output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, signal_f))) + "\n") f.write("\t".join((map(str, signal_r))) + "\n") f.write("\t".join((map(str, signal_f_max_145))) + "\n") f.write("\t".join((map(str, signal_r_max_145))) + "\n") f.write("\t".join((map(str, signal_f_146_307))) + "\n") f.write("\t".join((map(str, signal_r_146_307))) + "\n") f.write("\t".join((map(str, signal_f_min_307))) + "\n") f.write("\t".join((map(str, signal_r_min_307))) + "\n") f.close() # find out the linker position pos_f_1, pos_r_1, pos_f_2, pos_r_2 = get_linkers_position(signal_f_146_307, signal_r_146_307, signal_f_min_307, signal_r_min_307) p1 = (pos_f_1 - pos_f_2) / 2 + pos_f_2 p2 = p1 + 180 p3 = args.window_size - p2 p4 = args.window_size - p1 fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(8, 8)) start = -(args.window_size / 2) end = (args.window_size / 2) - 1 x = np.linspace(start, end, num=args.window_size) x_ticks = [start, p1 - 500, p2 - 500, 0, p3 - 500, p4 - 500, end] update_axes_for_fragment_size_line(ax1, x, x_ticks, start, end, signal_f, signal_r, p1, p2, p3, p4) update_axes_for_fragment_size_line(ax2, x, x_ticks, start, end, signal_f_max_145, signal_r_max_145, p1, p2, p3, p4) update_axes_for_fragment_size_line(ax3, x, x_ticks, start, end, signal_f_146_307, signal_r_146_307, p1, p2, p3, p4) update_axes_for_fragment_size_line(ax4, x, x_ticks, start, end, signal_f_min_307, signal_r_min_307, p1, p2, p3, p4) figure_name = os.path.join(args.output_location, "{}.pdf".format(args.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="pdf", dpi=300) def fragment_size_bc_line(args): mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(args.motif_file) genomic_signal = GenomicSignal(args.reads_file) genomic_signal.load_sg_coefs(11) bam = Samfile(args.reads_file, "rb") genome_data = GenomeData(args.organism) fasta = Fastafile(genome_data.get_genome()) bias_table = BiasTable() bias_table_list = args.bias_table.split(",") table = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) signal_f_max_145 = np.zeros(args.window_size) signal_r_max_145 = np.zeros(args.window_size) signal_f_146_307 = np.zeros(args.window_size) signal_r_146_307 = np.zeros(args.window_size) signal_f_min_307 = np.zeros(args.window_size) signal_r_min_307 = np.zeros(args.window_size) signal_f = np.zeros(args.window_size) signal_r = np.zeros(args.window_size) for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": mid = (region.initial + region.final) / 2 p1 = mid - (args.window_size / 2) p2 = mid + (args.window_size / 2) # All reads signal_bc_f, signal_bc_r = \ genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift, min_length=None, max_length=None, strand=True) # length <= 145 signal_bc_max_145_f, signal_bc_max_145_r = \ genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift, min_length=None, max_length=145, strand=True) # length > 145 and <= 307 signal_bc_146_307_f, signal_bc_146_307_r = \ genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift, min_length=145, max_length=307, strand=True) # length > 307 signal_bc_min_307_f, signal_bc_min_307_r = \ genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=args.forward_shift, reverse_shift=args.reverse_shift, min_length=307, max_length=None, strand=True) signal_f = np.add(signal_f, np.array(signal_bc_f)) signal_r = np.add(signal_r, np.array(signal_bc_r)) signal_f_max_145 = np.add(signal_f_max_145, np.array(signal_bc_max_145_f)) signal_r_max_145 = np.add(signal_r_max_145, np.array(signal_bc_max_145_r)) signal_f_146_307 = np.add(signal_f_146_307, np.array(signal_bc_146_307_f)) signal_r_146_307 = np.add(signal_r_146_307, np.array(signal_bc_146_307_r)) signal_f_min_307 = np.add(signal_f_min_307, np.array(signal_bc_min_307_f)) signal_r_min_307 = np.add(signal_r_min_307, np.array(signal_bc_min_307_r)) # Output the norm and slope signal output_fname = os.path.join(args.output_location, "{}.txt".format(args.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, signal_f))) + "\n") f.write("\t".join((map(str, signal_r))) + "\n") f.write("\t".join((map(str, signal_f_max_145))) + "\n") f.write("\t".join((map(str, signal_r_max_145))) + "\n") f.write("\t".join((map(str, signal_f_146_307))) + "\n") f.write("\t".join((map(str, signal_r_146_307))) + "\n") f.write("\t".join((map(str, signal_f_min_307))) + "\n") f.write("\t".join((map(str, signal_r_min_307))) + "\n") f.close() # find out the linker position pos_f_1, pos_r_1, pos_f_2, pos_r_2 = get_linkers_position(signal_f_146_307, signal_r_146_307, signal_f_min_307, signal_r_min_307) p1 = (pos_f_1 - pos_f_2) / 2 + pos_f_2 p2 = p1 + 180 p3 = args.window_size - p2 p4 = args.window_size - p1 fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(8, 8)) start = -(args.window_size / 2) end = (args.window_size / 2) - 1 x = np.linspace(start, end, num=args.window_size) x_ticks = [start, p1 - 500, p2 - 500, 0, p3 - 500, p4 - 500, end] update_axes_for_fragment_size_line(ax1, x, x_ticks, start, end, signal_f, signal_r, p1, p2, p3, p4) update_axes_for_fragment_size_line(ax2, x, x_ticks, start, end, signal_f_max_145, signal_r_max_145, p1, p2, p3, p4) update_axes_for_fragment_size_line(ax3, x, x_ticks, start, end, signal_f_146_307, signal_r_146_307, p1, p2, p3, p4) update_axes_for_fragment_size_line(ax4, x, x_ticks, start, end, signal_f_min_307, signal_r_min_307, p1, p2, p3, p4) figure_name = os.path.join(args.output_location, "{}.pdf".format(args.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="pdf", dpi=300) def update_axes_for_fragment_size_line(ax, x, x_ticks, start, end, signal_f, signal_r, p1, p2, p3, p4): max_signal = max(max(signal_f), max(signal_r)) min_signal = min(min(signal_f), min(signal_r)) ax.plot(x, signal_f, color='red', label='Forward') ax.plot(x, signal_r, color='green', label='Reverse') ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_position(('outward', 15)) ax.tick_params(direction='out') ax.set_xticks(x_ticks) ax.set_xticklabels(map(str, x_ticks)) ax.set_xlim(start, end) ax.set_yticks([min_signal, max_signal]) ax.set_yticklabels([str(int(min_signal)), str(int(max_signal))], rotation=90) ax.set_ylim([min_signal, max_signal]) ax.legend().set_visible(False) f_1, r_1 = sum(signal_f[:p1]) / sum(signal_r), sum(signal_r[:p1]) / sum(signal_r) f_2, r_2 = sum(signal_f[p1:p2]) / sum(signal_r), sum(signal_r[p1:p2]) / sum(signal_r) f_3, r_3 = sum(signal_f[p2:500]) / sum(signal_r), sum(signal_r[p2:500]) / sum(signal_r) f_4, r_4 = sum(signal_f[500:p3]) / sum(signal_r), sum(signal_r[500:p3]) / sum(signal_r) f_5, r_5 = sum(signal_f[p3:p4]) / sum(signal_r), sum(signal_r[p3:p4]) / sum(signal_r) f_6, r_6 = sum(signal_f[p4:]) / sum(signal_r), sum(signal_r[p4:]) / sum(signal_r) text_x_1 = ((p1 - 0) / 2.0 + 0) / 1000 text_x_2 = ((p2 - p1) / 2.0 + p1) / 1000 text_x_3 = ((500 - p2) / 2.0 + p2) / 1000 text_x_4 = ((p3 - 500) / 2.0 + 500) / 1000 text_x_5 = ((p4 - p3) / 2.0 + p3) / 1000 text_x_6 = ((1000 - p4) / 2.0 + p4) / 1000 ax.text(text_x_1, 1.0, str(round(f_1, 2)), verticalalignment='center', color='red', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_1, 0.9, str(round(r_1, 2)), verticalalignment='center', color='green', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_2, 1.0, str(round(f_2, 2)), verticalalignment='center', color='red', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_2, 0.9, str(round(r_2, 2)), verticalalignment='center', color='green', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_3, 1.0, str(round(f_3, 2)), verticalalignment='center', color='red', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_3, 0.9, str(round(r_3, 2)), verticalalignment='center', color='green', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_4, 1.0, str(round(f_4, 2)), verticalalignment='center', color='red', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_4, 0.9, str(round(r_4, 2)), verticalalignment='center', color='green', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_5, 1.0, str(round(f_5, 2)), verticalalignment='center', color='red', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_5, 0.9, str(round(r_5, 2)), verticalalignment='center', color='green', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_6, 1.0, str(round(f_6, 2)), verticalalignment='center', color='red', horizontalalignment='center', transform=ax.transAxes, fontsize=12) ax.text(text_x_6, 0.9, str(round(r_6, 2)), verticalalignment='center', color='green', horizontalalignment='center', transform=ax.transAxes, fontsize=12) def get_linkers_position(signal_f_146_307, signal_r_146_307, signal_f_min_307, signal_r_min_307): smooth_signal_f_146_307 = savgol_filter(signal_f_146_307, window_length=51, polyorder=2) smooth_signal_r_146_307 = savgol_filter(signal_r_146_307, window_length=51, polyorder=2) smooth_signal_f_min_307 = savgol_filter(signal_f_min_307, window_length=51, polyorder=2) smooth_signal_r_min_307 = savgol_filter(signal_r_min_307, window_length=51, polyorder=2) position_f_1 = np.argmax(smooth_signal_f_146_307[:400]) position_f_2 = np.argmax(smooth_signal_f_min_307[:position_f_1]) position_r_1 = np.argmax(smooth_signal_r_146_307[600:]) + 600 position_r_2 = np.argmax(smooth_signal_r_min_307[position_r_1:]) + position_r_1 return position_f_1, position_r_1, position_f_2, position_r_2 def rescaling(vector): maxN = max(vector) minN = min(vector) return [(e - minN) / (maxN - minN) for e in vector] class Plot: def __init__(self, organism, reads_file, motif_file, window_size, downstream_ext, upstream_ext, forward_shift, reverse_shift, initial_clip, bias_table, k_nb, output_loc, output_prefix): self.organism = organism self.reads_file = reads_file self.motif_file = motif_file self.window_size = window_size self.downstream_ext = downstream_ext self.upstream_ext = upstream_ext self.forward_shift = forward_shift self.reverse_shift = reverse_shift self.initial_clip = initial_clip self.bias_table = bias_table self.k_nb = k_nb self.output_loc = output_loc self.output_prefix = output_prefix def line3(self, bias_table1, bias_table2): signal = GenomicSignal(self.reads_file) signal.load_sg_coefs(slope_window_size=9) bias_table = BiasTable() bias_table_list = bias_table1.split(",") table1 = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) bias_table = BiasTable() bias_table_list = bias_table2.split(",") table2 = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) genome_data = GenomeData(self.organism) fasta = Fastafile(genome_data.get_genome()) pwm_dict = dict([("A", [0.0] * self.window_size), ("C", [0.0] * self.window_size), ("G", [0.0] * self.window_size), ("T", [0.0] * self.window_size), ("N", [0.0] * self.window_size)]) num_sites = 0 mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(self.motif_file) bam = Samfile(self.reads_file, "rb") mean_signal_raw = np.zeros(self.window_size) mean_signal_bc1 = np.zeros(self.window_size) mean_signal_bc2 = np.zeros(self.window_size) for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": # Extend by window_size mid = (region.initial + region.final) / 2 p1 = mid - (self.window_size / 2) p2 = mid + (self.window_size / 2) signal_raw, signal_bc1 = \ self.get_signal3(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table1) signal_raw, signal_bc2 = \ self.get_signal3(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table2) num_sites += 1 mean_signal_raw = np.add(mean_signal_raw, np.array(signal_raw)) mean_signal_bc1 = np.add(mean_signal_bc1, np.array(signal_bc1)) mean_signal_bc2 = np.add(mean_signal_bc2, np.array(signal_bc2)) # Update pwm aux_plus = 1 dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper() if (region.final - region.initial) % 2 == 0: aux_plus = 0 dna_seq_rev = AuxiliaryFunctions.revcomp( str(fasta.fetch(region.chrom, p1 + aux_plus, p2 + aux_plus)).upper()) if region.orientation == "+": for i in range(0, len(dna_seq)): pwm_dict[dna_seq[i]][i] += 1 elif region.orientation == "-": for i in range(0, len(dna_seq_rev)): pwm_dict[dna_seq_rev[i]][i] += 1 mean_signal_raw = mean_signal_raw / num_sites mean_signal_bc1 = mean_signal_bc1 / num_sites mean_signal_bc2 = mean_signal_bc2 / num_sites mean_signal_raw = self.rescaling(mean_signal_raw) mean_signal_bc1 = self.rescaling(mean_signal_bc1) mean_signal_bc2 = self.rescaling(mean_signal_bc2) # Output the norm and slope signal output_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, mean_signal_raw))) + "\n") f.write("\t".join((map(str, mean_signal_bc1))) + "\n") f.write("\t".join((map(str, mean_signal_bc2))) + "\n") f.close() # Output PWM and create logo pwm_fname = os.path.join(self.output_loc, "{}.pwm".format(self.output_prefix)) pwm_file = open(pwm_fname, "w") for e in ["A", "C", "G", "T"]: pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n") pwm_file.close() logo_fname = os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix)) pwm = motifs.read(open(pwm_fname), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(self.window_size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False) fig, (ax1, ax2) = plt.subplots(2) start = -(self.window_size / 2) end = (self.window_size / 2) - 1 x = np.linspace(start, end, num=self.window_size) ############################################################ # bias signal per strand min_ = min(mean_signal_raw) max_ = max(mean_signal_raw) ax1.plot(x, mean_signal_raw, color='red') ax1.xaxis.set_ticks_position('bottom') ax1.yaxis.set_ticks_position('left') ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.spines['left'].set_position(('outward', 15)) ax1.spines['bottom'].set_position(('outward', 5)) ax1.tick_params(direction='out') ax1.set_xticks([start, 0, end]) ax1.set_xticklabels([str(start), 0, str(end)]) ax1.set_yticks([min_, max_]) ax1.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90) ax1.set_title(self.output_prefix, fontweight='bold') ax1.set_xlim(start, end) ax1.set_ylim([min_, max_]) ax1.legend(loc="upper right", frameon=False) ax1.set_ylabel("Raw Signal", rotation=90, fontweight='bold') #################################################################### ##################################################################### # Bias corrected, non-bias corrected (not strand specific) min_ = min(min(mean_signal_bc1), min(mean_signal_bc2)) max_ = max(max(mean_signal_bc1), max(mean_signal_bc2)) ax2.plot(x, mean_signal_bc1, color='red', label='VOM_8_NonNaked') ax2.plot(x, mean_signal_bc2, color='green', label='KMER_6_NonNaked') ax2.xaxis.set_ticks_position('bottom') ax2.yaxis.set_ticks_position('left') ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.spines['left'].set_position(('outward', 15)) ax2.tick_params(direction='out') ax2.set_xticks([start, 0, end]) ax2.set_xticklabels([str(start), 0, str(end)]) ax2.set_yticks([min_, max_]) ax2.set_yticklabels([str(round(min_, 2)), str(round(max_, 2))], rotation=90) ax2.set_xlim(start, end) ax2.set_ylim([min_, max_]) ax2.legend(loc="lower right", frameon=False) ax2.spines['bottom'].set_position(('outward', 40)) ax2.set_xlabel("Coordinates from Motif Center", fontweight='bold') ax2.set_ylabel("Bias Corrected Signal", rotation=90, fontweight='bold') ################################################################################### ############################################################################### # merge the above figures figure_name = os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(self.output_loc, "{}.eps".format(self.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(2.0, 1.39, logo_fname, width=13.8, height=1.75)) c.writeEPSfile(output_fname) os.system("epstopdf " + figure_name) os.system("epstopdf " + logo_fname) os.system("epstopdf " + output_fname) os.remove(pwm_fname) os.remove(os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.line.pdf".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.logo.pdf".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.eps".format(self.output_prefix))) def line4(self): genome_data = GenomeData(self.organism) fasta = Fastafile(genome_data.get_genome()) mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(self.motif_file) bam = Samfile(self.reads_file, "rb") pwm_dict = None signal_raw_f = None signal_raw_r = None num_sites = 0 for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": # Extend by 50 bp mid = (region.initial + region.final) / 2 p1 = mid - (self.window_size / 2) p2 = mid + (self.window_size / 2) # p1 = region.initial - (self.window_size / 2) # p2 = region.final + (self.window_size / 2) size = p2 - p1 if pwm_dict is None: pwm_dict = dict([("A", [0.0] * size), ("C", [0.0] * size), ("G", [0.0] * size), ("T", [0.0] * size), ("N", [0.0] * size)]) if signal_raw_f is None: signal_raw_f = np.zeros(size) if signal_raw_r is None: signal_raw_r = np.zeros(size) # Fetch raw signal for read in bam.fetch(region.chrom, p1, p2): if not read.is_reverse: cut_site = read.pos + self.forward_shift if p1 <= cut_site < p2: signal_raw_f[cut_site - p1] += 1.0 else: cut_site = read.aend + self.reverse_shift - 1 if p1 <= cut_site < p2: signal_raw_r[cut_site - p1] += 1.0 num_sites += 1 # Update pwm aux_plus = 1 dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper() if (region.final - region.initial) % 2 == 0: aux_plus = 0 dna_seq_rev = AuxiliaryFunctions.revcomp(str(fasta.fetch(region.chrom, p1 + aux_plus, p2 + aux_plus)).upper()) if region.orientation == "+": for i in range(0, len(dna_seq)): pwm_dict[dna_seq[i]][i] += 1 elif region.orientation == "-": for i in range(0, len(dna_seq_rev)): pwm_dict[dna_seq_rev[i]][i] += 1 # mean_signal_raw_f = self.rescaling(signal_raw_f) # mean_signal_raw_r = self.rescaling(signal_raw_r) mean_signal_raw_f = signal_raw_f mean_signal_raw_r = signal_raw_r # Output the norm and slope signal output_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, mean_signal_raw_f))) + "\n") f.write("\t".join((map(str, mean_signal_raw_r))) + "\n") f.close() # Output PWM and create logo pwm_fname = os.path.join(self.output_loc, "{}.pwm".format(self.output_prefix)) pwm_file = open(pwm_fname, "w") for e in ["A", "C", "G", "T"]: pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n") pwm_file.close() logo_fname = os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix)) pwm = motifs.read(open(pwm_fname), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False) start = -(size / 2) end = (size / 2) - 1 x = np.linspace(start, end, num=size) fig = plt.figure(figsize=(8, 4)) ax2 = fig.add_subplot(111) min_signal = min(min(mean_signal_raw_f), min(mean_signal_raw_r)) max_signal = max(max(mean_signal_raw_f), max(mean_signal_raw_r)) ax2.plot(x, mean_signal_raw_f, color='red', label='Forward') ax2.plot(x, mean_signal_raw_r, color='green', label='Reverse') ax2.xaxis.set_ticks_position('bottom') ax2.yaxis.set_ticks_position('left') ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.spines['left'].set_position(('outward', 15)) ax2.tick_params(direction='out') ax2.set_title(self.output_prefix, fontweight='bold') ax2.set_xticks([start, 0, end]) ax2.set_xticklabels([str(start), 0, str(end)]) ax2.set_yticks([min_signal, max_signal]) ax2.set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax2.set_xlim(start, end) ax2.set_ylim([min_signal, max_signal]) ax2.legend(loc="upper right", frameon=False) ax2.spines['bottom'].set_position(('outward', 40)) # ax2.set_xlabel("Coordinates from Motif Center", fontweight='bold') # ax2.set_ylabel("Average Signal", rotation=90, fontweight='bold') figure_name = os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(self.output_loc, "{}.eps".format(self.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(1.48, 0.92, logo_fname, width=18.5, height=1.75)) c.writeEPSfile(output_fname) os.system("epstopdf " + figure_name) os.system("epstopdf " + logo_fname) os.system("epstopdf " + output_fname) os.remove(pwm_fname) os.remove(os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.line.pdf".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.logo.pdf".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.eps".format(self.output_prefix))) def atac_dnase_bc_line(self, reads_file1, reads_file2, bias_table1, bias_table2): genome_data = GenomeData(self.organism) fasta = Fastafile(genome_data.get_genome()) pwm_dict = dict([("A", [0.0] * self.window_size), ("C", [0.0] * self.window_size), ("G", [0.0] * self.window_size), ("T", [0.0] * self.window_size), ("N", [0.0] * self.window_size)]) bias_table = BiasTable() bias_table_list = bias_table1.split(",") table1 = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) bias_table_list = bias_table2.split(",") table2 = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(self.motif_file) bam_atac = Samfile(reads_file1, "rb") bam_dnase = Samfile(reads_file2, "rb") mean_signal_atac = np.zeros(self.window_size) mean_signal_dnase = np.zeros(self.window_size) num_sites = 0 for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": # Extend by 50 bp mid = (region.initial + region.final) / 2 p1 = mid - (self.window_size / 2) p2 = mid + (self.window_size / 2) # Fetch raw signal signal_atac = self.get_bc_signal(ref=region.chrom, start=p1, end=p2, bam=bam_atac, fasta=fasta, bias_table=table1, forward_shift=5, reverse_shift=-4) signal_dnase = self.get_bc_signal(ref=region.chrom, start=p1, end=p2, bam=bam_dnase, fasta=fasta, bias_table=table2, forward_shift=0, reverse_shift=0) num_sites += 1 mean_signal_atac = np.add(mean_signal_atac, np.array(signal_atac)) mean_signal_dnase = np.add(mean_signal_dnase, np.array(signal_dnase)) # Update pwm aux_plus = 1 dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper() if (region.final - region.initial) % 2 == 0: aux_plus = 0 dna_seq_rev = AuxiliaryFunctions.revcomp(str(fasta.fetch(region.chrom, p1 + aux_plus, p2 + aux_plus)).upper()) if region.orientation == "+": for i in range(0, len(dna_seq)): pwm_dict[dna_seq[i]][i] += 1 elif region.orientation == "-": for i in range(0, len(dna_seq_rev)): pwm_dict[dna_seq_rev[i]][i] += 1 mean_signal_atac = self.rescaling(mean_signal_atac) mean_signal_dnase = self.rescaling(mean_signal_dnase) # Output the norm and slope signal output_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, mean_signal_atac))) + "\n") f.write("\t".join((map(str, mean_signal_dnase))) + "\n") f.close() # Output PWM and create logo pwm_fname = os.path.join(self.output_loc, "{}.pwm".format(self.output_prefix)) pwm_file = open(pwm_fname, "w") for e in ["A", "C", "G", "T"]: pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n") pwm_file.close() logo_fname = os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix)) pwm = motifs.read(open(pwm_fname), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(self.window_size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False) start = -(self.window_size / 2) end = (self.window_size / 2) - 1 x = np.linspace(start, end, num=self.window_size) fig = plt.figure(figsize=(8, 4)) ax2 = fig.add_subplot(111) min_signal = min(min(mean_signal_atac), min(mean_signal_dnase)) max_signal = max(max(mean_signal_atac), max(mean_signal_dnase)) ax2.plot(x, mean_signal_atac, color='red', label='ATAC-seq') ax2.plot(x, mean_signal_dnase, color='green', label='DNase-seq') ax2.xaxis.set_ticks_position('bottom') ax2.yaxis.set_ticks_position('left') ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.spines['left'].set_position(('outward', 15)) ax2.tick_params(direction='out') ax2.set_title(self.output_prefix, fontweight='bold') ax2.set_xticks([start, 0, end]) ax2.set_xticklabels([str(start), 0, str(end)]) ax2.set_yticks([min_signal, max_signal]) ax2.set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax2.set_xlim(start, end) ax2.set_ylim([min_signal, max_signal]) ax2.legend(loc="upper right", frameon=False) # ax2.legend(loc="lower right", frameon=False) ax2.spines['bottom'].set_position(('outward', 40)) figure_name = os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(self.output_loc, "{}.eps".format(self.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(1.51, 0.89, logo_fname, width=18.3, height=1.75)) c.writeEPSfile(output_fname) os.system("epstopdf " + figure_name) os.system("epstopdf " + logo_fname) os.system("epstopdf " + output_fname) os.remove(pwm_fname) os.remove(os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.line.pdf".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.logo.pdf".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.eps".format(self.output_prefix))) def get_bc_signal(self, ref, start, end, bam, fasta, bias_table, forward_shift, reverse_shift): # Parameters window = 50 defaultKmerValue = 1.0 # Initialization fBiasDict = bias_table[0] rBiasDict = bias_table[1] k_nb = len(fBiasDict.keys()[0]) p1 = start p2 = end p1_w = p1 - (window / 2) p2_w = p2 + (window / 2) p1_wk = p1_w - int(k_nb / 2.) p2_wk = p2_w + int(k_nb / 2.) currStr = str(fasta.fetch(ref, p1_wk, p2_wk - 1)).upper() currRevComp = AuxiliaryFunctions.revcomp(str(fasta.fetch(ref, p1_wk + 1, p2_wk)).upper()) # Iterating on sequence to create the bias signal signal_bias_f = [] signal_bias_r = [] for i in range(int(k_nb / 2.), len(currStr) - int(k_nb / 2) + 1): fseq = currStr[i - int(k_nb / 2.):i + int(k_nb / 2.)] rseq = currRevComp[len(currStr) - int(k_nb / 2.) - i:len(currStr) + int(k_nb / 2.) - i] try: signal_bias_f.append(fBiasDict[fseq]) except Exception: signal_bias_f.append(defaultKmerValue) try: signal_bias_r.append(rBiasDict[rseq]) except Exception: signal_bias_r.append(defaultKmerValue) # Raw counts signal_raw_f = [0.0] * (p2_w - p1_w) signal_raw_r = [0.0] * (p2_w - p1_w) for read in bam.fetch(ref, p1_w, p2_w): if not read.is_reverse: cut_site = read.pos + self.forward_shift if p1_w <= cut_site < p2_w: signal_raw_f[cut_site - p1_w] += 1.0 else: cut_site = read.aend + self.reverse_shift - 1 if p1_w <= cut_site < p2_w: signal_raw_r[cut_site - p1_w] += 1.0 # Smoothed counts Nf = [] Nr = [] fSum = sum(signal_raw_f[:window]) rSum = sum(signal_raw_r[:window]) fLast = signal_raw_f[0] rLast = signal_raw_r[0] for i in range((window / 2), len(signal_raw_f) - (window / 2)): Nf.append(fSum) Nr.append(rSum) fSum -= fLast fSum += signal_raw_f[i + (window / 2)] fLast = signal_raw_f[i - (window / 2) + 1] rSum -= rLast rSum += signal_raw_r[i + (window / 2)] rLast = signal_raw_r[i - (window / 2) + 1] # Calculating bias and writing to wig file fSum = sum(signal_bias_f[:window]) rSum = sum(signal_bias_r[:window]) fLast = signal_bias_f[0] rLast = signal_bias_r[0] signal_bc = [] for i in range((window / 2), len(signal_bias_f) - (window / 2)): nhatf = Nf[i - (window / 2)] * (signal_bias_f[i] / fSum) nhatr = Nr[i - (window / 2)] * (signal_bias_r[i] / rSum) signal_bc.append(nhatf + nhatr) fSum -= fLast fSum += signal_bias_f[i + (window / 2)] fLast = signal_bias_f[i - (window / 2) + 1] rSum -= rLast rSum += signal_bias_r[i + (window / 2)] rLast = signal_bias_r[i - (window / 2) + 1] return signal_bc def atac_dnase_raw_line(self, reads_file1, reads_file2): genome_data = GenomeData(self.organism) fasta = Fastafile(genome_data.get_genome()) pwm_dict = dict([("A", [0.0] * self.window_size), ("C", [0.0] * self.window_size), ("G", [0.0] * self.window_size), ("T", [0.0] * self.window_size), ("N", [0.0] * self.window_size)]) mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(self.motif_file) bam_atac = Samfile(reads_file1, "rb") bam_dnase = Samfile(reads_file2, "rb") mean_signal_atac = np.zeros(self.window_size) mean_signal_dnase = np.zeros(self.window_size) num_sites = 0 for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": # Extend by 50 bp mid = (region.initial + region.final) / 2 p1 = mid - (self.window_size / 2) p2 = mid + (self.window_size / 2) # Fetch raw signal for read in bam_atac.fetch(region.chrom, p1, p2): if not read.is_reverse: cut_site = read.pos + self.forward_shift if p1 <= cut_site < p2: mean_signal_atac[cut_site - p1] += 1.0 else: cut_site = read.aend + self.reverse_shift - 1 if p1 <= cut_site < p2: mean_signal_atac[cut_site - p1] += 1.0 # Fetch raw signal for read in bam_dnase.fetch(region.chrom, p1, p2): if not read.is_reverse: cut_site = read.pos if p1 <= cut_site < p2: mean_signal_dnase[cut_site - p1] += 1.0 else: cut_site = read.aend - 1 if p1 <= cut_site < p2: mean_signal_dnase[cut_site - p1] += 1.0 num_sites += 1 # Update pwm aux_plus = 1 dna_seq = str(fasta.fetch(region.chrom, p1, p2)).upper() if (region.final - region.initial) % 2 == 0: aux_plus = 0 dna_seq_rev = AuxiliaryFunctions.revcomp(str(fasta.fetch(region.chrom, p1 + aux_plus, p2 + aux_plus)).upper()) if region.orientation == "+": for i in range(0, len(dna_seq)): pwm_dict[dna_seq[i]][i] += 1 elif region.orientation == "-": for i in range(0, len(dna_seq_rev)): pwm_dict[dna_seq_rev[i]][i] += 1 mean_signal_atac = self.rescaling(mean_signal_atac) mean_signal_dnase = self.rescaling(mean_signal_dnase) # Output the norm and slope signal output_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, mean_signal_atac))) + "\n") f.write("\t".join((map(str, mean_signal_dnase))) + "\n") f.close() # Output PWM and create logo pwm_fname = os.path.join(self.output_loc, "{}.pwm".format(self.output_prefix)) pwm_file = open(pwm_fname, "w") for e in ["A", "C", "G", "T"]: pwm_file.write(" ".join([str(int(f)) for f in pwm_dict[e]]) + "\n") pwm_file.close() logo_fname = os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix)) pwm = motifs.read(open(pwm_fname), "pfm") pwm.weblogo(logo_fname, format="eps", stack_width="large", stacks_per_line=str(self.window_size), color_scheme="color_classic", unit_name="", show_errorbars=False, logo_title="", show_xaxis=False, xaxis_label="", show_yaxis=False, yaxis_label="", show_fineprint=False, show_ends=False) start = -(self.window_size / 2) end = (self.window_size / 2) - 1 x = np.linspace(start, end, num=self.window_size) fig = plt.figure(figsize=(8, 4)) ax2 = fig.add_subplot(111) min_signal = min(min(mean_signal_atac), min(mean_signal_dnase)) max_signal = max(max(mean_signal_atac), max(mean_signal_dnase)) ax2.plot(x, mean_signal_atac, color='red', label='ATAC-seq') ax2.plot(x, mean_signal_dnase, color='green', label='DNase-seq') ax2.xaxis.set_ticks_position('bottom') ax2.yaxis.set_ticks_position('left') ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.spines['left'].set_position(('outward', 15)) ax2.tick_params(direction='out') ax2.set_title(self.output_prefix, fontweight='bold') ax2.set_xticks([start, 0, end]) ax2.set_xticklabels([str(start), 0, str(end)]) ax2.set_yticks([min_signal, max_signal]) ax2.set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax2.set_xlim(start, end) ax2.set_ylim([min_signal, max_signal]) ax2.legend(loc="upper right", frameon=False) ax2.spines['bottom'].set_position(('outward', 40)) figure_name = os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="eps", dpi=300) # Creating canvas and printing eps / pdf with merged results output_fname = os.path.join(self.output_loc, "{}.eps".format(self.output_prefix)) c = pyx.canvas.canvas() c.insert(pyx.epsfile.epsfile(0, 0, figure_name, scale=1.0)) c.insert(pyx.epsfile.epsfile(1.51, 0.89, logo_fname, width=18.3, height=1.75)) c.writeEPSfile(output_fname) os.system("epstopdf " + figure_name) os.system("epstopdf " + logo_fname) os.system("epstopdf " + output_fname) os.remove(pwm_fname) os.remove(os.path.join(self.output_loc, "{}.line.eps".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.logo.eps".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.line.pdf".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.logo.pdf".format(self.output_prefix))) os.remove(os.path.join(self.output_loc, "{}.eps".format(self.output_prefix))) def fragment_size_raw_line(self): mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(self.motif_file) bam = Samfile(self.reads_file, "rb") signal_f_max_145 = np.zeros(self.window_size) signal_r_max_145 = np.zeros(self.window_size) signal_f_146_307 = np.zeros(self.window_size) signal_r_146_307 = np.zeros(self.window_size) signal_f_min_307 = np.zeros(self.window_size) signal_r_min_307 = np.zeros(self.window_size) signal_f = np.zeros(self.window_size) signal_r = np.zeros(self.window_size) for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": # Extend by 50 bp mid = (region.initial + region.final) / 2 p1 = mid - (self.window_size / 2) p2 = mid + (self.window_size / 2) # Fetch raw signal for read in bam.fetch(region.chrom, p1, p2): # All reads if not read.is_reverse: cut_site = read.pos + self.forward_shift if p1 <= cut_site < p2: signal_f[cut_site - p1] += 1.0 else: cut_site = read.aend + self.reverse_shift - 1 if p1 <= cut_site < p2: signal_r[cut_site - p1] += 1.0 # length <= 145 if abs(read.template_length) <= 145: if not read.is_reverse: cut_site = read.pos + self.forward_shift if p1 <= cut_site < p2: signal_f_max_145[cut_site - p1] += 1.0 else: cut_site = read.aend + self.reverse_shift - 1 if p1 <= cut_site < p2: signal_r_max_145[cut_site - p1] += 1.0 # length > 145 and <= 307 if 145 < abs(read.template_length) <= 307: if not read.is_reverse: cut_site = read.pos + self.forward_shift if p1 <= cut_site < p2: signal_f_146_307[cut_site - p1] += 1.0 else: cut_site = read.aend + self.reverse_shift - 1 if p1 <= cut_site < p2: signal_r_146_307[cut_site - p1] += 1.0 # length > 307 if abs(read.template_length) > 307: if not read.is_reverse: cut_site = read.pos + self.forward_shift if p1 <= cut_site < p2: signal_f_min_307[cut_site - p1] += 1.0 else: cut_site = read.aend + self.reverse_shift - 1 if p1 <= cut_site < p2: signal_r_min_307[cut_site - p1] += 1.0 # Output the norm and slope signal output_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, signal_f))) + "\n") f.write("\t".join((map(str, signal_r))) + "\n") f.write("\t".join((map(str, signal_f_max_145))) + "\n") f.write("\t".join((map(str, signal_r_max_145))) + "\n") f.write("\t".join((map(str, signal_f_146_307))) + "\n") f.write("\t".join((map(str, signal_r_146_307))) + "\n") f.write("\t".join((map(str, signal_f_min_307))) + "\n") f.write("\t".join((map(str, signal_r_min_307))) + "\n") f.close() # find out the linker position pos_f_1, pos_r_1, pos_f_2, pos_r_2 = self.get_linkers_position(signal_f_146_307, signal_r_146_307, signal_f_min_307, signal_r_min_307) p1 = (pos_f_1 - pos_f_2) / 2 + pos_f_2 p2 = p1 + 180 p3 = self.window_size - p2 p4 = self.window_size - p1 fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(8, 8)) start = -(self.window_size / 2) end = (self.window_size / 2) - 1 x = np.linspace(start, end, num=self.window_size) x_ticks = [start, p1 - 500, p2 - 500, 0, p3 - 500, p4 - 500, end] self.update_axes_for_fragment_size_line(ax1, x, x_ticks, start, end, signal_f, signal_r, p1, p2, p3, p4) self.update_axes_for_fragment_size_line(ax2, x, x_ticks, start, end, signal_f_max_145, signal_r_max_145, p1, p2, p3, p4) self.update_axes_for_fragment_size_line(ax3, x, x_ticks, start, end, signal_f_146_307, signal_r_146_307, p1, p2, p3, p4) self.update_axes_for_fragment_size_line(ax4, x, x_ticks, start, end, signal_f_min_307, signal_r_min_307, p1, p2, p3, p4) figure_name = os.path.join(self.output_loc, "{}.pdf".format(self.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="pdf", dpi=300) def fragment_size_bc_line(self, bias_table_files): mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(self.motif_file) genomic_signal = GenomicSignal(self.reads_file) genomic_signal.load_sg_coefs(11) bam = Samfile(self.reads_file, "rb") genome_data = GenomeData(self.organism) fasta = Fastafile(genome_data.get_genome()) bias_table = BiasTable() bias_table_list = bias_table_files.split(",") table = bias_table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) signal_f_max_145 = np.zeros(self.window_size) signal_r_max_145 = np.zeros(self.window_size) signal_f_146_307 = np.zeros(self.window_size) signal_r_146_307 = np.zeros(self.window_size) signal_f_min_307 = np.zeros(self.window_size) signal_r_min_307 = np.zeros(self.window_size) signal_f = np.zeros(self.window_size) signal_r = np.zeros(self.window_size) for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": mid = (region.initial + region.final) / 2 p1 = mid - (self.window_size / 2) p2 = mid + (self.window_size / 2) # All reads signal_bc_f, signal_bc_r = \ genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=None, max_length=None, strand=True) # length <= 145 signal_bc_max_145_f, signal_bc_max_145_r = \ genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=None, max_length=145, strand=True) # length > 145 and <= 307 signal_bc_146_307_f, signal_bc_146_307_r = \ genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=145, max_length=307, strand=True) # length > 307 signal_bc_min_307_f, signal_bc_min_307_r = \ genomic_signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=307, max_length=None, strand=True) signal_f = np.add(signal_f, np.array(signal_bc_f)) signal_r = np.add(signal_r, np.array(signal_bc_r)) signal_f_max_145 = np.add(signal_f_max_145, np.array(signal_bc_max_145_f)) signal_r_max_145 = np.add(signal_r_max_145, np.array(signal_bc_max_145_r)) signal_f_146_307 = np.add(signal_f_146_307, np.array(signal_bc_146_307_f)) signal_r_146_307 = np.add(signal_r_146_307, np.array(signal_bc_146_307_r)) signal_f_min_307 = np.add(signal_f_min_307, np.array(signal_bc_min_307_f)) signal_r_min_307 = np.add(signal_r_min_307, np.array(signal_bc_min_307_r)) # Output the norm and slope signal output_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, signal_f))) + "\n") f.write("\t".join((map(str, signal_r))) + "\n") f.write("\t".join((map(str, signal_f_max_145))) + "\n") f.write("\t".join((map(str, signal_r_max_145))) + "\n") f.write("\t".join((map(str, signal_f_146_307))) + "\n") f.write("\t".join((map(str, signal_r_146_307))) + "\n") f.write("\t".join((map(str, signal_f_min_307))) + "\n") f.write("\t".join((map(str, signal_r_min_307))) + "\n") f.close() # find out the linker position pos_f_1, pos_r_1, pos_f_2, pos_r_2 = self.get_linkers_position(signal_f_146_307, signal_r_146_307, signal_f_min_307, signal_r_min_307) p1 = (pos_f_1 - pos_f_2) / 2 + pos_f_2 p2 = p1 + 180 p3 = self.window_size - p2 p4 = self.window_size - p1 fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(8, 8)) start = -(self.window_size / 2) end = (self.window_size / 2) - 1 x = np.linspace(start, end, num=self.window_size) x_ticks = [start, p1 - 500, p2 - 500, 0, p3 - 500, p4 - 500, end] self.update_axes_for_fragment_size_line(ax1, x, x_ticks, start, end, signal_f, signal_r, p1, p2, p3, p4) self.update_axes_for_fragment_size_line(ax2, x, x_ticks, start, end, signal_f_max_145, signal_r_max_145, p1, p2, p3, p4) self.update_axes_for_fragment_size_line(ax3, x, x_ticks, start, end, signal_f_146_307, signal_r_146_307, p1, p2, p3, p4) self.update_axes_for_fragment_size_line(ax4, x, x_ticks, start, end, signal_f_min_307, signal_r_min_307, p1, p2, p3, p4) figure_name = os.path.join(self.output_loc, "{}.pdf".format(self.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="pdf", dpi=300) def slope_of_reads_number(self): genome_data = GenomeData(self.organism) mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(self.motif_file) bam = Samfile(self.reads_file, "rb") signal_f_146_307 = np.zeros(self.window_size) signal_r_146_307 = np.zeros(self.window_size) signal_f_min_307 = np.zeros(self.window_size) signal_r_min_307 = np.zeros(self.window_size) for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": # Extend by 50 bp mid = (region.initial + region.final) / 2 p1 = mid - (self.window_size / 2) p2 = mid + (self.window_size / 2) # Fetch raw signal for read in bam.fetch(region.chrom, p1, p2): # length > 145 and <= 307 if 145 < abs(read.template_length) <= 307: if not read.is_reverse: cut_site = read.pos + self.forward_shift if p1 <= cut_site < p2: signal_f_146_307[cut_site - p1] += 1.0 else: cut_site = read.aend + self.reverse_shift - 1 if p1 <= cut_site < p2: signal_r_146_307[cut_site - p1] += 1.0 # length > 307 if abs(read.template_length) > 307: if not read.is_reverse: cut_site = read.pos + self.forward_shift if p1 <= cut_site < p2: signal_f_min_307[cut_site - p1] += 1.0 else: cut_site = read.aend + self.reverse_shift - 1 if p1 <= cut_site < p2: signal_r_min_307[cut_site - p1] += 1.0 # Apply a Savitzky-Golay filter to an array. smooth_signal_f_146_307 = savgol_filter(signal_f_146_307, window_length=51, polyorder=2) smooth_signal_r_146_307 = savgol_filter(signal_r_146_307, window_length=51, polyorder=2) smooth_signal_f_min_307 = savgol_filter(signal_f_min_307, window_length=51, polyorder=2) smooth_signal_r_min_307 = savgol_filter(signal_r_min_307, window_length=51, polyorder=2) # Output the norm and slope signal output_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix)) f = open(output_fname, "w") f.write("\t".join((map(str, signal_f_146_307))) + "\n") f.write("\t".join((map(str, signal_r_146_307))) + "\n") f.write("\t".join((map(str, smooth_signal_f_146_307))) + "\n") f.write("\t".join((map(str, smooth_signal_r_146_307))) + "\n") f.write("\t".join((map(str, signal_f_min_307))) + "\n") f.write("\t".join((map(str, signal_r_min_307))) + "\n") f.write("\t".join((map(str, smooth_signal_f_min_307))) + "\n") f.write("\t".join((map(str, smooth_signal_r_min_307))) + "\n") f.close() start = -(self.window_size / 2) end = (self.window_size / 2) - 1 x = np.linspace(start, end, num=self.window_size) fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(8, 8)) min_signal = min(min(signal_f_146_307), min(signal_r_146_307)) max_signal = max(max(signal_f_146_307), max(signal_r_146_307)) ax1.plot(x, signal_f_146_307, color='red', label='Forward') ax1.plot(x, signal_r_146_307, color='green', label='Reverse') ax1.xaxis.set_ticks_position('bottom') ax1.yaxis.set_ticks_position('left') ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.spines['left'].set_position(('outward', 15)) ax1.tick_params(direction='out') ax1.set_title("Raw reads number of 1N", fontweight='bold') ax1.set_xticks([start, 0, end]) ax1.set_xticklabels([str(start), 0, str(end)]) ax1.set_yticks([min_signal, max_signal]) ax1.set_yticklabels([str(int(min_signal)), str(int(max_signal))], rotation=90) ax1.set_xlim(start, end) ax1.set_ylim([min_signal, max_signal]) min_signal = min(min(smooth_signal_f_146_307), min(smooth_signal_r_146_307)) max_signal = max(max(smooth_signal_f_146_307), max(smooth_signal_r_146_307)) ax2.plot(x, smooth_signal_f_146_307, color='red', label='Forward') ax2.plot(x, smooth_signal_r_146_307, color='green', label='Reverse') ax2.xaxis.set_ticks_position('bottom') ax2.yaxis.set_ticks_position('left') ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.spines['left'].set_position(('outward', 15)) ax2.tick_params(direction='out') ax2.set_title("Smooth reads number of 1N", fontweight='bold') ax2.set_yticks([min_signal, max_signal]) ax2.set_yticklabels([str(int(min_signal)), str(int(max_signal))], rotation=90) ax2.set_xlim(start, end) ax2.set_ylim([min_signal, max_signal]) id_max_f_1 = np.argmax(smooth_signal_f_146_307[:500]) - 500 id_max_r_1 = np.argmax(smooth_signal_r_146_307[500:]) ax2.axvline(x=id_max_f_1) ax2.axvline(x=id_max_r_1) x_tick_labels = [str(start), str(id_max_f_1), 0, str(id_max_r_1), str(end)] ax2.set_xticks(map(int, x_tick_labels)) ax2.set_xticklabels(x_tick_labels, rotation=90) min_signal = min(min(signal_f_min_307), min(signal_r_min_307)) max_signal = max(max(signal_f_min_307), max(signal_r_min_307)) ax3.plot(x, signal_f_min_307, color='red', label='Forward') ax3.plot(x, signal_r_min_307, color='green', label='Reverse') ax3.xaxis.set_ticks_position('bottom') ax3.yaxis.set_ticks_position('left') ax3.spines['top'].set_visible(False) ax3.spines['right'].set_visible(False) ax3.spines['left'].set_position(('outward', 15)) ax3.tick_params(direction='out') ax3.set_title("Raw reads number of +2N", fontweight='bold') ax3.set_xticks([start, 0, end]) ax3.set_xticklabels([str(start), 0, str(end)]) ax3.set_yticks([min_signal, max_signal]) ax3.set_yticklabels([str(int(min_signal)), str(int(max_signal))], rotation=90) ax3.set_xlim(start, end) ax3.set_ylim([min_signal, max_signal]) min_signal = min(min(smooth_signal_f_min_307), min(smooth_signal_r_min_307)) max_signal = max(max(smooth_signal_f_min_307), max(smooth_signal_r_min_307)) ax4.plot(x, smooth_signal_f_min_307, color='red', label='Forward') ax4.plot(x, smooth_signal_r_min_307, color='green', label='Reverse') ax4.xaxis.set_ticks_position('bottom') ax4.yaxis.set_ticks_position('left') ax4.spines['top'].set_visible(False) ax4.spines['right'].set_visible(False) ax4.spines['left'].set_position(('outward', 15)) ax4.tick_params(direction='out') ax4.set_title("Smooth reads number of +2N", fontweight='bold') ax4.set_yticks([min_signal, max_signal]) ax4.set_yticklabels([str(int(min_signal)), str(int(max_signal))], rotation=90) ax4.set_xlim(start, end) ax4.set_ylim([min_signal, max_signal]) id_max_f = np.argmax(smooth_signal_f_146_307[:500]) id_max_r = np.argmax(smooth_signal_r_146_307[500:]) + 500 id_max_f_2 = np.argmax(smooth_signal_f_min_307[:id_max_f]) - 500 id_max_r_2 = np.argmax(smooth_signal_r_min_307[id_max_r:]) + id_max_r - 500 ax4.axvline(x=id_max_f_2) ax4.axvline(x=id_max_r_2) x_tick_labels = [str(start), str(id_max_f_2), 0, str(id_max_r_2), str(end)] ax4.set_xticks(map(int, x_tick_labels)) ax4.set_xticklabels(x_tick_labels, rotation=90) figure_name = os.path.join(self.output_loc, "{}.pdf".format(self.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="pdf", dpi=300) def strand_line_by_size(self, bias_tables): genome_data = GenomeData(self.organism) fasta = Fastafile(genome_data.get_genome()) mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(self.motif_file) bam = Samfile(self.reads_file, "rb") table = BiasTable() bias_table_list = bias_tables.split(",") bias_table = table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) signal = GenomicSignal() signal.load_sg_coefs(9) signal_bc_f_max_145 = np.zeros(self.window_size) signal_bc_r_max_145 = np.zeros(self.window_size) signal_bc_f_min_145 = np.zeros(self.window_size) signal_bc_r_min_145 = np.zeros(self.window_size) signal_bc_f_145_307 = np.zeros(self.window_size) signal_bc_r_145_307 = np.zeros(self.window_size) signal_bc_f_min_307 = np.zeros(self.window_size) signal_bc_r_min_307 = np.zeros(self.window_size) signal_bc_f_307_500 = np.zeros(self.window_size) signal_bc_r_307_500 = np.zeros(self.window_size) signal_bc_f_min_500 = np.zeros(self.window_size) signal_bc_r_min_500 = np.zeros(self.window_size) signal_bc_f = np.zeros(self.window_size) signal_bc_r = np.zeros(self.window_size) signal_bc = np.zeros(self.window_size) for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": mid = (region.initial + region.final) / 2 p1 = mid - (self.window_size / 2) p2 = mid + (self.window_size / 2) bc_f_max_145, bc_r_max_145 = \ signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=bias_table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=None, max_length=145, strand=True) bc_f_min_145, bc_r_min_145 = \ signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=bias_table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=145, max_length=None, strand=True) bc_f_145_307, bc_r_145_307 = \ signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=bias_table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=145, max_length=307, strand=True) bc_f_min_307, bc_r_min_307 = \ signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=bias_table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=307, max_length=None, strand=True) bc_f_307_500, bc_r_307_500 = \ signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=bias_table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=307, max_length=500, strand=True) bc_f_min_500, bc_r_min_500 = \ signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=bias_table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=500, max_length=None, strand=True) bc_f, bc_r = \ signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=bias_table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=None, max_length=None, strand=True) bc = \ signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=bias_table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=None, max_length=None, strand=False) signal_bc_f_max_145 = np.add(signal_bc_f_max_145, bc_f_max_145) signal_bc_r_max_145 = np.add(signal_bc_r_max_145, bc_r_max_145) signal_bc_f_min_145 = np.add(signal_bc_f_min_145, bc_f_min_145) signal_bc_r_min_145 = np.add(signal_bc_r_min_145, bc_r_min_145) signal_bc_f_145_307 = np.add(signal_bc_f_145_307, bc_f_145_307) signal_bc_r_145_307 = np.add(signal_bc_r_145_307, bc_r_145_307) signal_bc_f_min_307 = np.add(signal_bc_f_min_307, bc_f_min_307) signal_bc_r_min_307 = np.add(signal_bc_r_min_307, bc_r_min_307) signal_bc_f_307_500 = np.add(signal_bc_f_307_500, bc_f_307_500) signal_bc_r_307_500 = np.add(signal_bc_r_307_500, bc_r_307_500) signal_bc_f_min_500 = np.add(signal_bc_f_min_500, bc_f_min_500) signal_bc_r_min_500 = np.add(signal_bc_r_min_500, bc_r_min_500) signal_bc_f = np.add(signal_bc_f, bc_f) signal_bc_r = np.add(signal_bc_r, bc_r) signal_bc = np.add(signal_bc, bc) # Pre-process signal signal_bc = signal.boyle_norm(signal_bc) perc = scoreatpercentile(signal_bc, 98) std = np.array(signal_bc).std() signal_bc = signal.hon_norm_atac(signal_bc, perc, std) signal_bc_slope = signal.slope(signal_bc, signal.sg_coefs) signal_bc_f = signal.boyle_norm(signal_bc_f) perc = scoreatpercentile(signal_bc_f, 98) std = np.array(signal_bc_f).std() signal_bc_f = signal.hon_norm_atac(signal_bc_f, perc, std) signal_bc_f_slope = signal.slope(signal_bc_f, signal.sg_coefs) signal_bc_r = signal.boyle_norm(signal_bc_r) perc = scoreatpercentile(signal_bc_r, 98) std = np.array(signal_bc_r).std() signal_bc_r = signal.hon_norm_atac(signal_bc_r, perc, std) signal_bc_r_slope = signal.slope(signal_bc_r, signal.sg_coefs) # Output the norm and slope signal output_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix)) with open(output_fname, "w") as f: f.write("\t".join((map(str, signal_bc_f))) + "\n") f.write("\t".join((map(str, signal_bc_f_slope))) + "\n") f.write("\t".join((map(str, signal_bc_r))) + "\n") f.write("\t".join((map(str, signal_bc_r_slope))) + "\n") # Output signal of class a signal_bc_f_max_145 = signal.boyle_norm(signal_bc_f_max_145) perc = scoreatpercentile(signal_bc_f_max_145, 98) std = np.array(signal_bc_f_max_145).std() signal_bc_f_max_145 = signal.hon_norm_atac(signal_bc_f_max_145, perc, std) signal_bc_f_max_145_slope = signal.slope(signal_bc_f_max_145, signal.sg_coefs) signal_bc_r_max_145 = signal.boyle_norm(signal_bc_r_max_145) perc = scoreatpercentile(signal_bc_r_max_145, 98) std = np.array(signal_bc_r_max_145).std() signal_bc_r_max_145 = signal.hon_norm_atac(signal_bc_r_max_145, perc, std) signal_bc_r_max_145_slope = signal.slope(signal_bc_r_max_145, signal.sg_coefs) output_fname = os.path.join(self.output_loc, "{}_a.txt".format(self.output_prefix)) with open(output_fname, "w") as f: f.write("\t".join((map(str, signal_bc_f_max_145))) + "\n") f.write("\t".join((map(str, signal_bc_f_max_145_slope))) + "\n") f.write("\t".join((map(str, signal_bc_r_max_145))) + "\n") f.write("\t".join((map(str, signal_bc_r_max_145_slope))) + "\n") # Output signal of class b signal_bc_f_min_145 = signal.boyle_norm(signal_bc_f_min_145) perc = scoreatpercentile(signal_bc_f_min_145, 98) std = np.array(signal_bc_f_min_145).std() signal_bc_f_min_145 = signal.hon_norm_atac(signal_bc_f_min_145, perc, std) signal_bc_f_min_145_slope = signal.slope(signal_bc_f_min_145, signal.sg_coefs) signal_bc_r_min_145 = signal.boyle_norm(signal_bc_r_min_145) perc = scoreatpercentile(signal_bc_r_min_145, 98) std = np.array(signal_bc_r_min_145).std() signal_bc_r_min_145 = signal.hon_norm_atac(signal_bc_r_min_145, perc, std) signal_bc_r_min_145_slope = signal.slope(signal_bc_r_min_145, signal.sg_coefs) output_fname = os.path.join(self.output_loc, "{}_b.txt".format(self.output_prefix)) with open(output_fname, "w") as f: f.write("\t".join((map(str, signal_bc_f_max_145))) + "\n") f.write("\t".join((map(str, signal_bc_f_max_145_slope))) + "\n") f.write("\t".join((map(str, signal_bc_r_max_145))) + "\n") f.write("\t".join((map(str, signal_bc_r_max_145_slope))) + "\n") f.write("\t".join((map(str, signal_bc_f_min_145))) + "\n") f.write("\t".join((map(str, signal_bc_f_min_145_slope))) + "\n") f.write("\t".join((map(str, signal_bc_r_min_145))) + "\n") f.write("\t".join((map(str, signal_bc_r_min_145_slope))) + "\n") # Output signal of class c signal_bc_f_145_307 = signal.boyle_norm(signal_bc_f_145_307) perc = scoreatpercentile(signal_bc_f_145_307, 98) std = np.array(signal_bc_f_145_307).std() signal_bc_f_145_307 = signal.hon_norm_atac(signal_bc_f_145_307, perc, std) signal_bc_f_145_307_slope = signal.slope(signal_bc_f_145_307, signal.sg_coefs) signal_bc_r_145_307 = signal.boyle_norm(signal_bc_r_145_307) perc = scoreatpercentile(signal_bc_r_145_307, 98) std = np.array(signal_bc_r_145_307).std() signal_bc_r_145_307 = signal.hon_norm_atac(signal_bc_r_145_307, perc, std) signal_bc_r_145_307_slope = signal.slope(signal_bc_r_145_307, signal.sg_coefs) output_fname = os.path.join(self.output_loc, "{}_c.txt".format(self.output_prefix)) with open(output_fname, "w") as f: f.write("\t".join((map(str, signal_bc_f_max_145))) + "\n") f.write("\t".join((map(str, signal_bc_f_max_145_slope))) + "\n") f.write("\t".join((map(str, signal_bc_r_max_145))) + "\n") f.write("\t".join((map(str, signal_bc_r_max_145_slope))) + "\n") f.write("\t".join((map(str, signal_bc_f_145_307))) + "\n") f.write("\t".join((map(str, signal_bc_f_145_307_slope))) + "\n") f.write("\t".join((map(str, signal_bc_r_145_307))) + "\n") f.write("\t".join((map(str, signal_bc_r_145_307_slope))) + "\n") # Output signal of class d signal_bc_f_min_307 = signal.boyle_norm(signal_bc_f_min_307) perc = scoreatpercentile(signal_bc_f_min_307, 98) std = np.array(signal_bc_f_min_307).std() signal_bc_f_min_307 = signal.hon_norm_atac(signal_bc_f_min_307, perc, std) signal_bc_f_min_307_slope = signal.slope(signal_bc_f_min_307, signal.sg_coefs) signal_bc_r_min_307 = signal.boyle_norm(signal_bc_r_min_307) perc = scoreatpercentile(signal_bc_r_min_307, 98) std = np.array(signal_bc_r_min_307).std() signal_bc_r_min_307 = signal.hon_norm_atac(signal_bc_r_min_307, perc, std) signal_bc_r_min_307_slope = signal.slope(signal_bc_r_min_307, signal.sg_coefs) output_fname = os.path.join(self.output_loc, "{}_d.txt".format(self.output_prefix)) with open(output_fname, "w") as f: f.write("\t".join((map(str, signal_bc_f_max_145))) + "\n") f.write("\t".join((map(str, signal_bc_f_max_145_slope))) + "\n") f.write("\t".join((map(str, signal_bc_r_max_145))) + "\n") f.write("\t".join((map(str, signal_bc_r_max_145_slope))) + "\n") f.write("\t".join((map(str, signal_bc_f_145_307))) + "\n") f.write("\t".join((map(str, signal_bc_f_145_307_slope))) + "\n") f.write("\t".join((map(str, signal_bc_r_145_307))) + "\n") f.write("\t".join((map(str, signal_bc_r_145_307_slope))) + "\n") f.write("\t".join((map(str, signal_bc_f_min_307))) + "\n") f.write("\t".join((map(str, signal_bc_f_min_307_slope))) + "\n") f.write("\t".join((map(str, signal_bc_r_min_307))) + "\n") f.write("\t".join((map(str, signal_bc_r_min_307_slope))) + "\n") # Output signal of class e signal_bc_f_307_500 = signal.boyle_norm(signal_bc_f_307_500) perc = scoreatpercentile(signal_bc_f_307_500, 98) std = np.array(signal_bc_f_307_500).std() signal_bc_f_307_500 = signal.hon_norm_atac(signal_bc_f_307_500, perc, std) signal_bc_f_307_500_slope = signal.slope(signal_bc_f_307_500, signal.sg_coefs) signal_bc_r_307_500 = signal.boyle_norm(signal_bc_r_307_500) perc = scoreatpercentile(signal_bc_r_307_500, 98) std = np.array(signal_bc_r_307_500).std() signal_bc_r_307_500 = signal.hon_norm_atac(signal_bc_r_307_500, perc, std) signal_bc_r_307_500_slope = signal.slope(signal_bc_r_307_500, signal.sg_coefs) output_fname = os.path.join(self.output_loc, "{}_e.txt".format(self.output_prefix)) with open(output_fname, "w") as f: f.write("\t".join((map(str, signal_bc_f_max_145))) + "\n") f.write("\t".join((map(str, signal_bc_f_max_145_slope))) + "\n") f.write("\t".join((map(str, signal_bc_r_max_145))) + "\n") f.write("\t".join((map(str, signal_bc_r_max_145_slope))) + "\n") f.write("\t".join((map(str, signal_bc_f_145_307))) + "\n") f.write("\t".join((map(str, signal_bc_f_145_307_slope))) + "\n") f.write("\t".join((map(str, signal_bc_r_145_307))) + "\n") f.write("\t".join((map(str, signal_bc_r_145_307_slope))) + "\n") f.write("\t".join((map(str, signal_bc_f_307_500))) + "\n") f.write("\t".join((map(str, signal_bc_f_307_500_slope))) + "\n") f.write("\t".join((map(str, signal_bc_r_307_500))) + "\n") f.write("\t".join((map(str, signal_bc_r_307_500_slope))) + "\n") # Output signal of class f signal_bc_f_min_500 = signal.boyle_norm(signal_bc_f_min_500) perc = scoreatpercentile(signal_bc_f_min_500, 98) std = np.array(signal_bc_f_min_500).std() signal_bc_f_min_500 = signal.hon_norm_atac(signal_bc_f_min_500, perc, std) signal_bc_f_min_500_slope = signal.slope(signal_bc_f_min_500, signal.sg_coefs) signal_bc_r_min_500 = signal.boyle_norm(signal_bc_r_min_500) perc = scoreatpercentile(signal_bc_r_min_500, 98) std = np.array(signal_bc_r_min_500).std() signal_bc_r_min_500 = signal.hon_norm_atac(signal_bc_r_min_500, perc, std) signal_bc_r_min_500_slope = signal.slope(signal_bc_r_min_500, signal.sg_coefs) output_fname = os.path.join(self.output_loc, "{}_f.txt".format(self.output_prefix)) with open(output_fname, "w") as f: f.write("\t".join((map(str, signal_bc_f_max_145))) + "\n") f.write("\t".join((map(str, signal_bc_f_max_145_slope))) + "\n") f.write("\t".join((map(str, signal_bc_r_max_145))) + "\n") f.write("\t".join((map(str, signal_bc_r_max_145_slope))) + "\n") f.write("\t".join((map(str, signal_bc_f_145_307))) + "\n") f.write("\t".join((map(str, signal_bc_f_145_307_slope))) + "\n") f.write("\t".join((map(str, signal_bc_r_145_307))) + "\n") f.write("\t".join((map(str, signal_bc_r_145_307_slope))) + "\n") f.write("\t".join((map(str, signal_bc_f_307_500))) + "\n") f.write("\t".join((map(str, signal_bc_f_307_500_slope))) + "\n") f.write("\t".join((map(str, signal_bc_r_307_500))) + "\n") f.write("\t".join((map(str, signal_bc_r_307_500_slope))) + "\n") f.write("\t".join((map(str, signal_bc_f_min_500))) + "\n") f.write("\t".join((map(str, signal_bc_f_min_500_slope))) + "\n") f.write("\t".join((map(str, signal_bc_r_min_500))) + "\n") f.write("\t".join((map(str, signal_bc_r_min_500_slope))) + "\n") start = -(self.window_size / 2) end = (self.window_size / 2) - 1 x = np.linspace(start, end, num=self.window_size) fig, ax = plt.subplots(4, 2, figsize=(12, 12)) min_signal = min(signal_bc) max_signal = max(signal_bc) ax[0, 0].plot(x, signal_bc, color='red') ax[0, 0].xaxis.set_ticks_position('bottom') ax[0, 0].yaxis.set_ticks_position('left') ax[0, 0].spines['top'].set_visible(False) ax[0, 0].spines['right'].set_visible(False) ax[0, 0].spines['left'].set_position(('outward', 15)) ax[0, 0].tick_params(direction='out') ax[0, 0].set_title(self.output_prefix + " of all reads", fontweight='bold') ax[0, 0].set_xticks([start, 0, end]) ax[0, 0].set_xticklabels([str(start), 0, str(end)]) ax[0, 0].set_yticks([min_signal, max_signal]) ax[0, 0].set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax[0, 0].set_xlim(start, end) ax[0, 0].set_ylim([min_signal, max_signal]) min_signal = min(min(signal_bc_f), min(signal_bc_r)) max_signal = max(max(signal_bc_f), max(signal_bc_r)) ax[0, 1].plot(x, signal_bc_f, color='red', label='Forward') ax[0, 1].plot(x, signal_bc_r, color='green', label='Reverse') ax[0, 1].xaxis.set_ticks_position('bottom') ax[0, 1].yaxis.set_ticks_position('left') ax[0, 1].spines['top'].set_visible(False) ax[0, 1].spines['right'].set_visible(False) ax[0, 1].spines['left'].set_position(('outward', 15)) ax[0, 1].tick_params(direction='out') ax[0, 1].set_title(self.output_prefix + " of all reads", fontweight='bold') ax[0, 1].set_xticks([start, 0, end]) ax[0, 1].set_xticklabels([str(start), 0, str(end)]) ax[0, 1].set_yticks([min_signal, max_signal]) ax[0, 1].set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax[0, 1].set_xlim(start, end) ax[0, 1].set_ylim([min_signal, max_signal]) ax[0, 1].legend(loc="upper right", frameon=False) min_signal = min(min(signal_bc_f_max_145), min(signal_bc_r_max_145)) max_signal = max(max(signal_bc_f_max_145), max(signal_bc_r_max_145)) ax[1, 0].plot(x, signal_bc_f_max_145, color='red', label='Forward') ax[1, 0].plot(x, signal_bc_r_max_145, color='green', label='Reverse') ax[1, 0].xaxis.set_ticks_position('bottom') ax[1, 0].yaxis.set_ticks_position('left') ax[1, 0].spines['top'].set_visible(False) ax[1, 0].spines['right'].set_visible(False) ax[1, 0].spines['left'].set_position(('outward', 15)) ax[1, 0].tick_params(direction='out') ax[1, 0].set_title(self.output_prefix + " from fragment length <= 145 ", fontweight='bold') ax[1, 0].set_xticks([start, 0, end]) ax[1, 0].set_xticklabels([str(start), 0, str(end)]) ax[1, 0].set_yticks([min_signal, max_signal]) ax[1, 0].set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax[1, 0].set_xlim(start, end) ax[1, 0].set_ylim([min_signal, max_signal]) ax[1, 0].legend(loc="upper right", frameon=False) min_signal = min(min(signal_bc_f_min_145), min(signal_bc_r_min_145)) max_signal = max(max(signal_bc_f_min_145), max(signal_bc_r_min_145)) ax[1, 1].plot(x, signal_bc_f_min_145, color='red', label='Forward') ax[1, 1].plot(x, signal_bc_r_min_145, color='green', label='Reverse') ax[1, 1].xaxis.set_ticks_position('bottom') ax[1, 1].yaxis.set_ticks_position('left') ax[1, 1].spines['top'].set_visible(False) ax[1, 1].spines['right'].set_visible(False) ax[1, 1].spines['left'].set_position(('outward', 15)) ax[1, 1].tick_params(direction='out') ax[1, 1].set_title(self.output_prefix + " from fragment length > 145 ", fontweight='bold') ax[1, 1].set_xticks([start, 0, end]) ax[1, 1].set_xticklabels([str(start), 0, str(end)]) ax[1, 1].set_yticks([min_signal, max_signal]) ax[1, 1].set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax[1, 1].set_xlim(start, end) ax[1, 1].set_ylim([min_signal, max_signal]) ax[1, 1].legend(loc="upper right", frameon=False) min_signal = min(min(signal_bc_f_145_307), min(signal_bc_r_145_307)) max_signal = max(max(signal_bc_f_145_307), max(signal_bc_r_145_307)) ax[2, 0].plot(x, signal_bc_f_145_307, color='red', label='Forward') ax[2, 0].plot(x, signal_bc_r_145_307, color='green', label='Reverse') ax[2, 0].xaxis.set_ticks_position('bottom') ax[2, 0].yaxis.set_ticks_position('left') ax[2, 0].spines['top'].set_visible(False) ax[2, 0].spines['right'].set_visible(False) ax[2, 0].spines['left'].set_position(('outward', 15)) ax[2, 0].tick_params(direction='out') ax[2, 0].set_title(self.output_prefix + " from fragment length > 145 and <= 307 ", fontweight='bold') ax[2, 0].set_xticks([start, 0, end]) ax[2, 0].set_xticklabels([str(start), 0, str(end)]) ax[2, 0].set_yticks([min_signal, max_signal]) ax[2, 0].set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax[2, 0].set_xlim(start, end) ax[2, 0].set_ylim([min_signal, max_signal]) ax[2, 0].legend(loc="upper right", frameon=False) min_signal = min(min(signal_bc_f_min_307), min(signal_bc_r_min_307)) max_signal = max(max(signal_bc_f_min_307), max(signal_bc_r_min_307)) ax[2, 1].plot(x, signal_bc_f_min_307, color='red', label='Forward') ax[2, 1].plot(x, signal_bc_r_min_307, color='green', label='Reverse') ax[2, 1].xaxis.set_ticks_position('bottom') ax[2, 1].yaxis.set_ticks_position('left') ax[2, 1].spines['top'].set_visible(False) ax[2, 1].spines['right'].set_visible(False) ax[2, 1].spines['left'].set_position(('outward', 15)) ax[2, 1].tick_params(direction='out') ax[2, 1].set_title(self.output_prefix + " from fragment length > 307 ", fontweight='bold') ax[2, 1].set_xticks([start, 0, end]) ax[2, 1].set_xticklabels([str(start), 0, str(end)]) ax[2, 1].set_yticks([min_signal, max_signal]) ax[2, 1].set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax[2, 1].set_xlim(start, end) ax[2, 1].set_ylim([min_signal, max_signal]) ax[2, 1].legend(loc="upper right", frameon=False) min_signal = min(min(signal_bc_f_307_500), min(signal_bc_r_307_500)) max_signal = max(max(signal_bc_f_307_500), max(signal_bc_r_307_500)) ax[3, 0].plot(x, signal_bc_f_307_500, color='red', label='Forward') ax[3, 0].plot(x, signal_bc_r_307_500, color='green', label='Reverse') ax[3, 0].xaxis.set_ticks_position('bottom') ax[3, 0].yaxis.set_ticks_position('left') ax[3, 0].spines['top'].set_visible(False) ax[3, 0].spines['right'].set_visible(False) ax[3, 0].spines['left'].set_position(('outward', 15)) ax[3, 0].tick_params(direction='out') ax[3, 0].set_title(self.output_prefix + " from fragment length > 307 and <= 500 ", fontweight='bold') ax[3, 0].set_xticks([start, 0, end]) ax[3, 0].set_xticklabels([str(start), 0, str(end)]) ax[3, 0].set_yticks([min_signal, max_signal]) ax[3, 0].set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax[3, 0].set_xlim(start, end) ax[3, 0].set_ylim([min_signal, max_signal]) ax[3, 0].legend(loc="upper right", frameon=False) min_signal = min(min(signal_bc_f_min_500), min(signal_bc_r_min_500)) max_signal = max(max(signal_bc_f_min_500), max(signal_bc_r_min_500)) ax[3, 1].plot(x, signal_bc_f_min_500, color='red', label='Forward') ax[3, 1].plot(x, signal_bc_r_min_500, color='green', label='Reverse') ax[3, 1].xaxis.set_ticks_position('bottom') ax[3, 1].yaxis.set_ticks_position('left') ax[3, 1].spines['top'].set_visible(False) ax[3, 1].spines['right'].set_visible(False) ax[3, 1].spines['left'].set_position(('outward', 15)) ax[3, 1].tick_params(direction='out') ax[3, 1].set_title(self.output_prefix + " from fragment length > 500 ", fontweight='bold') ax[3, 1].set_xticks([start, 0, end]) ax[3, 1].set_xticklabels([str(start), 0, str(end)]) ax[3, 1].set_yticks([min_signal, max_signal]) ax[3, 1].set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax[3, 1].set_xlim(start, end) ax[3, 1].set_ylim([min_signal, max_signal]) ax[3, 1].legend(loc="upper right", frameon=False) figure_name = os.path.join(self.output_loc, "{}.pdf".format(self.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="pdf", dpi=300) def unstrand_line_by_size(self, bias_tables): genome_data = GenomeData(self.organism) fasta = Fastafile(genome_data.get_genome()) mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(self.motif_file) bam = Samfile(self.reads_file, "rb") table = BiasTable() bias_table_list = bias_tables.split(",") bias_table = table.load_table(table_file_name_F=bias_table_list[0], table_file_name_R=bias_table_list[1]) signal = GenomicSignal() signal.load_sg_coefs(9) signal_bc_max_145 = np.zeros(self.window_size) signal_bc_min_145 = np.zeros(self.window_size) signal_bc_145_307 = np.zeros(self.window_size) signal_bc_min_307 = np.zeros(self.window_size) signal_bc_307_500 = np.zeros(self.window_size) signal_bc_min_500 = np.zeros(self.window_size) signal_bc = np.zeros(self.window_size) for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": mid = (region.initial + region.final) / 2 p1 = mid - (self.window_size / 2) p2 = mid + (self.window_size / 2) bc_max_145 = \ signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=bias_table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=None, max_length=145, strand=False) bc_min_145 = \ signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=bias_table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=145, max_length=None, strand=False) bc_145_307 = \ signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=bias_table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=145, max_length=307, strand=False) bc_min_307 = \ signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=bias_table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=307, max_length=None, strand=False) bc_307_500 = \ signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=bias_table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=307, max_length=500, strand=False) bc_min_500 = \ signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=bias_table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=500, max_length=None, strand=False) bc = \ signal.get_bc_signal_by_fragment_length(ref=region.chrom, start=p1, end=p2, bam=bam, fasta=fasta, bias_table=bias_table, forward_shift=self.forward_shift, reverse_shift=self.reverse_shift, min_length=None, max_length=None, strand=False) signal_bc_max_145 = np.add(signal_bc_max_145, bc_max_145) signal_bc_min_145 = np.add(signal_bc_min_145, bc_min_145) signal_bc_145_307 = np.add(signal_bc_145_307, bc_145_307) signal_bc_min_307 = np.add(signal_bc_min_307, bc_min_307) signal_bc_307_500 = np.add(signal_bc_307_500, bc_307_500) signal_bc_min_500 = np.add(signal_bc_min_500, bc_min_500) signal_bc = np.add(signal_bc, bc) # Pre-process signal signal_bc = signal.boyle_norm(signal_bc) perc = scoreatpercentile(signal_bc, 98) std = np.array(signal_bc).std() signal_bc = signal.hon_norm_atac(signal_bc, perc, std) signal_bc_slope = signal.slope(signal_bc, signal.sg_coefs) # Output the norm and slope signal output_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix)) with open(output_fname, "w") as f: f.write("\t".join((map(str, signal_bc))) + "\n") f.write("\t".join((map(str, signal_bc_slope))) + "\n") # Output signal of class a signal_bc_max_145 = signal.boyle_norm(signal_bc_max_145) perc = scoreatpercentile(signal_bc_max_145, 98) std = np.array(signal_bc_max_145).std() signal_bc_max_145 = signal.hon_norm_atac(signal_bc_max_145, perc, std) signal_bc_max_145_slope = signal.slope(signal_bc_max_145, signal.sg_coefs) output_fname = os.path.join(self.output_loc, "{}_a.txt".format(self.output_prefix)) with open(output_fname, "w") as f: f.write("\t".join((map(str, signal_bc_max_145))) + "\n") f.write("\t".join((map(str, signal_bc_max_145_slope))) + "\n") # Output signal of class b signal_bc_min_145 = signal.boyle_norm(signal_bc_min_145) perc = scoreatpercentile(signal_bc_min_145, 98) std = np.array(signal_bc_min_145).std() signal_bc_min_145 = signal.hon_norm_atac(signal_bc_min_145, perc, std) signal_bc_min_145_slope = signal.slope(signal_bc_min_145, signal.sg_coefs) output_fname = os.path.join(self.output_loc, "{}_b.txt".format(self.output_prefix)) with open(output_fname, "w") as f: f.write("\t".join((map(str, signal_bc_max_145))) + "\n") f.write("\t".join((map(str, signal_bc_max_145_slope))) + "\n") f.write("\t".join((map(str, signal_bc_min_145))) + "\n") f.write("\t".join((map(str, signal_bc_min_145_slope))) + "\n") # Output signal of class c signal_bc_145_307 = signal.boyle_norm(signal_bc_145_307) perc = scoreatpercentile(signal_bc_145_307, 98) std = np.array(signal_bc_145_307).std() signal_bc_145_307 = signal.hon_norm_atac(signal_bc_145_307, perc, std) signal_bc_145_307_slope = signal.slope(signal_bc_145_307, signal.sg_coefs) output_fname = os.path.join(self.output_loc, "{}_c.txt".format(self.output_prefix)) with open(output_fname, "w") as f: f.write("\t".join((map(str, signal_bc_max_145))) + "\n") f.write("\t".join((map(str, signal_bc_max_145_slope))) + "\n") f.write("\t".join((map(str, signal_bc_145_307))) + "\n") f.write("\t".join((map(str, signal_bc_145_307_slope))) + "\n") # Output signal of class d signal_bc_min_307 = signal.boyle_norm(signal_bc_min_307) perc = scoreatpercentile(signal_bc_min_307, 98) std = np.array(signal_bc_min_307).std() signal_bc_min_307 = signal.hon_norm_atac(signal_bc_min_307, perc, std) signal_bc_min_307_slope = signal.slope(signal_bc_min_307, signal.sg_coefs) output_fname = os.path.join(self.output_loc, "{}_d.txt".format(self.output_prefix)) with open(output_fname, "w") as f: f.write("\t".join((map(str, signal_bc_max_145))) + "\n") f.write("\t".join((map(str, signal_bc_max_145_slope))) + "\n") f.write("\t".join((map(str, signal_bc_145_307))) + "\n") f.write("\t".join((map(str, signal_bc_145_307_slope))) + "\n") f.write("\t".join((map(str, signal_bc_min_307))) + "\n") f.write("\t".join((map(str, signal_bc_min_307_slope))) + "\n") # Output signal of class e signal_bc_307_500 = signal.boyle_norm(signal_bc_307_500) perc = scoreatpercentile(signal_bc_307_500, 98) std = np.array(signal_bc_307_500).std() signal_bc_307_500 = signal.hon_norm_atac(signal_bc_307_500, perc, std) signal_bc_307_500_slope = signal.slope(signal_bc_307_500, signal.sg_coefs) output_fname = os.path.join(self.output_loc, "{}_e.txt".format(self.output_prefix)) with open(output_fname, "w") as f: f.write("\t".join((map(str, signal_bc_max_145))) + "\n") f.write("\t".join((map(str, signal_bc_max_145_slope))) + "\n") f.write("\t".join((map(str, signal_bc_145_307))) + "\n") f.write("\t".join((map(str, signal_bc_145_307_slope))) + "\n") f.write("\t".join((map(str, signal_bc_307_500))) + "\n") f.write("\t".join((map(str, signal_bc_307_500_slope))) + "\n") # Output signal of class f signal_bc_min_500 = signal.boyle_norm(signal_bc_min_500) perc = scoreatpercentile(signal_bc_min_500, 98) std = np.array(signal_bc_min_500).std() signal_bc_min_500 = signal.hon_norm_atac(signal_bc_min_500, perc, std) signal_bc_min_500_slope = signal.slope(signal_bc_min_500, signal.sg_coefs) output_fname = os.path.join(self.output_loc, "{}_f.txt".format(self.output_prefix)) with open(output_fname, "w") as f: f.write("\t".join((map(str, signal_bc_max_145))) + "\n") f.write("\t".join((map(str, signal_bc_max_145_slope))) + "\n") f.write("\t".join((map(str, signal_bc_145_307))) + "\n") f.write("\t".join((map(str, signal_bc_145_307_slope))) + "\n") f.write("\t".join((map(str, signal_bc_307_500))) + "\n") f.write("\t".join((map(str, signal_bc_307_500_slope))) + "\n") f.write("\t".join((map(str, signal_bc_min_500))) + "\n") f.write("\t".join((map(str, signal_bc_min_500_slope))) + "\n") start = -(self.window_size / 2) end = (self.window_size / 2) - 1 x = np.linspace(start, end, num=self.window_size) fig, ax = plt.subplots(4, 2, figsize=(12, 12)) min_signal = min(signal_bc) max_signal = max(signal_bc) ax[0, 0].plot(x, signal_bc, color='red') ax[0, 0].xaxis.set_ticks_position('bottom') ax[0, 0].yaxis.set_ticks_position('left') ax[0, 0].spines['top'].set_visible(False) ax[0, 0].spines['right'].set_visible(False) ax[0, 0].spines['left'].set_position(('outward', 15)) ax[0, 0].tick_params(direction='out') ax[0, 0].set_title(self.output_prefix + " of all reads", fontweight='bold') ax[0, 0].set_xticks([start, 0, end]) ax[0, 0].set_xticklabels([str(start), 0, str(end)]) ax[0, 0].set_yticks([min_signal, max_signal]) ax[0, 0].set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax[0, 0].set_xlim(start, end) ax[0, 0].set_ylim([min_signal, max_signal]) min_signal = min(signal_bc) max_signal = max(signal_bc) ax[0, 1].plot(x, signal_bc, color='red') ax[0, 1].xaxis.set_ticks_position('bottom') ax[0, 1].yaxis.set_ticks_position('left') ax[0, 1].spines['top'].set_visible(False) ax[0, 1].spines['right'].set_visible(False) ax[0, 1].spines['left'].set_position(('outward', 15)) ax[0, 1].tick_params(direction='out') ax[0, 1].set_title(self.output_prefix + " of all reads", fontweight='bold') ax[0, 1].set_xticks([start, 0, end]) ax[0, 1].set_xticklabels([str(start), 0, str(end)]) ax[0, 1].set_yticks([min_signal, max_signal]) ax[0, 1].set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax[0, 1].set_xlim(start, end) ax[0, 1].set_ylim([min_signal, max_signal]) min_signal = min(signal_bc_max_145) max_signal = max(signal_bc_max_145) ax[1, 0].plot(x, signal_bc_max_145, color='red') ax[1, 0].xaxis.set_ticks_position('bottom') ax[1, 0].yaxis.set_ticks_position('left') ax[1, 0].spines['top'].set_visible(False) ax[1, 0].spines['right'].set_visible(False) ax[1, 0].spines['left'].set_position(('outward', 15)) ax[1, 0].tick_params(direction='out') ax[1, 0].set_title(self.output_prefix + " from fragment length <= 145 ", fontweight='bold') ax[1, 0].set_xticks([start, 0, end]) ax[1, 0].set_xticklabels([str(start), 0, str(end)]) ax[1, 0].set_yticks([min_signal, max_signal]) ax[1, 0].set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax[1, 0].set_xlim(start, end) ax[1, 0].set_ylim([min_signal, max_signal]) min_signal = min(signal_bc_min_145) max_signal = max(signal_bc_min_145) ax[1, 1].plot(x, signal_bc_min_145, color='red') ax[1, 1].xaxis.set_ticks_position('bottom') ax[1, 1].yaxis.set_ticks_position('left') ax[1, 1].spines['top'].set_visible(False) ax[1, 1].spines['right'].set_visible(False) ax[1, 1].spines['left'].set_position(('outward', 15)) ax[1, 1].tick_params(direction='out') ax[1, 1].set_title(self.output_prefix + " from fragment length > 145 ", fontweight='bold') ax[1, 1].set_xticks([start, 0, end]) ax[1, 1].set_xticklabels([str(start), 0, str(end)]) ax[1, 1].set_yticks([min_signal, max_signal]) ax[1, 1].set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax[1, 1].set_xlim(start, end) ax[1, 1].set_ylim([min_signal, max_signal]) min_signal = min(signal_bc_145_307) max_signal = max(signal_bc_145_307) ax[2, 0].plot(x, signal_bc_145_307, color='red') ax[2, 0].xaxis.set_ticks_position('bottom') ax[2, 0].yaxis.set_ticks_position('left') ax[2, 0].spines['top'].set_visible(False) ax[2, 0].spines['right'].set_visible(False) ax[2, 0].spines['left'].set_position(('outward', 15)) ax[2, 0].tick_params(direction='out') ax[2, 0].set_title(self.output_prefix + " from fragment length > 145 and <= 307 ", fontweight='bold') ax[2, 0].set_xticks([start, 0, end]) ax[2, 0].set_xticklabels([str(start), 0, str(end)]) ax[2, 0].set_yticks([min_signal, max_signal]) ax[2, 0].set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax[2, 0].set_xlim(start, end) ax[2, 0].set_ylim([min_signal, max_signal]) min_signal = min(signal_bc_min_307) max_signal = max(signal_bc_min_307) ax[2, 1].plot(x, signal_bc_min_307, color='red') ax[2, 1].xaxis.set_ticks_position('bottom') ax[2, 1].yaxis.set_ticks_position('left') ax[2, 1].spines['top'].set_visible(False) ax[2, 1].spines['right'].set_visible(False) ax[2, 1].spines['left'].set_position(('outward', 15)) ax[2, 1].tick_params(direction='out') ax[2, 1].set_title(self.output_prefix + " from fragment length > 307 ", fontweight='bold') ax[2, 1].set_xticks([start, 0, end]) ax[2, 1].set_xticklabels([str(start), 0, str(end)]) ax[2, 1].set_yticks([min_signal, max_signal]) ax[2, 1].set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax[2, 1].set_xlim(start, end) ax[2, 1].set_ylim([min_signal, max_signal]) min_signal = min(signal_bc_307_500) max_signal = max(signal_bc_307_500) ax[3, 0].plot(x, signal_bc_307_500, color='red') ax[3, 0].xaxis.set_ticks_position('bottom') ax[3, 0].yaxis.set_ticks_position('left') ax[3, 0].spines['top'].set_visible(False) ax[3, 0].spines['right'].set_visible(False) ax[3, 0].spines['left'].set_position(('outward', 15)) ax[3, 0].tick_params(direction='out') ax[3, 0].set_title(self.output_prefix + " from fragment length > 307 and <= 500 ", fontweight='bold') ax[3, 0].set_xticks([start, 0, end]) ax[3, 0].set_xticklabels([str(start), 0, str(end)]) ax[3, 0].set_yticks([min_signal, max_signal]) ax[3, 0].set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax[3, 0].set_xlim(start, end) ax[3, 0].set_ylim([min_signal, max_signal]) min_signal = min(signal_bc_min_500) max_signal = max(signal_bc_min_500) ax[3, 1].plot(x, signal_bc_min_500, color='red') ax[3, 1].xaxis.set_ticks_position('bottom') ax[3, 1].yaxis.set_ticks_position('left') ax[3, 1].spines['top'].set_visible(False) ax[3, 1].spines['right'].set_visible(False) ax[3, 1].spines['left'].set_position(('outward', 15)) ax[3, 1].tick_params(direction='out') ax[3, 1].set_title(self.output_prefix + " from fragment length > 500 ", fontweight='bold') ax[3, 1].set_xticks([start, 0, end]) ax[3, 1].set_xticklabels([str(start), 0, str(end)]) ax[3, 1].set_yticks([min_signal, max_signal]) ax[3, 1].set_yticklabels([str(round(min_signal, 2)), str(round(max_signal, 2))], rotation=90) ax[3, 1].set_xlim(start, end) ax[3, 1].set_ylim([min_signal, max_signal]) figure_name = os.path.join(self.output_loc, "{}.pdf".format(self.output_prefix)) fig.subplots_adjust(bottom=.2, hspace=.5) fig.tight_layout() fig.savefig(figure_name, format="pdf", dpi=300) def distribution_of_frag_length(self, reads_file=None, motif_file=None): bam = Samfile(self.reads_file, "rb") lengths = list() lengths_shorter_than_145 = list() lengths_between_146_307 = list() lengths_between_307_500 = list() lengths_longer_than_500 = list() if motif_file is None: # Use all fragments to plot the distribution for read in bam.fetch(): if read.is_read1: length = abs(read.template_length) lengths.append(length) if length <= 145: lengths_shorter_than_145.append(length) if 145 < length <= 307: lengths_between_146_307.append(length) if 307 < length <= 500: lengths_between_307_500.append(length) if length > 500: lengths_longer_than_500.append(length) elif motif_file is not None: mpbs_regions = GenomicRegionSet("Motif Predicted Binding Sites") mpbs_regions.read(self.motif_file) for region in mpbs_regions: if str(region.name).split(":")[-1] == "Y": # Extend by 50 bp mid = (region.initial + region.final) / 2 p1 = mid - (self.window_size / 2) p2 = mid + (self.window_size / 2) for read in bam.fetch(region.chrom, p1, p2): if read.is_read1: length = abs(read.template_length) lengths.append(length) if length <= 145: lengths_shorter_than_145.append(length) if 145 < length <= 307: lengths_between_146_307.append(length) if 307 < length <= 500: lengths_between_307_500.append(length) if length > 500: lengths_longer_than_500.append(length) # output the plot unique, counts = np.unique(lengths, return_counts=True) count_list = list() length_dict = dict(zip(unique, counts)) sort_keys = sorted(length_dict.keys()) txt_fname = os.path.join(self.output_loc, "{}.txt".format(self.output_prefix)) with open(txt_fname, "w") as f: for key in sort_keys: f.write(str(key) + "\t" + str(length_dict[key]) + "\n") count_list.append(length_dict[key]) fig, ax = plt.subplots(5, 1, figsize=(6, 15)) mean = np.mean(lengths) std = np.std(lengths) ax[0].plot(unique, counts) ax[0].set_title("Histogram of all fragment length", fontweight='bold') ax[0].text(0.7, 0.9, "number of fragments:{}".format(str(len(lengths))), verticalalignment='center', horizontalalignment='center', transform=ax[0].transAxes, fontsize=12) ax[0].text(0.8, 0.8, "mean:{}".format(str(round(mean, 2))), verticalalignment='center', horizontalalignment='center', transform=ax[0].transAxes, fontsize=12) ax[0].text(0.8, 0.7, "std:{}".format(str(round(std, 2))), verticalalignment='center', horizontalalignment='center', transform=ax[0].transAxes, fontsize=12) mean =
np.mean(lengths_shorter_than_145)
numpy.mean
""" Auxiliary functions for cvxpy formulations. """ # <NAME> <<EMAIL>> # Copyright (C) 2020 import numpy as np def monotonic_trend_constraints(monotonic_trend, c, D, t=None): if monotonic_trend in ("ascending", "convex"): return D @ c >= 0 elif monotonic_trend in ("descending", "concave"): return D @ c <= 0 elif monotonic_trend == "valley": return [D[:t, :] @ c <= 0, D[t:, :] @ c >= 0] elif monotonic_trend == "peak": return [D[:t, :] @ c >= 0, D[t:, :] @ c <= 0] def compute_change_point(x, y, splits, order, monotonic_trend): n_splits = len(splits) n_bins = n_splits + 1 indices =
np.searchsorted(splits, x, side='right')
numpy.searchsorted
# -*- coding: utf-8 -*- # ***************************************************************************** # NICOS, the Networked Instrument Control System of the MLZ # Copyright (c) 2009-2022 by the NICOS contributors (see AUTHORS) # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 2 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Module authors: # <NAME> <<EMAIL>> # # ***************************************************************************** """Implementation of the ARIANE based scan optimizations. See https://jugit.fz-juelich.de/ainx/ariane Requires a running ARIANE server, whose location is configured as the `ariane_host` parameter of the experiment device. """ import json from time import time as currenttime import numpy as np import zmq from nicos import session from nicos.commands import usercommand from nicos.commands.scan import _handleScanArgs, _infostr from nicos.commands.tas import _getQ from nicos.core import CommunicationError, NicosError, UsageError, SIMULATION from nicos.core.scan import QScan from nicos.utils.messaging import nicos_zmq_ctx from nicos_mlz.panda.gui.ariane_vis import make_map, update_map __all__ = ['qaigrid', 'qaiscan'] @usercommand def qaigrid(Q0, Q1, Q2, *args, **kwargs): """Make a grid within a Q/E plane, usable as the initial points for a `qaiscan()`. You need to provide a rectangle of Q space to measure in, given by three Q vectors to lower-left, lower-right and upper-left corners. For example, >>> qaiscan([1, 0, 0, 0], [2, 0, 0, 0], [1, 0, 0, 5], ...) would scan in this reactangle:: [1, 0, 0, 5] +--------+ [2, 0, 0, 5] | | | | [1, 0, 0, 0] +--------+ [2, 0, 0, 0] Special keyword arguments: * initpoints: specify the size of initial grid to measure, can also be [n1, n2] for different size along the axes Other arguments are interpreted as for a normal `qscan`. """ kwargs['initonly'] = True qaiscan(Q0, Q1, Q2, *args, **kwargs) @usercommand def qaiscan(Q0, Q1, Q2, *args, **kwargs): """Scan within a Q/E plane, letting the ARIANE algorithm select the precise scan locations. You need to provide a rectangle of Q space to measure in, given by three Q vectors to lower-left, lower-right and upper-left corners. For example, >>> qaiscan([1, 0, 0, 0], [2, 0, 0, 0], [1, 0, 0, 5], ...) would scan in this reactangle:: [1, 0, 0, 5] +--------+ [2, 0, 0, 5] | | | | [1, 0, 0, 0] +--------+ [2, 0, 0, 0] Special keyword arguments: * initpoints: specify the size of initial grid to measure, can also be [n1, n2] for different size along the axes * initscans: specify a scan number or list of scan numbers to use as the initial points, instead of measuring them again * maxpoints: specify the maximum total number of points to measure * maxtime: specify the maximum total time for the scan to take, including instrument moves, in seconds * background: specify a threshold in detector counts, below which counts are considered as background and removed for consideration by the algorithm. * intensity_threshold: specify a threshold in detector counts, above which exact counts are not used by the AI algorithm to determine the next point. Other arguments are interpreted as for a normal `qscan`. """ # TODO: allow selecting counter/monitor columns maxpts = kwargs.pop('maxpoints', None) maxtime = kwargs.pop('maxtime', None) initpts = kwargs.pop('initpoints', 11) initscans = kwargs.pop('initscans', None) initres = kwargs.pop('initres', None) initonly = kwargs.pop('initonly', False) int_threshold = kwargs.pop('intensity_threshold', None) background = kwargs.pop('background', None) if not isinstance(initpts, (list, tuple)): initpts = [int(initpts), int(initpts)] q0 = np.array(_getQ(Q0, 'Q0')).astype(float) q1 = np.array(_getQ(Q1, 'Q1')).astype(float) q2 = np.array(_getQ(Q2, 'Q2')).astype(float) scanstr = _infostr('qaigrid' if initonly else 'qaiscan', (Q0, Q1, Q2) + args, kwargs) preset, scaninfo, detlist, envlist, move, multistep = \ _handleScanArgs(args, kwargs, scanstr) if multistep: raise UsageError('Multi-step scan points are impossible with ARIANE') scan = QAIScan(q0, q1, q2, initpts=initpts, initscans=initscans, initres=initres, initonly=initonly, maxpts=maxpts, maxtime=maxtime, background=background, int_threshold=int_threshold, firstmoves=move, detlist=detlist, envlist=envlist, preset=preset, scaninfo=scaninfo) qaiscan.last = scan # for debugging purposes scan.run() class QAIScan(QScan): """Specialized Scan class for ARIANE scans.""" ID = b'ARIANE' _socket = None # pylint: disable=too-many-arguments def __init__(self, q0, q1, q2, initpts, initscans, initres, initonly, maxpts, maxtime, background, int_threshold, firstmoves=None, detlist=None, envlist=None, preset=None, scaninfo=None): # first establish connection hostport = getattr(session.experiment, 'ariane_host', None) if not hostport: raise UsageError('Cannot perform scan: ARIANE not configured') if session.mode != SIMULATION: self._connect(hostport) # ensure service is up and running version = self._request('ping')['version'] session.log.debug('connected to ARIANE version %s', version) # conversion between Q/E and AI coordinates # apply heuristics to make q0 and the directions as simple as possible # by adjusting the limits offset, dir1, lim1, dir2, lim2 = determine_axes(q0, q1, q2) # see _pos2loc and _loc2pos for the conversions using these matrices self._q0 = offset self._qw = np.concatenate((dir1.reshape((4, 1)), dir2.reshape((4, 1))), axis=1) self._invqw =
np.linalg.inv(self._qw.T @ self._qw)
numpy.linalg.inv
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division, print_function, absolute_import import logging import glob import os import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from collections import namedtuple import numpy as np import datetime logging.basicConfig( level='INFO', format='%(asctime)s : %(message)s') logger = logging.getLogger(__name__) plt.style.use(['seaborn-talk']) class SourceFile(object): score_headings = ['excellent', 'very_good', 'average', 'poor', 'terrible'] score_values = [5, 2, 0, -2, -5] def __init__(self, name, filename): self.filename = filename self.name = name self.timestamps = [] def parse(self): scores = [] with open(self.filename) as infile: for line in infile: line = line.strip() contents = line.split() timestamp = int(contents[0]) upload_data = { part.split(':')[0]: int(part.split(':')[1]) for part in contents[1:] } row = [timestamp] + [upload_data[heading] for heading in self.score_headings] scores.append(tuple(row)) dtype = [('timestamp', int)] + \ list(zip(self.score_headings, [int] * len(self.score_headings))) return np.array(scores, dtype=dtype) def render_to(self, name, filename): data = self.parse() totals = [] for row in data: totals.append(
np.sum([row[heading] for heading in self.score_headings])
numpy.sum
"""Helper for evaluation on the Labeled Faces in the Wild dataset """ # MIT License # # Copyright (c) 2016 <NAME> # Copyright (c) 2021 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse from utils import utils from dataset.dataset_np_ipc import Dataset import os import argparse import sys import numpy as np from scipy import misc from scipy import interpolate import sklearn import cv2 import math import datetime import pickle from sklearn.decomposition import PCA import mxnet as mx from mxnet import ndarray as nd import _pickle as cPickle from utils.utils import KFold def calculate_roc(embeddings1, embeddings2, actual_issame, compare_func, nrof_folds=10): assert(embeddings1.shape[0] == embeddings2.shape[0]) assert(embeddings1.shape[1] == embeddings2.shape[1]) nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) k_fold = KFold(nrof_pairs, n_folds=nrof_folds, shuffle=False) accuracy = np.zeros((nrof_folds)) indices = np.arange(nrof_pairs) #print('pca', pca) accuracies = np.zeros(10, dtype=np.float32) thresholds = np.zeros(10, dtype=np.float32) dist = compare_func(embeddings1, embeddings2) for fold_idx, (train_set, test_set) in enumerate(k_fold): #print('train_set', train_set) #print('test_set', test_set) # Find the best threshold for the fold from evaluation import metrics train_score = dist[train_set] train_labels = actual_issame[train_set] == 1 acc, thresholds[fold_idx] = metrics.accuracy(train_score, train_labels) # print('train acc', acc, thresholds[i]) # Testing test_score = dist[test_set] accuracies[fold_idx], _ = metrics.accuracy(test_score, actual_issame[test_set]==1, np.array([thresholds[fold_idx]])) accuracy = np.mean(accuracies) threshold = np.mean(thresholds) return accuracy, threshold def evaluate(embeddings, actual_issame, compare_func, nrof_folds=10, keep_idxes=None): # Calculate evaluation metrics embeddings1 = embeddings[0::2] embeddings2 = embeddings[1::2] actual_issame = np.asarray(actual_issame) if keep_idxes is not None: embeddings1 = embeddings1[keep_idxes] embeddings2 = embeddings2[keep_idxes] actual_issame = actual_issame[keep_idxes] return calculate_roc(embeddings1, embeddings2, actual_issame, compare_func, nrof_folds=nrof_folds) def load_bin(path, image_size): print(path, image_size) with open(path, 'rb') as f: if 'lfw_all' in path: bins, issame_list = pickle.load(f) else: bins, issame_list = pickle.load(f, encoding='latin1') data_list = [] for flip in [0]: data = nd.empty((len(issame_list)*2, image_size[0], image_size[1], 3)) data_list.append(data) print(len(bins)) for i in range(len(issame_list)*2): _bin = bins[i] # print(type(_bin)) img = mx.image.imdecode(_bin) # img = nd.transpose(img, axes=(2, 0, 1)) for flip in [0]: if flip==1: img = mx.ndarray.flip(data=img, axis=2) data_list[flip][i][:] = img # if i%5000==0: # print('loading bin', i) print(data_list[0].shape) return (data_list, issame_list) def eval_images_cmp(images_preprocessed, issame_list, network, batch_size, nfolds=10, name='', result_dir='', re_extract_feature=False, filter_out_type='max'): print('testing verification..') result_dir = r'G:\chenkai\Probabilistic-Face-Embeddings-master\log\resface64_relu_msarcface_am_PFE\20201020-180059-mls-only' save_name_pkl_feature = result_dir + '/%s_feature.pkl' % name if re_extract_feature or not os.path.exists(save_name_pkl_feature): images = images_preprocessed print(images.shape) mu, sigma_sq = network.extract_feature(images, batch_size, verbose=True) save_data = (mu, sigma_sq) with open(save_name_pkl_feature, 'wb') as f: cPickle.dump(save_data, f) print('save', save_name_pkl_feature) else: with open(save_name_pkl_feature, 'rb') as f: data = cPickle.load(f) mu, sigma_sq = data print('load', save_name_pkl_feature) feat_pfe = np.concatenate([mu, sigma_sq], axis=1) threshold = -1.604915 result_dir2 = r'G:\chenkai\Probabilistic-Face-Embeddings-master\log\resface64m_relu_msarcface_am_PFE\20201028-193142-mls1.0-abs0.001-triplet0.0001' save_name_pkl_feature2 = result_dir2 + '/%s_feature.pkl' % name with open(save_name_pkl_feature2, 'rb') as f: data = cPickle.load(f) mu2, sigma_sq2 = data print('load', save_name_pkl_feature2) feat_pfe2 = np.concatenate([mu2, sigma_sq2], axis=1) threshold2 = -1.704115 embeddings = mu embeddings1 = embeddings[0::2] embeddings2 = embeddings[1::2] cosine_score = np.sum(embeddings1 * embeddings2, axis=1) compare_func = lambda x,y: utils.pair_MLS_score(x, y, use_attention_only=False) embeddings = feat_pfe embeddings1 = embeddings[0::2] embeddings2 = embeddings[1::2] actual_issame = np.asarray(issame_list) dist = compare_func(embeddings1, embeddings2) pred = (dist > threshold).astype(int) idx_true1 = pred == actual_issame print('acc1', np.average(idx_true1), np.sum(idx_true1)) embeddings = feat_pfe2 embeddings1 = embeddings[0::2] embeddings2 = embeddings[1::2] actual_issame =
np.asarray(issame_list)
numpy.asarray
""" Plot relative number of errors and new sentences as a function of the SORN size """ import os import sys; sys.path.append('.') import pickle import numpy as np import matplotlib.pylab as plt # parameters to include in the plot SAVE_PLOT = True ################################################################################ # Make plot # ################################################################################ # 0. build figures fig = plt.figure(1, figsize=(7, 6)) # 1. load performances and experiment parameters for experiment_tag in ['error_and_new', 'eFDT', 'sp']: experiment_folder = 'GrammarTask_' + experiment_tag experiment_path = 'backup/' + experiment_folder + '/' experiment_n = len(os.listdir(experiment_path)) percent_error = np.zeros(experiment_n) net_size = np.zeros(experiment_n) for exp, exp_name in enumerate(os.listdir(experiment_path)): exp_n = [int(s) for s in exp_name.split('_') if s.isdigit()] stats = pickle.load(open(experiment_path+exp_name+'/stats.p', 'rb')) percent_error[exp] = float(stats.n_wrong)/stats.n_output net_size[exp] = int(exp_name.split('_')[0][1:]) N_e = np.unique(net_size) wrong = [] wrong_std = [] wrong_up = [] wrong_down = [] for i, n in enumerate(N_e): net = np.where(n == net_size) wrong.append(percent_error[net].mean()) wrong_std.append(percent_error[net].std()) wrong_up.append(np.percentile(percent_error[net], 75)) wrong_down.append(np.percentile(percent_error[net], 25)) if experiment_tag == 'error_and_new': plot_label = 'FDT' plot_color = 'r' plot_style = '-' elif experiment_tag == 'eFDT': plot_label = 'eFDT' plot_color = 'r' plot_style = '--' elif experiment_tag == 'sp': plot_label = 'SinPlu' plot_color = 'orange' plot_style = '-' plt.plot(N_e, wrong, plot_style, alpha=0.5, color=plot_color, label=plot_label) plt.fill_between(N_e, np.array(wrong)-np.array(wrong_std), np.array(wrong)+
np.array(wrong_std)
numpy.array
# -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE_scikit-fuzzy.txt """ This block was based on scikit-fuzzy by <NAME> et.al., and they deserve most of the credits for this. The decision to split came from the fact that CoTeDe uses only few functions from scikit-fuzzy, and scikit-fuzzy 0.1.9 stopped to work with pypi breaking all tests and the development process of CoTeDe. I did contributed to scikit-fuzzy, but it would be more work than I could afford at that time. """ import numpy as np def smf(x, p): """ S-function fuzzy membership generator. Parameters ---------- x : any sequence Independent variable. p: list of 2 values p[0]: 'foot', where the function begins to climb from zero. p[1]: 'ceiling', where the function levels off at 1. Returns ------- y : 1d array S-function. Notes ----- Named such because of its S-like shape. """ assert len(p) == 2, "smf requires 2 parameters" assert p[0] <= p[1], "p[0] must be <= p[1]." x = np.asanyarray(x) y = np.nan * np.ones_like(x) y[np.nonzero(x <= p[0])] = 0 idx = np.logical_and(p[0] < x, x <= (p[0] + p[1]) / 2.0) y[idx] = 2.0 * ((x[idx] - p[0]) / (p[1] - p[0])) ** 2.0 idx = np.logical_and((p[0] + p[1]) / 2.0 <= x, x < p[1]) y[idx] = 1 - 2.0 * ((x[idx] - p[1]) / (p[1] - p[0])) ** 2.0 y[np.nonzero(x >= p[1])] = 1 return y def trapmf(x, p): """ Trapezoidal membership function generator. Parameters ---------- x : any sequence Independent variable. p: list of 4 values lower than p[0] and higher than p[3] it returns 0 between p[1] and p[2] it returns 1 linear transition from p[0] to p[1] and from p[2] to p[3] Returns ------- y : 1d array Trapezoidal membership function. """ assert len(p) == 4, "trapmf requires 4 parameters." assert ( p[0] <= p[1] and p[1] <= p[2] and p[2] <= p[3] ), "trapmf requires 4 parameters: p[0] <= p[1] <= p[2] <= p[3]." x = np.asanyarray(x) y = np.nan * np.ones_like(x) idx =
np.nonzero(x <= p[1])
numpy.nonzero
"""This module contains the tools needed for satellite detection within an ACS/WFC image as published in `ACS ISR 2016-01 <http://www.stsci.edu/hst/acs/documents/isrs/isr1601.pdf>`_. .. note:: Only tested for ACS/WFC FLT and FLC images, but it should theoretically work for any instrument. Requires skimage version 0.11.x or later. :func:`skimage.transform.probabilistic_hough_line` gives slightly different results from run to run, but this should not matter since :func:`detsat` only provides crude approximation of the actual trail(s). Performance is faster when ``plot=False``, where applicable. Examples -------- >>> from acstools.satdet import detsat, make_mask, update_dq Find trail segments for a single image and extension without multiprocessing, and display plots (not shown) and verbose information: >>> results, errors = detsat( ... 'jc8m10syq_flc.fits', chips=[4], n_processes=1, ... plot=True, verbose=True) 1 file(s) found... Processing jc8m10syq_flc.fits[4]... Rescale intensity percentiles: 110.161376953, 173.693756409 Length of PHT result: 42 min(x0)= 1, min(x1)= 269, min(y0)= 827, min(y1)= 780 max(x0)=3852, max(x1)=4094, max(y0)=1611, max(y1)=1545 buf=200 topx=3896, topy=1848 ... Trail Direction: Right to Left 42 trail segment(s) detected ... End point list: 1. (1256, 1345), (2770, 1037) 2. ( 11, 1598), ( 269, 1545) ... Total run time: 22.4326269627 s >>> results[('jc8m10syq_flc.fits', 4)] array([[[1242, 1348], [2840, 1023]], [[1272, 1341], [2688, 1053]], ... [[2697, 1055], [2967, 1000]]]) >>> errors {} Find trail segments for multiple images and all ACS/WFC science extensions with multiprocessing: >>> results, errors = detsat( ... '*_flc.fits', chips=[1, 4], n_processes=12, verbose=True) 6 file(s) found... Using 12 processes Number of trail segment(s) found: abell2744-hffpar_acs-wfc_f814w_13495_11_01_jc8n11q9q_flc.fits[1]: 0 abell2744-hffpar_acs-wfc_f814w_13495_11_01_jc8n11q9q_flc.fits[4]: 4 abell2744_acs-wfc_f814w_13495_51_04_jc8n51hoq_flc.fits[1]: 2 abell2744_acs-wfc_f814w_13495_51_04_jc8n51hoq_flc.fits[4]: 34 abell2744_acs-wfc_f814w_13495_93_02_jc8n93a7q_flc.fits[1]: 20 abell2744_acs-wfc_f814w_13495_93_02_jc8n93a7q_flc.fits[4]: 20 j8oc01sxq_flc.fits[1]: 0 j8oc01sxq_flc.fits[4]: 0 jc8m10syq_flc.fits[1]: 0 jc8m10syq_flc.fits[4]: 38 jc8m32j5q_flc.fits[1]: 42 jc8m32j5q_flc.fits[4]: 12 Total run time: 34.6021330357 s >>> results[('jc8m10syq_flc.fits', 4)] array([[[1242, 1348], [2840, 1023]], [[1272, 1341], [2688, 1053]], ... [[2697, 1055], [2967, 1000]]]) >>> errors {} For a given image and extension, create a DQ mask for a satellite trail using the first segment (other segments should give similar masks) based on the results from above (plots not shown): >>> trail_coords = results[('jc8m10syq_flc.fits', 4)] >>> trail_segment = trail_coords[0] >>> trail_segment array([[1199, 1357], [2841, 1023]]) >>> mask = make_mask('jc8m10syq_flc.fits', 4, trail_segment, ... plot=True, verbose=True) Rotation: -11.4976988695 Hit image edge at counter=26 Hit rotate edge at counter=38 Run time: 19.476323843 s Update the corresponding DQ array using the mask from above: >>> update_dq('jc8m10syq_flc.fits', 6, mask, verbose=True) DQ flag value is 16384 Input... flagged NPIX=156362 Existing flagged NPIX=0 Newly... flagged NPIX=156362 jc8m10syq_flc.fits[6] updated """ # # History: # Dec 12, 2014 - DMB - Created for COSC 602 "Image Processing and Pattern # Recocnition" at Towson University. Mostly detection algorithm # development and VERY crude mask. # Feb 01, 2015 - DMB - Masking algorithm refined to be useable by HFF. # Mar 28, 2015 - DMB - Small bug fixes and tweaking to try not to include # diffraction spikes. # Nov 03, 2015 - PLL - Adapted for acstools distribution. Fixed bugs, # possibly improved performance, changed API. # Dec 07, 2015 - PLL - Minor changes based on feedback from DMB. # May 24, 2016 - SMO - Minor import changes to skimage # # STDLIB import glob import multiprocessing import time import warnings from functools import partial from multiprocessing import Process, Queue # THIRD PARTY import numpy as np from astropy.io import fits # from astropy.stats import biweight_location from astropy.stats import sigma_clipped_stats from astropy.utils.exceptions import AstropyUserWarning from astropy.utils.introspection import minversion # See https://github.com/astropy/astropy/issues/6364 from astropy.stats import biweight_scale biweight_midvariance = partial(biweight_scale, modify_sample_size=False) # OPTIONAL try: import skimage from scipy import stats from skimage import transform from skimage import morphology as morph from skimage import exposure from skimage.feature import canny except ImportError: HAS_OPDEP = False else: if minversion(skimage, '0.11'): HAS_OPDEP = True else: HAS_OPDEP = False try: import matplotlib.pyplot as plt except ImportError: plt = None warnings.warn('matplotlib not found, plotting is disabled', AstropyUserWarning) __version__ = '0.3.3' __vdate__ = '11-Jul-2017' __author__ = '<NAME>, <NAME>' __all__ = ['detsat', 'make_mask', 'update_dq'] def _detsat_one(filename, ext, sigma=2.0, low_thresh=0.1, h_thresh=0.5, small_edge=60, line_len=200, line_gap=75, percentile=(4.5, 93.0), buf=200, plot=False, verbose=False): """Called by :func:`detsat`.""" if verbose: t_beg = time.time() fname = f'{filename}[{ext}]' # check extension if ext not in (1, 4, 'SCI', ('SCI', 1), ('SCI', 2)): warnings.warn(f'{ext} is not a valid science extension for ACS/WFC', AstropyUserWarning) # get the data image = fits.getdata(filename, ext) # image = im.astype('float64') # rescale the image p1, p2 = np.percentile(image, percentile) # there should always be some counts in the image, anything lower should # be set to one. Makes things nicer for finding edges. if p1 < 0: p1 = 0.0 if verbose: print(f'Rescale intensity percentiles: {p1}, {p2}') image = exposure.rescale_intensity(image, in_range=(p1, p2)) # get the edges immax = np.max(image) edge = canny(image, sigma=sigma, low_threshold=immax * low_thresh, high_threshold=immax * h_thresh) # clean up the small objects, will make less noise morph.remove_small_objects(edge, min_size=small_edge, connectivity=8, in_place=True) # create an array of angles from 0 to 180, exactly 0 will get bad columns # but it is unlikely that a satellite will be exactly at 0 degrees, so # don't bother checking. # then, convert to radians. angle = np.radians(
np.arange(2, 178, 0.5, dtype=float)
numpy.arange
""" CanSat Constellation Centralized Controller controller.py Taken from > <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, > "Safe Reinforcement Learning Benchmark Environments for Aerospace Control Systems," > IEEE Aerospace, Big Sky, MT, March 2022. """ import numpy as np from scipy.spatial.qhull import Delaunay def graph_from_simplices(tri: Delaunay) -> dict: """ transform simplices to graph represented as { vertex_id : set({verts}) } """ graph = {} for simplex in tri.simplices: for va, vb in list(zip(simplex[:-1], simplex[1:])) + [(simplex[0], simplex[-1])]: if va in graph: graph[va].add(vb) else: graph[va] = set({vb}) if vb in graph: graph[vb].add(va) else: graph[vb] = set({va}) return graph def model_output(model, time_t, state_ctrl, input_forces): """ calculate forces to be supplied by the satellites to rejoin """ forces = [] points = [np.array([0.0, 0.0]) ] + [np.array(input_forces[i * 4:(i + 1) * 4][:2]) for i in range(0, 4)] vels = [np.array([0.0, 0.0]) ] + [np.array(input_forces[i * 4:(i + 1) * 4][2:]) for i in range(0, 4)] tri = Delaunay(points) graph = graph_from_simplices(tri) for sidx in range(len(points)): connections = graph[sidx] f = np.array([0.0, 0.0]) for sother in connections: # get unit distance vector and norm dist = points[sother] - points[sidx] r = np.linalg.norm(dist) dist /= r vel = (vels[sother] - vels[sidx]) velp = np.dot(vel, dist) * dist velr = np.linalg.norm(vel) if not
np.isnan(r)
numpy.isnan
from __future__ import division from __future__ import print_function from __future__ import absolute_import from builtins import zip from builtins import range import hashlib import os import numpy from ektelo.data import Histogram from ektelo import util from ektelo.mixins import CartesianInstantiable from ektelo.mixins import Marshallable import scipy.stats as sci from functools import reduce class Dataset(Marshallable): def __init__(self, hist, reduce_to_domain_shape=None, dist=None): """ Any instances with equal key() values should have equal hash() values domain_shape will be result of regular grid partition """ if isinstance(reduce_to_domain_shape, int): # allow for integers in 1D, instead of shape tuples reduce_to_domain_shape = (reduce_to_domain_shape, ) if dist is not None: self._dist_str = numpy.array_str(numpy.array(dist)) else: self._dist_str = '' self._hist = hist self._reduce_to_domain_shape = reduce_to_domain_shape if hist.shape != reduce_to_domain_shape else None self._dist = dist self._payload = None self._compiled = False def reduce_data(self,p_grid,data): """reduce data to the domain indicated by p_grid""" assert data.shape == p_grid.shape, 'Shape of x and shape of partition vector must match.' #get out_shape if p_grid.ndim == 1: out_shape =(len(numpy.unique(p_grid)), ) else: out = [] for i in range(p_grid.ndim): ind_slice = [0] * p_grid.ndim ind_slice[i] = slice(0, p_grid.shape[i]) out.append(len(numpy.unique(p_grid[ind_slice]))) # This is doesn't work for dimension >2, the compressed array is not a strip of the domain, # but the first element along the axis. It could be an nd array itself. #out = [len(numpy.unique(numpy.compress([True], p_grid, axis=i))) for i in range(p_grid.ndim)] #out.reverse() # rows/cols need to be reversed here out_shape = tuple(out) #reduce unique, indices, inverse, counts = numpy.unique(p_grid, return_index=True, return_inverse=True, return_counts=True) res = numpy.zeros_like(unique, dtype=float) for index, c in numpy.ndenumerate(data.ravel()): # needs to be flattened for parallel indexing with output of unique res[ inverse[index] ] += c return numpy.array(res).reshape(out_shape) def compile(self): if self._compiled: return self self._payload = self._hist if self._reduce_to_domain_shape: # reduce cells to get desired shape q = [divmod(dom,grid) for (dom,grid) in zip(self._payload.shape, self._reduce_to_domain_shape)] for red, rem in q: assert rem == 0, 'Domain must be reducible to target domain by uniform grid: %i, %i' % (red,rem) grid_shape = [r[0] for r in q] p_grid = partition_grid(self._payload.shape, grid_shape) self._payload = self.reduce_data(p_grid,self._payload) # update payload if self._dist is not None: self._dist = self.reduce_data(p_grid,self._dist) # update dist self._compiled = True self._payload = self._payload.astype("int") # partition engines need payload to be of type int return self @property def payload(self): return self.compile()._payload @property def dist(self): return self.compile()._dist @property def scale(self): return self.payload.sum() @property def domain_shape(self): return self.payload.shape @property def fractionZeros(self): zero_count = (self.payload == 0).sum() return util.old_div(float(zero_count), self.payload.size) @property def maxCount(self): return self.payload.max() @property def key(self): """ Using leading 8 characters of hash as key for now """ return self.hash[:8] @property def hash(self): m = hashlib.sha1() m.update(util.prepare_for_hash(self.__class__.__name__)) m.update(util.prepare_for_hash(numpy.array(self._hist))) m.update(util.prepare_for_hash(numpy.array(self._reduce_to_domain_shape))) m.update(util.prepare_for_hash(self._dist_str)) return m.hexdigest() # represent object state as dict (for storage in datastore) def asDict(self): d = util.class_to_dict(self, ignore_list=['_dist', 'dist', '_payload', 'payload', '_compiled', '_dist_str', '_hist', '_reduce_to_domain_shape']) ## add decomposed shape attrs ?? return d def analysis_payload(self): return {'payload': self.payload} class DatasetFromRelation(Dataset, CartesianInstantiable): def __init__(self, relation, nickname, normed=False, weights=None, reduce_to_dom_shape=None): self.init_params = util.init_params_from_locals(locals()) self.fname = nickname histogram = Histogram(relation.df, relation.bins, relation.domains, normed, weights).generate() self.statistics = relation.statistics() self.statistics.update(histogram.statistics()) if reduce_to_dom_shape != None: self.statistics['domain_valid'] = False else: self.statistics['domain_valid'] = True super(DatasetFromRelation,self).__init__(histogram.hist.copy(order='C'), reduce_to_dom_shape) @staticmethod def instantiate(params): relation = data.Relation(params['config']).load_csv(params['csv_filename'], params['csv_delimiter']) return DatasetFromRelation(relation, params['nickname'], params['normed'], params['weights'], params['domain']) def asDict(self): d = util.class_to_dict(self, ignore_list=['_dist', '_payload', 'payload', '_compiled', '_dist_str', '_hist', '_reduce_to_domain_shape', 'statistics']) return d class DatasetFromFile(Dataset, CartesianInstantiable): def __init__(self, fileName, reduce_to_dom_shape=None): self.init_params = util.init_params_from_locals(locals()) self.fname = fileName #assert nickname in filenameDict, 'Filename parameter not recognized: %s' % nickname hist = load(self.fname) super(DatasetFromFile,self).__init__(hist, reduce_to_dom_shape, None) @staticmethod def instantiate(params): return DatasetFromFile(params['nickname'], params['domain']) class DatasetSampled(Dataset): def __init__(self, dist, sample_to_scale, reduce_to_dom_shape=None, seed=None): self.seed = seed prng = numpy.random.RandomState(self.seed) hist = subSample(dist, sample_to_scale, prng) super(DatasetSampled,self).__init__(hist, reduce_to_dom_shape, dist) class DatasetUniformityVaryingSynthetic(Dataset, CartesianInstantiable): def __init__(self, uniformity, dom_shape, scale, seed=None): ''' Generate synthetic data of varying uniformity uniformity: parameter in [0,1] where 1 produces perfectly uniform data, 0 is maximally non-uniform All cells set to zero except fraction equal to 'uniformity' value. All non-zero cells are set to same value, then shuffled randomly. ''' self.init_params = util.init_params_from_locals(locals()) self.u = uniformity assert 0 <= uniformity and uniformity <= 1 n = numpy.prod(dom_shape) # total domain size hist = numpy.zeros(n) num_nonzero = max(1, int(uniformity * n)) hist_value = util.old_div(scale, num_nonzero) hist[0:num_nonzero] = hist_value prng = numpy.random.RandomState(seed) prng.shuffle(hist) super(DatasetUniformityVaryingSynthetic, self).__init__(hist.reshape(dom_shape), reduce_to_domain_shape=None, dist=None) @staticmethod def instantiate(params): return DatasetUniformityVaryingSynthetic(params['uniformity'], params['dom_shape'], params['scale'], params['seed']) tryPaths = [os.path.join(os.environ['EKTELO_HOME'], 'ektelo')] def load(filename): """ Load from file and return original counts (should be integral) """ path = [p for p in tryPaths if os.path.exists(p)] assert path, 'data path not found.' fullpath = os.path.join( path[0], 'datafiles', filename ) # fixed for now, so we don't have to include as a parameter in automated key extraction stuff... _, file_extension = os.path.splitext(fullpath) if file_extension == '.txt': x = [] with open(fullpath, 'r') as fp: for ln in fp.readlines(): x.append(int(ln)) return numpy.array(x, dtype='int32') elif file_extension == '.npy': return numpy.load(fullpath) else: raise Exception('Unrecognized file extension') def subSample(dist, sampleSize, prng): ''' Generate a subsample of given sampleSize from an input distribution ''' samples = prng.choice(a=dist.size, replace=True, size=int(sampleSize), p=dist.flatten()) hist = numpy.histogram(samples, bins=dist.size, range=(0,dist.size))[0].astype('int32') # return only counts (not bins) return hist.reshape( dist.shape ) # partition vector generation for data reduction def cantor_pairing(a, b): """ A function returning a unique positive integer for every pair (a,b) of positive integers """ return util.old_div((a+b)*(a+b+1), 2) + b def general_pairing(tup): """ Generalize cantor pairing to k dimensions """ if len(tup) == 0: return tup[0] # no need for pairing in 1D case else: return reduce(cantor_pairing, tup) def canonicalTransform(vector): """ transform a partition vector according to the canonical order. if bins are noncontiguous, use position of first occurrence. e.g. [3,4,1,1] => [1,2,3,3]; [3,4,1,1,0,1]=>[0,1,2,2,3,2] """ unique, indices, inverse =
numpy.unique(vector, return_index=True, return_inverse=True)
numpy.unique
#_____import packages_____ from galpy.potential import KuzminKutuzovStaeckelPotential from galpy.potential import evaluatePotentials, evaluateRforces, evaluateDensities from galpy.actionAngle import estimateDeltaStaeckel from galpy.actionAngle import actionAngleStaeckel from galpy.orbit import Orbit from galpy.util import bovy_coords import numpy import scipy import math #Test whether circular velocity calculation works def test_vcirc(): #test the circular velocity of the KuzminKutuzovStaeckelPotential #using parameters from Batsleer & Dejonghe 1994, fig. 1-3 #and their formula eq. (10) #_____model parameters______ #surface ratios of disk and halo: ac_Ds = [50. ,50. ,50. ,50. ,50. ,50. ,40. ,40. ,40. ] ac_Hs = [1.005,1.005,1.005,1.01,1.01,1.01 ,1.02,1.02,1.02 ] #disk contribution to total mass: ks = [0.05 ,0.06 ,0.07 ,0.07,0.1 ,0.125,0.1 ,0.12,0.125] #focal distance: Delta = 1. for ii in range(9): ac_D = ac_Ds[ii] ac_H = ac_Hs[ii] k = ks[ii] #_____setup potential_____ #first try, not normalized: V_D = KuzminKutuzovStaeckelPotential(amp= k ,ac=ac_D,Delta=Delta,normalize=False) V_H = KuzminKutuzovStaeckelPotential(amp=(1.-k),ac=ac_H,Delta=Delta,normalize=False) pot = [V_D,V_H] #normalization according to Batsleer & Dejonghe 1994: V00 = evaluatePotentials(pot,0.,0.) #second try, normalized: V_D = KuzminKutuzovStaeckelPotential(amp= k / (-V00),ac=ac_D,Delta=Delta,normalize=False) V_H = KuzminKutuzovStaeckelPotential(amp=(1.-k) / (-V00),ac=ac_H,Delta=Delta,normalize=False) pot = [V_D,V_H] #_____calculate rotation curve_____ Rs = numpy.linspace(0.,20.,100) z = 0. vcirc_calc = numpy.sqrt(-Rs * evaluateRforces(pot,Rs,z)) #_____vcirc by Batsleer & Dejonghe eq. (10) (with proper Jacobian)_____ def vc2w(R): g_D = Delta**2 / (1.-ac_D**2) a_D = g_D - Delta**2 g_H = Delta**2 / (1.-ac_H**2) a_H = g_H - Delta**2 l = R**2 - a_D q = a_H - a_D termD = numpy.sqrt(l )*(numpy.sqrt(l ) + numpy.sqrt(-g_D ))**2 termH = numpy.sqrt(l-q)*(numpy.sqrt(l-q) + numpy.sqrt(-g_D-q))**2 return R**2 * (k / termD + (1.-k) / termH) vcirc_formula = numpy.sqrt(vc2w(Rs)/(-V00)) assert numpy.all(numpy.fabs(vcirc_calc - vcirc_formula) < 10**-8.), \ 'Calculated circular velocity for KuzminKutuzovStaeckelPotential '+ \ 'does not agree with eq. (10) (corrected by proper Jacobian) '+ \ 'by Batsleer & Dejonghe (1994)' return None #----------------------------------------------------------------------------- #test whether the density calculation works def test_density(): #test the density calculation of the KuzminKutuzovStaeckelPotential #using parameters from Batsleer & Dejonghe 1994, tab. 2 #_____parameters_____ #table 2 in Batsleer & Dejonghe ac_D = [25. ,25. ,25. ,25. ,25. ,25. ,40. ,40. ,40. ,40. ,40. ,50. ,50. ,50. ,50. ,50. ,50. ,75. ,75. ,75. ,75. ,75. ,75. ,100. ,100. ,100.,100. ,100.,100. ,150. ,150. ,150. ,150. ,150.,150.] ac_H = [1.005,1.005,1.01 ,1.01,1.02 ,1.02,1.005,1.005,1.01 ,1.01,1.02,1.005,1.005,1.01,1.01 ,1.02,1.02 ,1.005,1.005,1.01,1.01 ,1.02,1.02 ,1.005,1.005,1.01,1.01 ,1.02,1.02 ,1.005,1.005,1.01 ,1.01 ,1.02,1.02] k = [0.05 ,0.08 ,0.075,0.11,0.105,0.11,0.05 ,0.08 ,0.075,0.11,0.11,0.05 ,0.07 ,0.07,0.125,0.1 ,0.125,0.05 ,0.065 ,0.07,0.125,0.10,0.125,0.05,0.065,0.07,0.125,0.10,0.125,0.05 ,0.065,0.075,0.125,0.11,0.125] Delta = [0.99 ,1.01 ,0.96 ,0.99,0.86 ,0.88,1.00 ,1.01 ,0.96 ,0.99,0.89,1.05 ,1.06 ,1.00,1.05 ,0.91,0.97 ,0.98 ,0.99 ,0.94,0.98 ,0.85,0.91 ,1.06 ,1.07 ,1.01,1.06 ,0.94,0.97 ,1.06 ,1.07 ,0.98 ,1.06 ,0.94,0.97] Mmin = [7.49 ,6.17 ,4.08 ,3.70,2.34 ,2.36,7.57 ,6.16 ,4.08 ,2.64,2.38,8.05 ,6.94 ,4.37,3.70 ,2.48,2.50 ,7.37 ,6.66 ,4.05,3.46 ,2.33,2.36 ,8.14 ,7.27 ,4.42,3.72 ,2.56,2.50 ,8.14 ,7.26 ,4.17 ,3.72 ,2.51,2.50] Mmax = [7.18 ,6.12 ,3.99 ,3.69,2.37 ,2.40,7.27 ,6.11 ,3.99 ,2.66,2.42,7.76 ,6.85 ,4.26,3.72 ,2.51,2.54 ,7.07 ,6.51 ,3.95,3.48 ,2.36,2.40 ,7.85 ,7.15 ,4.30,3.75 ,2.58,2.54 ,7.85 ,7.07 ,4.08 ,3.75 ,2.53,2.53] rhomin = [0.04 ,0.05 ,0.04 ,0.04,0.03 ,0.03,0.06 ,0.06 ,0.05 ,0.04,0.04,0.07 ,0.08 ,0.06,0.07 ,0.04,0.05 ,0.08 ,0.09 ,0.07,0.09 ,0.05,0.06 ,0.12 ,0.13 ,0.09,0.13 ,0.07,0.09 ,0.16 ,0.19 ,0.12 ,0.18 ,0.10,0.12] rhomax = [0.03 ,0.03 ,0.02 ,0.03,0.02 ,0.02,0.04 ,0.04 ,0.03 ,0.03,0.02,0.05 ,0.05 ,0.04,0.05 ,0.03,0.03 ,0.05 ,0.06 ,0.04,0.06 ,0.03,0.04 ,0.07 ,0.08 ,0.06,0.08 ,0.04,0.05 ,0.09 ,0.10 ,0.07 ,0.10 ,0.06,0.07] Sigmin = [58 ,52 ,52 ,49 ,39 ,40 ,58 ,55 ,51 ,44 ,40 ,59 ,54 ,53 ,49 ,41 ,42 ,58 ,55 ,51 ,48 ,39 ,40 ,59 ,55 ,53 ,49 ,42 ,42 ,59 ,55 ,52 ,49 ,42 ,42] Sigmax = [45 ,41 ,38 ,37 ,28 ,28 ,45 ,32 ,37 ,32 ,30 ,46 ,43 ,40 ,37 ,30 ,31 ,45 ,43 ,38 ,36 ,28 ,29 ,46 ,43 ,40 ,38 ,31 ,31 ,46 ,44 ,39 ,38 ,30 ,31] for ii in range(len(ac_D)): if ac_D[ii] == 40.: continue #because I believe that there are typos in tab. 2 by Batsleer & Dejonghe... for jj in range(2): #_____parameters depending on solar position____ if jj == 0: Rsun = 7.5 zsun = 0.004 GM = Mmin[ii] #units: G = 1, M in 10^11 solar masses rho = rhomin[ii] Sig = Sigmin[ii] elif jj == 1: Rsun = 8.5 zsun = 0.02 GM = Mmax[ii] #units: G = 1, M in 10^11 solar masses rho = rhomax[ii] Sig = Sigmax[ii] outstr = 'ac_D='+str(ac_D[ii])+', ac_H='+str(ac_H[ii])+', k='+str(k[ii])+', Delta='+str(Delta[ii])+\ ', Mtot='+str(GM)+'*10^11Msun, Rsun='+str(Rsun)+'kpc, rho(Rsun,zsun)='+str(rho)+'Msun/pc^3, Sig(Rsun,z<1.1kpc)='+str(Sig)+'Msun/pc^2' #_____setup potential_____ amp_D = GM * k[ii] V_D = KuzminKutuzovStaeckelPotential(amp=amp_D,ac=ac_D[ii],Delta=Delta[ii],normalize=False) amp_H = GM * (1.-k[ii]) V_H = KuzminKutuzovStaeckelPotential(amp=amp_H,ac=ac_H[ii],Delta=Delta[ii],normalize=False) pot = [V_D,V_H] #_____local density_____ rho_calc = evaluateDensities(pot,Rsun,zsun) * 100. #units: [solar mass / pc^3] rho_calc = round(rho_calc,2) #an error of 0.01 corresponds to the significant digit #given in the table, to which the density was rounded, #to be wrong by one. assert numpy.fabs(rho_calc - rho) <= 0.01+10.**-8, \ 'Calculated density %f for KuzminKutuzovStaeckelPotential ' % rho_calc + \ 'with model parameters:\n'+outstr+'\n'+ \ 'does not agree with value from tab. 2 '+ \ 'by Batsleer & Dejonghe (1994)' #_____surface density_____ Sig_calc, err = scipy.integrate.quad(lambda z: (evaluateDensities(pot,Rsun,z/1000.) * 100.), #units: [solar mass / pc^3] 0., 1100.) #units: pc Sig_calc = round(2. * Sig_calc) #an error of 1 corresponds to the significant digit #given in the table, to which the surface density was rounded, #to be wrong by one. assert numpy.fabs(Sig_calc - Sig) <= 1., \ 'Calculated surface density %f for KuzminKutuzovStaeckelPotential ' % Sig_calc + \ 'with model parameters:\n'+outstr+'\n'+ \ 'does not agree with value from tab. 2 '+ \ 'by Batsleer & Dejonghe (1994)' return None #----------------------------------------------------------------------------- #test wheter the orbit integration in C and Python are the same def test_orbitIntegrationC(): #_____initialize some KKSPot_____ Delta = 1.0 pot = KuzminKutuzovStaeckelPotential(ac=20.,Delta=Delta,normalize=True) #_____initialize an orbit (twice)_____ vxvv = [1.,0.1,1.1,0.,0.1] o_P= Orbit(vxvv=vxvv) o_C= Orbit(vxvv=vxvv) #_____integrate the orbit with python and C_____ ts= numpy.linspace(0,100,101) o_P.integrate(ts,pot,method='leapfrog') #python o_C.integrate(ts,pot,method='leapfrog_c')#C for ii in range(5): exp3= -1.7 if ii == 0: Python, CC, string, exp1, exp2 = o_P.R(ts) , o_C.R(ts) , 'R' , -5., -10. elif ii == 1: Python, CC, string, exp1, exp2 = o_P.z(ts) , o_C.z(ts) , 'z' , -3.25, -4. elif ii == 2: Python, CC, string, exp1, exp2 = o_P.vR(ts), o_C.vR(ts), 'vR', -3., -10. elif ii == 3: Python, CC, string, exp1, exp2, exp3 = o_P.vz(ts), o_C.vz(ts), 'vz', -3., -4., -1.3 elif ii == 4: Python, CC, string, exp1, exp2 = o_P.vT(ts), o_C.vT(ts), 'vT', -5., -10. rel_diff = numpy.fabs((Python-CC)/CC) < 10.**exp1 abs_diff = (numpy.fabs(Python-CC) < 10.**exp2) * (numpy.fabs(Python) < 10.**exp3) assert numpy.all(rel_diff+abs_diff), \ 'Orbit integration for '+string+' coordinate different in ' + \ 'C and Python implementation.' return None #----------------------------------------------------------------------------- #test whether this is really a Staeckel potential and the Delta is constant def test_estimateDelta(): #_____initialize some KKSPot_____ Delta = 1.0 pot = KuzminKutuzovStaeckelPotential(ac=20.,Delta=Delta,normalize=True) #_____initialize an orbit (twice)_____ vxvv = [1.,0.1,1.1,0.01,0.1] o= Orbit(vxvv=vxvv) #_____integrate the orbit with C_____ ts= numpy.linspace(0,101,100) o.integrate(ts,pot,method='leapfrog_c') #____estimate Focal length Delta_____ #for each time step individually: deltas_estimate = numpy.zeros(len(ts)) for ii in range(len(ts)): deltas_estimate[ii] = estimateDeltaStaeckel(pot,o.R(ts[ii]),o.z(ts[ii])) assert numpy.all(numpy.fabs(deltas_estimate - Delta) < 10.**-8), \ 'Focal length Delta estimated along the orbit is not constant.' #for all time steps together: delta_estimate = estimateDeltaStaeckel(pot,o.R(ts),o.z(ts)) assert numpy.fabs(delta_estimate - Delta) < 10.**-8, \ 'Focal length Delta estimated from the orbit is not the same as the input focal length.' return None #----------------------------------------------------------------------------- #test whether this is really a Staeckel potential and the Actions are conserved along the orbit def test_actionConservation(): #_____initialize some KKSPot_____ Delta = 1.0 pot = KuzminKutuzovStaeckelPotential(ac=20.,Delta=Delta,normalize=True) #_____initialize an orbit (twice)_____ vxvv = [1.,0.1,1.1,0.01,0.1] o= Orbit(vxvv=vxvv) #_____integrate the orbit with C_____ ts= numpy.linspace(0,101,100) o.integrate(ts,pot,method='leapfrog_c') #_____Setup ActionAngle object and calculate actions (Staeckel approximation)_____ aAS = actionAngleStaeckel(pot=pot,delta=Delta,c=True) jrs,lzs,jzs = aAS(o.R(ts),o.vR(ts),o.vT(ts),o.z(ts),o.vz(ts)) assert numpy.all(numpy.fabs(jrs - jrs[0]) < 10.**-8.), \ 'Radial action is not conserved along orbit.' assert numpy.all(numpy.fabs(lzs - lzs[0]) < 10.**-8.), \ 'Angular momentum is not conserved along orbit.' assert numpy.all(numpy.fabs(jzs - jzs[0]) < 10.**-8.), \ 'Vertical action is not conserved along orbit.' return None #----------------------------------------------------------------------------- #test coordinate transformation def test_lambdanu_to_Rz(): #coordinate system: a = 3. g = 4. Delta = numpy.sqrt(g-a) ac = numpy.sqrt(a/g) #_____test float input (z=0)_____ #coordinate transformation: l, n = 2., -4. R,z= bovy_coords.lambdanu_to_Rz(l,n,ac=ac,Delta=Delta) #true values: R_true = numpy.sqrt((l+a)*(n+a)/(a-g)) z_true = numpy.sqrt((l+g)*(n+g)/(g-a)) #test: assert numpy.fabs(R-R_true) < 10.**-10., 'lambdanu_to_Rz conversion did not work as expected (R)' assert numpy.fabs(z-z_true) < 10.**-10., 'lambdanu_to_Rz conversion did not work as expected (z)' #_____Also test for arrays_____ #coordinate transformation: l = numpy.array([2. ,10.,20. ,0.]) n = numpy.array([-4.,-3.,-3.5,-3.5]) R,z= bovy_coords.lambdanu_to_Rz(l,n,ac=ac,Delta=Delta) #true values: R_true = numpy.sqrt((l+a)*(n+a)/(a-g)) z_true = numpy.sqrt((l+g)*(n+g)/(g-a)) #test: rel_diff = numpy.fabs((R-R_true)/R_true) < 10.**-8. abs_diff = (numpy.fabs(R-R_true) < 10.**-6.) * (numpy.fabs(R_true) < 10.**-6.) assert numpy.all(rel_diff+abs_diff), 'lambdanu_to_Rz conversion did not work as expected (R array)' rel_diff = numpy.fabs((z-z_true)/z_true) < 10.**-8. abs_diff = (numpy.fabs(z-z_true) < 10.**-6.) * (numpy.fabs(z_true) < 10.**-6.) assert numpy.all(rel_diff+abs_diff), 'lambdanu_to_Rz conversion did not work as expected (z array)' return None def test_Rz_to_lambdanu(): #coordinate system: a = 3. g = 7. Delta = numpy.sqrt(g-a) ac =
numpy.sqrt(a/g)
numpy.sqrt
#!/usr/bin/env python # Copyright (c) 2011-2021, wradlib developers. # Distributed under the MIT License. See LICENSE.txt for more info. """ Xarray based Data I/O ^^^^^^^^^^^^^^^^^^^^^ Reads data from netcdf-based CfRadial1, CfRadial2 and hdf5-based ODIM_H5 and other hdf5-flavours (GAMIC). More radar backends (sigmet, rainbow) will be implemented too. Writes data to CfRadial2, ODIM_H5 or plain netCDF files. This reader implementation uses * `xarray <https://xarray.pydata.org/>`_, * `netcdf4 <https://unidata.github.io/netcdf4-python/>`_, * `h5py <https://www.h5py.org/>`_ and * `h5netcdf <https://github.com/h5netcdf/h5netcdf>`_. Currently there are three different approaches. The recommended approach makes use of the newly implemented ``xarray.backends.BackendEntrypoint``. For every radar source (CfRadial1, CfRadial2, GAMIC, ODIM) a specific backend is implemented in wradlib which returns an specific `sweep` as ``xarray.Dataset``. Convenience functions (eg. ``wradlib.io.open_radar_dataset``) are available to read volume data into shallow ``wradlib.io.RadarVolume``-wrapper. The following two approaches are not recommended and will be removed from the codebase in wradlib v 2.0.0. In the first approach the data is claimed using netcdf4-Dataset in a diskless non-persistent mode as follows:: vol = io.xarray.OdimH5(ncfile) # or vol = io.xarray.CfRadial(ncfile) The vol data structure holds one or many ['sweep_X'] xarray datasets, containing the sweep data. The root group xarray dataset which corresponds to the CfRadial2 root-group is available via the `.root`-object. The writer implementation uses xarray for CfRadial2 output and relies on h5py for the ODIM_H5 output. The second approach reads ODIM files (metadata) into a *simple* accessible structure:: vol = wradlib.io.open_odim(paths, loader='netcdf4', **kwargs) All datafiles are accessed via the given loader ('netcdf4', 'h5py', 'h5netcdf'). Only absolutely neccessary data is actually read in this process, eg. acquisition time and elevation, to fill the structure accordingly. All subsequent metadata retrievals are cached to further improve performance. Actual data access is realised via xarray using engine 'netcdf4' or 'h5netcdf', depending on the loader. Since for data handling xarray is utilized all xarray features can be exploited, like lazy-loading, pandas-like indexing on N-dimensional data and vectorized mathematical operations across multiple dimensions. Examples -------- See :ref:`/notebooks/fileio/wradlib_odim_multi_file_dataset.ipynb`. Warning ------- This implementation is considered experimental. Changes in the API should be expected. .. autosummary:: :nosignatures: :toctree: generated/ {} """ __all__ = [ "WradlibVariable", "RadarVolume", "open_radar_dataset", "open_radar_mfdataset", "XRadVol", "CfRadial", "OdimH5", "to_cfradial2", "to_odim", "to_netcdf", "open_odim", "XRadSweep", "XRadMoment", "XRadTimeSeries", "XRadVolume", "create_xarray_dataarray", ] __doc__ = __doc__.format("\n ".join(__all__)) import collections import datetime as dt import glob import io import os import re import warnings from distutils.version import LooseVersion import dateutil import deprecation import h5netcdf import h5py import netCDF4 as nc import numpy as np import xarray as xr from xarray.backends.api import combine_by_coords from xarray.core.variable import Variable from wradlib import version from wradlib.georef import xarray try: from tqdm import tqdm except ImportError: def tqdm(val, **kwargs): print( "wradlib: Please wait for completion of time consuming task! \n" "wradlib: Please install 'tqdm' for showing a progress bar " "instead." ) return val def raise_on_missing_xarray_backend(): """Raise errors if functionality isn't available.""" if LooseVersion(xr.__version__) < LooseVersion("0.17.0"): raise ImportError( f"'xarray>=0.17.0' needed to perform this operation. " f"'xarray={xr.__version__}' available.", ) elif LooseVersion(xr.__version__) < LooseVersion("0.18.2"): xarray_backend_api = os.environ.get("XARRAY_BACKEND_API", None) if xarray_backend_api is None: os.environ["XARRAY_BACKEND_API"] = "v2" else: if xarray_backend_api != "v2": raise ValueError( "Environment variable `XARRAY_BACKEND_API='v2'` needed to perform " "this operation. " ) else: pass class WradlibVariable(object): """Minimal variable wrapper.""" def __init__(self, dims, data, attrs): self._dimensions = dims self._data = data self._attrs = attrs @property def dimensions(self): return self._dimensions @property def data(self): return self._data @property def attributes(self): return self._attrs @deprecation.deprecated( deprecated_in="1.5", removed_in="2.0", current_version=version.version, details="Use `wradlib.georef.create_xarray_dataarray` " "instead.", ) def create_xarray_dataarray(*args, **kwargs): return xarray.create_xarray_dataarray(*args, **kwargs) moment_attrs = {"standard_name", "long_name", "units"} # CfRadial 2.0 - ODIM_H5 mapping moments_mapping = { "DBZH": { "standard_name": "radar_equivalent_reflectivity_factor_h", "long_name": "Equivalent reflectivity factor H", "short_name": "DBZH", "units": "dBZ", "gamic": ["zh"], }, "DBZH_CLEAN": { "standard_name": "radar_equivalent_reflectivity_factor_h", "long_name": "Equivalent reflectivity factor H", "short_name": "DBZH_CLEAN", "units": "dBZ", "gamic": None, }, "DBZV": { "standard_name": "radar_equivalent_reflectivity_factor_v", "long_name": "Equivalent reflectivity factor V", "short_name": "DBZV", "units": "dBZ", "gamic": ["zv"], }, "ZH": { "standard_name": "radar_linear_equivalent_reflectivity_factor_h", "long_name": "Linear equivalent reflectivity factor H", "short_name": "ZH", "units": "unitless", "gamic": None, }, "ZV": { "standard_name": "radar_equivalent_reflectivity_factor_v", "long_name": "Linear equivalent reflectivity factor V", "short_name": "ZV", "units": "unitless", "gamic": None, }, "DBZ": { "standard_name": "radar_equivalent_reflectivity_factor", "long_name": "Equivalent reflectivity factor", "short_name": "DBZ", "units": "dBZ", "gamic": None, }, "DBTH": { "standard_name": "radar_equivalent_reflectivity_factor_h", "long_name": "Total power H (uncorrected reflectivity)", "short_name": "DBTH", "units": "dBZ", "gamic": ["uzh", "uh"], }, "DBTV": { "standard_name": "radar_equivalent_reflectivity_factor_v", "long_name": "Total power V (uncorrected reflectivity)", "short_name": "DBTV", "units": "dBZ", "gamic": ["uzv", "uv"], }, "TH": { "standard_name": "radar_linear_equivalent_reflectivity_factor_h", "long_name": "Linear total power H (uncorrected reflectivity)", "short_name": "TH", "units": "unitless", "gamic": None, }, "TV": { "standard_name": "radar_linear_equivalent_reflectivity_factor_v", "long_name": "Linear total power V (uncorrected reflectivity)", "short_name": "TV", "units": "unitless", "gamic": None, }, "VRADH": { "standard_name": "radial_velocity_of_scatterers_away_" "from_instrument_h", "long_name": "Radial velocity of scatterers away from instrument H", "short_name": "VRADH", "units": "meters per seconds", "gamic": ["vh"], }, "VRADV": { "standard_name": "radial_velocity_of_scatterers_" "away_from_instrument_v", "long_name": "Radial velocity of scatterers away from instrument V", "short_name": "VRADV", "units": "meters per second", "gamic": ["vv"], }, "VR": { "standard_name": "radial_velocity_of_scatterers_away_" "from_instrument", "long_name": "Radial velocity of scatterers away from instrument", "short_name": "VR", "units": "meters per seconds", "gamic": None, }, "VRAD": { "standard_name": "radial_velocity_of_scatterers_away_" "from_instrument", "long_name": "Radial velocity of scatterers away from instrument", "short_name": "VRAD", "units": "meters per seconds", "gamic": None, }, "VRADDH": { "standard_name": "radial_velocity_of_scatterers_away_" "from_instrument_h", "long_name": "Radial velocity of scatterers away from instrument H", "short_name": "VRADDH", "units": "meters per seconds", "gamic": None, }, "WRADH": { "standard_name": "radar_doppler_spectrum_width_h", "long_name": "Doppler spectrum width H", "short_name": "WRADH", "units": "meters per seconds", "gamic": ["wh"], }, "UWRADH": { "standard_name": "radar_doppler_spectrum_width_h", "long_name": "Doppler spectrum width H", "short_name": "UWRADH", "units": "meters per seconds", "gamic": ["uwh"], }, "WRADV": { "standard_name": "radar_doppler_spectrum_width_v", "long_name": "Doppler spectrum width V", "short_name": "WRADV", "units": "meters per second", "gamic": ["wv"], }, "WRAD": { "standard_name": "radar_doppler_spectrum_width", "long_name": "Doppler spectrum width", "short_name": "WRAD", "units": "meters per second", "gamic": None, }, "ZDR": { "standard_name": "radar_differential_reflectivity_hv", "long_name": "Log differential reflectivity H/V", "short_name": "ZDR", "units": "dB", "gamic": ["zdr"], }, "UZDR": { "standard_name": "radar_differential_reflectivity_hv", "long_name": "Log differential reflectivity H/V", "short_name": "UZDR", "units": "dB", "gamic": ["uzdr"], }, "LDR": { "standard_name": "radar_linear_depolarization_ratio", "long_name": "Log-linear depolarization ratio HV", "short_name": "LDR", "units": "dB", "gamic": ["ldr"], }, "PHIDP": { "standard_name": "radar_differential_phase_hv", "long_name": "Differential phase HV", "short_name": "PHIDP", "units": "degrees", "gamic": ["phidp"], }, "UPHIDP": { "standard_name": "radar_differential_phase_hv", "long_name": "Differential phase HV", "short_name": "UPHIDP", "units": "degrees", "gamic": ["uphidp"], }, "KDP": { "standard_name": "radar_specific_differential_phase_hv", "long_name": "Specific differential phase HV", "short_name": "KDP", "units": "degrees per kilometer", "gamic": ["kdp"], }, "RHOHV": { "standard_name": "radar_correlation_coefficient_hv", "long_name": "Correlation coefficient HV", "short_name": "RHOHV", "units": "unitless", "gamic": ["rhohv"], }, "URHOHV": { "standard_name": "radar_correlation_coefficient_hv", "long_name": "Correlation coefficient HV", "short_name": "URHOHV", "units": "unitless", "gamic": ["urhohv"], }, "SNRH": { "standard_name": "signal_noise_ratio_h", "long_name": "Signal Noise Ratio H", "short_name": "SNRH", "units": "unitless", "gamic": None, }, "SNRV": { "standard_name": "signal_noise_ratio_v", "long_name": "Signal Noise Ratio V", "short_name": "SNRV", "units": "unitless", "gamic": None, }, "SQIH": { "standard_name": "signal_quality_index_h", "long_name": "Signal Quality H", "short_name": "SQIH", "units": "unitless", "gamic": None, }, "SQIV": { "standard_name": "signal_quality_index_v", "long_name": "Signal Quality V", "short_name": "SQIV", "units": "unitless", "gamic": None, }, "CCORH": { "standard_name": "clutter_correction_h", "long_name": "Clutter Correction H", "short_name": "CCORH", "units": "unitless", "gamic": None, }, "CCORV": { "standard_name": "clutter_correction_v", "long_name": "Clutter Correction V", "short_name": "CCORV", "units": "unitless", "gamic": None, }, "CMAP": { "standard_name": "clutter_map", "long_name": "Clutter Map", "short_name": "CMAP", "units": "unitless", "gamic": ["cmap"], }, } ODIM_NAMES = {value["short_name"]: key for (key, value) in moments_mapping.items()} GAMIC_NAMES = { v: key for (key, value) in moments_mapping.items() if value["gamic"] is not None for v in value["gamic"] } range_attrs = { "units": "meters", "standard_name": "projection_range_coordinate", "long_name": "range_to_measurement_volume", "spacing_is_constant": "true", "axis": "radial_range_coordinate", "meters_to_center_of_first_gate": None, } az_attrs = { "standard_name": "ray_azimuth_angle", "long_name": "azimuth_angle_from_true_north", "units": "degrees", "axis": "radial_azimuth_coordinate", } el_attrs = { "standard_name": "ray_elevation_angle", "long_name": "elevation_angle_from_horizontal_plane", "units": "degrees", "axis": "radial_elevation_coordinate", } time_attrs = { "standard_name": "time", "units": "seconds since 1970-01-01T00:00:00Z", } root_vars = { "volume_number", "platform_type", "instrument_type", "primary_axis", "time_coverage_start", "time_coverage_end", "latitude", "longitude", "altitude", "fixed_angle", "status_xml", } sweep_vars1 = { "sweep_number", "sweep_mode", "polarization_mode", "prt_mode", "follow_mode", "fixed_angle", "target_scan_rate", "sweep_start_ray_index", "sweep_end_ray_index", } sweep_vars2 = { "azimuth", "elevation", "pulse_width", "prt", "nyquist_velocity", "unambiguous_range", "antenna_transition", "n_samples", "r_calib_index", "scan_rate", } sweep_vars3 = { "DBZH", "DBZV", "VELH", "VELV", "DBZ", "VR", "time", "range", "reflectivity_horizontal", } cf_full_vars = {"prt": "prf", "n_samples": "pulse"} global_attrs = [ ("Conventions", "Cf/Radial"), ("version", "Cf/Radial version number"), ("title", "short description of file contents"), ("institution", "where the original data were produced"), ( "references", ("references that describe the data or the methods used " "to produce it"), ), ("source", "method of production of the original data"), ("history", "list of modifications to the original data"), ("comment", "miscellaneous information"), ("instrument_name", "nameThe of radar or lidar"), ("site_name", "name of site where data were gathered"), ("scan_name", "name of scan strategy used, if applicable"), ("scan_id", "scan strategy id, if applicable. assumed 0 if missing"), ("platform_is_mobile", '"true" or "false", assumed "false" if missing'), ( "ray_times_increase", ( '"true" or "false", assumed "true" if missing. ' "This is set to true if ray times increase monotonically " "thoughout all of the sweeps in the volume" ), ), ("field_names", "array of strings of field names present in this file."), ("time_coverage_start", "copy of time_coverage_start global variable"), ("time_coverage_end", "copy of time_coverage_end global variable"), ( "simulated data", ( '"true" or "false", assumed "false" if missing. ' "data in this file are simulated" ), ), ] global_variables = dict( [ ("volume_number", np.int_), ("platform_type", "fixed"), ("instrument_type", "radar"), ("primary_axis", "axis_z"), ("time_coverage_start", "1970-01-01T00:00:00Z"), ("time_coverage_end", "1970-01-01T00:00:00Z"), ("latitude", np.nan), ("longitude", np.nan), ("altitude", np.nan), ("altitude_agl", np.nan), ("sweep_group_name", (["sweep"], [np.nan])), ("sweep_fixed_angle", (["sweep"], [np.nan])), ("frequency", np.nan), ("status_xml", "None"), ] ) @xr.register_dataset_accessor("gamic") class GamicAccessor(object): """Dataset Accessor for handling GAMIC HDF5 data files""" def __init__(self, xarray_obj): self._obj = xarray_obj self._radial_range = None self._azimuth_range = None self._elevation_range = None self._time_range = None self._sitecoords = None self._polcoords = None self._projection = None self._time = None @property def radial_range(self): """Return the radial range of this dataset.""" if self._radial_range is None: ngates = self._obj.attrs["bin_count"] # range_start = self._obj.attrs['range_start'] range_samples = self._obj.attrs["range_samples"] range_step = self._obj.attrs["range_step"] bin_range = range_step * range_samples range_data = np.arange( bin_range / 2.0, bin_range * ngates, bin_range, dtype="float32" ) range_attrs["meters_to_center_of_first_gate"] = bin_range / 2.0 da = xr.DataArray(range_data, dims=["dim_1"], attrs=range_attrs) self._radial_range = da return self._radial_range @property def azimuth_range(self): """Return the azimuth range of this dataset.""" if self._azimuth_range is None: azstart = self._obj["azimuth_start"] azstop = self._obj["azimuth_stop"] zero_index = np.where(azstop < azstart) azstop[zero_index[0]] += 360 azimuth = (azstart + azstop) / 2.0 azimuth = azimuth.assign_attrs(az_attrs) self._azimuth_range = azimuth return self._azimuth_range @property def elevation_range(self): """Return the elevation range of this dataset.""" if self._elevation_range is None: elstart = self._obj["elevation_start"] elstop = self._obj["elevation_stop"] elevation = (elstart + elstop) / 2.0 elevation = elevation.assign_attrs(el_attrs) self._elevation_range = elevation return self._elevation_range @property def time_range(self): """Return the time range of this dataset.""" if self._time_range is None: times = self._obj["timestamp"] / 1e6 attrs = { "units": "seconds since 1970-01-01T00:00:00Z", "standard_name": "time", } da = xr.DataArray(times, attrs=attrs) self._time_range = da return self._time_range @xr.register_dataset_accessor("odim") class OdimAccessor(object): """Dataset Accessor for handling ODIM_H5 data files""" def __init__(self, xarray_obj): self._obj = xarray_obj self._radial_range = None self._azimuth_range = None self._elevation_range = None self._time_range = None self._time_range2 = None self._prt = None self._n_samples = None @property def radial_range(self): """Return the radial range of this dataset.""" if self._radial_range is None: ngates = self._obj.attrs["nbins"] range_start = self._obj.attrs["rstart"] * 1000.0 bin_range = self._obj.attrs["rscale"] cent_first = range_start + bin_range / 2.0 range_data = np.arange( cent_first, range_start + bin_range * ngates, bin_range, dtype="float32" ) range_attrs["meters_to_center_of_first_gate"] = cent_first range_attrs["meters_between_gates"] = bin_range da = xr.DataArray(range_data, dims=["dim_1"], attrs=range_attrs) self._radial_range = da return self._radial_range @property def azimuth_range2(self): """Return the azimuth range of this dataset.""" if self._azimuth_range is None: nrays = self._obj.attrs["nrays"] res = 360.0 / nrays azimuth_data = np.arange(res / 2.0, 360.0, res, dtype="float32") da = xr.DataArray(azimuth_data, dims=["dim_0"], attrs=az_attrs) self._azimuth_range = da return self._azimuth_range @property def azimuth_range(self): """Return the azimuth range of this dataset.""" if self._azimuth_range is None: startaz = self._obj.attrs["startazA"] stopaz = self._obj.attrs["stopazA"] zero_index = np.where(stopaz < startaz) stopaz[zero_index[0]] += 360 azimuth_data = (startaz + stopaz) / 2.0 da = xr.DataArray(azimuth_data, attrs=az_attrs) self._azimuth_range = da return self._azimuth_range @property def elevation_range2(self): """Return the elevation range of this dataset.""" if self._elevation_range is None: nrays = self._obj.attrs["nrays"] elangle = self._obj.attrs["elangle"] elevation_data = np.ones(nrays, dtype="float32") * elangle da = xr.DataArray(elevation_data, dims=["dim_0"], attrs=el_attrs) self._elevation_range = da return self._elevation_range @property def elevation_range(self): """Return the elevation range of this dataset.""" if self._elevation_range is None: startel = self._obj.attrs["startelA"] stopel = self._obj.attrs["stopelA"] elevation_data = (startel + stopel) / 2.0 da = xr.DataArray(elevation_data, dims=["dim_0"], attrs=el_attrs) self._elevation_range = da return self._elevation_range @property def time_range(self): """Return the time range of this dataset.""" if self._time_range is None: startT = self._obj.attrs["startazT"] stopT = self._obj.attrs["stopazT"] times = (startT + stopT) / 2.0 self._time_range = times return self._time_range @property def time_range2(self): """Return the time range of this dataset.""" if self._time_range2 is None: startdate = self._obj.attrs["startdate"] starttime = self._obj.attrs["starttime"] enddate = self._obj.attrs["enddate"] endtime = self._obj.attrs["endtime"] start = dt.datetime.strptime(startdate + starttime, "%Y%m%d%H%M%S") end = dt.datetime.strptime(enddate + endtime, "%Y%m%d%H%M%S") start = start.replace(tzinfo=dt.timezone.utc) end = end.replace(tzinfo=dt.timezone.utc) self._time_range2 = (start.timestamp(), end.timestamp()) return self._time_range2 @property def prt(self): if self._prt is None: try: prt = 1.0 / self._obj.attrs["prf"] da = xr.DataArray(prt, dims=["dim_0"]) self._prt = da except KeyError: pass return self._prt @property def n_samples(self): if self._n_samples is None: try: da = xr.DataArray(self._obj.attrs["pulse"], dims=["dim_0"]) self._n_samples = da except KeyError: pass return self._n_samples def to_cfradial2(volume, filename, timestep=None): """Save RadarVolume/XRadVol/XRadVolume to CfRadial2.0 compliant file. Parameters ---------- volume : RadarVolume/XRadVol/XRadVolume object filename : str output filename timestep : int timestep of wanted volume """ volume.root.load() root = volume.root.copy(deep=True) root.attrs["Conventions"] = "Cf/Radial" root.attrs["version"] = "2.0" root.to_netcdf(filename, mode="w", group="/") for idx, key in enumerate(root.sweep_group_name.values): if isinstance(volume, (OdimH5, CfRadial)): swp = volume[key] elif isinstance(volume, XRadVolume): swp = volume[idx][timestep].data else: ds = volume[idx] if "time" not in ds.dims: ds = ds.expand_dims("time") swp = ds.isel(time=timestep) swp.load() dims = list(swp.dims) dims.remove("range") dim0 = dims[0] try: swp = swp.swap_dims({dim0: "time"}) except ValueError: swp = swp.drop_vars("time").rename({"rtime": "time"}) swp = swp.swap_dims({dim0: "time"}) swp = swp.drop_vars(["x", "y", "z", "gr", "rays", "bins"], errors="ignore") swp = swp.sortby("time") swp.to_netcdf(filename, mode="a", group=key) def to_netcdf(volume, filename, timestep=None, keys=None): """Save RadarVolume/XRadVolume to netcdf compliant file. Parameters ---------- volume : RadarVolume/XRadVolume object filename : str output filename timestep : int, slice timestep/slice of wanted volume keys : list list of sweep_group_names which should be written to the file """ volume.root.load() root = volume.root.copy(deep=True) root.attrs["Conventions"] = "Cf/Radial" root.attrs["version"] = "2.0" root.to_netcdf(filename, mode="w", group="/") if keys is None: keys = root.sweep_group_name.values for idx, key in enumerate(root.sweep_group_name.values): if key in keys: try: swp = volume[idx].data.isel(time=timestep) except AttributeError: ds = volume[idx] if "time" not in ds.dims: ds = ds.expand_dims("time") swp = ds.isel(time=timestep) swp.to_netcdf(filename, mode="a", group=key) def to_odim(volume, filename, timestep=0): """Save RadarVolume/XRadVol/XRadVolume to ODIM_H5/V2_2 compliant file. Parameters ---------- volume : RadarVolume/XRadVol/XRadVolume object filename : str output filename timestep : int timestep of wanted volume """ root = volume.root h5 = h5py.File(filename, "w") # root group, only Conventions for ODIM_H5 _write_odim({"Conventions": "ODIM_H5/V2_2"}, h5) # how group how = {} how.update({"_modification_program": "wradlib"}) h5_how = h5.create_group("how") _write_odim(how, h5_how) sweepnames = root.sweep_group_name.values # what group, object, version, date, time, source, mandatory # p. 10 f what = {} if len(sweepnames) > 1: what["object"] = "PVOL" else: what["object"] = "SCAN" what["version"] = "H5rad 2.2" what["date"] = str(root.time_coverage_start.values)[:10].replace("-", "") what["time"] = str(root.time_coverage_end.values)[11:19].replace(":", "") what["source"] = root.attrs["instrument_name"] h5_what = h5.create_group("what") _write_odim(what, h5_what) # where group, lon, lat, height, mandatory where = { "lon": root.longitude.values, "lat": root.latitude.values, "height": root.altitude.values, } h5_where = h5.create_group("where") _write_odim(where, h5_where) # datasets ds_list = ["dataset{}".format(i + 1) for i in range(len(sweepnames))] ds_idx = np.argsort(ds_list) for idx in ds_idx: if isinstance(volume, (OdimH5, CfRadial)): ds = volume["sweep_{}".format(idx + 1)] elif isinstance(volume, XRadVolume): ds = volume[idx][timestep].data ds = ds.drop_vars("time", errors="ignore").rename({"rtime": "time"}) else: ds = volume[idx] if "time" not in ds.dims: ds = ds.expand_dims("time") ds = ds.isel(time=timestep, drop=True) ds = ds.drop_vars("time", errors="ignore").rename({"rtime": "time"}) h5_dataset = h5.create_group(ds_list[idx]) # what group p. 21 ff. h5_ds_what = h5_dataset.create_group("what") ds_what = {} # skip NaT values valid_times = ~np.isnat(ds.time.values) t = sorted(ds.time.values[valid_times]) start = dt.datetime.utcfromtimestamp(np.rint(t[0].astype("O") / 1e9)) end = dt.datetime.utcfromtimestamp(np.rint(t[-1].astype("O") / 1e9)) ds_what["product"] = "SCAN" ds_what["startdate"] = start.strftime("%Y%m%d") ds_what["starttime"] = start.strftime("%H%M%S") ds_what["enddate"] = end.strftime("%Y%m%d") ds_what["endtime"] = end.strftime("%H%M%S") _write_odim(ds_what, h5_ds_what) # where group, p. 11 ff. mandatory h5_ds_where = h5_dataset.create_group("where") rscale = ds.range.values[1] / 1.0 - ds.range.values[0] rstart = (ds.range.values[0] - rscale / 2.0) / 1000.0 # todo: make this work for RHI's a1gate = np.argsort(ds.sortby("azimuth").time.values)[0] try: fixed_angle = ds.fixed_angle except AttributeError: fixed_angle = ds.elevation.round(decimals=1).median().values ds_where = { "elangle": fixed_angle, "nbins": ds.range.shape[0], "rstart": rstart, "rscale": rscale, "nrays": ds.azimuth.shape[0], "a1gate": a1gate, } _write_odim(ds_where, h5_ds_where) # how group, p. 14 ff. h5_ds_how = h5_dataset.create_group("how") tout = [tx.astype("O") / 1e9 for tx in ds.sortby("azimuth").time.values] tout_sorted = sorted(tout) # handle non-uniform times (eg. only second-resolution) if np.count_nonzero(np.diff(tout_sorted)) < (len(tout_sorted) - 1): tout = np.roll( np.linspace(tout_sorted[0], tout_sorted[-1], len(tout)), a1gate ) tout_sorted = sorted(tout) difft =
np.diff(tout_sorted)
numpy.diff
# -*- coding: utf-8 -*- ################################################## # © 2017 ETH Zurich, Swiss Seismological Service # # <NAME>' - wavedec at gmail dot com # ################################################## """ Here are estimation routines used in WaveDec """ from scipy.optimize import minimize # , approx_fprime import numpy as np from numpy import shape, fft, zeros, real, imag, eye, linalg, ceil, linspace, pi, \ meshgrid, concatenate, sqrt, array, sum, conjugate, log, mean, size, dot, \ arctan2, sin, cos, argmin, reshape, matrix, transpose, arange import DataUtils as db import logging from wdSettings import MODEL_NOISE, MODEL_VERTICAL, MODEL_RAYLEIGH, MODEL_LOVE from wdSettings import EWX, NSY, UDZ, ROTX, ROTY, ROTZ def decomposeWavefield(conn, y, WindowId, Ts, Fvec_ndx, Kmax, Kstep, Estep, Vmin, WavesToModel, MaxWaves, MaxIterations, ArrayInfo, Gamma): """ Fit different wave types at several frequencies. Parameters ---------- conn : SQL database connection y : float array input signal WindowId : int Unique indentifier of the window Ts : float Sampling time [s] Fvec_ndx : int array ... Kmax : float Largest wavenumber [1/m] to analyze Kstep : float Grid step in the wavenumber plane [1/m] Vmin : float Smallest velocity [m/s] to analyze WavesToModel : Describe which wave types should be fitted MaxWaves : int Maximum number of waves to model at each frequency in the time window MaxIterations : int Maximum number of interations. In each iteration parameters of each wave are re-estimated. ArrayInfo : float array An array containing information about sensor location and channels. It has L rows, where L is the number of channels. Each rows has the following form: pos_x, pos_y, pos_z, cmp, Ts where the first three fields are the position of the sensor in [m]. cmp is the component code. Ts is the sampling time as read from the SAC file. Gamma : float Controls model complexity. (0 for pure ML, 1 for BIC, other values for intermediate strategies) """ K = shape(y)[0] L = shape(y)[1] Fvec_fft = fft.fftfreq(K, Ts); # Fvec = Fvec_fft[Fvec_ndx] (Sm_bw, Sw_bw, Swm_bw) = bwMessages(y, Ts) Sm_fw_all = zeros(shape(Sm_bw)) F=shape(Sm_bw)[2] NumK = np.int(2*ceil(Kmax/Kstep)) # number of points in the wavenumber search grid. Even, so that we do not have 0 in the final search grid NumE = np.int(ceil(np.pi/Estep)) # number of points in the ellipticity search grid Even, so that we have 0 in the final search grid Wavenumber_x = linspace(-Kmax, Kmax, NumK) Wavenumber_y = linspace(-Kmax, Kmax, NumK) EllipticityAngle = linspace(-pi/2, pi/2, NumE, endpoint=False) xx, yy, zz = meshgrid(Wavenumber_x,Wavenumber_y,EllipticityAngle) xx=concatenate(xx); yy=concatenate(yy); zz=concatenate(zz); ndx_ok = sqrt( xx**2 + yy**2 ) <= Kmax # only wavenumber smaller than Kmax xx = xx[ndx_ok]; yy = yy[ndx_ok]; zz = zz[ndx_ok]; X_grid_R = array([xx, yy, zz]) # Rayleigh waves xx, yy = meshgrid(Wavenumber_x,Wavenumber_y) xx=concatenate(xx); yy=concatenate(yy); ndx_ok = sqrt( xx**2 + yy**2 ) <= Kmax # only wavenumber smaller than Kmax xx = xx[ndx_ok]; yy = yy[ndx_ok]; X_grid_L = array([xx, yy]) # Love waves # Fndx for ff in Fvec_ndx: X_grid_R_f = X_grid_R X_grid_L_f = X_grid_L X_grid_V_f = X_grid_L if Vmin != None and Vmin > 0: # further restrict search grid if WavesToModel[MODEL_LOVE] or WavesToModel[MODEL_VERTICAL]: ndx_ok = sqrt( X_grid_L[0,:]**2 + X_grid_L[1,:]**2 ) <= Fvec_fft[ff]/Vmin if WavesToModel[MODEL_LOVE]: X_grid_L_f = X_grid_L[:,ndx_ok] if WavesToModel[MODEL_VERTICAL]: X_grid_V_f = X_grid_L[:,ndx_ok] if WavesToModel[MODEL_RAYLEIGH]: ndx_ok = sqrt( X_grid_R[0,:]**2 + X_grid_R[1,:]**2 ) <= Fvec_fft[ff]/Vmin X_grid_R_f = X_grid_R[:,ndx_ok] Sm_fw = zeros((2,L,F,MaxWaves)) # shape() = (2,L,F) WaveModel = zeros((MaxWaves,)) WaveAmplitude = zeros((MaxWaves,)) WavePhase = zeros((MaxWaves,)) WaveX_ML = [None]* MaxWaves # gradually increase the number of waves modeled NumWaves = 0 # number of waves modeled for mm in range(0,MaxWaves): logging.debug("Fitting {0}-th model (at {1:.3f} [Hz])".format(mm+1, Fvec_fft[ff])) tmpBIC=[] tmpModel=[] tmpSm_bw = Sm_bw - sum(Sm_fw ,3) + Sm_fw[:,:,:,mm] # how about variance messages? # Parameter estimation: attempt to fit different possible models if WavesToModel[MODEL_NOISE]: (BIC_N, sigma2_ML) = fitNoise(tmpSm_bw, L, K, Gamma) tmpBIC.append(BIC_N); tmpModel.append(MODEL_NOISE); if WavesToModel[MODEL_VERTICAL] and size(X_grid_V_f) > 0: (BIC_V, Sm_fw_V, Amplitude_V, Phase_V, X_ML_V) = fitVerticalWave(X_grid_V_f, tmpSm_bw, Sw_bw, ff, L, K, Kmax, ArrayInfo, Gamma) tmpBIC.append(BIC_V); tmpModel.append(MODEL_VERTICAL); if WavesToModel[MODEL_LOVE] and size(X_grid_L_f) > 0: (BIC_L, Sm_fw_L, Amplitude_L, Phase_L, X_ML_L) = fitLoveWave(X_grid_L_f, tmpSm_bw, Sw_bw, ff, L, K, Kmax, ArrayInfo, Gamma) tmpBIC.append(BIC_L); tmpModel.append(MODEL_LOVE); if WavesToModel[MODEL_RAYLEIGH] and size(X_grid_R_f) > 0: (BIC_R, Sm_fw_R, Amplitude_R, Phase_R, X_ML_R) = fitRayleighWave(X_grid_R_f, tmpSm_bw, Sw_bw, ff, L, K, Kmax, ArrayInfo, Gamma) tmpBIC.append(BIC_R); tmpModel.append(MODEL_RAYLEIGH); # Model selection: choose wave with smallest BIC if len(tmpBIC) > 0: WaveModel[mm] = tmpModel[np.argmin(tmpBIC)] histBIC = zeros((MaxIterations+1,)) histBIC[0] = np.min(tmpBIC) if WaveModel[mm] == MODEL_NOISE: break # when a noise model is chosen no more waves need to be added if WaveModel[mm] == 0: break # Nothing was modeled. Perhaps because of stringent Vmin at this frequency elif WaveModel[mm] == MODEL_VERTICAL: Sm_fw[:,:,:,mm] = Sm_fw_V WaveAmplitude[mm] = Amplitude_V WavePhase[mm] = Phase_V WaveX_ML[mm] = X_ML_V elif WaveModel[mm] == MODEL_LOVE: Sm_fw[:,:,:,mm] = Sm_fw_L WaveAmplitude[mm] = Amplitude_L WavePhase[mm] = Phase_L WaveX_ML[mm] = X_ML_L elif WaveModel[mm] == MODEL_RAYLEIGH: Sm_fw[:,:,:,mm] = Sm_fw_R WaveAmplitude[mm] = Amplitude_R WavePhase[mm] = Phase_R WaveX_ML[mm] = X_ML_R else: logging.warning("Warning: unrecognized wave model") # refine existing estimates, if needed NumWaves = sum( (WaveModel > 0) & (WaveModel != MODEL_NOISE) ) if (MaxIterations > 0) and (NumWaves > 1): for ii in range(1,MaxIterations): for m in range(0,mm+1): logging.debug("Refining estimates of model {0}/{1}".format(m+1,mm+1)) tmpSm_bw = Sm_bw - sum(Sm_fw ,3) + Sm_fw[:,:,:,m] if WaveModel[m] == MODEL_NOISE: continue elif WaveModel[m] == MODEL_VERTICAL: X = WaveX_ML[m] (BIC_V, Sm_fw_V, Amplitude_V, Phase_v, X_ML_V) = fitVerticalWave(X, tmpSm_bw, Sw_bw, ff, L, K, Kmax, ArrayInfo, Gamma) WaveX_ML[m] = X_ML_V WaveAmplitude[m] = Amplitude_V WavePhase[m] = Phase_V Sm_fw[:,:,:,m] = Sm_fw_V elif WaveModel[m] == MODEL_LOVE: X = WaveX_ML[m] (BIC_L, Sm_fw_L, Amplitude_L, Phase_L, X_ML_L) = fitLoveWave(X, tmpSm_bw, Sw_bw, ff, L, K, Kmax, ArrayInfo, Gamma) WaveX_ML[m] = X_ML_L WaveAmplitude[m] = Amplitude_L WavePhase[m] = Phase_L Sm_fw[:,:,:,m] = Sm_fw_L elif WaveModel[m] == MODEL_RAYLEIGH: X = WaveX_ML[m] (BIC_R, Sm_fw_R, Amplitude_R, Phase_R, X_ML_R) = fitRayleighWave(X, tmpSm_bw, Sw_bw, ff, L, K, Kmax, ArrayInfo, Gamma) WaveX_ML[m] = X_ML_R WaveAmplitude[m] = Amplitude_R WavePhase[m] = Phase_R Sm_fw[:,:,:,m] = Sm_fw_R else: logging.warning("Unrecognized wave model {0}".format(WaveModel[m])) tmpSm_bw = Sm_bw - sum(Sm_fw ,3) (BIC_N, sigma2_ML) = fitNoise(tmpSm_bw, L, K, Gamma) histBIC[ii] = BIC_N # TODO is this the right BIC value, multiple waves are they all same? if abs(histBIC[ii]-histBIC[ii-1])/abs(histBIC[ii-1]) < 0.01: break # Compute forward messages and estimated paramters Sm_fw_all += sum(Sm_fw ,3) NumWaves = sum( (WaveModel > 0) & (WaveModel != MODEL_NOISE) ) for mm in range(0,NumWaves): if WaveModel[mm] == MODEL_NOISE: continue elif WaveModel[mm] == MODEL_VERTICAL: Kx = WaveX_ML[mm][0] Ky = WaveX_ML[mm][1] Wavenumber = sqrt( Kx**2 + Ky**2) Azimuth = np.mod(arctan2(Ky, Kx), 2*pi) # Note the role reversal, as from documentation db.addVerticalWave(conn, WindowId, ff, WaveAmplitude[mm], WavePhase[mm], Wavenumber, Azimuth) elif WaveModel[mm] == MODEL_LOVE: Kx = WaveX_ML[mm][0] Ky = WaveX_ML[mm][1] Wavenumber = sqrt( Kx**2 + Ky**2) Azimuth = np.mod(arctan2(Ky, Kx), 2*pi) # Note the role reversal, as from documentation db.addLoveWave(conn, WindowId, ff, WaveAmplitude[mm], WavePhase[mm], Wavenumber, Azimuth) elif WaveModel[mm] == MODEL_RAYLEIGH: Kx = WaveX_ML[mm][0] Ky = WaveX_ML[mm][1] EllipticityAngle = np.mod(WaveX_ML[mm][2] + pi/2, pi) -pi/2 Wavenumber = sqrt( Kx**2 + Ky**2) Azimuth = np.mod(arctan2(Ky, Kx), 2*pi) # Note the role reversal, as from documentation db.addRayleighWave(conn, WindowId, ff, WaveAmplitude[mm], WavePhase[mm], Wavenumber, Azimuth,EllipticityAngle) else: logging.warning("Unrecognized wave model {0}".format(WaveModel[mm])) # after all freq have been processed (BIC_N, sigma2_ML) = fitNoise(Sm_bw - Sm_fw_all, L, K, Gamma) db.addNoise(conn, WindowId, sigma2_ML) # TODO after estimating noise again, do we want to iterate once more on wave params ? return def bwMessages(y, Ts): """Compute sufficient statistics, assuming unitary variance Parameters ---------- y : 2d float array It is an array of size (K, L). Each column contains the signal at the l-th location. Ts : float The sampling time in [s] Returns ------- Sm_bw : float array It is an array of size (2, L). Each column refers to the the signal at the l-th location. Contains the mean vector of the message S. Sw_bw : float array It is an array of size (2, 2, L). Each page refers to the the signal at the l-th location. Contains the precision matrix of the message S. Swm_bw : float array It is an array of size (2, L). Each column refers to the the signal at the l-th location. Contains the weighted mean vector of the message S. """ K = shape(y)[0] L = shape(y)[1] #Fvec = fft.fftfreq(K, Ts); #Fmin=0 #Fmax=0.5/Ts #Fndx = (Fvec >= Fmin) and (Fvec <= Fmax); #Fvec=Fvec[Fndx]; Fnum=int(K/2+1); # TODO need to make sure K is even Y_bw= fft.rfft(y, K, 0); Swm_bw = zeros((2,L,Fnum)); Sm_bw= zeros((2,L,Fnum)); Sw_bw=zeros((2,2,L,Fnum)); for ff in range(0,Fnum): for ll in range(0, L): Swm_bw[0,ll,ff] = real(Y_bw[ff,ll]); Swm_bw[1,ll,ff] = imag(Y_bw[ff,ll]); Sw_bw[:,:,ll,ff] = (K/2)*eye(2); Sm_bw[:,ll,ff] = linalg.solve(Sw_bw[:,:,ll,ff], Swm_bw[:,ll,ff]); return (Sm_bw, Sw_bw, Swm_bw) ### Vertical wave def negLL_VerticalWave(X_grid, Sw_bw, Swm_bw, SlnGamma_bw, ArrayInfo): """ Computes the loglikelihood of a plane wave (vertical component only) Parameters ---------- X_grid : float array Array of size (2,N). Description of N points to evaluate likelihoodfunction. First row is the wavenumber along the x axes. Second row the wavenumber along the y axes. Sw_bw, Swm_bw, SlnGamma_bw : sufficient statistics ArrayInfo : float array An array containing information about sensor location and channels. It has L rows, where L is the number of channels. Each rows has the following form: pos_x, pos_y, pos_z, cmp, Ts where the first three fields are the position of the sensor in [m]. cmp is the component code. Ts is the sampling time as read from the SAC file. Returns ------- negLogLikelihood : float array A one dimensional array of N elements with the value of minus the log-likelihood. """ if shape(shape(X_grid))[0] == 1: # single point X_grid = reshape(X_grid, (2,-1)) N_points=shape(X_grid)[1] Wavenumber_x=X_grid[0,:] Wavenumber_y=X_grid[1,:] L=shape(Swm_bw)[1] negLogLikelihood = zeros((N_points,)) pos_x=ArrayInfo[:,0] pos_y=ArrayInfo[:,1] comp=ArrayInfo[:,3] if False: # TODO check if input matrices are const*identity for nn in range(0,N_points): Uw = matrix(zeros((2,2))) Uwm = matrix(zeros((2,1))) for ll in range(0,L): if comp[ll] == UDZ: phi = -2*pi*(Wavenumber_x[nn]*pos_x[ll] + Wavenumber_y[nn]*pos_y[ll]) H = matrix([[cos(phi), -sin(phi)],[sin(phi), cos(phi)]]) else: H = matrix([[0, 0],[0, 0]]) Uw = Uw + transpose(H) * matrix(Sw_bw[:,:,ll]) * H Uwm = Uwm + transpose(H) * transpose(matrix(Swm_bw[:,ll])) Um = linalg.solve(Uw, Uwm) negLogLikelihood[nn] = -0.5*transpose(Um) * Uwm + sum(-SlnGamma_bw) else: # alternative, faster implementation. Requires Sw_bw to be const*Identity ndx_v = arange(0, L)[comp == UDZ] L_v = len(ndx_v) # number of vertical components phi = zeros((N_points, L_v)) Uw = zeros((N_points)) Uwm = zeros((2,N_points)) for ll_v in range(0, L_v): ll = ndx_v[ll_v] phi[:,ll_v] = -2*pi*(Wavenumber_x[:]*pos_x[ll] + Wavenumber_y[:]*pos_y[ll]) Uw[:] = Uw[:] + Sw_bw[0,0,ll] Uwm[0,:] += + cos(phi[:,ll_v]) * Swm_bw[0,ll] + sin(phi[:,ll_v]) * Swm_bw[1,ll] Uwm[1,:] += - sin(phi[:,ll_v]) * Swm_bw[0,ll] + cos(phi[:,ll_v]) * Swm_bw[1,ll] Um = zeros((2,N_points)) Um[0,:] = Uwm[0,:] / Uw[:] Um[1,:] = Uwm[1,:] / Uw[:] negLogLikelihood[:] = -0.5*(Um[0,:] * Uwm[0,:] + Um[1,:] * Uwm[1,:]) + sum(-SlnGamma_bw) return(negLogLikelihood) def grad_negLL_VerticalWave(X_grid, Sw_bw, Swm_bw, SlnGamma_bw, ArrayInfo): """ Computes the gradient of the loglikelihood of a plane wave (vertical component only) Parameters ---------- X_grid : float array Array of size (2,N). Description of N points to evaluate likelihoodfunction. First row is the wavenumber along the x axes. Second row the wavenumber along the y axes. Sw_bw, Swm_bw, SlnGamma_bw : sufficient statistics ArrayInfo : float array An array containing information about sensor location and channels. It has L rows, where L is the number of channels. Each rows has the following form: pos_x, pos_y, pos_z, cmp, Ts where the first three fields are the position of the sensor in [m]. cmp is the component code. Ts is the sampling time as read from the SAC file. Returns ------- grad : float array The gradient. """ Wavenumber_x=X_grid[0] Wavenumber_y=X_grid[1] L=shape(Swm_bw)[1] grad = zeros((2,)) pos_x=ArrayInfo[:,0] pos_y=ArrayInfo[:,1] comp=ArrayInfo[:,3] if False: # TODO check if input matrices are const*identity # derivative wrt Wavenumber_x Uw = matrix(zeros((2,2))) Uwm = matrix(zeros((2,1))) dWx_Uw = matrix(zeros((2,2))) dWx_Uwm = matrix(zeros((2,1))) dWy_Uw = matrix(zeros((2,2))) dWy_Uwm = matrix(zeros((2,1))) for ll in range(0,L): if comp[ll] == UDZ: phi = -2*pi*(Wavenumber_x*pos_x[ll] + Wavenumber_y*pos_y[ll]) H = matrix([[cos(phi), -sin(phi)],[sin(phi), cos(phi)]]) dWx_H = matrix([[-sin(phi), -cos(phi)],[cos(phi), -sin(phi)]]) * -2*pi*pos_x[ll] dWy_H = matrix([[-sin(phi), -cos(phi)],[cos(phi), -sin(phi)]]) * -2*pi*pos_y[ll] else: H = matrix([[0, 0],[0, 0]]) dWx_H = matrix([[0, 0],[0, 0]]) dWy_H = matrix([[0, 0],[0, 0]]) Uw = Uw + transpose(H) * matrix(Sw_bw[:,:,ll]) * H Uwm = Uwm + transpose(H) * transpose(matrix(Swm_bw[:,ll])) dWx_Uw += transpose(dWx_H) * matrix(Sw_bw[:,:,ll]) * H + transpose(H) * matrix(Sw_bw[:,:,ll]) * dWx_H dWx_Uwm +=
transpose(dWx_H)
numpy.transpose
#!/usr/bin/env python u""" spatial.py Written by <NAME> (03/2021) Utilities for reading, writing and operating on spatial data PYTHON DEPENDENCIES: numpy: Scientific Computing Tools For Python https://numpy.org https://numpy.org/doc/stable/user/numpy-for-matlab-users.html netCDF4: Python interface to the netCDF C library https://unidata.github.io/netcdf4-python/netCDF4/index.html h5py: Pythonic interface to the HDF5 binary data format https://www.h5py.org/ gdal: Pythonic interface to the Geospatial Data Abstraction Library (GDAL) https://pypi.python.org/pypi/GDAL PyYAML: YAML parser and emitter for Python https://github.com/yaml/pyyaml UPDATE HISTORY: Updated 03/2021: added polar stereographic area scale calculation add routines for converting to and from cartesian coordinates eplaced numpy bool/int to prevent deprecation warnings Updated 01/2021: add streaming from bytes for ascii, netCDF4, HDF5, geotiff set default time for geotiff files to 0 Updated 12/2020: added module for converting ellipsoids Updated 11/2020: output data as masked arrays if containing fill values add functions to read from and write to geotiff image formats Written 09/2020 """ import os import re import io import gzip import uuid import h5py import yaml import netCDF4 import datetime import numpy as np import osgeo.gdal, osgeo.osr def case_insensitive_filename(filename): """ Searches a directory for a filename without case dependence """ #-- check if file presently exists with input case if not os.access(os.path.expanduser(filename),os.F_OK): #-- search for filename without case dependence basename = os.path.basename(filename) directory = os.path.dirname(os.path.expanduser(filename)) f = [f for f in os.listdir(directory) if re.match(basename,f,re.I)] if not f: raise IOError('{0} not found in file system'.format(filename)) filename = os.path.join(directory,f.pop()) return os.path.expanduser(filename) def from_ascii(filename, compression=None, verbose=False, columns=['time','y','x','data'], header=0): """ Read data from an ascii file Inputs: full path of input ascii file Options: ascii file is compressed or streamed from memory verbose output of file information column names of ascii file header lines to skip from start of file """ #-- set filename print(filename) if verbose else None #-- open the ascii file and extract contents if (compression == 'gzip'): #-- read input ascii data from gzip compressed file and split lines with gzip.open(case_insensitive_filename(filename),'r') as f: file_contents = f.read().decode('ISO-8859-1').splitlines() elif (compression == 'bytes'): #-- read input file object and split lines file_contents = filename.read().splitlines() else: #-- read input ascii file (.txt, .asc) and split lines with open(case_insensitive_filename(filename),'r') as f: file_contents = f.read().splitlines() #-- number of lines in the file file_lines = len(file_contents) #-- compile regular expression operator for extracting numerical values #-- from input ascii files of spatial data regex_pattern = r'[-+]?(?:(?:\d*\.\d+)|(?:\d+\.?))(?:[EeD][+-]?\d+)?' rx = re.compile(regex_pattern, re.VERBOSE) #-- check if header has a known format if (str(header).upper() == 'YAML'): #-- counts the number of lines in the header YAML = False count = 0 #-- Reading over header text while (YAML is False) & (count < file_lines): #-- file line at count line = file_contents[count] #-- if End of YAML Header is found: set YAML flag YAML = bool(re.search(r"\# End of YAML header",line)) #-- add 1 to counter count += 1 #-- parse the YAML header (specifying yaml loader) YAML_HEADER = yaml.load('\n'.join(file_contents[:count]), Loader=yaml.BaseLoader) #-- output spatial data and attributes dinput = {} #-- copy global attributes dinput['attributes'] = YAML_HEADER['header']['global_attributes'] #-- allocate for each variable and copy variable attributes for c in columns: dinput[c] = np.zeros((file_lines-count)) dinput['attributes'][c] = YAML_HEADER['header']['variables'][c] #-- update number of file lines to skip for reading data header = int(count) else: #-- output spatial data and attributes dinput = {c:np.zeros((file_lines-header)) for c in columns} dinput['attributes'] = {c:dict() for c in columns} #-- extract spatial data array #-- for each line in the file for i,line in enumerate(file_contents[header:]): #-- extract columns of interest and assign to dict #-- convert fortran exponentials if applicable column = {c:r.replace('D','E') for c,r in zip(columns,rx.findall(line))} #-- copy variables from column dict to output dictionary for c in columns: dinput[c][i] = np.float64(column[c]) #-- convert to masked array if fill values if '_FillValue' in dinput['attributes']['data'].keys(): dinput['data'] = np.ma.asarray(dinput['data']) dinput['data'].fill_value = dinput['attributes']['data']['_FillValue'] dinput['data'].mask = (dinput['data'].data == dinput['data'].fill_value) #-- return the spatial variables return dinput def from_netCDF4(filename, compression=None, verbose=False, timename='time', xname='lon', yname='lat', varname='data'): """ Read data from a netCDF4 file Inputs: full path of input netCDF4 file Options: netCDF4 file is compressed or streamed from memory verbose output of file information netCDF4 variable names of time, longitude, latitude, and data """ #-- read data from netCDF4 file #-- Open the NetCDF4 file for reading if (compression == 'gzip'): #-- read as in-memory (diskless) netCDF4 dataset with gzip.open(case_insensitive_filename(filename),'r') as f: fileID = netCDF4.Dataset(uuid.uuid4().hex,memory=f.read()) elif (compression == 'bytes'): #-- read as in-memory (diskless) netCDF4 dataset fileID = netCDF4.Dataset(uuid.uuid4().hex,memory=filename.read()) else: #-- read netCDF4 dataset fileID = netCDF4.Dataset(case_insensitive_filename(filename), 'r') #-- Output NetCDF file information if verbose: print(fileID.filepath()) print(list(fileID.variables.keys())) #-- create python dictionary for output variables and attributes dinput = {} dinput['attributes'] = {} #-- get attributes for the file for attr in ['title','description','projection']: #-- try getting the attribute try: ncattr, = [s for s in dir(fileID) if re.match(attr,s,re.I)] dinput['attributes'][attr] = getattr(fileID,ncattr) except (ValueError,AttributeError): pass #-- list of attributes to attempt to retrieve from included variables attributes_list = ['description','units','long_name','calendar', 'standard_name','_FillValue'] #-- mapping between netCDF4 variable names and output names variable_mapping = dict(x=xname,y=yname,data=varname,time=timename) #-- for each variable for key,nc in variable_mapping.items(): #-- Getting the data from each NetCDF variable dinput[key] = fileID.variables[nc][:] #-- get attributes for the included variables dinput['attributes'][key] = {} for attr in attributes_list: #-- try getting the attribute try: ncattr, = [s for s in dir(fileID) if re.match(attr,s,re.I)] dinput['attributes'][key][attr] = \ getattr(fileID.variables[nc],ncattr) except (ValueError,AttributeError): pass #-- convert to masked array if fill values if '_FillValue' in dinput['attributes']['data'].keys(): dinput['data'] = np.ma.asarray(dinput['data']) dinput['data'].fill_value = dinput['attributes']['data']['_FillValue'] dinput['data'].mask = (dinput['data'].data == dinput['data'].fill_value) #-- Closing the NetCDF file fileID.close() #-- return the spatial variables return dinput def from_HDF5(filename, compression=None, verbose=False, timename='time', xname='lon', yname='lat', varname='data'): """ Read data from a HDF5 file Inputs: full path of input HDF5 file Options: HDF5 file is compressed or streamed from memory verbose output of file information HDF5 variable names of time, longitude, latitude, and data """ #-- read data from HDF5 file #-- Open the HDF5 file for reading if (compression == 'gzip'): #-- read gzip compressed file and extract into in-memory file object with gzip.open(case_insensitive_filename(filename),'r') as f: fid = io.BytesIO(f.read()) #-- set filename of BytesIO object fid.filename = os.path.basename(filename) #-- rewind to start of file fid.seek(0) #-- read as in-memory (diskless) HDF5 dataset from BytesIO object fileID = h5py.File(fid, 'r') elif (compression == 'bytes'): #-- read as in-memory (diskless) HDF5 dataset fileID = h5py.File(filename, 'r') else: #-- read HDF5 dataset fileID = h5py.File(case_insensitive_filename(filename), 'r') #-- Output HDF5 file information if verbose: print(fileID.filename) print(list(fileID.keys())) #-- create python dictionary for output variables and attributes dinput = {} dinput['attributes'] = {} #-- get attributes for the file for attr in ['title','description','projection']: #-- try getting the attribute try: dinput['attributes'][attr] = fileID.attrs[attr] except (KeyError,AttributeError): pass #-- list of attributes to attempt to retrieve from included variables attributes_list = ['description','units','long_name','calendar', 'standard_name','_FillValue'] #-- mapping between HDF5 variable names and output names variable_mapping = dict(x=xname,y=yname,data=varname,time=timename) #-- for each variable for key,h5 in variable_mapping.items(): #-- Getting the data from each HDF5 variable dinput[key] = np.copy(fileID[h5][:]) #-- get attributes for the included variables dinput['attributes'][key] = {} for attr in attributes_list: #-- try getting the attribute try: dinput['attributes'][key][attr] = fileID[h5].attrs[attr] except (KeyError,AttributeError): pass #-- convert to masked array if fill values if '_FillValue' in dinput['attributes']['data'].keys(): dinput['data'] = np.ma.asarray(dinput['data']) dinput['data'].fill_value = dinput['attributes']['data']['_FillValue'] dinput['data'].mask = (dinput['data'].data == dinput['data'].fill_value) #-- Closing the HDF5 file fileID.close() #-- return the spatial variables return dinput def from_geotiff(filename, compression=None, verbose=False): """ Read data from a geotiff file Inputs: full path of input geotiff file Options: geotiff file is compressed or streamed from memory verbose output of file information """ #-- Open the geotiff file for reading if (compression == 'gzip'): #-- read gzip compressed file and extract into memory-mapped object mmap_name = "/vsimem/{0}".format(uuid.uuid4().hex) with gzip.open(case_insensitive_filename(filename),'r') as f: osgeo.gdal.FileFromMemBuffer(mmap_name, f.read()) #-- read as GDAL memory-mapped (diskless) geotiff dataset ds = osgeo.gdal.Open(mmap_name) elif (compression == 'bytes'): #-- read as GDAL memory-mapped (diskless) geotiff dataset mmap_name = "/vsimem/{0}".format(uuid.uuid4().hex) osgeo.gdal.FileFromMemBuffer(mmap_name, filename.read()) ds = osgeo.gdal.Open(mmap_name) else: #-- read geotiff dataset ds = osgeo.gdal.Open(case_insensitive_filename(filename)) #-- print geotiff file if verbose print(filename) if verbose else None #-- create python dictionary for output variables and attributes dinput = {} dinput['attributes'] = {c:dict() for c in ['x','y','data']} #-- get the spatial projection reference information srs = ds.GetSpatialRef() dinput['attributes']['projection'] = srs.ExportToProj4() dinput['attributes']['wkt'] = srs.ExportToWkt() #-- get dimensions xsize = ds.RasterXSize ysize = ds.RasterYSize bsize = ds.RasterCount #-- get geotiff info info_geotiff = ds.GetGeoTransform() dinput['attributes']['spacing'] = (info_geotiff[1],info_geotiff[5]) #-- calculate image extents xmin = info_geotiff[0] ymax = info_geotiff[3] xmax = xmin + (xsize-1)*info_geotiff[1] ymin = ymax + (ysize-1)*info_geotiff[5] dinput['attributes']['extent'] = (xmin,xmax,ymin,ymax) #-- x and y pixel center coordinates (converted from upper left) dinput['x'] = xmin + info_geotiff[1]/2.0 + np.arange(xsize)*info_geotiff[1] dinput['y'] = ymax + info_geotiff[5]/2.0 + np.arange(ysize)*info_geotiff[5] #-- read full image with GDAL dinput['data'] = ds.ReadAsArray() #-- set default time to zero for each band dinput.setdefault('time', np.zeros((bsize))) #-- check if image has fill values if ds.GetRasterBand(1).GetNoDataValue(): #-- convert to masked array if fill values dinput['data'] = np.ma.asarray(dinput['data']) #-- mask invalid values dinput['data'].fill_value = ds.GetRasterBand(1).GetNoDataValue() #-- create mask array for bad values dinput['data'].mask = (dinput['data'].data == dinput['data'].fill_value) #-- set attribute for fill value dinput['attributes']['data']['_FillValue'] = dinput['data'].fill_value #-- close the dataset ds = None #-- return the spatial variables return dinput def to_ascii(output, attributes, filename, delimiter=',', columns=['time','lat','lon','tide'], header=False, verbose=False): """ Write data to an ascii file Inputs: python dictionary of output data python dictionary of output attributes full path of output ascii file Options: delimiter for output spatial file order of columns for output spatial file create a YAML header with data attributes verbose output """ filename = os.path.expanduser(filename) print(filename) if verbose else None #-- open the output file fid = open(filename, 'w') #-- create a column stack arranging data in column order data_stack = np.c_[[output[col] for col in columns]] ncol,nrow = np.shape(data_stack) #-- print YAML header to top of file if header: fid.write('{0}:\n'.format('header')) #-- data dimensions fid.write('\n {0}:\n'.format('dimensions')) fid.write(' {0:22}: {1:d}\n'.format('time',nrow)) #-- non-standard attributes fid.write(' {0}:\n'.format('non-standard_attributes')) #-- data format fid.write(' {0:22}: ({1:d}f0.8)\n'.format('formatting_string',ncol)) fid.write('\n') #-- global attributes fid.write('\n {0}:\n'.format('global_attributes')) today = datetime.datetime.now().isoformat() fid.write(' {0:22}: {1}\n'.format('date_created', today)) # print variable descriptions to YAML header fid.write('\n {0}:\n'.format('variables')) #-- print YAML header with variable attributes for i,v in enumerate(columns): fid.write(' {0:22}:\n'.format(v)) for atn,atv in attributes[v].items(): fid.write(' {0:20}: {1}\n'.format(atn,atv)) #-- add precision and column attributes for ascii yaml header fid.write(' {0:20}: double_precision\n'.format('precision')) fid.write(' {0:20}: column {1:d}\n'.format('comments',i+1)) #-- end of header fid.write('\n\n# End of YAML header\n') #-- write to file for each data point for line in range(nrow): line_contents = ['{0:0.8f}'.format(d) for d in data_stack[:,line]] print(delimiter.join(line_contents), file=fid) #-- close the output file fid.close() def to_netCDF4(output, attributes, filename, verbose=False): """ Write data to a netCDF4 file Inputs: python dictionary of output data python dictionary of output attributes full path of output netCDF4 file Options: verbose output """ #-- opening NetCDF file for writing fileID = netCDF4.Dataset(os.path.expanduser(filename),'w',format="NETCDF4") #-- Defining the NetCDF dimensions fileID.createDimension('time', len(np.atleast_1d(output['time']))) #-- defining the NetCDF variables nc = {} for key,val in output.items(): if '_FillValue' in attributes[key].keys(): nc[key] = fileID.createVariable(key, val.dtype, ('time',), fill_value=attributes[key]['_FillValue'], zlib=True) else: nc[key] = fileID.createVariable(key, val.dtype, ('time',)) #-- filling NetCDF variables nc[key][:] = val #-- Defining attributes for variable for att_name,att_val in attributes[key].items(): setattr(nc[key],att_name,att_val) #-- add attribute for date created fileID.date_created = datetime.datetime.now().isoformat() #-- Output NetCDF structure information if verbose: print(filename) print(list(fileID.variables.keys())) #-- Closing the NetCDF file fileID.close() def to_HDF5(output, attributes, filename, verbose=False): """ Write data to a HDF5 file Inputs: python dictionary of output data python dictionary of output attributes full path of output HDF5 file Options: verbose output """ #-- opening HDF5 file for writing fileID = h5py.File(filename, 'w') #-- Defining the HDF5 dataset variables h5 = {} for key,val in output.items(): if '_FillValue' in attributes[key].keys(): h5[key] = fileID.create_dataset(key, val.shape, data=val, dtype=val.dtype, fillvalue=attributes[key]['_FillValue'], compression='gzip') else: h5[key] = fileID.create_dataset(key, val.shape, data=val, dtype=val.dtype, compression='gzip') #-- Defining attributes for variable for att_name,att_val in attributes[key].items(): h5[key].attrs[att_name] = att_val #-- add attribute for date created fileID.attrs['date_created'] = datetime.datetime.now().isoformat() #-- Output HDF5 structure information if verbose: print(filename) print(list(fileID.keys())) #-- Closing the HDF5 file fileID.close() def to_geotiff(output, attributes, filename, verbose=False, varname='data', dtype=osgeo.gdal.GDT_Float64): """ Write data to a geotiff file Inputs: python dictionary of output data python dictionary of output attributes full path of output geotiff file Options: verbose output output variable name GDAL data type """ #-- verify grid dimensions to be iterable output = expand_dims(output, varname=varname) #-- grid shape ny,nx,nband = np.shape(output[varname]) #-- output as geotiff driver = osgeo.gdal.GetDriverByName("GTiff") #-- set up the dataset with compression options ds = driver.Create(filename,nx,ny,nband,dtype,['COMPRESS=LZW']) #-- top left x, w-e pixel resolution, rotation #-- top left y, rotation, n-s pixel resolution xmin,xmax,ymin,ymax = attributes['extent'] dx,dy = attributes['spacing'] ds.SetGeoTransform([xmin,dx,0,ymax,0,dy]) #-- set the spatial projection reference information srs = osgeo.osr.SpatialReference() srs.ImportFromWkt(attributes['wkt']) #-- export ds.SetProjection( srs.ExportToWkt() ) #-- for each band for band in range(nband): #-- set fill value for band if '_FillValue' in attributes[varname].keys(): fill_value = attributes[varname]['_FillValue'] ds.GetRasterBand(band+1).SetNoDataValue(fill_value) #-- write band to geotiff array ds.GetRasterBand(band+1).WriteArray(output[varname][:,:,band]) #-- print filename if verbose print(filename) if verbose else None #-- close dataset ds.FlushCache() def expand_dims(obj, varname='data'): """ Add a singleton dimension to a spatial dictionary if non-existent Options: variable name to modify """ #-- change time dimensions to be iterableinformation try: obj['time'] = np.atleast_1d(obj['time']) except: pass #-- output spatial with a third dimension if isinstance(varname,list): for v in varname: obj[v] = np.atleast_3d(obj[v]) elif isinstance(varname,str): obj[varname] = np.atleast_3d(obj[varname]) #-- return reformed spatial dictionary return obj def convert_ellipsoid(phi1, h1, a1, f1, a2, f2, eps=1e-12, itmax=10): """ Convert latitudes and heights to a different ellipsoid using Newton-Raphson Inputs: phi1: latitude of input ellipsoid in degrees h1: height above input ellipsoid in meters a1: semi-major axis of input ellipsoid f1: flattening of input ellipsoid a2: semi-major axis of output ellipsoid f2: flattening of output ellipsoid Options: eps: tolerance to prevent division by small numbers and to determine convergence itmax: maximum number of iterations to use in Newton-Raphson Returns: phi2: latitude of output ellipsoid in degrees h2: height above output ellipsoid in meters References: Astronomical Algorithms, <NAME>, 1991, Willmann-Bell, Inc. pp. 77-82 """ if (len(phi1) != len(h1)): raise ValueError('phi and h have incompatable dimensions') #-- semiminor axis of input and output ellipsoid b1 = (1.0 - f1)*a1 b2 = (1.0 - f2)*a2 #-- initialize output arrays npts = len(phi1) phi2 = np.zeros((npts)) h2 = np.zeros((npts)) #-- for each point for N in range(npts): #-- force phi1 into range -90 <= phi1 <= 90 if (np.abs(phi1[N]) > 90.0): phi1[N] = np.sign(phi1[N])*90.0 #-- handle special case near the equator #-- phi2 = phi1 (latitudes congruent) #-- h2 = h1 + a1 - a2 if (np.abs(phi1[N]) < eps): phi2[N] = np.copy(phi1[N]) h2[N] = h1[N] + a1 - a2 #-- handle special case near the poles #-- phi2 = phi1 (latitudes congruent) #-- h2 = h1 + b1 - b2 elif ((90.0 - np.abs(phi1[N])) < eps): phi2[N] = np.copy(phi1[N]) h2[N] = h1[N] + b1 - b2 #-- handle case if latitude is within 45 degrees of equator elif (np.abs(phi1[N]) <= 45): #-- convert phi1 to radians phi1r = phi1[N] * np.pi/180.0 sinphi1 = np.sin(phi1r) cosphi1 = np.cos(phi1r) #-- prevent division by very small numbers cosphi1 = np.copy(eps) if (cosphi1 < eps) else cosphi1 #-- calculate tangent tanphi1 = sinphi1 / cosphi1 u1 = np.arctan(b1 / a1 * tanphi1) hpr1sin = b1 * np.sin(u1) + h1[N] * sinphi1 hpr1cos = a1 * np.cos(u1) + h1[N] * cosphi1 #-- set initial value for u2 u2 = np.copy(u1) #-- setup constants k0 = b2 * b2 - a2 * a2 k1 = a2 * hpr1cos k2 = b2 * hpr1sin #-- perform newton-raphson iteration to solve for u2 #-- cos(u2) will not be close to zero since abs(phi1) <= 45 for i in range(0, itmax+1): cosu2 = np.cos(u2) fu2 = k0 * np.sin(u2) + k1 * np.tan(u2) - k2 fu2p = k0 * cosu2 + k1 / (cosu2 * cosu2) if (np.abs(fu2p) < eps): i = np.copy(itmax) else: delta = fu2 / fu2p u2 -= delta if (np.abs(delta) < eps): i = np.copy(itmax) #-- convert latitude to degrees and verify values between +/- 90 phi2r = np.arctan(a2 / b2 * np.tan(u2)) phi2[N] = phi2r*180.0/np.pi if (np.abs(phi2[N]) > 90.0): phi2[N] = np.sign(phi2[N])*90.0 #-- calculate height h2[N] = (hpr1cos - a2 * np.cos(u2)) / np.cos(phi2r) #-- handle final case where latitudes are between 45 degrees and pole else: #-- convert phi1 to radians phi1r = phi1[N] * np.pi/180.0 sinphi1 = np.sin(phi1r) cosphi1 = np.cos(phi1r) #-- prevent division by very small numbers cosphi1 = np.copy(eps) if (cosphi1 < eps) else cosphi1 #-- calculate tangent tanphi1 = sinphi1 / cosphi1 u1 = np.arctan(b1 / a1 * tanphi1) hpr1sin = b1 * np.sin(u1) + h1[N] * sinphi1 hpr1cos = a1 * np.cos(u1) + h1[N] * cosphi1 #-- set initial value for u2 u2 = np.copy(u1) #-- setup constants k0 = a2 * a2 - b2 * b2 k1 = b2 * hpr1sin k2 = a2 * hpr1cos #-- perform newton-raphson iteration to solve for u2 #-- sin(u2) will not be close to zero since abs(phi1) > 45 for i in range(0, itmax+1): sinu2 = np.sin(u2) fu2 = k0 * np.cos(u2) + k1 /
np.tan(u2)
numpy.tan
#!/usr/bin/env python # -*- encoding:utf-8 -*- # # Author: ZhaoFei - <EMAIL> # Create: 2017-09-19 14:26:14 # Last Modified: 2017-09-19 14:26:14 # Filename: read_tiffile.py # Description: --- # Copyright (c) 2016 Chengdu Lanjing Data&Information Co. from collections import defaultdict import csv import sys from shapely.geometry import MultiPolygon, Polygon import shapely.wkt import shapely.affinity import numpy as np import tifffile as tiff # %matplotlib inline import matplotlib.pyplot as plt from matplotlib import cm DATA_DIR = "../quickbird-data" FILE_2015 = DATA_DIR+'/preliminary/quickbird2015.tif' FILE_2017 = DATA_DIR+'/preliminary/quickbird2017.tif' FILE_cadastral2015 = DATA_DIR+'/20170907_hint/cadastral2015.tif' FILE_tinysample = DATA_DIR+'/20170907_hint/tinysample.tif' im_2015 = tiff.imread(FILE_2015).transpose([1, 2, 0]) im_2017 = tiff.imread(FILE_2017).transpose([1, 2, 0]) im_tiny = tiff.imread(FILE_tinysample) im_cada = tiff.imread(FILE_cadastral2015) im_2015.shape im_tiny.shape im_cada.shape def scale_percentile(matrix): w, h, d = matrix.shape matrix = np.reshape(matrix, [w * h, d]).astype(np.float64) # Get 2nd and 98th percentile mins = np.percentile(matrix, 1, axis=0) maxs = np.percentile(matrix, 99, axis=0) - mins matrix = (matrix - mins[None, :]) / maxs[None, :] matrix = np.reshape(matrix, [w, h, d]) matrix = matrix.clip(0, 1) return matrix fig, axes = plt.subplots(ncols=2, nrows=1, figsize=(16, 6)) p1 = plt.subplot(121) i1 = p1.imshow(scale_percentile(im_2015[100:1000, 100:1000, :3])) plt.colorbar(i1) p2 = plt.subplot(122) i2 = p2.imshow(im_2015[100:1000, 100:1000, 3]) plt.colorbar(i2) plt.show() # ------------------------------ fig, axes = plt.subplots(ncols=2, nrows=2, figsize=(14, 10)) p1 = plt.subplot(221) i1 = p1.imshow(im_2015[100:1000, 100:1000, 0]) plt.colorbar(i1) p2 = plt.subplot(222) i2 = p2.imshow(im_2015[100:1000, 100:1000, 1]) plt.colorbar(i2) p3 = plt.subplot(223) i3 = p3.imshow(im_2015[100:1000, 100:1000, 2]) plt.colorbar(i3) p4 = plt.subplot(224) i4 = p4.imshow(im_2015[100:1000, 100:1000, 3]) plt.colorbar(i4) plt.show() # ------------------------------ x_start = 500 x_end = 1000 y_start = 4800 y_end = 5300 plt.subplots(ncols=3, nrows=2, figsize=(16, 8)) mt = np.ma.array(np.ones((x_end-x_start, y_end-y_start)), mask=((im_tiny[x_start:x_end, y_start:y_end, 0]/np.max(im_tiny)+im_cada[x_start:x_end, y_start:y_end])==0)) p151 = plt.subplot(231) i151 = p151.imshow(im_2015[x_start:x_end, y_start:y_end, 3]) plt.colorbar(i151) p152 = plt.subplot(233) i152 = p152.imshow(im_tiny[x_start:x_end, y_start:y_end, 0]) plt.colorbar(i152) p153 = plt.subplot(232) i153 = p153.imshow(im_2015[x_start:x_end, y_start:y_end, 3]) p153.imshow(mt, cmap=cm.bwr, alpha=0.3, vmin=0, vmax=1) plt.colorbar(i153) p171 = plt.subplot(234) i171 = p171.imshow(im_2017[x_start:x_end, y_start:y_end, 3]) plt.colorbar(i171) p172 = plt.subplot(236) i172 = p172.imshow(im_cada[x_start:x_end, y_start:y_end]) plt.colorbar(i172) p173 = plt.subplot(235) i173 = p173.imshow(im_2017[x_start:x_end, y_start:y_end, 3]) p173.imshow(mt, cmap=cm.bwr, alpha=0.3, vmin=0, vmax=1) plt.colorbar(i173) plt.show() # ------------------------------ result_temp =
np.random.randint(2, size=im_cada.shape, dtype=np.uint8)
numpy.random.randint
#!/usr/bin/env python __doc__ = \ """ Calculate Root-mean-square deviation (RMSD) between structure A and B, in XYZ or PDB format, using transformation and rotation. For more information, usage, example and citation read more at https://github.com/charnley/rmsd """ __version__ = '1.3.2' import copy import re import numpy as np from scipy.optimize import linear_sum_assignment from scipy.spatial.distance import cdist AXIS_SWAPS = np.array([ [0, 1, 2], [0, 2, 1], [1, 0, 2], [1, 2, 0], [2, 1, 0], [2, 0, 1]]) AXIS_REFLECTIONS = np.array([ [1, 1, 1], [-1, 1, 1], [1, -1, 1], [1, 1, -1], [-1, -1, 1], [-1, 1, -1], [1, -1, -1], [-1, -1, -1]]) def rmsd(V, W): """ Calculate Root-mean-square deviation from two sets of vectors V and W. Parameters ---------- V : array (N,D) matrix, where N is points and D is dimension. W : array (N,D) matrix, where N is points and D is dimension. Returns ------- rmsd : float Root-mean-square deviation between the two vectors """ D = len(V[0]) N = len(V) result = 0.0 for v, w in zip(V, W): result += sum([(v[i] - w[i])**2.0 for i in range(D)]) return np.sqrt(result/N) def kabsch_rmsd(P, Q, translate=False): """ Rotate matrix P unto Q using Kabsch algorithm and calculate the RMSD. Parameters ---------- P : array (N,D) matrix, where N is points and D is dimension. Q : array (N,D) matrix, where N is points and D is dimension. translate : bool Use centroids to translate vector P and Q unto each other. Returns ------- rmsd : float root-mean squared deviation """ if translate: Q = Q - centroid(Q) P = P - centroid(P) P = kabsch_rotate(P, Q) return rmsd(P, Q) def kabsch_rotate(P, Q): """ Rotate matrix P unto matrix Q using Kabsch algorithm. Parameters ---------- P : array (N,D) matrix, where N is points and D is dimension. Q : array (N,D) matrix, where N is points and D is dimension. Returns ------- P : array (N,D) matrix, where N is points and D is dimension, rotated """ U = kabsch(P, Q) # Rotate P P = np.dot(P, U) return P def kabsch(P, Q): """ Using the Kabsch algorithm with two sets of paired point P and Q, centered around the centroid. Each vector set is represented as an NxD matrix, where D is the the dimension of the space. The algorithm works in three steps: - a centroid translation of P and Q (assumed done before this function call) - the computation of a covariance matrix C - computation of the optimal rotation matrix U For more info see http://en.wikipedia.org/wiki/Kabsch_algorithm Parameters ---------- P : array (N,D) matrix, where N is points and D is dimension. Q : array (N,D) matrix, where N is points and D is dimension. Returns ------- U : matrix Rotation matrix (D,D) """ # Computation of the covariance matrix C = np.dot(np.transpose(P), Q) # Computation of the optimal rotation matrix # This can be done using singular value decomposition (SVD) # Getting the sign of the det(V)*(W) to decide # whether we need to correct our rotation matrix to ensure a # right-handed coordinate system. # And finally calculating the optimal rotation matrix U # see http://en.wikipedia.org/wiki/Kabsch_algorithm V, S, W = np.linalg.svd(C) d = (np.linalg.det(V) * np.linalg.det(W)) < 0.0 if d: S[-1] = -S[-1] V[:, -1] = -V[:, -1] # Create Rotation matrix U U = np.dot(V, W) return U def quaternion_rmsd(P, Q): """ Rotate matrix P unto Q and calculate the RMSD based on doi:10.1016/1049-9660(91)90036-O Parameters ---------- P : array (N,D) matrix, where N is points and D is dimension. Q : array (N,D) matrix, where N is points and D is dimension. Returns ------- rmsd : float """ rot = quaternion_rotate(P, Q) P = np.dot(P, rot) return rmsd(P, Q) def quaternion_transform(r): """ Get optimal rotation note: translation will be zero when the centroids of each molecule are the same """ Wt_r = makeW(*r).T Q_r = makeQ(*r) rot = Wt_r.dot(Q_r)[:3, :3] return rot def makeW(r1, r2, r3, r4=0): """ matrix involved in quaternion rotation """ W = np.asarray([ [r4, r3, -r2, r1], [-r3, r4, r1, r2], [r2, -r1, r4, r3], [-r1, -r2, -r3, r4]]) return W def makeQ(r1, r2, r3, r4=0): """ matrix involved in quaternion rotation """ Q = np.asarray([ [r4, -r3, r2, r1], [r3, r4, -r1, r2], [-r2, r1, r4, r3], [-r1, -r2, -r3, r4]]) return Q def quaternion_rotate(X, Y): """ Calculate the rotation Parameters ---------- X : array (N,D) matrix, where N is points and D is dimension. Y: array (N,D) matrix, where N is points and D is dimension. Returns ------- rot : matrix Rotation matrix (D,D) """ N = X.shape[0] W = np.asarray([makeW(*Y[k]) for k in range(N)]) Q = np.asarray([makeQ(*X[k]) for k in range(N)]) Qt_dot_W = np.asarray([np.dot(Q[k].T, W[k]) for k in range(N)]) W_minus_Q = np.asarray([W[k] - Q[k] for k in range(N)]) A = np.sum(Qt_dot_W, axis=0) eigen = np.linalg.eigh(A) r = eigen[1][:, eigen[0].argmax()] rot = quaternion_transform(r) return rot def centroid(X): """ Centroid is the mean position of all the points in all of the coordinate directions, from a vectorset X. https://en.wikipedia.org/wiki/Centroid C = sum(X)/len(X) Parameters ---------- X : array (N,D) matrix, where N is points and D is dimension. Returns ------- C : float centroid """ C = X.mean(axis=0) return C def reorder_distance(p_atoms, q_atoms, p_coord, q_coord): """ Re-orders the input atom list and xyz coordinates by atom type and then by distance of each atom from the centroid. Parameters ---------- atoms : array (N,1) matrix, where N is points holding the atoms' names coord : array (N,D) matrix, where N is points and D is dimension Returns ------- atoms_reordered : array (N,1) matrix, where N is points holding the ordered atoms' names coords_reordered : array (N,D) matrix, where N is points and D is dimension (rows re-ordered) """ # Find unique atoms unique_atoms = np.unique(p_atoms) # generate full view from q shape to fill in atom view on the fly view_reorder = np.zeros(q_atoms.shape, dtype=int) for atom in unique_atoms: p_atom_idx, = np.where(p_atoms == atom) q_atom_idx, = np.where(q_atoms == atom) A_coord = p_coord[p_atom_idx] B_coord = q_coord[q_atom_idx] # Calculate distance from each atom to centroid A_norms = np.linalg.norm(A_coord, axis=1) B_norms = np.linalg.norm(B_coord, axis=1) reorder_indices_A =
np.argsort(A_norms)
numpy.argsort
# -*- coding: utf-8 -*- # Copyright 2021 <NAME> <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lorenz attractor code modified from: # https://matplotlib.org/stable/gallery/mplot3d/lorenz_attractor.html import numpy as np from torch.utils.data import Dataset import h5py def lorenz(x, y, z, s=10, r=28, b=2.667): """ Given: x, y, z: a point of interest in three dimensional space s, r, b: parameters defining the lorenz attractor Returns: x_dot, y_dot, z_dot: values of the lorenz attractor's partial derivatives at the point x, y, z """ x_dot = s * (y - x) y_dot = r * x - y - x * z z_dot = x * y - b * z return x_dot, y_dot, z_dot class Lorenz(Dataset): def __init__(self, window_size, dt=0.01, num_steps=200000, s=10, r=28, b=2.667): super().__init__() dt = 0.01 num_steps = 200000 # Need one more for the initial values xs = np.empty(num_steps + 1) ys =
np.empty(num_steps + 1)
numpy.empty
import argparse import logging import time import threading import uuid import cv2 import numpy as np import torch import models from models import dynamic_channel from models import headpose n_style_to_change = 12 LOG = logging.getLogger(__name__) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--generator') parser.add_argument('--encoder') parser.add_argument('--boundary') parser.add_argument('--image') parser.add_argument('--head-pose-model-path') parser.add_argument('--scale', type=float, default=0.0) parser.add_argument('--interactive', action='store_true') parser.add_argument('--show', action='store_true') parser.add_argument('--output') return parser.parse_args() def to_img(img): return (img.transpose([1, 2, 0]) * 127.5 + 127.5).clip(0, 255).astype(np.uint8) def show(img, direction_idx, direction_i): small = cv2.resize(img, (img.shape[1] // 2, img.shape[0] // 2), interpolation=cv2.INTER_AREA) bar = np.zeros([small.shape[0], 450, 3], dtype=np.uint8) font = cv2.FONT_HERSHEY_SIMPLEX rows = 20 for k, v in direction_idx.items(): color = (200, 200, 200) if k != direction_i else (0, 250, 0) y = 20 + (k % rows) * 25 x = 20 + 180 * (k // rows) cv2.putText( bar, v, (x, y), font, 0.6, color, thickness=1, lineType=cv2.LINE_AA ) pic = np.hstack([small, bar]) cv2.imshow('Face', pic[:, :, ::-1]) class CachedVector: def __init__(self, vector, time): self.vector = vector self.time = time class FaceGen: def __init__(self, config_name='anycost-ffhq-config-f', gen_path=None, enc_path=None, bound_path=None, head_pose_driver=None, head_pose_model_path=None): device_str = 'cuda' if torch.cuda.is_available() else 'cpu' device = torch.device(device_str) self.device = device self.gen = models.get_pretrained('generator', config=config_name, path=gen_path).to(device) self.encoder = models.get_pretrained('encoder', config=config_name, path=enc_path).to(device) # mean_latent = gen.mean_style(10000) self.boundaries = models.get_pretrained('boundary', config_name, path=bound_path) self.keep_cache_sec = 3600 self.cache = {} self.lock = threading.Lock() self.resolutions = [128, 256, 512, 1024] self.channel_ratio = [0.25, 0.5, 0.75, 1] self.head_pose_driver = head_pose_driver self.head_pose_threshold = [19, 20, 20] # self.head_pose_threshold = [37, 35, 25] self.head_pose_axis_threshold = None self.head_pose = None if self.head_pose_driver is not None or head_pose_model_path is not None: self.head_pose = headpose.HeadPoseFilter( head_pose_driver=head_pose_driver, head_pose_model_path=head_pose_model_path, head_pose_thresholds=self.head_pose_threshold ) ''' possible keys: ['00_5_o_Clock_Shadow', '01_Arched_Eyebrows', '02_Attractive', '03_Bags_Under_Eyes', '04_Bald', '05_Bangs', '06_Big_Lips', '07_Big_Nose', '08_Black_Hair', '09_Blond_Hair', '10_Blurry', '11_Brown_Hair', '12_Bushy_Eyebrows', '13_Chubby', '14_Double_Chin', '15_Eyeglasses', '16_Goatee', '17_Gray_Hair', '18_Heavy_Makeup', '19_High_Cheekbones', '20_Male', '21_Mouth_Slightly_Open', '22_Mustache', '23_Narrow_Eyes', '24_No_Beard', '25_Oval_Face', '26_Pale_Skin', '27_Pointy_Nose', '28_Receding_Hairline', '29_Rosy_Cheeks', '30_Sideburns', '31_Smiling', '32_Straight_Hair', '33_Wavy_Hair', '34_Wearing_Earrings', '35_Wearing_Hat', '36_Wearing_Lipstick', '37_Wearing_Necklace', '38_Wearing_Necktie', '39_Young'] ''' direction_map = { '5_o_clock_shadow': '00_5_o_Clock_Shadow', 'arched_eyebrows': '01_Arched_Eyebrows', 'attractive': '02_Attractive', 'bags_under_eyes': '03_Bags_Under_Eyes', 'bald': '04_Bald', 'bangs': '05_Bangs', 'big_lips': '06_Big_Lips', 'big_nose': '07_Big_Nose', 'black_hair': '08_Black_Hair', 'blonde_hair': '09_Blond_Hair', 'blurry': '10_Blurry', 'brown_hair': '11_Brown_Hair', 'bushy_eyebrows': '12_Bushy_Eyebrows', 'chubby': '13_Chubby', 'double_chin': '14_Double_Chin', 'eyeglasses': '15_Eyeglasses', 'goatee': '16_Goatee', 'gray_hair': '17_Gray_Hair', 'heavy_makeup': '18_Heavy_Makeup', 'high_cheekbones': '19_High_Cheekbones', 'male': '20_Male', 'mouth_slightly_open': '21_Mouth_Slightly_Open', 'mustache': '22_Mustache', 'narrow_eyes': '23_Narrow_Eyes', 'no_beard': '24_No_Beard', 'oval_face': '25_Oval_Face', 'pale_skin': '26_Pale_Skin', 'pointy_nose': '27_Pointy_Nose', 'receding_hairline': '28_Receding_Hairline', 'rosy_cheeks': '29_Rosy_Cheeks', 'sideburns': '30_Sideburns', 'smiling': '31_Smiling', 'straight_hair': '32_Straight_Hair', 'wavy_hair': '33_Wavy_Hair', 'wearing_earrings': '34_Wearing_Earrings', 'wearing_hat': '35_Wearing_Hat', 'wearing_lipstick': '36_Wearing_Lipstick', 'wearing_necklace': '37_Wearing_Necklace', 'wearing_necktie': '38_Wearing_Necktie', 'young': '39_Young' } self.direction_idx = {k: v for k, v in zip(range(len(direction_map)), direction_map)} self.direction_dict = dict() self._direction_values = {k: 0.0 for k in direction_map} for k, v in direction_map.items(): self.direction_dict[k] = self.boundaries[v].view(1, 1, -1).to(device) self.input_kwargs = { 'noise': None, 'randomize_noise': False, 'input_is_style': True } def _is_appropriate_head_pose(self, image): poses = self.head_pose.head_poses_for_images(
np.stack([image])
numpy.stack
"""Contains all available distributions. Utilize the functions in this module by using the `DISTRIBUTION` keyword in your configuration file. As an example: ``` seeing: DISTRIBUTION: NAME: uniform # function name to call PARAMETERS: minimum: 0 # value to set for function argument maximim: 6 # value to set for function argument ``` """ import numpy as np import random from scipy.stats import poisson ## Single parameter sampling distributions def uniform(minimum, maximum, bands=''): """ Return a samle from a uniform probability distribution on the interval [`minimum`, `maximum`] Args: minimum (float or int): The minimum of the interval to sample maximum (float or int): The maximum of the interval to sample Returns: A sample of the specified uniform distribution for each band in the simulation """ draw = random.uniform(minimum, maximum) return [draw] * len(bands.split(',')) def uniform_int(minimum, maximum, bands=''): """ Return a samle from a uniform probability distribution on the interval [`minimum`, `maximum`] rounded to the nearest integer Args: minimum (int): The minimum of the interval to sample maximum (int): The maximum of the interval to sample Returns: A rounded sample of the specified uniform distribution for each band in the simulation """ draw = round(random.uniform(minimum, maximum)) return [draw] * len(bands.split(',')) def normal(mean, std, bands=''): """ Return a samle from a normal probability distribution with specifeid mean and standard deviation Args: mean (float or int): The mean of the normal distribution to sample std (float or int): The standard deviation of the normal distribution to sample Returns: A sample of the specified normal distribution for each band in the simulation """ draw = np.random.normal(loc=mean, scale=std) return [draw] * len(bands.split(',')) def lognormal(mean, sigma, bands=''): """ Return a samle from a lognormal probability distribution with specifeid mean and standard deviation Args: mean (float or int): The mean of the lognormal distribution to sample sigma (float or int): The standard deviation of the lognormal distribution to sample Returns: A sample of the specified lognormal distribution for each band in the simulation """ draw =
np.random.lognormal(mean=mean, sigma=sigma)
numpy.random.lognormal
""" Test the eigenvalue solver """ import numpy as np import matplotlib.pyplot as plt from scipy import linalg, interpolate, sparse from iwaves.utils import imodes as iwaves from time import time import pdb def iwave_modes(N2, dz, k=None): """ Calculates the eigenvalues and eigenfunctions to the internal wave eigenvalue problem: $$ \left[ \frac{d^2}{dz^2} - \frac{1}{c_0} \bar{\rho}_z \right] \phi = 0 $$ with boundary conditions """ nz = N2.shape[0] # Remove the surface values dz2 = 1/dz**2 # Construct the LHS matrix, A A = np.diag(-1*dz2*np.ones((nz-1)),-1) + \ np.diag(2*dz2*np.ones((nz,)),0) + \ np.diag(-1*dz2*np.ones((nz-1)),1) # BC's A[0,0] = -1. A[0,1] = 0. A[-1,-1] = -1. A[-1,-2] = 0. # Construct the RHS matrix i.e. put N^2 along diagonals B = np.diag(N2,0) # Solve... (use scipy not numpy) w, phi = linalg.eig(A, b=B, check_finite=False) #w, phi = linalg.eigh(A, b=B, check_finite=False) c = 1. / np.power(w, 0.5) # since term is ... + N^2/c^2 \phi # Sort by the eigenvalues idx = np.argsort(c)[::-1] # descending order # Calculate the actual phase speed cn = np.real( c[idx] ) return phi[:,idx], cn def iwave_modes_sparse(N2, dz, k=None, Asparse=None, return_A=False, v0=None): """ Calculates the eigenvalues and eigenfunctions to the internal wave eigenvalue problem: $$ \left[ \frac{d^2}{dz^2} - \frac{1}{c_0} \bar{\rho}_z \right] \phi = 0 $$ with boundary conditions """ nz = N2.shape[0] # Remove the surface values if k is None: k = nz-2 if Asparse is None: dz2 = 1/dz**2 # Construct the LHS matrix, A A = np.vstack([-1*dz2*np.ones((nz,)),\ 2*dz2*np.ones((nz,)),\ -1*dz2*np.ones((nz,)),\ ]) # BC's eps = 1e-10 #A[0,0] = -1. #A[0,1] = 0. #A[-1,-1] = -1. #A[-1,-2] = 0. A[1,0] = -1. A[2,0] = 0. A[1,-1] = -1. A[0,-1] = 0. Asparse = sparse.spdiags(A,[-1,0,1],nz,nz, format='csc') # Construct the RHS matrix i.e. put N^2 along diagonals #B = np.diag(N2,0) B = sparse.spdiags(N2,[0],nz,nz, format='csc') Binv = sparse.spdiags(1/N2,[0],nz,nz, format='csc') if v0 is not None: w0 = 1/v0[0]**2. else: w0=None #w, phi = sparse.linalg.eigsh(Asparse, M=B, Minv=Binv, which='SM', k=k, v0=None) w, phi = sparse.linalg.eigsh(Asparse, M=B, sigma=1., k=k) #w, phi = sparse.linalg.eigsh(Asparse, M=B, which='LM', k=k) # Solve... (use scipy not numpy) #w, phi = linalg.eig(A, b=B) c = 1. / np.power(w, 0.5) # since term is ... + N^2/c^2 \phi # Sort by the eigenvalues idx = np.argsort(c)[::-1] # descending order # Calculate the actual phase speed cn = np.real( c[idx] ) if return_A: return np.real(phi), np.real(cn), Asparse else: return np.real(phi), np.real(cn) def iwave_modes_tri(N2, dz, k=None): """ !!! DOES NOT WORK!!! Calculates the eigenvalues and eigenfunctions to the internal wave eigenvalue problem: $$ \left[ \frac{d^2}{dz^2} - \frac{1}{c_0} \bar{\rho}_z \right] \phi = 0 $$ with boundary conditions """ nz = N2.shape[0] # Remove the surface values if k is None: k = nz-2 dz2 = 1/dz**2 # Construct the LHS matrix, A Ao = -1*dz2*np.ones((nz-1,)) Am = 2*dz2*np.ones((nz,)) # BC's Am[0] = -1. Ao[0] = 0. Am[-1] = -1. Ao[-1] = 0. # Now convert from a generalized eigenvalue problem to # A.v = lambda.B.v # a standard problem # A.v = lambda.v # By multiply the LHS by inverse of B # (B^-1.A).v = lambda.v # B^-1 = 1/N2 since B is diagonal Am /= N2 w, phi = linalg.eigh_tridiagonal(Am, Ao) ## Main diagonal #dd = 2*dz2*np.ones((nz,)) #dd /= N2 #dd[0] = -1 #dd[-1] = -1 ## Off diagonal #ee = -1*dz2*np.ones((nz-1,)) #ee /= N2[0:-1] #ee[0] = 0 #ee[-1] = 0 ## Solve... (use scipy not numpy) #w, phi = linalg.eigh_tridiagonal(dd, ee ) ##### c = 1. / np.power(w, 0.5) # since term is ... + N^2/c^2 \phi # Sort by the eigenvalues idx = np.argsort(c)[::-1] # descending order ## Calculate the actual phase speed cn = np.real( c[idx] ) idxgood = ~np.isnan(cn) phisort = phi[:,idx] return np.real(phisort[:,idxgood]), np.real(cn[idxgood]) def iwave_modes_uneven(N2, z, k=None): """ Calculates the eigenvalues and eigenfunctions to the internal wave eigenvalue problem: $$ \left[ \frac{d^2}{dz^2} - \frac{1}{c_0} \bar{\rho}_z \right] \phi = 0 $$ with boundary conditions """ nz = N2.shape[0] if k is None: k = nz-2 dz = np.zeros((nz,)) zm = np.zeros((nz,)) dzm = np.zeros((nz,)) dz[0:-1] = z[0:-1] - z[1:] zm[0:-1] = z[0:-1] - 0.5*dz[0:-1] dzm[1:-1] = zm[0:-2] - zm[1:-1] dzm[0] = dzm[1] dzm[-1] = dzm[-2] # Solve as a matrix #A = np.zeros((nz,nz)) #for i in range(1,nz-1): # A[i,i] = 1/ (dz[i-1]*dzm[i]) + 1/(dz[i]*dzm[i]) # A[i,i-1] = -1/(dz[i-1]*dzm[i]) # A[i,i+1] = -1/(dz[i]*dzm[i]) # Solve as a banded matrix A =
np.zeros((nz,3))
numpy.zeros
#!/usr/bin/env python # Copyright 2014-2020 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: <NAME> <<EMAIL>> # import unittest import numpy from functools import reduce from pyscf import lib from pyscf import gto from pyscf import symm from pyscf.symm import geom numpy.random.seed(12) u = numpy.random.random((3,3)) u = numpy.linalg.svd(u)[0] class KnownValues(unittest.TestCase): def test_d5h(self): atoms = ringhat(5, u) atoms = atoms[5:] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'D5h') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(gpname, 'C2v') self.assertTrue(geom.check_given_symm('C2v', atoms)) self.assertEqual(geom.symm_identical_atoms(gpname, atoms), [[0], [1, 4], [2, 3], [5, 6]]) atoms = ringhat(5, u) atoms = atoms[5:] atoms[1][0] = 'C1' gpname, orig, axes = geom.detect_symm(atoms, {'C':'ccpvdz','C1':'sto3g','N':'631g'}) self.assertEqual(gpname, 'C2v') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(gpname, 'C2v') self.assertTrue(geom.check_given_symm('C2v', atoms)) self.assertEqual(geom.symm_identical_atoms(gpname, atoms), [[0,2],[1],[3,4],[5,6]]) def test_d6h(self): atoms = ringhat(6, u) atoms = atoms[6:] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'D6h') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(geom.symm_identical_atoms(gpname, atoms), [[0,3],[1,2,4,5],[6,7]]) self.assertTrue(geom.check_given_symm('D2h', atoms)) def test_d6h_1(self): atoms = ringhat(6, u) atoms = atoms[6:] atoms[1][0] = 'C1' atoms[2][0] = 'C1' basis = {'C': 'sto3g', 'N':'sto3g', 'C1':'sto3g'} gpname, orig, axes = geom.detect_symm(atoms, basis) self.assertEqual(gpname, 'D6h') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(geom.symm_identical_atoms(gpname, atoms), [[0,3],[1,2,4,5],[6,7]]) self.assertTrue(geom.check_given_symm('D2h', atoms, basis)) def test_c2v(self): atoms = ringhat(6, u) atoms = atoms[6:] atoms[1][0] = 'C1' atoms[2][0] = 'C1' basis = {'C': 'sto3g', 'N':'sto3g', 'C1':'ccpvdz'} gpname, orig, axes = geom.detect_symm(atoms, basis) self.assertEqual(gpname, 'C2v') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(geom.symm_identical_atoms(gpname, atoms), [[0, 3], [1, 2], [4, 5], [6, 7]]) self.assertTrue(geom.check_given_symm('C2', atoms, basis)) def test_s4(self): atoms = [['C', ( 0.5, 0 , 1)], ['O', ( 0.4, 0.2 , 1)], ['C', ( -0.5, 0 , 1)], ['O', ( -0.4, -0.2 , 1)], ['C', ( 0 , 0.5 , -1)], ['O', ( -0.2, 0.4 , -1)], ['C', ( 0 , -0.5 , -1)], ['O', ( 0.2, -0.4 , -1)]] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'S4') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(geom.symm_identical_atoms(gpname, atoms), [[0, 2], [1, 3], [4, 6], [5, 7]]) self.assertTrue(geom.check_given_symm('C2', atoms)) def test_s6(self): rotz = random_rotz() atoms = ringhat(3, 1)[3:6] + ringhat(3, rotz)[:3] rotz[2,2] = -1 rotz[:2,:2] = numpy.array(((.5, numpy.sqrt(3)/2),(-numpy.sqrt(3)/2, .5))) r = numpy.dot([x[1] for x in atoms], rotz) - numpy.array((0,0,3.5)) atoms += list(zip([x[0] for x in atoms], r)) gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'S6') gpname, axes = geom.subgroup(gpname, axes) self.assertEqual(gpname, 'C3') def test_c5h(self): atoms = ringhat(5, u) gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'C5h') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(gpname, 'Cs') self.assertTrue(geom.check_given_symm('Cs', atoms)) self.assertEqual(geom.symm_identical_atoms(gpname, atoms), [[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10,11]]) def test_c5(self): atoms = ringhat(5, u)[:-1] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'C5') gpname, axes = geom.subgroup(gpname, axes) self.assertEqual(gpname, 'C1') def test_c5v(self): atoms = ringhat(5, u)[5:-1] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'C5v') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(gpname, 'Cs') self.assertTrue(geom.check_given_symm('Cs', atoms)) self.assertEqual(geom.symm_identical_atoms(gpname, atoms), [[0, 4], [1, 3], [2], [5]]) def test_ih1(self): coords = numpy.dot(make60(1.5, 1), u) atoms = [['C', c] for c in coords] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'Ih') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(gpname, 'Ci') self.assertTrue(geom.check_given_symm('Ci', atoms)) self.assertEqual(geom.symm_identical_atoms(gpname, atoms), [[0, 55], [1, 56], [2, 57], [3, 58], [4, 59], [5, 30], [6, 31], [7, 32], [8, 33], [9, 34], [10, 35], [11, 36], [12, 37], [13, 38], [14, 39], [15, 40], [16, 41], [17, 42], [18, 43], [19, 44], [20, 45], [21, 46], [22, 47], [23, 48], [24, 49], [25, 50], [26, 51], [27, 52], [28, 53], [29, 54]]) def test_ih2(self): coords1 = numpy.dot(make60(1.5, 3), u) coords2 = numpy.dot(make12(1.1), u) atoms = [['C', c] for c in coords1] + [['C', c] for c in coords2] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'Ih') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(gpname, 'Ci') self.assertTrue(geom.check_given_symm('Ci', atoms)) def test_ih3(self): coords1 = numpy.dot(make20(1.5), u) atoms = [['C', c] for c in coords1] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'Ih') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(gpname, 'Ci') self.assertTrue(geom.check_given_symm('Ci', atoms)) def test_ih4(self): coords1 = make12(1.5) atoms = [['C', c] for c in coords1] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'Ih') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(gpname, 'Ci') self.assertTrue(geom.check_given_symm('Ci', atoms)) def test_d5d_1(self): coords1 = numpy.dot(make20(2.0), u) coords2 = numpy.dot(make12(1.1), u) atoms = [['C', c] for c in coords1] + [['C', c] for c in coords2] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'D5d') def test_s10(self): numpy.random.seed(19) rotz = numpy.eye(3) rotz[:2,:2] = numpy.linalg.svd(numpy.random.random((2,2)))[0] coords1 = numpy.dot(make60(1.5, 3.0), u) coords2 = reduce(numpy.dot, (make20(1.1), rotz, u)) atoms = [['C', c] for c in coords1] + [['C', c] for c in coords2] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'S10') def test_oh1(self): coords1 = numpy.dot(make6(1.5), u) atoms = [['C', c] for c in coords1] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'Oh') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(gpname, 'D2h') self.assertTrue(geom.check_given_symm('D2h', atoms)) def test_oh2(self): coords1 = numpy.dot(make8(1.5), u) atoms = [['C', c] for c in coords1] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'Oh') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(gpname, 'D2h') self.assertTrue(geom.check_given_symm('D2h', atoms)) def test_oh3(self): coords1 = numpy.dot(make8(1.5), u) coords2 = numpy.dot(make6(1.5), u) atoms = [['C', c] for c in coords1] + [['C', c] for c in coords2] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'Oh') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(gpname, 'D2h') self.assertTrue(geom.check_given_symm('D2h', atoms)) def test_c4h(self): coords1 = numpy.dot(make8(1.5), u) coords2 = numpy.dot(make6(1.5).dot(random_rotz()), u) atoms = [['C', c] for c in coords1] + [['C', c] for c in coords2] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'C4h') def test_c2h(self): coords1 = numpy.dot(make8(2.5), u) coords2 = numpy.dot(make20(1.2), u) atoms = [['C', c] for c in numpy.vstack((coords1,coords2))] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'C2h') def test_c1(self): coords1 = numpy.dot(make4(2.5), u) coords2 = make20(1.2) atoms = [['C', c] for c in numpy.vstack((coords1,coords2))] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'C1') def test_c2(self): coords1 = numpy.dot(make4(2.5), 1) coords2 = make12(1.2) axes = geom._make_axes(coords2[1]-coords2[0], coords2[2]) coords2 = numpy.dot(coords2, axes.T) atoms = [['C', c] for c in numpy.vstack((coords1,coords2))] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'C2') def test_ci(self): coords1 = numpy.dot(make8(2.5), u) coords2 = numpy.dot(numpy.dot(make20(1.2), random_rotz()), u) atoms = [['C', c] for c in numpy.vstack((coords1,coords2))] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'Ci') def test_cs(self): coords1 = make4(2.5) axes = geom._make_axes(coords1[1]-coords1[0], coords1[2]) coords1 = numpy.dot(coords1, axes.T) coords2 = make12(1.2) axes = geom._make_axes(coords2[1]-coords2[0], coords2[2]) coords2 = numpy.dot(coords2, axes.T) atoms = [['C', c] for c in numpy.vstack((coords1,coords2))] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'Cs') numpy.random.seed(1) c0 = numpy.random.random((4,3)) c0[:,1] *= .5 c1 = c0.copy() c1[:,1] *= -1 atoms = [['C', c] for c in numpy.vstack((c0,c1))] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'Cs') def test_td1(self): coords1 = numpy.dot(make4(1.5), u) atoms = [['C', c] for c in coords1] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'Td') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(gpname, 'D2') self.assertTrue(geom.check_given_symm('D2', atoms)) self.assertEqual(geom.symm_identical_atoms(gpname, atoms), [[0, 1, 2, 3]]) def test_td2(self): coords1 = numpy.dot(make4(1.5), u) coords2 = numpy.dot(make4(1.9), u) atoms = [['C', c] for c in coords1] + [['C', c] for c in coords2] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'Td') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(gpname, 'D2') self.assertTrue(geom.check_given_symm('D2', atoms)) self.assertEqual(geom.symm_identical_atoms(gpname, atoms), [[0, 1, 2, 3], [4, 5, 6, 7]]) def test_c3v(self): coords1 = numpy.dot(make4(1.5), u) coords2 = numpy.dot(make4(1.9), u) atoms = [['C', c] for c in coords1] + [['C', c] for c in coords2] atoms[2][0] = 'C1' gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'C3v') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(gpname, 'Cs') self.assertTrue(geom.check_given_symm('Cs', atoms)) self.assertEqual(geom.symm_identical_atoms(gpname, atoms), [[0, 1], [2], [3], [4, 5], [6], [7]]) def test_c3v_1(self): mol = gto.M(atom=''' C 0.948065 -0.081406 -0.007893 C 0.462608 -0.144439 1.364854 N 0.077738 -0.194439 2.453356 H 0.591046 0.830035 -0.495369 H 0.591062 -0.944369 -0.576807 H 2.041481 -0.080642 -0.024174''') gpname, orig, axes = geom.detect_symm(mol._atom) self.assertEqual(gpname, 'C1') with lib.temporary_env(geom, TOLERANCE=1e-3): gpname, orig, axes = geom.detect_symm(mol._atom) self.assertEqual(gpname, 'C3v') def test_t(self): atoms = [['C', ( 1.0 ,-1.0 , 1.0 )], ['O', ( 1.0-.1,-1.0+.2, 1.0 )], ['O', ( 1.0 ,-1.0+.1, 1.0-.2)], ['O', ( 1.0-.2,-1.0 , 1.0-.1)], ['C', (-1.0 , 1.0 , 1.0 )], ['O', (-1.0+.1, 1.0-.2, 1.0 )], ['O', (-1.0 , 1.0-.1, 1.0-.2)], ['O', (-1.0+.2, 1.0 , 1.0-.1)], ['C', ( 1.0 , 1.0 ,-1.0 )], ['O', ( 1.0-.2, 1.0 ,-1.0+.1)], ['O', ( 1.0 , 1.0-.1,-1.0+.2)], ['O', ( 1.0-.1, 1.0-.2,-1.0 )], ['C', (-1.0 ,-1.0 ,-1.0 )], ['O', (-1.0 ,-1.0+.1,-1.0+.2)], ['O', (-1.0+.2,-1.0 ,-1.0+.1)], ['O', (-1.0+.1,-1.0+.2,-1.0 )]] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'T') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(gpname, 'D2') self.assertTrue(geom.check_given_symm('D2', atoms)) self.assertEqual(geom.symm_identical_atoms(gpname, atoms), [[0, 4, 8, 12], [1, 5, 11, 15], [2, 6, 10, 13], [3, 7, 9, 14]]) def test_th(self): atoms = [['C', ( 1.0 ,-1.0 , 1.0 )], ['O', ( 1.0-.1,-1.0+.2, 1.0 )], ['O', ( 1.0 ,-1.0+.1, 1.0-.2)], ['O', ( 1.0-.2,-1.0 , 1.0-.1)], ['C', ( 1.0 , 1.0 , 1.0 )], ['O', ( 1.0-.1, 1.0-.2, 1.0 )], ['O', ( 1.0 , 1.0-.1, 1.0-.2)], ['O', ( 1.0-.2, 1.0 , 1.0-.1)], ['C', (-1.0 , 1.0 , 1.0 )], ['O', (-1.0+.1, 1.0-.2, 1.0 )], ['O', (-1.0 , 1.0-.1, 1.0-.2)], ['O', (-1.0+.2, 1.0 , 1.0-.1)], ['C', (-1.0 ,-1.0 , 1.0 )], ['O', (-1.0+.1,-1.0+.2, 1.0 )], ['O', (-1.0 ,-1.0+.1, 1.0-.2)], ['O', (-1.0+.2,-1.0 , 1.0-.1)], ['C', ( 1.0 ,-1.0 ,-1.0 )], ['O', ( 1.0-.2,-1.0 ,-1.0+.1)], ['O', ( 1.0 ,-1.0+.1,-1.0+.2)], ['O', ( 1.0-.1,-1.0+.2,-1.0 )], ['C', ( 1.0 , 1.0 ,-1.0 )], ['O', ( 1.0-.2, 1.0 ,-1.0+.1)], ['O', ( 1.0 , 1.0-.1,-1.0+.2)], ['O', ( 1.0-.1, 1.0-.2,-1.0 )], ['C', (-1.0 , 1.0 ,-1.0 )], ['O', (-1.0+.2, 1.0 ,-1.0+.1)], ['O', (-1.0 , 1.0-.1,-1.0+.2)], ['O', (-1.0+.1, 1.0-.2,-1.0 )], ['C', (-1.0 ,-1.0 ,-1.0 )], ['O', (-1.0 ,-1.0+.1,-1.0+.2)], ['O', (-1.0+.2,-1.0 ,-1.0+.1)], ['O', (-1.0+.1,-1.0+.2,-1.0 )]] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'Th') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(gpname, 'D2') self.assertTrue(geom.check_given_symm('D2', atoms)) self.assertEqual(geom.symm_identical_atoms(gpname, atoms), [[0, 8, 20, 28], [1, 9, 23, 31], [2, 10, 22, 29], [3, 11, 21, 30], [4, 12, 16, 24], [5, 13, 19, 27], [6, 14, 18, 26], [7, 15, 17, 25]]) def test_s4_1(self): coords1 = numpy.dot(make4(1.5), u) coords2 = numpy.dot(numpy.dot(make4(2.4), random_rotz()), u) atoms = [['C', c] for c in coords1] + [['C', c] for c in coords2] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'S4') def test_Dooh(self): atoms = [['H', (0,0,0)], ['H', (0,0,-1)], ['H1', (0,0,1)]] basis = {'H':'sto3g'} gpname, orig, axes = geom.detect_symm(atoms, basis) self.assertEqual(gpname, 'Dooh') self.assertEqual(geom.symm_identical_atoms(gpname, atoms), [[0], [1,2]]) gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(gpname, 'Dooh') self.assertTrue(geom.check_given_symm('Dooh', atoms, basis)) self.assertTrue(geom.check_given_symm('D2h', atoms, basis)) self.assertEqual(geom.symm_identical_atoms(gpname, atoms), [[0], [1,2]]) def test_Coov(self): atoms = [['H', (0,0,0)], ['H', (0,0,-1)], ['H1', (0,0,1)]] basis = {'H':'sto3g', 'H1':'6-31g'} gpname, orig, axes = geom.detect_symm(atoms, basis) self.assertEqual(gpname, 'Coov') self.assertEqual(geom.symm_identical_atoms(gpname, atoms), [[0], [1] ,[2]]) gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(gpname, 'Coov') self.assertTrue(geom.check_given_symm('Coov', atoms, basis)) self.assertTrue(geom.check_given_symm('C2v', atoms, basis)) self.assertEqual(geom.symm_identical_atoms(gpname, atoms), [[0], [1], [2]]) def test_d5(self): coord1 = ring(5) coord2 = ring(5, .1) coord1[:,2] = 1 coord2[:,2] =-1 atoms = [['H', c] for c in numpy.vstack((coord1,coord2))] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'D5') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(gpname, 'C2') self.assertTrue(geom.check_given_symm('C2', atoms)) self.assertEqual(geom.symm_identical_atoms(gpname, atoms), [[0, 5], [1, 9], [2, 8], [3, 7], [4, 6]]) def test_d5d(self): coord1 = ring(5) coord2 = ring(5, numpy.pi/5) coord1[:,2] = 1 coord2[:,2] =-1 atoms = [['H', c] for c in numpy.vstack((coord1,coord2))] gpname, orig, axes = geom.detect_symm(atoms) self.assertEqual(gpname, 'D5d') gpname, axes = geom.subgroup(gpname, axes) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(gpname, 'C2h') self.assertTrue(geom.check_given_symm('C2h', atoms)) self.assertEqual(geom.symm_identical_atoms(gpname, atoms), [[0, 3, 5, 7], [1, 2, 8, 9], [4, 6]]) def test_detect_symm_c2v(self): atoms = [['H' , (1., 0., 2.)], ['He', (0., 1., 0.)], ['H' , (-2.,0.,-1.)], ['He', (0.,-1., 0.)]] l, orig, axes = geom.detect_symm(atoms) self.assertEqual(l, 'C2v') atoms = geom.shift_atom(atoms, orig, axes) self.assertTrue(geom.check_given_symm('C2v', atoms)) self.assertEqual(geom.symm_identical_atoms(l,atoms), [[0,2],[1,3]]) def test_detect_symm_d2h_a(self): atoms = [['He', (0., 1., 0.)], ['H' , (1., 0., 0.)], ['H' , (-1.,0., 0.)], ['He', (0.,-1., 0.)]] l, orig, axes = geom.detect_symm(atoms) self.assertEqual(l, 'D2h') atoms = geom.shift_atom(atoms, orig, axes) self.assertTrue(geom.check_given_symm('D2h', atoms)) self.assertEqual(geom.symm_identical_atoms(l,atoms), [[0, 3], [1, 2]]) def test_detect_symm_d2h_b(self): atoms = [['H' , (1., 0., 2.)], ['He', (0., 1., 0.)], ['H' , (-1.,0.,-2.)], ['He', (0.,-1., 0.)]] l, orig, axes = geom.detect_symm(atoms) self.assertEqual(l, 'D2h') atoms = geom.shift_atom(atoms, orig, axes) self.assertTrue(geom.check_given_symm('D2h', atoms)) self.assertEqual(geom.symm_identical_atoms(l,atoms), [[0,2],[1,3]]) def test_detect_symm_c2h_a(self): atoms = [['H' , (1., 0., 2.)], ['He', (0., 1.,-1.)], ['H' , (-1.,0.,-2.)], ['He', (0.,-1., 1.)]] l, orig, axes = geom.detect_symm(atoms) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(l, 'C2h') self.assertEqual(geom.symm_identical_atoms(l,atoms), [[0,2],[1,3]]) self.assertTrue(geom.check_given_symm('C2h', atoms)) def test_detect_symm_c2h(self): atoms = [['H' , (1., 0., 2.)], ['He', (0., 1., 0.)], ['H' , (1., 0., 0.)], ['H' , (-1.,0., 0.)], ['H' , (-1.,0.,-2.)], ['He', (0.,-1., 0.)]] l, orig, axes = geom.detect_symm(atoms) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(l, 'C2h') self.assertEqual(geom.symm_identical_atoms(l,atoms), [[0,4],[1,5],[2,3]]) self.assertTrue(geom.check_given_symm('C2h', atoms)) atoms = [['H' , (1., 0., 1.)], ['H' , (1., 0.,-1.)], ['He', (0., 0., 2.)], ['He', (2., 0.,-2.)], ['Li', (1., 1., 0.)], ['Li', (1.,-1., 0.)]] l, orig, axes = geom.detect_symm(atoms) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(l, 'C2h') self.assertEqual(geom.symm_identical_atoms(l,atoms), [[0, 1], [2, 3], [4, 5]]) self.assertTrue(geom.check_given_symm('C2h', atoms)) def test_detect_symm_d2_a(self): atoms = [['H' , (1., 0., 1.)], ['H' , (1., 0.,-1.)], ['He', (0., 0., 2.)], ['He', (2., 0., 2.)], ['He', (1., 1.,-2.)], ['He', (1.,-1.,-2.)]] l, orig, axes = geom.detect_symm(atoms) self.assertEqual(l, 'D2d') atoms = geom.shift_atom(atoms, orig, axes) self.assertTrue(geom.check_given_symm('D2', atoms)) self.assertEqual(geom.symm_identical_atoms('D2', atoms), [[0, 1], [2, 3, 4, 5]]) def test_detect_symm_d2_b(self): s2 = numpy.sqrt(.5) atoms = [['C', (0., 0., 1.)], ['C', (0., 0.,-1.)], ['H', ( 1, 0., 2.)], ['H', (-1, 0., 2.)], ['H', ( s2, s2,-2.)], ['H', (-s2,-s2,-2.)]] l, orig, axes = geom.detect_symm(atoms) self.assertEqual(l, 'D2') atoms = geom.shift_atom(atoms, orig, axes) self.assertTrue(geom.check_given_symm('D2', atoms)) self.assertEqual(geom.symm_identical_atoms(l,atoms), [[0, 1], [2, 3, 4, 5]]) def test_detect_symm_s4(self): atoms = [['H', (-1,-1.,-2.)], ['H', ( 1, 1.,-2.)], ['C', (-.9,-1.,-2.)], ['C', (.9, 1.,-2.)], ['H', ( 1,-1., 2.)], ['H', (-1, 1., 2.)], ['C', ( 1,-.9, 2.)], ['C', (-1, .9, 2.)],] l, orig, axes = geom.detect_symm(atoms) self.assertEqual(l, 'S4') atoms = geom.shift_atom(atoms, orig, axes) self.assertTrue(geom.check_given_symm('C2', atoms)) self.assertEqual(geom.symm_identical_atoms('C2',atoms), [[0, 1], [2, 3], [4, 5], [6, 7]]) def test_detect_symm_ci(self): atoms = [['H' , ( 1., 0., 0.)], ['He', ( 0., 1., 0.)], ['Li', ( 0., 0., 1.)], ['Be', ( .5, .5, .5)], ['H' , (-1., 0., 0.)], ['He', ( 0.,-1., 0.)], ['Li', ( 0., 0.,-1.)], ['Be', (-.5,-.5,-.5)]] l, orig, axes = geom.detect_symm(atoms) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(l, 'Ci') self.assertTrue(geom.check_given_symm('Ci', atoms)) self.assertEqual(geom.symm_identical_atoms(l,atoms), [[0, 4], [1, 5], [2, 6], [3, 7]]) def test_detect_symm_cs1(self): atoms = [['H' , (1., 2., 0.)], ['He', (1., 0., 0.)], ['Li', (2.,-1., 0.)], ['Be', (0., 1., 0.)]] l, orig, axes = geom.detect_symm(atoms) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(l, 'Cs') self.assertTrue(geom.check_given_symm('Cs', atoms)) self.assertEqual(geom.symm_identical_atoms(l,atoms), [[0], [1], [2], [3]]) def test_detect_symm_cs2(self): atoms = [['H' , (0., 1., 2.)], ['He', (0., 1., 0.)], ['Li', (0., 2.,-1.)], ['Be', (0., 0., 1.)], ['S' , (-3, 1., .5)], ['S' , ( 3, 1., .5)]] coord = numpy.dot([a[1] for a in atoms], u) atoms = [[atoms[i][0], c] for i,c in enumerate(coord)] l, orig, axes = geom.detect_symm(atoms) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(l, 'Cs') self.assertTrue(geom.check_given_symm('Cs', atoms)) self.assertEqual(geom.symm_identical_atoms(l,atoms), [[0], [1], [2], [3], [4, 5]]) def test_detect_symm_cs3(self): atoms = [['H' , ( 2.,1., 0.)], ['He', ( 0.,1., 0.)], ['Li', (-1.,2., 0.)], ['Be', ( 1.,0., 0.)], ['S' , ( .5,1., -3)], ['S' , ( .5,1., 3)]] coord = numpy.dot([a[1] for a in atoms], u) atoms = [[atoms[i][0], c] for i,c in enumerate(coord)] l, orig, axes = geom.detect_symm(atoms) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(l, 'Cs') self.assertTrue(geom.check_given_symm('Cs', atoms)) self.assertEqual(geom.symm_identical_atoms(l,atoms), [[0], [1], [2], [3], [4, 5]]) def test_detect_symm_c1(self): atoms = [['H' , ( 1., 0., 0.)], ['He', ( 0., 1., 0.)], ['Li', ( 0., 0., 1.)], ['Be', ( .5, .5, .5)]] l, orig, axes = geom.detect_symm(atoms) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(l, 'C1') self.assertTrue(geom.check_given_symm('C1', atoms)) self.assertEqual(geom.symm_identical_atoms(l,atoms), [[0], [1], [2], [3]]) def test_detect_symm_c2(self): atoms = [['H' , ( 1., 0., 1.)], ['H' , ( 1., 0.,-1.)], ['He', ( 0.,-3., 2.)], ['He', ( 0., 3.,-2.)]] l, orig, axes = geom.detect_symm(atoms) atoms = geom.shift_atom(atoms, orig, axes) self.assertEqual(l, 'C2') self.assertTrue(geom.check_given_symm('C2', atoms)) self.assertEqual(geom.symm_identical_atoms(l,atoms), [[0,1],[2,3]]) def test_detect_symm_d3d(self): atoms = [ ['C', ( 1.25740, -0.72596, -0.25666)], ['C', ( 1.25740, 0.72596, 0.25666)], ['C', ( 0.00000, 1.45192, -0.25666)], ['C', (-1.25740, 0.72596, 0.25666)], ['C', (-1.25740, -0.72596, -0.25666)], ['C', ( 0.00000, -1.45192, 0.25666)], ['H', ( 2.04168, -1.17876, 0.05942)], ['H', ( 1.24249, -0.71735, -1.20798)], ['H', ( 2.04168, 1.17876, -0.05942)], ['H', ( 1.24249, 0.71735, 1.20798)], ['H', ( 0.00000, 1.43470, -1.20798)], ['H', ( 0.00000, 2.35753, 0.05942)], ['H', (-2.04168, 1.17876, -0.05942)], ['H', (-1.24249, 0.71735, 1.20798)], ['H', (-1.24249, -0.71735, -1.20798)], ['H', (-2.04168, -1.17876, 0.05942)], ['H', ( 0.00000, -1.43470, 1.20798)], ['H', ( 0.00000, -2.35753, -0.05942)], ] with lib.temporary_env(geom, TOLERANCE=1e-4): l, orig, axes = geom.detect_symm(atoms) self.assertEqual(l, 'D3d') def test_quasi_c2v(self): atoms = [ ['Fe', ( 0.0000000000, 0.0055197721, 0.0055197721)], ['O' , (-1.3265475500, 0.0000000000, -0.9445024777)], ['O' , ( 1.3265475500, 0.0000000000, -0.9445024777)], ['O' , ( 0.0000000000, -1.3265374484, 0.9444796669)], ['O' , ( 0.0000000000, 1.3265374484, 0.9444796669)],] l, orig, axes = geom.detect_symm(atoms) self.assertEqual(l, 'Cs') with lib.temporary_env(geom, TOLERANCE=1e-2): l, orig, axes = geom.detect_symm(atoms) self.assertEqual(l, 'C2v') with lib.temporary_env(geom, TOLERANCE=1e-1): l, orig, axes = geom.detect_symm(atoms) self.assertEqual(l, 'Td') def test_as_subgroup(self): axes = numpy.eye(3) g, ax = symm.as_subgroup('D2d', axes) self.assertEqual(g, 'D2') self.assertAlmostEqual(abs(ax-numpy.eye(3)).max(), 0, 12) g, ax = symm.as_subgroup('D2d', axes, 'D2') self.assertEqual(g, 'D2') self.assertAlmostEqual(abs(ax-numpy.eye(3)).max(), 0, 12) g, ax = symm.as_subgroup('D2d', axes, 'C2v') self.assertEqual(g, 'C2v') self.assertAlmostEqual(ax[0,1], numpy.sqrt(.5), 9) self.assertAlmostEqual(ax[1,0],-numpy.sqrt(.5), 9) g, ax = symm.as_subgroup('C2v', axes, 'Cs') self.assertEqual(g, 'Cs') self.assertAlmostEqual(ax[2,0], 1, 9) g, ax = symm.as_subgroup('D6', axes) self.assertEqual(g, 'D2') g, ax = symm.as_subgroup('C6h', axes) self.assertEqual(g, 'C2h') g, ax = symm.as_subgroup('C6v', axes) self.assertEqual(g, 'C2v') g, ax = symm.as_subgroup('C6', axes) self.assertEqual(g, 'C2') def test_ghost(self): atoms = [ ['Fe' , ( 0.0, 0.0, 0.0)], ['O' , (-1.3, 0.0, 0.0)], ['GHOST-O' , ( 1.3, 0.0, 0.0)], ['GHOST-O' , ( 0.0, -1.3, 0.0)], ['O' , ( 0.0, 1.3, 0.0)],] l, orig, axes = geom.detect_symm(atoms) self.assertEqual(l, 'C2v') self.assertAlmostEqual(axes[2,0]*axes[2,1], -.5) atoms = [ ['Fe' , ( 0.0, 0.0, 0.0)], ['O' , (-1.3, 0.0, 0.0)], ['XO' , ( 1.3, 0.0, 0.0)], ['GHOSTO' , ( 0.0, -1.3, 0.0)], ['O' , ( 0.0, 1.3, 0.0)],] l, orig, axes = geom.detect_symm(atoms) self.assertEqual(l, 'C2v') self.assertAlmostEqual(axes[2,0]*axes[2,1], -.5) atoms = [ ['Fe' , ( 0.0, 0.0, 0.0)], ['O' , (-1.3, 0.0, 0.0)], ['X' , ( 1.3, 0.0, 0.0)], ['X' , ( 0.0, -1.3, 0.0)], ['O' , ( 0.0, 1.3, 0.0)],] l, orig, axes = geom.detect_symm(atoms) self.assertEqual(l, 'C2v') self.assertAlmostEqual(axes[2,0]*axes[2,1], -.5) def test_sort_coords(self): c = numpy.random.random((5,3)) c0 = symm.sort_coords(c) idx = symm.argsort_coords(c) self.assertAlmostEqual(abs(c[idx] - c0).max(), 0, 9) def ring(n, start=0): r = 1. / numpy.sin(numpy.pi/n) coord = [] for i in range(n): theta = i * (2*numpy.pi/n) coord.append([r*numpy.cos(theta+start), r*numpy.sin(theta+start), 0]) return numpy.array(coord) def ringhat(n, u): atoms = [['H', c] for c in ring(n)] \ + [['C', c] for c in ring(n, .1)] \ + [['N', [0,0, 1.3]], ['N', [0,0,-1.3]]] c = numpy.dot([a[1] for a in atoms], u) return [[atoms[i][0], c[i]] for i in range(len(atoms))] def rotmatz(ang): c = numpy.cos(ang) s = numpy.sin(ang) return numpy.array((( c, s, 0), (-s, c, 0), ( 0, 0, 1),)) def rotmaty(ang): c = numpy.cos(ang) s = numpy.sin(ang) return numpy.array((( c, 0, s), ( 0, 1, 0), (-s, 0, c),)) def r2edge(ang, r): return 2*r*numpy.sin(ang/2) def make60(b5, b6): theta1 = numpy.arccos(1/numpy.sqrt(5)) theta2 = (numpy.pi - theta1) * .5 r = (b5*2+b6)/2/numpy.sin(theta1/2) rot72 = rotmatz(numpy.pi*2/5) s1 = numpy.sin(theta1) c1 = numpy.cos(theta1) s2 = numpy.sin(theta2) c2 = numpy.cos(theta2) p1 = numpy.array(( s2*b5, 0, r-c2*b5)) p9 = numpy.array((-s2*b5, 0,-r+c2*b5)) p2 = numpy.array(( s2*(b5+b6), 0, r-c2*(b5+b6))) rot1 = reduce(numpy.dot, (rotmaty(theta1), rot72, rotmaty(-theta1))) p2s = [] for i in range(5): p2s.append(p2) p2 = numpy.dot(p2, rot1) coord = [] for i in range(5): coord.append(p1) p1 = numpy.dot(p1, rot72) for pj in p2s: pi = pj for i in range(5): coord.append(pi) pi = numpy.dot(pi, rot72) for pj in p2s: pi = pj for i in range(5): coord.append(-pi) pi = numpy.dot(pi, rot72) for i in range(5): coord.append(p9) p9 = numpy.dot(p9, rot72) return numpy.array(coord) def make12(b): theta1 = numpy.arccos(1/numpy.sqrt(5)) theta2 = (numpy.pi - theta1) * .5 r = b/2./numpy.sin(theta1/2) rot72 = rotmatz(numpy.pi*2/5) s1 = numpy.sin(theta1) c1 = numpy.cos(theta1) p1 = numpy.array(( s1*r, 0, c1*r)) p2 = numpy.array((-s1*r, 0, -c1*r)) coord = [( 0, 0, r)] for i in range(5): coord.append(p1) p1 = numpy.dot(p1, rot72) for i in range(5): coord.append(p2) p2 = numpy.dot(p2, rot72) coord.append(( 0, 0, -r)) return numpy.array(coord) def make20(b): theta1 = numpy.arccos(numpy.sqrt(5)/3) theta2 = numpy.arcsin(r2edge(theta1,1)/2/numpy.sin(numpy.pi/5)) r = b/2./numpy.sin(theta1/2) rot72 = rotmatz(numpy.pi*2/5) s2 = numpy.sin(theta2) c2 = numpy.cos(theta2) s3 = numpy.sin(theta1+theta2) c3 = numpy.cos(theta1+theta2) p1 = numpy.array(( s2*r, 0, c2*r)) p2 = numpy.array(( s3*r, 0, c3*r)) p3 = numpy.array((-s3*r, 0, -c3*r)) p4 = numpy.array((-s2*r, 0, -c2*r)) coord = [] for i in range(5): coord.append(p1) p1 = numpy.dot(p1, rot72) for i in range(5): coord.append(p2) p2 =
numpy.dot(p2, rot72)
numpy.dot
import numpy as np import math import h5py import re import cv2 import random from sklearn.linear_model import LinearRegression import time start_time = time.time() def img_border(img_gray): img_bordered = img_gray.copy() img_w, img_h = img_bordered.shape[1], img_bordered.shape[0] border_horizontal = (768 - img_w) / 2 border_vertical = (768 - img_h) / 2 # horizontal border if border_horizontal%1 == 0.5: border_horizontal = border_horizontal - 0.5 border_horizontal = int(border_horizontal) img_bordered = cv2.hconcat((img_bordered, np.zeros((np.shape(img_bordered)[0], border_horizontal + 1, 1), dtype=np.uint8) )) img_bordered = cv2.hconcat((np.zeros((np.shape(img_bordered)[0], border_horizontal, 1), dtype=np.uint8), img_bordered )) else: border_horizontal = int(border_horizontal) img_bordered = cv2.hconcat((img_bordered, np.zeros((np.shape(img_bordered)[0], border_horizontal, 1), dtype=np.uint8) )) img_bordered = cv2.hconcat((np.zeros((
np.shape(img_bordered)
numpy.shape
# Lint as: python3 # Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the Python extension-based XLA client.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import itertools import threading import unittest from absl.testing import absltest from absl.testing import parameterized import numpy as np from tensorflow.compiler.xla.python import custom_call_for_test from tensorflow.compiler.xla.python import xla_client # pylint: disable=g-import-not-at-top try: import portpicker except ImportError: portpicker = None # pylint: enable=g-import-not-at-top bfloat16 = xla_client.bfloat16 class ComputationTest(absltest.TestCase): """Base class for running an XLA Computation through the local client.""" def _NewComputation(self, name=None): if name is None: name = self.id() return xla_client.ComputationBuilder(name) def _Execute(self, c, arguments): compiled_c = c.Build().Compile() return xla_client.execute_with_python_values(compiled_c, arguments) def _ExecuteAndAssertWith(self, assert_func, c, arguments, expected): assert expected is not None results = self._Execute(c, arguments) self.assertLen(results, len(expected)) for result, e in zip(results, expected): # Numpy's comparison methods are a bit too lenient by treating inputs as # "array-like", meaning that scalar 4 will be happily compared equal to # [[4]]. We'd like to be more strict so assert shapes as well. self.assertEqual(np.asanyarray(result).shape, np.asanyarray(e).shape) assert_func(result, e) def _ExecuteAndCompareExact(self, c, arguments=(), expected=None): self._ExecuteAndAssertWith(np.testing.assert_equal, c, arguments, expected) def _ExecuteAndCompareClose(self, c, arguments=(), expected=None, rtol=1e-7, atol=0): self._ExecuteAndAssertWith( functools.partial(np.testing.assert_allclose, rtol=rtol, atol=atol), c, arguments, expected) def NumpyArrayF32(*args, **kwargs): """Convenience wrapper to create Numpy arrays with a np.float32 dtype.""" return np.array(*args, dtype=np.float32, **kwargs) def NumpyArrayF64(*args, **kwargs): """Convenience wrapper to create Numpy arrays with a np.float64 dtype.""" return np.array(*args, dtype=np.float64, **kwargs) def NumpyArrayS32(*args, **kwargs): """Convenience wrapper to create Numpy arrays with a np.int32 dtype.""" return np.array(*args, dtype=np.int32, **kwargs) def NumpyArrayS64(*args, **kwargs): """Convenience wrapper to create Numpy arrays with a np.int64 dtype.""" return np.array(*args, dtype=np.int64, **kwargs) def NumpyArrayBool(*args, **kwargs): """Convenience wrapper to create Numpy arrays with a np.bool dtype.""" return np.array(*args, dtype=np.bool, **kwargs) class ComputationPrinting(absltest.TestCase): def ExampleComputation(self): builder = xla_client.ComputationBuilder("acomputation") p0 = builder.ParameterFromNumpy(np.float32(0)) p1 = builder.ParameterFromNumpy(np.zeros((4,), np.float32)) x = builder.Mul(p0, p1) builder.Add(x, x) return builder.Build() def testComputationToHloText(self): computation = self.ExampleComputation() hlo_text = computation.GetHloText() self.assertTrue(hlo_text.startswith("HloModule acomputation")) def testComputationToHloGraph(self): computation = self.ExampleComputation() hlo_dot_graph = computation.GetHloDotGraph() self.assertTrue(hlo_dot_graph.startswith("digraph ")) def testHloModuleToHloText(self): computation = self.ExampleComputation() hlo_text = computation.computation.get_hlo_module().to_string() self.assertTrue(hlo_text.startswith("HloModule acomputation")) def testHloModuleToHloGraph(self): computation = self.ExampleComputation() hlo_dot_graph = xla_client._xla.hlo_module_to_dot_graph( computation.computation.get_hlo_module()) self.assertTrue(hlo_dot_graph.startswith("digraph ")) def testCompiledHloModuleToHloText(self): computation = self.ExampleComputation() executable = computation.Compile() hlo_modules = executable.get_hlo_modules() self.assertLen(hlo_modules, 1) hlo_text = hlo_modules[0].to_string() self.assertTrue(hlo_text.startswith("HloModule acomputation")) self.assertIn("fusion", hlo_text) class ComputationHashTest(absltest.TestCase): def testHash(self): builder0 = xla_client.ComputationBuilder("computation0") p0 = builder0.ParameterFromNumpy(np.float32(0)) p1 = builder0.ParameterFromNumpy(np.zeros((4,), np.float32)) builder0.Mul(p0, p1) computation0 = builder0.Build() builder1 = xla_client.ComputationBuilder("computation1") p0 = builder1.ParameterFromNumpy(np.float32(0)) p1 = builder1.ParameterFromNumpy(np.zeros((4,), np.float32)) builder1.Mul(p0, p1) computation1 = builder1.Build() self.assertEqual(computation0.Hash(), computation1.Hash()) class ComputationsWithConstantsTest(ComputationTest): """Tests focusing on Constant ops.""" def testConstantScalarSumS8(self): c = self._NewComputation() c.Add(c.Constant(np.int8(1)), c.Constant(np.int8(2))) self._ExecuteAndCompareExact(c, expected=[np.int8(3)]) def testConstantScalarSumBF16(self): c = self._NewComputation() c.Add(c.Constant(bfloat16(1.11)), c.Constant(bfloat16(3.14))) self._ExecuteAndCompareClose(c, expected=[bfloat16(4.25)]) def testConstantScalarSumF32(self): c = self._NewComputation() c.Add(c.ConstantF32Scalar(1.11), c.ConstantF32Scalar(3.14)) self._ExecuteAndCompareClose(c, expected=[4.25]) def testConstantScalarSumF64(self): c = self._NewComputation() c.Add(c.ConstantF64Scalar(1.11), c.ConstantF64Scalar(3.14)) self._ExecuteAndCompareClose(c, expected=[4.25]) def testConstantScalarSumS32(self): c = self._NewComputation() c.Add(c.ConstantS32Scalar(1), c.ConstantS32Scalar(2)) self._ExecuteAndCompareClose(c, expected=[3]) def testConstantScalarSumS64(self): c = self._NewComputation() c.Add(c.ConstantS64Scalar(1), c.ConstantS64Scalar(2)) self._ExecuteAndCompareClose(c, expected=[3]) def testConstantVectorMulF16(self): c = self._NewComputation() c.Mul( c.Constant(np.array([2.5, 3.3, -1.2, 0.7], np.float16)), c.Constant(np.array([-1.2, 2, -2, -3], np.float16))) self._ExecuteAndCompareClose( c, expected=[np.array([-3, 6.6, 2.4, -2.1], np.float16)], rtol=2e-3) def testConstantVectorMulF32(self): c = self._NewComputation() c.Mul( c.Constant(NumpyArrayF32([2.5, 3.3, -1.2, 0.7])), c.Constant(NumpyArrayF32([-1.2, 2, -2, -3]))) self._ExecuteAndCompareClose(c, expected=[[-3, 6.6, 2.4, -2.1]]) def testConstantVectorMulF64(self): c = self._NewComputation() c.Mul( c.Constant(NumpyArrayF64([2.5, 3.3, -1.2, 0.7])), c.Constant(NumpyArrayF64([-1.2, 2, -2, -3]))) self._ExecuteAndCompareClose(c, expected=[[-3, 6.6, 2.4, -2.1]]) def testConstantVectorScalarDivF32(self): c = self._NewComputation() c.Div( c.Constant(NumpyArrayF32([1.5, 2.5, 3.0, -10.8])), c.ConstantF32Scalar(2.0)) self._ExecuteAndCompareClose(c, expected=[[0.75, 1.25, 1.5, -5.4]]) def testConstantVectorScalarDivF64(self): c = self._NewComputation() c.Div( c.Constant(NumpyArrayF64([1.5, 2.5, 3.0, -10.8])), c.ConstantF64Scalar(2.0)) self._ExecuteAndCompareClose(c, expected=[[0.75, 1.25, 1.5, -5.4]]) def testConstantVectorScalarPowF32(self): c = self._NewComputation() c.Pow(c.Constant(NumpyArrayF32([1.5, 2.5, 3.0])), c.ConstantF32Scalar(2.)) self._ExecuteAndCompareClose(c, expected=[[2.25, 6.25, 9.]]) def testConstantVectorScalarPowF64(self): c = self._NewComputation() c.Pow(c.Constant(NumpyArrayF64([1.5, 2.5, 3.0])), c.ConstantF64Scalar(2.)) self._ExecuteAndCompareClose(c, expected=[[2.25, 6.25, 9.]]) def testIota(self): c = self._NewComputation() c.Iota(np.float32, 10) self._ExecuteAndCompareExact(c, expected=[np.arange(10, dtype=np.float32)]) def testBroadcastedIota(self): c = self._NewComputation() c.BroadcastedIota(np.int64, (2, 3), 1) expected = np.array([[0, 1, 2], [0, 1, 2]], dtype=np.int64) self._ExecuteAndCompareExact(c, expected=[expected]) def testBooleanAnd(self): c = self._NewComputation() c.And( c.Constant(NumpyArrayBool([True, False, True, False])), c.Constant(NumpyArrayBool([True, True, False, False]))) self._ExecuteAndCompareExact(c, expected=[[True, False, False, False]]) def testBooleanOr(self): c = self._NewComputation() c.Or( c.Constant(NumpyArrayBool([True, False, True, False])), c.Constant(NumpyArrayBool([True, True, False, False]))) self._ExecuteAndCompareExact(c, expected=[[True, True, True, False]]) def testBooleanXor(self): c = self._NewComputation() c.Xor( c.Constant(NumpyArrayBool([True, False, True, False])), c.Constant(NumpyArrayBool([True, True, False, False]))) self._ExecuteAndCompareExact(c, expected=[[False, True, True, False]]) def testSum2DF32(self): c = self._NewComputation() c.Add( c.Constant(NumpyArrayF32([[1, 2, 3], [4, 5, 6]])), c.Constant(NumpyArrayF32([[1, -1, 1], [-1, 1, -1]]))) self._ExecuteAndCompareClose(c, expected=[[[2, 1, 4], [3, 6, 5]]]) def testShiftLeft(self): c = self._NewComputation() c.ShiftLeft(c.Constant(NumpyArrayS32([3])), c.Constant(NumpyArrayS32([2]))) self._ExecuteAndCompareClose(c, expected=[[12]]) def testShiftRightArithmetic(self): c = self._NewComputation() c.ShiftRightArithmetic( c.Constant(NumpyArrayS32([-2])), c.Constant(NumpyArrayS32([1]))) self._ExecuteAndCompareClose(c, expected=[[-1]]) def testShiftRightLogical(self): c = self._NewComputation() c.ShiftRightLogical( c.Constant(NumpyArrayS32([-1])), c.Constant(NumpyArrayS32([1]))) self._ExecuteAndCompareClose(c, expected=[[2**31 - 1]]) def testSum2DF64(self): c = self._NewComputation() c.Add( c.Constant(NumpyArrayF64([[1, 2, 3], [4, 5, 6]])), c.Constant(NumpyArrayF64([[1, -1, 1], [-1, 1, -1]]))) self._ExecuteAndCompareClose(c, expected=[[[2, 1, 4], [3, 6, 5]]]) def testSum2DWith1DBroadcastDim0F32(self): # sum of a 2D array with a 1D array where the latter is replicated across # dimension 0 to match the former's shape. c = self._NewComputation() c.Add( c.Constant(NumpyArrayF32([[1, 2, 3], [4, 5, 6], [7, 8, 9]])), c.Constant(NumpyArrayF32([10, 20, 30])), broadcast_dimensions=(0,)) self._ExecuteAndCompareClose( c, expected=[[[11, 12, 13], [24, 25, 26], [37, 38, 39]]]) def testSum2DWith1DBroadcastDim0F64(self): # sum of a 2D array with a 1D array where the latter is replicated across # dimension 0 to match the former's shape. c = self._NewComputation() c.Add( c.Constant(NumpyArrayF64([[1, 2, 3], [4, 5, 6], [7, 8, 9]])), c.Constant(NumpyArrayF64([10, 20, 30])), broadcast_dimensions=(0,)) self._ExecuteAndCompareClose( c, expected=[[[11, 12, 13], [24, 25, 26], [37, 38, 39]]]) def testSum2DWith1DBroadcastDim1F32(self): # sum of a 2D array with a 1D array where the latter is replicated across # dimension 1 to match the former's shape. c = self._NewComputation() c.Add( c.Constant(NumpyArrayF32([[1, 2, 3], [4, 5, 6], [7, 8, 9]])), c.Constant(NumpyArrayF32([10, 20, 30])), broadcast_dimensions=(1,)) self._ExecuteAndCompareClose( c, expected=[[[11, 22, 33], [14, 25, 36], [17, 28, 39]]]) def testSum2DWith1DBroadcastDim1F64(self): # sum of a 2D array with a 1D array where the latter is replicated across # dimension 1 to match the former's shape. c = self._NewComputation() c.Add( c.Constant(NumpyArrayF64([[1, 2, 3], [4, 5, 6], [7, 8, 9]])), c.Constant(NumpyArrayF64([10, 20, 30])), broadcast_dimensions=(1,)) self._ExecuteAndCompareClose( c, expected=[[[11, 22, 33], [14, 25, 36], [17, 28, 39]]]) def testConstantAxpyF32(self): c = self._NewComputation() c.Add( c.Mul( c.ConstantF32Scalar(2), c.Constant(NumpyArrayF32([2.2, 3.3, 4.4, 5.5]))), c.Constant(NumpyArrayF32([100, -100, 200, -200]))) self._ExecuteAndCompareClose(c, expected=[[104.4, -93.4, 208.8, -189]]) def testConstantAxpyF64(self): c = self._NewComputation() c.Add( c.Mul( c.ConstantF64Scalar(2), c.Constant(NumpyArrayF64([2.2, 3.3, 4.4, 5.5]))), c.Constant(NumpyArrayF64([100, -100, 200, -200]))) self._ExecuteAndCompareClose(c, expected=[[104.4, -93.4, 208.8, -189]]) def testCustomCall(self): c = self._NewComputation() for name, fn in custom_call_for_test.cpu_custom_call_targets.items(): xla_client.register_custom_call_target(name, fn, platform="cpu") c.CustomCall( b"test_subtract_f32", operands=(c.ConstantF32Scalar(1.25), c.ConstantF32Scalar(0.5)), shape=xla_client.Shape.array_shape(np.dtype(np.float32), (), ()), operand_shapes_with_layout=( xla_client.Shape.array_shape(np.dtype(np.float32), (), ()), xla_client.Shape.array_shape(np.dtype(np.float32), (), ()), )) self._ExecuteAndCompareClose(c, expected=[0.75]) class ComputationFromProtoTest(absltest.TestCase): """Test computation execution from HLO proto.""" def testExecuteFromProto(self): # Build the HLO proto b = xla_client.ComputationBuilder("computation") b.Add(b.Constant(np.int8(1)), b.Constant(np.int8(2))) serialized_proto = b.Build().GetSerializedProto() # Load and execute the proto c = xla_client.Computation(xla_client._xla.XlaComputation(serialized_proto)) ans, = xla_client.execute_with_python_values(c.Compile()) np.testing.assert_equal(ans, np.int8(3)) class ParametersTest(ComputationTest): """Tests focusing on Parameter ops and argument-passing.""" def setUp(self): self.f32_scalar_2 = NumpyArrayF32(2.0) self.f32_4vector = NumpyArrayF32([-2.3, 3.3, -4.3, 5.3]) self.f64_scalar_2 = NumpyArrayF64(2.0) self.f64_4vector = NumpyArrayF64([-2.3, 3.3, -4.3, 5.3]) self.s32_scalar_3 = NumpyArrayS32(3) self.s32_4vector = NumpyArrayS32([10, 15, -2, 7]) self.s64_scalar_3 = NumpyArrayS64(3) self.s64_4vector = NumpyArrayS64([10, 15, -2, 7]) def testScalarTimesVectorAutonumberF32(self): c = self._NewComputation() p0 = c.ParameterFromNumpy(self.f32_scalar_2) p1 = c.ParameterFromNumpy(self.f32_4vector) c.Mul(p0, p1) self._ExecuteAndCompareClose( c, arguments=[self.f32_scalar_2, self.f32_4vector], expected=[[-4.6, 6.6, -8.6, 10.6]]) def testScalarTimesVectorAutonumberF64(self): c = self._NewComputation() p0 = c.ParameterFromNumpy(self.f64_scalar_2) p1 = c.ParameterFromNumpy(self.f64_4vector) c.Mul(p0, p1) self._ExecuteAndCompareClose( c, arguments=[self.f64_scalar_2, self.f64_4vector], expected=[[-4.6, 6.6, -8.6, 10.6]]) def testScalarTimesVectorS32(self): c = self._NewComputation() p0 = c.ParameterFromNumpy(self.s32_scalar_3) p1 = c.ParameterFromNumpy(self.s32_4vector) c.Mul(p0, p1) self._ExecuteAndCompareExact( c, arguments=[self.s32_scalar_3, self.s32_4vector], expected=[[30, 45, -6, 21]]) def testScalarTimesVectorS64(self): c = self._NewComputation() p0 = c.ParameterFromNumpy(self.s64_scalar_3) p1 = c.ParameterFromNumpy(self.s64_4vector) c.Mul(p0, p1) self._ExecuteAndCompareExact( c, arguments=[self.s64_scalar_3, self.s64_4vector], expected=[[30, 45, -6, 21]]) def testScalarMinusVectorExplicitNumberingF32(self): # Use explicit numbering and pass parameter_num first. Sub is used since # it's not commutative and can help catch parameter reversal within the # computation. c = self._NewComputation() p1 = c.ParameterFromNumpy(self.f32_4vector, parameter_num=1) p0 = c.ParameterFromNumpy(self.f32_scalar_2, parameter_num=0) c.Sub(p1, p0) self._ExecuteAndCompareClose( c, arguments=[self.f32_scalar_2, self.f32_4vector], expected=[[-4.3, 1.3, -6.3, 3.3]]) def testScalarMinusVectorExplicitNumberingF64(self): # Use explicit numbering and pass parameter_num first. Sub is used since # it's not commutative and can help catch parameter reversal within the # computation. c = self._NewComputation() p1 = c.ParameterFromNumpy(self.f64_4vector, parameter_num=1) p0 = c.ParameterFromNumpy(self.f64_scalar_2, parameter_num=0) c.Sub(p1, p0) self._ExecuteAndCompareClose( c, arguments=[self.f64_scalar_2, self.f64_4vector], expected=[[-4.3, 1.3, -6.3, 3.3]]) class BufferTest(ComputationTest): """Tests focusing on execution with Buffers.""" def testConstantSum(self): c = self._NewComputation() c.Add(c.ConstantF32Scalar(1.11), c.ConstantF32Scalar(3.14)) self._ExecuteAndCompareClose(c, expected=[4.25]) def testOneParameterSum(self): c = self._NewComputation() c.Add(c.ParameterFromNumpy(NumpyArrayF32(0.)), c.ConstantF32Scalar(3.14)) self._ExecuteAndCompareClose( c, arguments=[NumpyArrayF32(1.11)], expected=[4.25]) def testTwoParameterSum(self): c = self._NewComputation() c.Add( c.ParameterFromNumpy(NumpyArrayF32(0.)), c.ParameterFromNumpy(NumpyArrayF32(0.))) self._ExecuteAndCompareClose( c, arguments=[NumpyArrayF32(1.11), NumpyArrayF32(3.14)], expected=[4.25]) def testCannotCallWithDeletedBuffers(self): c = self._NewComputation() c.Add(c.ParameterFromNumpy(NumpyArrayF32(0.)), c.ConstantF32Scalar(3.14)) arg = NumpyArrayF32(1.11) compiled_c = c.Build().Compile() arg_buffer = xla_client.Buffer.from_pyval(arg) arg_buffer.delete() with self.assertRaises(RuntimeError): compiled_c.Execute([arg_buffer]) def testShape(self): pyval = np.array([[1., 2.]], np.float32) local_buffer = xla_client.Buffer.from_pyval(pyval) xla_shape = local_buffer.shape() self.assertEqual(xla_shape.dimensions(), (1, 2)) self.assertEqual(np.dtype(xla_shape.element_type()), np.dtype(np.float32)) def testBlockHostUntilReadyWorks(self): arg = np.array([[1., 2.]], np.float32) arg_buffer = xla_client.Buffer.from_pyval(arg) arg_buffer.block_host_until_ready() # This test merely checks that nothing goes awry when we call # block_host_until_ready(); it's difficult to test anything else. def testCopyToHost(self): arg0 = np.array([[1., 2.]], np.float32) arg1 = np.array([[3., 4.]], np.float32) arg0_buffer = xla_client.Buffer.from_pyval(arg0) arg1_buffer = xla_client.Buffer.from_pyval(arg1) # Prefetch two buffers using copy_to_host_async, and then retrieve their # values using to_py. arg0_buffer.copy_to_host_async() arg0_buffer.copy_to_host_async() # Duplicate calls don't do anything. arg1_buffer.copy_to_host_async() np.testing.assert_equal(arg0, arg0_buffer.to_py()) np.testing.assert_equal(arg1, arg1_buffer.to_py()) # copy_to_host_async does nothing after to_py is called. arg0_buffer.copy_to_host_async() np.testing.assert_equal(arg0, arg0_buffer.to_py()) def testDevice(self): x = np.arange(8) for device in xla_client.get_local_backend().local_devices(): buf = xla_client.Buffer.from_pyval(x, device=device) self.assertEqual(buf.device(), device) np.testing.assert_equal(x, buf.to_py()) class SingleOpTest(ComputationTest): """Tests for single ops. The goal here is smoke testing - to exercise the most basic functionality of single XLA ops. As minimal as possible number of additional ops are added around the op being tested. """ def testConcatenateF32(self): c = self._NewComputation() args = ( c.Constant(NumpyArrayF32([1.0, 2.0, 3.0])), c.Constant(NumpyArrayF32([4.0, 5.0, 6.0])), ) c.Concatenate(args, dimension=0) self._ExecuteAndCompareClose(c, expected=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]]) def testConcatenateF64(self): c = self._NewComputation() args = ( c.Constant(NumpyArrayF64([1.0, 2.0, 3.0])), c.Constant(NumpyArrayF64([4.0, 5.0, 6.0])), ) c.Concatenate(args, dimension=0) self._ExecuteAndCompareClose(c, expected=[[1.0, 2.0, 3.0, 4.0, 5.0, 6.0]]) def testConvertElementType(self): xla_types = { np.bool: xla_client.PrimitiveType.PRED, np.int32: xla_client.PrimitiveType.S32, np.int64: xla_client.PrimitiveType.S64, np.float32: xla_client.PrimitiveType.F32, np.float64: xla_client.PrimitiveType.F64, } def _ConvertAndTest(template, src_dtype, dst_dtype): c = self._NewComputation() x = c.Constant(np.array(template, dtype=src_dtype)) c.ConvertElementType(x, xla_types[dst_dtype]) result = xla_client.execute_with_python_values(c.Build().Compile()) self.assertLen(result, 1) expected = np.array(template, dtype=dst_dtype) self.assertEqual(result[0].shape, expected.shape) self.assertEqual(result[0].dtype, expected.dtype) np.testing.assert_equal(result[0], expected) x = [0, 1, 0, 0, 1] for src_dtype, dst_dtype in itertools.product(xla_types, xla_types): _ConvertAndTest(x, src_dtype, dst_dtype) def testBitcastConvertType(self): xla_x32_types = { np.int32: xla_client.PrimitiveType.S32, np.float32: xla_client.PrimitiveType.F32, } xla_x64_types = { np.int64: xla_client.PrimitiveType.S64, np.float64: xla_client.PrimitiveType.F64, } def _ConvertAndTest(template, src_dtype, dst_dtype, dst_etype): c = self._NewComputation() x = c.Constant(np.array(template, dtype=src_dtype)) c.BitcastConvertType(x, dst_etype) result = xla_client.execute_with_python_values(c.Build().Compile()) self.assertLen(result, 1) expected = np.array(template, src_dtype).view(dst_dtype) self.assertEqual(result[0].shape, expected.shape) self.assertEqual(result[0].dtype, expected.dtype) np.testing.assert_equal(result[0], expected) x = [0, 1, 0, 0, 1] for xla_types in [xla_x32_types, xla_x64_types]: for src_dtype, dst_dtype in itertools.product(xla_types, xla_types): _ConvertAndTest(x, src_dtype, dst_dtype, xla_types[dst_dtype]) # TODO(b/123523486) implement AllToAll on CPU def DISABLED_testAllToAllOneReplica(self): samples = [ NumpyArrayF32([97.0]), NumpyArrayF32([64.0, 117.0]), NumpyArrayF32([[2.0, 3.0], [4.0, 5.0]]), ] for lhs in samples[:1]: c = self._NewComputation() c.AllToAll(c.Constant(lhs), 0, 0) self._ExecuteAndCompareExact(c, expected=[lhs]) def testCrossReplicaSumOneReplica(self): samples = [ NumpyArrayF32(42.0), NumpyArrayF32([97.0]), NumpyArrayF32([64.0, 117.0]), NumpyArrayF32([[2.0, 3.0], [4.0, 5.0]]), ] for lhs in samples: c = self._NewComputation() c.CrossReplicaSum(c.Constant(lhs)) self._ExecuteAndCompareExact(c, expected=[lhs]) def testReplicaId(self): c = self._NewComputation() _ = c.ReplicaId() self._ExecuteAndCompareExact(c, expected=[0]) def testCrossReplicaSumOneReplicaWithSingletonGroup(self): samples = [ NumpyArrayF32(42.0), NumpyArrayF32([97.0]), NumpyArrayF32([64.0, 117.0]), NumpyArrayF32([[2.0, 3.0], [4.0, 5.0]]), ] for lhs in samples: c = self._NewComputation() c.CrossReplicaSum(c.Constant(lhs), [[0]]) self._ExecuteAndCompareExact(c, expected=[lhs]) def testDotMatrixVectorF32(self): c = self._NewComputation() lhs = NumpyArrayF32([[2.0, 3.0], [4.0, 5.0]]) rhs = NumpyArrayF32([[10.0], [20.0]]) c.Dot(c.Constant(lhs), c.Constant(rhs)) self._ExecuteAndCompareClose(c, expected=[np.dot(lhs, rhs)]) def testDotMatrixVectorF64(self): c = self._NewComputation() lhs = NumpyArrayF64([[2.0, 3.0], [4.0, 5.0]]) rhs = NumpyArrayF64([[10.0], [20.0]]) c.Dot(c.Constant(lhs), c.Constant(rhs)) self._ExecuteAndCompareClose(c, expected=[np.dot(lhs, rhs)]) def testDotMatrixMatrixF32(self): c = self._NewComputation() lhs = NumpyArrayF32([[2.0, 3.0], [4.0, 5.0]]) rhs = NumpyArrayF32([[10.0, 20.0], [100.0, 200.0]]) c.Dot(c.Constant(lhs), c.Constant(rhs)) self._ExecuteAndCompareClose(c, expected=[np.dot(lhs, rhs)]) def testDotMatrixMatrixF64(self): c = self._NewComputation() lhs = NumpyArrayF64([[2.0, 3.0], [4.0, 5.0]]) rhs = NumpyArrayF64([[10.0, 20.0], [100.0, 200.0]]) c.Dot(c.Constant(lhs), c.Constant(rhs)) self._ExecuteAndCompareClose(c, expected=[np.dot(lhs, rhs)]) def testDotGeneral(self): c = self._NewComputation() rng = np.random.RandomState(0) lhs = NumpyArrayF32(rng.randn(10, 3, 4)) rhs = NumpyArrayF32(rng.randn(10, 4, 5)) dimension_numbers = (([2], [1]), ([0], [0])) c.DotGeneral(c.Constant(lhs), c.Constant(rhs), dimension_numbers) self._ExecuteAndCompareClose(c, expected=[np.matmul(lhs, rhs)], rtol=1e-6) def testDotGeneralWithDotDimensionNumbersProto(self): c = self._NewComputation() rng = np.random.RandomState(0) lhs = NumpyArrayF32(rng.randn(10, 3, 4)) rhs = NumpyArrayF32(rng.randn(10, 4, 5)) dimension_numbers = xla_client.DotDimensionNumbers() dimension_numbers.lhs_contracting_dimensions.append(2) dimension_numbers.rhs_contracting_dimensions.append(1) dimension_numbers.lhs_batch_dimensions.append(0) dimension_numbers.rhs_batch_dimensions.append(0) c.DotGeneral(c.Constant(lhs), c.Constant(rhs), dimension_numbers) self._ExecuteAndCompareClose(c, expected=[np.matmul(lhs, rhs)], rtol=1e-6) def testDotGeneralWithPrecisionConfig(self): c = self._NewComputation() rng = np.random.RandomState(0) lhs = NumpyArrayF32(rng.randn(10, 3, 4)) rhs = NumpyArrayF32(rng.randn(10, 4, 5)) dimension_numbers = (([2], [1]), ([0], [0])) config = xla_client.PrecisionConfig() config.operand_precision.append(config.Precision.HIGH) config.operand_precision.append(config.Precision.HIGHEST) c.DotGeneral( c.Constant(lhs), c.Constant(rhs), dimension_numbers, precision_config=config) self._ExecuteAndCompareClose(c, expected=[np.matmul(lhs, rhs)], rtol=1e-6) def testConvF32Same(self): c = self._NewComputation() a = lambda *dims: np.arange(np.prod(dims)).reshape(dims).astype("float32") lhs = a(1, 2, 3, 4) rhs = a(1, 2, 1, 2) * 10 c.Conv( c.Constant(lhs), c.Constant(rhs), [1, 1], xla_client.PaddingType.SAME) result = np.array([[[ [640., 700., 760., 300.], [880., 940., 1000., 380.], [1120., 1180., 1240., 460.], ]]]) self._ExecuteAndCompareClose(c, expected=[result]) def testConvF32Valid(self): c = self._NewComputation() a = lambda *dims: np.arange(np.prod(dims)).reshape(dims).astype("float32") lhs = a(1, 2, 3, 4) rhs = a(1, 2, 1, 2) * 10 c.Conv( c.Constant(lhs), c.Constant(rhs), [2, 1], xla_client.PaddingType.VALID) result = np.array([[[ [640., 700., 760.], [1120., 1180., 1240.], ]]]) self._ExecuteAndCompareClose(c, expected=[result]) def testConvWithGeneralPaddingF32(self): c = self._NewComputation() a = lambda *dims: np.arange(np.prod(dims)).reshape(dims).astype("float32") lhs = a(1, 1, 2, 3) rhs = a(1, 1, 1, 2) * 10 strides = [1, 1] pads = [(1, 0), (0, 1)] lhs_dilation = (2, 1) rhs_dilation = (1, 1) c.ConvWithGeneralPadding( c.Constant(lhs), c.Constant(rhs), strides, pads, lhs_dilation, rhs_dilation) result = np.array([[[ [0., 0., 0.], [10., 20., 0.], [0., 0., 0.], [40., 50., 0.], ]]]) self._ExecuteAndCompareClose(c, expected=[result]) def testConvGeneralDilatedF32(self): c = self._NewComputation() a = lambda *dims: np.arange(np.prod(dims)).reshape(dims).astype("float32") lhs = a(1, 1, 2, 3) rhs = a(1, 1, 1, 2) * 10 strides = [1, 1] pads = [(1, 0), (0, 1)] lhs_dilation = (2, 1) rhs_dilation = (1, 1) dimension_numbers = ("NCHW", "OIHW", "NCHW") c.ConvGeneralDilated( c.Constant(lhs), c.Constant(rhs), strides, pads, lhs_dilation, rhs_dilation, dimension_numbers) result = np.array([[[ [0., 0., 0.], [10., 20., 0.], [0., 0., 0.], [40., 50., 0.], ]]]) self._ExecuteAndCompareClose(c, expected=[result]) def testConvGeneralDilatedF32WithPrecisionConfig(self): c = self._NewComputation() a = lambda *dims: np.arange(np.prod(dims)).reshape(dims).astype("float32") lhs = a(1, 1, 2, 3) rhs = a(1, 1, 1, 2) * 10 strides = [1, 1] pads = [(1, 0), (0, 1)] lhs_dilation = (2, 1) rhs_dilation = (1, 1) dimension_numbers = ("NCHW", "OIHW", "NCHW") config = xla_client.PrecisionConfig() config.operand_precision.append(config.Precision.HIGHEST) config.operand_precision.append(config.Precision.DEFAULT) c.ConvGeneralDilated( c.Constant(lhs), c.Constant(rhs), strides, pads, lhs_dilation, rhs_dilation, dimension_numbers, precision_config=config) result = np.array([[[ [0., 0., 0.], [10., 20., 0.], [0., 0., 0.], [40., 50., 0.], ]]]) self._ExecuteAndCompareClose(c, expected=[result]) def testConvGeneralDilatedPermutedF32(self): c = self._NewComputation() a = lambda *dims: np.arange(np.prod(dims)).reshape(dims).astype("float32") lhs = a(1, 1, 2, 3) rhs = a(1, 1, 1, 2) * 10 strides = [1, 1] pads = [(1, 0), (0, 1)] lhs_dilation = (2, 1) rhs_dilation = (1, 1) dimension_numbers = ("NHWC", "OIHW", "CWNH") c.ConvGeneralDilated( c.Constant(np.transpose(lhs, (0, 2, 3, 1))), c.Constant(rhs), strides, pads, lhs_dilation, rhs_dilation, dimension_numbers) result = np.array([[[[0., 0., 0.], [10., 20., 0.], [0., 0., 0.], [40., 50., 0.]]]]) self._ExecuteAndCompareClose( c, expected=[np.transpose(result, (1, 3, 0, 2))]) def testConvGeneralDilatedGroupedConvolutionF32(self): c = self._NewComputation() a = lambda *dims: np.arange(np.prod(dims)).reshape(dims).astype("float32") lhs = a(1, 2, 2, 3) rhs = a(2, 1, 1, 2) * 10 strides = [1, 1] pads = [(1, 0), (0, 1)] lhs_dilation = (2, 1) rhs_dilation = (1, 1) dimension_numbers = ("NCHW", "OIHW", "NCHW") feature_group_count = 2 c.ConvGeneralDilated( c.Constant(lhs), c.Constant(rhs), strides, pads, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count) result = np.array([[[ [0., 0., 0.], [10., 20., 0.], [0., 0., 0.], [40., 50., 0.], ], [ [0., 0., 0.], [330., 380., 160.], [0., 0., 0.], [480., 530., 220.], ]]]) self._ExecuteAndCompareClose(c, expected=[result]) def testBooleanNot(self): c = self._NewComputation() arr = NumpyArrayBool([True, False, True]) c.Not(c.Constant(arr)) self._ExecuteAndCompareClose(c, expected=[~arr]) def testPopulationCount(self): c = self._NewComputation() arr = NumpyArrayS32([3, 0, 1]) c.PopulationCount(c.Constant(arr)) self._ExecuteAndCompareClose(c, expected=[np.array([2, 0, 1])]) def testCountLeadingZeros(self): c = self._NewComputation() arr = NumpyArrayS32([0x7FFF, 0x12345678]) c.Clz(c.Constant(arr)) self._ExecuteAndCompareClose(c, expected=[[17, 3]]) def testExp(self): c = self._NewComputation() arr = NumpyArrayF32([3.3, 12.1]) c.Exp(c.Constant(arr)) self._ExecuteAndCompareClose(c, expected=[np.exp(arr)]) def testExpm1(self): c = self._NewComputation() arr = NumpyArrayF32([3.3, 12.1]) c.Expm1(c.Constant(arr)) self._ExecuteAndCompareClose(c, expected=[np.expm1(arr)]) def testRound(self): c = self._NewComputation() arr = NumpyArrayF32([3.3, 12.1]) c.Round(c.Constant(arr)) self._ExecuteAndCompareClose(c, expected=[np.round(arr)]) def testLog(self): c = self._NewComputation() arr = NumpyArrayF32([3.3, 12.1]) c.Log(c.Constant(arr)) self._ExecuteAndCompareClose(c, expected=[np.log(arr)]) def testLog1p(self): c = self._NewComputation() arr = NumpyArrayF32([3.3, 12.1]) c.Log1p(c.Constant(arr)) self._ExecuteAndCompareClose(c, expected=[
np.log1p(arr)
numpy.log1p
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Training script for permute MNIST experiment. """ from __future__ import print_function import argparse import os import sys import math import time import datetime import numpy as np import tensorflow as tf from copy import deepcopy from six.moves import cPickle as pickle from utils.data_utils import construct_permute_mnist from utils.er_utils import update_reservior, update_fifo_buffer, er_mem_update_hindsight, update_avg_image_vectors from utils.utils import get_sample_weights, sample_from_dataset, update_episodic_memory, concatenate_datasets, samples_for_each_class, sample_from_dataset_icarl, average_acc_stats_across_runs, average_fgt_stats_across_runs from utils.vis_utils import plot_acc_multiple_runs, plot_histogram, snapshot_experiment_meta_data, snapshot_experiment_eval from model import Model ############################################################### ################ Some definitions ############################# ### These will be edited by the command line options ########## ############################################################### ## Training Options NUM_RUNS = 10 # Number of experiments to average over TRAIN_ITERS = 5000 # Number of training iterations per task BATCH_SIZE = 16 LEARNING_RATE = 1e-3 RANDOM_SEED = 1234 VALID_OPTIMS = ['SGD', 'MOMENTUM', 'ADAM'] OPTIM = 'SGD' OPT_POWER = 0.9 OPT_MOMENTUM = 0.9 VALID_ARCHS = ['FC-S', 'FC-B'] ARCH = 'FC-S' ## Model options MODELS = ['VAN', 'PI', 'EWC', 'MAS', 'RWALK', 'A-GEM', 'S-GEM', 'FTR_EXT', 'MER', 'ER-Reservoir', 'ER-Ring', 'ER-Hindsight-Anchors'] #List of valid models IMP_METHOD = 'EWC' SYNAP_STGTH = 75000 FISHER_EMA_DECAY = 0.9 # Exponential moving average decay factor for Fisher computation (online Fisher) FISHER_UPDATE_AFTER = 10 # Number of training iterations for which the F_{\theta}^t is computed (see Eq. 10 in RWalk paper) SAMPLES_PER_CLASS = 25 # Number of samples per task INPUT_FEATURE_SIZE = 784 IMG_HEIGHT = 28 IMG_WIDTH = 28 IMG_CHANNELS = 1 TOTAL_CLASSES = 10 # Total number of classes in the dataset EPS_MEM_BATCH_SIZE = 256 DEBUG_EPISODIC_MEMORY = False USE_GPU = True K_FOR_CROSS_VAL = 3 TIME_MY_METHOD = False COUNT_VIOLATIONS = False MEASURE_PERF_ON_EPS_MEMORY = False # MER Specific options MER_S = 10 MER_BETA = 0.1 MER_GAMMA = 0.1 ## Logging, saving and testing options LOG_DIR = './permute_mnist_results' ## Evaluation options ## Num Tasks NUM_TASKS = 23 MULTI_TASK = False def normalize_tensors(a): num_tensors = a.shape[0] for i in range(num_tensors): a[i] = (a[i] - a[i].min())/ (a[i].max() - a[i].min()) return a def get_arguments(): """Parse all the arguments provided from the CLI. Returns: A list of parsed arguments. """ parser = argparse.ArgumentParser(description="Script for permutted mnist experiment.") parser.add_argument("--cross-validate-mode", action="store_true", help="If option is chosen then snapshoting after each batch is disabled") parser.add_argument("--online-cross-val", action="store_true", help="If option is chosen then enable the online cross validation of the learning rate") parser.add_argument("--train-single-epoch", action="store_true", help="If option is chosen then train for single epoch") parser.add_argument("--eval-single-head", action="store_true", help="If option is chosen then evaluate on a single head setting.") parser.add_argument("--arch", type=str, default=ARCH, help="Network Architecture for the experiment.\ \n \nSupported values: %s"%(VALID_ARCHS)) parser.add_argument("--num-runs", type=int, default=NUM_RUNS, help="Total runs/ experiments over which accuracy is averaged.") parser.add_argument("--train-iters", type=int, default=TRAIN_ITERS, help="Number of training iterations for each task.") parser.add_argument("--batch-size", type=int, default=BATCH_SIZE, help="Mini-batch size for each task.") parser.add_argument("--random-seed", type=int, default=RANDOM_SEED, help="Random Seed.") parser.add_argument("--learning-rate", type=float, default=LEARNING_RATE, help="Starting Learning rate for each task.") parser.add_argument("--optim", type=str, default=OPTIM, help="Optimizer for the experiment. \ \n \nSupported values: %s"%(VALID_OPTIMS)) parser.add_argument("--imp-method", type=str, default=IMP_METHOD, help="Model to be used for LLL. \ \n \nSupported values: %s"%(MODELS)) parser.add_argument("--synap-stgth", type=float, default=SYNAP_STGTH, help="Synaptic strength for the regularization.") parser.add_argument("--fisher-ema-decay", type=float, default=FISHER_EMA_DECAY, help="Exponential moving average decay for Fisher calculation at each step.") parser.add_argument("--fisher-update-after", type=int, default=FISHER_UPDATE_AFTER, help="Number of training iterations after which the Fisher will be updated.") parser.add_argument("--mem-size", type=int, default=SAMPLES_PER_CLASS, help="Number of samples per class from previous tasks.") parser.add_argument("--eps-mem-batch", type=int, default=EPS_MEM_BATCH_SIZE, help="Number of samples per class from previous tasks.") parser.add_argument("--examples-per-task", type=int, default=1000, help="Number of examples per task.") parser.add_argument("--anchor-eta", type=float, default=0.1, help="Neural mean embedding strength for anchor generation.") parser.add_argument("--log-dir", type=str, default=LOG_DIR, help="Directory where the plots and model accuracies will be stored.") return parser.parse_args() def train_task_sequence(model, sess, args): """ Train and evaluate LLL system such that we only see a example once Args: Returns: dict A dictionary containing mean and stds for the experiment """ # List to store accuracy for each run runs = [] batch_size = args.batch_size if model.imp_method == 'A-GEM' or model.imp_method == 'MER' or 'ER-' in model.imp_method: use_episodic_memory = True else: use_episodic_memory = False # Loop over number of runs to average over for runid in range(args.num_runs): print('\t\tRun %d:'%(runid)) # Initialize the random seeds np.random.seed(args.random_seed+runid) time_start = time.time() # Load the permute mnist dataset datasets = construct_permute_mnist(model.num_tasks) time_end = time.time() time_spent = time_end - time_start print('Data loading time: {}'.format(time_spent)) episodic_mem_size = args.mem_size*model.num_tasks*TOTAL_CLASSES # Initialize all the variables in the model sess.run(tf.global_variables_initializer()) # Run the init ops model.init_updates(sess) # List to store accuracies for a run evals = [] # List to store the classes that we have so far - used at test time test_labels = np.arange(TOTAL_CLASSES) if use_episodic_memory: # Reserve a space for episodic memory episodic_images = np.zeros([episodic_mem_size, INPUT_FEATURE_SIZE]) episodic_labels = np.zeros([episodic_mem_size, TOTAL_CLASSES]) count_cls = np.zeros(TOTAL_CLASSES, dtype=np.int32) episodic_filled_counter = 0 examples_seen_so_far = 0 if model.imp_method == 'ER-Hindsight-Anchors': avg_img_vectors = np.zeros([TOTAL_CLASSES, INPUT_FEATURE_SIZE]) anchor_images = np.zeros([model.num_tasks*TOTAL_CLASSES, INPUT_FEATURE_SIZE]) anchor_labels = np.zeros([model.num_tasks*TOTAL_CLASSES, TOTAL_CLASSES]) anchor_count_cls = np.zeros(TOTAL_CLASSES, dtype=np.int32) # Mask for softmax # Since all the classes are present in all the tasks so nothing to mask logit_mask = np.ones(TOTAL_CLASSES) if COUNT_VIOLATIONS: violation_count = np.zeros(model.num_tasks) vc = 0 # Training loop for all the tasks for task in range(len(datasets)): print('\t\tTask %d:'%(task)) anchors_counter = task*TOTAL_CLASSES # 1 per class per task # If not the first task then restore weights from previous task if(task > 0): model.restore(sess) if MULTI_TASK: if task == 0: # Extract training images and labels for the current task task_train_images = datasets[task]['train']['images'] task_train_labels = datasets[task]['train']['labels'] sample_weights = np.ones([task_train_labels.shape[0]], dtype=np.float32) total_train_examples = task_train_images.shape[0] # Randomly suffle the training examples perm = np.arange(total_train_examples) np.random.shuffle(perm) train_x = task_train_images[perm][:args.examples_per_task] train_y = task_train_labels[perm][:args.examples_per_task] task_sample_weights = sample_weights[perm][:args.examples_per_task] for t_ in range(1, len(datasets)): task_train_images = datasets[t_]['train']['images'] task_train_labels = datasets[t_]['train']['labels'] sample_weights = np.ones([task_train_labels.shape[0]], dtype=np.float32) total_train_examples = task_train_images.shape[0] # Randomly suffle the training examples perm = np.arange(total_train_examples) np.random.shuffle(perm) train_x = np.concatenate((train_x, task_train_images[perm][:args.examples_per_task]), axis=0) train_y = np.concatenate((train_y, task_train_labels[perm][:args.examples_per_task]), axis=0) task_sample_weights = np.concatenate((task_sample_weights, sample_weights[perm][:args.examples_per_task]), axis=0) perm = np.arange(train_x.shape[0]) np.random.shuffle(perm) train_x = train_x[perm] train_y = train_y[perm] task_sample_weights = task_sample_weights[perm] else: # Skip training for this task continue else: # Extract training images and labels for the current task task_train_images = datasets[task]['train']['images'] task_train_labels = datasets[task]['train']['labels'] # Assign equal weights to all the examples task_sample_weights = np.ones([task_train_labels.shape[0]], dtype=np.float32) total_train_examples = task_train_images.shape[0] # Randomly suffle the training examples perm = np.arange(total_train_examples)
np.random.shuffle(perm)
numpy.random.shuffle
from multiprocessing import Manager, Pool, Process from matplotlib import pyplot as plt from numba import njit import numpy as np import pandas as pd import random from scipy.optimize import minimize import time class LPPLS(object): def __init__(self, observations): """ Args: observations (np.array,pd.DataFrame): 2xM matrix with timestamp and observed value. """ assert isinstance(observations, (np.ndarray, pd.DataFrame)), \ f'Expected observations to be <pd.DataFrame> or <np.ndarray>, got :{type(observations)}' self.observations = observations self.coef_ = {} self.indicator_result_list = None self.indicator_confs_medians = None @staticmethod @njit def lppls(t, tc, m, w, a, b, c1, c2): return a + np.power(tc - t, m) * (b + ((c1 * np.cos(w * np.log(tc - t))) + (c2 * np.sin(w * np.log(tc - t))))) def func_restricted(self, x, *args): """ Finds the least square difference. See https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html Args: x(np.ndarray): 1-D array with shape (n,). args: Tuple of the fixed parameters needed to completely specify the function. Returns: (float) """ tc = x[0] m = x[1] w = x[2] obs = args[0] a, b, c1, c2 = self.matrix_equation(obs, tc, m, w) delta = [self.lppls(t, tc, m, w, a, b, c1, c2) for t in obs[0, :]] delta = np.subtract(delta, obs[1, :]) delta =
np.power(delta, 2)
numpy.power
# -*- coding:utf-8 -*- import numpy as np import matplotlib.pyplot as plt def degree(*args): v =
np.subtract(args[1], args[0])
numpy.subtract
import numpy as np import warnings from collections import OrderedDict, namedtuple from scipy.integrate import odeint, solve_ivp from scipy.optimize import minimize from numba import jit FitResult = namedtuple('FitResult', ['C', 'y0', 'R2', 'MRPD', 'success']) @jit(nopython=True) def _gillespie(tmax, y0, C, i1, i2, i3, i4, sN, tblock=100): nC = len(C) indsC = range(nC) traj = np.zeros((sN, tblock, len(y0)+1)) for i in range(sN): y = y0.copy() yext = np.concatenate((y, np.ones((1,)))) t_s = 0 t_i = 0 traj[i, 0, 1:] = y while t_s < tmax: w = C*yext[i1]*yext[i2] Wtot = np.sum(w) if Wtot == 0: # Then it's finished break dt = -np.log(np.random.random())/Wtot t_s += dt t_i += 1 C_i = np.where(np.random.random() < np.cumsum(w)/Wtot)[0][0] yext[i3[C_i]] -= 1. yext[i4[C_i]] += 1. yext[-1] = 1. if t_i >= traj.shape[1]: traj = np.concatenate((traj, np.zeros((sN, tblock, len(y0)+1))), axis=1) traj[i, t_i, 0] = t_s traj[i, t_i, 1:] = yext[:-1] return traj class CModel(object): """CModel A compartment model. Has a number of states and evolves in time with three types of terms: * Constant rate d y_i / d_t = D^(0)_i * Linear rate d y_i / d_t = D^(1)_ij y_j * Quadratic rate d y_i / d_t = D^(2)_ijk y_j y_k """ def __init__(self, states=''): """Initialise a CModel Initialise a compartment model to have the given states. Keyword Arguments: states {str or list} -- States of the model. Can be a string, in which case each state will be named by one letter, or a list of strings. State names must be distinct (default: {''}) """ # Initialise states self._N = len(states) self._states = list(states) if len(set(states)) != self._N: raise ValueError('State list has repeated entries') # Now, the couplings self._D0 = np.zeros((self._N)) self._D0m = self._D0.copy().astype(bool) # Mask self._D1 = np.zeros((self._N, self._N)) self._D1m = self._D1.copy().astype(bool) # Mask self._D2 = np.zeros((self._N, self._N, self._N)) self._D2m = self._D2.copy().astype(bool) # Mask self._couplings = OrderedDict() self._cdata = { 'C': np.zeros(0), 'i': np.zeros((0, 4)).astype(int) } @property def size(self): return self._N @property def states(self): return list(self._states) @property def couplings(self): return OrderedDict(self._couplings) def set_coupling_rate(self, descr, C=0, name=None): """Set a coupling between states Set a coupling between two states of the model. The coupling can be of three types: * CONSTANT A constant rate of growth for a certain state of the model. * LINEAR A rate of growth that is linearly proportional to the population of the same or another state. * QUADRATIC A rate of growth that is proportional to the product of the populations of two states. The coupling is defined by a descriptor string. This can have up to four states: "S1*S2:S3=>S4" defines a quadratic coupling, controlled by the S1*S2 product, from S3 to S4. The argument C controls the coupling. This means having: dS3/dt = -C*S1*S2 dS4/dt = C*S1*S2 If S3 and S4 are both missing, S3=S1 and S4=S2 is assumed. If one of S1 or S2 is missing, the coupling is taken to be linear, proportional to the one that's present. If both are missing, the growth is taken to be constant. Sign is controlled by the arrow; by convention, S4 sees a term proportional to C, and S3 to -C. Either term can be missing, in which case we have a source or sink. Examples: "S1:=>S4" results in dS4/dt = C*S1 "S3=>S4" results in dS3/dt = -C dS4/dt = C and so on. Arguments: descr {str} -- Descriptor string for the coupling. Keyword Arguments: C {number} -- Coupling constant (default: {0}) name {str} -- Name of coupling (default: {None}) """ # Parse the description if ':' in descr: s12, s34 = descr.split(':') elif '=>' in descr: s12 = None s34 = descr else: s12 = descr s34 = None if s12 is None or s12 == '': s1 = None s2 = None else: if '*' in s12: s1, s2 = s12.split('*') s1 = None if s1 == '' else s1 s2 = None if s2 == '' else s2 if s1 is None: s1, s2 = s2, s1 else: s1 = s12 s2 = None if s34 is None or s34 == '': s3 = None s4 = None else: if '=>' in s34: s3, s4 = s34.split('=>') s3 = None if s3 == '' else s3 s4 = None if s4 == '' else s4 else: s3 = None s4 = s34 if not all(s in self._states for s in (s1, s2, s3, s4) if s is not None): raise(ValueError('Invalid state names used in coupling ' 'definition')) # What kind of coupling is it? i1 = self._states.index(s1) i2 = self._states.index(s2) if s2 is not None else self._N i3 = self._states.index(s3) if s3 is not None else self._N i4 = self._states.index(s4) if s4 is not None else self._N if i3+i4 == 2*self._N: if i2 == self._N: i4 = i1 else: i3 = i1 i4 = i2 if name is None: descr = "{0}*{1}:{2}=>{3}".format(*[s if s is not None else '' for s in (s1, s2, s3, s4)]) name = descr if name in self._couplings: raise ValueError('Coupling {0} already exists ' 'for model'.format(name)) self._couplings[name] = (descr, C) self._cdata['C'] = np.concatenate([self._cdata['C'], [C]]) self._cdata['i'] = np.concatenate( [self._cdata['i'], [[i1, i2, i3, i4]]], axis=0) def edit_coupling_rate(self, name, C): """Change the coupling rate for an existing coupling Change the coupling rate for an existing coupling Arguments: name {str} -- Name of the coupling C {number} -- New value """ names = list(self._couplings.keys()) try: i = names.index(name) except ValueError: raise ValueError('No coupling with name {0} exists'.format(name)) descr, _ = self._couplings[name] self._couplings[name] = (descr, C) self._cdata['C'][i] = C def dy_dt(self, y): """Time derivative from a given state Compute the time derivative of the model for a given state vector. Arguments: y {np.ndarray} -- State vector Returns: [np.ndarray] -- Time derivative of y """ yext = np.concatenate([y, [1]]) dydt = yext*0. C = self._cdata['C'] i1, i2, i3, i4 = self._cdata['i'].T cy = C*yext[i1]*yext[i2] np.add.at(dydt, i3, -cy) np.add.at(dydt, i4, cy) return dydt[:-1] def d2y_dtdC(self, y, dydC): """Time derivative of the model's gradient Time derivative of the gradient of the model's state with respect to all its parameters. Arguments: y {np.ndarray} -- State vector dydC {np.ndarray} -- Gradient of y w.r.t. coupling parameters """ C = self._cdata['C'] nC = len(C) i1, i2, i3, i4 = self._cdata['i'].T yext = np.concatenate([y, [1]]) dydCext = dydC.reshape(-1, self._N) if dydCext.shape[0] != nC: raise ValueError('Invalid size gradient passed to d2y_dtdC') dydCext = np.concatenate( [dydCext, np.zeros((nC, 1))], axis=1) d2ydtdC = dydCext*0. dcy1 = yext[i1]*yext[i2] np.add.at(d2ydtdC, (range(nC), i3), -dcy1) np.add.at(d2ydtdC, (range(nC), i4), dcy1) iC = np.repeat(np.arange(nC), nC) i1t = np.tile(i1, nC) i2t = np.tile(i2, nC) i3t = np.tile(i3, nC) i4t = np.tile(i4, nC) dcy2 = np.tile(C, nC)*(dydCext[iC, i1t]*yext[i2t] + dydCext[iC, i2t]*yext[i1t]) np.add.at(d2ydtdC, (iC, i3t), -dcy2) np.add.at(d2ydtdC, (iC, i4t), dcy2) d2ydtdC = d2ydtdC[:, :-1].reshape(-1) return d2ydtdC def d2y_dtdy0(self, y, dydy0): """Time derivative of the model's gradient w.r.t initial conditions Time derivative of the gradient of the model's state with respect to its initial conditions. Arguments: y {np.ndarray} -- State vector dydy0 {np.ndarray} -- Gradient of y w.r.t. initial conditions """ C = self._cdata['C'] nC = len(C) i1, i2, i3, i4 = self._cdata['i'].T yext = np.concatenate([y, [1]]) dydy0ext = dydy0.reshape(-1, self._N) if dydy0ext.shape[0] != self._N: raise ValueError('Invalid size gradient passed to d2y_dtdy0') dydy0ext = np.concatenate( [dydy0ext, np.zeros((self._N, 1))], axis=1) d2ydtdy0 = dydy0ext*0. iy0 = np.repeat(np.arange(self._N), nC) i1t = np.tile(i1, self._N) i2t = np.tile(i2, self._N) i3t = np.tile(i3, self._N) i4t = np.tile(i4, self._N) dcy = np.tile(C, self._N)*(dydy0ext[iy0, i1t]*yext[i2t] + dydy0ext[iy0, i2t]*yext[i1t]) np.add.at(d2ydtdy0, (iy0, i3t), -dcy) np.add.at(d2ydtdy0, (iy0, i4t), dcy) d2ydtdy0 = d2ydtdy0[:, :-1].reshape(-1) return d2ydtdy0 def integrate(self, t, y0, use_gradient=False, events=None, max_step=np.inf): """Integrate the ODEs of the model Carry out an integration of the system of ODEs representing the model using the scipy.integrate.solve_ivp method. Arguments: t {np.ndarray} -- Array of times for the integration y0 {np.ndarray} -- Starting state Keyword Arguments: use_gradient {bool} -- If True, also compute the gradient of the curves w.r.t parameters and initial conditions (default: {False}) events {[fun(t, y)]} -- List of functions of t, y (where y is the array of states, or states + gradients if use_gradient is True) at which special events happen and are recorded, or can terminate integration. See scipy's documentation for solve_ivp for further details (default: {None}) Returns: OrderedDict -- Dictionary of the computed trajectories, with the following keys: - y: trajectory of the main populations - dy/d([coupling name]): derivatives wrt coupling constants - dy/d([state name]0): derivatives wrt starting conditions - t: times of integration. Usually the entire model.t, but can be less in presence of terminating events. - t_events: times of events. The derivatives are present only if use_gradient = True. The event times are present only if events is not None. """ if not use_gradient: def ode(t, y): return self.dy_dt(y) sol = solve_ivp(ode, [t[0], t[-1]], y0, t_eval=t, events=events, max_step=max_step) traj = sol.y.T ans = OrderedDict({'y': traj}) else: N2 = self._N**2 def ode(t, y): dydt = y*0. dydt[:self._N] = self.dy_dt(y[:self._N]) dydt[self._N:-N2] = self.d2y_dtdC(y[:self._N], y[self._N:-N2]) dydt[-N2:] = self.d2y_dtdy0(y[:self._N], y[-N2:]) return dydt nC = len(self._couplings) y0 = np.concatenate([y0, np.zeros(nC*self._N), np.eye(self._N).reshape((-1,))]) sol = solve_ivp(ode, [t[0], t[-1]], y0, t_eval=t, events=events, max_step=max_step) traj = sol.y.T ans = OrderedDict({'y': traj[:, :self._N]}) for i, name in enumerate(self._couplings.keys()): ans['dy/d({0})'.format(name)] = traj[:, (i+1)*self._N:(i+2) * self._N] i0 = self._N*(nC+1) for i, name in enumerate(self._states): ans['dy/d({0}0)'.format(name)] = traj[:, i*self._N+i0:(i+1) * self._N+i0] ans['t'] = sol.t if events is not None: ans['t_events'] = sol.t_events return ans def gillespie(self, tmax, y0, samples=1000): """Perform a Gillespie stochastic simulation Simulate the system stochastically with Gillespie's algorithm. Arguments: tmax {float} -- Maximum time for the simulation y0 {np.ndarray} -- Starting state Keyword Arguments: samples {number} -- Number of trajectories to sample (default: {1000}) Returns: OrderedDict -- Dictionary of the computed trajectories, with the following keys: - t: times at which the state is computed, for each trajectory - y: trajectories of the main populations """ # Grab coupling data C = self._cdata['C'] i1, i2, i3, i4 = self._cdata['i'].T traj = _gillespie(tmax, y0, C, i1, i2, i3, i4, samples) tmax_i = np.argmax(traj[:, :, 0], axis=1) # Fill in the rest for i, tmi in enumerate(tmax_i): traj[i, tmi:, 0] = tmax traj[i, tmi:, 1:] = traj[i, tmi, None, 1:] ans = OrderedDict({'t': traj[:, :, 0]}) ans['y'] = traj[:, :, 1:] return ans def fit(self, data, steps=1000, constraints={}): """Fit the model to data Fit the model's parameters to a given data set, minimising the Root Sum Square of the error. This modifies the couplings of the model instance, setting them to the fitted values. Arguments: data {list} -- A list of the data points available. Can be a list of dictionaries or arrays. If it's dictionaries, they must all have a member `t' (for the time of the point) and then can have members with the names of various compartments of the model. If it's arrays, then they must have N+1 elements for N compartments; the first is time, and the latter are the compartments, in order. Missing values can be set to NaN. Keyword Arguments: steps {number} -- Number of integration steps to split the time interval into (default: {1000}) constraints {dict} -- Dictionary whose keys must be valid names of coupling constants or X0 with X a valid name of a state, and whose values must be numbers. These constants, or the initial conditions for those states, will be fixed to those values and not allowed to change. Returns: FitResult - Named tuple containing the following members: - C: fitted constants for each coupling - y0: fitted optimal starting state - R2: array of R squared values for goodness of fit, one for each curve (can be R2 > 1 due to this) - MRPD: Mean Relative Percent Difference, total - success: if True, the fitting has converged to a final value. Raises: ValueError -- Thrown if data is empty or invalid in format. """ # Start by putting data in the right format dN = len(data) if dN == 0: raise ValueError('No data passed to fit') data_raw = data data = [] for d in data_raw: if type(d) is dict: if 't' not in d: raise ValueError('Data in dictionary format must have a ' 't label') dv = np.zeros(self._N+1) dv[0] = d['t'] for i, s in enumerate(self._states): dv[i+1] = d.get(s, np.nan) else: dv = np.array(d) dv = np.where(dv == None, np.nan, dv) data.append(dv) data = np.array(data).astype(float) data = data[np.argsort(data, axis=0)[:, 0]] # Sorting by time # Define the time range t = np.linspace(data[0, 0], data[-1, 0], steps) t = np.concatenate([t, data[:, 0]]) # Now sort, and identify the data points tsort = np.argsort(t) t = t[tsort] # Make it unique t, uniq_inv = np.unique(t, return_inverse=True) data_i = np.where(tsort - steps >= 0)[0] C = self._cdata['C'] nC = len(C) # Get constraints mask mask = np.ones(nC+self._N) y0 = np.ones(self._N)*np.nan for i, name in enumerate(self._couplings.keys()): if name in constraints: self.edit_coupling_rate(name, constraints[name]) mask[i] = 0 for i, name in enumerate(self._states): if name + '0' in constraints: y0[i] = constraints[name + '0'] mask[nC+i] = 0 # Cost function def costf(x): self._cdata['C'] = x[:nC] y0 = x[nC:] traj = self.integrate(t, y0, use_gradient=True) traj = np.array(list(traj.values())[:-1]) # Rebuild original array traj = traj[:, uniq_inv, :] # Gradient? yref = traj[:, data_i, :] err = (data[:, 1:]-yref[0]) err = np.where(np.isnan(data[:, 1:]), 0, err) cost = np.sum(err**2) return cost # Gradient of cost function def costfgrad(x): self._cdata['C'] = x[:nC] y0 = x[nC:] traj = self.integrate(t, y0, use_gradient=True) traj = np.array(list(traj.values())[:-1]) # Rebuild original array traj = traj[:, uniq_inv, :] # Gradient? yref = traj[:, data_i, :] err = (yref[0]-data[:, 1:]) err = np.where(np.isnan(data[:, 1:]), 0, err) return np.sum(2*err[None]*yref[1:, :, :]*mask[:, None, None], axis=(1, 2)) x0 = data[0, 1:] x0 = np.where(np.isnan(x0), 0, x0) x0 = np.where(np.isnan(y0), x0, y0) # Apply constraints x0 = np.concatenate([self._cdata['C'], x0]) sol = minimize(costf, x0, jac=costfgrad) x = sol.x for i, name in enumerate(self._couplings.keys()): self.edit_coupling_rate(name, x[i]) y0 = x[nC:] traj = self.integrate(t, y0)['y'] traj = traj[uniq_inv, :] # R2? yref = traj[data_i, :] err = (yref-data[:, 1:]) dataMask = 1.-np.isnan(data[:, 1:]) dataN =
np.sum(dataMask, axis=0)
numpy.sum
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import random import numpy as np import pytest import quaternion import habitat from habitat.config.default import get_config from habitat.tasks.nav.nav import ( MoveForwardAction, NavigationEpisode, NavigationGoal, ) from habitat.tasks.utils import quaternion_rotate_vector from habitat.utils.geometry_utils import angle_between_quaternions from habitat.utils.test_utils import sample_non_stop_action from habitat.utils.visualizations.utils import ( images_to_video, observations_to_image, ) def _random_episode(env, config): random_location = env._sim.sample_navigable_point() random_heading = np.random.uniform(-np.pi, np.pi) random_rotation = [ 0, np.sin(random_heading / 2), 0, np.cos(random_heading / 2), ] env.episode_iterator = iter( [ NavigationEpisode( episode_id="0", scene_id=config.SIMULATOR.SCENE, start_position=random_location, start_rotation=random_rotation, goals=[], ) ] ) def test_state_sensors(): config = get_config() if not os.path.exists(config.SIMULATOR.SCENE): pytest.skip("Please download Habitat test data to data folder.") config.defrost() config.TASK.SENSORS = ["HEADING_SENSOR", "COMPASS_SENSOR", "GPS_SENSOR"] config.freeze() env = habitat.Env(config=config, dataset=None) env.reset() random.seed(123) np.random.seed(123) for _ in range(100): random_heading = np.random.uniform(-np.pi, np.pi) random_rotation = [ 0, np.sin(random_heading / 2), 0, np.cos(random_heading / 2), ] env.episode_iterator = iter( [ NavigationEpisode( episode_id="0", scene_id=config.SIMULATOR.SCENE, start_position=[03.00611, 0.072_447, -2.67867], start_rotation=random_rotation, goals=[], ) ] ) obs = env.reset() heading = obs["heading"] assert np.allclose(heading, [random_heading]) assert np.allclose(obs["compass"], [0.0], atol=1e-5) assert
np.allclose(obs["gps"], [0.0, 0.0], atol=1e-5)
numpy.allclose
import os import sys sys.path.append(os.path.join('..', 'codes')) def confusion_all_matrix(epoch=20, saved=True, weight_path='../datas/vis_down/outputs/learned/', outputs_path='../datas/vis_down/outputs/check/'): ''' 正例・unknown・負例についてconfusion_matrixを作成 ''' # ------------------------------------------------------------------------- # 準備 import numpy as np import os import torch from mmm import DataHandler as DH from mmm import DatasetFlickr from mmm import VisGCN from mmm import VisUtils as VU from torchvision import transforms from tqdm import tqdm os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' os.environ['CUDA_VISIBLE_DEVICES'] = '0' # データの読み込み先 input_path = '../datas/vis_down/inputs/' category = DH.loadJson('category.json', input_path) rep_category = DH.loadJson('upper_category.json', input_path) vis_down_train = VU.down_anno(category, rep_category, 'train') vis_down_validate = VU.down_anno(category, rep_category, 'validate') transform = transforms.Compose( [ transforms.RandomResizedCrop( 224, scale=(1.0, 1.0), ratio=(1.0, 1.0) ), transforms.ToTensor(), transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225] ) ] ) kwargs_DF = { 'train': { 'category': category, 'annotations': vis_down_train, 'transform': transform, 'image_path': input_path + 'images/train/' }, 'validate': { 'category': category, 'annotations': vis_down_validate, 'transform': transform, 'image_path': input_path + 'images/validate/' } } train_dataset = DatasetFlickr(**kwargs_DF['train']) val_dataset = DatasetFlickr(**kwargs_DF['validate']) num_class = train_dataset.num_category() # maskの読み込み mask = VU.down_mask(rep_category, category, sim_thr=0.4, saved=False) # 学習で用いるデータの設定や読み込み先 gcn_settings = { 'category': category, 'rep_category': rep_category, 'relationship': DH.loadPickle('relationship.pickle', input_path), 'rep_weight': torch.load(input_path + 'rep_weight.pth'), 'feature_dimension': 2048 } # modelの設定 model = VisGCN( class_num=num_class, weight_decay=1e-4, fix_mask=mask, network_setting=gcn_settings, ) model.loadmodel('{0:0=3}weight'.format(epoch), weight_path) def _update_backprop_weight(labels, fmask): ''' 誤差を伝播させる際の重みを指定.誤差を伝播させない部分は0. ''' labels = labels.data.cpu().numpy() labels_y, labels_x = np.where(labels == 1) labels_y = np.append(labels_y, labels_y[-1] + 1) labels_x = np.append(labels_x, 0) weight = np.zeros((labels.shape[0] + 1, labels.shape[1]), int) row_p, columns_p = labels_y[0], [labels_x[0]] weight[row_p] = fmask[labels_x[0]] for row, column in zip(labels_y[1:], labels_x[1:]): if row == row_p: columns_p.append(column) else: if len(columns_p) > 1: for y in columns_p: weight[row_p][y] = 0 row_p, columns_p = row, [column] weight[row] = weight[row] | fmask[column] weight = weight[:-1] weight = np.ones(labels.shape, int) - weight return weight # ---入力画像のタグから振り分け----------------------------------------------- # 0: precision, 1: recall, 2: positive_1, 3: positive_all, # 4: unknown_1, 5: unknown_all, 6: negative_1, 7: negative_all def count_result(dataset): from mmm import MakeBPWeight loader = torch.utils.data.DataLoader( dataset, shuffle=True, batch_size=1, num_workers=4 ) bp_weight = MakeBPWeight(dataset, len(category), mask) allnum = 0 counts = np.zeros((len(category), 8)) for locate, label, _ in tqdm(loader): allnum += 1 fix_mask = _update_backprop_weight(label, mask) predicts = model.predict(locate, labeling=True) for idx, flg in enumerate(fix_mask[0]): # あるクラスcategory[idx]について if flg == 0: # 正解がunknownのとき if predicts[0][idx] == 1: # 予測が1であれば counts[idx][4] += 1 continue if label[0][idx] == 0: # 正解が0のとき if predicts[0][idx] == 1: # 予測が1であれば counts[idx][6] += 1 else: # 正解が1のとき if predicts[0][idx] == 1: # 予測が1であれば counts[idx][2] += 1 for idx, (zero, one) in enumerate(bp_weight): counts[idx][3] = one counts[idx][5] = allnum - one - zero counts[idx][7] = zero if counts[idx][2] + counts[idx][6] != 0: counts[idx][0] = counts[idx][2] / (counts[idx][2] + counts[idx][6]) if counts[idx][3] != 0: counts[idx][1] = counts[idx][2] / counts[idx][3] return counts train_counts = count_result(train_dataset) validate_counts = count_result(val_dataset) if saved: DH.saveNpy( np.array(train_counts), 'cm_train_{0:0=3}'.format(epoch), outputs_path ) DH.saveNpy( np.array(validate_counts), 'cm_validate_{0:0=3}'.format(epoch), outputs_path ) return np.array(train_counts), np.array(validate_counts) def rep_confmat(saved=False, output_path='../datas/vis_down/outputs/check/'): ''' トレーニング前後での精度の変化、各クラス、各クラスの上位クラス を一覧にしたリストの作成 ''' import numpy as np from mmm import DataHandler as DH from tqdm import tqdm epoch00 = DH.loadNpy( 'cm_train_000.npy', '../datas/vis_down/outputs/check/learned_lmask/' ) epoch20 = DH.loadNpy( 'cm_train_020.npy', '../datas/vis_down/outputs/check/learned_lmask/' ) category = DH.loadJson('../datas/vis_down/inputs/category.json') rep_category = DH.loadJson('../datas/vis_down/inputs/upper_category.json') ldf = DH.loadPickle('../datas/bases/local_df_area16_wocoth_new.pickle') # ------------------------------------------------------------------------- # 0: label, 1: rep # 2 ~ 9: confusion_all_matrix of epoch 0 # 10 ~ 17: confusion_all matrix of epoch 20 compare_list = [] for idx, cat in tqdm(enumerate(category)): if cat in rep_category: continue row = [cat, ldf.loc[cat]['representative']] row.extend(epoch00[idx]) row.extend(epoch20[idx]) compare_list.append(row) compare_list = np.array(compare_list, dtype=object) if saved: DH.saveNpy(compare_list, 'compare_pr', output_path) return compare_list def hist_change(phase='train', barnum=3, binnum=5, saved=False): import matplotlib.pyplot as plt import numpy as np import os from mmm import DataHandler as DH plt.rcParams['font.family'] = 'IPAexGothic' # ------------------------------------------------------------------------- data = DH.loadNpy('../datas/vis_down/outputs/check/compare_pr.npy') before = [[] for _ in range(barnum)] after = [[] for _ in range(barnum)] ml = 0 for item in data: idx = len(item[1]) - 1 ml = max(idx, ml) idx = min(idx, barnum - 1) before[idx].append(item[3]) after[idx].append(item[11]) before = [item for item in before if item] after = [item for item in after if item] barnum = len(before) before_heights = np.zeros((barnum, binnum)) after_heights = np.zeros((barnum, binnum)) thresholds = np.linspace(0.0, 1.0, binnum + 1) for idx, item in enumerate(before): bin_heights =
np.histogram(item, bins=binnum, range=(0.0, 1.0))
numpy.histogram
import h5py, code import numpy as np import pandas as pd from pysnptools.snpreader import Bed from scipy.stats import norm from pandas import DataFrame from tqdm import tqdm import statsmodels.api as sm from scipy.stats import linregress def imputation_test(chromosomes, imputed_prefix = '', expected_prefix = "../UKBioRDE_revision/data/tmp/filtered_ukb_chr", start = None, end = None, backup_threshold=0.01, genotyping_error_threshold=0.01, outname_prefix = "", ): #Data files for chromosome i should be named in this fashion: "prefix{i}" import matplotlib.pyplot as plt chromosomes_expected_genes_o = [] chromosomes_expected_genes_pm = [] chromosomes_imputed_genes_o = [] chromosomes_imputed_genes_pm = [] chrom_sizes = [] parent_ratio_backups = [] sib_ratio_backups = [] estimated_genotyping_errors = [] for chromosome in tqdm(chromosomes): with h5py.File(imputed_prefix+str(chromosome)+".hdf5",'r') as f: gts = np.array(f["imputed_par_gts"]).astype(float) fids = np.array(f["families"]).astype(str) ped_array = np.array(f["pedigree"]).astype(str) ped = pd.DataFrame(ped_array[1:], columns = ped_array[0]) non_duplicates = np.array(f["non_duplicates"]) parent_ratio_backup = np.array(f["parent_ratio_backup"]) sib_ratio_backup = np.array(f["sib_ratio_backup"]) estimated_genotyping_error = np.array(f["estimated_genotyping_error"]) rsids = np.array(f["bim_values"])[:,1] if "maf_x" in f: maf_x = np.array(f["maf_x"]) maf_coefs = np.array(f["maf_coefs"]) maf_TSS = np.array(f["maf_TSS"]) maf_RSS1 = np.array(f["maf_RSS1"]) maf_RSS2 = np.array(f["maf_RSS2"]) maf_R2_1 = np.array(f["maf_R2_1"]) maf_R2_2 = np.array(f["maf_R2_2"]) maf_larger1 = np.array(f["maf_larger1"]) maf_less0 = np.array(f["maf_less0"]) #TODO concat these across chroms #Fix backup ratio start end if start is not None: non_duplicates = non_duplicates+start parent_ratio_backups.append(parent_ratio_backup) sib_ratio_backups.append(sib_ratio_backup) estimated_genotyping_errors.append(estimated_genotyping_error) expected = Bed(expected_prefix+str(chromosome)+".bed", count_A1 = True) expected_gts = expected[:, non_duplicates].read().val.astype(float) chrom_sizes.append(gts.shape[1]) expected_ids = expected.iid iid_to_bed_index = {i:index for index, i in enumerate(expected_ids[:,1])} #fids of control families start with _ #this has the predix _*_ index_of_families_in_imputation = {fid:index for index,fid in enumerate(fids)} # no parent control starts with _o_ # only has father control starts with _p_ # only has father control starts with _m_ control_o_families = list({row["FID"][3:] for index, row in ped.iterrows() if row["FID"].startswith("_o_")}) #for each family select id of the parents parent_ids = ped.groupby("FID").agg({ 'FATHER_ID':lambda x: ([a for a in list(x) if a in ped["IID"].tolist()]+[None])[0], 'MOTHER_ID':lambda x: ([a for a in list(x) if a in ped["IID"].tolist()]+[None])[0], }) parents_of_control_o_families = parent_ids.loc[control_o_families] mother_indexes_control_o = [iid_to_bed_index[parents_of_control_o_families.loc[i, "MOTHER_ID"]] for i in control_o_families] father_indexes_control_o = [iid_to_bed_index[parents_of_control_o_families.loc[i, "FATHER_ID"]] for i in control_o_families] expected_parent_gts_control_o = (expected_gts[mother_indexes_control_o,:]+expected_gts[father_indexes_control_o,:])/2 expected_genes_o = expected_parent_gts_control_o index_of_control_families_in_imputation_o = [index_of_families_in_imputation["_o_"+i] for i in control_o_families] imputed_genes_o = gts[index_of_control_families_in_imputation_o,:] control_p = list({row["FID"][3:] for index, row in ped.iterrows() if row["FID"].startswith("_p_")}) control_m = list({row["FID"][3:] for index, row in ped.iterrows() if row["FID"].startswith("_m_")}) control_pm_families = control_p + control_m parent_of_control_m = parent_ids.loc[control_m] parent_of_control_p = parent_ids.loc[control_p] father_indexes_control_m = [iid_to_bed_index[parent_of_control_m.loc[i, "FATHER_ID"]] for i in control_m] mother_indexes_control_p = [iid_to_bed_index[parent_of_control_p.loc[i, "MOTHER_ID"]] for i in control_p] expected_parent_gts_control_pm = expected_gts[mother_indexes_control_p + father_indexes_control_m, :] expected_genes_pm = expected_parent_gts_control_pm index_of_control_families_in_imputation_pm = [index_of_families_in_imputation["_p_" + i] for i in control_p] + [index_of_families_in_imputation["_m_" + i] for i in control_m] imputed_genes_pm = gts[index_of_control_families_in_imputation_pm,:] chromosomes_expected_genes_o.append(expected_genes_o) chromosomes_expected_genes_pm.append(expected_genes_pm) chromosomes_imputed_genes_o.append(imputed_genes_o) chromosomes_imputed_genes_pm.append(imputed_genes_pm) whole_expected_genes_o = np.hstack(chromosomes_expected_genes_o) whole_imputed_genes_o = np.hstack(chromosomes_imputed_genes_o) whole_expected_genes_pm = np.hstack(chromosomes_expected_genes_pm) whole_imputed_genes_pm = np.hstack(chromosomes_imputed_genes_pm) parent_ratio_backup = np.hstack(parent_ratio_backups) sib_ratio_backup =
np.hstack(sib_ratio_backups)
numpy.hstack
# !/usr/bin/env python3 import re import os import itertools import pandas as pd import numpy as np import scipy.special as spc import collections as cl import scipy.stats as sta import PCprophet.io_ as io import PCprophet.stats_ as st import PCprophet.parse_go as go_parser # datatype which we use for mapping protein ids to a corresponding # feature and label representation. DataRec = cl.namedtuple("DataRec", "X y") class BayesMANOVA: """ BayesMANOVA provides Bayesian calculations for differential regulation for sets of variables. This may be used for identifying differentially regulated gene expression time courses or differentially regulated proteins based on protein characterising feature vectors. The method extends also to biological entities (pathways, biological processes or similar). It is in particular also useful for assessing differential regulation of protein complexes. To avoid excessive model parameters the model assumptions are simple (no correlation among the multivariate response dimensions). Improvements are possible though time consuming. """ def yok(y): # test whether we have replicates in all levels of y lvs = list(set(y)) ok = len(y) >= 1 and len(lvs) >= 1 for cl in lvs: ok = ok and np.sum(y == cl) >= 1 return ok def __init__(self, modeltype="naive", g=0.8, h=1.5, gam=0.025): """ modeltype: type of combination can be 'naive' for a conditional independence type combination of evidence accross variables in subsets or 'full' for multivariate input vectors. g,h: Gamma prior over noise precision. In multivariate settings g and h specify the diagonal noise level. Defaults to 0.1, 1 gam: A g-prior like multiplicative factor which specifies the diagonal precision of the parameter prior. Defaults to 1. """ self.modeltype = modeltype self.g = g self.h = h self.gam = gam def mrgllh(self, lbls, vals, m=None): """ calculate the marginal log likelihood of a MANOVA type model. under a g-prior like setting. The type of model can be adjusted by specifying lbls. If lbls contains only one label, there is only one group of samples. This constitites a suitable 'NULL model' which can be compared agains general groupings of the samples. args lbls: a discrete vector of groups vals: a [nsmpl x ndim] matrix of observations. m: mean in Gaussian prior over Manova parameters OUT mrgllh: a scalar marginal likelihood. """ grps = list(set(lbls)) ngroups = len(grps) nsampls, nin = vals.shape if nsampls != len(lbls): raise Exception("Mismatching dimensions!") if m is None: # we have no mean and use the sample mean as m. m = np.mean(vals, axis=0) if len(m) != nin: raise Exception("Mismatching dimensions!") # calculate the xi vectors. allxi = [] alln = [] for cg in grps: # working on group cg ntau = sum(lbls == cg) alln.append(ntau) cxi = (self.gam * m + np.sum(vals[lbls == cg, :], axis=0)) / np.sqrt( self.gam + ntau ) # correction!! allxi.append(cxi.tolist()) # prepare calculation of the log marginal likelihood allxi = np.array(allxi) alln = np.array(alln) g_ht = self.g + 0.5 * nsampls # initialise h_hat with h h_ht = np.array([self.h] * nin) for d in range(nin): # calculate h_ht h_ht[d] = h_ht[d] + 0.5 * ( ngroups * self.gam * m[d] ** 2 + sum(vals[:, d] ** 2) - sum(allxi[:, d] ** 2) ) # we may now express the log marginal likelihood: lgmrgllh = nin * (self.g * np.log(self.h) - spc.gammaln(self.g)) lgmrgllh = lgmrgllh + 0.5 * ( nin * ngroups * np.log(self.gam) - nin * nsampls * np.log(2 * np.pi) ) lgmrgllh = ( lgmrgllh + np.sum(-0.5 * nin * (self.gam + alln)) + np.sum(spc.gammaln(g_ht) - g_ht *
np.log(h_ht)
numpy.log
"""Climate data and mass-balance computations""" # Built ins import logging import os import datetime import warnings # External libs import numpy as np import netCDF4 import pandas as pd import xarray as xr from scipy import stats from scipy import optimize as optimization # Optional libs try: import salem except ImportError: pass # Locals from oggm import cfg from oggm import utils from oggm.core import centerlines from oggm import entity_task, global_task from oggm.exceptions import MassBalanceCalibrationError, InvalidParamsError # Module logger log = logging.getLogger(__name__) @entity_task(log, writes=['climate_monthly', 'climate_info']) def process_custom_climate_data(gdir): """Processes and writes the climate data from a user-defined climate file. The input file must have a specific format (see https://github.com/OGGM/oggm-sample-data test-files/histalp_merged_hef.nc for an example). This is the way OGGM used to do it for HISTALP before it got automatised. Parameters ---------- gdir : :py:class:`oggm.GlacierDirectory` the glacier directory to process """ if not (('climate_file' in cfg.PATHS) and os.path.exists(cfg.PATHS['climate_file'])): raise InvalidParamsError('Custom climate file not found') if cfg.PARAMS['baseline_climate'] not in ['', 'CUSTOM']: raise InvalidParamsError("When using custom climate data please set " "PARAMS['baseline_climate'] to an empty " "string or `CUSTOM`. Note also that you can " "now use the `process_histalp_data` task for " "automated HISTALP data processing.") # read the file fpath = cfg.PATHS['climate_file'] nc_ts = salem.GeoNetcdf(fpath) # set temporal subset for the ts data (hydro years) sm = cfg.PARAMS['hydro_month_' + gdir.hemisphere] em = sm - 1 if (sm > 1) else 12 yrs = nc_ts.time.year y0, y1 = yrs[0], yrs[-1] if cfg.PARAMS['baseline_y0'] != 0: y0 = cfg.PARAMS['baseline_y0'] if cfg.PARAMS['baseline_y1'] != 0: y1 = cfg.PARAMS['baseline_y1'] nc_ts.set_period(t0='{}-{:02d}-01'.format(y0, sm), t1='{}-{:02d}-01'.format(y1, em)) time = nc_ts.time ny, r = divmod(len(time), 12) if r != 0: raise InvalidParamsError('Climate data should be full years') # Units assert nc_ts._nc.variables['hgt'].units.lower() in ['m', 'meters', 'meter', 'metres', 'metre'] assert nc_ts._nc.variables['temp'].units.lower() in ['degc', 'degrees', 'degree', 'c'] assert nc_ts._nc.variables['prcp'].units.lower() in ['kg m-2', 'l m-2', 'mm', 'millimeters', 'millimeter'] # geoloc lon = nc_ts._nc.variables['lon'][:] lat = nc_ts._nc.variables['lat'][:] ilon = np.argmin(np.abs(lon - gdir.cenlon)) ilat = np.argmin(np.abs(lat - gdir.cenlat)) ref_pix_lon = lon[ilon] ref_pix_lat = lat[ilat] # read the data temp = nc_ts.get_vardata('temp') prcp = nc_ts.get_vardata('prcp') hgt = nc_ts.get_vardata('hgt') ttemp = temp[:, ilat-1:ilat+2, ilon-1:ilon+2] itemp = ttemp[:, 1, 1] thgt = hgt[ilat-1:ilat+2, ilon-1:ilon+2] ihgt = thgt[1, 1] thgt = thgt.flatten() iprcp = prcp[:, ilat, ilon] nc_ts.close() # Should we compute the gradient? use_grad = cfg.PARAMS['temp_use_local_gradient'] igrad = None if use_grad: igrad = np.zeros(len(time)) * np.NaN for t, loct in enumerate(ttemp): slope, _, _, p_val, _ = stats.linregress(thgt, loct.flatten()) igrad[t] = slope if (p_val < 0.01) else np.NaN gdir.write_monthly_climate_file(time, iprcp, itemp, ihgt, ref_pix_lon, ref_pix_lat, gradient=igrad) # metadata out = {'baseline_climate_source': fpath, 'baseline_hydro_yr_0': y0+1, 'baseline_hydro_yr_1': y1} gdir.write_json(out, 'climate_info') @entity_task(log, writes=['climate_monthly', 'climate_info']) def process_cru_data(gdir): """Processes and writes the CRU baseline climate data for this glacier. Interpolates the CRU TS data to the high-resolution CL2 climatologies (provided with OGGM) and writes everything to a NetCDF file. Parameters ---------- gdir : :py:class:`oggm.GlacierDirectory` the glacier directory to process """ if cfg.PATHS.get('climate_file', None): warnings.warn("You seem to have set a custom climate file for this " "run, but are using the default CRU climate " "file instead.") if cfg.PARAMS['baseline_climate'] != 'CRU': raise InvalidParamsError("cfg.PARAMS['baseline_climate'] should be " "set to CRU") # read the climatology clfile = utils.get_cru_cl_file() ncclim = salem.GeoNetcdf(clfile) # and the TS data nc_ts_tmp = salem.GeoNetcdf(utils.get_cru_file('tmp'), monthbegin=True) nc_ts_pre = salem.GeoNetcdf(utils.get_cru_file('pre'), monthbegin=True) # set temporal subset for the ts data (hydro years) sm = cfg.PARAMS['hydro_month_' + gdir.hemisphere] em = sm - 1 if (sm > 1) else 12 yrs = nc_ts_pre.time.year y0, y1 = yrs[0], yrs[-1] if cfg.PARAMS['baseline_y0'] != 0: y0 = cfg.PARAMS['baseline_y0'] if cfg.PARAMS['baseline_y1'] != 0: y1 = cfg.PARAMS['baseline_y1'] nc_ts_tmp.set_period(t0='{}-{:02d}-01'.format(y0, sm), t1='{}-{:02d}-01'.format(y1, em)) nc_ts_pre.set_period(t0='{}-{:02d}-01'.format(y0, sm), t1='{}-{:02d}-01'.format(y1, em)) time = nc_ts_pre.time ny, r = divmod(len(time), 12) assert r == 0 lon = gdir.cenlon lat = gdir.cenlat # This is guaranteed to work because I prepared the file (I hope) ncclim.set_subset(corners=((lon, lat), (lon, lat)), margin=1) # get climatology data loc_hgt = ncclim.get_vardata('elev') loc_tmp = ncclim.get_vardata('temp') loc_pre = ncclim.get_vardata('prcp') loc_lon = ncclim.get_vardata('lon') loc_lat = ncclim.get_vardata('lat') # see if the center is ok if not np.isfinite(loc_hgt[1, 1]): # take another candidate where finite isok = np.isfinite(loc_hgt) # wait: some areas are entirely NaNs, make the subset larger _margin = 1 while not np.any(isok): _margin += 1 ncclim.set_subset(corners=((lon, lat), (lon, lat)), margin=_margin) loc_hgt = ncclim.get_vardata('elev') isok = np.isfinite(loc_hgt) if _margin > 1: log.debug('(%s) I had to look up for far climate pixels: %s', gdir.rgi_id, _margin) # Take the first candidate (doesn't matter which) lon, lat = ncclim.grid.ll_coordinates lon = lon[isok][0] lat = lat[isok][0] # Resubset ncclim.set_subset() ncclim.set_subset(corners=((lon, lat), (lon, lat)), margin=1) loc_hgt = ncclim.get_vardata('elev') loc_tmp = ncclim.get_vardata('temp') loc_pre = ncclim.get_vardata('prcp') loc_lon = ncclim.get_vardata('lon') loc_lat = ncclim.get_vardata('lat') assert np.isfinite(loc_hgt[1, 1]) isok = np.isfinite(loc_hgt) hgt_f = loc_hgt[isok].flatten() assert len(hgt_f) > 0. # Should we compute the gradient? use_grad = cfg.PARAMS['temp_use_local_gradient'] ts_grad = None if use_grad and len(hgt_f) >= 5: ts_grad = np.zeros(12) * np.NaN for i in range(12): loc_tmp_mth = loc_tmp[i, ...][isok].flatten() slope, _, _, p_val, _ = stats.linregress(hgt_f, loc_tmp_mth) ts_grad[i] = slope if (p_val < 0.01) else np.NaN # convert to a timeseries and hydrological years ts_grad = ts_grad.tolist() ts_grad = ts_grad[em:] + ts_grad[0:em] ts_grad = np.asarray(ts_grad * ny) # maybe this will throw out of bounds warnings nc_ts_tmp.set_subset(corners=((lon, lat), (lon, lat)), margin=1) nc_ts_pre.set_subset(corners=((lon, lat), (lon, lat)), margin=1) # compute monthly anomalies # of temp ts_tmp = nc_ts_tmp.get_vardata('tmp', as_xarray=True) ts_tmp_avg = ts_tmp.sel(time=slice('1961-01-01', '1990-12-01')) ts_tmp_avg = ts_tmp_avg.groupby('time.month').mean(dim='time') ts_tmp = ts_tmp.groupby('time.month') - ts_tmp_avg # of precip ts_pre = nc_ts_pre.get_vardata('pre', as_xarray=True) ts_pre_avg = ts_pre.sel(time=slice('1961-01-01', '1990-12-01')) ts_pre_avg = ts_pre_avg.groupby('time.month').mean(dim='time') ts_pre_ano = ts_pre.groupby('time.month') - ts_pre_avg # scaled anomalies is the default. Standard anomalies above # are used later for where ts_pre_avg == 0 ts_pre = ts_pre.groupby('time.month') / ts_pre_avg # interpolate to HR grid if np.any(~np.isfinite(ts_tmp[:, 1, 1])): # Extreme case, middle pix is not valid # take any valid pix from the 3*3 (and hope there's one) found_it = False for idi in range(2): for idj in range(2): if np.all(np.isfinite(ts_tmp[:, idj, idi])): ts_tmp[:, 1, 1] = ts_tmp[:, idj, idi] ts_pre[:, 1, 1] = ts_pre[:, idj, idi] ts_pre_ano[:, 1, 1] = ts_pre_ano[:, idj, idi] found_it = True if not found_it: msg = '({}) there is no climate data'.format(gdir.rgi_id) raise MassBalanceCalibrationError(msg) elif np.any(~np.isfinite(ts_tmp)): # maybe the side is nan, but we can do nearest ts_tmp = ncclim.grid.map_gridded_data(ts_tmp.values, nc_ts_tmp.grid, interp='nearest') ts_pre = ncclim.grid.map_gridded_data(ts_pre.values, nc_ts_pre.grid, interp='nearest') ts_pre_ano = ncclim.grid.map_gridded_data(ts_pre_ano.values, nc_ts_pre.grid, interp='nearest') else: # We can do bilinear ts_tmp = ncclim.grid.map_gridded_data(ts_tmp.values, nc_ts_tmp.grid, interp='linear') ts_pre = ncclim.grid.map_gridded_data(ts_pre.values, nc_ts_pre.grid, interp='linear') ts_pre_ano = ncclim.grid.map_gridded_data(ts_pre_ano.values, nc_ts_pre.grid, interp='linear') # take the center pixel and add it to the CRU CL clim # for temp loc_tmp = xr.DataArray(loc_tmp[:, 1, 1], dims=['month'], coords={'month': ts_tmp_avg.month}) ts_tmp = xr.DataArray(ts_tmp[:, 1, 1], dims=['time'], coords={'time': time}) ts_tmp = ts_tmp.groupby('time.month') + loc_tmp # for prcp loc_pre = xr.DataArray(loc_pre[:, 1, 1], dims=['month'], coords={'month': ts_pre_avg.month}) ts_pre = xr.DataArray(ts_pre[:, 1, 1], dims=['time'], coords={'time': time}) ts_pre_ano = xr.DataArray(ts_pre_ano[:, 1, 1], dims=['time'], coords={'time': time}) # scaled anomalies ts_pre = ts_pre.groupby('time.month') * loc_pre # standard anomalies ts_pre_ano = ts_pre_ano.groupby('time.month') + loc_pre # Correct infinite values with standard anomalies ts_pre.values = np.where(np.isfinite(ts_pre.values), ts_pre.values, ts_pre_ano.values) # The last step might create negative values (unlikely). Clip them ts_pre.values = utils.clip_min(ts_pre.values, 0) # done loc_hgt = loc_hgt[1, 1] loc_lon = loc_lon[1] loc_lat = loc_lat[1] assert np.isfinite(loc_hgt) assert np.all(np.isfinite(ts_pre.values)) assert np.all(np.isfinite(ts_tmp.values)) gdir.write_monthly_climate_file(time, ts_pre.values, ts_tmp.values, loc_hgt, loc_lon, loc_lat, gradient=ts_grad) source = nc_ts_tmp._nc.title[:10] ncclim._nc.close() nc_ts_tmp._nc.close() nc_ts_pre._nc.close() # metadata out = {'baseline_climate_source': source, 'baseline_hydro_yr_0': y0+1, 'baseline_hydro_yr_1': y1} gdir.write_json(out, 'climate_info') @entity_task(log, writes=['climate_monthly', 'climate_info']) def process_dummy_cru_file(gdir, sigma_temp=2, sigma_prcp=0.5, seed=None): """Create a simple baseline climate file for this glacier - for testing! This simply reproduces the climatology with a little randomness in it. TODO: extend the functionality by allowing a monthly varying sigma Parameters ---------- gdir : GlacierDirectory the glacier directory sigma_temp : float the standard deviation of the random timeseries (set to 0 for constant ts) sigma_prcp : float the standard deviation of the random timeseries (set to 0 for constant ts) seed : int the RandomState seed """ # read the climatology clfile = utils.get_cru_cl_file() ncclim = salem.GeoNetcdf(clfile) # set temporal subset for the ts data (hydro years) sm = cfg.PARAMS['hydro_month_' + gdir.hemisphere] em = sm - 1 if (sm > 1) else 12 y0, y1 = 1901, 2018 if cfg.PARAMS['baseline_y0'] != 0: y0 = cfg.PARAMS['baseline_y0'] if cfg.PARAMS['baseline_y1'] != 0: y1 = cfg.PARAMS['baseline_y1'] time = pd.date_range(start='{}-{:02d}-01'.format(y0, sm), end='{}-{:02d}-01'.format(y1, em), freq='MS') ny, r = divmod(len(time), 12) assert r == 0 lon = gdir.cenlon lat = gdir.cenlat # This is guaranteed to work because I prepared the file (I hope) ncclim.set_subset(corners=((lon, lat), (lon, lat)), margin=1) # get climatology data loc_hgt = ncclim.get_vardata('elev') loc_tmp = ncclim.get_vardata('temp') loc_pre = ncclim.get_vardata('prcp') loc_lon = ncclim.get_vardata('lon') loc_lat = ncclim.get_vardata('lat') # see if the center is ok if not np.isfinite(loc_hgt[1, 1]): # take another candidate where finite isok = np.isfinite(loc_hgt) # wait: some areas are entirely NaNs, make the subset larger _margin = 1 while not np.any(isok): _margin += 1 ncclim.set_subset(corners=((lon, lat), (lon, lat)), margin=_margin) loc_hgt = ncclim.get_vardata('elev') isok = np.isfinite(loc_hgt) if _margin > 1: log.debug('(%s) I had to look up for far climate pixels: %s', gdir.rgi_id, _margin) # Take the first candidate (doesn't matter which) lon, lat = ncclim.grid.ll_coordinates lon = lon[isok][0] lat = lat[isok][0] # Resubset ncclim.set_subset() ncclim.set_subset(corners=((lon, lat), (lon, lat)), margin=1) loc_hgt = ncclim.get_vardata('elev') loc_tmp = ncclim.get_vardata('temp') loc_pre = ncclim.get_vardata('prcp') loc_lon = ncclim.get_vardata('lon') loc_lat = ncclim.get_vardata('lat') assert np.isfinite(loc_hgt[1, 1]) isok = np.isfinite(loc_hgt) hgt_f = loc_hgt[isok].flatten() assert len(hgt_f) > 0. # Should we compute the gradient? use_grad = cfg.PARAMS['temp_use_local_gradient'] ts_grad = None if use_grad and len(hgt_f) >= 5: ts_grad = np.zeros(12) * np.NaN for i in range(12): loc_tmp_mth = loc_tmp[i, ...][isok].flatten() slope, _, _, p_val, _ = stats.linregress(hgt_f, loc_tmp_mth) ts_grad[i] = slope if (p_val < 0.01) else np.NaN # convert to a timeseries and hydrological years ts_grad = ts_grad.tolist() ts_grad = ts_grad[em:] + ts_grad[0:em] ts_grad = np.asarray(ts_grad * ny) # Make DataArrays rng = np.random.RandomState(seed) loc_tmp = xr.DataArray(loc_tmp[:, 1, 1], dims=['month'], coords={'month': np.arange(1, 13)}) ts_tmp = rng.randn(len(time)) * sigma_temp ts_tmp = xr.DataArray(ts_tmp, dims=['time'], coords={'time': time}) loc_pre = xr.DataArray(loc_pre[:, 1, 1], dims=['month'], coords={'month': np.arange(1, 13)}) ts_pre = utils.clip_min(rng.randn(len(time)) * sigma_prcp + 1, 0) ts_pre = xr.DataArray(ts_pre, dims=['time'], coords={'time': time}) # Create the time series ts_tmp = ts_tmp.groupby('time.month') + loc_tmp ts_pre = ts_pre.groupby('time.month') * loc_pre # done loc_hgt = loc_hgt[1, 1] loc_lon = loc_lon[1] loc_lat = loc_lat[1] assert np.isfinite(loc_hgt) gdir.write_monthly_climate_file(time, ts_pre.values, ts_tmp.values, loc_hgt, loc_lon, loc_lat, gradient=ts_grad) source = 'CRU CL2 and some randomness' ncclim._nc.close() # metadata out = {'baseline_climate_source': source, 'baseline_hydro_yr_0': y0+1, 'baseline_hydro_yr_1': y1} gdir.write_json(out, 'climate_info') @entity_task(log, writes=['climate_monthly', 'climate_info']) def process_histalp_data(gdir): """Processes and writes the HISTALP baseline climate data for this glacier. Extracts the nearest timeseries and writes everything to a NetCDF file. Parameters ---------- gdir : :py:class:`oggm.GlacierDirectory` the glacier directory to process """ if cfg.PATHS.get('climate_file', None): warnings.warn("You seem to have set a custom climate file for this " "run, but are using the default HISTALP climate file " "instead.") if cfg.PARAMS['baseline_climate'] != 'HISTALP': raise InvalidParamsError("cfg.PARAMS['baseline_climate'] should be " "set to HISTALP.") # read the time out of the pure netcdf file ft = utils.get_histalp_file('tmp') fp = utils.get_histalp_file('pre') with utils.ncDataset(ft) as nc: vt = nc.variables['time'] assert vt[0] == 0 assert vt[-1] == vt.shape[0] - 1 t0 = vt.units.split(' since ')[1][:7] time_t = pd.date_range(start=t0, periods=vt.shape[0], freq='MS') with utils.ncDataset(fp) as nc: vt = nc.variables['time'] assert vt[0] == 0.5 assert vt[-1] == vt.shape[0] - .5 t0 = vt.units.split(' since ')[1][:7] time_p = pd.date_range(start=t0, periods=vt.shape[0], freq='MS') # Now open with salem nc_ts_tmp = salem.GeoNetcdf(ft, time=time_t) nc_ts_pre = salem.GeoNetcdf(fp, time=time_p) # set temporal subset for the ts data (hydro years) # the reference time is given by precip, which is shorter sm = cfg.PARAMS['hydro_month_nh'] em = sm - 1 if (sm > 1) else 12 yrs = nc_ts_pre.time.year y0, y1 = yrs[0], yrs[-1] if cfg.PARAMS['baseline_y0'] != 0: y0 = cfg.PARAMS['baseline_y0'] if cfg.PARAMS['baseline_y1'] != 0: y1 = cfg.PARAMS['baseline_y1'] nc_ts_tmp.set_period(t0='{}-{:02d}-01'.format(y0, sm), t1='{}-{:02d}-01'.format(y1, em)) nc_ts_pre.set_period(t0='{}-{:02d}-01'.format(y0, sm), t1='{}-{:02d}-01'.format(y1, em)) time = nc_ts_pre.time ny, r = divmod(len(time), 12) assert r == 0 # Units assert nc_ts_tmp._nc.variables['HSURF'].units.lower() in ['m', 'meters', 'meter', 'metres', 'metre'] assert nc_ts_tmp._nc.variables['T_2M'].units.lower() in ['degc', 'degrees', 'degrees celcius', 'degree', 'c'] assert nc_ts_pre._nc.variables['TOT_PREC'].units.lower() in ['kg m-2', 'l m-2', 'mm', 'millimeters', 'millimeter'] # geoloc lon = gdir.cenlon lat = gdir.cenlat nc_ts_tmp.set_subset(corners=((lon, lat), (lon, lat)), margin=1) nc_ts_pre.set_subset(corners=((lon, lat), (lon, lat)), margin=1) # read the data temp = nc_ts_tmp.get_vardata('T_2M') prcp = nc_ts_pre.get_vardata('TOT_PREC') hgt = nc_ts_tmp.get_vardata('HSURF') ref_lon = nc_ts_tmp.get_vardata('lon') ref_lat = nc_ts_tmp.get_vardata('lat') source = nc_ts_tmp._nc.title[:7] nc_ts_tmp._nc.close() nc_ts_pre._nc.close() # Should we compute the gradient? use_grad = cfg.PARAMS['temp_use_local_gradient'] igrad = None if use_grad: igrad = np.zeros(len(time)) * np.NaN for t, loct in enumerate(temp): slope, _, _, p_val, _ = stats.linregress(hgt.flatten(), loct.flatten()) igrad[t] = slope if (p_val < 0.01) else np.NaN gdir.write_monthly_climate_file(time, prcp[:, 1, 1], temp[:, 1, 1], hgt[1, 1], ref_lon[1], ref_lat[1], gradient=igrad) # metadata out = {'baseline_climate_source': source, 'baseline_hydro_yr_0': y0 + 1, 'baseline_hydro_yr_1': y1} gdir.write_json(out, 'climate_info') def mb_climate_on_height(gdir, heights, *, time_range=None, year_range=None): """Mass-balance climate of the glacier at a specific height Reads the glacier's monthly climate data file and computes the temperature "energies" (temp above 0) and solid precipitation at the required height. All MB parameters are considered here! (i.e. melt temp, precip scaling factor, etc.) Parameters ---------- gdir : GlacierDirectory the glacier directory heights: ndarray a 1D array of the heights (in meter) where you want the data time_range : [datetime, datetime], optional default is to read all data but with this you can provide a [t0, t1] bounds (inclusive). year_range : [int, int], optional Provide a [y0, y1] year range to get the data for specific (hydrological) years only. Easier to use than the time bounds above. Returns ------- (time, tempformelt, prcpsol):: - time: array of shape (nt,) - tempformelt: array of shape (len(heights), nt) - prcpsol: array of shape (len(heights), nt) """ if year_range is not None: sm = cfg.PARAMS['hydro_month_' + gdir.hemisphere] em = sm - 1 if (sm > 1) else 12 t0 = datetime.datetime(year_range[0]-1, sm, 1) t1 = datetime.datetime(year_range[1], em, 1) return mb_climate_on_height(gdir, heights, time_range=[t0, t1]) # Parameters temp_all_solid = cfg.PARAMS['temp_all_solid'] temp_all_liq = cfg.PARAMS['temp_all_liq'] temp_melt = cfg.PARAMS['temp_melt'] prcp_fac = cfg.PARAMS['prcp_scaling_factor'] default_grad = cfg.PARAMS['temp_default_gradient'] g_minmax = cfg.PARAMS['temp_local_gradient_bounds'] # Read file igrad = None with utils.ncDataset(gdir.get_filepath('climate_monthly'), mode='r') as nc: # time time = nc.variables['time'] time = netCDF4.num2date(time[:], time.units) if time_range is not None: p0 = np.where(time == time_range[0])[0] try: p0 = p0[0] except IndexError: raise MassBalanceCalibrationError('time_range[0] not found in ' 'file') p1 = np.where(time == time_range[1])[0] try: p1 = p1[0] except IndexError: raise MassBalanceCalibrationError('time_range[1] not found in ' 'file') else: p0 = 0 p1 = len(time)-1 time = time[p0:p1+1] # Read timeseries itemp = nc.variables['temp'][p0:p1+1] iprcp = nc.variables['prcp'][p0:p1+1] if 'gradient' in nc.variables: igrad = nc.variables['gradient'][p0:p1+1] # Security for stuff that can happen with local gradients igrad = np.where(~np.isfinite(igrad), default_grad, igrad) igrad = utils.clip_array(igrad, g_minmax[0], g_minmax[1]) ref_hgt = nc.ref_hgt # Default gradient? if igrad is None: igrad = itemp * 0 + default_grad # Correct precipitation iprcp *= prcp_fac # For each height pixel: # Compute temp and tempformelt (temperature above melting threshold) npix = len(heights) grad_temp = np.atleast_2d(igrad).repeat(npix, 0) grad_temp *= (heights.repeat(len(time)).reshape(grad_temp.shape) - ref_hgt) temp2d = np.atleast_2d(itemp).repeat(npix, 0) + grad_temp temp2dformelt = temp2d - temp_melt temp2dformelt = utils.clip_min(temp2dformelt, 0) # Compute solid precipitation from total precipitation prcpsol = np.atleast_2d(iprcp).repeat(npix, 0) fac = 1 - (temp2d - temp_all_solid) / (temp_all_liq - temp_all_solid) fac = utils.clip_array(fac, 0, 1) prcpsol = prcpsol * fac return time, temp2dformelt, prcpsol def mb_yearly_climate_on_height(gdir, heights, *, year_range=None, flatten=False): """Yearly mass-balance climate of the glacier at a specific height See also: mb_climate_on_height Parameters ---------- gdir : GlacierDirectory the glacier directory heights: ndarray a 1D array of the heights (in meter) where you want the data year_range : [int, int], optional Provide a [y0, y1] year range to get the data for specific (hydrological) years only. flatten : bool for some applications (glacier average MB) it's ok to flatten the data (average over height) prior to annual summing. Returns ------- (years, tempformelt, prcpsol):: - years: array of shape (ny,) - tempformelt: array of shape (len(heights), ny) (or ny if flatten is set) - prcpsol: array of shape (len(heights), ny) (or ny if flatten is set) """ time, temp, prcp = mb_climate_on_height(gdir, heights, year_range=year_range) ny, r = divmod(len(time), 12) if r != 0: raise InvalidParamsError('Climate data should be N full years ' 'exclusively') # Last year gives the tone of the hydro year years = np.arange(time[-1].year-ny+1, time[-1].year+1, 1) if flatten: # Spatial average temp_yr = np.zeros(len(years)) prcp_yr = np.zeros(len(years)) temp = np.mean(temp, axis=0) prcp = np.mean(prcp, axis=0) for i, y in enumerate(years): temp_yr[i] = np.sum(temp[i*12:(i+1)*12]) prcp_yr[i] = np.sum(prcp[i*12:(i+1)*12]) else: # Annual prcp and temp for each point (no spatial average) temp_yr = np.zeros((len(heights), len(years))) prcp_yr = np.zeros((len(heights), len(years))) for i, y in enumerate(years): temp_yr[:, i] = np.sum(temp[:, i*12:(i+1)*12], axis=1) prcp_yr[:, i] = np.sum(prcp[:, i*12:(i+1)*12], axis=1) return years, temp_yr, prcp_yr def mb_yearly_climate_on_glacier(gdir, *, year_range=None): """Yearly mass-balance climate at all glacier heights, multiplied with the flowlines widths. (all in pix coords.) See also: mb_climate_on_height Parameters ---------- gdir : GlacierDirectory the glacier directory year_range : [int, int], optional Provide a [y0, y1] year range to get the data for specific (hydrological) years only. Returns ------- (years, tempformelt, prcpsol):: - years: array of shape (ny) - tempformelt: array of shape (ny) - prcpsol: array of shape (ny) """ flowlines = gdir.read_pickle('inversion_flowlines') heights = np.array([]) widths = np.array([]) for fl in flowlines: heights = np.append(heights, fl.surface_h) widths = np.append(widths, fl.widths) years, temp, prcp = mb_yearly_climate_on_height(gdir, heights, year_range=year_range, flatten=False) temp = np.average(temp, axis=0, weights=widths) prcp = np.average(prcp, axis=0, weights=widths) return years, temp, prcp @entity_task(log, writes=['climate_info']) def glacier_mu_candidates(gdir): """Computes the mu candidates, glacier wide. For each 31 year-period centered on the year of interest, mu is is the temperature sensitivity necessary for the glacier with its current shape to be in equilibrium with its climate. This task is just for documentation and testing! It is not used in production anymore. Parameters ---------- gdir : :py:class:`oggm.GlacierDirectory` the glacier directory to process """ warnings.warn('The task `glacier_mu_candidates` is deprecated. It should ' 'only be used for testing.', DeprecationWarning) mu_hp = int(cfg.PARAMS['mu_star_halfperiod']) # Only get the years were we consider looking for tstar y0, y1 = cfg.PARAMS['tstar_search_window'] ci = gdir.read_json('climate_info') y0 = y0 or ci['baseline_hydro_yr_0'] y1 = y1 or ci['baseline_hydro_yr_1'] years, temp_yr, prcp_yr = mb_yearly_climate_on_glacier(gdir, year_range=[y0, y1]) # Compute mu for each 31-yr climatological period ny = len(years) mu_yr_clim = np.zeros(ny) * np.NaN for i, y in enumerate(years): # Ignore begin and end if ((i-mu_hp) < 0) or ((i+mu_hp) >= ny): continue t_avg = np.mean(temp_yr[i-mu_hp:i+mu_hp+1]) if t_avg > 1e-3: # if too cold no melt possible prcp_ts = prcp_yr[i-mu_hp:i+mu_hp+1] mu_yr_clim[i] = np.mean(prcp_ts) / t_avg # Check that we found a least one mustar if np.sum(np.isfinite(mu_yr_clim)) < 1: raise MassBalanceCalibrationError('({}) no mustar candidates found.' .format(gdir.rgi_id)) # Write return pd.Series(data=mu_yr_clim, index=years) @entity_task(log, writes=['climate_info']) def t_star_from_refmb(gdir, mbdf=None, glacierwide=None): """Computes the ref t* for the glacier, given a series of MB measurements. Parameters ---------- gdir : oggm.GlacierDirectory mbdf: a pd.Series containing the observed MB data indexed by year if None, read automatically from the reference data Returns ------- A dict: {t_star:[], bias:[]} """ from oggm.core.massbalance import MultipleFlowlineMassBalance if glacierwide is None: glacierwide = cfg.PARAMS['tstar_search_glacierwide'] # Be sure we have no marine terminating glacier assert not gdir.is_tidewater # Reference time series if mbdf is None: mbdf = gdir.get_ref_mb_data()['ANNUAL_BALANCE'] # which years to look at ref_years = mbdf.index.values # Average oberved mass-balance ref_mb = np.mean(mbdf) # Compute one mu candidate per year and the associated statistics # Only get the years were we consider looking for tstar y0, y1 = cfg.PARAMS['tstar_search_window'] ci = gdir.read_json('climate_info') y0 = y0 or ci['baseline_hydro_yr_0'] y1 = y1 or ci['baseline_hydro_yr_1'] years = np.arange(y0, y1+1) ny = len(years) mu_hp = int(cfg.PARAMS['mu_star_halfperiod']) mb_per_mu = pd.Series(index=years) if glacierwide: # The old (but fast) method to find t* _, temp, prcp = mb_yearly_climate_on_glacier(gdir, year_range=[y0, y1]) # which years to look at selind = np.searchsorted(years, mbdf.index) sel_temp = temp[selind] sel_prcp = prcp[selind] sel_temp = np.mean(sel_temp) sel_prcp = np.mean(sel_prcp) for i, y in enumerate(years): # Ignore begin and end if ((i - mu_hp) < 0) or ((i + mu_hp) >= ny): continue # Compute the mu candidate t_avg = np.mean(temp[i - mu_hp:i + mu_hp + 1]) if t_avg < 1e-3: # if too cold no melt possible continue mu = np.mean(prcp[i - mu_hp:i + mu_hp + 1]) / t_avg # Apply it mb_per_mu[y] =
np.mean(sel_prcp - mu * sel_temp)
numpy.mean
import sys # import os from pprint import pprint import numpy as np import numpy.random as npr import climin # os.chdir(os.path.dirname(os.path.abspath(__file__))) sys.path.append('..') from likelihoods.gaussian import Gaussian from likelihoods.categorical import Categorical from hetmogp.het_likelihood import HetLikelihood from hetmogp.svmogp import SVMOGP # from hetmogp.util import vem_algorithm as VEM from hetmogp.util import latent_functions_prior import matplotlib.pyplot as plt M = 20 Q = 3 likelihoods_list = [Gaussian(sigma=1), Categorical(4)] likelihood = HetLikelihood(likelihoods_list) Y_metadata = likelihood.generate_metadata() T = len(Y_metadata['task_index']) D = likelihood.num_output_functions(Y_metadata) npr.seed(1) pprint((Y_metadata, T, D)) X1 = np.sort(npr.rand(600))[:, None] X2 = np.sort(
npr.rand(500)
numpy.random.rand
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # flatbuffers needs importlib.util but fails to import it itself. import importlib.util # noqa: F401 from typing import List import jaxlib.mlir.ir as ir import jaxlib.mlir.dialects.mhlo as mhlo from . import _pocketfft from . import pocketfft_flatbuffers_py_generated as pd import numpy as np import flatbuffers from jaxlib import xla_client for _name, _value in _pocketfft.registrations().items(): xla_client.register_custom_call_target(_name, _value, platform="cpu") FftType = xla_client.FftType flatbuffers_version_2 = hasattr(flatbuffers, "__version__") def _pocketfft_descriptor(shape: List[int], dtype, fft_type: FftType, fft_lengths: List[int]) -> bytes: n = len(shape) assert len(fft_lengths) >= 1 assert len(fft_lengths) <= n, (fft_lengths, n) builder = flatbuffers.Builder(128) forward = fft_type in (FftType.FFT, FftType.RFFT) if fft_type == FftType.RFFT: pocketfft_type = pd.PocketFftType.R2C assert dtype in (np.float32, np.float64), dtype out_dtype = np.dtype(np.complex64 if dtype == np.float32 else np.complex128) pocketfft_dtype = ( pd.PocketFftDtype.COMPLEX64 if dtype == np.float32 else pd.PocketFftDtype.COMPLEX128) assert shape[-len(fft_lengths):] == fft_lengths, (shape, fft_lengths) out_shape = list(shape) out_shape[-1] = out_shape[-1] // 2 + 1 elif fft_type == FftType.IRFFT: pocketfft_type = pd.PocketFftType.C2R assert np.issubdtype(dtype, np.complexfloating), dtype out_dtype = np.dtype(np.float32 if dtype == np.complex64 else np.float64) pocketfft_dtype = ( pd.PocketFftDtype.COMPLEX64 if dtype == np.complex64 else pd.PocketFftDtype.COMPLEX128) assert shape[-len(fft_lengths):-1] == fft_lengths[:-1] out_shape = list(shape) out_shape[-1] = fft_lengths[-1] assert (out_shape[-1] // 2 + 1) == shape[-1] else: pocketfft_type = pd.PocketFftType.C2C assert np.issubdtype(dtype, np.complexfloating), dtype out_dtype = dtype pocketfft_dtype = ( pd.PocketFftDtype.COMPLEX64 if dtype == np.complex64 else pd.PocketFftDtype.COMPLEX128) assert shape[-len(fft_lengths):] == fft_lengths, (shape, fft_lengths) out_shape = shape # PocketFft does not allow size 0 dimensions. if 0 in shape or 0 in out_shape: return b"", out_dtype, out_shape # Builds a PocketFftDescriptor flatbuffer. This descriptor is passed to the # C++ kernel to describe the FFT to perform. pd.PocketFftDescriptorStartShapeVector(builder, n) for d in reversed(shape if fft_type != FftType.IRFFT else out_shape): builder.PrependUint64(d) if flatbuffers_version_2: pocketfft_shape = builder.EndVector() else: pocketfft_shape = builder.EndVector(n) pd.PocketFftDescriptorStartStridesInVector(builder, n) stride = dtype.itemsize for d in reversed(shape): builder.PrependUint64(stride) stride *= d if flatbuffers_version_2: strides_in = builder.EndVector() else: strides_in = builder.EndVector(n) pd.PocketFftDescriptorStartStridesOutVector(builder, n) stride = out_dtype.itemsize for d in reversed(out_shape): builder.PrependUint64(stride) stride *= d if flatbuffers_version_2: strides_out = builder.EndVector() else: strides_out = builder.EndVector(n) pd.PocketFftDescriptorStartAxesVector(builder, len(fft_lengths)) for d in range(len(fft_lengths)): builder.PrependUint32(n - d - 1) if flatbuffers_version_2: axes = builder.EndVector() else: axes = builder.EndVector(len(fft_lengths)) scale = 1. if forward else (1. / np.prod(fft_lengths)) pd.PocketFftDescriptorStart(builder) pd.PocketFftDescriptorAddDtype(builder, pocketfft_dtype) pd.PocketFftDescriptorAddFftType(builder, pocketfft_type) pd.PocketFftDescriptorAddShape(builder, pocketfft_shape) pd.PocketFftDescriptorAddStridesIn(builder, strides_in) pd.PocketFftDescriptorAddStridesOut(builder, strides_out) pd.PocketFftDescriptorAddAxes(builder, axes) pd.PocketFftDescriptorAddForward(builder, forward) pd.PocketFftDescriptorAddScale(builder, scale) descriptor = pd.PocketFftDescriptorEnd(builder) builder.Finish(descriptor) return builder.Output(), out_dtype, out_shape def pocketfft_mhlo(a, dtype, *, fft_type: FftType, fft_lengths: List[int]): """PocketFFT kernel for CPU.""" a_type = ir.RankedTensorType(a.type) n = len(a_type.shape) fft_lengths = list(fft_lengths) descriptor_bytes, out_dtype, out_shape = _pocketfft_descriptor( list(a_type.shape), dtype, fft_type, fft_lengths) if out_dtype == np.float32: out_type = ir.F32Type.get() elif out_dtype == np.float64: out_type = ir.F64Type.get() elif out_dtype == np.complex64: out_type = ir.ComplexType.get(ir.F32Type.get()) elif out_dtype == np.complex128: out_type = ir.ComplexType.get(ir.F64Type.get()) else: raise ValueError(f"Unknown output type {out_dtype}") if 0 in a_type.shape or 0 in out_shape: zero = mhlo.ConstOp(ir.RankedTensorType.get([], out_type), ir.DenseElementsAttr.get(np.array(0, dtype=out_dtype), type=out_type)) return mhlo.BroadcastOp( ir.RankedTensorType.get(out_shape, out_type), zero, ir.DenseElementsAttr.get(np.asarray(out_shape, np.int64))).result u8_type = ir.IntegerType.get_unsigned(8) descriptor = mhlo.ConstOp( ir.RankedTensorType.get([len(descriptor_bytes)], u8_type), ir.DenseElementsAttr.get(
np.frombuffer(descriptor_bytes, dtype=np.uint8)
numpy.frombuffer
import numpy as np import utils.matrix_utils as matrix_utils from bayesian_framework.bayesian_filter_type import BayesianFilterType, sqrt_sigma_point_filter, linear_kalman_family, sigma_point_family from bayesian_framework.inference.stochastic_models.covariance_type import CovarianceType, is_sqrt_like def to_full_covariance(cov: np.ndarray, source_cov_type: CovarianceType) -> np.ndarray: if source_cov_type == CovarianceType.diag: return matrix_utils.ensure_diagonal_matrix(cov) elif source_cov_type == CovarianceType.sqrt_diag: cov_diag = matrix_utils.ensure_diagonal_matrix(cov) return cov_diag @ cov_diag.T.conj() elif source_cov_type == CovarianceType.full: return cov elif source_cov_type == CovarianceType.sqrt: return cov @ cov.T.conj() else: raise Exception("Not supported cov_type: {0}".format(source_cov_type.name)) def to_mixture_full_covariance(cov: np.ndarray, source_cov_type: CovarianceType) -> np.ndarray: is_mixture = cov.ndim == 3 cov_list = cov if is_mixture else [cov] return np.asarray( list(map(lambda x: to_full_covariance(x, source_cov_type), cov_list)) ) def to_sqrt_covariance(cov: np.ndarray, source_cov_type: CovarianceType) -> np.ndarray: if source_cov_type == CovarianceType.diag: return np.linalg.cholesky( matrix_utils.ensure_diagonal_matrix(cov) ) elif source_cov_type == CovarianceType.sqrt_diag: return matrix_utils.ensure_diagonal_matrix(cov) elif source_cov_type == CovarianceType.full: return np.linalg.cholesky(cov) elif source_cov_type == CovarianceType.sqrt: return cov else: raise Exception("Not supported cov_type: {value}".format(value=source_cov_type.name)) def to_mixture_sqrt_covariance(cov: np.ndarray, source_cov_type: CovarianceType) -> np.ndarray: is_mixture = cov.ndim == 3 cov_list = cov if is_mixture else [cov] if is_mixture: return np.atleast_3d( list(map(lambda x: to_sqrt_covariance(x, source_cov_type), cov_list)) ) return np.atleast_2d( list(map(lambda x: to_sqrt_covariance(x, source_cov_type), cov_list)) ) def to_covariance_with_type(cov: np.ndarray, source_cov_type: CovarianceType, target_cov_type: CovarianceType) -> np.ndarray: target_is_sqrt_like = is_sqrt_like(target_cov_type) res = to_mixture_sqrt_covariance(cov, source_cov_type) if target_is_sqrt_like else to_mixture_full_covariance(cov, source_cov_type) return np.atleast_2d(
np.squeeze(res)
numpy.squeeze
''' Route script used for running Control-based continuation. ''' # import required packages import numpy as np import scipy.linalg as la import math import dtLib.nonlinearcbc.nonlinearcbc2 as cbc2 from flask import render_template, request, redirect, Response, url_for, flash, send_file from dtApp import app from dtApp import date import plotly import plotly.graph_objs as go import json from plotly.subplots import make_subplots from scipy.integrate import odeint from pathlib import Path @app.route('/nonlinearcbc', methods=['GET', 'POST']) #@app.route('/bristolcbc', methods=['GET', 'POST']) def bristolcbc(): # define input data pars_file = Path('dtApp/dtData/bris_pars.npy') if pars_file.is_file(): # file exists pars = np.load('dtApp/dtData/bris_pars.npy') m1, m2, m3 = pars[0], pars[1], pars[2] b1, b2, b3 = pars[3], pars[4], pars[5] s1, s2, s3 = pars[6], pars[7], pars[8] s13 = pars[9] else: m1, m2, m3 = 0.2, 0.2, 0.2 #masses s1, s2, s3, s13 = 200.0, 200.0, 200.0, 200.0 #stiffnesses b1, b2, b3 = 0.1, 0.1, 0.1 #viscous damping sweep_file = Path('dtApp/dtData/sweep_pars.npy') if sweep_file.is_file(): # file exists sweep_pars = np.load('dtApp/dtData/sweep_pars.npy') else: sweep_pars = np.array([1.0, 50.0, 1.0, 80.0, 0.945]) #Mass, damping and stiffness matrices MM = np.array([[m1, 0.0, 0.0], [0.0, m2, 0.0], [0.0, 0.0, m3]]) BB = np.array([[b1+b2, -b2, 0.0], [-b2, b2+b3, -b3], [0.0, -b3, b3]]) SS = np.array([[s1+s2, -s2, 0.0], [-s2, s2+s3, -s3], [0.0, -s3, s3]]) Minv = la.inv(MM) IC = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) Minfreq = sweep_pars[0] Maxfreq = sweep_pars[1] Freq_list_def =
np.linspace(Minfreq, Maxfreq, 200)
numpy.linspace
#Data structures to hold domain information from functools import reduce import copy import numba as nb import numpy import os import pdb import vtk import evtk.hl as evtk from evtk.vtk import VtkGroup import accelerated_functions as af import Boundaries.outer_2D_rectangular as ob import Boundaries.inner_2D_rectangular as ib import constants as c import cylindrical_mesh_tools as cmt from solver import location_indexes_inv #Mesh (Abstract)(Association between Mesh and PIC): # #Definition = Defines the type of mesh. #Attributes: # +nPoints (int) = Number of points in the mesh. # +boundaries ([Boundary]) = List of different boundaries that define the mesh. # +volumes ([double]) = Volume of each node. # +location ([int]) = indexes indicating all the nodes that are boundaries in the mesh. There might be different arrangement according to # every type of mesh. (Repeated indices deprecated in 2020_11_20). # +location_sat ([int]) = indexes indicating the nodes that are boundaries with the satellite. # +direction_sat ([int]) = array of indexes of the size of 'location_sat', indicating for each node the direction towards the satellite. # +area_sat ([double]) = array indicating the area that represents each satellite node. #Methods: # +setDomain() = This function, with the values provided by the boundary files, will create the mesh, by setting up volumes, nPoints, boundaries and any other subclass variable. # +checkPositionInMesh([double, double] pos): [Boolean] = For each position it retuns a bool indicating wether the position lies inside the mesh. # +getPosition([int] i): [double, double y] = For a each index return its real position. # +getIndex([double,double] pos): [double,double] = For each real position returns its index value. Important to remember that the number of columns may vary # depending on the actual type of mesh subclass used. # +arrayToIndex([ind] array): [int, int] = For the indexes in the 1D array, obtain the indexes used for the particular mesh. # +indexToArray([ind, ind] index): [int] = For the indexes used for the particular mesh, obtain the 1D version for the array. # +createDistributionInCell(int ind, int num): [double, ..., double] position = Produces 'num' random positions uniformly distributed in the cell 'ind'. # +checkCellAssignment([int] ind): [Boolean] = For each index in 'ind' it checkes whether that node correspond to a cell in the mesh. # +reverseVTKOrdering(array): array = The array received as argument is ordered in such a way it can be stored ina VTK file. # The result is returned as a new array. # +vtkOrdering(array): array = The array received as argument comes with vtk ordering and is reshaped to be stored properly in the code. # +vtkReader(): Reader = Return the reader from module vtk that is able to read the vtk file. # +saveVTK(string filename, dict dictionary) = It calls the appropiate method in 'vtk' module to print the information of the system in a '.vtk' file. # +loadSpeciesVTK(self, species) = It creates particles around every node that can match the preoladed density and velocity of that node. This will depend on each type of mesh. # +print() = Print a VTK file / Matplotlib visualization of the mesh (points and connections between nodes). Also print volumes. class Mesh (object): def __init__(self): setDomain() def setDomain(self): pass def checkPositionInMesh(self, pos): pass def getPosition(self, ind): pass def getIndex(self, pos): pass def arrayToIndex(self, array): pass def indexToArray(self, ind): pass def createDistributionInCell( ind, num): pass def vtkOrdering(self, array): pass def reverseVTKOrdering(self, array): pass def vtkReader(self): pass def saveVTK(self, filename, dictionary): pass def loadSpeciesVTK(self, species): pass def print(self): pass #Mesh_recursive (Abstract): # #Definition = Abstract class that works as an interface for classes meant to be recursive. #Attributes: # +root (Boolean) = Identifies whether the object is the root of the tree or not. # +id (String) = String that uniquely identifies the mesh among the meshes of the domain. The identity is assigned as: # ID is organized as a chain of numbers separated by dashes, everything stored as a string. The first number is "0", indicating root of the tree. # The second level is a 0-based index describing the position of the child in the parent mesh. # For the third and successive levels, the same approach is applied, until the mesh being identified is finally reached. # +start_ind (int) = node index in the parent mesh where this mesh starts. # +children ([Mesh]) = List of all the children of the mesh. #Methods: # +flatIndexing((String) ID, (int) index): int flat_ind = The function receives a unique description of a node in the domain by the index of the node in its mesh (index), and the ID of such mesh (ID). # Then, the function returns the index that represents the node under the 'Flat indexation' rule, counting from the mesh that executes the function. # +executeFunctionByIndex((String) ID, (int) index, (method) func, *args, **kwargs): This function searches for the mesh that contains the node denoted by 'index' (Counting from the mesh that executes # 'executeFunctionByIndex' for the first time) and then executes 'self.func(*args, **kwargs)'. # +orderedIndexing((int) index): (String) ID, (int) index = This functions operates inversely to 'flatIndexing(ID, index)'. It receives a node identification, counting from the mesh that # executes the function, and returns its unique identification by giving the index of the node in its correspondent mesh as well as the 'ID' of such mesh. # +sortArrayByMeshes((ndarray) array, seedList = []) [ndarray] = This function receives the values for the nodes of the mesh and its NGs, ordered by 'Flat indexation rule', # and returns a list of arrays with the same values of the original array but now sorted by 'Ordered rule', each array containing the values of one mesh. # +executeFunctionByMeshes(Function func, List seedList = [], *args, **kwargs): List = This method receives a function (func) to be executed in all the nodes of the mesh tree. # The argument function can receive normal arguments as well as keyword arguments. The method receives all the arguments intended for func in the same positional order, but for each type of argument, # it receives all the arguments for the execution of func throughout the nodes of the tree, stored in a list ordered by the 'Ordered rule'. For keyword arguments, if func receives key = value, # the method must receive key = [value0, value1, ...]. The method stores the results of the executions of func in the optional key argument 'seedList', and the results are also ordered by the # 'Ordered rule'. These results can be either obtained by passing a list object to seedList or by capturing the return of the method, which is only possible if the node that called the function # is the root of the tree. # +sortPositionsByMeshes([double, double] pos, List seedList): List = This function receives an array of positions and organize the positions in ndarrays stored in a list ordered by the 'Ordered rule'. class Mesh_recursive(object): def __init__(self, n_children, n_root, n_id, n_start_ind, n_type): n_type += " - Recursive" self.root = n_root self.id = n_id self.start_ind = n_start_ind self.children = n_children self.accPoints = self.nPoints+reduce(lambda x, y: x+y.accPoints, self.children, 0) #Unique features for the root if self.root == True: #Location sat def func(mesh, acc = None): if acc is None: acc = [0] local = mesh.location_sat + acc[0] acc[0] += mesh.nPoints for child in mesh.children: local = numpy.append(local, func(child, acc = acc)) return local self.overall_location_sat = func(self) #Volumes def func(mesh, attribute): acc_list = numpy.copy(mesh.__getattribute__(attribute)) for child in mesh.children: acc_list = numpy.append(acc_list, func(child, attribute), axis = 0) return acc_list self.volumes = func(self, "volumes") self.overall_area_sat = func(self, "area_sat") #Setting up potential and location_index_inv for use in the main program if len(self.overall_location_sat) > 0: test = location_indexes_inv([self.location_sat[0]], store = True, location = self.overall_location_sat)[0] assert test == 0, "location_indexes_inv is not correctly set up" # This function works well with numpy arrays as long as the indeces are all from the same mesh (which makes sense to have it only working like that) # flatIndexing( String ID, [int] index): [int] = The function receives indices according to the index system of its parent mesh, identified by ID, and # returns their flat indexation from the mesh that executed this function for the first time. def flatIndexing(self, ID, index): assert ID.startswith(self.id), "The function is being used in a branch of the tree where the node is not in" if self.id == ID: return index else: child_pos = int((ID.partition(self.id+"-")[2]).partition("-")[0]) acc = 0 for i in range(child_pos): acc += self.children[i].accPoints return self.nPoints + acc + self.children[child_pos].flatIndexing(ID, index) def executeFunctionByIndex(self, index, func, *args, ind = None, **kwargs): assert numpy.all(self.accPoints >= index), "The index passed as argument is invalid" if numpy.all(index < self.nPoints): return func(index, *args, **kwargs) else: c = self.nPoints+self.children[0].accPoints i = 0 while i < len(self.children) and c <= index: c += self.children[i].accPoints i += 1 return self.children[i].executeFunctionByIndex(index-c+self.children[i].accPoints, func, *args, ind = ind, **kwargs) def orderedIndexing(self, index): def func(self, index): return self.id, index return self.executeFunctionByIndex(index, func) def sortArrayByMeshes(self, array, seedList = None): if type(array) == numpy.ndarray: array = list(array) seedList = [] seedList.append(numpy.asarray(array[:self.nPoints])) del array[:self.nPoints] for child in self.children: child.sortArrayByMeshes(array, seedList = seedList) return seedList def executeFunctionByMeshes(self, func, seedList = None, *args, **kwargs): if self.root: seedList = [] seedList.append(func(*map(lambda x: x.pop(0), args), *map(lambda x: {x : kwargs[x].pop(0)}, kwargs))) for child in self.children: child.executeFunctionByMeshes(func, seedList = seedList, *args, **kwargs) if self.root: return seedList def sortPositionsByMeshes(self, pos, seedList = None, return_ind = None, indexes = None, surface = False): mask = numpy.zeros(numpy.shape(pos)[0]) for i in range(len(self.children)): mask += (i+1)*self.children[i].checkPositionInMesh(pos, surface = surface).astype(numpy.int_) if seedList is None: seedList = [] seedList.append(pos[numpy.logical_not(mask.astype(numpy.bool_)),:]) if return_ind is not None: if indexes is None: indexes = numpy.arange(numpy.shape(pos)[0], dtype = 'uint32') return_ind.append(indexes[numpy.logical_not(mask.astype(numpy.bool_))]) for i in range(len(self.children)): if return_ind is None: self.children[i].sortPositionsByMeshes(pos[mask == i+1], seedList = seedList, return_ind = None, indexes = None, surface = surface) else: self.children[i].sortPositionsByMeshes(pos[mask == i+1], seedList = seedList, return_ind = return_ind, indexes = indexes[mask == i+1], surface = surface) if return_ind == None: return seedList else: return seedList, return_ind # +sortIndexByMeshes(ind, List seedList, int acc_index): [[int]] = This function organizes an array of indexes in flat-ordering into a list of arrays, where the arrays are organized with the tree order. # Each array contains the nodes that correspond to each mesh. The rest of arguments are used only for recursive purposes. # The 'shift' keyword indicates whether the indexes are shifted from flat indexation rule to the index values of each mesh or not. def sortIndexByMeshes(self, ind, shift = True, seedList = None, accIndex = None): if seedList is None and accIndex is None: seedList = [] accIndex = [0] c1 = numpy.greater_equal(ind, accIndex[0]) temp = accIndex[0] accIndex[0] += self.nPoints c2 = numpy.less(ind, accIndex[0]) c3 = numpy.logical_and(c1, c2) if shift: seedList.append(ind[c3]-temp) else: seedList.append(ind[c3]) ind = ind[numpy.logical_not(c3)] for child in self.children: child.sortIndexByMeshes(ind, shift = shift, seedList = seedList, accIndex = accIndex) return seedList # +groupIndexByPosition([int] ind, positions = False) = This function receives a list of indexes and groups them in a list of lists, where each list contains the nodes that # refer to the same physical position (less than 'err' apart). If 'position = True', a numpy array is returned with the positions linked to the lists. def groupIndexByPosition(self, ind, positions = False, seedList = None, posList = None, accIndex = None, err = 1e-4): if self.root: ind = self.sortIndexByMeshes(ind, shift = False) ind_i = ind.pop(0) posList = [super(Mesh_recursive, self).getPosition(ind_i)] seedList = [[x] for x in ind_i] accIndex = [self.nPoints] else: ind_i = ind.pop(0)-accIndex[0] n_pos = super(Mesh_recursive, self).getPosition(ind_i) limit = len(seedList) for ind_ii, n_pos_i in zip(ind_i, n_pos): ind_n = numpy.flatnonzero(numpy.linalg.norm(posList[0][:limit]-n_pos_i, axis = 1) < err) if len(ind_n) > 0: seedList[ind_n[0]].append(ind_ii+accIndex[0]) else: seedList.append([ind_ii+accIndex[0]]) posList[0] = numpy.append(posList[0], n_pos_i.reshape((1,2)), axis = 0) accIndex[0] += self.nPoints for child in self.children: child.groupIndexByPosition(ind, positions = positions, seedList = seedList, posList = posList, accIndex = accIndex) if positions: return seedList, posList[0] else: return seedList # +vtkOrdering(array): array = The array received as argument is ordered in such a way it can be stored in a VTK file. # The array received, if it is root, is the array including information of all the meshes. The function thus returns # a list of numpy arrays, each one prepared for storing in a VTK file. def vtkOrdering(self, array, accIndex = [0]): if self.root: array = self.sortArrayByMeshes(array) accIndex = [0] array[accIndex[0]] = super(Mesh_recursive,self).vtkOrdering(array[accIndex[0]]) accIndex[0] += 1 for child in self.children: child.vtkOrdering(array, accIndex = accIndex) return array # +reverseVTKOrdering(array): array = The array received as argument is converted from VTK to numpy style. def reverseVTKOrdering(self, array): dims = numpy.shape(array) if len(dims) == 1: return array.reshape((self.nPoints), order = 'F') else: return array.reshape((self.nPoints, 3), order = 'F')[:,:2] # def saveVTK(self, filename, dictionary, files = None, accIndex = None): # if self.root: # #Creating folder # cwd, name = os.path.split(filename) # path = os.path.join(cwd, 'mesh_components',name) # try: # os.makedirs(path) # except FileExistsError: # pass # files = [] # accIndex = [0] # #dictionary = {key: self.sortArrayByMeshes(value) for key, value in dictionary.items()} # nmeshes = len(list(dictionary.values())[0]) # dicts = [dict() for i in range(nmeshes)] # for key, value in dictionary.items(): # for i in range(nmeshes): # dicts[i][key] = value[i] # dictionary = dicts # #Creation of individual files # cwd, name = os.path.split(filename) # filename_comp = os.path.join(cwd,'mesh_components',name,'{}_{}'.format(name, self.id)) # super(Mesh_recursive, self).saveVTK(filename_comp, dictionary[accIndex[0]]) # #TODO: Fix later: I need to change the extension of the file manually everytime I use a different file type # files.append(filename_comp+'.vtr') # accIndex[0] += 1 # #Recursion # for child in self.children: # child.saveVTK(filename, dictionary, files = files, accIndex = accIndex) # if self.root: # g = VtkGroup(filename) # for comp in files: # g.addFile(comp, sim_time = 0.0) # g.save() def saveVTK(self, filename, dictionary, files = None, accIndex = None): if self.root: ##Creating folder #cwd, name = os.path.split(filename) #path = os.path.join(cwd, 'mesh_components',name) #try: # os.makedirs(path) #except FileExistsError: # pass files = [] accIndex = [0] #dictionary = {key: self.sortArrayByMeshes(value) for key, value in dictionary.items()} nmeshes = len(list(dictionary.values())[0]) dicts = [dict() for i in range(nmeshes)] for key, value in dictionary.items(): for i in range(nmeshes): dicts[i][key] = value[i] dictionary = dicts #Creation of individual files cwd, name = os.path.split(filename) filename_comp = os.path.join(cwd, '{}_{}'.format(self.id, name)) super(Mesh_recursive, self).saveVTK(filename_comp, dictionary[accIndex[0]]) #TODO: Fix later: I need to change the extension of the file manually everytime I use a different file type files.append(filename_comp+'.vtr') accIndex[0] += 1 #Recursion for child in self.children: child.saveVTK(filename, dictionary, files = files, accIndex = accIndex) #if self.root: # g = VtkGroup(filename) # for comp in files: # g.addFile(comp, sim_time = 0.0) # g.save() #NOTE: Backup # def orderedIndexing(self, index): # assert self.accPoints <= index, "The index passed as argument is invalid" # if index < self.nPoints: # return self.id, index # else: # c = self.nPoints+self.children[0].accPoints # i = 0 # while i < len(self.children) and c <= index: # c += self.children[i].accPoints # i += 1 # return self.children[i].orderedIndexing(index-c+self.children[i].accPoints) #Mesh_2D_rm (Inherits from Mesh): # #Definition = Mesh class for a 2D rectangular mesh. The organization of the points will work as 0<=i<nx and 0<=j<ny. Also, for k parameter 0<=k<nPoints, k = nx*j+i. #Attributes: # +xmin (double) = Left limit of the domain (closest to the Sun). # +xmax (double) = Right limit of the domain (farthest from the Sun). # +ymin (double) = Bottom limit of the domain. # +ymax (double) = Top limit of the domain. # +depth (double) = Artificial thickness of the domain, to make it three-dimensional. # +nx (int) = Number of nodes in the x direction. # +ny (int) = Number of nodes in the y direction. # +dx (float32) = Distance between adyacent horizontal nodes # +dy (float32) = Distance between adyacent vertical nodes # +boundaries ([Boundary]) = It is [Outer_2D_Rectangular]. # +Mesh class attributes. #Methods: # +Implementation of Mesh methods. class Mesh_2D_rm (Mesh): type = "2D_rm" def __init__(self, xmin, xmax, ymin, ymax, dx, dy, depth, boundaries): self.depth = depth self.boundaries = boundaries self.xmin = xmin self.xmax = xmax self.ymin = ymin self.ymax = ymax self.dx = dx self.dy = dy self.nx = numpy.rint((xmax-xmin)/dx+1).astype('uint32') self.ny = numpy.rint((ymax-ymin)/dy+1).astype('uint32') self.boundaries = boundaries self.setDomain() # +setDomain() = This function, with the values provided by the boundary files, will create the mesh, by setting up volumes, nPoints and any other subclass variable. def setDomain(self): self.nPoints = numpy.uint32(self.nx*self.ny) self.volumes = (self.dx*self.dy*self.depth)*numpy.ones((self.nPoints), dtype = 'float32') self.volumes[:self.nx] /= 2 self.volumes[self.nx*(self.ny-1):] /= 2 self.volumes[self.nx-1::self.nx] /= 2 self.volumes[:self.nx*self.ny:self.nx] /= 2 #Initializing the rest of the attributes of the outer boundary self.boundaries[0].bottom = numpy.arange(0,self.nx, dtype = 'uint32') b_areas = self.dx*self.depth*numpy.ones_like(self.boundaries[0].bottom) b_directions = numpy.zeros_like(self.boundaries[0].bottom, dtype = numpy.uint8) b_adjacent = numpy.append(self.boundaries[0].bottom[1:], self.boundaries[0].bottom[-1]+self.nx) self.boundaries[0].left = numpy.arange(0, self.nx*self.ny, self.nx, dtype = 'uint32') l_areas = self.dy*self.depth*numpy.ones_like(self.boundaries[0].left) l_directions = 3*numpy.ones_like(self.boundaries[0].left, dtype = numpy.uint8) l_adjacent = numpy.append(self.boundaries[0].left[1:], self.boundaries[0].left[-1]+1) self.boundaries[0].right = numpy.arange(self.nx-1, self.nx*self.ny, self.nx, dtype = 'uint32') r_areas = copy.copy(l_areas) r_directions = numpy.ones_like(self.boundaries[0].right, dtype = numpy.uint8) r_adjacent = self.boundaries[0].right+self.nx r_adjacent[-1] = r_adjacent[-2] self.boundaries[0].top = numpy.arange(self.nx*(self.ny-1), self.nx*self.ny, dtype = 'uint32') t_areas = copy.copy(b_areas) t_directions = 2*numpy.ones_like(self.boundaries[0].top, dtype = numpy.uint8) t_adjacent = self.boundaries[0].top+1 t_adjacent[-1] = t_adjacent[-2] self.boundaries[0].location, ind1 = numpy.unique(numpy.append(numpy.append(numpy.append(self.boundaries[0].bottom, \ self.boundaries[0].left),\ self.boundaries[0].right),\ self.boundaries[0].top), return_index = True) ind2 = numpy.argsort(self.boundaries[0].location) self.boundaries[0].location = self.boundaries[0].location[ind2] self.boundaries[0].areas = numpy.append(numpy.append(numpy.append(b_areas,\ l_areas),\ r_areas),\ t_areas)[ind1][ind2] self.boundaries[0].directions = numpy.append(numpy.append(numpy.append(b_directions,\ l_directions),\ r_directions),\ t_directions)[ind1][ind2] adjacent_nodes = numpy.append(numpy.append(numpy.append(b_adjacent,\ l_adjacent),\ r_adjacent),\ t_adjacent)[ind1][ind2] self.location = self.boundaries[0].location self.location_sat = numpy.zeros((0), dtype = numpy.uint8) if self.boundaries[0].material == "space" else self.boundaries[0].location self.area_sat = numpy.zeros((0)) if self.boundaries[0].material == "space" else self.boundaries[0].areas self.direction_sat = numpy.zeros((0)) if self.boundaries[0].material == "space" else self.boundaries[0].directions test = location_indexes_inv([self.location[0]], store = True, location = self.location)[0] assert test == 0, "location_indexes_inv is not correctly set up" adjacent_nodes = location_indexes_inv(adjacent_nodes, store = False) self.boundaries[0].adjacent = [{self.boundaries[0].directions[i]:adjacent_nodes[i]} for i in range(len(adjacent_nodes))] self.boundaries[0].adjacent[0].update({l_directions[0]: self.nx}) self.boundaries[0].adjacent[-1].update({2:self.boundaries[0].adjacent[-1][1]}) #Corners corners = location_indexes_inv([self.boundaries[0].bottom[-1], self.boundaries[0].left[-1]], store = False) self.boundaries[0].adjacent[corners[0]].update({1: self.boundaries[0].adjacent[corners[0]][0]}) self.boundaries[0].adjacent[corners[1]].update({2: self.boundaries[0].adjacent[corners[1]][3]}) self.adjacent_sat = [] if self.boundaries[0].material == "space" else self.boundaries[0].adjacent #Setting up potential and location_index_inv for use in the main program if len(self.location_sat) > 0: test = location_indexes_inv([self.location_sat[0]], store = True, location = self.location_sat)[0] assert test == 0, "location_indexes_inv is not correctly set up" def checkPositionInMesh(self, pos, surface = False): cumul = numpy.ones((pos.shape[0]), dtype = numpy.bool_) for boundary in self.boundaries: cumul = numpy.logical_and(cumul, boundary.checkPositionInBoundary(pos, surface = surface)) return cumul # def checkPositionInMesh(self, pos, surface = False): # xmin = self.xmin # xmax = self.xmax # ymin = self.ymin # ymax = self.ymax # if surface and self.boundaries[0].material != "space": # return af.gleq_p(pos, xmin, xmax, ymin, ymax) # else: # return af.gl_p(pos, xmin, xmax, ymin, ymax) # +getPosition([int] i): [double, double y] = For a each index return its real position. def getPosition(self, ind): index2D = self.arrayToIndex(ind) dx = self.dx dy = self.dy xmin = self.xmin ymin = self.ymin posx, posy = numpy.around(af.getPosition_p(index2D[:,0], index2D[:,1], dx, dy, xmin, ymin), decimals = c.INDEX_PREC) return numpy.append(posx[:,None], posy[:,None], axis = 1) # +getIndex([double,double] pos): [double,double] = For each real position returns its index value. def getIndex(self, pos): dx = self.dx dy = self.dy xmin = self.xmin ymin = self.ymin indx, indy = af.getIndex_p(pos[:,0], pos[:,1], dx, dy, xmin, ymin) return numpy.around(numpy.append(indx[:,None], indy[:,None], axis = 1), decimals = c.INDEX_PREC) # +arrayToIndex([ind] array): [int, int] = For the indexes in the 1D array, obtain the indexes used for the particular mesh. def arrayToIndex(self, array): j, i = numpy.divmod(array, self.nx) return numpy.append(i[:,None], j[:,None], axis = 1) # +indexToArray([ind, ind] index): [int] = For the indexes used for the particular mesh, obtain the 1D version for the array. def indexToArray(self, ind): nx = self.nx ind = ind.astype('uint32') return af.indexToArray_p(ind[:,0], ind[:,1], nx) # +createDistributionInCell([int] ind, [int] num): [double, ..., double] position = Produces 'num' random positions uniformly distributed in every cell in 'ind'. def createDistributionInCell(self, ind, num, prec = 10**(-c.INDEX_PREC)): pos = numpy.random.rand(numpy.sum(num), 2) pos0 = numpy.repeat(self.getPosition(ind), num, axis = 0) check = numpy.logical_and(pos0[:,0] < self.xmax, pos0[:,1] < self.ymax) if numpy.all(check): pos[:,0] *= (self.dx-prec) pos[:,1] *= (self.dy-prec) return pos0+pos else: raise Exception('These indexes do not correspond to cells inside the mesh: '+ numpy.flatnonzero(numpy.logical_not(check))) # +checkCellAssignment([int] ind): [Boolean] = For each index in 'ind' it checkes whether that node correspond to a cell in the mesh. def checkCellAssignment(self, ind): bools = numpy.ones_like(ind, dtype = numpy.int8) bools *= numpy.where(ind >= self.nx*(self.ny-1), 0, 1) bools *= numpy.where(ind%self.nx == self.nx-1, 0, 1) bools = bools.astype(numpy.bool_) return bools def particleReformNodes(self): mask = numpy.ones((self.nPoints), dtype = numpy.bool_) mask[self.location] = False mask[self.nx*(self.ny-2):self.nx*(self.ny-1)-1] = False mask[self.nx-2::self.nx] = False return mask # +vtkOrdering(array): array = The array received as argument is ordered in such a way it can be stored ina VTK file. # The result is returned as a new array. def vtkOrdering(self, array): dims = numpy.shape(array) if len(dims) == 1: return array.reshape((self.nx, self.ny, 1), order = 'F') else: tpl = tuple(numpy.reshape(copy.copy(array[:,i]),(self.nx, self.ny, 1), order = 'F') for i in range(dims[1])) if len(tpl) < 3: for i in range (3-len(tpl)): tpl += (numpy.zeros_like(array[:,0].reshape((self.nx,self.ny,1))),) return tpl # +reverseVTKOrdering(array): array = The array received as argument is converted from VTk style to numpy. def reverseVTKOrdering(self, array): dims = numpy.shape(array) if len(dims) == 1: return array.reshape((self.nPoints), order = 'F') else: return array.reshape((self.nPoints, 3), order = 'F')[:,:2] # +vtkReader(): Reader = Return the reader from module vtk that is able to read the vtk file. def vtkReader(self): return vtk.vtkXMLRectilinearGridReader() # +saveVTK(string filename, dict dictionary) = It calls the appropiate method in 'vtk' module to print the information of the system in a '.vtk' file. def saveVTK(self, filename, dictionary): i = numpy.arange(self.xmin, self.xmax+self.dx/2, self.dx) j = numpy.arange(self.ymin, self.ymax+self.dy/2, self.dy) temp = numpy.zeros((1), dtype = 'int32') evtk.gridToVTK(filename, i, j, temp, pointData = dictionary) # +loadSpeciesVTK(self, species) = It creates particles around every node that can match the preoladed density and velocity of that node. This will depend on each type of mesh. def loadSpeciesVTK(self, species, pic): ##Preparing things for numpy functions use #particles = (species.mesh_values.density*self.volumes/species.spwt).astype(int) #ind = numpy.arange(self.nPoints) #index = numpy.repeat(ind, particles) ##Setting up positions #pos = self.getPosition(ind)[index] #random = numpy.random.rand(*numpy.shape(pos)) #random += numpy.where(random == 0, 1e-3, 0) #pos[:,0] += numpy.where(index%self.nx != 0, (random[:,0]-0.5)*self.dx, random[:,0]/2*self.dx) #pos[:,0] -= numpy.where(index%self.nx == self.nx-1, random[:,0]/2*self.dx, 0) #pos[:,1] += numpy.where(index>self.nx, (random[:,1]-0.5)*self.dy, random[:,1]/2*self.dy) #pos[:,1] -= numpy.where(index>=self.nx*(self.ny-1), random[:,1]/2*self.dy, 0) ##Setting up velocities #vel = self.boundaries[0].sampleIsotropicVelocity(self.boundaries[0].thermalVelocity(species.mesh_values.temperature, species.m), particles) ##Adding particles #self.boundaries[0].addParticles(species, pos, vel) #self.boundaries[0].updateTrackers(species, species.part_values.current_n) #Preparing things for numpy functions use #Volume dv = self.dx*self.dy*self.depth particles = (species.mesh_values.density[:self.nPoints]*dv/species.spwt).astype(int) ind = numpy.arange(self.nPoints) index = numpy.repeat(ind, particles) #Setting up positions pos = self.getPosition(index) random = numpy.random.rand(*numpy.shape(pos)) random += numpy.where(random == 0, 1e-3, 0) pos += (random-0.5)*numpy.asarray((self.dx,self.dy)).T #Adding particles and thermal velocity vel = self.boundaries[0].sampleIsotropicVelocity(self.boundaries[0].thermalVelocity(species.mesh_values.temperature[:self.nPoints], species.m), particles) self.boundaries[0].addParticles(species, pos, vel) #Clearing particles outside of boundaries for boundary in self.boundaries: boundary.applyParticleBoundary(species, 'open', old_position = None) #Setting up shifted velocities np = species.part_values.current_n species.part_values.velocity[:np] += pic.gather(species.part_values.position[:np], species.mesh_values.velocity) #Update trackers self.boundaries[0].updateTrackers(species, species.part_values.current_n) # +print() = Print a VTK file / Matplotlib visualization of the mesh (points and connections between nodes). Also print volumes. def print(self): cwd = os.path.split(os.getcwd())[0] vtkstring = cwd+'/results/mesh' self.saveVTK(vtkstring, {'volume' : self.vtkOrdering(self.volumes)}) #Mesh_2D_rm_sat (Inherits from Mesh): # #Definition = Mesh class for a 2D rectangular mesh with a rectangular satellite at its center. # The organization of the points will work as 0<=i<nx and 0<=j<ny, but taking into account the hole for the sattelite. #Attributes: # +xmin (double) = Left limit of the domain (closest to the Sun). # +xmax (double) = Right limit of the domain (farthest from the Sun). # +ymin (double) = Bottom limit of the domain. # +ymax (double) = Top limit of the domain. # +xminsat (double) = Left limit of the satellite (closest to the Sun). # +xmaxsat (double) = Right limit of the satellite (farthest from the Sun). # +yminsat (double) = Bottom limit of the satellite. # +ymaxsat (double) = Top limit of the satellite. # +depth (double) = Artificial thickness of the domain, to make it three-dimensional. # +dx (float32) = Distance between adyacent horizontal nodes # +dy (float32) = Distance between adyacent vertical nodes # +nx (int) = Number of nodes in the x direction. # +ny (int) = Number of nodes in the y direction. # +nxsat (int) = Number of nodes in the x direction. # +nysat (int) = Number of nodes in the y direction. # +boundaries ([Boundary]) = It is [Outer_2D_Rectangular, Inner_2D_Rectangular]. # +Mesh class attributes. #Methods: # +Implementation of Mesh methods. class Mesh_2D_rm_sat (Mesh_2D_rm): type = "2D_rm_sat" def __init__(self, xmin, xmax, ymin, ymax,\ xminsat, xmaxsat, yminsat, ymaxsat,\ dx, dy, depth, boundaries): self.xmin = xmin self.xmax = xmax self.ymin = ymin self.ymax = ymax self.xminsat = xminsat self.xmaxsat = xmaxsat self.yminsat = yminsat self.ymaxsat = ymaxsat self.dx = dx self.dy = dy self.nx = numpy.rint((xmax-xmin)/dx+1).astype('uint32') self.ny = numpy.rint((ymax-ymin)/dy+1).astype('uint32') self.nxsat = numpy.rint((xmaxsat-xminsat)/dx+1).astype('uint32') self.nysat = numpy.rint((ymaxsat-yminsat)/dy+1).astype('uint32') self.sat_i = numpy.rint(((yminsat-ymin)/dy)*self.nx+(self.xminsat-self.xmin)/self.dx).astype('uint32') self.depth = depth self.boundaries = boundaries self.setDomain() # +setDomain() = This function, with the values provided by the boundary files, will create the mesh, by setting up volumes, nPoints and any other subclass variable. def setDomain(self): self.nPoints = numpy.uint32(self.nx*self.ny) #Initializing the rest of the attributes of the outer boundary self.boundaries[0].bottom = numpy.arange(0,self.nx, dtype = 'uint32') b_areas = self.dx*self.depth*numpy.ones_like(self.boundaries[0].bottom) b_directions = numpy.zeros_like(self.boundaries[0].bottom, dtype = numpy.uint8) b_adjacent = numpy.append(self.boundaries[0].bottom[1:], self.boundaries[0].bottom[-1]+self.nx) self.boundaries[0].left = numpy.arange(0, self.nx*self.ny, self.nx, dtype = 'uint32') l_areas = self.dy*self.depth*numpy.ones_like(self.boundaries[0].left) l_directions = 3*numpy.ones_like(self.boundaries[0].left, dtype = numpy.uint8) l_adjacent = numpy.append(self.boundaries[0].left[1:], self.boundaries[0].left[-1]+1) self.boundaries[0].right = numpy.arange(self.nx-1, self.nx*self.ny, self.nx, dtype = 'uint32') r_areas = copy.copy(l_areas) r_directions = numpy.ones_like(self.boundaries[0].right, dtype = numpy.uint8) r_adjacent = self.boundaries[0].right+self.nx r_adjacent[-1] = r_adjacent[-2] self.boundaries[0].top = numpy.arange(self.nx*(self.ny-1), self.nx*self.ny, dtype = 'uint32') t_areas = copy.copy(b_areas) t_directions = 2*numpy.ones_like(self.boundaries[0].top, dtype = numpy.uint8) t_adjacent = self.boundaries[0].top+1 t_adjacent[-1] = t_adjacent[-2] self.boundaries[0].location, ind1 = numpy.unique(numpy.append(numpy.append(numpy.append(self.boundaries[0].bottom, \ self.boundaries[0].left),\ self.boundaries[0].right),\ self.boundaries[0].top), return_index = True) ind2 = numpy.argsort(self.boundaries[0].location) self.boundaries[0].location = self.boundaries[0].location[ind2] self.boundaries[0].areas = numpy.append(numpy.append(numpy.append(b_areas,\ l_areas),\ r_areas),\ t_areas)[ind1][ind2] self.boundaries[0].directions = numpy.append(numpy.append(numpy.append(b_directions,\ l_directions),\ r_directions),\ t_directions)[ind1][ind2] adjacent_nodes = numpy.append(numpy.append(numpy.append(b_adjacent,\ l_adjacent),\ r_adjacent),\ t_adjacent)[ind1][ind2] adjacent_nodes = location_indexes_inv(adjacent_nodes, store = True, location = self.boundaries[0].location) self.boundaries[0].adjacent = [{self.boundaries[0].directions[i]:adjacent_nodes[i]} for i in range(len(adjacent_nodes))] self.boundaries[0].adjacent[0].update({l_directions[0]: self.nx}) self.boundaries[0].adjacent[-1].update({2:self.boundaries[0].adjacent[-1][1]}) #Corners corners = location_indexes_inv([self.boundaries[0].bottom[-1], self.boundaries[0].left[-1]], store = False) self.boundaries[0].adjacent[corners[0]].update({1: self.boundaries[0].adjacent[corners[0]][0]}) self.boundaries[0].adjacent[corners[1]].update({2: self.boundaries[0].adjacent[corners[1]][3]}) #Satellite borders topleft = self.sat_i+(self.nysat-1)*self.nx self.boundaries[1].bottom = numpy.arange(self.sat_i, self.sat_i+self.nxsat, dtype = 'uint32') b_areas = self.dx*self.depth*numpy.ones_like(self.boundaries[1].bottom) b_directions = numpy.zeros_like(self.boundaries[1].bottom, dtype = numpy.uint8) b_adjacent = numpy.append(self.boundaries[1].bottom[1:], self.boundaries[1].bottom[-1]+self.nx) self.boundaries[1].left = numpy.arange(self.sat_i, topleft+self.nx, self.nx, dtype = 'uint32') l_areas = self.dy*self.depth*numpy.ones_like(self.boundaries[1].left) l_directions = 3*numpy.ones_like(self.boundaries[1].left, dtype = numpy.uint8) l_adjacent = numpy.append(self.boundaries[1].left[1:], self.boundaries[1].left[-1]+1) self.boundaries[1].right = numpy.arange(self.sat_i+self.nxsat-1, topleft+self.nxsat-1+self.nx, self.nx, dtype = 'uint32') r_areas = copy.copy(l_areas) r_directions = numpy.ones_like(self.boundaries[1].right, dtype = numpy.uint8) r_adjacent = self.boundaries[1].right+self.nx r_adjacent[-1] = r_adjacent[-2] self.boundaries[1].top = numpy.arange(topleft, topleft+self.nxsat, dtype = 'uint32') t_areas = copy.copy(b_areas) t_directions = 2+b_directions t_adjacent = self.boundaries[1].top+1 t_adjacent[-1] = t_adjacent[-2] self.boundaries[1].location, ind1 = numpy.unique(numpy.append(numpy.append(numpy.append(self.boundaries[1].bottom, \ self.boundaries[1].left),\ self.boundaries[1].right),\ self.boundaries[1].top), return_index = True) ind2 = numpy.argsort(self.boundaries[1].location) self.boundaries[1].location = self.boundaries[1].location[ind2] self.boundaries[1].areas = numpy.append(numpy.append(numpy.append(b_areas,\ l_areas),\ r_areas),\ t_areas)[ind1][ind2] self.boundaries[1].directions = numpy.append(numpy.append(numpy.append(b_directions,\ l_directions),\ r_directions),\ t_directions)[ind1][ind2] adjacent_nodes = numpy.append(numpy.append(numpy.append(b_adjacent,\ l_adjacent),\ r_adjacent),\ t_adjacent)[ind1][ind2] adjacent_nodes = location_indexes_inv(adjacent_nodes, store = True, location = self.boundaries[1].location) self.boundaries[1].adjacent = [{self.boundaries[1].directions[i]:adjacent_nodes[i]} for i in range(len(adjacent_nodes))] #Corners self.boundaries[1].adjacent[0].update({l_directions[0]: self.nxsat}) corners = location_indexes_inv([self.boundaries[1].bottom[-1], self.boundaries[1].left[-1]], store = False) self.boundaries[1].adjacent[corners[0]].update({1: self.boundaries[1].adjacent[corners[0]][0]}) self.boundaries[1].adjacent[corners[1]].update({2: self.boundaries[1].adjacent[corners[1]][3]}) self.boundaries[1].adjacent[-1].update({2:self.boundaries[1].adjacent[-1][1]}) #Little correction to make the bottom-left node account as an impact in the left side of the spacecraft self.boundaries[1].directions[0] = int(3) self.boundaries[1].ind_inner = numpy.concatenate(tuple(numpy.arange(self.boundaries[1].left[i]+1, self.boundaries[1].right[i])\ for i in range(1, int(self.nysat-1)))) #Volume self.volumes = (self.dx*self.dy*self.depth)*numpy.ones((self.nPoints), dtype = 'float32') numpy.divide.at(self.volumes , self.boundaries[0].location, 2) numpy.divide.at(self.volumes , self.boundaries[1].location, 2) #Corners of the outer boundary numpy.divide.at(self.volumes, [self.boundaries[0].bottom[0],\ self.boundaries[0].bottom[-1],\ self.boundaries[0].top[0],\ self.boundaries[0].top[-1]], 2) #Corners of the satellite numpy.multiply.at(self.volumes, [self.boundaries[1].bottom[0],\ self.boundaries[1].bottom[-1],\ self.boundaries[1].top[0],\ self.boundaries[1].top[-1]], 3/2) #Locations of borders in the mesh self.location = numpy.append(self.boundaries[0].location, self.boundaries[1].location) indices = numpy.argsort(self.location) self.location = self.location[indices] #Location of the satellite self.location_sat = numpy.zeros((0), dtype ='uint32') self.area_sat = numpy.zeros((0), dtype ='float32') self.direction_sat = numpy.zeros((0), dtype ='uint8') self.adjacent_sat = [] if self.boundaries[0].material != "space": self.location_sat = numpy.append(self.location_sat, self.boundaries[0].location) self.area_sat = numpy.append(self.area_sat, self.boundaries[0].areas) self.direction_sat = numpy.append(self.direction_sat, self.boundaries[0].directions) self.adjacent_sat.extend(self.boundaries[0].adjacent) if self.boundaries[1].material != "space": self.location_sat = numpy.append(self.location_sat, self.boundaries[1].location) self.area_sat = numpy.append(self.area_sat, self.boundaries[1].areas) self.direction_sat = numpy.append(self.direction_sat, self.boundaries[1].directions) self.adjacent_sat.extend(self.boundaries[1].adjacent) if self.boundaries[0].material != "space" and boundaries[1].material != "space": self.location_sat = self.location_sat[indices] self.area_sat = self.area_sat[indices] self.direction_sat = self.direction_sat[indices] #TODO: Needs to be fixed later. The values of the dictionaries are wrong. self.adjacent_sat = [self.adjacent_sat[i] for i in range(len(indices))] #Setting up potential and location_index_inv for use in the main program if len(self.location_sat) > 0: test = location_indexes_inv([self.sat_i], store = True, location = self.location_sat)[0] assert test == 0, "location_indexes_inv is not correctly set up" def particleReformNodes(self): mask = super().particleReformNodes() mask[self.boundaries[1].ind_inner] = False mask[self.boundaries[1].location] = False bottom = True if self.sat_i > self.nx else False left = True if self.sat_i%self.nx != 0 else False right = True if (self.sat_i+self.nxsat-1)%self.nx != self.nx-1 else False top = True if self.sat_i+self.nysat*self.nx < self.nPoints else False if bottom: mask[self.sat_i-self.nx:self.sat_i-self.nx+self.nxsat] = False if left: mask[self.sat_i-1:self.sat_i-1+self.nx*self.nysat:self.nx] = False if right: mask[self.sat_i+self.nxsat:self.sat_i+self.nxsat+self.nx*self.nysat:self.nx] = False if top: mask[self.sat_i+self.nx*self.nysat:self.sat_i+self.nx*self.nysat+self.nxsat] = False if bottom and left: mask[self.sat_i-self.nx-1] = False if bottom and right: mask[self.sat_i+self.nxsat] = False if top and left: mask[self.sat_i-1+self.nx*self.nysat] = False if top and right: mask[self.sat_i+self.nxsat+self.nx*self.nysat] = False return mask #Mesh_2D_rm_sat_HET (Inherits from Mesh_2D_rm_sat): # #Definition = Mesh class for a 2D rectangular mesh with a rectangular satellite at its center, which contains a Hall Effect Thruster. # The organization of the points will work as 0<=i<nx and 0<=j<ny, but taking into account the hole for the sattelite. #Attributes: # +boundaries ([Boundary]) = It is [Outer_2D_Rectangular, Inner_2D_Rectangular, Inner_1D_HET]. # +Mesh_2D_rm_sat attributes class attributes. #Methods: # +Implementation of Mesh methods. class Mesh_2D_rm_sat_HET (Mesh_2D_rm_sat): type = "2D_rm_sat_HET" def __init__(self, xmin, xmax, ymin, ymax,\ xminsat, xmaxsat, yminsat, ymaxsat,\ dx, dy, depth, boundaries): super().__init__(xmin, xmax, ymin, ymax, xminsat, xmaxsat, yminsat, ymaxsat, dx, dy, depth, boundaries) self.setDomain() # +setDomain() = This function, with the values provided by the boundary files, will create the mesh, by setting up volumes, nPoints and any other subclass variable. def setDomain(self): super().setDomain() #Initializing the rest of the attributes of the HET boundary center = self.boundaries[1].top[len(self.boundaries[1].top)//2] boundary_nx = numpy.rint((self.boundaries[2].xmax-self.boundaries[2].xmin)/self.dx).astype('uint32') half_nx = boundary_nx//2 self.boundaries[2].location = numpy.arange(center-half_nx, center+half_nx+1, dtype = 'uint32') self.boundaries[2].directions = 2*numpy.ones_like(self.boundaries[2].location, dtype = 'uint8') self.boundaries[2].exit_nodes = numpy.asarray([self.boundaries[2].location[0], self.boundaries[2].location[-1]]) self.boundaries[2].exit_pot_nodes = numpy.asarray([self.boundaries[2].location[0], self.boundaries[2].location[1],\ self.boundaries[2].location[-2], self.boundaries[2].location[-1]]) #Mesh_2D_rm_separateBorders (Inherits from Mesh_2D_rm): # #Definition = Mesh class for a 2D rectangular mesh. The organization of the points will work as 0<=i<nx and 0<=j<ny. Also, for k parameter 0<=k<nPoints, k = nx*j+i. # It differes from 'Mesh_2D_rm' in that instead of a single rectangular boundary, they bondaries are 4 1D boundaries, organized as # [bottom, right, top, left]. #Attributes: # +xmin (double) = Left limit of the domain (closest to the Sun). # +xmax (double) = Right limit of the domain (farthest from the Sun). # +ymin (double) = Bottom limit of the domain. # +ymax (double) = Top limit of the domain. # +depth (double) = Artificial thickness of the domain, to make it three-dimensional. # +nx (int) = Number of nodes in the x direction. # +ny (int) = Number of nodes in the y direction. # +dx (float32) = Distance between adyacent horizontal nodes # +dy (float32) = Distance between adyacent vertical nodes # +boundaries ([Boundary]) = It is [Outer_1D_Rectangular x 4], with the order [bottom, right, top, left]. # +Mesh class attributes. #Methods: # +Implementation of Mesh methods. class Mesh_2D_rm_separateBorders(Mesh_2D_rm): type = "2D_rm_separateBorders" def __init__(self, xmin, xmax, ymin, ymax, dx, dy, depth, boundaries): super().__init__(xmin, xmax, ymin, ymax, dx, dy, depth, boundaries) # +setDomain() = This function, with the values provided by the boundary files, will create the mesh, by setting up volumes, nPoints and any other subclass variable. def setDomain(self): self.nPoints = numpy.uint32(self.nx*self.ny) self.volumes = (self.dx*self.dy*self.depth)*numpy.ones((self.nPoints), dtype = 'float32') self.volumes[:self.nx] /= 2 self.volumes[self.nx*(self.ny-1):] /= 2 self.volumes[self.nx-1::self.nx] /= 2 self.volumes[:self.nx*self.ny:self.nx] /= 2 #Initializing the boundaries #Bottom self.boundaries[0].location = numpy.arange(0,self.nx, dtype = 'uint32') self.boundaries[0].areas = self.dx*self.depth*numpy.ones_like(self.boundaries[0].location) self.boundaries[0].areas[[0,-1]] /= 2 self.boundaries[0].directions = numpy.zeros_like(self.boundaries[0].location, dtype = numpy.uint8) self.boundaries[0].adjacent = [{0:i+1} for i in range(self.nx)] self.boundaries[0].adjacent[-1][0] = self.boundaries[0].adjacent[-2][0] #Right self.boundaries[1].location = numpy.arange(self.nx-1, self.nx*self.ny, self.nx, dtype = 'uint32') self.boundaries[1].areas = self.dy*self.depth*numpy.ones_like(self.boundaries[1].location) self.boundaries[1].areas[[0,-1]] /= 2 self.boundaries[1].directions = numpy.ones_like(self.boundaries[1].location, dtype = numpy.uint8) self.boundaries[1].adjacent = [{1:i+1} for i in range(self.ny)] self.boundaries[1].adjacent[-1][1] = self.boundaries[1].adjacent[-2][1] #Top self.boundaries[2].location = numpy.arange(self.nx*(self.ny-1), self.nx*self.ny, dtype = 'uint32') self.boundaries[2].areas = self.dx*self.depth*numpy.ones_like(self.boundaries[2].location) self.boundaries[2].areas[[0,-1]] /= 2 self.boundaries[2].directions = 2*numpy.ones_like(self.boundaries[2].location, dtype = numpy.uint8) self.boundaries[2].adjacent = [{2:i+1} for i in range(self.nx)] self.boundaries[2].adjacent[-1][2] = self.boundaries[2].adjacent[-2][2] #Left self.boundaries[3].location = numpy.arange(0, self.nx*self.ny, self.nx, dtype = 'uint32') self.boundaries[3].areas = self.dy*self.depth*numpy.ones_like(self.boundaries[3].location) self.boundaries[3].areas[[0,-1]] /= 2 self.boundaries[3].directions = 3*numpy.ones_like(self.boundaries[3].location, dtype = numpy.uint8) self.boundaries[3].adjacent = [{3:i+1} for i in range(self.ny)] self.boundaries[3].adjacent[-1][3] = self.boundaries[3].adjacent[-2][3] #Set up the rest of the attributes and check for satellite borders self.location, ind1 = numpy.unique(numpy.append(numpy.append(numpy.append(self.boundaries[0].location, \ self.boundaries[1].location),\ self.boundaries[2].location),\ self.boundaries[3].location), return_index = True) ind2 = numpy.argsort(self.location) self.location = self.location[ind2] self.location_sat = numpy.zeros((0), dtype = numpy.uint8) self.area_sat = numpy.zeros((0)) self.direction_sat = numpy.zeros((0), dtype = numpy.uint8) self.adjacent_sat = [] for boundary in self.boundaries: if boundary.material != 'space': self.location_sat = numpy.append(self.location_sat, boundary.location) self.area_sat = numpy.append(self.area_sat, boundary.areas) self.direction_sat = numpy.append(self.direction_sat, boundary.directions) for dic in boundary.adjacent: self.adjacent_sat.append({key: boundary.location[value] for key, value in dic.items()}) self.location_sat, ind1 = numpy.unique(self.location_sat, return_index = True) ind2 = numpy.argsort(self.location_sat) self.location_sat = self.location_sat[ind2] self.area_sat = self.area_sat[ind1][ind2] self.direction_sat = self.direction_sat[ind1][ind2] #Setting up location_index_inv for use in the main program if len(self.location_sat) > 0: test = location_indexes_inv([self.location_sat[0]], store = True, location = self.location_sat)[0] assert test == 0, "location_indexes_inv is not correctly set up" temp = [] for i in range(len(ind2)): dic = self.adjacent_sat[ind1[ind2[i]]] temp.append({}) temp[-1].update({key:location_indexes_inv([value], store = False)[0] for key, value in dic.items()}) self.adjacent_sat = temp #Corners if 0 in self.direction_sat and 3 in self.direction_sat: self.adjacent_sat[0].update({3:self.nx}) if 0 in self.direction_sat and 1 in self.direction_sat: corner = location_indexes_inv([self.boundaries[0].location[-1]], store = False)[0] self.adjacent_sat[corner].update({1: self.adjacent_sat[corner][0]}) if 2 in self.direction_sat and 3 in self.direction_sat: corner = location_indexes_inv([self.boundaries[3].location[-1]], store = False)[0] self.adjacent_sat[corner].update({3: self.adjacent_sat[corner][3]}) #Mesh_2D_cm (Inherits from Mesh_2D_rm): # #Definition = Mesh class for a 2D cylindrical (z-r) mesh. The organization of the points will work as 0<=i<nx and 0<=j<ny. Also, for k parameter 0<=k<nPoints, k = nx*j+i. #Attributes: # +xmin (double) = Left limit of the domain (closest to the Sun). # +xmax (double) = Right limit of the domain (farthest from the Sun). # +ymin (double) = Bottom limit of the domain. # +ymax (double) = Top limit of the domain. # +nx (int) = Number of nodes in the x direction. # +ny (int) = Number of nodes in the y direction. # +dx (float32) = Distance between adyacent horizontal nodes # +dy (float32) = Distance between adyacent vertical nodes # +boundaries ([Boundary]) = It is [Outer_2D_Cylindrical]. # +Mesh class attributes. #Methods: # +Implementation of Mesh methods. class Mesh_2D_cm (Mesh_2D_rm): type = "2D_cm" def __init__(self, xmin, xmax, ymin, ymax, dx, dy, boundaries): self.boundaries = boundaries self.xmin = xmin self.xmax = xmax self.ymin = ymin self.ymax = ymax self.dx = dx self.dy = dy self.nx = numpy.rint((xmax-xmin)/dx+1).astype('uint32') self.ny = numpy.rint((ymax-ymin)/dy+1).astype('uint32') self.boundaries = boundaries self.setDomain() # +setDomain() = This function, with the values provided by the boundary files, will create the mesh, by setting up volumes, nPoints and any other subclass variable. def setDomain(self): self.nPoints = numpy.uint32(self.nx*self.ny) y = (numpy.arange(self.nPoints)//self.nx)*self.dy+self.ymin if self.ymin == 0.0: y[:self.nx] = self.dy/8 self.volumes = 2*numpy.pi*y*self.dy*self.dx self.volumes[:self.nx] /= 1 if self.ymin == 0.0 else 2 self.volumes[self.nx*(self.ny-1):] /= 2 self.volumes[self.nx-1::self.nx] /= 2 self.volumes[:self.nx*self.ny:self.nx] /= 2 #Initializing the rest of the attributes of the outer boundary self.boundaries[0].bottom = numpy.arange(0,self.nx, dtype = 'uint32') if self.ymin == 0.0: b_areas = 2*numpy.pi*y[:self.nx:self.nx-1]*self.dx b_directions = numpy.zeros_like(b_areas, dtype = numpy.uint8) b_adjacent = numpy.append(self.boundaries[0].bottom[0]+self.nx, self.boundaries[0].bottom[-1]+self.nx) else: b_areas = 2*numpy.pi*y[:self.nx]*self.dx b_directions = numpy.zeros_like(self.boundaries[0].bottom, dtype = numpy.uint8) b_adjacent = numpy.append(self.boundaries[0].bottom[1:], self.boundaries[0].bottom[-1]+self.nx) self.boundaries[0].left = numpy.arange(0, self.nx*self.ny, self.nx, dtype = 'uint32') l_areas = 2*numpy.pi*y[::self.nx]*self.dy l_directions = 3*numpy.ones_like(self.boundaries[0].left, dtype = numpy.uint8) l_adjacent = numpy.append(self.boundaries[0].left[1:], self.boundaries[0].left[-1]+1) self.boundaries[0].right = numpy.arange(self.nx-1, self.nx*self.ny, self.nx, dtype = 'uint32') r_areas = copy.copy(l_areas) r_directions = numpy.ones_like(self.boundaries[0].right, dtype = numpy.uint8) r_adjacent = self.boundaries[0].right+self.nx r_adjacent[-1] = r_adjacent[-2] self.boundaries[0].top = numpy.arange(self.nx*(self.ny-1), self.nx*self.ny, dtype = 'uint32') t_areas = 2*numpy.pi*y[self.nx*(self.ny-1):]*self.dx t_directions = 2*numpy.ones_like(self.boundaries[0].top, dtype = numpy.uint8) t_adjacent = self.boundaries[0].top+1 t_adjacent[-1] = t_adjacent[-2] if self.ymin == 0.0: self.boundaries[0].location, ind1 = numpy.unique(numpy.append(numpy.append(numpy.append(self.boundaries[0].bottom[0::self.nx-1], \ self.boundaries[0].left),\ self.boundaries[0].right),\ self.boundaries[0].top), return_index = True) else: self.boundaries[0].location, ind1 = numpy.unique(numpy.append(numpy.append(numpy.append(self.boundaries[0].bottom, \ self.boundaries[0].left),\ self.boundaries[0].right),\ self.boundaries[0].top), return_index = True) ind2 = numpy.argsort(self.boundaries[0].location) self.boundaries[0].location = self.boundaries[0].location[ind2] self.boundaries[0].areas = numpy.append(numpy.append(numpy.append(b_areas,\ l_areas),\ r_areas),\ t_areas)[ind1][ind2] self.boundaries[0].directions = numpy.append(numpy.append(numpy.append(b_directions,\ l_directions),\ r_directions),\ t_directions)[ind1][ind2] adjacent_nodes = numpy.append(numpy.append(numpy.append(b_adjacent,\ l_adjacent),\ r_adjacent),\ t_adjacent)[ind1][ind2] self.location = self.boundaries[0].location self.location_sat = numpy.zeros((0), dtype = numpy.uint8) if self.boundaries[0].material == "space" else self.boundaries[0].location self.area_sat = numpy.zeros((0)) if self.boundaries[0].material == "space" else self.boundaries[0].areas self.direction_sat = numpy.zeros((0)) if self.boundaries[0].material == "space" else self.boundaries[0].directions test = location_indexes_inv([self.location[0]], store = True, location = self.location)[0] assert test == 0, "location_indexes_inv is not correctly set up" adjacent_nodes = location_indexes_inv(adjacent_nodes, store = False) self.boundaries[0].adjacent = [{self.boundaries[0].directions[i]:adjacent_nodes[i]} for i in range(len(adjacent_nodes))] self.boundaries[0].adjacent[0].update({l_directions[0]: self.nx}) self.boundaries[0].adjacent[-1].update({2:self.boundaries[0].adjacent[-1][1]}) #Corners corners = location_indexes_inv([self.boundaries[0].bottom[-1], self.boundaries[0].left[-1]], store = False) self.boundaries[0].adjacent[corners[0]].update({1: self.boundaries[0].adjacent[corners[0]][0]}) self.boundaries[0].adjacent[corners[1]].update({2: self.boundaries[0].adjacent[corners[1]][3]}) self.adjacent_sat = [] if self.boundaries[0].material == "space" else self.boundaries[0].adjacent #Setting up potential and location_index_inv for use in the main program if len(self.location_sat) > 0: test = location_indexes_inv([self.location_sat[0]], store = True, location = self.location_sat)[0] assert test == 0, "location_indexes_inv is not correctly set up" def particleReformNodes(self): mask = numpy.ones((self.nPoints), dtype = numpy.bool_) mask[self.location] = False mask[:self.nx] = False mask[self.nx*(self.ny-2):self.nx*(self.ny-1)-1] = False mask[self.nx-2::self.nx] = False return mask # +reverseVTKOrdering(array): array = The array received as argument is converted from VTk style to numpy. def reverseVTKOrdering(self, array): dims = numpy.shape(array) if len(dims) == 1: return array.reshape((self.nPoints), order = 'F') else: return array.reshape((self.nPoints, 3), order = 'F') # +loadSpeciesVTK(self, species) = It creates particles around every node that can match the preoladed density and velocity of that node. This will depend on each type of mesh. def loadSpeciesVTK(self, species, pic, prec = 10**(-c.INDEX_PREC)): #Number of particles created particles = (species.mesh_values.density[:self.nPoints]*self.volumes[:self.nPoints]/species.spwt).astype(int) ind = numpy.arange(self.nPoints) #Setting up positions pos = super(Mesh_recursive, self).getPosition(ind) rmin = numpy.where(pos[:,1] == self.ymin, pos[:,1], pos[:,1]-self.dy/2) rmax = numpy.where(pos[:,1] == self.ymax, pos[:,1], pos[:,1]+self.dy/2) pos = numpy.repeat(pos, particles, axis = 0) pos[:,1] = cmt.randomYPositions_2D_cm(particles, rmin, rmax) random = numpy.random.rand(numpy.shape(pos)[0]) shifts = numpy.where((pos[:,0]-self.xmin) < prec, random*self.dx/2, (random-0.5)*self.dx) shifts -= numpy.where((pos[:,0]-self.xmax) > -prec, random*self.dx/2, 0) pos[:,0] += shifts pos[:,1] += numpy.where((pos[:,1] - self.ymin) < prec, prec, 0) pos[:,1] += numpy.where((pos[:,1] - self.ymax) > -prec, -prec, 0) #Adding particles and thermal velocity vel = self.boundaries[0].sampleIsotropicVelocity(self.boundaries[0].thermalVelocity(species.mesh_values.temperature[:self.nPoints], species.m), particles) self.boundaries[0].addParticles(species, pos, vel) #Clearing particles outside of boundaries for boundary in self.boundaries: boundary.applyParticleBoundary(species, 'open', old_position = None) #Setting up shifted velocities np = species.part_values.current_n species.part_values.velocity[:np] += pic.gather(species.part_values.position[:np], species.mesh_values.velocity) #Update trackers self.boundaries[0].updateTrackers(species, species.part_values.current_n) #Mesh_2D_cm_sat (Inherits from Mesh_2D_cm): # #Definition = Mesh class for a 2D cylindrical (z-r) mesh with a cylindrical satellite at its center. # The organization of the points will work as 0<=i<nx and 0<=j<ny, but taking into account the hole for the sattelite. # x represents 'z' and y represents 'r'. #Attributes: # +xmin (double) = Left limit of the domain (closest to the Sun). # +xmax (double) = Right limit of the domain (farthest from the Sun). # +ymin (double) = Bottom limit of the domain. # +ymax (double) = Top limit of the domain. # +xminsat (double) = Left limit of the satellite (closest to the Sun). # +xmaxsat (double) = Right limit of the satellite (farthest from the Sun). # +yminsat (double) = Bottom limit of the satellite. # +ymaxsat (double) = Top limit of the satellite. # +dx (float32) = Distance between adyacent horizontal nodes # +dy (float32) = Distance between adyacent vertical nodes # +nx (int) = Number of nodes in the x direction. # +ny (int) = Number of nodes in the y direction. # +nxsat (int) = Number of nodes in the x direction. # +nysat (int) = Number of nodes in the y direction. # +boundaries ([Boundary]) = It is [Outer_2D_Cylindrical, Inner_2D_Cylindrical]. # +Mesh class attributes. #Methods: # +Implementation of Mesh methods. class Mesh_2D_cm_sat (Mesh_2D_cm): type = "2D_cm_sat" def __init__(self, xmin, xmax, ymin, ymax,\ xminsat, xmaxsat, yminsat, ymaxsat,\ dx, dy, boundaries): self.xmin = xmin self.xmax = xmax self.ymin = ymin self.ymax = ymax self.xminsat = xminsat self.xmaxsat = xmaxsat self.yminsat = yminsat self.ymaxsat = ymaxsat self.dx = dx self.dy = dy self.nx = numpy.rint((xmax-xmin)/dx+1).astype('uint32') self.ny = numpy.rint((ymax-ymin)/dy+1).astype('uint32') self.nxsat =
numpy.rint((xmaxsat-xminsat)/dx+1)
numpy.rint
import torch import numpy as np import warnings from scipy.stats import entropy from sklearn.neighbors import NearestNeighbors import torch.nn as nn from numpy.linalg import norm import sys,os import torch.nn.functional as F #from Common.Const import GPU from torch.autograd import Variable, grad sys.path.append(os.path.join(os.getcwd(),"metrics")) from pointops import pointops_util # Import CUDA version of approximate EMD, from https://github.com/zekunhao1995/pcgan-pytorch/ # from StructuralLosses.match_cost import match_cost # from StructuralLosses.nn_distance import nn_distance from torch.autograd import Variable from Common.modules import pairwise_dist from torch.distributions import Beta from CD_EMD.emd_ import emd_module from CD_EMD.cd.chamferdist import ChamferDistance as CD import functools from numpy import ones,zeros def dist_o2l(p1, p2): # distance from origin to the line defined by (p1, p2) p12 = p2 - p1 u12 = p12 / np.linalg.norm(p12) l_pp = np.dot(-p1, u12) pp = l_pp*u12 + p1 return np.linalg.norm(pp) def para_count(models): count = 0 for model in models: count += sum(param.numel() for param in model.parameters()) return count class AverageValueMeter(object): """Computes and stores the average and current value""" def __init__(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0.0 def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0.0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count # # Import CUDA version of CD, borrowed from https://github.com/ThibaultGROUEIX/AtlasNet # try: # from . chamfer_distance_ext.dist_chamfer import chamferDist # CD = chamferDist() # def distChamferCUDA(x,y): # return CD(x,y,gpu) # except: class CrossEntropyLoss(nn.Module): def __init__(self, smoothing=True): super(CrossEntropyLoss, self).__init__() self.smoothing = smoothing def forward(self, preds, gts): gts = gts.contiguous().view(-1) if self.smoothing: eps = 0.2 n_class = preds.size(1) one_hot = torch.zeros_like(preds).scatter(1, gts.view(-1, 1), 1) one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1) log_prb = F.log_softmax(preds, dim=1) loss = -(one_hot * log_prb).sum(dim=1).mean() else: loss = F.cross_entropy(preds, gts, reduction='mean') return loss class ChamferLoss(nn.Module): def __init__(self): super(ChamferLoss, self).__init__() self.use_cuda = torch.cuda.is_available() def forward(self,preds,gts): P = self.batch_pairwise_dist(gts, preds) mins, _ = torch.min(P, 1) loss_1 = torch.sum(mins) mins, _ = torch.min(P, 2) loss_2 = torch.sum(mins) return loss_1 + loss_2 def batch_pairwise_dist(self,x,y): bs, num_points_x, points_dim = x.size() _, num_points_y, _ = y.size() #xx = torch.bmm(x, x.transpose(2,1)) xx = torch.sum(x ** 2, dim=2, keepdim=True) yy = torch.sum(y ** 2, dim=2, keepdim=True) xy = -2 * torch.bmm(x, y.permute(0, 2, 1)) dist = xy + xx + yy.permute(0, 2, 1) # [B, N, N] return dist yy = torch.bmm(y, y.transpose(2,1)) zz = torch.bmm(x, y.transpose(2,1)) if self.use_cuda: dtype = torch.cuda.LongTensor else: dtype = torch.LongTensor diag_ind_x = torch.arange(0, num_points_x).type(dtype) diag_ind_y = torch.arange(0, num_points_y).type(dtype) #brk() rx = xx[:, diag_ind_x, diag_ind_x].unsqueeze(1).expand_as(zz.transpose(2,1)) ry = yy[:, diag_ind_y, diag_ind_y].unsqueeze(1).expand_as(zz) P = (rx.transpose(2,1) + ry - 2*zz) return P # def batch_pairwise_dist(self,x,y): # # bs, num_points_x, points_dim = x.size() # _, num_points_y, _ = y.size() # # xx = torch.sum(x ** 2, dim=2, keepdim=True) # yy = torch.sum(y ** 2, dim=2, keepdim=True) # yy = yy.permute(0, 2, 1) # # xi = -2 * torch.bmm(x, y.permute(0, 2, 1)) # dist = xi + xx + yy # [B, N, N] # return dist def dist_simple(x,y,loss="l2"): if loss == "l2": dist = torch.sum((x - y) ** 2, dim=-1).sum(dim=1).float() else: dist = torch.sum(torch.abs(x - y), dim=-1).sum(dim=1).float() return dist.mean() def distChamferCUDA(x, y): cd = CD() cd0, cd1, _, _ = cd(x, y) return nn_distance(x, y) def emd_approx(sample, ref): B, N, N_ref = sample.size(0), sample.size(1), ref.size(1) # import ipdb # ipdb.set_trace() assert N == N_ref, "Not sure what would EMD do in this case" emd = match_cost(sample, ref) # (B,) emd_norm = emd / float(N) # (B,) return emd_norm def CD_loss(x, y): dists_forward, dists_backward = nn_distance(x, y) dists_forward = torch.mean(dists_forward,dim=1) dists_backward = torch.mean(dists_backward,dim=1) cd_dist = torch.mean(dists_forward+dists_backward) return cd_dist def EMD_loss(sample, ref): B, N, N_ref = sample.size(0), sample.size(1), ref.size(1) # import ipdb # ipdb.set_trace() assert N == N_ref, "Not sure what would EMD do in this case" emd = match_cost(sample, ref) # (B,) emd_norm = emd / float(N) # (B,) return emd_norm def compute_mean_covariance(points): bs, ch, nump = points.size() # ---------------------------------------------------------------- mu = points.mean(dim=-1, keepdim=True) # Bx3xN -> Bx3x1 # ---------------------------------------------------------------- tmp = points - mu.repeat(1, 1, nump) # Bx3xN - Bx3xN -> Bx3xN tmp_transpose = tmp.transpose(1, 2) # Bx3xN -> BxNx3 covariance = torch.bmm(tmp, tmp_transpose) covariance = covariance / nump return mu, covariance # Bx3x1 Bx3x3 def get_local_pair(pt1, pt2): pt1_batch, pt1_N, pt1_M = pt1.size() pt2_batch, pt2_N, pt2_M = pt2.size() # pt1: Bx3xM pt2: Bx3XN (N > M) # print('pt1: {} pt2: {}'.format(pt1.size(), pt2.size())) new_xyz = pt1.transpose(1, 2).contiguous() # Bx3xM -> BxMx3 pt1_trans = pt1.transpose(1, 2).contiguous() # Bx3xM -> BxMx3 pt2_trans = pt2.transpose(1, 2).contiguous() # Bx3xN -> BxNx3 K=20 group = pointops_util.Gen_QueryAndGroupXYZ(radius=None, nsample=K, use_xyz=False) g_xyz1 = group(pt1_trans, new_xyz) # Bx3xMxK # print('g_xyz1: {}'.format(g_xyz1.size())) g_xyz2 = group(pt2_trans, new_xyz) # Bx3xMxK # print('g_xyz2: {}'.format(g_xyz2.size())) g_xyz1 = g_xyz1.transpose(1, 2).contiguous().view(-1, 3, K) # Bx3xMxK -> BxMx3xK -> (BM)x3xK # print('g_xyz1: {}'.format(g_xyz1.size())) g_xyz2 = g_xyz2.transpose(1, 2).contiguous().view(-1, 3, K) # Bx3xMxK -> BxMx3xK -> (BM)x3xK # print('g_xyz2: {}'.format(g_xyz2.size())) # print('====================== FPS ========================') # print(pt1.shape,g_xyz1.shape) # print(pt2.shape,g_xyz2.shape) mu1, var1 = compute_mean_covariance(g_xyz1) mu2, var2 = compute_mean_covariance(g_xyz2) # print('mu1: {} var1: {}'.format(mu1.size(), var1.size())) # print('mu2: {} var2: {}'.format(mu2.size(), var2.size())) # -------------------------------------------------- # like_mu12 = self.shape_loss_fn(mu1, mu2) # like_var12 = self.shape_loss_fn(var1, var2) # ---------------------------------------------------- # =========$$$ CD loss $$$=============== # print("p1,p2:",pt1.shape,pt2.shape) # print("mu2:",mu1.shape,mu2.shape,pt1_batch,pt1_N,pt1_M) mu1 = mu1.view(pt1_batch, -1, 3) mu2 = mu2.view(pt2_batch, -1, 3) var1 = var1.view(pt1_batch, -1, 9) var2 = var2.view(pt2_batch, -1, 9) chamfer_loss = ChamferLoss() like_mu12 = chamfer_loss(mu1, mu2) / float(pt1_M) like_var12 = chamfer_loss(var1, var2) / float(pt1_M) # print('mu: {} var: {}'.format(like_mu12.item(), like_var12.item())) return like_mu12, like_var12 # Borrow from https://github.com/ThibaultGROUEIX/AtlasNet def distChamfer(a, b): x, y = a, b bs, num_points, points_dim = x.size() xx = torch.bmm(x, x.transpose(2, 1)) yy = torch.bmm(y, y.transpose(2, 1)) zz = torch.bmm(x, y.transpose(2, 1)) diag_ind = torch.arange(0, num_points).to(a).long() rx = xx[:, diag_ind, diag_ind].unsqueeze(1).expand_as(xx) ry = yy[:, diag_ind, diag_ind].unsqueeze(1).expand_as(yy) P = (rx.transpose(2, 1) + ry - 2 * zz) return P.min(1)[0], P.min(2)[0] def EMD_CD(sample_pcs, ref_pcs, batch_size, accelerated_cd=False, reduced=True): N_sample = sample_pcs.shape[0] N_ref = ref_pcs.shape[0] assert N_sample == N_ref, "REF:%d SMP:%d" % (N_ref, N_sample) cd_lst = [] emd_lst = [] iterator = range(0, N_sample, batch_size) for b_start in iterator: b_end = min(N_sample, b_start + batch_size) sample_batch = sample_pcs[b_start:b_end] ref_batch = ref_pcs[b_start:b_end] if accelerated_cd: dl, dr = distChamferCUDA(sample_batch, ref_batch) else: dl, dr = distChamfer(sample_batch, ref_batch) cd_lst.append(dl.mean(dim=1) + dr.mean(dim=1)) emd_batch = emd_approx(sample_batch, ref_batch) emd_lst.append(emd_batch) if reduced: cd = torch.cat(cd_lst).mean() emd = torch.cat(emd_lst).mean() else: cd = torch.cat(cd_lst) emd = torch.cat(emd_lst) results = { 'MMD-CD': cd, 'MMD-EMD': emd, } return results def _pairwise_EMD_CD_(sample_pcs, ref_pcs, batch_size, accelerated_cd=True): N_sample = sample_pcs.shape[0] N_ref = ref_pcs.shape[0] all_cd = [] all_emd = [] iterator = range(N_sample) for sample_b_start in iterator: sample_batch = sample_pcs[sample_b_start] cd_lst = [] emd_lst = [] for ref_b_start in range(0, N_ref, batch_size): ref_b_end = min(N_ref, ref_b_start + batch_size) ref_batch = ref_pcs[ref_b_start:ref_b_end] batch_size_ref = ref_batch.size(0) sample_batch_exp = sample_batch.view(1, -1, 3).expand(batch_size_ref, -1, -1) sample_batch_exp = sample_batch_exp.contiguous() if accelerated_cd: dl, dr = distChamferCUDA(sample_batch_exp, ref_batch) else: dl, dr = distChamfer(sample_batch_exp, ref_batch) cd_lst.append((dl.mean(dim=1) + dr.mean(dim=1)).view(1, -1)) emd_batch = emd_approx(sample_batch_exp, ref_batch) emd_lst.append(emd_batch.view(1, -1)) cd_lst = torch.cat(cd_lst, dim=1) emd_lst = torch.cat(emd_lst, dim=1) all_cd.append(cd_lst) all_emd.append(emd_lst) all_cd = torch.cat(all_cd, dim=0) # N_sample, N_ref all_emd = torch.cat(all_emd, dim=0) # N_sample, N_ref return all_cd, all_emd # Adapted from https://github.com/xuqiantong/GAN-Metrics/blob/master/framework/metric.py def knn(Mxx, Mxy, Myy, k, sqrt=False): n0 = Mxx.size(0) n1 = Myy.size(0) label = torch.cat((torch.ones(n0), torch.zeros(n1))).to(Mxx) M = torch.cat((torch.cat((Mxx, Mxy), 1), torch.cat((Mxy.transpose(0, 1), Myy), 1)), 0) if sqrt: M = M.abs().sqrt() INFINITY = float('inf') val, idx = (M + torch.diag(INFINITY * torch.ones(n0 + n1).to(Mxx))).topk(k, 0, False) count = torch.zeros(n0 + n1).to(Mxx) for i in range(0, k): count = count + label.index_select(0, idx[i]) pred = torch.ge(count, (float(k) / 2) * torch.ones(n0 + n1).to(Mxx)).float() s = { 'tp': (pred * label).sum(), 'fp': (pred * (1 - label)).sum(), 'fn': ((1 - pred) * label).sum(), 'tn': ((1 - pred) * (1 - label)).sum(), } s.update({ 'precision': s['tp'] / (s['tp'] + s['fp'] + 1e-10), 'recall': s['tp'] / (s['tp'] + s['fn'] + 1e-10), 'acc_t': s['tp'] / (s['tp'] + s['fn'] + 1e-10), 'acc_f': s['tn'] / (s['tn'] + s['fp'] + 1e-10), 'acc': torch.eq(label, pred).float().mean(), }) return s def lgan_mmd_cov(all_dist): N_sample, N_ref = all_dist.size(0), all_dist.size(1) min_val_fromsmp, min_idx = torch.min(all_dist, dim=1) min_val, _ = torch.min(all_dist, dim=0) mmd = min_val.mean() mmd_smp = min_val_fromsmp.mean() cov = float(min_idx.unique().view(-1).size(0)) / float(N_ref) cov = torch.tensor(cov).to(all_dist) return { 'lgan_mmd': mmd, 'lgan_cov': cov, 'lgan_mmd_smp': mmd_smp, } def compute_all_metrics(sample_pcs, ref_pcs, batch_size, accelerated_cd=False): results = {} M_rs_cd, M_rs_emd = _pairwise_EMD_CD_(ref_pcs, sample_pcs, batch_size, accelerated_cd=accelerated_cd) res_cd = lgan_mmd_cov(M_rs_cd.t()) results.update({ "%s-CD" % k: v for k, v in res_cd.items() }) res_emd = lgan_mmd_cov(M_rs_emd.t()) results.update({ "%s-EMD" % k: v for k, v in res_emd.items() }) M_rr_cd, M_rr_emd = _pairwise_EMD_CD_(ref_pcs, ref_pcs, batch_size, accelerated_cd=accelerated_cd) M_ss_cd, M_ss_emd = _pairwise_EMD_CD_(sample_pcs, sample_pcs, batch_size, accelerated_cd=accelerated_cd) # 1-NN results one_nn_cd_res = knn(M_rr_cd, M_rs_cd, M_ss_cd, 1, sqrt=False) results.update({ "1-NN-CD-%s" % k: v for k, v in one_nn_cd_res.items() if 'acc' in k }) one_nn_emd_res = knn(M_rr_emd, M_rs_emd, M_ss_emd, 1, sqrt=False) results.update({ "1-NN-EMD-%s" % k: v for k, v in one_nn_emd_res.items() if 'acc' in k }) return results def compute_all_metrics2(sample_pcs, ref_pcs, normalize=False): from Common.point_operation import normalize_point_cloud gen_clouds_buf = sample_pcs ref_clouds_buf = ref_pcs if normalize: gen_clouds_buf = gen_clouds_buf.cpu().numpy() # gen_clouds_inds = set(np.arange(gen_clouds_buf.shape[0])) # nan_gen_clouds_inds = set(np.isnan(gen_clouds_buf).sum(axis=(1, 2)).nonzero()[0]) # gen_clouds_inds = list(gen_clouds_inds - nan_gen_clouds_inds) # dup_gen_clouds_inds = np.random.choice(gen_clouds_inds, size=len(nan_gen_clouds_inds)) # gen_clouds_buf[list(nan_gen_clouds_inds)] = gen_clouds_buf[dup_gen_clouds_inds] gen_clouds_buf = normalize_point_cloud(gen_clouds_buf) gen_clouds_buf = torch.from_numpy(gen_clouds_buf).cuda() gg_cds = pairwise_CD(gen_clouds_buf, gen_clouds_buf) tt_cds = pairwise_CD(ref_clouds_buf, ref_clouds_buf) gt_cds = pairwise_CD(gen_clouds_buf, ref_clouds_buf) metrics = {} jsd = JSD(gen_clouds_buf.cpu().numpy(), ref_clouds_buf.cpu().numpy(), clouds1_flag='gen', clouds2_flag='ref', warning=False) cd_covs = COV(gt_cds) cd_mmds = MMD(gt_cds) cd_1nns = KNN(gg_cds, gt_cds, tt_cds, 1) metrics = { "JSD": jsd, "COV-CD": cd_covs, "MMD-CD": cd_mmds, "1NN-CD": cd_1nns, } return metrics def f_score(predicted_clouds, true_clouds, threshold=0.001): ld, rd = distChamferCUDA(predicted_clouds, true_clouds) precision = 100. * (rd < threshold).float().mean(1) recall = 100. * (ld < threshold).float().mean(1) return 2. * precision * recall / (precision + recall + 1e-7) def get_voxel_occ_dist(all_clouds, clouds_flag='gen', res=28, bound=0.5, bs=128, warning=True): if np.any(np.fabs(all_clouds) > bound) and warning: print('{} clouds out of cube bounds: [-{}; {}]'.format(clouds_flag, bound, bound)) n_nans = np.isnan(all_clouds).sum() if n_nans > 0: print('{} NaN values in point cloud tensors.'.format(n_nans)) p2v_dist = np.zeros((res, res, res), dtype=np.uint64) step = 1. / res v_bs = -0.5 + np.arange(res + 1) * step nbs = all_clouds.shape[0] // bs + 1 for i in range(nbs): clouds = all_clouds[bs * i:bs * (i + 1)] preiis = clouds[:, :, 0].reshape(1, -1) preiis = np.logical_and(v_bs[:28].reshape(-1, 1) <= preiis, preiis < v_bs[1:].reshape(-1, 1)) iis = preiis.argmax(0) iis_values = preiis.sum(0) > 0 prejjs = clouds[:, :, 1].reshape(1, -1) prejjs = np.logical_and(v_bs[:28].reshape(-1, 1) <= prejjs, prejjs < v_bs[1:].reshape(-1, 1)) jjs = prejjs.argmax(0) jjs_values = prejjs.sum(0) > 0 prekks = clouds[:, :, 2].reshape(1, -1) prekks = np.logical_and(v_bs[:28].reshape(-1, 1) <= prekks, prekks < v_bs[1:].reshape(-1, 1)) kks = prekks.argmax(0) kks_values = prekks.sum(0) > 0 values = np.uint64(np.logical_and(np.logical_and(iis_values, jjs_values), kks_values))
np.add.at(p2v_dist, (iis, jjs, kks), values)
numpy.add.at
# Copyright (c) 2021 <NAME> """ BackTester类根据传入信号以及交易逻辑进行交易 开发日志 2021-09-07 -- 更新:BackTester类统计pnl序列的平均日收益,最大回撤,标准差,夏普比,最长亏损时间 2021-09-11 -- 修复:回测时剔除涨停板 2021-09-21 -- 修复:回测是要根据上一期的持仓确定涨停板是否剔除,有可能涨停的股票是有持仓的 """ import numpy as np import datetime class BackTester: def __init__(self, data, signal=None): """ :param signal: 信号矩阵 :param date: Data类 """ self.signal = signal self.data = data self.pnl = [] # pnl序列 self.cumulated_pnl = [] # 累计pnl self.market_pnl = [] # 如果纯多头,这里存市场的pnl,以比较超额收益 self.market_cumulated_pnl = [] self.max_dd = 0 # 统计pnl序列的最大回撤 self.mean_pnl = 0 # 平均pnl self.std = 0 # 统计pnl序列的标准差 self.sharp_ratio = 0 # 夏普比 self.max_loss_time = 0 # 最长亏损时间 self.log = [] # 记录每一个具体的交易日给出的股票 def cal_stats(self): self.std = np.std(self.pnl) self.mean_pnl = np.mean(self.pnl) self.sharp_ratio = self.mean_pnl / self.std if self.std > 0 else 0 max_dd = 0 max_pnl = 0 max_loss_time = 0 loss_time = 0 for i in self.cumulated_pnl: if i > max_pnl: max_pnl = i loss_time = 0 else: if max_pnl - i > max_dd: max_dd = max_pnl - i loss_time += 1 if loss_time > max_loss_time: max_loss_time = loss_time self.max_dd = max_dd self.max_loss_time = max_loss_time def long_short(self, start_date=None, end_date=None, signal=None, n=0): # 多空策略 """ :param signal: 可传入自定义信号 :param start_date: 开始日期 :param end_date: 结束日期 :param n: 进入股票数量,0表示使用top :return: """ self.pnl = [] self.cumulated_pnl = [] self.market_pnl = [] self.market_cumulated_pnl = [] if start_date is None: start_date = str(self.data.start_date) if end_date is None: end_date = str(self.data.end_date) start, end = self.data.get_real_date(start_date, end_date) if signal is None: signal = self.signal if n != 0: # 暂时不管 return else: for i in range(start, end + 1): tmp = signal[i].copy() tmp[self.data.top[i]] -= np.mean(tmp[self.data.top[i]]) tmp[self.data.top[i] & (tmp > 0)] /= np.sum(tmp[self.data.top[i] & (tmp > 0)]) tmp[self.data.top[i] & (tmp < 0)] /= -np.sum(tmp[self.data.top[i] & (tmp < 0)]) self.pnl.append(np.sum(tmp[self.data.top[i]] * self.data.ret[i + 1, self.data.top[i]]) / 2) if not self.cumulated_pnl: self.cumulated_pnl.append(np.sum(tmp[self.data.top[i]] * self.data.ret[i + 1, self.data.top[i]]) / 2) else: self.cumulated_pnl.append( self.cumulated_pnl[-1] + np.sum(tmp[self.data.top[i]] * self.data.ret[i + 1, self.data.top[i]]) / 2) self.cal_stats() def long(self, start_date=None, end_date=None, n=0, signal=None, zt_filter=False, position_mode='weighted'): # 多头策略 """ :param start_date: 开始日期 :param end_date: 结束日期 :param n: 进入股票数量,0表示使用top :param signal: 可以传入一个自定义的signal,默认使用自身的signal :param zt_filter: 是否过滤涨停 :param position_mode: 仓位配置模式 :return: """ self.pnl = [] self.cumulated_pnl = [] self.market_pnl = [] self.market_cumulated_pnl = [] if start_date is None: start_date = str(self.data.start_date) if end_date is None: end_date = str(self.data.end_date) start, end = self.data.get_real_date(start_date, end_date) if signal is None: signal = self.signal.copy() pos = np.array([i for i in range(len(self.data.top[0]))]) # 记录位置 last_pos = None # 记录上一次持仓的股票 if n != 0: # 暂时不管 return else: for i in range(start, end + 1): tmp = signal[i].copy() tmp[self.data.top[i]] -= np.mean(tmp[self.data.top[i]]) tmp[self.data.top[i] & (tmp < 0)] = 0 tmp_ret = self.data.ret[i + 1, self.data.top[i] & (tmp > 0)].copy() # tmp[self.data.top[i] & (self.data.ret[i] >= 0.099)] = 0 # 剔除涨停板 tmp[self.data.top[i] & (tmp > 0)] /= np.sum(tmp[self.data.top[i] & (tmp > 0)]) sig_tmp = tmp[self.data.top[i] & (tmp > 0)].copy() this_pos = pos[self.data.top[i] & (tmp > 0)].copy() if zt_filter: if last_pos is not None: for j in range(len(this_pos)): if (self.data.ret[i, self.data.top[i] & (tmp > 0)][j] > 0.099) and (this_pos[j] not in last_pos): sig_tmp[j] = 0 this_pos[j] = -1 else: for j in range(len(this_pos)): if self.data.ret[i, self.data.top[i] & (tmp > 0)][j] > 0.099: sig_tmp[j] = 0 this_pos[j] = -1 last_pos = this_pos.copy() self.pnl.append(np.sum(sig_tmp * tmp_ret) - np.mean(self.data.ret[i + 1, self.data.top[i]])) if not self.cumulated_pnl: self.cumulated_pnl.append(np.sum(sig_tmp * tmp_ret) - np.mean(self.data.ret[i + 1, self.data.top[i]])) else: self.cumulated_pnl.append( self.cumulated_pnl[-1] + np.sum(sig_tmp * tmp_ret) - np.mean(self.data.ret[i + 1, self.data.top[i]])) self.cal_stats() def long_top_n(self, start_date=None, end_date=None, n=0, signal=None, zt_filter=True, position_mode='weighted'): # 做多预测得分最高的n只股票 """ :param start_date: 开始日期 :param end_date: 结束日期 :param n: 做多多少只股票,默认按照top做多 :param signal: 可以传入一个自定义的signal,默认使用自身的signal :param zt_filter: 是否过滤涨停 :param position_mode: 仓位配置模式 :return: """ self.pnl = [] self.cumulated_pnl = [] self.market_pnl = [] self.market_cumulated_pnl = [] # 验证用功能:记录每一天具体的给出的股票代码和实际的收益率 self.log = [] if start_date is None: start_date = str(self.data.start_date) if end_date is None: end_date = str(self.data.end_date) start, end = self.data.get_real_date(start_date, end_date) if signal is None: signal = self.signal.copy() pos = np.array([i for i in range(len(self.data.top[0]))]) # 记录位置 last_pos = None # 记录上一次持仓的股票 if n != 0: zt = [] in_zt = [] zt_ret = [] zt_w = [] for i in range(start, end + 1): tmp = signal[i].copy() tmp[self.data.top[i]] -= np.mean(tmp[self.data.top[i]]) tmp[self.data.top[i] & (tmp > 0)] /=
np.sum(tmp[self.data.top[i] & (tmp > 0)])
numpy.sum
import warnings import numpy as np import scipy.ndimage def get_det_coords(size: int, spacing: float) -> np.ndarray: """Compute pixel-center positions for 2D detector The centers of the pixels of a detector are usually not aligned to a pixel grid. If we center the detector at the origin, odd images will have a pixel at zero, whereas even images will have two pixels next to the actual center. Parameters ---------- size: int Size of the detector (number of detection points). spacing: float Distance between two detection points in pixels. Returns ------- arr: 1D ndarray Pixel coordinates. """ latmax = (size / 2 - .5) * spacing lat = np.linspace(-latmax, latmax, size, endpoint=True) return lat def get_fan_coords(size: int, spacing: float, distance: float, numang: int) -> np.ndarray: """ Compute equispaced angular coordinates for 2d detector The centers of the pixels of a detector are usually not aligned to a pixel grid. If we center the detector at the origin, odd images will have a pixel at zero, whereas even images will have two pixels next to the actual center. We want to compute an equispaced array of `numang` angles that go between the centers of the outmost far pixels of the detector. Parameters ---------- size: int Size of the detector (number of detection points). spacing: float Distance between two detection points in pixels. distance: float Axial distance from the detector to the angular measurement position in pixels. numang: int Number of angles. Returns ------- angles, latpos: two 1D ndarrays Angles and pixel coordinates at the detector. Notes ----- Actually one would not need to define spacing and distance, but for convenience, these parameters are separated and an arbitrary uint 'pixel' is defined. """ # Compute the angular positions of the outmost pixels latmax = (size / 2 - .5) * spacing angmax = abs(np.arctan2(latmax, distance)) # equispaced angles angles = np.linspace(-angmax, angmax, numang, endpoint=True) latang = np.tan(angles) * distance latang[0] = -latmax latang[-1] = latmax return angles, latang def radon_fan(arr, det_size: int, det_spacing: float = 1, shift_size: int = 1, lS=1, lD=None, return_ang: bool = False, count=None, max_count=None) -> np.ndarray: r"""Compute the Radon transform for a fan beam geometry In contrast to :func:`radon_parallel`, this function uses (1) a fan-beam geometry (the integral is taken along rays that meet at one point), and (2) translates the object laterally instead of rotating it. The result is sometimes referred to as 'linogram'. Problem sketch:: x ^ | ----> z source object detector / . (+det_size/2, lD) (0,-lS) ./ (0,0) . \ . \ . (-det_size/2, lD) The algorithm computes all angular projections for discrete movements of the object. The position of the object is changed such that its lower boundary starts at (det_size/2, 0) and its upper boundary ends at (-det_size/2, 0) at increments of `shift_size`. Parameters ---------- arr: ndarray, shape (N,N) the input image. det_size: int The total detector size in pixels. The detector centered to the source. The axial position of the detector is the center of the pixels on the far right of the object. det_spacing: float Distance between detection points in pixels. shift_size: int The amount of pixels that the object is shifted between projections. lS: multiples of 0.5 Source position relative to the center of `arr`. lS >= 1. lD: int Detector position relative to the center `arr`. Default is N/2. return_ang: bool Also return the angles corresponding to the detector pixels. count, max_count: multiprocessing.Value or `None` Can be used to monitor the progress of the algorithm. Initially, the value of `max_count.value` is incremented by the total number of steps. At each step, the value of `count.value` is incremented. Returns ------- outarr: ndarray of floats, shape (N+det_size,det_size) Linogram of the input image. Where N+det_size determines the lateral position of the sample. See Also -------- scipy.ndimage.interpolation.rotate : The interpolator used to rotate the image. """ N = arr.shape[0] if lD is None: lD = N / 2 lS = abs(lS) lDS = lS + lD numsteps = int(np.ceil((N + det_size) / shift_size)) if max_count is not None: with max_count.get_lock(): max_count.value += numsteps + 2 # First, create a zero-padded version of the input image such that # its center is the source - this is necessary because we can # only rotate through the center of the image. # arrc = np.pad(arr, ((0,0),(N+2*lS-1,0)), mode="constant") if lS <= N / 2: pad = 2 * lS arrc = np.pad(arr, ((0, 0), (pad, 0)), mode="constant") # The center is where either b/w 2 pixels or at one pixel, # as it is for the input image. else: pad = N / 2 + lS if pad % 1 == 0: # even pad = int(pad) # We padd to even number of pixels. # The center of the image is between two pixels (horizontally). arrc = np.pad(arr, ((0, 0), (pad, 0)), mode="constant") else: # odd # We padd to odd number of pixels. # The center of the image is a pixel. pad = int(np.floor(pad)) arrc = np.pad(arr, ((0, 0), (pad, 0)), mode="constant") # Lateral and axial coordinates of detector pixels axi = np.ones(det_size) * lDS # minus .5 because we use the center of the pixel if det_size % 2 == 0: # even even = True else: # odd even = False if count is not None: with count.get_lock(): count.value += 1 lat = get_det_coords(det_size, det_spacing) angles =
np.arctan2(lat, axi)
numpy.arctan2
# -*- coding: utf-8 -*- """ Tests for Results.predict """ import numpy as np import pandas as pd from numpy.testing import assert_allclose, assert_equal import pandas.util.testing as pdt from statsmodels.regression.linear_model import OLS from statsmodels.genmod.generalized_linear_model import GLM class CheckPredictReturns(object): def test_2d(self): res = self.res data = self.data fitted = res.fittedvalues.iloc[1:10:2] pred = res.predict(data.iloc[1:10:2]) pdt.assert_index_equal(pred.index, fitted.index) assert_allclose(pred.values, fitted.values, rtol=1e-13) # plain dict xd = dict(zip(data.columns, data.iloc[1:10:2].values.T)) pred = res.predict(xd) assert_equal(pred.index, np.arange(len(pred))) assert_allclose(pred.values, fitted.values, rtol=1e-13) def test_1d(self): # one observation res = self.res data = self.data pred = res.predict(data.iloc[:1]) pdt.assert_index_equal(pred.index, data.iloc[:1].index) assert_allclose(pred.values, res.fittedvalues[0], rtol=1e-13) fittedm = res.fittedvalues.mean() xmean = data.mean() pred = res.predict(xmean.to_frame().T) assert_equal(pred.index, np.arange(1)) assert_allclose(pred, fittedm, rtol=1e-13) # Series pred = res.predict(data.mean()) assert_equal(pred.index, np.arange(1)) assert_allclose(pred.values, fittedm, rtol=1e-13) # dict with scalar value (is plain dict) # Note: this warns about dropped nan, even though there are None -FIXED pred = res.predict(data.mean().to_dict()) assert_equal(pred.index, np.arange(1)) assert_allclose(pred.values, fittedm, rtol=1e-13) def test_nopatsy(self): res = self.res data = self.data fitted = res.fittedvalues.iloc[1:10:2] # plain numpy array pred = res.predict(res.model.exog[1:10:2], transform=False) assert_allclose(pred, fitted.values, rtol=1e-13) # pandas DataFrame x = pd.DataFrame(res.model.exog[1:10:2], index = data.index[1:10:2], columns=res.model.exog_names) pred = res.predict(x) pdt.assert_index_equal(pred.index, fitted.index) assert_allclose(pred.values, fitted.values, rtol=1e-13) # one observation - 1-D pred = res.predict(res.model.exog[1], transform=False) assert_allclose(pred, fitted.values[0], rtol=1e-13) # one observation - pd.Series pred = res.predict(x.iloc[0]) pdt.assert_index_equal(pred.index, fitted.index[:1]) assert_allclose(pred.values[0], fitted.values[0], rtol=1e-13) class TestPredictOLS(CheckPredictReturns): @classmethod def setup_class(cls): nobs = 30 np.random.seed(987128) x = np.random.randn(nobs, 3) y = x.sum(1) + np.random.randn(nobs) index = ['obs%02d' % i for i in range(nobs)] # add one extra column to check that it doesn't matter cls.data = pd.DataFrame(np.round(np.column_stack((y, x)), 4), columns='y var1 var2 var3'.split(), index=index) cls.res = OLS.from_formula('y ~ var1 + var2', data=cls.data).fit() class TestPredictGLM(CheckPredictReturns): @classmethod def setup_class(cls): nobs = 30 np.random.seed(987128) x = np.random.randn(nobs, 3) y = x.sum(1) + np.random.randn(nobs) index = ['obs%02d' % i for i in range(nobs)] # add one extra column to check that it doesn't matter cls.data = pd.DataFrame(np.round(np.column_stack((y, x)), 4), columns='y var1 var2 var3'.split(), index=index) cls.res = GLM.from_formula('y ~ var1 + var2', data=cls.data).fit() def test_predict_offset(self): res = self.res data = self.data fitted = res.fittedvalues.iloc[1:10:2] offset = np.arange(len(fitted)) fitted = fitted + offset pred = res.predict(data.iloc[1:10:2], offset=offset) pdt.assert_index_equal(pred.index, fitted.index) assert_allclose(pred.values, fitted.values, rtol=1e-13) # plain dict xd = dict(zip(data.columns, data.iloc[1:10:2].values.T)) pred = res.predict(xd, offset=offset) assert_equal(pred.index, np.arange(len(pred))) assert_allclose(pred.values, fitted.values, rtol=1e-13) # offset as pandas.Series data2 = data.iloc[1:10:2].copy() data2['offset'] = offset pred = res.predict(data2, offset=data2['offset']) pdt.assert_index_equal(pred.index, fitted.index) assert_allclose(pred.values, fitted.values, rtol=1e-13) # check nan in exog is ok, preserves index matching offset length data2 = data.iloc[1:10:2].copy() data2['offset'] = offset data2.iloc[0, 1] = np.nan pred = res.predict(data2, offset=data2['offset']) pdt.assert_index_equal(pred.index, fitted.index) fitted_nan = fitted.copy() fitted_nan[0] = np.nan
assert_allclose(pred.values, fitted_nan.values, rtol=1e-13)
numpy.testing.assert_allclose
############################################################################### # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. ############################################################################### import sys import numbers import numpy as np from onnx import numpy_helper, mapping, onnx_pb from .common.onnx_ops import apply_identity, apply_reshape, OnnxOperatorBuilder from .funcbook import converter_func, set_converters from .proto import onnx_proto from .proto.tfcompat import tensorflow class TYPES: # tf-node types: Identity = 'Identity' Const = 'Const' Any = 'Any' All = 'All' Cast = 'Cast' ConcatV2 = 'ConcatV2' ResizeBilinear = 'ResizeBilinear' ResizeNearestNeighbor = 'ResizeNearestNeighbor' Round = 'Round' Shape = 'Shape' StridedSlice = 'StridedSlice' TopKV2 = 'TopKV2' # converter internal types: TD_Reshape = '_reshape_timedistributed' def _cal_tensor_value(tensor): # type: (tensorflow.Tensor)->np.ndarray node = tensor.op if node.type not in ["Const", "ConstV2"]: return None make_ndarray = tensorflow.make_ndarray np_arr = make_ndarray(node.get_attr("value")) return np_arr def _cal_tensor_shape(tensor): if len(tensor.shape) > 0 and hasattr(tensor.shape[0], 'value'): return [x.value for x in tensor.shape] else: return list(tensor.shape) def _to_onnx_type(dt_type): # TensorFlow data types intergrate seamlessly with numpy return mapping.NP_TYPE_TO_TENSOR_TYPE[
np.dtype(dt_type.as_numpy_dtype)
numpy.dtype
from numpy.core import shape_base import latte import numpy as np import pytest from latte.functional.disentanglement import sap class TestSAP: def test_continuous_below_thresh(self): z = np.zeros(shape=(16, 8)) z[:, 0] = np.arange(16, dtype=float) a = np.arange(16, dtype=float)[:, None] sap_score = sap.sap(z, a) np.testing.assert_array_almost_equal(sap_score, [1.0]) def test_continuous_above_thresh(self): z = np.zeros(shape=(16, 2)) z[:, 0] = np.arange(16, dtype=float) z[:, 1] = [ 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, ] a = np.arange(16, dtype=float)[:, None] sap_score = sap.sap(z, a) np.testing.assert_array_almost_equal(sap_score, [0.988235294]) def test_continuous_above_thresh_regdim_miss(self): z = np.zeros(shape=(16, 2)) z[:, 0] = np.arange(16, dtype=float) z[:, 1] = [ 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, ] a = np.arange(16, dtype=float)[:, None] sap_score = sap.sap(z, a, reg_dim=[1]) np.testing.assert_array_almost_equal(sap_score, [-0.988235294]) def test_continuous_above_thresh_regdim_match(self): z = np.zeros(shape=(16, 2)) z[:, 0] = np.arange(16, dtype=float) z[:, 1] = [ 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0, ] a = np.arange(16, dtype=float)[:, None] sap_score = sap.sap(z, a, reg_dim=[0]) np.testing.assert_array_almost_equal(sap_score, [0.988235294]) def test_discrete(self): z = np.zeros(shape=(16, 2)) z[:, 0] = np.linspace(0, 1, 16, endpoint=True) z[:, 1] =
np.zeros(shape=(16,))
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2017 <NAME> <<EMAIL>> # # Distributed under terms of the MIT license. """Compute dynamic properties.""" import logging from typing import Dict, Optional, Union import numpy as np import rowan from ..frame import Frame from ..molecules import Molecule from ..util import create_freud_box, zero_quaternion from ._util import TrackedMotion, molecule2particles np.seterr(divide="raise", invalid="raise", over="raise") logger = logging.getLogger(__name__) YamlValue = Union[str, float, int] class Dynamics: """Compute dynamic properties of a simulation. Args: timestep: The timestep on which the configuration was taken. box: The lengths of each side of the simulation cell including any tilt factors. position: The positions of the molecules with shape ``(nmols, 3)``. Even if the simulation is only 2D, all 3 dimensions of the position need to be passed. orientation: The orientations of all the molecules as a quaternion in the form ``(w, x, y, z)``. If no orientation is supplied then no rotational quantities are calculated. molecule: The molecule for which to compute the dynamics quantities. This is used to compute the structural relaxation for all particles. wave_number: The wave number of the maximum peak in the Fourier transform of the radial distribution function. If None this is calculated from the initial configuration. """ _all_quantities = [ "time", "mean_displacement", "msd", "mfd", "alpha", "scattering_function", "com_struct", "mean_rotation", "msr", "rot1", "rot2", "alpha_rot", "gamma", "overlap", "struct", ] def __init__( self, timestep: int, box: np.ndarray, position: np.ndarray, orientation: Optional[np.ndarray] = None, molecule: Optional[Molecule] = None, wave_number: Optional[float] = None, angular_resolution=360, ) -> None: """Initialise Dynamics. Args: timestep: The timestep at which the reference frame was created. box: The lengths of the simulation cell position: The initial position of each particle. orientation: The initial orientation of each particle. molecule: The molecule which is represented by each position and orientation. wave_number: The wave number corresponding to the maximum in the static structure factor. angular_resolution: The angular resolution of the intermediate scattering function. """ if position.shape[0] == 0: raise RuntimeError("Position must contain values, has length of 0.") if molecule is None: is2d = True self.mol_vector = None else: is2d = molecule.dimensions == 2 self.mol_vector = molecule.positions self.motion = TrackedMotion( create_freud_box(box, is_2D=is2d), position, orientation ) self.timestep = timestep self.num_particles = position.shape[0] self.wave_number = wave_number if self.wave_number is not None: angles = np.linspace( 0, 2 * np.pi, num=angular_resolution, endpoint=False ).reshape((-1, 1)) self.wave_vector = ( np.concatenate([np.cos(angles), np.sin(angles)], axis=1) * wave_number ) @classmethod def from_frame( cls, frame: Frame, molecule: Optional[Molecule] = None, wave_number: Optional[float] = None, ) -> "Dynamics": """Initialise the Dynamics class from a Frame object. There is significant overlap between the frame class and the dynamics class, so this is a convenience method to make the initialisation simpler. """ return cls( frame.timestep, frame.box, frame.position, frame.orientation, molecule=molecule, wave_number=wave_number, ) @property def delta_translation(self): return self.motion.delta_translation @property def delta_rotation(self): return self.motion.delta_rotation def add(self, position: np.ndarray, orientation: Optional[np.ndarray] = None): """Update the state of the dynamics calculations by adding a Frame. This updates the motion of the particles, comparing the positions and orientations of the current frame with the previous frame, adding the difference to the total displacement. This approach allows for tracking particles over periodic boundaries, or through larger rotations assuming that there are sufficient frames to capture the information. Each single displacement obeys the minimum image convention, so for large time intervals it is still possible to have missing information. Args: position: The updated position of each particle orientation: The updated orientation of each particle, represented as a quaternion """ self.motion.add(position, orientation) def add_frame(self, frame: Frame): """Update the state of the dynamics calculations by adding a Frame. This updates the motion of the particles, comparing the positions and orientations of the current frame with the previous frame, adding the difference to the total displacement. This approach allows for tracking particles over periodic boundaries, or through larger rotations assuming that there are sufficient frames to capture the information. Each single displacement obeys the minimum image convention, so for large time intervals it is still possible to have missing information. Args: frame: The configuration containing the current particle information. """ self.motion.add(frame.position, frame.orientation) def compute_displacement(self) -> np.ndarray: """Compute the translational displacement for each particle.""" return np.linalg.norm(self.delta_translation, axis=1) def compute_displacement2(self) -> np.ndarray: """Compute the squared displacement for each particle.""" return np.square(self.delta_translation).sum(axis=1) def compute_msd(self) -> float: """Compute the mean squared displacement.""" return self.compute_displacement2().mean() def compute_mfd(self) -> float: """Compute the fourth power of displacement.""" return np.square(self.compute_displacement2()).mean() def compute_alpha(self) -> float: r"""Compute the non-Gaussian parameter alpha for translational motion in 2D. .. math:: \alpha = \frac{\langle \Delta r^4\rangle} {2\langle \Delta r^2 \rangle^2} -1 """ disp2 = self.compute_displacement2() try: return np.square(disp2).mean() / (2 * np.square((disp2).mean())) - 1 except FloatingPointError: with np.errstate(invalid="ignore"): res = np.square(disp2).mean() / (2 * np.square((disp2).mean())) - 1 np.nan_to_num(res, copy=False) return res def compute_time_delta(self, timestep: int) -> int: """Time difference between initial frame and timestep.""" return timestep - self.timestep def compute_rotation(self) -> np.ndarray: """Compute the rotational motion for each particle.""" return np.linalg.norm(self.delta_rotation, axis=1) def compute_rotation2(self) -> np.ndarray: """Compute the rotation from the initial frame.""" return np.square(self.delta_rotation).sum(axis=1) def compute_mean_rotation(self) -> float: """Compute the rotation from the initial frame.""" return self.compute_rotation().mean() def compute_msr(self) -> float: """Compute the mean squared rotation from the initial frame.""" return self.compute_rotation2().mean() def compute_isf(self) -> float: """Compute the intermediate scattering function.""" return np.cos(np.dot(self.wave_vector, self.delta_translation[:, :2].T)).mean() def compute_rotational_relax1(self) -> float: r"""Compute the first-order rotational relaxation function. .. math:: C_1(t) = \langle \hat{\mathbf{e}}(0) \cdot \hat{\mathbf{e}}(t) \rangle Return: float: The rotational relaxation """ return np.cos(self.compute_rotation()).mean() def compute_rotational_relax2(self) -> float: r"""Compute the second rotational relaxation function. .. math:: C_1(t) = \langle 2(\hat{\mathbf{e}}(0) \cdot \hat{\mathbf{e}}(t))^2 - 1 \rangle Return: float: The rotational relaxation """ return np.mean(2 * np.square(np.cos(self.compute_rotation())) - 1) def compute_alpha_rot(self) -> float: r"""Compute the non-Gaussian parameter alpha for rotational motion in 2D. Rotational motion in 2D, is a single dimension of rotational motion, hence the use of a different divisor than translational motion. .. math:: \alpha = \frac{\langle \Delta \theta^4\rangle} {3\langle \Delta \theta^2 \rangle^2} -1 """ theta2 = self.compute_rotation2() try: return np.square(theta2).mean() / (3 * np.square((theta2).mean())) - 1 except FloatingPointError: with np.errstate(invalid="ignore"): res =
np.square(theta2)
numpy.square
import numpy as np training_data = [ {'x': np.array([0.5819, 0.3683, 0.4413]), 'y': 0.3675}, {'x': np.array([0.5257, 0.8034, 0.3369]), 'y': 0.4502}, {'x': np.array([0.5464, 0.5087, 0.2151]), 'y': 0.323}, {'x': np.array([0.0368, 0.4483, 0.1082]), 'y': 0.0932}, {'x': np.array([0.3923, 0.8577, 0.844 ]), 'y': 0.554}, {'x': np.array([0.2598, 0.8384, 0.4308]), 'y': 0.3847}, {'x': np.array([0.2948, 0.7698, 0.8535]), 'y': 0.4811}, {'x': np.array([0.3932, 0.6851, 0.5644]), 'y': 0.4076}, {'x': np.array([0.3504, 0.1667, 0.0203]), 'y': 0.1258}, {'x': np.array([0.5699, 0.083 , 0.2821]), 'y': 0.2843}, {'x': np.array([0.5214, 0.3075, 0.7003]), 'y': 0.3978}, {'x': np.array([0.5106, 0.3842, 0.2181]), 'y': 0.2775}, {'x': np.array([0.9681, 0.3554, 0.6043]), 'y': 0.6357}, {'x': np.array([0.0159, 0.516 , 0.7315]), 'y': 0.2727}, {'x': np.array([0.202 , 0.4277, 0.1312]), 'y': 0.1447}, {'x': np.array([0.4517, 0.6635, 0.0862]), 'y': 0.2951}, {'x': np.array([0.5695, 0.4303, 0.7988]), 'y': 0.471}, {'x': np.array([0.1438, 0.4769, 0.561 ]), 'y': 0.2537}, {'x': np.array([0.8781, 0.005 , 0.5077]), 'y': 0.5148}, {'x': np.array([0.2462, 0.9468, 0.6733]), 'y': 0.4972}, {'x': np.array([0.5648, 0.7944, 0.5051]), 'y': 0.5097}, {'x': np.array([0.0151, 0.5057, 0.9673]), 'y': 0.333}, {'x': np.array([0.9351, 0.3965, 0.8533]), 'y': 0.6879}, {'x': np.array([0.1393, 0.442 , 0.567 ]), 'y': 0.2452}, {'x': np.array([0.5434, 0.1117, 0.0418]), 'y': 0.2087}, {'x': np.array([0.5808, 0.4009, 0.4434]), 'y': 0.3743}, {'x': np.array([0.0573, 0.6268, 0.9303]), 'y': 0.3717}, {'x': np.array([0.0879, 0.2472, 0.5177]), 'y': 0.1804}, {'x': np.array([0.8892, 0.4163, 0.7102]), 'y': 0.6231}, {'x': np.array([0.9976, 0.0016, 0.8722]), 'y': 0.695}, {'x': np.array([0.075 , 0.5708, 0.9446]), 'y': 0.3626}, {'x': np.array([0.9911, 0.4114, 0.1397]), 'y': 0.5387}, {'x': np.array([0.5167, 0.6452, 0.3098]), 'y': 0.3772}, {'x': np.array([0.5823, 0.1991, 0.9728]), 'y': 0.4848}, {'x': np.array([0.3766, 0.5462, 0.0057]), 'y': 0.2047}, {'x': np.array([0.2625, 0.2555, 0.7608]), 'y': 0.3029}, {'x': np.array([0.5443, 0.6129, 0.6856]), 'y': 0.4799}, {'x': np.array([0.1287, 0.5737, 0.4872]), 'y': 0.2565}, {'x': np.array([0.5684, 0.9465, 0.4019]), 'y': 0.5549}, {'x': np.array([0.2328, 0.7245, 0.1978]), 'y': 0.2648}, {'x': np.array([0.914 , 0.9175, 0.4937]), 'y': 0.7611}, {'x': np.array([0.2271, 0.4644, 0.8575]), 'y': 0.3572}, {'x': np.array([0.0864, 0.0804, 0.3205]), 'y': 0.1122}, {'x': np.array([0.1798, 0.0815, 0.8586]), 'y': 0.2857}, {'x': np.array([0.5004, 0.8261, 0.6381]), 'y': 0.5298}, {'x': np.array([0.7573, 0.8823, 0.1121]), 'y': 0.5441}, {'x': np.array([0.8791, 0.2571, 0.9163]), 'y': 0.6431}, {'x': np.array([0.0732, 0.4323, 0.7305]), 'y': 0.2672}, {'x': np.array([0.0034, 0.1835, 0.2874]), 'y': 0.0873}, {'x': np.array([0.7829, 0.2822, 0.6289]), 'y': 0.51}, {'x': np.array([0.9289, 0.8584, 0.9859]), 'y': 0.8752}, {'x': np.array([0.2879, 0.3621, 0.4345]), 'y': 0.2419}, {'x': np.array([0.859 , 0.468 , 0.3035]), 'y': 0.5065}, {'x': np.array([0.3386, 0.3234, 0.891 ]), 'y': 0.3761}, {'x': np.array([0.4942, 0.9679, 0.5773]), 'y': 0.5791}, {'x': np.array([0.3298, 0.2964, 0.3284]), 'y': 0.217}, {'x': np.array([0.9949, 0.9716, 0.5551]), 'y': 0.8616}, {'x': np.array([0.6914, 0.9031, 0.5679]), 'y': 0.6401}, {'x': np.array([0.5477, 0.9153, 0.9674]), 'y': 0.6816}, {'x': np.array([0.7822, 0.5467, 0.7356]), 'y': 0.5972}, {'x': np.array([0.0617, 0.8124, 0.2402]), 'y': 0.2593}, {'x': np.array([0.0033, 0.6644, 0.7327]), 'y': 0.3167}, {'x': np.array([0.1184, 0.7044, 0.3024]), 'y': 0.2486}, {'x': np.array([0.012 , 0.2953, 0.3404]), 'y': 0.1182}, {'x': np.array([0.5689, 0.5353, 0.2987]), 'y': 0.3635}, {'x': np.array([0.5426, 0.2256, 0.7156]), 'y': 0.3999}, {'x': np.array([0.9523, 0.5509, 0.7318]), 'y': 0.7065}, {'x': np.array([0.5466, 0.3827, 0.5994]), 'y': 0.3962}, {'x': np.array([0.8549, 0.3651, 0.0881]), 'y': 0.4229}, {'x': np.array([0.6769, 0.1411, 0.9955]), 'y': 0.5334}, {'x': np.array([0.3948, 0.8252, 0.464 ]), 'y': 0.4381}, {'x': np.array([0.6073, 0.6924, 0.4008]), 'y': 0.4614}, {'x': np.array([0.136 , 0.4414, 0.7052]), 'y': 0.2813}, {'x': np.array([0.9094, 0.7285, 0.5405]), 'y': 0.6869}, {'x': np.array([0.8051, 0.8431, 0.7533]), 'y': 0.7264}, {'x': np.array([0.4946, 0.2798, 0.3238]), 'y': 0.2802}, {'x': np.array([0.7026, 0.448 , 0.1602]), 'y': 0.3711}, {'x': np.array([0.5262, 0.2316, 0.5341]), 'y': 0.3443}, {'x': np.array([0.6447, 0.0107, 0.423 ]), 'y': 0.3573}, {'x': np.array([0.9458, 0.7168, 0.0561]), 'y': 0.5768}, {'x': np.array([0.2762, 0.0242, 0.6527]), 'y': 0.2612}, {'x': np.array([0.8588, 0.579 , 0.9023]), 'y': 0.6987}, {'x': np.array([0.4085, 0.9815, 0.6949]), 'y': 0.5817}, {'x': np.array([0.274 , 0.4376, 0.6946]), 'y': 0.3231}, {'x': np.array([0.3026, 0.4449, 0.5889]), 'y': 0.3067}, {'x': np.array([0.3634, 0.4367, 0.3362]), 'y': 0.2596}, {'x': np.array([0.8218, 0.4028, 0.0488]), 'y': 0.3996}, {'x': np.array([0.6126, 0.9342, 0.0632]), 'y': 0.479}, {'x': np.array([0.4159, 0.4047, 0.5318]), 'y': 0.3258}, {'x': np.array([0.2581, 0.3702, 0.865 ]), 'y': 0.3487}, {'x': np.array([0.9556, 0.4297, 0.3273]), 'y': 0.5681}, {'x': np.array([0.6467, 0.3666, 0.432 ]), 'y': 0.3969}, {'x': np.array([0.1882, 0.1628, 0.5189]), 'y': 0.2024}, {'x': np.array([0.2447, 0.6555, 0.0429]), 'y': 0.2017}, {'x': np.array([0.9605, 0.5576, 0.7954]), 'y': 0.7313}, {'x': np.array([0.2844, 0.131 , 0.8107]), 'y': 0.3111}, {'x': np.array([0.6513, 0.8081, 0.455 ]), 'y': 0.5449}, {'x': np.array([0.3039, 0.0487, 0.2701]), 'y': 0.1688}, {'x': np.array([0.7149, 0.6344, 0.4245]), 'y': 0.5032}, {'x': np.array([0.1934, 0.9614, 0.6691]), 'y': 0.4859}, {'x': np.array([0.9782, 0.9374, 0.7458]), 'y': 0.8832}, {'x': np.array([0.6589, 0.3404, 0.8188]), 'y': 0.5022}, {'x': np.array([0.9996, 0.0406, 0.3657]), 'y': 0.5606}, {'x': np.array([0.5866, 0.7489, 0.223 ]), 'y': 0.4254}, {'x': np.array([0.8548, 0.0654, 0.236 ]), 'y': 0.4279}, {'x': np.array([0.0599, 0.2245, 0.3526]), 'y': 0.125}, {'x': np.array([0.5582, 0.8149, 0.572 ]), 'y': 0.5334}, {'x': np.array([0.5848, 0.7718, 0.4005]), 'y': 0.4816}, {'x': np.array([0.7732, 0.555 , 0.8219]), 'y': 0.6177}, {'x': np.array([0.7937, 0.3883, 0.6229]), 'y': 0.5339}, {'x': np.array([0.8657, 0.6768, 0.9154]), 'y': 0.7396}, {'x': np.array([0.9966, 0.4677, 0.9739]), 'y': 0.7804}, {'x': np.array([0.7549, 0.5367, 0.7743]), 'y': 0.5889}, {'x': np.array([0.9174, 0.4121, 0.7512]), 'y': 0.6519}, {'x': np.array([0.2975, 0.727 , 0.1467]), 'y': 0.2748}, {'x': np.array([0.5051, 0.7208, 0.6813]), 'y': 0.4997}, {'x': np.array([0.9716, 0.7796, 0.033 ]), 'y': 0.614}, {'x': np.array([0.2522, 0.1755, 0.3215]), 'y': 0.1719}, {'x': np.array([0.6301, 0.8266, 0.5715]), 'y': 0.5735}, {'x': np.array([0.9852, 0.7718, 0.6734]), 'y': 0.7927}, {'x': np.array([0.5307, 0.7507, 0.7803]), 'y': 0.5497}, {'x': np.array([0.4445, 0.5047, 0.9589]), 'y': 0.4769}, {'x': np.array([0.2088, 0.9341, 0.5953]), 'y': 0.4572}, {'x': np.array([0.2311, 0.458 , 0.6427]), 'y': 0.2992}, {'x': np.array([0.2855, 0.9732, 0.7678]), 'y': 0.5501}, {'x': np.array([0.4491, 0.7721, 0.3696]), 'y': 0.4122}, {'x': np.array([0.1781, 0.1101, 0.5302]), 'y': 0.1983}, {'x': np.array([0.3195, 0.9199, 0.6077]), 'y': 0.4923}, {'x': np.array([0.9729, 0.4863, 0.5731]), 'y': 0.6603}, {'x': np.array([0.0357, 0.431 , 0.686 ]), 'y': 0.2442}, {'x': np.array([0.5236, 0.9087, 0.1052]), 'y': 0.4354}, {'x': np.array([0.5903, 0.0541, 0.0645]), 'y': 0.2345}, {'x': np.array([0.5923, 0.95 , 0.1293]), 'y': 0.4949}, {'x': np.array([0.1322, 0.7993, 0.0558]), 'y': 0.2249}, {'x':
np.array([0.5932, 0.4393, 0.8538])
numpy.array
import cv2 import numpy as np import matplotlib.pyplot as plt import time import matplotlib base_path = os.path.dirname(os.path.abspath(__file__)) img_path = os.path.join( base_path, "empty.jpg" ) video_path = os.path.join(base_path, "trafficvideo.mp4") input_img=cv2.imread("img_path") cap= cv2.VideoCapture('video_path') frame_width = int(cap.get(3)) frame_height = int(cap.get(4)) img_coord=np.float32([[976,223],[1264,220],[453,863],[1473,865]]) new_coor=
np.float32([[472,52],[800,52],[472,830],[800,830]])
numpy.float32
import os,sys import numpy as np import random import multiprocessing import concurrent.futures from concurrent.futures import ProcessPoolExecutor NCPU = 4 os.environ["CUDA_VISIBLE_DEVICES"] = "3" ##################### input parameters ############################### FILEDIR = sys.argv[1] INDIR = sys.argv[2] # native npz dir nb_epochs = int(sys.argv[3]) n2d_layers = int(sys.argv[4]) n2d_filters = int(sys.argv[5]) method = sys.argv[6] # FILEDIR = "/dl/suhong/project/TemptrRosetta/DB/DB13989" # INDIR = "/dl/yangjy/project/distance/npz" # native npz dir # nb_epochs = 1 # n2d_layers = 11 # n2d_filters = 8 test_file = "%s/test_lst"%(FILEDIR) all_file = "%s/list"%(FILEDIR) TEMPDIR = "%s/temp_npz1"%(FILEDIR) # template npz dir # test set with open(test_file) as f: test_ids = f.read().splitlines() # all set: containing train and test list with open(all_file) as f: IDs = f.read().splitlines() maxseq = 20000 minseq = 1 dmax = 20.0 dmin = 2.0 nbins = 36 kmin = 6 bins = np.linspace(dmin, dmax, nbins+1) bins180 = np.linspace(0.0, np.pi, 13) bins360 = np.linspace(-np.pi, np.pi, 25) def npz_loader(ID, DIR = INDIR, DIR2 = TEMPDIR): name = DIR + '/' + ID + '.npz' name_temp = DIR2 + '/' + ID + '_T01' + '.npz' npz = np.load(name) npz_temp = np.load(name_temp) # temp npz # print(name_temp) #test #### native npz objective #### # dist dist = npz['dist'] dist[dist<0.001] = 999.9 # bin distance matrix dbin = np.digitize(dist, bins).astype(np.uint8) dbin[dbin > nbins] = 0 # bin omega obin = np.digitize(npz['omega'], bins360).astype(np.uint8) obin[dbin == 0] = 0 # bin theta tbin = np.digitize(npz['theta_asym'], bins360).astype(np.uint8) tbin[dbin == 0] = 0 # bin phi pbin = np.digitize(npz['phi_asym'], bins180).astype(np.uint8) pbin[dbin == 0] = 0 #### template npz objective #### # dist (Cb-Cb) d = npz_temp['dist'] d[d<0.001] = 999.9 tdbin = np.digitize(d, bins).astype(np.uint8) tdbin[tdbin > nbins] = 0 # omega om = npz_temp['omega'] tobin = np.digitize(om, bins360).astype(np.uint8) tobin[tdbin == 0] = 0 # theta_asym th_asym = npz_temp['theta_asym'] ttbin = np.digitize(th_asym, bins360).astype(np.uint8) ttbin[tdbin == 0] = 0 # phi_asym ph_asym = npz_temp['phi_asym'] tpbin = np.digitize(ph_asym, bins180).astype(np.uint8) tpbin[tdbin == 0] = 0 # template weight weight = npz_temp['weight'] return {'mask1d' : npz['mask1d'], 'msa' : npz['msa'][:maxseq,:], 'dbin' : dbin, 'obin' : obin, 'tbin' : tbin, 'pbin' : pbin, 'dist' : dist, 'bbpairs' : npz['bbpairs'], 'd' : tdbin, 'om' : tobin, 'th_asym' : ttbin, 'ph_asym' : tpbin, 'weight' : weight, 'label' : ID} # judge whether or not len(native.npz) == len(temp.npz) remove_ids = [] for i in range(len(IDs)): nat_npz = np.load(INDIR + '/' + IDs[i] + '.npz') tem_npz = np.load(TEMPDIR + '/' + IDs[i] + '_T01' + '.npz') nat_len = nat_npz['dist'].shape[0] tem_len = tem_npz['dist'].shape[0] if nat_len != tem_len: remove_ids.append(IDs[i]) for i in range(len(remove_ids)): print(remove_ids[i]) sub_test_ids = list(set(test_ids)-set(remove_ids)) sub_IDs = list(set(IDs)-set(remove_ids)) train_ids = list(set(sub_IDs) - set(sub_test_ids)) train = [] test = [] s = 0.0 # load data in parallel using NCPU threads with ProcessPoolExecutor(max_workers=NCPU) as executor: futures_test = [executor.submit(npz_loader, (ID)) for ID in sub_test_ids] results_test = concurrent.futures.wait(futures_test) for f in futures_test: test.append(f.result()) for key,arr in test[-1].items(): if key != "label": s += arr.nbytes with ProcessPoolExecutor(max_workers=NCPU) as executor: futures_train = [executor.submit(npz_loader, (ID)) for ID in train_ids] results_train = concurrent.futures.wait(futures_train) for f in futures_train: train.append(f.result()) for key,arr in train[-1].items(): if key != "label": s += arr.nbytes print('# {:d} proteins, {:.2f}gb'.format(len(train)+len(test), s / 1024**3)) print('# Training set: ', len(train)) print('# Testing set: ', len(test)) # save model # PREFIX = "Train" + str(len(train)) + "_Test" + str(len(test)) PREFIX = method CHK = "/dl/suhong/project/TemptrRosetta/models/model." + PREFIX + '-layer%s'%(n2d_layers) + '-filter%s'%(n2d_filters) + '-epoch%s'%(nb_epochs) sys.stdout.flush() import tensorflow as tf config = tf.compat.v1.ConfigProto( gpu_options = tf.compat.v1.GPUOptions(per_process_gpu_memory_fraction=0.50) ) lr = 0.0001 l2_coef = 0.0001 window2d = 3 maxlen = 260 wmin = 0.8 ns = 21 # 1-hot MSA to PSSM def msa2pssm(msa1hot, w): beff = tf.reduce_sum(w) f_i = tf.reduce_sum(w[:,None,None]*msa1hot, axis=0) / beff + 1e-9 h_i = tf.reduce_sum( -f_i * tf.math.log(f_i), axis=1) return tf.concat([f_i, h_i[:,None]], axis=1) # randomly subsample the alignment def subsample_msa(msa): nr, nc = msa.shape # do not subsample shallow MSAs if nr < 10: return msa # number of sequences to subsample n = int(10.0**np.random.uniform(np.log10(nr))-10.0) if n <= 0: return np.reshape(msa[0], [1,nc]) # n unique indices sample = sorted(random.sample(range(1, nr-1), n)) # stack first sequence with n randomly selected ones msa_new = np.vstack([msa[0][None,:], msa[1:][sample]]) return msa_new.astype(np.uint8) # reweight MSA based on cutoff def reweight(msa1hot, cutoff): with tf.name_scope('reweight'): id_min = tf.cast(tf.shape(msa1hot)[1], tf.float32) * cutoff id_mtx = tf.tensordot(msa1hot, msa1hot, [[1,2], [1,2]]) id_mask = id_mtx > id_min w = 1.0/tf.reduce_sum(tf.cast(id_mask, dtype=tf.float32),-1) return w def fast_dca(msa1hot, weights, penalty = 4.5): nr = tf.shape(msa1hot)[0] nc = tf.shape(msa1hot)[1] ns = tf.shape(msa1hot)[2] with tf.name_scope('covariance'): x = tf.reshape(msa1hot, (nr, nc * ns)) num_points = tf.reduce_sum(weights) - tf.sqrt(tf.reduce_mean(weights)) mean = tf.reduce_sum(x * weights[:,None], axis=0, keepdims=True) / num_points x = (x - mean) * tf.sqrt(weights[:,None]) cov = tf.matmul(tf.transpose(x), x)/num_points with tf.name_scope('inv_convariance'): cov_reg = cov + tf.eye(nc * ns) * penalty / tf.sqrt(tf.reduce_sum(weights)) inv_cov = tf.linalg.inv(cov_reg) # reduce entropy effect #wd = tf.linalg.diag_part(w) #w = w/tf.sqrt(wd[None,:]*wd[:,None]) x1 = tf.reshape(inv_cov,(nc, ns, nc, ns)) x2 = tf.transpose(x1, [0,2,1,3]) features = tf.reshape(x2, (nc, nc, ns * ns)) x3 = tf.sqrt(tf.reduce_sum(tf.square(x1[:,:-1,:,:-1]),(1,3))) * (1-tf.eye(nc)) apc = tf.reduce_sum(x3,0,keepdims=True) * tf.reduce_sum(x3,1,keepdims=True) / tf.reduce_sum(x3) contacts = (x3 - apc) * (1-tf.eye(nc)) return tf.concat([features, contacts[:,:,None]], axis=2) def cont_acc(pred, dist, frac = 1.0): nc = dist.shape[0] if nc < 24: return 0.0 w = np.sum(pred[0,:,:,1:13], axis=-1) idx = np.array([[i,j,w[i,j]] for i in range(nc) for j in range(i+24,nc)]) n = int(nc*frac) top = idx[np.argsort(idx[:,2])][-n:, :2].astype(int) ngood = np.sum([dist[r[0],r[1]]<8.0 for r in top]) return 1.0 * ngood / n def get_fdict(item, flag): # native npz objective L = item['msa'].shape[1] msa_ = subsample_msa(item['msa']) theta_ = item['tbin'] omega_ = item['obin'] phi_ = item['pbin'] dist_ = item['dbin'] mask1d_ = item['mask1d'] bbpairs_ = item['bbpairs'] # template npz objective d_ = item['d'] om_ = item['om'] th_ = item['th_asym'] ph_ = item['ph_asym'] w_ = item['weight'] start = 0 stop = L nres = L # slice vertically if sequence is too long if L > maxlen: nres = np.random.randint(150,maxlen) start = np.random.randint(L-maxlen+1) stop = start + nres item['start'] = start item['stop'] = stop feed_dict = { ncol: nres, nrow: msa_.shape[0], msa: msa_[:,start:stop], theta: theta_[start:stop,start:stop], omega: omega_[start:stop,start:stop], phi: phi_[start:stop,start:stop], dist: dist_[start:stop,start:stop], mask1d: mask1d_[start:stop], bbpairs: bbpairs_[start:stop,start:stop], d: d_[start:stop,start:stop], om: om_[start:stop,start:stop], th: th_[start:stop,start:stop], ph: ph_[start:stop,start:stop], w_temp: w_, is_train: flag} return feed_dict activation = tf.nn.elu conv2d = tf.layers.conv2d with tf.Graph().as_default(): with tf.name_scope('input'): ncol = tf.compat.v1.placeholder(dtype=tf.int32, shape=()) nrow = tf.compat.v1.placeholder(dtype=tf.int32, shape=()) msa = tf.compat.v1.placeholder(dtype=tf.uint8, shape=(None,None)) mask1d = tf.compat.v1.placeholder(dtype=tf.float32, shape=(None)) bbpairs = tf.compat.v1.placeholder(dtype=tf.uint8, shape=(None,None)) dist = tf.compat.v1.placeholder(dtype=tf.uint8, shape=(None,None)) omega = tf.compat.v1.placeholder(dtype=tf.uint8, shape=(None,None)) theta = tf.compat.v1.placeholder(dtype=tf.uint8, shape=(None,None)) phi = tf.compat.v1.placeholder(dtype=tf.uint8, shape=(None,None)) d = tf.compat.v1.placeholder(dtype=tf.float32, shape=(None,None)) om = tf.compat.v1.placeholder(dtype=tf.float32, shape=(None,None)) th = tf.compat.v1.placeholder(dtype=tf.float32, shape=(None,None)) ph = tf.compat.v1.placeholder(dtype=tf.float32, shape=(None,None)) w_temp = tf.compat.v1.placeholder(dtype=tf.float32, shape=()) is_train = tf.compat.v1.placeholder(tf.bool, name='is_train') ######################## convert inputs to 1-hot ###################### msa1hot = tf.one_hot(msa, ns, dtype=tf.float32) dist1hot = tf.one_hot(dist, nbins+1, dtype=tf.float32) omega1hot = tf.one_hot(omega, 25, dtype=tf.float32) theta1hot = tf.one_hot(theta, 25, dtype=tf.float32) phi1hot = tf.one_hot(phi, 13, dtype=tf.float32) bb1hot = tf.one_hot(bbpairs, 3, dtype=tf.float32) ########################### collect features ########################### ###### msa ######## # 1d w = reweight(msa1hot, wmin) neff = tf.reduce_sum(w) f1d_seq = msa1hot[0,:,:20] f1d_pssm = msa2pssm(msa1hot, w) f1d = tf.concat(values=[f1d_seq, f1d_pssm], axis=1) f1d = tf.expand_dims(f1d, axis=0) f1d = tf.reshape(f1d, [1,ncol,42]) # 2d f2d_dca = tf.cond(nrow>1, lambda: fast_dca(msa1hot, w), lambda: tf.zeros([ncol,ncol,442], tf.float32)) f2d_dca = tf.expand_dims(f2d_dca, axis=0) f2d_query = tf.concat([tf.tile(f1d[:,:,None,:], [1,1,ncol,1]), tf.tile(f1d[:,None,:,:], [1,ncol,1,1]), f2d_dca], axis=-1) ###### template ######## # 2d tem_d = tf.expand_dims(tf.cast(d[:,:,None],dtype=tf.float32),axis=0) tem_om = tf.expand_dims(tf.cast(om[:,:,None],dtype=tf.float32),axis=0) tem_th = tf.expand_dims(tf.cast(th[:,:,None],dtype=tf.float32),axis=0) tem_ph = tf.expand_dims(tf.cast(ph[:,:,None],dtype=tf.float32),axis=0) f2d_temp = tf.concat([tem_d,tem_om,tem_th,tem_ph],axis=-1) # (1,L,L,4) tf.uint8 ############# connect query and one template################### #f2d = tf.concat([f2d_query * 1.0, f2d_temp * w_temp],axis=-1) #f2d = tf.reshape(f2d, [1,ncol,ncol,442+2*42+4]) ############## connect 1d and 2d (trRosetta)############### f2d = f2d_query f2d = tf.reshape(f2d, [1,ncol,ncol,442+2*42]) ############# only template ####################### # f2d = tf.reshape(f2d_temp, [1,ncol,ncol,4]) layers2d = [f2d] layers2d.append(conv2d(layers2d[-1], n2d_filters, 1, padding='SAME')) layers2d.append(tf.contrib.layers.instance_norm(layers2d[-1])) layers2d.append(activation(layers2d[-1])) # D.Jones resnet dilation = 1 for _ in range(n2d_layers): layers2d.append(conv2d(layers2d[-1], n2d_filters, window2d, padding='SAME', dilation_rate=dilation)) layers2d.append(tf.contrib.layers.instance_norm(layers2d[-1])) layers2d.append(activation(layers2d[-1])) layers2d.append(tf.keras.layers.Dropout(rate=0.15)(layers2d[-1], training=is_train)) layers2d.append(conv2d(layers2d[-1], n2d_filters, window2d, padding='SAME', dilation_rate=dilation)) layers2d.append(tf.contrib.layers.instance_norm(layers2d[-1])) layers2d.append(activation(layers2d[-1] + layers2d[-7])) dilation *= 2 if dilation > 16: dilation = 1 # loss on theta logits_theta = conv2d(layers2d[-1], 25, 1, padding='SAME') out_theta = tf.nn.softmax_cross_entropy_with_logits_v2(labels=theta1hot, logits=logits_theta) loss_theta = tf.reduce_mean(out_theta) # loss on phi logits_phi = conv2d(layers2d[-1], 13, 1, padding='SAME') out_phi = tf.nn.softmax_cross_entropy_with_logits_v2(labels=phi1hot, logits=logits_phi) loss_phi = tf.reduce_mean(out_phi) # symmetrize layers2d.append(0.5 * (layers2d[-1] + tf.transpose(layers2d[-1], perm=[0,2,1,3]))) # loss on distances logits_dist = conv2d(layers2d[-1], nbins+1, 1, padding='SAME') out_dist = tf.nn.softmax_cross_entropy_with_logits_v2(labels=dist1hot, logits=logits_dist) loss_dist = tf.reduce_mean(out_dist) prob_dist = tf.nn.softmax(logits_dist) # loss on beta-strand pairings logits_bb = conv2d(layers2d[-1], 3, 1, padding='SAME') out_bb = tf.nn.softmax_cross_entropy_with_logits_v2(labels=bb1hot, logits=logits_bb) loss_bb = tf.reduce_mean(out_bb) # loss on omega logits_omega = conv2d(layers2d[-1], 25, 1, padding='SAME') out_omega = tf.nn.softmax_cross_entropy_with_logits_v2(labels=omega1hot, logits=logits_omega) loss_omega = tf.reduce_mean(out_omega) # # L2 penalty # vars = tf.trainable_variables() lossL2 = tf.add_n([tf.nn.l2_loss(v) for v in vars if v.name not in ['bias', 'gamma', 'b', 'g', 'beta']]) * l2_coef # # optimizer # opt = tf.train.AdamOptimizer(learning_rate=lr) #optimization update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # training op with tf.control_dependencies(update_ops): train_op = opt.minimize(loss_dist + loss_bb + loss_theta + loss_phi + loss_omega + lossL2) total_parameters=np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]) print("tot. params: " + str(total_parameters)) init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) saver = tf.train.Saver() with tf.Session(config=config) as sess: sess.run(init_op) val_loss_best = 999.9 out_name = method + '_' + "Test" + str(len(test)) with open("/dl/suhong/project/TemptrRosetta/output/acc/%s.result"%(out_name), 'wt') as fid: for epoch in range(nb_epochs): # training random.shuffle(train) #rearrange train list train_losses = [] for item in train: _, ldist, ltheta, lphi, lomega = sess.run([train_op, loss_dist, loss_theta, loss_phi, loss_omega], feed_dict=get_fdict(item, 1)) train_losses.append([ldist,ltheta,lphi,lomega]) # testing val_losses = [] vacc_dist = [] random.shuffle(test) for item in test: ldist, ltheta, lphi, lomega, pdist, neff_ = sess.run([loss_dist, loss_theta, loss_phi, loss_omega, prob_dist, neff], feed_dict = get_fdict(item, 0)) item['pdist'] = pdist item['neff'] = neff_ val_losses.append([ldist,ltheta,lphi,lomega]) start = item['start'] stop = item['stop'] vacc_dist.append(cont_acc(item['pdist'], item['dist'][start:stop,start:stop])) # output each test result in a new file acc = cont_acc(item['pdist'], item['dist'][start:stop,start:stop]) out_str = item['label'] + '\t' + str('{:.5f}'.format(acc)) fid.writelines(out_str+"\n") fid.writelines('epoch=%s\tval_acc=%s'%(str(epoch),str('{:.5f}'.format(np.average(vacc_dist))))+"\n") train_losses =
np.array(train_losses)
numpy.array
import librosa as lb import numpy as np class OQM: def __init__(self, clean_utt = '', noise_utt = ''): """ Generic Objective quality measure class for initializing variables and loading the speech samples Attributes: c_utt (np array of float or path to clean audio) representing the info for clean utterance n_utt (np array of float or path to clean audio) representing the info for noisy utterance c_sr (integer) sample rate for clean utterance n_sr (integer) sample rate for noisy utterance """ self.c_utt = clean_utt self.n_utt = noise_utt self.c_sr = 0 self.n_sr = 0 def load(self, clean_utt,noise_utt): """Function to load the clean and noisy utterance if the path is specified. OR if numpy arrays are passed to the function then it just resamples it with sample rate equal to 16000(its a requirement for the PESQ class to work properly) Args: file_name (string): name of a file to read from Returns: None """ if isinstance(clean_utt, str) and isinstance(noise_utt, str): self.c_utt, self.c_sr = lb.load(clean_utt, sr=16000) self.n_utt, self.n_sr = lb.load(noise_utt, sr=16000) self.c_utt = np.array(self.c_utt).reshape(-1) self.n_utt =
np.array(self.n_utt)
numpy.array
import numpy as np import scipy.signal import matplotlib import matplotlib.pyplot as plt plt.switch_backend('agg') import sys import pandas as pd import os import pickle from multiprocessing import Pool from itertools import repeat import utils.EventDetection_utils as EventDetection_utils import utils.general_utils as general_utils import utils.plot_utils as plot_utils import utils.plot_setting as plot_setting import utils.list_twoP_exp as list_twoP_exp import utils.list_behavior as list_behavior import utils.math_utils as math_utils experiments=list_twoP_exp.SS36112_CO2puff_BW_analysis # event_max_dur=EventDetection_utils.event_max_dur # event_min_dur=EventDetection_utils.event_min_dur event_max_dur=2.5 event_min_dur=0.27 bsl_dur_s=EventDetection_utils.bsl_s def count_ROIs_from_folder(exp_lists_current_fly): for date, genotype, fly, recrd_num in exp_lists_current_fly: Gal4=genotype.split('-')[0] flyDir = NAS_AN_Proj_Dir +'03_general_2P_exp/'+ Gal4 +'/2P/'+ date+'/'+genotype+'-'+fly+'/' dataDir = flyDir+genotype+'-'+fly+'-'+recrd_num + '/' pathForDic = dataDir+'/output/' outDirGCevt = pathForDic + 'GCevt_based_JposBehBallAnalysis/' folder_content=os.listdir(outDirGCevt) print('folder_content', folder_content) ROI_folder_list=[] for content in folder_content: if content[:4]=='ROI#': ROI_folder_list.append(content) ROI_count=len(ROI_folder_list) print('ROI_folder_list', ROI_folder_list, ROI_count, 'ROIs found!') break return ROI_count def make_structure_as_modelStructure(ori_list, exempl_list): if len(ori_list)!=len(exempl_list): anticipate_list=[] for i,v in enumerate(exempl_list): anticipate_list.append([]) return anticipate_list else: return ori_list def add_NaNtail_to_each_Evt(Evt_list): Evt_len_list=[] for evt in Evt_list: # print('np.shape(evt', np.shape(evt)) Evt_len_list.append(np.shape(evt)[0]) max_EvtLen=max(Evt_len_list) # print('max_EvtLen', max_EvtLen) EvtNaNtail_list=[] for evt in Evt_list: evt_NaNtail=math_utils.add_NaN_tail(evt, max_EvtLen) #print('len evt_NaNtail', len(evt_NaNtail)) EvtNaNtail_list.append(evt_NaNtail) return EvtNaNtail_list def mp_worker_for_CI_mean_trace(idx, dataset, confidence, least_realNum_amount, behFreq): dataset=np.asarray(dataset) # print('shape dataset', np.shape(dataset)) # print('idx', idx) # print('shape dataset', np.shape(dataset)) # print('least_realNum_amount', least_realNum_amount) # print('len dataset', len(dataset)) if behFreq==0: behFreq=1 data=np.array(dataset[:, idx]) #print('shape data', np.shape(data)) non_nan_counts=data.size - np.count_nonzero(np.isnan(data)) if non_nan_counts > least_realNum_amount: nonnan_data_list=data[np.logical_not(np.isnan(data))] (mean, down_CI, up_CI) = math_utils.compute_CI_and_mean(nonnan_data_list, confidence=confidence) return mean, down_CI, up_CI else: return np.nan, np.nan, np.nan def compute_CI_and_mean_trace_w_BehfreqCorrec(dataset, confidence=0.95, least_realNum_amount=4, behFreq=1): idx_range=[i for i in range(0,np.shape(dataset)[1])] # print('colums_range', colums_range) p=Pool() mean_downCI_upCI = p.starmap(mp_worker_for_CI_mean_trace, zip(idx_range, repeat(dataset), repeat(confidence), repeat(least_realNum_amount), repeat(behFreq))) #mean_trace, down_err_trace, up_err_trace = p.starmap(worker_for_CI_mean_trace, args_for_pool) p.close() p.join() del p #print('shape mean_downCI_upCI', np.shape(mean_downCI_upCI)) mean_trace=np.asarray(mean_downCI_upCI)[:,0] down_err_trace=np.asarray(mean_downCI_upCI)[:,1] up_err_trace=np.asarray(mean_downCI_upCI)[:,2] return mean_trace, down_err_trace, up_err_trace def find_maxGC_perROI(exp_lists_per_fly): print('Finding amximum GC among all recordings per fly') GC_set_per_fly=[] for date, genotype, fly, recrd_num in exp_lists_per_fly: Gal4=genotype.split('-')[0] #dataDir = '/Users/clc/Documents/EPFL/NeLy/Data/ANproj/20180824/SS25451-tdTomGC6fopt-fly1/SS25451-tdTomGC6fopt-fly1-007' flyDir = NAS_AN_Proj_Dir + Gal4 +'/2P/'+ date+'/'+genotype+'-'+fly+'/' dataDir = NAS_AN_Proj_Dir + Gal4 +'/2P/' + date+'/'+genotype+'-'+fly+'/'+genotype+'-'+fly+'-'+recrd_num + '/' pathForDic = dataDir+'/output/' Beh_Jpos_GC_DicData=general_utils.open_Beh_Jpos_GC_DicData(pathForDic) GC_set = Beh_Jpos_GC_DicData['GCset'] for ROI_i, GC_trace in enumerate(GC_set): if len(GC_set_per_fly)!=len(GC_set): GC_set_per_fly.append([]) print('len GC_set_per_fly', len(GC_set_per_fly)) for ROI_i, GC_trace in enumerate(GC_set): GC_set_per_fly[ROI_i].extend(GC_trace) maxGC_per_fly=[] for ROI_i, GC_trace in enumerate(GC_set_per_fly): max_GC=max(GC_trace) maxGC_per_fly.append(max_GC) print('maxGC_per_fly', maxGC_per_fly) return maxGC_per_fly def save_GCevt_fly_dic(save_dir, filename): print('Saving GCevent-based.dic') GCevt_dic_fly={} GCevt_dic_fly.update({'samplingFreq':samplingFreq}) GCevt_dic_fly.update({'GC_evt_fly':GC_evt_fly}) GCevt_dic_fly.update({'time_evt_fly':time_evt_fly}) GCevt_dic_fly.update({'rest_evt_fly':rest_evt_fly}) GCevt_dic_fly.update({'walk_evt_fly':walk_evt_fly}) GCevt_dic_fly.update({'eye_groom_evt_fly':eye_groom_evt_fly}) GCevt_dic_fly.update({'foreleg_groom_evt_fly':foreleg_groom_evt_fly}) GCevt_dic_fly.update({'antennae_groom_evt_list':antennae_groom_evt_list}) GCevt_dic_fly.update({'hindleg_groom_evt_list':hindleg_groom_evt_list}) GCevt_dic_fly.update({'Abd_groom_evt_list':Abd_groom_evt_list}) GCevt_dic_fly.update({'PER_evt_list':PER_evt_list}) GCevt_dic_fly.update({'F_groom_evt_list':F_groom_evt_list}) GCevt_dic_fly.update({'H_groom_evt_list':H_groom_evt_list}) GCevt_dic_fly.update({'CO2puff_evt_list':CO2puff_evt_list}) GCevt_dic_fly.update({'velForw_evt_list':velForw_evt_list}) GCevt_dic_fly.update({'velSide_evt_list':velSide_evt_list}) GCevt_dic_fly.update({'velTurn_evt_list':velTurn_evt_list}) for item, value in J_Pos_evt.items(): GCevt_dic_fly.update({item:value}) pickle.dump( GCevt_dic, open( save_dir + filename, "wb" ) ) return def save_GCevt_fly_dic(save_dir, filename): print('Saving GCevent-based.dic') GCevt_dic_fly={} GCevt_dic_fly.update({'samplingFreq':samplingFreq}) GCevt_dic_fly.update({'GC_evt_fly':GC_evt_fly}) GCevt_dic_fly.update({'time_evt_fly':time_evt_fly}) GCevt_dic_fly.update({'rest_evt_fly':rest_evt_fly}) GCevt_dic_fly.update({'walk_evt_fly':walk_evt_fly}) GCevt_dic_fly.update({'eye_groom_evt_fly':eye_groom_evt_fly}) GCevt_dic_fly.update({'foreleg_groom_evt_fly':foreleg_groom_evt_fly}) GCevt_dic_fly.update({'antennae_groom_evt_list':antennae_groom_evt_list}) GCevt_dic_fly.update({'hindleg_groom_evt_fly':hindleg_groom_evt_list}) GCevt_dic_fly.update({'Abd_groom_evt_fly':Abd_groom_evt_list}) GCevt_dic_fly.update({'PER_evt_fly':PER_evt_list}) GCevt_dic_fly.update({'F_groom_evt_fly':F_groom_evt_list}) GCevt_dic_fly.update({'H_groom_evt_fly':H_groom_evt_list}) GCevt_dic_fly.update({'CO2_evt_fly':CO2puff_evt_list}) GCevt_dic_fly.update({'velForw_evt_fly':velForw_evt_list}) GCevt_dic_fly.update({'velSide_evt_fly':velSide_evt_list}) GCevt_dic_fly.update({'velTurn_evt_fly':velTurn_evt_list}) GCevt_dic_fly.update({'JposEvt_fly':JposEvt_fly}) pickle.dump( GCevt_dic, open( save_dir + filename, "wb" ) ) return ##main## NAS_Dir=general_utils.NAS_Dir NAS_AN_Proj_Dir=general_utils.NAS_AN_Proj_Dir dataAnalysisType=[ ('CO2evt_long_dic'), ('CO2evt_short_dic'), ('BWwoCO2evt_dic'), ('BWwCO2evt_dic'), ] for datatype in dataAnalysisType: experiments_group_per_fly=general_utils.group_expList_per_fly(experiments) print('experiments_group_per_fly', experiments_group_per_fly) count_evt_fly=[] beh_photo_fps=30 least_realNum_amount=3 if datatype=='CO2evt_long_dic': inputfilename='CO2evt_long_dic.pkl' outputfilename='CO2evt_long_based_BallRot_fly' elif datatype=='CO2evt_short_dic': inputfilename='CO2evt_short_dic.pkl' outputfilename='CO2evt_short_based_BallRot_fly' elif datatype=='BWwoCO2evt_dic': inputfilename='BWwoCO2evt_dic.pkl' outputfilename='BWwoCO2evt_based_BallRot_fly' elif datatype=='BWwCO2evt_dic': inputfilename='BWwCO2evt_dic.pkl' outputfilename='BWwCO2evt_based_BallRot_fly' for exp_lists_per_fly in experiments_group_per_fly: print('Processing ', exp_lists_per_fly ,'....') ## All events GC_evt_fly=[] time_evt_fly=[] rest_evt_fly=[] f_walk_evt_fly=[] b_walk_evt_fly=[] eye_groom_evt_fly=[] antennae_groom_evt_fly=[] foreleg_groom_evt_fly=[] hindleg_groom_evt_fly=[] Abd_groom_evt_fly=[] PER_evt_fly=[] F_groom_evt_fly=[] H_groom_evt_fly=[] CO2_evt_fly=[] BW_beyong_CO2puff_evt_fly=[] velForw_evt_fly=[] velSide_evt_fly=[] velTurn_evt_fly=[] # maxGC_per_fly_list=find_maxGC_perROI(exp_lists_per_fly) #Process each recording for date, genotype, fly, recrd_num in exp_lists_per_fly: Gal4=genotype.split('-')[0] #dataDir = '/Users/clc/Documents/EPFL/NeLy/Data/ANproj/20180824/SS25451-tdTomGC6fopt-fly1/SS25451-tdTomGC6fopt-fly1-007' flyDir = NAS_AN_Proj_Dir +'03_general_2P_exp/'+ Gal4 +'/2P/'+ date+'/'+genotype+'-'+fly+'/' dataDir = flyDir+genotype+'-'+fly+'-'+recrd_num + '/' pathForDic = dataDir+'/output/' print('dataDir', dataDir) # inputfilename='CO2evt_all_dic.pkl' # outputfilename='CO2evt_all_based_relativeBehFreq_fly' # inputfilename='CO2evt_short_dic.pkl' # outputfilename='CO2evt_short_based_relativeBehFreq_fly' # inputfilename='CO2evt_long_dic.pkl' # outputfilename='CO2evt_long_based_relativeBehFreq_fly' # inputfilename='CO2_BW_BWwoCO2evt_dic.pkl' # outputfilename='BWevt_beyong_CO2puff_based_relativeBehFreq_fly' # inputfilename='BWevt_dic.pkl' # outputfilename='BWevt_based_relativeBehFreq_fly' outDirCO2evt = NAS_AN_Proj_Dir + 'output/FigS5-CO2puff_BW_analysis_SS36112/' +Gal4 +'/2P/'+ date+'/'+genotype+'-'+fly+'/'+genotype+'-'+fly+'-'+recrd_num + '/output/CO2evt_based_BehBallAnalysis/' if os.path.exists(outDirCO2evt+inputfilename): evt_dic=EventDetection_utils.read_evt_dic(outDirCO2evt, inputfilename) else: print('No CO2evt_dic.pkl exists mainly due to no CO2 event is detected ...') continue evt_startIdx_list=evt_dic['evt_startIdx_list'] evt_endIdx_list=evt_dic['evt_endIdx_list'] samplingFreq=evt_dic['samplingFreq'] GC_evt_set_list=evt_dic['GC_evt_set_list'] time_evt_list=evt_dic['time_evt_list'] rest_evt_list=evt_dic['rest_evt_list'] f_walk_evt_list=evt_dic['f_walk_evt_list'] b_walk_evt_list=evt_dic['b_walk_evt_list'] eye_groom_evt_list=evt_dic['eye_groom_evt_list'] antennae_groom_evt_list=evt_dic['antennae_groom_evt_list'] foreleg_groom_evt_list=evt_dic['foreleg_groom_evt_list'] print('shape foreleg_groom_evt_list', np.shape(foreleg_groom_evt_list)) hindleg_groom_evt_list=evt_dic['hindleg_groom_evt_list'] Abd_groom_evt_list=evt_dic['Abd_groom_evt_list'] PER_evt_list=evt_dic['PER_evt_list'] F_groom_evt_list=evt_dic['F_groom_evt_list'] H_groom_evt_list=evt_dic['H_groom_evt_list'] CO2puff_evt_list=evt_dic['CO2puff_evt_list'] BW_beyong_CO2puff_evt_list=evt_dic['BW_beyong_CO2puff_evt_list'] velForw_evt_list=evt_dic['velForw_evt_list'] velSide_evt_list=evt_dic['velSide_evt_list'] velTurn_evt_list=evt_dic['velTurn_evt_list'] print(len(GC_evt_set_list), 'GC event found') model_list_struc=[] for i in range(0,len(GC_evt_set_list)): model_list_struc.append([]) GC_evt_fly=make_structure_as_modelStructure(GC_evt_fly, model_list_struc) print('shape GC_evt_fly', len(GC_evt_fly)) # time_evt_fly=make_structure_as_modelStructure(time_evt_fly, model_list_struc) # rest_evt_fly=make_structure_as_modelStructure(rest_evt_fly, model_list_struc) # walk_evt_fly=make_structure_as_modelStructure(walk_evt_fly, model_list_struc) # eye_groom_evt_fly=make_structure_as_modelStructure(eye_groom_evt_fly, model_list_struc) # antennae_groom_evt_fly=make_structure_as_modelStructure(antennae_groom_evt_fly, model_list_struc) # foreleg_groom_evt_fly=make_structure_as_modelStructure(foreleg_groom_evt_fly, model_list_struc) # hindleg_groom_evt_fly=make_structure_as_modelStructure(hindleg_groom_evt_fly, model_list_struc) # Abd_groom_evt_fly=make_structure_as_modelStructure(Abd_groom_evt_fly, model_list_struc) # PER_evt_fly=make_structure_as_modelStructure(PER_evt_fly, model_list_struc) # F_groom_evt_fly=make_structure_as_modelStructure(F_groom_evt_fly, model_list_struc) # H_groom_evt_fly=make_structure_as_modelStructure(H_groom_evt_fly, model_list_struc) # CO2_evt_fly=make_structure_as_modelStructure(CO2_evt_fly, model_list_struc) # velForw_evt_fly=make_structure_as_modelStructure(velForw_evt_fly, model_list_struc) # velSide_evt_fly=make_structure_as_modelStructure(velSide_evt_fly, model_list_struc) # velTurn_evt_fly=make_structure_as_modelStructure(velTurn_evt_fly, model_list_struc) ## Pool events of all recordings per fly for ROI_i in range(0,len(GC_evt_set_list)): GC_evt_fly[ROI_i].extend(GC_evt_set_list[ROI_i]) time_evt_fly.extend(time_evt_list) rest_evt_fly.extend(rest_evt_list) f_walk_evt_fly.extend(f_walk_evt_list) b_walk_evt_fly.extend(b_walk_evt_list) eye_groom_evt_fly.extend(eye_groom_evt_list) antennae_groom_evt_fly.extend(antennae_groom_evt_list) foreleg_groom_evt_fly.extend(foreleg_groom_evt_list) hindleg_groom_evt_fly.extend(hindleg_groom_evt_list) Abd_groom_evt_fly.extend(Abd_groom_evt_list) PER_evt_fly.extend(PER_evt_list) F_groom_evt_fly.extend(F_groom_evt_list) H_groom_evt_fly.extend(H_groom_evt_list) CO2_evt_fly.extend(CO2puff_evt_list) BW_beyong_CO2puff_evt_fly.extend(BW_beyong_CO2puff_evt_list) velForw_evt_fly.extend(velForw_evt_list) velSide_evt_fly.extend(velSide_evt_list) velTurn_evt_fly.extend(velTurn_evt_list) # ## For preparing the plot of each recording # GC_evt_set_NaNtail_list=[] # for i in range(0, len(GC_evt_set_list)): # GC_evt_set_NaNtail_list.append([]) # GC_evtNaNtail=add_NaNtail_to_each_Evt(GC_evt_set_list[i]) # GC_evt_set_NaNtail_list[i].extend(GC_evtNaNtail) # time_evtNaNtail_list=add_NaNtail_to_each_Evt(time_evt_list) # rest_evtNaNtail_list=add_NaNtail_to_each_Evt(rest_evt_list) # walk_evtNaNtail_list=add_NaNtail_to_each_Evt(walk_evt_list) # eye_groom_evtNaNtail_list=add_NaNtail_to_each_Evt(eye_groom_evt_list) # antennae_groom_evtNaNtail_list=add_NaNtail_to_each_Evt(antennae_groom_evt_list) # foreleg_groom_evtNaNtail_list=add_NaNtail_to_each_Evt(foreleg_groom_evt_list) # hindleg_groom_evtNaNtail_list=add_NaNtail_to_each_Evt(hindleg_groom_evt_list) # Abd_groom_evtNaNtail_list=add_NaNtail_to_each_Evt(Abd_groom_evt_list) # PER_evtNaNtail_list=add_NaNtail_to_each_Evt(PER_evt_list) # F_groom_evtNaNtail_list=add_NaNtail_to_each_Evt(F_groom_evt_list) # H_groom_evtNaNtail_list=add_NaNtail_to_each_Evt(H_groom_evt_list) # CO2puff_evtNaNtail_list=add_NaNtail_to_each_Evt(CO2puff_evt_list) # velForw_evtNaNtail_list=add_NaNtail_to_each_Evt(velForw_evt_list) # velSide_evtNaNtail_list=add_NaNtail_to_each_Evt(velSide_evt_list) # velTurn_evtNaNtail_list=add_NaNtail_to_each_Evt(velTurn_evt_list) # print('shape GC_evt_set_NaNtail_list', np.shape(GC_evt_set_NaNtail_list)) # print('shape CO2puff_evtNaNtail_list', np.shape(CO2puff_evtNaNtail_list)) # print('Computing mean and CI for CO2 events ...') # GC_mean_set, GC_downCI_Set, GC_upCI_set=[],[],[] # for i in range(0, len(GC_evt_set_NaNtail_list)): # GC_evtNaNtail_list=GC_evt_set_NaNtail_list[i] # GC_mean_set.append([]) # GC_downCI_Set.append([]) # GC_upCI_set.append([]) # GC_mean, GC_down_CI, GC_up_CI = compute_CI_and_mean_trace_w_BehfreqCorrec(GC_evtNaNtail_list, confidence=0.95, least_realNum_amount=least_realNum_amount) # GC_mean_set[i].extend(GC_mean) # GC_downCI_Set[i].extend(GC_down_CI) # GC_upCI_set[i].extend(GC_up_CI) # rest_mean, rest_down_CI, rest_up_CI = compute_CI_and_mean_trace_w_BehfreqCorrec(rest_evtNaNtail_list, confidence=0.95, least_realNum_amount=least_realNum_amount, behFreq=1) # walk_mean, walk_down_CI, walk_up_CI = compute_CI_and_mean_trace_w_BehfreqCorrec(walk_evtNaNtail_list, confidence=0.95, least_realNum_amount=least_realNum_amount, behFreq=1) # eye_groom_mean, eye_groom_down_CI, eye_groom_up_CI = compute_CI_and_mean_trace_w_BehfreqCorrec(eye_groom_evtNaNtail_list, confidence=0.95, least_realNum_amount=least_realNum_amount, behFreq=1) # antennae_groom_mean, antennae_groom_down_CI, antennae_groom_up_CI = compute_CI_and_mean_trace_w_BehfreqCorrec(antennae_groom_evtNaNtail_list, confidence=0.95, least_realNum_amount=least_realNum_amount, behFreq=1) # foreleg_groom_mean, foreleg_groom_down_CI, foreleg_groom_up_CI = compute_CI_and_mean_trace_w_BehfreqCorrec(foreleg_groom_evtNaNtail_list, confidence=0.95, least_realNum_amount=least_realNum_amount, behFreq=1) # hindleg_groom_mean, hindleg_groom_down_CI, hindleg_groom_up_CI = compute_CI_and_mean_trace_w_BehfreqCorrec(hindleg_groom_evtNaNtail_list, confidence=0.95, least_realNum_amount=least_realNum_amount, behFreq=1) # Abd_groom_mean, Abd_groom_down_CI, Abd_groom_up_CI = compute_CI_and_mean_trace_w_BehfreqCorrec(Abd_groom_evtNaNtail_list, confidence=0.95, least_realNum_amount=least_realNum_amount, behFreq=1) # PER_mean, PER_down_CI, PER_up_CI = compute_CI_and_mean_trace_w_BehfreqCorrec(PER_evtNaNtail_list, confidence=0.95, least_realNum_amount=least_realNum_amount, behFreq=1) # F_groom_mean, F_groom_down_CI, F_groom_up_CI = compute_CI_and_mean_trace_w_BehfreqCorrec(F_groom_evtNaNtail_list, confidence=0.95, least_realNum_amount=least_realNum_amount, behFreq=1) # H_groom_mean, H_groom_down_CI, H_groom_up_CI = compute_CI_and_mean_trace_w_BehfreqCorrec(H_groom_evtNaNtail_list, confidence=0.95, least_realNum_amount=least_realNum_amount, behFreq=1) # CO2puff_mean, CO2puff_down_CI, CO2puff_up_CI = compute_CI_and_mean_trace_w_BehfreqCorrec(CO2puff_evtNaNtail_list, confidence=0.95, least_realNum_amount=least_realNum_amount, behFreq=1) # velForw_mean, velForw_down_CI, velForw_up_CI = compute_CI_and_mean_trace_w_BehfreqCorrec(velForw_evtNaNtail_list, confidence=0.95, least_realNum_amount=least_realNum_amount) # velSide_mean, velSide_down_CI, velSide_up_CI = compute_CI_and_mean_trace_w_BehfreqCorrec(velSide_evtNaNtail_list, confidence=0.95, least_realNum_amount=least_realNum_amount) # velTurn_mean, velTurn_down_CI, velTurn_up_CI = compute_CI_and_mean_trace_w_BehfreqCorrec(velTurn_evtNaNtail_list, confidence=0.95, least_realNum_amount=least_realNum_amount) # print('shape CO2puff_mean', np.shape(CO2puff_mean)) # print('shape CO2puff_down_CI', np.shape(CO2puff_down_CI)) # print('shape GC_mean_set', np.shape(GC_mean_set)) # CO2_Evt_beh_trace_plot=[GC_mean_set[0], rest_mean, walk_mean, eye_groom_mean, antennae_groom_mean, foreleg_groom_mean, hindleg_groom_mean, Abd_groom_mean, PER_mean, CO2puff_mean, velForw_mean, velSide_mean, velTurn_mean] # CO2_Evt_beh_subtitle=['GC_mean_set[0]', 'rest_mean', 'walk_mean', 'eye_groom_mean', 'antennae_groom_mean', 'foreleg_groom_mean', 'hindleg_groom_mean', 'Abd_groom_mean', 'PER_mean', 'CO2puff_mean', 'velForw_mean', 'velSide_mean', 'velTurn_mean'] # plot_utils.Plot_traces(CO2_Evt_beh_trace_plot, outDirCO2evt, 'CO2evt_Beh.png', subtitle_list=CO2_Evt_beh_subtitle, plot_mode='row_by_row') # len_sort_time_evt_list=sorted(time_evt_list, key=len) # time_boundary=[0, len_sort_time_evt_list[-1][-1]-len_sort_time_evt_list[-1][0]] # print('time_boundary', time_boundary) # plot_utils.Plot_CO2Evt_avg_err(time_boundary, \ # GC_mean_set, GC_downCI_Set, GC_upCI_set,\ # rest_mean, rest_down_CI, rest_up_CI,\ # walk_mean, walk_down_CI, walk_up_CI,\ # eye_groom_mean, eye_groom_down_CI, eye_groom_up_CI,\ # antennae_groom_mean, antennae_groom_down_CI, antennae_groom_up_CI,\ # foreleg_groom_mean, foreleg_groom_down_CI, foreleg_groom_up_CI,\ # hindleg_groom_mean, hindleg_groom_down_CI, hindleg_groom_up_CI,\ # Abd_groom_mean, Abd_groom_down_CI, Abd_groom_up_CI,\ # PER_mean, PER_down_CI, PER_up_CI,\ # CO2puff_mean, CO2puff_down_CI, CO2puff_up_CI,\ # velForw_mean, velForw_down_CI, velForw_up_CI,\ # velSide_mean, velSide_down_CI, velSide_up_CI,\ # velTurn_mean, velTurn_down_CI, velTurn_up_CI,\ # 'CO2evt_based_relativeBehFreq.png', outDirCO2evt) ## Plotting event per fly for date, genotype, fly, recrd_num in exp_lists_per_fly: Gal4=genotype.split('-')[0] outDirCO2evtSumFly = NAS_AN_Proj_Dir + 'output/FigS5-CO2puff_BW_analysis_SS36112/plots/' if not os.path.exists(outDirCO2evtSumFly): os.makedirs(outDirCO2evtSumFly) print('\nProcessing in fly pool event', date, genotype, fly, '\n') GC_evt_set_NaNtail_fly=[] for i in range(0, len(GC_evt_fly)): GC_evt_set_NaNtail_fly.append([]) GC_evtNaNtail_fly=add_NaNtail_to_each_Evt(GC_evt_fly[i]) GC_evt_set_NaNtail_fly[i].extend(GC_evtNaNtail_fly) time_evtNaNtail_fly=add_NaNtail_to_each_Evt(time_evt_fly) rest_evtNaNtail_fly=add_NaNtail_to_each_Evt(rest_evt_fly) f_walk_evtNaNtail_fly=add_NaNtail_to_each_Evt(f_walk_evt_fly) b_walk_evtNaNtail_fly=add_NaNtail_to_each_Evt(b_walk_evt_fly) eye_groom_evtNaNtail_fly=add_NaNtail_to_each_Evt(eye_groom_evt_fly) antennae_groom_evtNaNtail_fly=add_NaNtail_to_each_Evt(antennae_groom_evt_fly) foreleg_groom_evtNaNtail_fly=add_NaNtail_to_each_Evt(foreleg_groom_evt_fly) hindleg_groom_evtNaNtail_fly=add_NaNtail_to_each_Evt(hindleg_groom_evt_fly) Abd_groom_evtNaNtail_fly=add_NaNtail_to_each_Evt(Abd_groom_evt_fly) PER_evtNaNtail_fly=add_NaNtail_to_each_Evt(PER_evt_fly) F_groom_evtNaNtail_fly=add_NaNtail_to_each_Evt(F_groom_evt_fly) H_groom_evtNaNtail_fly=add_NaNtail_to_each_Evt(H_groom_evt_fly) CO2puff_evtNaNtail_fly=add_NaNtail_to_each_Evt(CO2_evt_fly) BW_beyong_CO2puff_evtNaNtail_fly=add_NaNtail_to_each_Evt(BW_beyong_CO2puff_evt_fly) velForw_evtNaNtail_fly=add_NaNtail_to_each_Evt(velForw_evt_fly) velSide_evtNaNtail_fly=add_NaNtail_to_each_Evt(velSide_evt_fly) velTurn_evtNaNtail_fly=add_NaNtail_to_each_Evt(velTurn_evt_fly) print('Computing mean and CI for pool GC events ...') GC_mean_fly, GC_downCI_fly, GC_upCI_fly=[],[],[] for i in range(0, len(GC_evt_set_NaNtail_fly)): GC_evtNaNtail_fly=GC_evt_set_NaNtail_fly[i] GC_mean_fly.append([]) GC_downCI_fly.append([]) GC_upCI_fly.append([]) GC_mean, GC_down_CI, GC_up_CI = compute_CI_and_mean_trace_w_BehfreqCorrec(GC_evtNaNtail_fly, confidence=0.95, least_realNum_amount=least_realNum_amount) GC_mean_fly[i].extend(GC_mean) GC_downCI_fly[i].extend(GC_down_CI) GC_upCI_fly[i].extend(GC_up_CI) # rest_mean_fly, rest_down_CI_fly, rest_up_CI_fly = compute_CI_and_mean_trace_w_BehfreqCorrec(rest_evtNaNtail_fly, confidence=0.95, least_realNum_amount=least_realNum_amount) # walk_mean_fly, walk_down_CI_fly, walk_up_CI_fly = compute_CI_and_mean_trace_w_BehfreqCorrec(walk_evtNaNtail_fly, confidence=0.95, least_realNum_amount=least_realNum_amount) # eye_groom_mean_fly, eye_groom_down_CI_fly, eye_groom_up_CI_fly = compute_CI_and_mean_trace_w_BehfreqCorrec(eye_groom_evtNaNtail_fly, confidence=0.95, least_realNum_amount=least_realNum_amount) # antennae_groom_mean_fly, antennae_groom_down_CI_fly, antennae_groom_up_CI_fly = compute_CI_and_mean_trace_w_BehfreqCorrec(antennae_groom_evtNaNtail_fly, confidence=0.95, least_realNum_amount=least_realNum_amount) # foreleg_groom_mean_fly, foreleg_groom_down_CI_fly, foreleg_groom_up_CI_fly = compute_CI_and_mean_trace_w_BehfreqCorrec(foreleg_groom_evtNaNtail_fly, confidence=0.95, least_realNum_amount=least_realNum_amount) # hindleg_groom_mean_fly, hindleg_groom_down_CI_fly, hindleg_groom_up_CI_fly = compute_CI_and_mean_trace_w_BehfreqCorrec(hindleg_groom_evtNaNtail_fly, confidence=0.95, least_realNum_amount=least_realNum_amount) # Abd_groom_mean_fly, Abd_groom_down_CI_fly, Abd_groom_up_CI_fly = compute_CI_and_mean_trace_w_BehfreqCorrec(Abd_groom_evtNaNtail_fly, confidence=0.95, least_realNum_amount=least_realNum_amount) # PER_mean_fly, PER_down_CI_fly, PER_up_CI_fly = compute_CI_and_mean_trace_w_BehfreqCorrec(PER_evtNaNtail_fly, confidence=0.95, least_realNum_amount=least_realNum_amount) # F_groom_mean_fly, F_groom_down_CI_fly, F_groom_up_CI_fly = compute_CI_and_mean_trace_w_BehfreqCorrec(F_groom_evtNaNtail_fly, confidence=0.95, least_realNum_amount=least_realNum_amount) # H_groom_mean_fly, H_groom_down_CI_fly, H_groom_up_CI_fly = compute_CI_and_mean_trace_w_BehfreqCorrec(H_groom_evtNaNtail_fly, confidence=0.95, least_realNum_amount=least_realNum_amount) # CO2puff_mean_fly, CO2puff_down_CI_fly, CO2puff_up_CI_fly = compute_CI_and_mean_trace_w_BehfreqCorrec(CO2puff_evtNaNtail_fly, confidence=0.95, least_realNum_amount=least_realNum_amount) velForw_mean_fly, velForw_down_CI_fly, velForw_up_CI_fly = compute_CI_and_mean_trace_w_BehfreqCorrec(velForw_evtNaNtail_fly, confidence=0.95, least_realNum_amount=least_realNum_amount) velSide_mean_fly, velSide_down_CI_fly, velSide_up_CI_fly = compute_CI_and_mean_trace_w_BehfreqCorrec(velSide_evtNaNtail_fly, confidence=0.95, least_realNum_amount=least_realNum_amount) velTurn_mean_fly, velTurn_down_CI_fly, velTurn_up_CI_fly = compute_CI_and_mean_trace_w_BehfreqCorrec(velTurn_evtNaNtail_fly, confidence=0.95, least_realNum_amount=least_realNum_amount) sum_rest_fly=np.nansum(rest_evtNaNtail_fly,axis=0) sum_f_walk_fly=np.nansum(f_walk_evtNaNtail_fly,axis=0) sum_b_walk_fly=np.nansum(b_walk_evtNaNtail_fly,axis=0) sum_E_groom_fly=np.nansum(eye_groom_evtNaNtail_fly,axis=0) sum_A_groom_fly=np.nansum(antennae_groom_evtNaNtail_fly,axis=0) sum_FL_groom_fly=np.nansum(foreleg_groom_evtNaNtail_fly,axis=0) sum_HL_groom_fly=np.nansum(hindleg_groom_evtNaNtail_fly,axis=0) sum_Abd_groom_fly=np.nansum(Abd_groom_evtNaNtail_fly,axis=0) sum_PER_fly=np.nansum(PER_evtNaNtail_fly,axis=0) sum_F_groom_fly=np.nansum(F_groom_evtNaNtail_fly,axis=0) sum_H_groom_fly=np.nansum(H_groom_evtNaNtail_fly,axis=0) sum_CO2puff_fly=
np.nansum(CO2puff_evtNaNtail_fly,axis=0)
numpy.nansum
import sys from PyQt5 import QtGui from PyQt5.QtWidgets import * from PyQt5.QtGui import * from PyQt5.QtCore import * import vtk import math import numpy as np import time from vtk.qt.QVTKRenderWindowInteractor import QVTKRenderWindowInteractor import socket import traceback import QtrCalc as QC #from scipy.spatial.transform import Rotation as R class vtpDrawScene: def SetQuatOrientation_old( self, quaternion, shift, i_actor ): #function to rotate one element around his own origine point if not self.iniOk_qt : raise Exception("vtpDrawScene not initialized. Call initScene() first") # Convert quat to the rotation matrix # self.mtxRot = [[0,0,0],[0,0,0],[0,0,0]] #quat = QC.qtr_multiplication(quaternion,self.norm_qtr[i_actor]) # self.mtxRot[i_actor] = self.modelActor[i_actor].GetMatrix() vtk.vtkMath().QuaternionToMatrix3x3(quaternion, self.mtxRot[i_actor]) # mtxTr01 = self.modelActor[i_actor].GetMatrix() # mtx = np.identity(3) # for i in range(2): # for j in range(2) : # mtx[i][j] = mtxTr01.GetElement(i, j) # norm matrix # self.mtxRot[i_actor] = mtx.dot(np.array(self.mtxRot[i_actor])) #np.array(self.mtxRot[i_actor]).dot(np.array(self.norm_mat[i_actor])) # Rotation: convert 3x3 to 4x4 matrix # mtxTr2 = vtk.vtkMatrix4x4() # identity mtx mtxTr2 = vtk.vtkMatrix4x4() # identity mtx for i in range(3): for j in range(3): mtxTr2.SetElement(i, j, self.mtxRot[i_actor][i][j]) # print(mtxTr02) # mtxTr01 = self.modelActor[i_actor].GetMatrix() # vtk.vtkMatrix4x4().Multiply4x4(mtxTr01, mtxTr02, mtxTr2) # three transforms: # 1. move the object so the rotation center is in the coord center tr = vtk.vtkTransform() origin = np.array(self.modelActor[i_actor].GetOrigin()) position = np.array(self.modelActor[i_actor].GetPosition()) # trans = origin # trans = origin + position trans = position # trans = np.array([0.,0.,0.]) tr.Translate(-trans) mtxTr1 = tr.GetMatrix() # 2. rotate around coord center using mtxTr2 mtxTr12 = vtk.vtkMatrix4x4() vtk.vtkMatrix4x4().Multiply4x4(mtxTr2, mtxTr1, mtxTr12) ## 3. move the object back tr = vtk.vtkTransform() tr.Translate(trans + np.array(shift)) mtxTr3 = tr.GetMatrix() mtxTr123 = vtk.vtkMatrix4x4() vtk.vtkMatrix4x4().Multiply4x4(mtxTr3, mtxTr12, mtxTr123) tr = vtk.vtkTransform() tr.PreMultiply() tr.Concatenate(mtxTr123) self.modelActor[i_actor].SetUserTransform(tr) def initScene_qt(self, obj): #initialize alll actors reader = list() modelMapper = list() self.modelActor = list() self.modelActorsArrows = list() self.mtxRot = list() self.norm_qtr = list() self.pos_set = list() self.ren = vtk.vtkRenderer() self.mtxGlob = np.array([[1.,0.,0.],[0.,0.,-1.],[0.,1.,0.]]) # self.mtxGlob[1,1] = 0 # mtxGlob[2,1] = 1 # mtxGlob[1,2] = -1 # mtxGlob[2,2] = 0 # renCornerR = vtk.vtkRenderer() # self.ren.AddRenderer(renCornerR) # renCornerR.SetViewport(0.8, 0, 1.0, 0.2) for i in range(0,len(obj)): # Read the object data filename = obj[i] if filename[-4:] != '.vtp': continue reader.append(vtk.vtkXMLPolyDataReader()) reader[i].SetFileName(filename) reader[i].Update() # make mapper for the data modelMapper.append(vtk.vtkPolyDataMapper()) modelMapper[i].SetInputData(reader[i].GetOutput()) # create actor, set its mapper self.modelActor.append(vtk.vtkActor()) self.modelActor[i].SetMapper(modelMapper[i]) # Add the actor to the renderer, set the background and size. self.ren.AddActor(self.modelActor[i]) self.mtxRot.append([[1,0,0],[0,1,0],[0,0,1]]) # Get center of the bounding box origin = self.modelActor[i].GetCenter() # Set rotation center self.modelActor[i].SetOrigin(origin) for i in range(0,len(obj)): # make mapper for the data arrowSource = vtk.vtkArrowSource() arrowSource.SetShaftRadius(0.005) arrowSource.SetTipLength(0.5) arrowSource.SetTipRadius(0.01) # arrowSource = vtk.vtkSphereSource() # arrowSource.SetCenter(0,0,0) # arrowSource.SetRadius(0.01) mapper = vtk.vtkPolyDataMapper() mapper.SetInputConnection(arrowSource.GetOutputPort()) # create actor, set its mapper self.modelActorsArrows.append(vtk.vtkActor()) self.modelActorsArrows[i].SetMapper(mapper) self.modelActorsArrows[i].SetScale([0.1,1,1]) # Add the actor to the renderer, set the background and size. if (i != 7) and (i != 8) and (i != 13) and (i != 14) and (i != 15) and (i != 16) and (i != 23) and (i != 24) and (i != 27): self.ren.AddActor(self.modelActorsArrows[i]) self.mtxRot.append([[1,0,0],[0,1,0],[0,0,1]]) # Get center of the bounding box origin = self.modelActorsArrows[i].GetCenter() self.modelActorsArrows[i].SetOrigin(origin) self.pos_set.append(dict()) #Initial conditions for bones self.initial_pos_actors = np.array([[0,0,0],[0,0,0],[0,0,0],[-0.016, -0.006, 0.163],[-0.016, -0.006, -0.163],[-0.01, -0.312, -0.173],[-0.01, -0.312, 0.173],[-0.01, 0.024, 0.166],[-0.01, 0.024, -0.166],[0,0,0],[-0.005, -0.296, -0.153],[-0.005, -0.296, 0.153],[ 0.08, -0.42, 0.0 ],[ 0.08, -0.411, 0.0 ],[ 0.08, -0.411, 0.0 ],[-0.001, -0.486, 0.072],[-0.001, -0.486, -0.072],[ 0.027, -0.896, -0.081],[ 0.027, -0.896, 0.081],[ 0.006, -0.888, 0.077],[ 0.006, -0.888, -0.077],[ 0.008, -1.312, 0.081],[ 0.008, -1.312, -0.081],[-0.047, -1.358, 0.084],[-0.047, -1.358, -0.084],[ 0.138, -1.358, 0.087],[ 0.138, -1.358, -0.087]]) self.initial_pos_actorsArrows = np.array([[0.063,-0.153,0],[0.062,0.191,0],[-0.019,0.06,0],[-0.016, -0.006, 0.163],[-0.016, -0.006, -0.163],[-0.01, -0.544, -0.201],[-0.01, -0.544, 0.201],[-0.01, 0.024, 0.166],[-0.01, 0.024, -0.166],[0,0,0],[-0.005, -0.296, -0.153],[-0.005, -0.296, 0.153],[ 0.06, -0.400, 0. ],[ 0.08, -0.411, 0. ],[ 0.08, -0.411, 0. ],[-0.001, -0.486, 0.072],[-0.001, -0.486, -0.072],[ 0.041, -0.400, -0.123],[ 0.041, -0.400, 0.123],[ 0.006, -0.888, 0.077],[ 0.006, -0.888, -0.077],[ 0.008, -1.312, 0.081],[ 0.008, -1.312, -0.081],[-0.047, -1.358, 0.084],[-0.047, -1.358, -0.084],[ 0.138, -1.358, 0.087],[ 0.138, -1.358, -0.087]]) #28-9 elems self.initial_pos_actorsArrows = np.array([[0.063,-0.153,0],[0.062,0.191,0],[-0.019,0.06,0],[-0.016, -0.006, 0.163],[-0.016, -0.006, -0.163],[-0.01, -0.544, -0.201],[-0.01, -0.544, 0.201],[0,0,0],[-0.005, -0.296, -0.153],[-0.005, -0.296, 0.153],[ 0.06, -0.400, 0. ],[ 0.041, -0.400, -0.123],[ 0.041, -0.400, 0.123],[ 0.006, -0.888, 0.077],[ 0.006, -0.888, -0.077],[ 0.008, -1.312, 0.081],[-0.047, -1.358, -0.084],[ 0.138, -1.358, 0.087]]) for el in range(len(self.initial_pos_actors)): # self.norm_qtr.append(np.array([1.,0.,0.,0.])) self.modelActor[el].SetPosition(self.initial_pos_actors[el]) self.modelActorsArrows[el].SetPosition(self.initial_pos_actorsArrows[el]) self.pos_set[el][0] = self.initial_pos_actorsArrows[el] axes = vtk.vtkAxesActor() axes.SetNormalizedTipLength(0.05, 0.05, 0.05) axes.SetNormalizedShaftLength(1,1,1) self.ren.AddActor(axes) # arm_axes = vtk.vtkAxesActor() # arm_axes.SetNormalizedTipLength(0.05, 0.05, 0.05) # arm_axes.SetTotalLength(0.1,0.1,0.1) # transform = vtk.vtkTransform() # transform.Translate(-0.016,-0.006,-0.162) # arm_axes.SetUserTransform(transform) # self.ren.AddActor(arm_axes) # The axes are positioned with a user transform transform = vtk.vtkTransform() transform.Translate(0.0, 0.0, 0.0) axes.SetUserTransform(transform) self.ren.SetBackground(0.1, 0.2, 0.4) camera = vtk.vtkCamera() camera.SetPosition(2, 0.2, 2) camera.SetFocalPoint(0, 0, 0) self.ren.SetActiveCamera(camera) # SetInteractorStyle(MyInteractorStyle()) #ren.ResetCamera() # ren.Render() self.iniOk_qt = True return self.ren # def SetQuatOrientation( self, quaternion, shift, i_actor ): #function to rotate one element around his own origine point # if not self.iniOk_qt : # raise Exception("vtpDrawScene not initialized. Call initScene() first") # vtk.vtkMath().QuaternionToMatrix3x3(quaternion, self.mtxRot[i_actor]) # # Rotation: convert 3x3 to 4x4 matrix # mtxTr2 = vtk.vtkMatrix4x4() # identity mtx # for i in range(3): # for j in range(3) : # mtxTr2.SetElement(i, j, self.mtxRot[i_actor][i][j]) def addVector(self,quaternion): # make mapper for the data arrowSource = vtk.vtkArrowSource() arrowSource.SetShaftRadius(0.01) arrowSource.SetTipLength(.1) # arrowSource.SetNormalizedTipLength(0.05, 0.05, 0.05) mapper = vtk.vtkPolyDataMapper() mapper.SetInputConnection(arrowSource.GetOutputPort()) # create actor, set its mapper self.modelActor.append(vtk.vtkActor()) el = len(self.modelActor) - 1 self.modelActor[el].SetMapper(mapper) # Add the actor to the renderer, set the background and size. self.ren.AddActor(self.modelActor[el]) # self.mtxRot.append([[0,0,0],[0,0,0],[0,0,0]]) # Get center of the bounding box origin = self.modelActor[el].GetCenter() # Set rotation center self.modelActor[el].SetOrigin(origin) self.modelActor[el].SetPosition([-0.016,-0.006,-0.162]) mtxRot = np.identity(3) vtk.vtkMath().QuaternionToMatrix3x3(quaternion, mtxRot) # Rotation: convert 3x3 to 4x4 matrix mtxTr = vtk.vtkMatrix4x4() # identity mtx for i in range(3): for j in range(3) : mtxTr.SetElement(i, j, mtxRot[i][j]) tr = vtk.vtkTransform() tr.PreMultiply() tr.Concatenate(mtxTr) self.modelActor[el].SetUserTransform(tr) def SetRefQuatOrientation( self, quaternion, shift, i_actor, motion_flag ): #function to rotate all elements around origine if not self.iniOk_qt : raise Exception("vtpDrawScene not initialized. Call initScene() first") mtxRot =
np.identity(3)
numpy.identity
from scipy.ndimage.filters import generic_filter from scipy.signal import convolve2d, medfilt2d from scipy.spatial.distance import cdist from os.path import abspath, join, dirname import matplotlib.pyplot as ppl from time import time import numpy as np import math import sys import cv2 import numexpr as ne sys.path.insert(0, abspath(join(dirname(__file__), '..'))) from data_information import dcm_information as di def mls_parzen(imgo, mask, dt, N, Lo, flag, shapes, a): """ Esse metodo realiza uma analise das Faixas de densidade humanas - Mestrado em Engenharia de Telecomunicacoes - <NAME> - 02/03/2016 Level set proposed by <NAME> Mederos in: a fast level set segmentation algorithm Submited to: Pattern Recognition Letters INPUT: imgo: image N: maximum number of iterations dt: delta t """ stop2_div = False show = False x, y = shapes window = 9 # if flag == 1: # window = 5 # [Matheus] Otimizacao do codigo para os mesmos valores nao sejam calculados mais de uma vez win_mut = window * window win_m_2 = - (2 * win_mut) lo_size_mul = x * y parzen_eq = 1 / ((window * math.sqrt(math.pi * 2)) ** 3) imgo_reshape_temp = np.zeros((x, x, 3)) imgo_reshape_temp[:, :, 0] = imgo i = np.zeros((x, x, 3)) i[:, :, 0] = np.copy(imgo) i[:, :, 1] = conv2(imgo, np.tile(1 / win_mut, (window, window))) i[:, :, 2] = generic_filter(imgo, np.std, window) i = i.reshape((lo_size_mul, 3)) s_eg = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype=np.uint8) f = np.zeros((x, y)) int1 = np.uint8(1) int0 = np.uint8(0) # Inicialization of Surface and others psi=np.where(Lo>0,1,-1) psi=np.int16(psi) # psi = (2 * Lo) - 1 # Superficie inicial: cones psi_d = cv2.dilate(psi, s_eg) # Primeira dilatacao psi_e = cv2.erode(psi, s_eg) # Primeira erosao # Main procedure c = 1 phi0 = np.ones((x, y)) thr = np.ones((1, N)) and_lamd = lambda ps, mas: imgo[np.where((ps == 1) & (mas == 1))] # Plot segmentation if show: fig = ppl.figure(figsize=(12, 12)) ax3 = fig.add_subplot(1, 1, 1) ax3.imshow(imgo, cmap='gray') while np.sum(thr == 0) < 1: # Convergence # print('sum thr == 0 < 10', np.sum(thr == 0) < 10 * 1) print('[INFO] C =', c) # time_while = time() c = c + 1 psi = medfilt2d(psi + (dt * ((np.maximum(f, 0) * psi_d) - (np.minimum(f, 0) * psi_e)))) psi_d = cv2.dilate(psi, s_eg) psi_e = cv2.erode(psi, s_eg) psi_bigger_1 = np.where(psi > 0, int1, int0) phi = bwperim(psi_bigger_1, shapes) # threshold of convergence (front stabilization) thr[0, c - 1] = np.sum(np.absolute(phi0 - phi)) phi0 = np.copy(phi) # Parameter Estimation # print('time while', time() - time_while) if (c > 60 and c % 5 == 0) or c == 2: # time_if = time() and1 = and_lamd(psi_bigger_1, mask) and2 = and_lamd(np.where(psi < 0, int1, int0), mask) stroke_t = np.zeros((win_mut, 3)) stroke_f = np.zeros((win_mut, 3)) stroke_t[:, 0] = and1[np.random.permutation(and1.shape[0])[0:win_mut]] stroke_t[:, 1] = np.mean(and1) stroke_t[:, 2] = np.std(and1, ddof=1) stroke_f[:, 0] = and2[np.random.permutation(and2.shape[0])[0:win_mut]] stroke_f[:, 1] = np.mean(and2) stroke_f[:, 2] = np.std(and2, ddof=1) # print('time strokes', time() - time_if) # time_if = time() prob1 = pdf_parzen(stroke_t, i, win_m_2, x, parzen_eq) prob2 = pdf_parzen(stroke_f, i, win_m_2, x, parzen_eq) # print('time parzen total', time() - time_if) # time_if = time() f = prob1 - prob2 f = (f * np.where(f > 0, 1, 0) /
np.amax(f)
numpy.amax
import time import random import numpy as np import pandas as pd import hdbscan import sklearn.datasets from sklearn import metrics from classix import CLASSIX from sklearn.cluster import KMeans from sklearn.cluster import DBSCAN from sklearn import preprocessing from tqdm import tqdm from sklearn.cluster import MeanShift from quickshift.QuickshiftPP import * import matplotlib.pyplot as plt from tqdm import tqdm import seaborn as sns plt.style.use('bmh') seed = 0 np.random.seed(seed) random.seed(seed) def test_kmeanspp_labels(X=None, y=None, _range=np.arange(2, 21, 1)): ar = list() am = list() for i in _range: kmeans = KMeans(n_clusters=i, init='k-means++', random_state=1) kmeans.fit(X) ri = metrics.adjusted_rand_score(y, kmeans.labels_) mi = metrics.adjusted_mutual_info_score(y, kmeans.labels_) ar.append(ri) am.append(mi) return ar, am def test_meanshift_labels(X=None, y=None, _range=np.arange(2, 21, 1)): ar = list() am = list() for i in _range: meanshift = MeanShift(bandwidth=i) meanshift.fit(X) ri = metrics.adjusted_rand_score(y, meanshift.labels_) mi = metrics.adjusted_mutual_info_score(y, meanshift.labels_) ar.append(ri) am.append(mi) return ar, am def test_dbscan_labels(X=None, y=None, _range=np.arange(0.05, 0.505, 0.005), minPts=5): ar = list() am = list() for i in _range: dbscan = DBSCAN(eps=i, n_jobs=1, min_samples=minPts) dbscan.fit(X) ri = metrics.adjusted_rand_score(y, dbscan.labels_) mi = metrics.adjusted_mutual_info_score(y, dbscan.labels_) ar.append(ri) am.append(mi) return ar, am def test_hdbscan_labels(X=None, y=None, _range=np.arange(2, 21, 1)): ar = list() am = list() for i in _range: _hdbscan = hdbscan.HDBSCAN(min_cluster_size=int(i), algorithm='best') _hdbscan.fit(X) ri = metrics.adjusted_rand_score(y, _hdbscan.labels_) mi = metrics.adjusted_mutual_info_score(y, _hdbscan.labels_) ar.append(ri) am.append(mi) return ar, am def test_quickshiftpp_labels(X=None, y=None, _range=np.arange(2, 17, 1), beta=0.3): ar = list() am = list() for i in _range: quicks = QuickshiftPP(k=i, beta=beta) quicks.fit(X.copy(order='C')) ri = metrics.adjusted_rand_score(y, quicks.memberships) mi = metrics.adjusted_mutual_info_score(y, quicks.memberships) ar.append(ri) am.append(mi) return ar, am def test_classix_radius_labels(X=None, y=None, method=None, minPts=1, sorting='pca', _range=np.arange(0.05, 0.3, 0.005)): ar = list() am = list() for i in _range: classix = CLASSIX(radius=i, minPts=minPts, post_alloc=True, sorting=sorting, group_merging=method, verbose=0) classix.fit(X) ri = metrics.adjusted_rand_score(y, classix.labels_) mi = metrics.adjusted_mutual_info_score(y, classix.labels_) ar.append(ri) am.append(mi) return ar, am def run_sensitivity_test(datasets, _range, clustering='CLASSIX (Density)', fix_k=1, sorting='pca', label_files=None):
np.random.seed(1)
numpy.random.seed
""" Group Factor Analysis (extended model) """ #Author: <NAME> (<EMAIL>) #Date: 22 February 2021 import numpy as np from scipy.special import digamma, gammaln from scipy.optimize import fmin_l_bfgs_b as lbfgsb class GFA_DiagonalNoiseModel(object): def __init__(self, X, params, imputation=False): self.s = params['num_groups'] #number of groups # ensure the data was generated with the correct number of groups assert self.s == len(X) #number of features in each group self.d = [] for s in range(self.s): self.d.append(X[s].shape[1]) self.td = np.sum(self.d) #total number of features self.k = params['K'] #number of factors self.N = X[0].shape[0] #number of samples # Check scenario ('complete' for complete data; 'incomplete' for incomplete data) if imputation: self.scenario = 'complete' else: self.scenario = params['scenario'] #hyperparameters self.a0_alpha = self.b0_alpha = self.a0_tau = self.b0_tau = 1e-14 # Initialising variational parameters #latent variables self.means_z = np.reshape(np.random.normal(0, 1, self.N*self.k),(self.N, self.k)) self.sigma_z = np.zeros((self.k, self.k, self.N)) self.sum_sigmaZ = self.N * np.identity(self.k) #loading matrices self.means_w = [[] for _ in range(self.s)] self.sigma_w = [[] for _ in range(self.s)] self.E_WW = [[] for _ in range(self.s)] self.Lqw = [[] for _ in range(self.s)] #ARD parameters self.a_alpha = [[] for _ in range(self.s)] self.b_alpha = [[] for _ in range(self.s)] self.E_alpha = [[] for _ in range(self.s)] #noise parameters self.a_tau = [[] for _ in range(self.s)] self.b_tau = [[] for _ in range(self.s)] self.E_tau = [[] for _ in range(self.s)] if self.scenario == 'incomplete': #initialise variables to incomplete data sets self.X_nan = [[] for _ in range(self.s)] self.N_clean = [[] for _ in range(self.s)] #constants for ELBO self.logalpha = [[] for _ in range(self.s)] self.logtau = [[] for _ in range(self.s)] self.L_const = [[] for _ in range(self.s)] for i in range(0, self.s): if self.scenario == 'incomplete': # Checking NaNs X_new = np.zeros((1, X[i].size)) X_new[0, np.flatnonzero(np.isnan(X[i]))] = 1 self.X_nan[i] = np.reshape(X_new,(self.N, self.d[i])) self.N_clean[i] = np.sum(~np.isnan(X[i]),axis=0) #loading matrices self.means_w[i] = np.zeros((self.d[i], self.k)) self.sigma_w[i] = np.zeros((self.k,self.k,self.d[i])) #ARD parameters self.a_alpha[i] = self.a0_alpha + self.d[i]/2.0 self.b_alpha[i] = np.ones((1, self.k)) self.E_alpha[i] = self.a_alpha[i] / self.b_alpha[i] #noise parameters if self.scenario == 'incomplete': self.a_tau[i] = self.a0_tau + (self.N_clean[i])/2 else: self.a_tau[i] = self.a0_tau + (self.N) * np.ones((1,self.d[i]))/2 self.b_tau[i] = np.zeros((1, self.d[i])) self.E_tau[i] = 1000.0 * np.ones((1, self.d[i])) #ELBO constant if self.scenario == 'complete': self.L_const[i] = -0.5 * self.N * self.d[i] * np.log(2*np.pi) else: self.L_const[i] = -0.5 * np.sum(self.N_clean[i]) * np.log(2*np.pi) # Rotation parameters self.DoRotation = True def update_w(self, X): """ Update the variational parameters of the loading matrices. Parameters ---------- X : list List of arrays containing the data matrix of each group. """ self.sum_sigmaW = [np.zeros((self.k,self.k)) for _ in range(self.s)] for i in range(0, self.s): self.Lqw[i] = np.zeros((1, self.d[i])) if self.scenario == 'complete': S1 = self.sum_sigmaZ + np.dot(self.means_z.T,self.means_z) S2 = np.dot(X[i].T,self.means_z) for j in range(0, self.d[i]): # Update covariance matrices of Ws self.sigma_w[i][:,:,j] = np.diag(self.E_alpha[i]) + \ self.E_tau[i][0,j] * S1 cho = np.linalg.cholesky(self.sigma_w[i][:,:,j]) invCho = np.linalg.inv(cho) self.sigma_w[i][:,:,j] = np.dot(invCho.T,invCho) self.sum_sigmaW[i] += self.sigma_w[i][:,:,j] # Update expectations of Ws self.means_w[i][j,:] = np.dot(S2[j,:],self.sigma_w[i][:,:,j]) * \ self.E_tau[i][0,j] # Compute determinant for ELBO self.Lqw[i][0,j] = -2 * np.sum(np.log(np.diag(cho))) else: for j in range(0, self.d[i]): samples = np.array(np.where(self.X_nan[i][:,j] == 0)) x = np.reshape(X[i][samples[0,:], j],(1, samples.shape[1])) Z = np.reshape(self.means_z[samples[0,:],:],(samples.shape[1],self.k)) S1 = self.sum_sigmaZ + np.dot(Z.T,Z) S2 = np.dot(x,Z) # Update covariance matrices of Ws self.sigma_w[i][:,:,j] = np.diag(self.E_alpha[i]) + \ self.E_tau[i][0,j] * S1 cho = np.linalg.cholesky(self.sigma_w[i][:,:,j]) invCho = np.linalg.inv(cho) self.sigma_w[i][:,:,j] = np.dot(invCho.T,invCho) self.sum_sigmaW[i] += self.sigma_w[i][:,:,j] # Update expectations of Ws self.means_w[i][j,:] = np.dot(S2,self.sigma_w[i][:,:,j]) * \ self.E_tau[i][0,j] # Compute determinant for ELBO self.Lqw[i][0,j] = -2 * np.sum(np.log(np.diag(cho))) # Calculate E[W^T W] self.E_WW[i] = self.sum_sigmaW[i] + \ np.dot(self.means_w[i].T, self.means_w[i]) def update_z(self, X): """ Update the variational parameters of the latent variables. Parameters ---------- X : list List of arrays containing the data matrix of each group. """ self.means_z = self.means_z * 0 if self.scenario == 'complete': # Update covariance matrix of Z self.sigma_z = np.identity(self.k) for i in range(0, self.s): for j in range(0, self.d[i]): w = np.reshape(self.means_w[i][j,:], (1,self.k)) ww = self.sigma_w[i][:,:, j] + np.dot(w.T, w) self.sigma_z += ww * self.E_tau[i][0,j] #efficient way of computing sigmaZ cho = np.linalg.cholesky(self.sigma_z) invCho = np.linalg.inv(cho) self.sigma_z = np.dot(invCho.T,invCho) self.sum_sigmaZ = self.N * self.sigma_z # Compute determinant for ELBO self.Lqz = -2 * np.sum(np.log(np.diag(cho))) # Update expectations of Z self.means_z = self.means_z * 0 for i in range(0, self.s): for j in range(0, self.d[i]): x = np.reshape(X[i][:, j],(self.N,1)) w = np.reshape(self.means_w[i][j,:], (1,self.k)) self.means_z += np.dot(x, w) * self.E_tau[i][0,j] self.means_z = np.dot(self.means_z, self.sigma_z) else: self.sigma_z = np.zeros((self.k,self.k,self.N)) self.sum_sigmaZ = np.zeros((self.k,self.k)) self.Lqz = np.zeros((1, self.N)) for n in range(0, self.N): self.sigma_z[:,:,n] = np.identity(self.k) S1 = np.zeros((1,self.k)) for i in range(0, self.s): dim = np.array(np.where(self.X_nan[i][n,:] == 0)) for j in range(dim.shape[1]): w = np.reshape(self.means_w[i][dim[0,j],:], (1,self.k)) ww = self.sigma_w[i][:,:, dim[0,j]] + np.dot(w.T, w) self.sigma_z[:,:,n] += ww * self.E_tau[i][0,dim[0,j]] x = np.reshape(X[i][n, dim[0,:]],(1, dim.size)) tau = np.reshape(self.E_tau[i][0,dim[0,:]],(1, dim.size)) S1 += np.dot(x, np.diag(tau[0])).dot(self.means_w[i][dim[0,:],:]) # Update covariance matrix of Z cho = np.linalg.cholesky(self.sigma_z[:,:,n]) invCho = np.linalg.inv(cho) self.sigma_z[:,:,n] = np.dot(invCho.T,invCho) self.sum_sigmaZ += self.sigma_z[:,:,n] # Update expectations of Z self.means_z[n,:] = np.dot(S1, self.sigma_z[:,:,n]) # Compute determinant for ELBO self.Lqz[0,n] = -2 * np.sum(np.log(np.diag(cho))) # Calculate E[Z^T Z] self.E_zz = self.sum_sigmaZ + np.dot(self.means_z.T, self.means_z) def update_alpha(self): """ Update the variational parameters of the alphas. Parameters ---------- X : list List of arrays containing the data matrix of each group. """ for i in range(0, self.s): # Update b_alpha self.b_alpha[i] = self.b0_alpha + np.diag(self.E_WW[i])/2 # Update expectation of alpha self.E_alpha[i] = self.a_alpha[i] / self.b_alpha[i] def update_tau(self, X): """ Update the variational parameters of the taus. Parameters ---------- X : list List of arrays containing the data matrix of each group. """ for i in range(0, self.s): for j in range(0, self.d[i]): if self.scenario == 'complete': w = np.reshape(self.means_w[i][j,:], (1,self.k)) ww = self.sigma_w[i][:,:, j] + np.dot(w.T, w) x = np.reshape(X[i][:, j],(self.N,1)) z = self.means_z ZZ = self.E_zz else: samples = np.array(np.where(self.X_nan[i][:,j] == 0)) w = np.reshape(self.means_w[i][j,:], (1,self.k)) ww = self.sigma_w[i][:,:,j] + np.dot(w.T,w) x = np.reshape(X[i][samples[0,:],j],(samples.size,1)) z = np.reshape(self.means_z[samples[0,:],:],(samples.size,self.k)) sum_covZ = np.sum(self.sigma_z[:,:,samples[0,:]],axis=2) ZZ = sum_covZ + np.dot(z.T,z) # Update b_tau self.b_tau[i][0,j] = self.b0_tau + 0.5 * (np.dot(x.T,x) + \ np.trace(
np.dot(ww, ZZ)
numpy.dot
#!/usr/bin/python import sys import os import numpy as np import logging import mmap import copy from parsevasp import constants from parsevasp import utils from parsevasp.base import BaseParser from lxml import etree # Try to import lxml, if not present fall back to # intrinsic ElementTree lxml = False try: from lxml import etree lxml = True except ImportError: try: # Python 2.5 import xml.etree.cElementTree as etree except ImportError: try: # Python 2.5 import xml.etree.ElementTree as etree except ImportError: try: # normal cElementTree import cElementTree as etree except ImportError: try: # normal ElementTree import elementtree.ElementTree as etree except ImportError: logging.error('Failed to import ElementTree.') sys.exit('Failed to import ElementTree.') _SUPPORTED_TOTAL_ENERGIES = {'energy_extrapolated': 'e_0_energy', 'energy_free': 'e_fr_energy', 'energy_no_entropy': 'e_wo_entrp'} class Xml(BaseParser): ERROR_MULTIPLE_ENTRIES = 500 ERROR_NO_SPECIES = 501 ERROR_NO_ISPIN = 502 ERROR_NO_NBANDS = 503 ERROR_NO_KPOINTS = 504 ERROR_MISMATCH_KPOINTS_NBANDS = 505 ERROR_UNKNOWN_ELEMENT = 506 ERROR_UNSUPPORTED_STATUS = 507 ERROR_NO_SIZE = 508 ERROR_OVERFLOW = 509 BaseParser.ERROR_MESSAGES.update({ ERROR_NO_SPECIES: 'Please extract the species first.', ERROR_MULTIPLE_ENTRIES: 'Multiple entries of were located.', ERROR_NO_ISPIN: 'Please extract ISPIN first.', ERROR_NO_NBANDS: 'Please extract NBANDS first.', ERROR_NO_KPOINTS: 'Please extract the kpoints first.', ERROR_MISMATCH_KPOINTS_NBANDS: 'The number of kpoints and bands for the entries does not match the number of ' 'located kpoints and NBANDS.', ERROR_UNKNOWN_ELEMENT: 'There is an atomic element present in the XML file that is unknown.', ERROR_UNSUPPORTED_STATUS: 'The supplied status is not supported.', ERROR_NO_SIZE: 'Can not calculate size.', ERROR_OVERFLOW: 'Overflow detected in the XML file.' }) ERROR_MESSAGES = BaseParser.ERROR_MESSAGES def __init__(self, file_path=None, file_handler=None, k_before_band=False, extract_all=True, logger=None, event=False): """Initialize the XmlParser by first trying the lxml and fall back to the standard ElementTree if that is not present. Parameters ---------- k_before_band : bool If True the kpoint index runs before the bands index. extract_all : bool Extract data from all calculation (i.e. ionic steps) event : bool If True, force event based method. Notes ----- lxml should be used and is required for large files """ super(Xml, self).__init__(file_path=file_path, file_handler=file_handler, logger=logger) self._sizecutoff = 500 self._event = event if self._file_path is None and self._file_handler is None: self._logger.error( self.ERROR_MESSAGES[self.ERROR_ONLY_ONE_ARGUMENT]) sys.exit(self.ERROR_ONLY_ONE_ARGUMENT) # extract data from all calculations (e.g. ionic steps) self._extract_all = extract_all # kpoint index before band index (for instance for the ordering # of the eigenvalue data etc.)? self._k_before_band = k_before_band # version self._version = None # dictionaries that contain the output of the parsing self._parameters = { 'symprec': None, 'ismear': None, 'sigma': None, 'ispin': None, 'nbands': None, 'nelect': None, 'system': None, 'nelm': None, 'nsw': None, } self._lattice = { 'unitcell': None, 'species': None, 'positions': None, 'kpoints': None, 'kpointsw': None, 'kpointdiv': None } self._data = { 'eigenvalues': None, 'eigenvalues_specific': None, 'eigenvelocities': None, 'kpoints': None, 'kpointsw': None, 'occupancies': None, 'dos': None, 'dos_specific': None, 'totens': None, 'forces': None, 'stress': None, 'dielectrics': None, 'projectors': None, 'hessian': None, 'dynmat': None, 'born': None } if lxml: self._logger.info('We are utilizing lxml!') else: self._logger.info('We are not uitilizing lxml!') # parse parse parse self._parse() @property def truncated(self): """Return True of the xml parsed is truncated.""" return self._xml_recover def _parse(self): """Perform the actual parsing Parameters ---------- None Returns ------- None """ # Check size of the XML file. For large files we need to # perform event driven parsing. For smaller files this is # not necessary and is too slow. file_size = self._file_size() if file_size is None: return None # Do a quick check to see if the XML file is not truncated self._xml_recover = self._check_xml() if ((file_size < self._sizecutoff) or self._xml_recover) and \ not self._event: # run regular method (loads file into memory) and # enable recovery mode if necessary self._parsew(self._xml_recover) else: # event based, saves a bit of memory self._parsee() def _parsew(self, xml_recover): """Performs parsing on the whole XML files. For smaller files """ self._logger.debug('Running parsew.') # now open the complete file, we have already checked its presence when we checked the recover. if self._file_handler is None: filer = self._file_path else: filer = self._file_handler # make sure we enable the recovery mode # pretty sure there is a performance bottleneck running this # enabled at all times, so consider to add check for # truncated XML files and then enable if lxml and xml_recover: if xml_recover: self._logger.debug('Running LXML in recovery mode.') parser = etree.XMLParser(recover=True) vaspxml = etree.parse(filer, parser=parser) else: vaspxml = etree.parse(filer) # do we want to extract data from all calculations (e.g. ionic steps) extract_all = self._extract_all # let us start to parse the content self._version = self._fetch_versionw(vaspxml) self._parameters['symprec'] = self._fetch_symprecw(vaspxml) self._parameters['sigma'] = self._fetch_sigmaw(vaspxml) self._parameters['ismear'] = self._fetch_ismearw(vaspxml) self._parameters['ispin'] = self._fetch_ispinw(vaspxml) self._parameters['nbands'] = self._fetch_nbandsw(vaspxml) self._parameters['nelect'] = self._fetch_nelectw(vaspxml) self._parameters['system'] = self._fetch_systemw(vaspxml) self._parameters['nelm'] = self._fetch_nelmw(vaspxml) self._parameters['nsw'] = self._fetch_nsww(vaspxml) self._lattice['species'] = self._fetch_speciesw(vaspxml) self._lattice['unitcell'], self._lattice['positions'], \ self._data['forces'], self._data['stress'] = \ self._fetch_upfsw(vaspxml, extract_all=extract_all) self._lattice['kpoints'] = self._fetch_kpointsw(vaspxml) self._lattice['kpointsw'] = self._fetch_kpointsww(vaspxml) self._lattice['kpointdiv'] = self._fetch_kpointdivw(vaspxml) self._data['eigenvalues'], self._data[ 'occupancies'] = self._fetch_eigenvaluesw(vaspxml) self._data['eigenvalues_specific'] = self._fetch_eigenvalues_specificw( vaspxml) self._data['eigenvelocities'] = self._fetch_eigenvelocitiesw(vaspxml) self._data['dos'], self._data['dos_specific'] = self._fetch_dosw( vaspxml) self._data['totens'] = self._fetch_totensw(vaspxml) self._data['dielectrics'] = self._fetch_dielectricsw(vaspxml) self._data['projectors'] = self._fetch_projectorsw(vaspxml) self._data['hessian'] = self._fetch_hessian(vaspxml) self._data['dynmat'] = self._fetch_dynmatw(vaspxml) self._data['born'] = self._fetch_bornw(vaspxml) def _parsee(self): """Performs parsing in an event driven fashion on the XML file. Slower, but suitable for bigger files. """ # set logger self._logger.debug('Running parsee.') # helper lists data = [] data2 = [] data3 = [] data4 = [] data5 = [] data6 = [] # dicts cell = {} pos = {} force = {} stress = {} dos = {} totens = {} dynmat = {} _dos = {} _dos2 = {} # bool to control extraction of content extract_generator = False extract_parameters = False extract_calculation = False extract_latticedata = False extract_unitcell = False extract_positions = False extract_species = False extract_kpointdata = False extract_kpoints = False extract_kpointsw = False extract_kpointdiv = False extract_kpoints_specific = False extract_kpointsw_specific = False extract_eigenvalues = False extract_eigenvalues_specific = False extract_eigenvalues_spin1 = False extract_eigenvalues_spin2 = False extract_eigenvalues_specific_spin1 = False extract_eigenvalues_specific_spin2 = False extract_eigenvelocities = False extract_eigenvelocities_spin1 = False extract_eigenvelocities_spin2 = False extract_dos = False extract_dos_specific = False extract_total_dos = False extract_partial_dos = False extract_dos_ispin1 = False extract_dos_ispin2 = False extract_dos_specific_ispin1 = False extract_dos_specific_ispin2 = False extract_projected = False extract_forces = False extract_stress = False extract_energies = False extract_e_0_energy = False extract_e_fr_energy = False extract_e_wo_entrp = False extract_scstep = False extract_dielectrics = False extract_eig_proj = False extract_eig_proj_ispin1 = False extract_eig_proj_ispin2 = False extract_dynmat = False extract_dynmat_eigen = False extract_hessian = False extract_born = False # do we want to extract data from all calculations (e.g. ionic steps) extract_all = self._extract_all if self._file_handler is None: filer = self._file_path else: filer = self._file_handler # index that control the calculation step (e.g. ionic step) calc = 1 for event, element in etree.iterparse(filer, events=('start', 'end')): # set extraction points (what to read and when to read it) # here we also set the relevant data elements when the tags # close when they contain more than one element if event == 'start' and element.tag == 'generator': extract_generator = True if event == 'end' and element.tag == 'generator': extract_generator = False if event == 'start' and element.tag == 'parameters': extract_parameters = True if event == 'end' and element.tag == 'parameters': extract_parameters = False if event == 'start' and element.tag == 'calculation': # Instead of needing to check the nested dicts we initialize them here # so that we can use update for each calculation. totens[calc] = {} extract_calculation = True if event == 'end' and element.tag == 'calculation': data3 = self._convert_array1D_f(data3) data4 = self._convert_array1D_f(data4) data5 = self._convert_array1D_f(data5) totens[calc].update({'energy_extrapolated': data3, 'energy_free': data4, 'energy_no_entropy': data5 }) data3 = [] data4 = [] data5 = [] # update index for the calculation calc = calc + 1 extract_calculation = False if event == 'start' and element.tag == 'array' \ and element.attrib.get('name') == 'atoms': extract_species = True if event == 'end' and element.tag == 'array' \ and element.attrib.get('name') == 'atoms': # only need every other element (element, not atomtype) self._lattice['species'] = self._convert_species(data[::2]) data = [] extract_species = False if event == 'start' and element.tag == 'kpoints' and not extract_calculation: extract_kpointdata = True if event == 'end' and element.tag == 'kpoints' and not extract_calculation: extract_kpointdata = False if event == 'start' and element.tag == 'projected': extract_projected = True if event == 'end' and element.tag == 'projected': extract_projected = False # now fetch the data if extract_generator: try: if event == 'start' and element.attrib['name'] == 'version': self._version = element.text except KeyError: pass if extract_parameters: try: if event == 'start' and element.attrib['name'] == 'SYMPREC': self._parameters['symprec'] = self._convert_f(element) except KeyError: pass try: if event == 'start' and element.attrib['name'] == 'ISPIN': self._parameters['ispin'] = self._convert_i(element) except KeyError: pass try: if event == 'start' and element.attrib['name'] == 'ISMEAR': self._parameters['ismear'] = self._convert_i(element) except KeyError: pass try: if event == 'start' and element.attrib['name'] == 'SIGMA': self._parameters['sigma'] = self._convert_f(element) except KeyError: pass try: if event == 'start' and element.attrib['name'] == 'NBANDS': self._parameters['nbands'] = self._convert_i(element) except KeyError: pass try: if event == 'start' and element.attrib['name'] == 'NELECT': self._parameters['nelect'] = self._convert_f(element) except KeyError: pass try: if event == 'start' and element.attrib['name'] == 'SYSTEM': self._parameters['system'] = element.text except KeyError: pass try: if event == 'start' and element.attrib['name'] == 'NELM' \ and element.getparent().attrib['name'] == 'electronic convergence': self._parameters['nelm'] = self._convert_i(element) except KeyError: pass try: if event == 'start' and element.attrib['name'] == 'NSW': self._parameters['nsw'] = self._convert_i(element) except KeyError: pass if extract_calculation: # it would be very tempting just to fill the data and disect # it later, would be faster, but it is not so easy since # we do not know how many calculations have been performed # or how many scteps there are per calculation if event == 'start' and element.tag == 'dos' and element.attrib.get( 'comment') is None: extract_dos = True if event == 'end' and element.tag == 'total' and extract_dos: if data2: # only store energy for one part as # this is the same for both dos_ispin = self._convert_array2D_f(data, 3) _dos['energy'] = dos_ispin[:, 0] _dos['total'] = dos_ispin[:, 1] _dos['integrated'] = dos_ispin[:, 2] _dos['partial'] = None dos_ispin = self._convert_array2D_f(data2, 3) _dos2['total'] = dos_ispin[:, 1] _dos2['integrated'] = dos_ispin[:, 2] _dos2['partial'] = None else: dos_ispin = self._convert_array2D_f(data, 3) _dos['energy'] = dos_ispin[:, 0] _dos['total'] = dos_ispin[:, 1] _dos['integrated'] = dos_ispin[:, 2] _dos['partial'] = None data = [] data2 = [] if event == 'end' and element.tag == 'partial' and extract_dos: num_atoms = 0 if self._lattice['species'] is not None: num_atoms = self._lattice['species'].shape[0] else: self._logger.error( self.ERROR_MESSAGES[self.ERROR_NO_SPECIES]) sys.exit(self.ERROR_NO_SPECIES) if data2: dos_ispin = self._convert_array2D_f(data, 10) # do not need the energy term (similar to total) _dos['partial'] = np.asarray( np.split(dos_ispin[:, 1:10], num_atoms)) dos_ispin = self._convert_array2D_f(data2, 10) # do not need the energy term (similar to total) _dos2['partial'] = np.asarray( np.split(dos_ispin[:, 1:10], num_atoms)) else: dos_ispin = self._convert_array2D_f(data, 10) # do not need the energy term (similar to total) _dos['partial'] = np.asarray( np.split(dos_ispin[:, 1:10], num_atoms)) data = [] data2 = [] if event == 'end' and element.tag == 'dos' and extract_dos: # check the Fermi level if len(data6) == 1: fermi_level = self._convert_f(data6[0]) elif len(data6) > 1: self._logger.error( self.ERROR_MESSAGES[self.ERROR_MULTIPLE_ENTRIES] + " The tag in question is 'efermi'.") sys.exit(self.ERROR_MULTIPLE_ENTRIES) else: fermi_level = None if _dos2: dos['up'] = _dos dos['down'] = _dos2 dos['total'] = { 'fermi_level': fermi_level, 'energy': _dos['energy'] } del dos['up']['energy'] else: _dos['fermi_level'] = fermi_level dos['total'] = _dos self._data['dos'] = copy.deepcopy(dos) data = [] data2 = [] data6 = [] _dos = {} _dos2 = {} extract_dos = False if event == 'start' and element.tag == 'dos' and element.attrib.get( 'comment') == 'interpolated': extract_dos_specific = True if event == 'end' and element.tag == 'total' and extract_dos_specific: if data2: # only store energy for one part as # this is the same for both dos_ispin = self._convert_array2D_f(data, 3) _dos['energy'] = dos_ispin[:, 0] _dos['total'] = dos_ispin[:, 1] _dos['integrated'] = dos_ispin[:, 2] _dos['partial'] = None dos_ispin = self._convert_array2D_f(data2, 3) _dos2['total'] = dos_ispin[:, 1] _dos2['integrated'] = dos_ispin[:, 2] _dos2['partial'] = None else: dos_ispin = self._convert_array2D_f(data, 3) _dos['energy'] = dos_ispin[:, 0] _dos['total'] = dos_ispin[:, 1] _dos['integrated'] = dos_ispin[:, 2] _dos['partial'] = None data = [] data2 = [] if event == 'end' and element.tag == 'partial' and extract_dos_specific: num_atoms = 0 if self._lattice['species'] is not None: num_atoms = self._lattice['species'].shape[0] else: self._logger.error( self.ERROR_MESSAGES[self.ERROR_NO_SPECIES]) sys.exit(self.ERROR_NO_SPECIES) if data2: dos_ispin = self._convert_array2D_f(data, 10) # do not need the energy term (similar to total) _dos['partial'] = np.asarray( np.split(dos_ispin[:, 1:10], num_atoms)) dos_ispin = self._convert_array2D_f(data2, 10) # do not need the energy term (similar to total) _dos2['partial'] = np.asarray( np.split(dos_ispin[:, 1:10], num_atoms)) else: dos_ispin = self._convert_array2D_f(data, 10) # do not need the energy term (similar to total) _dos['partial'] = np.asarray( np.split(dos_ispin[:, 1:10], num_atoms)) data = [] data2 = [] if event == 'end' and element.tag == 'dos' and extract_dos_specific: # check the Fermi level if len(data6) == 1: fermi_level = self._convert_f(data6[0]) elif len(data6) > 1: self._logger.error( self.ERROR_MESSAGES[self.ERROR_MULTIPLE_ENTRIES] + " The tag in question is 'efermi'.") sys.exit(self.ERROR_MULTIPLE_ENTRIES) else: fermi_level = None if _dos2: dos['up'] = _dos dos['down'] = _dos2 dos['total'] = { 'fermi_level': fermi_level, 'energy': _dos['energy'] } del dos['up']['energy'] else: _dos['fermi_level'] = fermi_level dos['total'] = _dos self._data['dos_specific'] = dos data = [] data2 = [] data6 = [] _dos = {} _dos2 = {} extract_dos_specific = False if event == 'start' and element.tag == 'structure': extract_latticedata = True if event == 'end' and element.tag == 'structure': extract_latticedata = False if event == 'start' and element.tag == 'varray' and \ element.attrib['name'] == 'forces': extract_forces = True if event == 'end' and element.tag == 'varray' and \ element.attrib['name'] == 'forces': force[calc] = self._convert_array2D_f(data, 3) data = [] extract_forces = False if event == 'start' and element.tag == 'varray' and \ element.attrib['name'] == 'stress': extract_stress = True if event == 'end' and element.tag == 'varray' and \ element.attrib['name'] == 'stress': stress[calc] = self._convert_array2D_f(data, 3) data = [] extract_stress = False if event == 'start' and element.tag == 'energy' and not extract_scstep: extract_energies = True if event == 'end' and element.tag == 'energy' and not extract_scstep: extract_energies = False if event == 'start' and element.tag == 'scstep': extract_scstep = True if event == 'end' and element.tag == 'scstep': extract_scstep = False if event == 'start' and element.tag == 'eigenvalues' and not extract_eigenvelocities and element.attrib.get( 'comment' ) != 'interpolated' and not extract_eigenvalues_specific: extract_eigenvalues = True if event == 'end' and element.tag == 'eigenvalues' and extract_eigenvalues: num_kpoints = len(self._lattice['kpoints']) if not data2: eigenvalues, occupancies = self._extract_eigenvalues( data, None, num_kpoints) else: eigenvalues, occupancies = self._extract_eigenvalues( data, data2, num_kpoints) self._data['eigenvalues'] = eigenvalues self._data['occupancies'] = occupancies data = [] data2 = [] extract_eigenvalues = False if event == 'start' and element.tag == 'eigenvalues' and element.attrib.get( 'comment') == 'interpolated': extract_eigenvalues_specific = True if event == 'end' and element.tag == 'eigenvalues' and extract_eigenvalues_specific: num_kpoints = len(self._data['kpoints']) if not data2: eigenvalues_specific, _ = self._extract_eigenvalues( data, None, num_kpoints) else: eigenvalues_specific, _ = self._extract_eigenvalues( data, data2, num_kpoints) self._data['eigenvalues_specific'] = eigenvalues_specific data = [] data2 = [] extract_eigenvalues_specific = False if event == 'start' and element.tag == 'eigenvelocities': extract_eigenvelocities = True if event == 'end' and element.tag == 'eigenvelocities': num_kpoints = len(self._data['kpoints']) if not data2: eigenvelocities = self._extract_eigenvelocities( data, None, num_kpoints) else: eigenvelocities = self._extract_eigenvelocities( data, data2, num_kpoints) self._data['eigenvelocities'] = eigenvelocities data = [] data2 = [] extract_eigenvelocities = False if event == 'start' and element.tag == 'dielectricfunction': extract_dielectrics = True if event == 'end' and element.tag == 'dielectricfunction': _diel = {} diel = np.split(self._convert_array2D_f(data, 7), 2) _diel['energy'] = diel[0][:, 0] _diel['imag'] = diel[0][:, 1:7] _diel['real'] = diel[1][:, 1:7] self._data['dielectrics'] = _diel data = [] extract_dielectrics = False if event == 'start' and element.tag == 'dynmat': extract_dynmat = True if event == 'end' and element.tag == 'dynmat': self._data['dynmat'] = dynmat extract_dynmat = False if event == 'start' and element.tag == 'array': # a bit of special threatment here as there is # an array element without attributes, so we get # KeyErrors try: if element.attrib['name'] == 'born_charges': extract_born = True except KeyError: pass if event == 'end' and element.tag == 'array': # again a bit special try: if element.attrib['name'] == 'born_charges': num_atoms = 0 if self._lattice['species'] is not None: num_atoms = self._lattice['species'].shape[0] else: self._logger.error( self.ERROR_MESSAGES[self.ERROR_NO_SPECIES]) sys.exit(self.ERROR_NO_SPECIES) data = self._convert_array2D_f(data, 3) data = np.split(data, num_atoms) self._data['born'] = np.asarray(data) data = [] extract_born = False except KeyError: pass # now extract data if extract_scstep: # extrapolated energy if event == 'start' and element.tag == 'i' and \ element.attrib['name'] == 'e_0_energy': extract_e_0_energy = True if event == 'end' and element.tag == 'i' and \ element.attrib['name'] == 'e_0_energy': extract_e_0_energy = False if extract_e_0_energy: data3.append(element) # free energy if event == 'start' and element.tag == 'i' and \ element.attrib['name'] == 'e_fr_energy': extract_e_fr_energy = True if event == 'end' and element.tag == 'i' and \ element.attrib['name'] == 'e_fr_energy': extract_e_fr_energy = False if extract_e_fr_energy: data4.append(element) # energy without entropy if event == 'start' and element.tag == 'i' and \ element.attrib['name'] == 'e_wo_entrp': extract_e_wo_entrp = True if event == 'end' and element.tag == 'i' and \ element.attrib['name'] == 'e_wo_entrp': extract_e_wo_entrp = False if extract_e_wo_entrp: data5.append(element) if extract_latticedata: if event == 'start' and element.tag == 'varray' \ and element.attrib.get('name') == 'basis': extract_unitcell = True if event == 'end' and element.tag == 'varray' \ and element.attrib.get('name') == 'basis': cell[calc] = self._convert_array2D_f(data, 3) data = [] extract_unitcell = False if event == 'start' and element.tag == 'varray' \ and element.attrib.get('name') == 'positions': extract_positions = True if event == 'end' and element.tag == 'varray' \ and element.attrib.get('name') == 'positions': pos[calc] = self._convert_array2D_f(data, 3) data = [] extract_positions = False if extract_unitcell: if event == 'start' and element.tag == 'v': data.append(element) if extract_positions: if event == 'start' and element.tag == 'v': data.append(element) if extract_forces: if event == 'start' and element.tag == 'v': data.append(element) if extract_stress: if event == 'start' and element.tag == 'v': data.append(element) if extract_energies: # extrapolated energy if event == 'start' and element.tag == 'i' and \ element.attrib['name'] == 'e_0_energy': totens[calc].update({'energy_extrapolated_final': float(element.text)}) # free energy if event == 'start' and element.tag == 'i' and \ element.attrib['name'] == 'e_fr_energy': totens[calc].update({'energy_free_final': float(element.text)}) # energy without entropy if event == 'start' and element.tag == 'i' and \ element.attrib['name'] == 'e_wo_entrp': totens[calc].update({'energy_no_entropy_final': float(element.text)}) if extract_eigenvalues: if event == 'start' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin 1': extract_eigenvalues_spin1 = True if event == 'end' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin 1': extract_eigenvalues_spin1 = False if event == 'start' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin 2': extract_eigenvalues_spin2 = True if event == 'end' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin 2': extract_eigenvalues_spin2 = False if extract_eigenvalues_spin1: if event == 'start' and element.tag == 'r': data.append(element) if extract_eigenvalues_spin2: if event == 'start' and element.tag == 'r': data2.append(element) if extract_eigenvalues_specific: if event == 'start' and element.tag == 'varray' \ and element.attrib.get('name') == 'kpointlist': extract_kpoints_specific = True if event == 'end' and element.tag == 'varray' \ and element.attrib.get('name') == 'kpointlist': self._data['kpoints'] = self._convert_array2D_f( data, 3) data = [] extract_kpoints_specific = False if event == 'start' and element.tag == 'varray' \ and element.attrib.get('name') == 'weights': extract_kpointsw_specific = True if event == 'end' and element.tag == 'varray' \ and element.attrib.get('name') == 'weights': self._data['kpointsw'] = self._convert_array1D_f(data) data = [] extract_kpointsw_specific = False if event == 'start' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin 1': extract_eigenvalues_spin1 = True if event == 'end' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin 1': extract_eigenvalues_spin1 = False if event == 'start' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin 2': extract_eigenvalues_spin2 = True if event == 'end' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin 2': extract_eigenvalues_spin2 = False if extract_kpoints_specific: if event == 'start' and element.tag == 'v': data.append(element) if extract_kpointsw_specific: if event == 'start' and element.tag == 'v': data.append(element) if extract_eigenvalues_spin1: if event == 'start' and element.tag == 'r': data.append(element) if extract_eigenvalues_spin2: if event == 'start' and element.tag == 'r': data2.append(element) if extract_eigenvelocities: if event == 'start' and element.tag == 'varray' \ and element.attrib.get('name') == 'kpointlist': extract_kpoints_specific = True if event == 'end' and element.tag == 'varray' \ and element.attrib.get('name') == 'kpointlist': self._data['kpoints'] = self._convert_array2D_f( data, 3) data = [] extract_kpoints_specific = False if event == 'start' and element.tag == 'varray' \ and element.attrib.get('name') == 'weights': extract_kpointsw_specific = True if event == 'end' and element.tag == 'varray' \ and element.attrib.get('name') == 'weights': self._data['kpointsw'] = self._convert_array1D_f(data) data = [] extract_kpointsw_specific = False if event == 'start' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin 1': extract_eigenvelocities_spin1 = True if event == 'end' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin 1': extract_eigenvelocities_spin1 = False if event == 'start' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin 2': extract_eigenvelocities_spin2 = True if event == 'end' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin 2': extract_eigenvelocities_spin2 = False if extract_kpoints_specific: if event == 'start' and element.tag == 'v': data.append(element) if extract_kpointsw_specific: if event == 'start' and element.tag == 'v': data.append(element) if extract_eigenvelocities_spin1: if event == 'start' and element.tag == 'r': data.append(element) if extract_eigenvelocities_spin2: if event == 'start' and element.tag == 'r': data2.append(element) if extract_dielectrics: if event == 'start' and element.tag == 'r': data.append(element) if extract_projected: # make sure we skip the first entry containing # the eigenvalues (already stored at this point) if event == 'end' and element.tag == 'eigenvalues': extract_eig_proj = True if event == 'end' and element.tag == 'array' and \ extract_eig_proj: if not data2: projectors = self._extract_projectors(data, None) else: projectors = self._extract_projectors(data, data2) self._data['projectors'] = projectors data = [] data2 = [] extract_eig_proj = False if extract_eig_proj: if event == 'start' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin1': extract_eig_proj_ispin1 = True if event == 'end' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin1': extract_eig_proj_ispin1 = False if event == 'start' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin2': extract_eig_proj_ispin2 = True if event == 'end' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin2': extract_eig_proj_ispin2 = False if extract_eig_proj_ispin1: if event == 'start' and element.tag == 'r': data.append(element) if extract_eig_proj_ispin2: if event == 'start' and element.tag == 'r': data2.append(element) if extract_dynmat: if event == 'start' and element.tag == 'varray' \ and element.attrib.get('name') == 'hessian': extract_hessian = True if event == 'end' and element.tag == 'varray' \ and element.attrib.get('name') == 'hessian': num_atoms = 0 if self._lattice['species'] is not None: num_atoms = self._lattice['species'].shape[0] else: self._logger.error( self.ERROR_MESSAGES[self.ERROR_NO_SPECIES]) sys.exit(self.ERROR_NO_SPECIES) hessian = self._convert_array2D_f(data, num_atoms * 3) self._data['hessian'] = hessian data = [] extract_hessian = False if event == 'start' and element.tag == 'varray' \ and element.attrib.get('name') == 'eigenvectors': extract_dynmat_eigen = True if event == 'end' and element.tag == 'varray' \ and element.attrib.get('name') == 'eigenvectors': num_atoms = 0 if self._lattice['species'] is not None: num_atoms = self._lattice['species'].shape[0] else: self._logger.error( self.ERROR_MESSAGES[self.ERROR_NO_SPECIES]) sys.exit(self.ERROR_NO_SPECIES) eigenvec = self._convert_array2D_f(data, num_atoms * 3) dynmat['eigenvectors'] = eigenvec data = [] extract_dynmat_eigen = False if extract_hessian: if event == 'start' and element.tag == 'v': data.append(element) if extract_dynmat_eigen: if event == 'start' and element.tag == 'v': data.append(element) try: if event == 'start' and \ element.attrib['name'] == 'eigenvalues': dynmat['eigenvalues'] = self._convert_array_f( element) except KeyError: pass if extract_born: if event == 'start' and element.tag == 'v': data.append(element) if extract_species: if event == 'start' and element.tag == 'c': data.append(element) if extract_kpointdata: try: if event == 'start' and element.tag == 'v' and \ element.attrib['name'] == 'divisions': self._lattice['kpointdiv'] = self._convert_array_i( element) except KeyError: pass if event == 'start' and element.tag == 'varray' \ and element.attrib.get('name') == 'kpointlist': extract_kpoints = True if event == 'end' and element.tag == 'varray' \ and element.attrib.get('name') == 'kpointlist': self._lattice['kpoints'] = self._convert_array2D_f(data, 3) data = [] extract_kpoints = False if event == 'start' and element.tag == 'varray' \ and element.attrib.get('name') == 'weights': extract_kpointsw = True if event == 'end' and element.tag == 'varray' \ and element.attrib.get('name') == 'weights': self._lattice['kpointsw'] = self._convert_array1D_f(data) data = [] extract_kpointsw = False if extract_kpoints: if event == 'start' and element.tag == 'v': data.append(element) if extract_kpointsw: if event == 'start' and element.tag == 'v': data.append(element) if extract_dos: if event == 'start' and element.tag == 'i' and \ element.attrib.get('name') == 'efermi': data6.append(element) if event == 'start' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin 1': extract_dos_ispin1 = True if event == 'end' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin 1': extract_dos_ispin1 = False if event == 'start' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin 2': extract_dos_ispin2 = True if event == 'end' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin 2': extract_dos_ispin2 = False if extract_dos_ispin1: if event == 'start' and element.tag == 'r': data.append(element) if extract_dos_ispin2: if event == 'start' and element.tag == 'r': data2.append(element) if extract_dos_specific: if event == 'start' and element.tag == 'i' and \ element.attrib.get('name') == 'efermi': data6.append(element) if event == 'start' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin 1': extract_dos_specific_ispin1 = True if event == 'end' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin 1': extract_dos_specific_ispin1 = False if event == 'start' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin 2': extract_dos_specific_ispin2 = True if event == 'end' and element.tag == 'set' \ and element.attrib.get('comment') == 'spin 2': extract_dos_specific_ispin2 = False if extract_dos_specific_ispin1: if event == 'start' and element.tag == 'r': data.append(element) if extract_dos_specific_ispin2: if event == 'start' and element.tag == 'r': data2.append(element) # now we need to update some elements # for static runs, initial is equal to last # if cell: # if len(cell) == 1: # cell[2] = cell[1] # if pos: # if len(pos) == 1: # pos[2] = pos[1] # if force: # if len(force) == 1: # force[2] = force[1] # if stress: # if len(stress) == 1: # stress[2] = stress[1] # if totens: # if len(totens) == 1: # totens[2] = totens[1] # if not extract_all: # # only save initial and last # if cell: # cell = {key: np.asarray(cell[key]) for key in {1, 2}} # if pos: # pos = {key: np.asarray(pos[key]) for key in {1, 2}} # if force: # force = {key: force[key] for key in {1, 2}} # if stress: # stress = {key: stress[key] for key in {1, 2}} # if totens: # totens = {key: totens[key] for key in {1, 2}} # if any dict is empty, set to zero if not cell: cell = None if not pos: pos = None if not force: force = None if not stress: stress = None if not totens: totens = None # store self._lattice['unitcell'] = cell self._lattice['positions'] = pos self._data['forces'] = force self._data['stress'] = stress self._data['totens'] = totens return def _fetch_versionw(self, xml): """Fetch and set version using etree Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- version : string If version is found it is returned. Notes ----- Used when detecting the VASP version. """ entry = self._find( xml, './/generator/i[@name="version"]') if entry is None: return None return entry.text def _fetch_symprecw(self, xml): """Fetch and set symprec using etree Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- symprec : float If SYMPREC is found it is returned. Notes ----- Used when detecting symmetry. """ entry = self._find( xml, './/parameters/separator[@name="symmetry"]/' 'i[@name="SYMPREC"]') if entry is None: return None symprec = self._convert_f(entry) return symprec def _fetch_sigmaw(self, xml): """Fetch and set sigma using etree Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- sigma : float If SIGMA is found it is returned. Notes ----- Determines the smearing used etc. """ entry = self._find( xml, './/parameters/separator[@name="electronic"]/' 'separator[@name="electronic smearing"]/' 'i[@name="SIGMA"]') if entry is None: return None sigma = self._convert_f(entry) return sigma def _fetch_nelmw(self, xml): """Fetch and set nelm using etree Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- nelm : float If NELM is found it is returned. Notes ----- Maximum number of eletronic steps. This is needed for checking if the eletronic structure is converged. """ entry = self._find( xml, './/parameters/separator[@name="electronic"]/' 'separator[@name="electronic convergence"]/' 'i[@name="NELM"]') if entry is None: return None nelm = self._convert_i(entry) return nelm def _fetch_nsww(self, xml): """Fetch and set nsw using etree Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- nsw : int If NSW is found it is returned. Notes ----- Maximum number of eletronic steps. This is needed for checking ionic convergence. """ entry = self._find( xml, './/parameters/separator[@name="ionic"]/' 'i[@name="NSW"]') if entry is None: return None nsw = self._convert_i(entry) return nsw def _fetch_ispinw(self, xml): """Fetch and set ispin using etree Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- ispin : int If ISPIN is found it is returned. Notes ----- Determines if spin is included. ISPIN=2 separates the spins. """ entry = self._find( xml, './/parameters/separator[@name="electronic"]/' 'separator[@name="electronic spin"]/' 'i[@name="ISPIN"]') if entry is None: return None ispin = self._convert_i(entry) return ispin def _fetch_ismearw(self, xml): """Fetch and set ismear using etree Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- ismear : int If ISMEAR is found it is returned. Notes ----- Determines which smearing factor is used on the electrons. """ entry = self._find( xml, './/parameters/separator[@name="electronic"]/' 'separator[@name="electronic smearing"]/' 'i[@name="ISMEAR"]') if entry is None: return None ismear = self._convert_i(entry) return ismear def _fetch_nbandsw(self, xml): """Fetch and set nbands using etree Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- nbands : int If NBANDS is found it is returned. Notes ----- The number of bands used in the calculation. """ entry = self._find( xml, './/parameters/separator[@name="electronic"]/' 'i[@name="NBANDS"]') if entry is None: return None nbands = self._convert_i(entry) return nbands def _fetch_nelectw(self, xml): """Fetch and set nelect using etree. Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- nelect : float If NELECT is found it is returned. Notes ----- The number of electrons used in the calculation. """ entry = self._find( xml, './/parameters/separator[@name="electronic"]/' 'i[@name="NELECT"]') if entry is None: return None nelect = self._convert_f(entry) return nelect def _fetch_systemw(self, xml): """Fetch and set system using etree. Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- system : string If SYSTEM is found it is returned. Notes ----- A comment that can be specified in the INCAR file. """ entry = self._find( xml, './/parameters/separator[@name="general"]/' 'i[@name="SYSTEM"]') if entry is None: return None system = entry.text return system def _fetch_bornw(self, xml): """Fetch the Born effetive charges. Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- born : ndarray A ndarray containing the born effective charge tensor for each atom. """ entry = self._findall( xml, './/calculation/array[@name="born_charges"]/' 'set/v') if entry is None: return None num_atoms = 0 species = self._lattice['species'] if species is None: # Try to fetch species again, if still none, we cannot parse it # and thus we cannot parse the entries in here either. species = self._fetch_speciesw(xml) if species is None: return None, None, None, None num_atoms = species.shape[0] born = self._convert_array2D_f(entry, 3) born = np.asarray(np.split(born, num_atoms)) return born def _fetch_upfsw(self, xml, extract_all=False): """Fetch the unitcell, atomic positions, force and stress. Parameters ---------- xml : object An ElementTree object to be used for parsing. extract_all : bool Determines which unitcell and positions to get. Defaults to the initial and last. If True, extract all. Returns ------- cell, pos, force, stress : dict An dictionary containing ndarrays of the: | unitcells with the vectors as rows in AA. | positions with each position as a row in direct coordinates. | forces where each row is the force in eV/AA on each atom. | stress where each row is the stress matrix for the unitcell in kB. """ cell = {} pos = {} force = {} stress = {} num_atoms = 0 species = self._lattice['species'] if species is None: # Try to fetch species again, if still none, we cannot parse it # and thus we cannot parse the entries in here either. species = self._fetch_speciesw(xml) if species is None: return None, None, None, None num_atoms = species.shape[0] if not extract_all: entry = self._findall( xml, './/structure[@name="finalpos"]/crystal/varray[@name="basis"]/v' ) if entry is not None: cell[2] = self._convert_array2D_f(entry, 3) else: cell[2] = None entry = self._findall( xml, './/structure[@name="initialpos"]/crystal/varray[@name="basis"]/v' ) if entry is not None: cell[1] = self._convert_array2D_f(entry, 3) else: cell[1] = None entry = self._findall( xml, './/structure[@name="finalpos"]/varray[@name="positions"]/v') if entry is not None: pos[2] = self._convert_array2D_f(entry, 3) else: pos[2] = None entry = self._findall( xml, './/structure[@name="initialpos"]/varray[@name="positions"]/v') if entry is not None: pos[1] = self._convert_array2D_f(entry, 3) else: pos[1] = None entry = self._findall(xml, './/calculation/varray[@name="stress"]/v') if entry is not None: stress[1] = self._convert_array2D_f(entry[0:3], 3) stress[2] = self._convert_array2D_f(entry[-3:], 3) else: stress[1] = None stress[2] = None entry = self._findall(xml, './/calculation/varray[@name="forces"]/v') if entry is not None: force[1] = self._convert_array2D_f(entry[0:num_atoms], 3) force[2] = self._convert_array2D_f(entry[-num_atoms:], 3) else: force[1] = None force[2] = None else: structures = self._findall(xml, './/calculation/structure') entrycell = self._findall( xml, './/calculation/structure/crystal/varray[@name="basis"]/v') entrypos = self._findall( xml, './/calculation/structure/varray[@name="positions"]/v') entryforce = self._findall( xml, './/calculation/varray[@name="forces"]/v') entrystress = self._findall( xml, './/calculation/varray[@name="stress"]/v') if structures is not None: num_calcs = len(structures) else: return None num_entrycell = 0 num_entrypos = 0 num_entryforce = 0 num_entrystress = 0 if entrycell is not None: num_entrycell = len(entrycell) cell[1] = self._convert_array2D_f(entrycell[0:3], 3) if num_entrycell > 3: cell[2] = self._convert_array2D_f(entrycell[-3:], 3) else: cell[2] = None else: cell[1] = None cell[2] = None if entrypos is not None: num_entrypos = len(entrypos) pos[1] = self._convert_array2D_f(entrypos[0:num_atoms], 3) if num_entrypos > 3: pos[2] = self._convert_array2D_f(entrypos[-num_atoms:], 3) else: pos[2] = None else: pos[1] = None pos[2] = None if entryforce is not None: num_entryforce = len(entryforce) force[1] = self._convert_array2D_f(entryforce[0:num_atoms], 3) if num_entryforce > 3: force[2] = self._convert_array2D_f(entryforce[-num_atoms:], 3) else: force[2] = None else: force[1] = None force[2] = None if entrystress is not None: num_entrystress = len(entrystress) stress[1] = self._convert_array2D_f(entrystress[0:3], 3) if num_entrystress > 3: stress[2] = self._convert_array2D_f(entrystress[-3:], 3) else: stress[2] = None else: stress[1] = None stress[2] = None max_entries = max( num_entrystress, max(num_entryforce, max(num_entrycell, num_entrypos))) if max_entries > 6: for calc in range(1, num_calcs): basecell = calc * 3 basepos = calc * num_atoms if entrycell is not None: cell[calc + 1] = self._convert_array2D_f( entrycell[basecell:basecell + 3], 3) if entrypos is not None: pos[calc + 1] = self._convert_array2D_f( entrypos[basepos:basepos + num_atoms], 3) if entryforce is not None: force[calc + 1] = self._convert_array2D_f( entryforce[basepos:basepos + num_atoms], 3) if entrystress is not None: stress[calc + 1] = self._convert_array2D_f( entrystress[basecell:basecell + 3], 3) # If we still only have one entry, or number two is None, last and initial should # be the same, force them to be similar. We could do this earlier, but this is done # to keep it tidy, and if one in the future would like to utilize the returned None. if cell: if len(cell) == 1 or cell[2] is None: cell[2] = cell[1] if pos: if len(pos) == 1 or pos[2] is None: pos[2] = pos[1] if force: if len(force) == 1 or force[2] is None: force[2] = force[1] if stress: if len(stress) == 1 or stress[2] is None: stress[2] = stress[1] return cell, pos, force, stress def _fetch_speciesw(self, xml): """Fetch the atomic species Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- spec : ndarray An array containing the atomic species as a number. Organized in the same order as the atomic positions. """ entry = self._findall(xml, './/atominfo/' 'array[@name="atoms"]/set/rc/c') if entry is None: return None spec = self._convert_species(entry[::2]) return spec def _fetch_hessian(self, xml): """Fetch the hessian. Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- hessian : ndarray An array containing the Hessian matrix. """ entry = self._findall( xml, './/calculation/dynmat/' 'varray[@name="hessian"]/v') if entry is None: return None species = self._lattice['species'] if species is None: # Try to fetch species again, if still none, we cannot parse it # and thus we cannot parse the entries in here either. species = self._fetch_speciesw(xml) if species is None: return None num_atoms = species.shape[0] hessian = self._convert_array2D_f(entry, num_atoms * 3) return hessian def _fetch_dynmatw(self, xml): """Fetch the dynamical matrix data. Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- dynmat : dict An dict containing the eigenvalues and eigenvectors. """ entry = self._find(xml, './/calculation/dynmat/' 'v[@name="eigenvalues"]') if entry is None: return None species = self._lattice['species'] if species is None: # Try to fetch species again, if still none, we cannot parse it # and thus we cannot parse the entries in here either. species = self._fetch_speciesw(xml) if species is None: return None num_atoms = species.shape[0] eigenvalues = self._convert_array_f(entry) entry = self._find( xml, './/calculation/dynmat/' 'varray[@name="eigenvectors"]') if entry is None: return None eigenvectors = self._convert_array2D_f(entry, num_atoms * 3) dynmat = {'eigenvalues': eigenvalues, 'eigenvectors': eigenvectors} return dynmat def _fetch_kpointsw(self, xml, path='kpoints/varray[@name="kpointlist"]/v'): """Fetch the kpoints. Parameters ---------- xml : object An ElementTree object to be used for parsing. path : string The path in the XML file containing the k-point set to be extracted. Returns ------- kpoints : ndarray An array containing the kpoints used in the calculation in direct coordinates. """ entry = self._findall(xml, path) if entry is None: return None kpoints = self._convert_array2D_f(entry, 3) return kpoints def _fetch_kpointsww(self, xml, path='kpoints/varray[@name="weights"]/v'): """Fetch the kpoint weights. Parameters ---------- xml : object An ElementTree object to be used for parsing. path : string The path in the XML file containing the k-point weights to be extracted. Returns ------- kpointw : ndarray An array containing the kpoint weights used in the calculation. """ entry = self._findall(xml, path) if entry is None: return None kpointsw = self._convert_array1D_f(entry) return kpointsw def _fetch_kpointdivw(self, xml): """Fetch the number of kpoints in each direction. Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- kpointdiv : list An list containing the kpoint divisions used in the calculation for the full BZ. """ entry = self._find(xml, 'kpoints/generation/v[@name="divisions"]') if entry is None: return None kpointdiv = self._convert_array_i(entry) return kpointdiv def _fetch_eigenvaluesw(self, xml): """Fetch the eigenvalues. Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- eigenvalues, occupancies : tupple An tupple of dicts containing ndarrays containing the eigenvalues and occupancies for each spin, band and kpoint index. """ # spin 1 entry_ispin1 = self._findall( xml, './/calculation/eigenvalues/array/set/' 'set[@comment="spin 1"]/set/r') # spin 2 entry_ispin2 = self._findall( xml, './/calculation/eigenvalues/array/set/' 'set[@comment="spin 2"]/set/r') # if we do not find spin 1 entries return right away if entry_ispin1 is None: return None, None eigenvalues, occupancies = self._extract_eigenvalues( entry_ispin1, entry_ispin2, len(self._lattice['kpoints'])) return eigenvalues, occupancies def _fetch_eigenvalues_specificw(self, xml): """Fetch the eigenvalues at specific k-point grids. Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- eigenvalues : ndarray An ndarray containing the eigenvalues for each spin, band and kpoint index. """ # spin 1 entry_ispin1 = self._findall( xml, './/calculation/eigenvalues/' 'eigenvalues/array/set/' 'set[@comment="spin 1"]/set/r') # spin 2 entry_ispin2 = self._findall( xml, './/calculation/eigenvalues/' 'eigenvalues/array/set/' 'set[@comment="spin 2"]/set/r') if entry_ispin1 is not None: # Also extract the k-point grids self._data['kpoints'] = self._fetch_kpointsw( xml, path='.//calculation/eigenvalues/' 'kpoints/varray[@name="kpointlist"]/v') self._data['kpointsw'] = self._fetch_kpointsww( xml, path='//calculation/eigenvalues/' 'kpoints/varray[@name="weights"]/v') # if we do not find spin 1 entries return right away if entry_ispin1 is None: return None eigenvalues, _ = self._extract_eigenvalues(entry_ispin1, entry_ispin2, len(self._data['kpoints'])) return eigenvalues def _fetch_eigenvelocitiesw(self, xml): """Fetch the eigenvelocities and eigenvalues.. Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- eigenvelocities : dict A dict with ndarrays containing the eigenvalues and eigenvelocities for each spin, band and kpoint index. kpoints : dict A dict with a ndarray containing the k-point in the full BZ on which the eigenvelocities were extracted. """ # spin 1 entry_ispin1 = self._findall( xml, './/calculation/eigenvelocities/' 'eigenvalues/array/set/' 'set[@comment="spin 1"]/set/r') # spin 2 entry_ispin2 = self._findall( xml, './/calculation/eigenvelocities/' 'eigenvalues/array/set/' 'set[@comment="spin 2"]/set/r') # if we do not find spin 1 entries return right away if entry_ispin1 is None: return None self._data['kpoints'] = self._fetch_kpointsw( xml, path='.//calculation/eigenvelocities/' 'kpoints/varray[@name="kpointlist"]/v') self._data['kpointsw'] = self._fetch_kpointsww( xml, path='//calculation/eigenvelocities/' 'kpoints/varray[@name="weights"]/v') eigenvelocities = self._extract_eigenvelocities( entry_ispin1, entry_ispin2, len(self._data['kpoints'])) return eigenvelocities def _fetch_projectorsw(self, xml): """Fetch the projectors. Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- projectors : dict An dict containing ndarrays of the projectors for each atomic, spin, band and kpoint index. """ # projectors spin 1 entry_ispin1 = self._findall( xml, './/calculation/projected/array/set/' 'set[@comment="spin1"]/set/set/r') # projectors spin 2 entry_ispin2 = self._findall( xml, './/calculation/projected/array/set/' 'set[@comment="spin2"]/set/set/r') # if we do not find spin 1 entries return right away if entry_ispin1 is None: return None projectors = self._extract_projectors(entry_ispin1, entry_ispin2) return projectors def _fetch_totensw(self, xml): """Fetch the total energies Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- eigenvalues, occupancies : tupple An tupple of two ndarrays containing the eigenvalues for each spin, band and kpoint index. """ # fetch the energies for all electronic # steps, due to the fact that the number of steps is not the # same between each calculation we need to look at all the # children # # TODO: check in the future if it is faster to fetch all scstep # elements and then only how many scstep there is pr. calc # and sort from there # entries = self._findall(xml, './/calculation') if entries is None: return None # this most likely takes too long for very long fpmd calculations, # so consider putting in a flag that only extract the # energies from each step in the calculation and not the scsteps as # well energies = {} for index, calc in enumerate(entries): energies_pr_calc = {} for supported_energy, supported_key in _SUPPORTED_TOTAL_ENERGIES.items(): data = self._findall(calc, './/scstep/energy/i[@name="' + supported_key + '"]') if data is None: return None data = self._convert_array1D_f(data) energies_pr_calc[supported_energy] = data # now fetch the final entry outside the sc steps for each calculation # this term might have been corrected and scaled compared to the final sc energy # extrapolated energy data = self._findall(calc, './energy/i[@name="' + supported_key + '"]') if data is None: return None data = self._convert_f(data[0]) energies_pr_calc[supported_energy+'_final'] = data energies[index + 1] = energies_pr_calc return energies def _fetch_dosw(self, xml): """Fetch the density of states. Parameters ---------- xml : object An ElementTree object to be used for parsing. Returns ------- dos, dos_specific : dicts Dictionaries with ndarrays containing the energies, total and integrated density of states for the regular and specific k-point grid, respectively. """ # fetch the Fermi level entry = self._find(xml, './/calculation/dos/i[@name="efermi"]') if entry is not None: fermi_level = self._convert_f(entry) else: fermi_level = None # spin 1 entry_total_ispin1 = self._findall( xml, './/calculation/dos/total/array/set/set[@comment="spin 1"]/r') # spin 2 entry_total_ispin2 = self._findall( xml, './/calculation/dos/total/array/set/set[@comment="spin 2"]/r') # partial spin 1 entry_partial_ispin1 = self._findall( xml, './/calculation/dos/partial/array/set/set/set[@comment="spin 1"]/r' ) # partial spin 2 entry_partial_ispin2 = self._findall( xml, './/calculation/dos/partial/array/set/set/set[@comment="spin 2"]/r' ) # if no entries for spin 1, eject right away if entry_total_ispin1 is None: return None, None num_atoms = 0 species = self._lattice['species'] if species is None: # Try to fetch species again, if still none, we cannot parse it # and thus we cannot parse the entries in here either. species = self._fetch_speciesw(xml) if species is None: return None, None num_atoms = species.shape[0] dos = self._extract_dos(entry_total_ispin1, entry_total_ispin2, entry_partial_ispin1, entry_partial_ispin2, fermi_level, num_atoms) # Now extract the density of states for specific k-point grids # fetch the Fermi level again as this can be different entry = self._find( xml, './/calculation/dos[@comment="interpolated"]/i[@name="efermi"]') if entry is not None: fermi_level = self._convert_f(entry) else: fermi_level = None # spin 1 entry_total_ispin1 = self._findall( xml, './/calculation/dos[@comment="interpolated"]/total/array/set/set[@comment="spin 1"]/r' ) # spin 2 entry_total_ispin2 = self._findall( xml, './/calculation/dos[@comment="interpolated"]/total/array/set/set[@comment="spin 2"]/r' ) # partial spin 1 entry_partial_ispin1 = self._findall( xml, './/calculation/dos[@comment="interpolated"]/partial/array/set/set/set[@comment="spin 1"]/r' ) # partial spin 2 entry_partial_ispin2 = self._findall( xml, './/calculation/dos[@comment="interpolated"]/partial/array/set/set/set[@comment="spin 2"]/r' ) # if no entries for spin 1, eject right away if entry_total_ispin1 is None: return dos, None dos_specific = self._extract_dos(entry_total_ispin1, entry_total_ispin2, entry_partial_ispin1, entry_partial_ispin2, fermi_level, num_atoms) return dos, dos_specific def _extract_dos(self, entry_total_ispin1, entry_total_ispin2, entry_partial_ispin1, entry_partial_ispin2, fermi_level, num_atoms): """Extract the density of states. Parameters ---------- entry_total_spin1 : list A list containing ElementTree objects of the total density of states entry for spin channel 1. entry_total_spin2 : list A list containing ElementTree objects of the total density of states entry for spin channel 2. entry_total_spin1 : list A list containing ElementTree objects of the partial density of states entry for spin channel 1. entry_total_spin1 : list A list containing ElementTree objects of the partial density of states entry for spin_channel 2. fermi_level : float The Fermi level in eV. num_atoms : int The number of atoms. Returns ------- dos : dict A dict of ndarrays containing the energies, total and integrated density of states. """ if entry_total_ispin2: dos = {} dos = {'up': None, 'down': None} dos_ispin = self._convert_array2D_f(entry_total_ispin1, 3) _dosup = {} _dosdown = {} enrgy = dos_ispin[:, 0] _dosup['total'] = dos_ispin[:, 1] _dosup['integrated'] = dos_ispin[:, 2] # check if partial exists if entry_partial_ispin1: dos_ispin = self._convert_array2D_f(entry_partial_ispin1, 10) # do not need the energy term (similar to total) _dosup['partial'] = np.asarray( np.split(dos_ispin[:, 1:10], num_atoms)) else: _dosup['partial'] = None dos['up'] = _dosup dos_ispin = self._convert_array2D_f(entry_total_ispin2, 3) _dosdown['total'] = dos_ispin[:, 1] _dosdown['integrated'] = dos_ispin[:, 2] if entry_partial_ispin2: dos_ispin = self._convert_array2D_f(entry_partial_ispin2, 10) # do not need the energy term (similar to total) _dosdown['partial'] = np.asarray( np.split(dos_ispin[:, 1:10], num_atoms)) else: _dosdown['partial'] = None dos['down'] = _dosdown dos['total'] = {'fermi_level': fermi_level, 'energy': enrgy} else: dos = {} dos = {'total': None} dos_ispin = self._convert_array2D_f(entry_total_ispin1, 3) _dos = {} _dos['energy'] = dos_ispin[:, 0] _dos['total'] = dos_ispin[:, 1] _dos['integrated'] = dos_ispin[:, 2] # check if partial exists if entry_partial_ispin1: dos_ispin = self._convert_array2D_f(entry_partial_ispin1, 10) # do not need the energy term (similar to total) _dos['partial'] = np.asarray( np.split(dos_ispin[:, 1:10], num_atoms)) else: _dos['partial'] = None _dos['fermi_level'] = fermi_level dos['total'] = _dos return dos def _fetch_dielectricsw(self, xml, method='dft', transfer=None): """ Fetch the dielectric function from the VASP XML file Parameters ---------- xml : object An ElementTree object to be used for parsing. method : {'dft', 'qp', 'bse'}, optional What method was used to obtain the dielectric function. VASP uses different output between DFT, QP and BSE calculations (defaults to 'dft'). transfer : {'density', 'current'}, optional Which dielectric function do you want? Density-density or current-current? Defaults to the density-density. Returns ------- diel_imag : (N,6) list of list of float If `method` is 'dft'. The imaginary dielectric function for N energies for the xx, yy, zz, xy, yz and zx component, respectively. diel_real : (N,6) list of float If `method` is 'dft'. The real dielectric function for N energies for the xx, yy, zz, xy, yz and zx component, respectively. diel_imag_mac : (N,6) list of list of float If `method` is 'qp'. The imaginary part of the macroscopic dielectric function. See `diel_imag` for layout. diel_real_mac : (N,6) list of list of float If `method` is 'qp'. The real part of the polarized dielectric function. See `diel_imag` for layout. diel_imag_pol : (N,6) list of list of float If `method` is 'qp'. The imaginary part of the polarized dielectric function. See `diel_imag` for layout. diel_real_pol : (N,6) list of list of floa If `method` is 'qp'. The real part of the polarized dielectric function. See `diel_imag` for layout. diel_imag_invlfrpa : (N,6) list of list of float If `method` is 'qp'. The imaginary part of the inverse dielectric function with local field effects on the RPA level. See `diel_imag` for layout. diel_real_invlfrpa : (N,6) list of list of float If `method` is 'qp'. The real part of the inverse dielectric function with local field effects on the RPA level. See `diel_imag` for layout. diel_imag : (N,6) list of list of float If `method` is 'bse'. The imaginary part of the BSE dielectric function. See `diel_imag` above for layout. diel_real : (N,6) list of list of float If `method` is 'bse'. The real part of the BSE dielectric function. See `diel_imag` at the top for layout. epsilon : (3,3) list of list of float """ if method == 'dft': diel = {} if transfer == 'density': tag = 'dielectricfunction[@comment="density-density"]' elif transfer == 'current': tag = 'dielectricfunction[@comment="current-current"]' else: tag = 'dielectricfunction' # imaginary part entry = self._findall( xml, './/calculation/' + tag + '/imag/array/set/r') if entry is None: diel['imag'] = None diel['energy'] = None else: data = self._convert_array2D_f(entry, 7) diel['energy'] = data[:, 0] diel['imag'] = data[:, 1:7] # real part entry = self._findall( xml, './/calculation/' + tag + '/real/array/set/r') if entry is None: diel['real'] = None else: data = self._convert_array2D_f(entry, 7) diel['real'] = data[:, 1:7] # epsilon part entry = self._findall(xml, './/calculation/varray[@name="epsilon"]/v') if entry is not None: diel['epsilon'] = self._convert_array2D_f(entry, 3) else: diel['epsilon'] = None # ionic epsilon part entry = self._findall( xml, './/calculation/varray[@name="epsilon_ion"]/v') if entry is not None: diel['epsilon_ion'] = self._convert_array2D_f(entry, 3) else: diel['epsilon_ion'] = None return diel # if method == "qp": # try: # dielectric_xml = root.findall('dielectricfunction') # except AttributeError: # logger.error( # "Did not find <dielectricfunction> tag in the current XML." # "Exiting.") # sys.exit(1) # # first head of macroscopic # diel_imag_xml = dielectric_xml[0].find( # 'imag').find('array').find('set') # diel_imag_mac = [] # # first imag part # for energy in diel_imag_xml.iter('r'): # diel_imag_mac.append([float(x) for x in energy.text.split()]) # diel_real_xml = dielectric_xml[0].find( # 'real').find('array').find('set') # diel_real_mac = [] # # then real part # for energy in diel_real_xml.iter('r'): # diel_real_mac.append([float(x) for x in energy.text.split()]) # # then polarized # diel_imag_xml = dielectric_xml[1].find( # 'imag').find('array').find('set') # diel_imag_pol = [] # # first imag part # for energy in diel_imag_xml.iter('r'): # diel_imag_pol.append([float(x) for x in energy.text.split()]) # diel_real_xml = dielectric_xml[1].find( # 'real').find('array').find('set') # diel_real_pol = [] # # then real part # for energy in diel_real_xml.iter('r'): # diel_real_pol.append([float(x) for x in energy.text.split()]) # # then inverse macroscopic (including local field) # diel_imag_xml = dielectric_xml[2].find( # 'imag').find('array').find('set') # diel_imag_invlfrpa = [] # # first imag part # for energy in diel_imag_xml.iter('r'): # diel_imag_invlfrpa.append([float(x) for x in energy.text.split()]) # diel_real_xml = dielectric_xml[2].find( # 'real').find('array').find('set') # diel_real_invlfrpa = [] # # then real part # for energy in diel_real_xml.iter('r'): # diel_real_invlfrpa.append([float(x) for x in energy.text.split()]) # return diel_imag_mac, diel_real_mac, diel_imag_pol, diel_real_pol, \ # diel_imag_invlfrpa, diel_real_invlfrpa # if method == "bse": # try: # dielectric_xml = root.find('dielectricfunction') # except AttributeError: # logger.error( # "Did not find <dielectricfunction> tag in the current XML." # "Exiting.") # sys.exit(1) # diel_imag_xml = dielectric_xml.find('imag').find('array').find('set') # diel_imag = [] # # first imag part # for energy in diel_imag_xml.iter('r'): # diel_imag.append([float(x) for x in energy.text.split()]) # diel_real_xml = dielectric_xml.find('real').find('array').find('set') # diel_real = [] # # then real part # for energy in diel_real_xml.iter('r'): # diel_real.append([float(x) for x in energy.text.split()]) # return diel_imag, diel_real def _extract_eigenvalues(self, spin1, spin2, num_kpoints): """Extract the eigenvalues. Parameters ---------- spin1 : list A list of ElementTree object to be used for parsing of the ispin=1 entries. spin2 : list A list of ElementTree object to be used for parsing of the ispin=2 entries. num_kpoints : int The number of k-points to extract Returns ------- eigenvalues, occupancies : tupple of dicts An tupple of two dicts containing ndarrays with the eigenvalues and occupancies for each band and kpoint index. """ # then check if we have asigned ispin if self._parameters['ispin'] is None: self._logger.error(self.ERROR_MESSAGES[self.ERROR_NO_ISPIN]) sys.exit(self.ERROR_NO_ISPIN) # then check if we have asigned nbands if self._parameters['nbands'] is None: self._logger.error(self.ERROR_MESSAGES[self.ERROR_NO_NBANDS]) sys.exit(self.ERROR_NO_NBADS) # ispin ispin = self._parameters['ispin'] # number of bands num_bands = self._parameters['nbands'] # set dicts eigenvalues = {} occupancies = {} data = [] if len(spin1) != num_bands * num_kpoints: self._logger.error( self.ERROR_MESSAGES[self.ERROR_MISMATCH_KPOINTS_NBANDS]) sys.exit(self.ERROR_MISMATCH_KPOINTS_NBANDS) # check number of elements in first entry of spin1 (we assume all are equal) entries = len(spin1[0].text.split()) if entries > 1: data.append(self._convert_array2D_f(spin1, entries)) else: data.append(self._convert_array1D_f(spin1)) data[0] = np.asarray(np.split(data[0], num_kpoints)) if spin2 is not None: if len(spin2) != num_bands * num_kpoints: self._logger.error( self.ERROR_MESSAGES[self.ERROR_MISMATCH_KPOINTS_NBANDS]) sys.exit(self.ERROR_MISMATCH_KPOINTS_NBANDS) if entries > 1: data.append(self._convert_array2D_f(spin2, entries)) else: data.append(self._convert_array1D_f(spin2)) data[1] = np.asarray(np.split(data[1], num_kpoints)) # convert to numpy arrays data = np.asarray(data) # swap axis if the band index should be before the kpoint index if not self._k_before_band: data = np.swapaxes(data, 1, 2) if spin2 is not None: if entries > 1: eigenvalues['up'] = np.ascontiguousarray(data[0, :, :, 0]) eigenvalues['down'] = np.ascontiguousarray(data[1, :, :, 0]) occupancies['up'] = np.ascontiguousarray(data[0, :, :, 1]) occupancies['down'] = np.ascontiguousarray(data[1, :, :, 1]) else: eigenvalues['up'] = np.ascontiguousarray(data[0, :, :]) eigenvalues['down'] = np.ascontiguousarray(data[1, :, :]) else: if entries > 1: eigenvalues['total'] = np.ascontiguousarray(data[0, :, :, 0]) occupancies['total'] = np.ascontiguousarray(data[0, :, :, 1]) else: eigenvalues['total'] = np.ascontiguousarray(data[0, :, :]) if entries > 1: return eigenvalues, occupancies else: return eigenvalues, None def _extract_eigenvelocities(self, spin1, spin2, num_kpoints): """Extract the eigenvalues and eigenvelocities. Parameters ---------- spin1 : list A list of ElementTree object to be used for parsing of the ispin=1 entries. spin2 : list A list of ElementTree object to be used for parsing of the ispin=2 entries. num_kpoints : dict The number of k-point in the full BZ on which the eigenvelocities were extracted. Returns ------- eigenvelocities : dict A dict containing ndarrays with the eigenvalues and eigenvelocities for each band and kpoint index. """ # check if we have asigned ispin if self._parameters['ispin'] is None: self._logger.error(self.ERROR_MESSAGES[self.ERROR_NO_ISPIN]) sys.exit(self.ERROR_NO_ISPIN) # then check if we have asigned nbands if self._parameters['nbands'] is None: self._logger.error(self.ERROR_MESSAGES[self.ERROR_NO_NBANDS]) sys.exit(self.ERROR_NO_NBANDS) # ispin ispin = self._parameters['ispin'] # number of bands num_bands = self._parameters['nbands'] # set dicts eigenvelocities = {} data = [] if len(spin1) != num_bands * num_kpoints: self._logger.error( self.ERROR_MESSAGES[self.ERROR_MISMATCH_KPOINTS_NBANDS]) sys.exit(self.ERROR_MISMATCH_KPOINTS_NBANDS) data.append(self._convert_array2D_f(spin1, 4)) data[0] = np.asarray(np.split(data[0], num_kpoints)) if spin2 is not None: if len(spin2) != num_bands * num_kpoints: self._logger.error( self.ERROR_MESSAGES[self.ERROR_MISMATCH_KPOINTS_NBANDS]) sys.exit(self.ERROR_MISMATCH_KPOINTS_NBANDS) data.append(self._convert_array2D_f(spin2, 4)) data[1] = np.asarray(np.split(data[1], num_kpoints)) # convert to numpy arrays data =
np.asarray(data)
numpy.asarray
import numpy as np import itertools from operator import itemgetter from scipy.linalg import lstsq from view.camera import is_front_of_view def get_cross(A): return np.array([[0, -A[2], A[1]], [A[2], 0, -A[0]], [-A[1], A[0], 0]]) def get_fundamental_matrix_from_camera_matrix(camera_matrixs): fundamental_matrixs = {} camera_centers = [-np.linalg.inv(camera_matrix[:,:3]) @ camera_matrix[:,3] for camera_matrix in camera_matrixs] for i in range(len(camera_centers)): for j in range(len(camera_centers)): if i == j: continue e = camera_matrixs[j] @ np.append(camera_centers[i],1) e = e/e[2] fundamental_matrixs[i,j] = get_cross(e) @ camera_matrixs[j] @
np.linalg.pinv(camera_matrixs[i])
numpy.linalg.pinv
#!/usr/bin/env python # coding: utf-8 from __future__ import division from . import Scheme import numpy as np from numpy import array, sqrt class RungeKutta(Scheme): """ Collection of classes containing the coefficients of various Runge-Kutta methods. :Attributes: tableaux : dictionary dictionary containing a Butcher tableau for every available number of stages. """ @classmethod def time_vector(cls, tableau): return tableau[:,0] class RKDAE(RungeKutta): """ Partitioned Runge-Kutta for index 2 DAEs. """ def __init__(self, *args, **kwargs): super(RKDAE, self).__init__(*args, **kwargs) tableau = kwargs.get('tableau') if tableau is not None: self.tableau = tableau self.ts = self.get_ts() self.nb_stages = len(self.tableau) - 1 self.QT = np.eye(self.nb_stages+1, self.nb_stages) def get_ts(self): return RungeKutta.time_vector(self.tableau) def dynamics(self, YZT): return np.dot(self.system.dynamics(YZT[:,:-1]), self.tableau[:,1:].T) def get_residual(self, t, u, h): T = t + self.ts*h QT = self.QT def residual(DYZ): YZ = u.reshape(-1,1) + DYZ YZT = np.vstack([YZ,T]) dyn = self.dynamics(YZT) DY = self.system.state(DYZ) Y = self.system.state(YZ) r1 = DY - h*dyn r2 = np.dot(self.system.constraint(YZT), QT) # unused final versions of z r3 = self.system.lag(YZ[:,-1]) return [r1,r2,r3] return residual def get_guess(self, t, u, h): s = self.tableau.shape[0] # pretty bad guess here: guess = np.column_stack([np.zeros_like(u)]*s) return guess def reconstruct(self, full_result,t,u0,h): # we keep the last Z value: result = np.hstack([self.system.state(full_result[:,-1]), self.system.lag(full_result[:,-2])]) return h, result class MultiRKDAE(RKDAE): def dynamics(self, YZT): s = self.nb_stages dyn_dict = self.system.multi_dynamics(YZT[:,:-1]) dyn = [np.dot(vec, RK_class.tableaux[s][:,1:].T) for RK_class, vec in dyn_dict.items()] return sum(dyn) class Spark(MultiRKDAE): r""" Solver for semi-explicit index 2 DAEs by Lobatto III RK methods as presented in [Ja03]_. We consider the following system of DAEs: .. math:: y' = f(t,y,z)\\ 0 = g(t,y) where t is the independent variable, y is a vector of length n containing the differential variables and z is a vector of length m containing the algebraic variables. Also, .. math:: f:\ R × R^n × R^m → R^n\\ g:\ R × R^n → R^m It is assumed that :math:`g_y f_z` exists and is invertible. The above system is integrated from ``t0`` to ``tfinal``, where tspan = [t0, tfinal] using constant stepsize h. The initial condition is given by ``(y,z) = (y0,z0)`` and the number of stages in the Lobatto III RK methods used is given by ``s``. The corresponding :class:`odelab.system.System` object must implement a *tensor* version the following methods: * :meth:`odelab.system.System.state` * :meth:`odelab.system.System.multi_dynamics` * :meth:`odelab.system.System.constraint` * :meth:`odelab.system.System.lag` By vector, it is meant that methods must accept vector arguments, i.e., accept a nxs matrix as input parameter. References: .. [Ja03] \<NAME>ay - *Solution of index 2 implicit differential-algebraic equations by Lobatto Runge-Kutta methods.* BIT 43, 1, 93-106 (2003). :doi:`10.1023/A:1023696822355` """ def __init__(self, *args, **kwargs): super(Spark, self).__init__(*args, **kwargs) self.QT = self.compute_mean_stage_constraint().T def compute_mean_stage_constraint(self): """ Compute the s x (s+1) matrix defined in [Ja03]_. """ s = self.nb_stages A1t = LobattoIIIA.tableaux[s][1:-1,1:] es = np.zeros(s) es[-1] = 1. Q = np.zeros([s,s+1]) Q[:-1,:-1] = A1t Q[-1,-1] = 1. L = np.linalg.inv(np.vstack([A1t, es])) Q =
np.dot(L,Q)
numpy.dot
'''Script for the automatic assessment of the intonation of monophonic singing. Prototype for the CSP of the TROMPA project. ''' import sys eps = sys.float_info.epsilon import json import numpy as np import mir_eval import pandas as pd import music21 as m21 import pretty_midi import unidecode from mir_eval.util import midi_to_hz, intervals_to_samples import argparse import configparser def xml2midi(xmlfile, format): try: score = m21.converter.parseFile(xmlfile, format=format) except: raise RuntimeError("Can not parse the {} score.".format(format)) try: score.write('midi', '{}.mid'.format(xmlfile)) # if xmlfile.endswith('xml'): # score.write('midi', xmlfile.replace('xml', 'mid')) # # elif xmlfile.endswith('mxl'): # score.write('midi', xmlfile.replace('mxl', 'mid')) except: raise RuntimeError("Could not convert {} to MIDI.".format(format)) def midi_preparation(midifile): midi_data = dict() midi_data['onsets'] = dict() midi_data['offsets'] = dict() midi_data['midipitches'] = dict() # midi notes? midi_data['hz'] = dict() patt = pretty_midi.PrettyMIDI(midifile) midi_data['downbeats'] = patt.get_downbeats() for instrument in patt.instruments: midi_data['onsets'][instrument.name] = [] midi_data['offsets'][instrument.name] = [] midi_data['midipitches'][instrument.name] = [] for note in instrument.notes: midi_data['onsets'][instrument.name].append(note.start) midi_data['offsets'][instrument.name].append(note.end) midi_data['midipitches'][instrument.name].append(note.pitch) p = midi_data['midipitches'][instrument.name] midi_data['hz'][instrument.name] = midi_to_hz(np.array(p)) return midi_data def midi_to_trajectory(des_timebase, onsets, offsets, pitches): hop = des_timebase[2] - des_timebase[1] intervals = np.concatenate([np.array(onsets)[:, None], np.array(offsets)[:, None]], axis=1) timebase, midipitches = intervals_to_samples(intervals, list(pitches), offset=des_timebase[0], sample_size=hop, fill_value=0) return np.array(timebase), np.array(midipitches) def parse_midi(score_fname, voice_shortcut, format): voice_shortcut = unidecode.unidecode(voice_shortcut) try: midi_data = midi_preparation("{}.mid".format(score_fname)) except: raise RuntimeError("Could not parse converted MIDI file".format(score_fname)) onsets = np.array(midi_data['onsets'][voice_shortcut]) offsets = np.array(midi_data['offsets'][voice_shortcut]) pitches = np.array(midi_data['hz'][voice_shortcut]) return onsets, offsets, pitches, midi_data def load_json_data(load_path): with open(load_path, 'r') as fp: data = json.load(fp) return data def save_json_data(data, save_path): with open(save_path, 'w') as fp: json.dump(data, fp, indent=2) def load_f0_contour(pitch_json_path, starttime): pitch = np.array(load_json_data(pitch_json_path)['pitch']) times_ = pitch[:, 0] freqs_ = pitch[:, 1] times_shift = times_ - np.abs(starttime) idxs_no = np.max(np.where(times_shift < 0)[0]) times = times_shift[idxs_no + 1:] if not type(times[0]) == np.float64: raise ValueError("Problem with F0 contour") if times[0] != 0: offs = times[0] times -= offs freqs = freqs_[idxs_no + 1:] return times, freqs def map_deviation_range(input_deviation, max_deviation=100): '''This function takes as input the deviation between the score and the performance in cents (as a ratio), and computes the output value mapping it into the range 0-1, (0 is bad intonation and 1 is good intonation). By default, we limit the deviation to max_deviation cents, which is one semitone. Values outside the range +-100 cents will be clipped and counted as intonation score = 0. ''' score = np.clip(np.abs(input_deviation), 0, max_deviation) / float(max_deviation) # assert score <= 1, "Score value is above 1" # assert score >= 0, "Score value is below 0" return 1 - score def intonation_assessment(startbar, endbar, offset, pitch_json_file, score_file, voice, output_filename, dev_thresh=100, format='xml'): '''Automatic assessment of the intonation of singing performances from the CSP platform of the TROMPA project. Parameters ---------- startbar : (int) indicates the first bar of the performance endbar : (int) indicates the last bar of the performance offset : (float) measured latency between audio and score pitch_json_file : (string) json file with the pitch contour score_file : (string) music score xml file voice : (string) voice part as written in the score output_filename : (string) output filename to use for the assessment results file dev_thresh : (float) maximum allowed deviation in cents. Defaults to 100 cents Returns ------- assessment : (dictionary) the field 'pitchAssessment' contains a list of arrays with the results for each note in in the form [note_start_time, intonation_rating]. If the process fails, the list will be empty. The field 'error' will contain a string with an error message if the process fails, and will be None if it's successful. overall_score : (float) overall intonation score computed as the weighted sum of note intonation scores. Can be ignored because it's not used by the CSP. This function stores a json file with the assessment dictionary in the file indicated by the `output_filename` parameter. ''' assessment = {} assessment['pitchAssessment'] = [] assessment['error'] = None try: '''STEP 1: parse xml score, convert to MIDI and save ''' # quick hack to deal with accents in the voice parts, needs to be updated change_flag = 0 xml_data = m21.converter.parse(score_file, format=format) for i in range(len(xml_data.parts)): name = xml_data.parts[i].getInstrument().partName if name != unidecode.unidecode(name): change_flag = 1 xml_data.parts[i].getInstrument().partName = unidecode.unidecode(name) if change_flag != 0: try: xml_data.write('midi', "{}.mid".format(score_file)) except: raise RuntimeError("Could not convert modified {} to MIDI.".format(format)) else: xml2midi(score_file, format=format) # import pdb; pdb.set_trace() # # if voice == 'Baríton': # xml_data = m21.converter.parse(score_file) # xml_data.parts[2].getInstrument().partName = 'Bariton' # xml_data.write('midi', score_file.replace('xml', 'mid')) # # else: # xml2midi(score_file) '''STEP 2: parse MIDI file and arrange info ''' onsets, offsets, pitches, midi_data = parse_midi(score_file, unidecode.unidecode(voice), format) '''STEP 3: parse the F0 contour and adjust according to latency ''' # if latency is larger than 1 second it's likely and error, we set it to 0.3 by default if offset >= 1: offset = 0.3 times, freqs = load_f0_contour(pitch_json_file, starttime=offset) '''STEP 4: Delimiting the performance in the score and the F0 curve ''' starting = midi_data['downbeats'][int(startbar) - 1] # bars start at 1, indices at 0 # Account for the case of last bar being the last of the piece and size mismatch if int(endbar) >= len(midi_data['downbeats']): ending = offsets[-1] else: ending = midi_data['downbeats'][int(endbar)] - 0.005 st_idx = np.where(onsets >= starting)[0][0] end_idx = np.where(offsets >= ending)[0][0] # getting info from notes according to the sung audio excerpt onsets, offsets, pitches = onsets[st_idx:end_idx + 1], offsets[st_idx:end_idx + 1], pitches[st_idx:end_idx + 1] # If all freqs are 0, there's no singing in the performance, we return 0 if sum(freqs) == 0: assessment['pitchAssessment'] = [
np.array([onset, 0])
numpy.array
from enum import Enum from typing import Tuple import numpy as np import scipy from scipy.integrate import odeint, solve_ivp class Simulation_Algorithm(Enum): SOLVE_IVP = (1,) ODE_INT = 2 class Simulator: def __init__(self, model) -> None: self.model = model self.ode_list = None self.supported_sim_types = [ "S I", "M V S E2 I3 Q3 R D", ] self.simulation_type = None self.simulation_algorithm = None self.params = None self.J = 1 self.K = 1 def run( self, params, simulation_type, simulation_algorithm: Simulation_Algorithm = Simulation_Algorithm.SOLVE_IVP, ) -> dict: """ Runs the simulation with the given simulation type Parameters ---------- params : dict Parameters for the simulation simulation_type : str Type of simulation to be run e.g. "S I", "S E I R", "M V S E2 I3 Q3 R D" Returns ------- dict New parameters """ self.params = params if simulation_type == "full": self.simulation_type = "M V S E2 I3 Q3 R D" else: self.simulation_type = simulation_type # TODO make sure attribute error doesn't crash this self.simulation_algorithm = simulation_algorithm self.J = params["J"] self.K = params["K"] self.param_count = self._count_params() return self._run_ode_system(params) def _count_params(self): if self.simulation_type == "S I": return 2 if self.simulation_type == "S E I R": return 4 if self.simulation_type == "M V S E2 I3 Q3 R D": return 13 def _build_dMdt(self, t) -> np.ndarray: """ Set up equation for M (newborn) Parameters ---------- t : int Current timestep Returns ------- np.ndarray Calculated values of equation of M for current iteration """ res = [] rho_mat = self.params["rho_mat"] M = self.params["M"] res.append(-1 * rho_mat[int(t)] * M) return np.array(res).sum(axis=0) def _build_dVdt(self, t) -> np.ndarray: """ Set up equation for V (vaccinated) Parameters ---------- t : int Current timestep Returns ------- np.ndarray Calculated values of equation of V for current iteration """ res = [] rho_vac = self.params["rho_vac"] V = self.params["V"] res.append(-1 * rho_vac[int(t)] * V) nu = self.params["nu"] S = self.params["S"] res.append(nu[int(t)] * S) return np.array(res).sum(axis=0) def _build_dSdt(self, t) -> np.ndarray: """ Set up equation for S (susceptable) Parameters ---------- t : int Current timestep Returns ------- np.ndarray Calculated values of equation of S for current iteration """ res = [] cls = self.simulation_type.split() if "M" in cls: rho_mat = self.params["rho_mat"] M = self.params["M"] res.append(rho_mat[int(t)] * M) if "V" in cls: rho_vac = self.params["rho_vac"] nu = self.params["nu"] S = self.params["S"] V = self.params["V"] res.append(rho_vac[int(t)] * V - nu[int(t)] * S) if "R" in cls: rho_rec = self.params["rho_rec"] R = self.params["R"] res.append(rho_rec[int(t)] * R) if "I3" in cls: S = self.params["S"] N = self.params["N"] beta_asym = self.params["beta_asym"] beta_sym = self.params["beta_sym"] beta_sev = self.params["beta_sev"] I_asym = self.params["I_asym"] I_sym = self.params["I_sym"] I_sev = self.params["I_sev"] res.append( [ np.array( [ -np.sum( [ beta_asym[int(t), j, l, k] * I_asym[j, l] + beta_sym[int(t), j, l, k] * I_sym[j, l] + beta_sev[int(t), j, l, k] * I_sev[j, l] for l in range(self.K) ] ) * S[j, k] / N[j, k] for k in range(self.K) ] ) for j in range(self.J) ] ) elif "I2" in cls: pass elif "I" in cls: pass return np.array(res).sum(axis=0) def _build_dEdt(self, t) -> Tuple: """ Wrap equations for E (exposed) Parameters ---------- t : int Current timestep Returns ------- Tuple Equation for class E based on simulation_type """ cls = self.simulation_type.split() if "E2" in cls: return self._build_dE_ntdt(t), self._build_dE_trdt(t) elif "E" in cls: pass def _build_dE_ntdt(self, t) -> np.ndarray: """ Set up equation for Ent (exposed and not tracked) Parameters ---------- t : int Current timestep Returns ------- np.ndarray Calculated values of equation of Ent for current iteration """ res = [] cls = self.simulation_type.split() if "I3" in cls: beta_asym = self.params["beta_asym"] S = self.params["S"] N = self.params["N"] I_asym = self.params["I_asym"] res.append( [ np.array( [ np.sum( [beta_asym[int(t), j, l, k] * I_asym[j, l] for l in range(self.K)] ) * S[j, k] / N[j, k] for k in range(self.K) ] ) for j in range(self.J) ] ) beta_sym = self.params["beta_sym"] beta_sev = self.params["beta_sev"] psi = self.params["psi"] I_sym = self.params["I_sym"] I_sev = self.params["I_sev"] res.append( [ np.array( [ np.sum( [ beta_sym[int(t), j, l, k] * (1 - psi[int(t), j, l] * psi[int(t), j, k]) * I_sym[j, l] + beta_sev[int(t), j, l, k] * (1 - psi[int(t), j, l] * psi[int(t), j, k]) * I_sev[j, l] for l in range(self.K) ] ) * S[j, k] / N[j, k] for k in range(self.K) ] ) for j in range(self.J) ] ) elif "I" in cls: pass # method _build_dE_ntdt is only called if E2 is in simulation_type so this has to be executed anways epsilon = self.params["epsilon"] Ent = self.params["E_nt"] res.append(-1 * epsilon[int(t)] * Ent) return np.array(res).sum(axis=0) def _build_dE_trdt(self, t) -> np.ndarray: """ Set up equation for Etr (exposed and tracked) Parameters ---------- t : int Current timestep Returns ------- np.ndarray Calculated values of equation of Etr for current iteration """ res = [] cls = self.simulation_type.split() if "I3" in cls: beta_sym = self.params["beta_sym"] beta_sev = self.params["beta_sev"] psi = self.params["psi"] I_sym = self.params["I_sym"] I_sev = self.params["I_sev"] S = self.params["S"] N = self.params["N"] res.append( [ np.array( [ np.sum( [ beta_sym[int(t), j, l, k] * psi[int(t), j, l] * psi[int(t), j, k] * I_sym[j, l] + beta_sev[int(t), j, l, k] * psi[int(t), j, l] * psi[int(t), j, k] * I_sev[j, l] for l in range(self.K) ] ) * S[j, k] / N[j, k] for k in range(self.K) ] ) for j in range(self.J) ] ) elif "I2" in cls: pass # method _build_dE_trdt is only called if E2 is in simulation_type so this has to be executed anways epsilon = self.params["epsilon"] Etr = self.params["E_tr"] res.append(-1 * epsilon[int(t)] * Etr) return np.array(res).sum(axis=0) def _build_dIdt(self, t) -> Tuple: """ Wrap equation for I (infectious) Parameters ---------- t : int Current timestep Returns ------- Tuple Equation for class I based on simulation_type """ cls = self.simulation_type.split() if "I3" in cls and "Q3" in cls: return ( self._build_dI_asymdt(t), self._build_dI_symdt(t), self._build_dI_sevdt(t), ) elif "I2" in cls: return self._build_dI_asymdt(t), self._build_dI_symdt(t) elif "I" in cls: pass def _build_dI_asymdt(self, t) -> np.ndarray: """ Set up equation for Iasym (asymptomatic infectious) Parameters ---------- t : int Current timestep Returns ------- np.ndarray Calculated values of equation of Iasym for current iteration """ res = [] cls = self.simulation_type.split() if "E2" in cls: epsilon = self.params["epsilon"] Ent = self.params["E_nt"] res.append(epsilon[int(t)] * Ent) if "I3" in cls: gamma_asym = self.params["gamma_asym"] mu_sym = self.params["mu_sym"] mu_sev = self.params["mu_sev"] tau_asym = self.params["tau_asym"] I_asym = self.params["I_asym"] res.append( -1 * ( gamma_asym[int(t)] * I_asym + mu_sym[int(t)] * I_asym + mu_sev[int(t)] * I_asym + tau_asym[int(t)] * I_asym ) ) elif "I2" in cls: pass return
np.array(res)
numpy.array
import os import numpy as np import chess import chess.uci PATH_TO_STOCKFISH_EXE = os.path.expanduser('~/stockfish-8-mac/Mac/stockfish-8-64') # Map from piece to layer in net input. 0-5 are white. INDEX_TO_PIECE_MAP = {0: chess.KING, 6: chess.KING, 1: chess.QUEEN, 7: chess.QUEEN, 2: chess.ROOK, 8: chess.ROOK, 3: chess.BISHOP, 9: chess.BISHOP, 4: chess.KNIGHT, 10: chess.KNIGHT, 5: chess.PAWN, 11: chess.PAWN} CHAR_TO_INDEX_MAP = {'K': 0, 'k': 6, 'Q': 1, 'q': 7, 'R': 2, 'r': 8, 'B': 3, 'b': 9, 'N': 4, 'n': 10, 'P': 5, 'p': 11} FULL_CHESS_INPUT_SHAPE = (8, 8, 13) PIECE_POSITION_ACTION_SIZE = 32 * 64 POSITION_POSITION_ACTION_SIZE = 64 * 64 def map_xy_to_square(x, y): return int(8*y + x) def map_square_to_xy(square): return int(square % 8), int(square // 8) class ChessEnv(object): """ The full chess environment. """ def __init__(self, input_shape=FULL_CHESS_INPUT_SHAPE, action_size=POSITION_POSITION_ACTION_SIZE): self.action_size = action_size self.input_shape = input_shape def reset(self): board = chess.Board() state = self.map_board_to_state(board) return state def get_next_state(self, state, action): board = self.map_state_to_board(state) move = self.map_action_to_move(state, action) board.push(move) next_state = self.map_board_to_state(board) return next_state def get_legal_actions(self, state): board = self.map_state_to_board(state) legal_moves = board.legal_moves legal_actions = np.zeros(len(legal_moves), dtype=int) i = 0 for move in legal_moves: action = self.map_move_to_action(board, move) legal_actions[i] = action i += 1 return legal_actions def get_legality_mask(self, state): board = self.map_state_to_board(state) legal_moves = board.legal_moves legal_moves_as_indices = [self.move_to_index(board, move) for move in legal_moves] move_legality_mask = np.zeros(self.action_size) for index in legal_moves_as_indices: move_legality_mask[index] = 1 return move_legality_mask def is_game_over(self, state): board = self.map_state_to_board(state) return board.is_game_over() def outcome(self, state): board = self.map_state_to_board(state) if board.result() == '1/2-1/2': result = 0 elif board.result() == '1-0': result = 1 elif board.result() == '0-1': result = -1 return result def board_str(self, state): board = self.map_state_to_board(state) return str(board) def print_board(self, state): board = self.map_state_to_board(state) print(board) def map_board_to_state(self, board): """ Translates a chess.Board() object to an input state according to the full Chess representation. Should be moved to the chess env once that exists. Parameters ---------- board: a chess.Board Returns the state corresponding do the board """ board_string = str(board) rows = board_string.split('\n') state = np.zeros(shape=(8, 8, 13)) for i in range(8): row = rows[i] pieces = row.split(' ') for j in range(8): char = pieces[j] if char == '.': continue state[i][j][CHAR_TO_INDEX_MAP[char]] = 1 if board.turn: state[:, :, 12] = np.ones(shape=(8, 8)) return state def map_state_to_board(self, state): """ Transforms a state representation according to the full Chess board input into its chess Board equivalent. Parameters ---------- state: a numpy object representing the input board Returns a chess.Board object """ pieces = {} for i in range(12): piece = INDEX_TO_PIECE_MAP[i] if i < 6: color = chess.WHITE else: color = chess.BLACK indices = np.argwhere(state[:, :, i] == 1) squares = [] for coords in indices: x, y = coords squares.append(8 * (7 - x) + y) for square in squares: pieces[square] = chess.Piece(piece, color) board = chess.Board() board.set_piece_map(pieces) board.turn = int(state[0, 0, 12]) return board def map_action_to_move(self, action): index = np.where(action == 1)[0][0] from_pos = int(index / 64) to_pos = index % 64 return chess.Move(from_pos, to_pos) def map_move_to_action(self, board, move): action =
np.zeros(self.action_size)
numpy.zeros
import argparse import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker as plticker import sys import os import glog from matplotlib.ticker import FormatStrFormatter root_data_location = './figures/' def get_allocations_and_time(ifile): # print(ifile) fd = open(ifile, 'r') lines = fd.readlines() start_read = False execution_time = [] allocations = [] total_allocs = 0 for line in lines: if not start_read and 'init' in line: start_read = True continue if 'init' in line: continue if 'done' in line: start_read = False break if start_read: # stop after cumulative 3600 seconds (one hour) cumul_time = float(line.split(' ')[2]) if cumul_time > 3600: break total_allocs += 1 execution_time.append(float(line.split(' ')[2])) allocations.append(total_allocs) fd.close() return (allocations, execution_time) def cactus_plot(plot_file_name, datacenterName, vdcName, datasets, allocs_range, time_range): print('started plotting') # fig, ax = plt.subplots(figsize=(3.25, 3.25)) fig, ax = plt.subplots(figsize=(4, 2.25)) n_groups = len(datasets) lines = [] axes = plt.gca() n_of_markers = 4 #plt.title(datacenterName + " " + vdcName) for index, (name, color, marker, msize, file) in enumerate(datasets): if os.path.exists(file): allocations, execution_times = get_allocations_and_time(file) if(len(allocations)==0): print("Warning: No allocations found for " + file) mspace = allocs_range[-1]/n_of_markers line = ax.plot(execution_times, allocations, color=color, marker=marker, markevery=mspace, markersize=msize, label=name) else: print("Warning: Missing file: " + file) ax.legend(loc='upper left', bbox_to_anchor=(0, 1.8), numpoints=2, ncol=2, frameon=False) plt.xlabel('CPU Time (s)') plt.ylabel('Number of VDC allocations') plt.yticks(allocs_range) # set time axis a bit forward, to make sure that secondnet runs (that are very close to 0) are visible xshift = max(3, time_range[1]/10) ax.set_xlim(-xshift) plt.xticks(time_range) fig.tight_layout() plt.draw() final_figure = plt.gcf() final_figure.savefig(plot_file_name, bbox_inches='tight', dpi=200) print('plotting done, see %s' % plot_file_name) plt.close() def fig6(): # included in the paper.pdf # fig6_cactus_2000_16_T1_9VMs.pdf # fig6_cactus_2000_16_T3_15VMs.pdf servers_and_cores = [('200', '4'), #('200', '16'), ('400', '16'), ('2000', '16')] allocs_ranges = [np.arange(0, 101, 25), np.arange(0, 101, 25), np.arange(0, 101, 25), np.arange(0, 61, 20), np.arange(0, 61, 20), np.arange(0, 61, 20), np.arange(0, 4001, 1000), np.arange(0, 3601, 900), np.arange(0, 3001, 750), np.arange(0, 1201, 300), np.arange(0, 1201, 300), np.arange(0, 1201, 300)] time_ranges = [np.arange(0, 61, 15), np.arange(0, 81, 20), np.arange(0, 81, 20), np.arange(0, 141, 35), np.arange(0, 141, 35), np.arange(0, 141, 35), np.arange(0, 3601, 900), np.arange(0, 3601, 900), np.arange(0, 3601, 900), np.arange(0, 3601, 900), np.arange(0, 3601, 900), np.arange(0, 3601, 900)] range_index = 0 for (server, core) in servers_and_cores: # files for 4 core data do not contain numbers of cores, only 16 core does if core == '4': core_str = '_'; else: core_str = core + '_' # secondnet sample file name: fmcad13_secondnet_datacentertree_200.20_instance_vn2_3.1.log root_dir = root_data_location + 'fmcad-instances/secondnet/timelogs/' prefix = 'fmcad13_secondnet_datacentertree' suffix = '.20_instance_vn2_' secondnet_files = [ root_dir + prefix + core_str + server + suffix + '3.1.log', root_dir + prefix + core_str + server + suffix + '3.2.log', root_dir + prefix + core_str + server + suffix + '3.3.log', root_dir + prefix + core_str + server + suffix + '5.1.log', root_dir + prefix + core_str + server + suffix + '5.2.log', root_dir + prefix + core_str + server + suffix + '5.3.log'] # netsolver sample file name: fmcad13_vdcmapper_intrinsic-edge-sets-no-rnd-theory-order-theory-order-vsids-rnd-theory-freq-0-99_datacentertree_200.20.pn_instance_vn2_3.1.vn root_dir = root_data_location + 'fmcad-instances/netsolver-smt/monosat-master/timelogs/' prefix = 'fmcad13_vdcmapper_intrinsic-edge-sets-no-rnd-theory-order-theory-order-vsids-rnd-theory-freq-0-99_datacentertree' suffix = '.20.pn_instance_vn2_' netsolver_files = [ root_dir + prefix + core_str + server + suffix + '3.1.vn.log', root_dir + prefix + core_str + server + suffix + '3.2.vn.log', root_dir + prefix + core_str + server + suffix + '3.3.vn.log', root_dir + prefix + core_str + server + suffix + '5.1.vn.log', root_dir + prefix + core_str + server + suffix + '5.2.vn.log', root_dir + prefix + core_str + server + suffix + '5.3.vn.log'] root_dir = root_data_location + 'fmcad-instances/netsolver-ilp/' prefix = 'results.tree' suffix = '.20.vn' gurobi_files = [ root_dir + prefix + core_str + server + suffix + '3.1', root_dir + prefix + core_str + server + suffix + '3.2', root_dir + prefix + core_str + server + suffix + '3.3', root_dir + prefix + core_str + server + suffix + '5.1', root_dir + prefix + core_str + server + suffix + '5.2', root_dir + prefix + core_str + server + suffix + '5.3'] # z3 sample file name: fmcad13_z3_mode4_datacentertree_200.20_instance_vn2_3.1.log root_dir = root_data_location + 'fmcad-instances/Z3-AR/timelogs/' prefix = 'fmcad13_z3_mode3_datacentertree' suffix = '.20_instance_vn2_' z3_files = [ root_dir + prefix + core_str + server + suffix + '3.1.log', root_dir + prefix + core_str + server + suffix + '3.2.log', root_dir + prefix + core_str + server + suffix + '3.3.log', root_dir + prefix + core_str + server + suffix + '5.1.log', root_dir + prefix + core_str + server + suffix + '5.2.log', root_dir + prefix + core_str + server + suffix + '5.3.log'] # vdc_names = ['vn3.1', 'vn3.2', 'vn3.3', 'vn5.1', 'vn5.2', 'vn5.3'] vdc_names = ['T1 9VMs', 'T2 9VMs', 'T3 9VMs', 'T1 15VMs', 'T2 15VMs', 'T3 15VMs'] for i, vdc_name in enumerate(vdc_names): plot_file_name = "./paper-plots/cactus/fig6_cactus_" + server + "_" + str(core) + "_" + vdc_name.replace( " ", "_") +".pdf" cactus_plot(plot_file_name, server + core, vdc_name, [ ("Z3-AR", 'y', '.', 8, z3_files[i]), ("SecondNet", 'r', '^', 8, secondnet_files[i]), ("NetSolver-SMT", 'g', 's', 8, netsolver_files[i]), ("NetSolver-ILP", 'b', '*', 8, gurobi_files[i])], allocs_ranges[range_index], time_ranges[range_index]) range_index += 1 def fig7_bcube(): # included in the paper.pdf # fig7_cactus_bcube512_12VMs.pdf dc_sizes = ['8', '10', '12', '16'] vn_sizes = ['6','9','12','15'] allocs_range = np.arange(0, 721, 180) time_range = np.arange(0, 3601, 900) for size in dc_sizes: if size == '8': servers = '512' elif size == '10': servers = '1000' elif size == '12': servers = '1728' elif size == '16': servers = '4096' root_dir = root_data_location + 'fattree-bcube/secondnet/timelogs/' file_prefix = 'results.BCube_n' file_infix = "_k2_bw10_cpu16.pn.instance_list_" file_suffix = "vm_rnd.txt.log"; secondnet_files = [root_dir + file_prefix + size + file_infix + vn_size +file_suffix for vn_size in vn_sizes] root_dir = root_data_location + 'fattree-bcube/netsolver-smt/monosat-master/timelogs/' file_prefix = 'config_results_vdcmapper_bcube' file_infix = "_" file_suffix = "vm"; netsolver_files = [root_dir + file_prefix + size + file_infix + vn_size +file_suffix for vn_size in vn_sizes] root_dir = root_data_location + 'fattree-bcube/netsolver-ilp/timelogs/' file_prefix = 'results.BCube_n' file_infix = "_k2_bw10_cpu16.pn.instance_list_" file_suffix = "vm_rnd.txt.log"; gurobi_files = [root_dir + file_prefix + size + file_infix + vn_size +file_suffix for vn_size in vn_sizes] vdc_names = ['6VMs', '9VMs', '12VMs', '15VMs'] for i, vdc_name in enumerate(vdc_names): plot_file_name = "paper-plots/cactus/fig7_cactus_" + "bcube" + servers + "_" + vdc_name +".pdf" cactus_plot(plot_file_name, "bcube" + servers + " ", vdc_name, [ ("SecondNet", 'r', '^', 8, secondnet_files[i]), ("NetSolver-SMT", 'g', 's', 8, netsolver_files[i]), ("NetSolver-ILP", 'b', '*', 8, gurobi_files[i])], allocs_range, time_range) def fig7_fattree(): # included in the paper.pdf # fig7_cactus_fattree432_12VMs.pdf allocs_range = np.arange(0, 721, 180) time_range = np.arange(0, 3601, 900) dc_sizes = ['8', '12', '16'] vn_sizes = ['6', '9', '12', '15'] for size in dc_sizes: if size == '8': servers = '128' elif size == '12': servers = '432' elif size == '16': servers = '1024' root_dir = root_data_location + 'fattree-bcube/secondnet/timelogs/' file_prefix = 'results.Fattree_n' file_infix = "_k2_bw10_cpu16.pn.instance_list_" file_suffix = "vm_rnd.txt.log"; secondnet_files = [root_dir + file_prefix + size + file_infix + vn_size +file_suffix for vn_size in vn_sizes] root_dir = root_data_location + 'fattree-bcube/netsolver-smt/monosat-master/timelogs/' file_prefix = 'config_results_vdcmapper_fattree' file_infix = "_" file_suffix = "vm"; netsolver_files = [root_dir + file_prefix + size + file_infix + vn_size +file_suffix for vn_size in vn_sizes] root_dir = root_data_location + 'fattree-bcube/netsolver-ilp/timelogs/' file_prefix = 'results.Fattree_n' file_infix = "_k2_bw10_cpu16.pn.instance_list_" file_suffix = "vm_rnd.txt.log"; gurobi_files = [root_dir + file_prefix + size + file_infix + vn_size +file_suffix for vn_size in vn_sizes] vdc_names = ['6VMs', '9VMs', '12VMs', '15VMs'] for i, vdc_name in enumerate(vdc_names): plot_file_name = "paper-plots/cactus/fig7_cactus_" + "fattree" + servers + "_" + vdc_name +".pdf" cactus_plot(plot_file_name, "fattree" + servers + " " , vdc_name, [ ("SecondNet", 'r', '^', 8, secondnet_files[i]), ("NetSolver-SMT", 'g', 's', 8, netsolver_files[i]), ("NetSolver-ILP", 'b', '*', 8, gurobi_files[i])], allocs_range, time_range) def fig8(): # included in the paper.pdf # fig8_cactus_mid1_H-10VM.pdf # fig8_cactus_west1_H-10VM.pdf allocs_ranges = [
np.arange(0, 101, 25)
numpy.arange
from astropy.io import fits from astropy.modeling import models, fitting import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import LogNorm import os #This python script takes the 4D fits files produced by reshape_fits.py, calculates the parameters of the psf, such as #FWHM and EE50, and plots the results as 2D grids. #By <NAME>. # -----PARAMETERS----- input_directory = './fits_4D/' output_directory = './plots/' fit_threshold = 0.05 #all data below this fraction of the max will be masked out for the gaussian fit. plot_slices=False # -------------------- def main(): if not os.path.exists(output_directory): os.makedirs(output_directory) for fits_filename in os.listdir(input_directory): if fits_filename[-4:] == 'fits': process_fits(input_directory,fits_filename) def process_fits(directory, FITSfilename): with fits.open(directory + FITSfilename) as psfFITS: header = psfFITS[0].header data = psfFITS[0].data strehl_data = psfFITS[1].data print("Processing", FITSfilename) sim_parameters = {'label': header['LABEL'], 'psf_spacing' : header['PSFSPACE'], 'pixel_scale' : header['PIXSCALE'], 'TT_offset' : [header['NGSX'],header['NGSY']], 'laser_radius' : header['LGSRAD'], 'psf_size' : data.shape[2], 'grid_size' : data.shape[0], } psf_size = sim_parameters['psf_size'] grid_size = sim_parameters['grid_size'] psf_parameters = np.zeros((grid_size,grid_size,5)) #x_fwhm, y_fwhm, theta, 50% encircled energy, avg_fwhm y_coords, x_coords = np.mgrid[:psf_size,:psf_size] fit = fitting.LevMarLSQFitter() data_masked = np.ma.empty((grid_size,grid_size,psf_size,psf_size)) #mask out data in the wings mask_level =
np.zeros((grid_size,grid_size))
numpy.zeros
import settings import model from utils import VOC import os import time import cv2 import matplotlib.pyplot as plt import tensorflow as tf import numpy as np config = tf.ConfigProto() config.gpu_options.visible_device_list = "0" sess = tf.InteractiveSession(config = config) model = model.Model(training = False) sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(tf.global_variables()) boundary1 = settings.cell_size * settings.cell_size * settings.num_class boundary2 = boundary1 + settings.cell_size * settings.cell_size * settings.box_per_cell tryOriginal = settings.try_original try: if tryOriginal : saver.restore(sess, os.getcwd() + '/YOLO_small.ckpt') print('load from YOLO small pretrained') else : saver.restore(sess, os.getcwd() + '/model.ckpt') print('load from past checkpoint') except: try: saver.restore(sess, os.getcwd() + '/YOLO_small.ckpt') print('load from YOLO small pretrained') except: print('you must train first, exiting..') exit(0) def draw_result(img, result,color=(0, 255, 0)): for i in range(len(result)): x = int(result[i][1]) y = int(result[i][2]) w = int(result[i][3] / 2) h = int(result[i][4] / 2) cv2.rectangle(img, (x - w, y - h), (x + w, y + h), color, 2) cv2.rectangle(img, (x - w, y - h - 20), (x + w, y - h), (125, 125, 125), -1) cv2.putText(img, result[i][0] + ' : %.2f' % result[i][5], (x - w + 5, y - h - 7), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA) def detect(img): img_h, img_w, _ = img.shape inputs = cv2.resize(img, (settings.image_size, settings.image_size)) inputs = cv2.cvtColor(inputs, cv2.COLOR_BGR2RGB).astype(np.float32) inputs = (inputs / 255.0) * 2.0 - 1.0 inputs = np.reshape(inputs, (1, settings.image_size, settings.image_size, 3)) r1,r2 = detect_from_cvmat(inputs) result = r1[0]#detect_from_cvmat(inputs)[0] result2 = r2[0] #print(result) for i in range(len(result)): result[i][1] *= (1.0 * img_w / settings.image_size) result[i][2] *= (1.0 * img_h / settings.image_size) result[i][3] *= (1.0 * img_w / settings.image_size) result[i][4] *= (1.0 * img_h / settings.image_size) result2[i][0] *= (1.0 * img_w / settings.image_size) result2[i][1] *= (1.0 * img_h / settings.image_size) result2[i][2] *= (1.0 * img_w / settings.image_size) result2[i][3] *= (1.0 * img_h / settings.image_size) return result,result2 def detect_from_cvmat(inputs): net_output = sess.run(model.logits, feed_dict = {model.images: inputs}) results = [] results2 = [] for i in range(net_output.shape[0]): r1,r2 = interpret_output(net_output[i]) results.append(r1) results2.append(r2) #print(' -',i) '''print('dfc : ',results) print('dfc2 : ',results2)''' return results,results2 def iou(box1, box2): #tb=min(b1[x2 tb = min(box1[0] + 0.5 * box1[2], box2[0] + 0.5 * box2[2]) - max(box1[0] - 0.5 * box1[2], box2[0] - 0.5 * box2[2]) lr = min(box1[1] + 0.5 * box1[3], box2[1] + 0.5 * box2[3]) - max(box1[1] - 0.5 * box1[3], box2[1] - 0.5 * box2[3]) if tb < 0 or lr < 0: intersection = 0 else: intersection = tb * lr return intersection / (box1[2] * box1[3] + box2[2] * box2[3] - intersection) #return [intersection, (box1[2] * box1[3] + box2[2] * box2[3] - intersection)] def iou_mine(box1, box2): tb = min(box1[0] + 0.5 * box1[2], box2[0] + 0.5 * box2[2]) - max(box1[0] - 0.5 * box1[2], box2[0] - 0.5 * box2[2]) lr = min(box1[1] + 0.5 * box1[3], box2[1] + 0.5 * box2[3]) - max(box1[1] - 0.5 * box1[3], box2[1] - 0.5 * box2[3]) if tb < 0 or lr < 0: intersection = 0 else: intersection = tb * lr print(intersection,box1[2] * box1[3]) return [intersection/(box1[2] * box1[3]) , (box1[2] * box1[3] + box2[2] * box2[3] - intersection)] def interpret_output(output): probs = np.zeros((settings.cell_size, settings.cell_size, settings.box_per_cell, len(settings.classes_name))) class_probs = np.reshape(output[0 : boundary1], (settings.cell_size, settings.cell_size, settings.num_class)) scales = np.reshape(output[boundary1 : boundary2], (settings.cell_size, settings.cell_size, settings.box_per_cell)) boxes = np.reshape(output[boundary2 :], (settings.cell_size, settings.cell_size, settings.box_per_cell, 4)) offset = np.transpose(np.reshape(np.array([np.arange(settings.cell_size)] * settings.cell_size * settings.box_per_cell), [settings.box_per_cell, settings.cell_size, settings.cell_size]), (1, 2, 0)) boxes[:, :, :, 0] += offset boxes[:, :, :, 1] += np.transpose(offset, (1, 0, 2)) boxes[:, :, :, :2] = 1.0 * boxes[:, :, :, 0:2] / settings.cell_size boxes[:, :, :, 2:] =
np.square(boxes[:, :, :, 2:])
numpy.square
# Copyright 2014 Diamond Light Source Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ .. module:: vo_centering_iterative :platform: Unix :synopsis: A plugin to find the center of rotation per frame .. moduleauthor:: <NAME> <<EMAIL>> """ import math import logging import numpy as np import scipy.ndimage as ndi import scipy.ndimage.filters as filter import pyfftw.interfaces.scipy_fftpack as fft from scipy import signal from savu.plugins.utils import register_plugin from savu.data.plugin_list import CitationInformation from savu.plugins.filters.base_filter import BaseFilter from savu.plugins.driver.iterative_plugin import IterativePlugin # :u*param search_area: Search area in pixels from horizontal approximate \ # centre of the image. Default: (-50, 50). @register_plugin class VoCenteringIterative(BaseFilter, IterativePlugin): """ A plugin to calculate the centre of rotation using the Vo Method :param ratio: The ratio between the size of object and FOV of \ the camera. Default: 0.5. :param row_drop: Drop lines around vertical center of the \ mask. Default: 20. :param search_radius: Use for fine searching. Default: 6. :param step: Step of fine searching. Default: 0.5. :param expand_by: The number of pixels to expand the search region by \ on each iteration. Default: 5 :param boundary_distance: Accepted distance of minima from the boundary of\ the listshift in the coarse search. Default: 3. :u*param preview: A slice list of required frames (sinograms) to use in \ the calulation of the centre of rotation (this will not reduce the data \ size for subsequent plugins). Default: []. :param datasets_to_populate: A list of datasets which require this \ information. Default: []. :param out_datasets: The default \ names. Default: ['cor_raw','cor_fit', 'reliability']. :u*param start_pixel: The approximate centre. If value is None, take the \ value from .nxs file else set to image centre. Default: None. """ def __init__(self): super(VoCenteringIterative, self).__init__("VoCenteringIterative") self.search_area = (-20, 20) self.peak_height_min = 50000 # arbitrary self.min_dist = 3 # min distance deamed acceptible from boundary self.expand_by = 5 # expand the search region by this amount self.list_shift = None self.warning_level = 0 self.final = False self.at_boundary = False self.list_metric = [] self.expand_direction = None def _create_mask(self, Nrow, Ncol, obj_radius): du, dv = 1.0/Ncol, (Nrow-1.0)/(Nrow*2.0*math.pi) cen_row, cen_col = int(np.ceil(Nrow/2)-1), int(np.ceil(Ncol/2)-1) drop = self.parameters['row_drop'] mask = np.zeros((Nrow, Ncol), dtype=np.float32) for i in range(Nrow): num1 = np.round(((i-cen_row)*dv/obj_radius)/du) p1, p2 = (np.clip(np.sort((-num1+cen_col, num1+cen_col)), 0, Ncol-1)).astype(int) mask[i, p1:p2+1] = np.ones(p2-p1+1, dtype=np.float32) if drop < cen_row: mask[cen_row-drop:cen_row+drop+1, :] = \ np.zeros((2*drop + 1, Ncol), dtype=np.float32) mask[:, cen_col-1:cen_col+2] = np.zeros((Nrow, 3), dtype=np.float32) return mask def _get_start_shift(self, centre): if self.parameters['start_pixel'] is not None: shift = centre - int(self.parameters['start_pixel']/self.downlevel) else: in_mData = self.get_in_meta_data()[0] shift = centre - in_mData['centre'] if 'centre' in \ in_mData.get_dictionary().keys() else 0 return int(shift) def _coarse_search(self, sino, list_shift): # search minsearch to maxsearch in 1 pixel steps list_metric = np.zeros(len(list_shift), dtype=np.float32) (Nrow, Ncol) = sino.shape # check angles to determine if a sinogram should be chopped off. # Copy the sinogram and flip left right, to make a full [0:2Pi] sino sino2 = np.fliplr(sino[1:]) # This image is used for compensating the shift of sino2 compensateimage = np.zeros((Nrow-1, Ncol), dtype=np.float32) # Start coarse search in which the shift step is 1 compensateimage[:] = np.flipud(sino)[1:] mask = self._create_mask(2*Nrow-1, Ncol, 0.5*self.parameters['ratio']*Ncol) count = 0 for i in list_shift: sino2a = np.roll(sino2, i, axis=1) if i >= 0: sino2a[:, 0:i] = compensateimage[:, 0:i] else: sino2a[:, i:] = compensateimage[:, i:] list_metric[count] = np.sum( np.abs(fft.fftshift(fft.fft2(np.vstack((sino, sino2a)))))*mask) count += 1 return list_metric def _fine_search(self, sino, raw_cor): (Nrow, Ncol) = sino.shape centerfliplr = (Ncol + 1.0)/2.0-1.0 # Use to shift the sino2 to the raw CoR shiftsino = np.int16(2*(raw_cor-centerfliplr)) sino2 = np.roll(np.fliplr(sino[1:]), shiftsino, axis=1) lefttake = 0 righttake = Ncol-1 search_rad = self.parameters['search_radius'] if raw_cor <= centerfliplr: lefttake = np.int16(np.ceil(search_rad+1)) righttake = np.int16(np.floor(2*raw_cor-search_rad-1)) else: lefttake = np.int16(np.ceil(raw_cor-(Ncol-1-raw_cor)+search_rad+1)) righttake = np.int16(np.floor(Ncol-1-search_rad-1)) Ncol1 = righttake-lefttake + 1 mask = self._create_mask(2*Nrow-1, Ncol1, 0.5*self.parameters['ratio']*Ncol) numshift = np.int16((2*search_rad)/self.parameters['step'])+1 listshift = np.linspace(-search_rad, search_rad, num=numshift) listmetric = np.zeros(len(listshift), dtype=np.float32) num1 = 0 factor1 = np.mean(sino[-1, lefttake:righttake]) for i in listshift: sino2a = ndi.interpolation.shift(sino2, (0, i), prefilter=False) factor2 = np.mean(sino2a[0, lefttake:righttake]) sino2a = sino2a*factor1/factor2 sinojoin = np.vstack((sino, sino2a)) listmetric[num1] = np.sum(np.abs(fft.fftshift( fft.fft2(sinojoin[:, lefttake:righttake + 1])))*mask) num1 = num1 + 1 minpos = np.argmin(listmetric) rotcenter = raw_cor + listshift[minpos]/2.0 return rotcenter def _get_listshift(self): smin, smax = self.search_area if self.get_iteration() is 0 \ else self._expand_search() list_shift = np.arange(smin, smax+2, 2) - self.start_shift logging.debug('list shift is %s', list_shift) return list_shift def _expand_search(self): if self.expand_direction == 'left': return self._expand_left() elif self.expand_direction == 'right': return self._expand_right() else: raise Exception('Unknown expand direction.') def _expand_left(self): smax = self.list_shift[0] - 2 smin = smax - self.expand_by*2 if smin <= -self.boundary: smin = -self.boundary self.at_boundary = True return smin, smax def _expand_right(self): smin = self.list_shift[-1] + 2 smax = self.list_shift[-1] + self.expand_by*2 if smax <= self.boundary: smax = self.boundary self.at_boundary = True return smin, smax def pre_process(self): pData = self.get_plugin_in_datasets()[0] label = pData.get_data_dimension_by_axis_label Ncol = pData.get_shape()[label('detector_x')] self.downlevel = 4 if Ncol > 1800 else 1 self.downsample = slice(0, Ncol, self.downlevel) Ncol_downsample = len(np.arange(0, Ncol, self.downlevel)) self.centre_fliplr = (Ncol_downsample - 1.0)/2.0 self.start_shift = self._get_start_shift(self.centre_fliplr)*2 self.boundary = int(np.ceil(Ncol/4.0)) def process_frames(self, data): if not self.final: logging.debug('performing coarse search for iteration %s', self.get_iteration()) sino = filter.gaussian_filter(data[0][:, self.downsample], (3, 1)) list_shift = self._get_listshift() list_metric = self._coarse_search(sino, list_shift) self._update_lists(list(list_shift), list(list_metric)) self.coarse_cor, dist, reliability_metrics = \ self._analyse_result(self.list_metric, self.list_shift) return [np.array([self.coarse_cor]),
np.array([dist])
numpy.array
import numpy as np import math import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import random,pickle # for positive butyrate dose result = np.array(pickle.load(open('result.p', 'rb'))) # for input bI1 = 0.18 result1 = np.array(pickle.load(open('result1.p', 'rb'))) # for input bI1 = 0.25 result2 = np.array(pickle.load(open('result2.p', 'rb'))) # for input bI1 = 0.11 result3 = np.array(pickle.load(open('resulth.p', 'rb'))) # for input bI1 = 0 T = np.array(pickle.load(open('time1.p', 'rb'))) # butyrate in intestine plt.rcParams.update({'font.size': 25,'legend.fontsize': 20}) plt.xticks(np.arange(0, 30, step=7)) plt.plot(T, result[:,0], color = 'orange',linewidth=3) plt.fill_between(T, result1[:,0], result2[:,0], color = 'k', alpha = 0.1) plt.legend(['butyrate in intestine'], loc='lower right') plt.xlabel('Time (days)') plt.ylabel('$\Delta$ Butyrate \u03bcM') plt.ylim([0,0.42]) plt.errorbar([28], [0.18], yerr=[0.07], fmt='s',color='r', fillstyle = 'none', elinewidth=3, markersize=10, capsize=6, capthick=3, barsabove= False) #plt.savefig("images/IECR/" + "1.png", dpi = 300, bbox_inches='tight') plt.show() # butyrate in blood plt.rcParams.update({'font.size': 25,'legend.fontsize': 20}) plt.xticks(np.arange(0, 30, step=7)) plt.plot(T, result[:,1], color = 'orange',linewidth=3) plt.fill_between(T, result1[:,1], result2[:,1], color = 'k', alpha = 0.1) plt.legend(['butyrate in blood'], loc='lower right') plt.xlabel('Time (days)') plt.ylabel('$\Delta$ Butyrate \u03bcM') plt.ylim([0,0.42]) plt.errorbar([28], [0.29], yerr=[0.09], fmt='s',color='r', fillstyle = 'none', elinewidth=3, markersize=10, capsize=6, capthick=3, barsabove= False) #plt.savefig("images/IECR/" + "2.png", dpi = 300, bbox_inches='tight') plt.show() # butyrate in bone plt.rcParams.update({'font.size': 25,'legend.fontsize': 20}) plt.xticks(np.arange(0, 30, step=7)) plt.plot(T, result[:,2], color = 'orange',linewidth=3) plt.fill_between(T, result1[:,2], result2[:,2], color = 'k', alpha = 0.1) plt.legend(['butyrate in bone'], loc='lower right') plt.xlabel('Time (days)') plt.ylabel('$\Delta$ Butyrate \u03bcM') plt.ylim([0,0.42]) plt.errorbar([28], [0.29], yerr=[0], fmt='s',color='r', fillstyle = 'none', elinewidth=3, markersize=10, capsize=0, capthick=3, barsabove= False) #plt.savefig("images/IECR/" + "3.png", dpi = 300, bbox_inches='tight') plt.show() # Tregs in blood plt.rcParams.update({'font.size': 25,'legend.fontsize': 20}) plt.xticks(np.arange(0, 30, step=7)) plt.yticks(
np.arange(13, 18, step=1)
numpy.arange
#!/usr/bin/python3.6 """ Converts the data into a format, suitable for training. """ import multiprocessing, os, sys from functools import partial from glob import glob from typing import * import numpy as np, pandas as pd from tqdm import tqdm from metrics import mapk import torch def get_classes_list() -> List[str]: classes = [os.path.basename(f)[:-4] for f in glob("../../data/train_raw/*.csv")] return sorted(classes, key=lambda s: s.lower()) if __name__ == '__main__': test_paths = sorted(glob('new/*test*.npy')) train_paths = [s.replace('test', 'train') for s in test_paths] train_df = pd.read_csv('level2_train.csv') val_df = pd.read_csv('level2_val.csv') classes = get_classes_list() class2idx = {c.replace('_', ' '): i for i, c in enumerate(classes)} test_predicts = [
np.load(pred)
numpy.load
#!/usr/bin/env python3 """ Script to create Figure 2 of the paper. """ from pathlib import Path import pandas as pd import matplotlib.pyplot as plt import numpy as np from tqdm import tqdm from utils import load_dataset PROJECT_ROOT = Path.cwd() def main(): """Create elements for figure 2 of the paper""" # ---------------------------------------------------------------------------- n_bootstrap = 1000 model_name = 'supervised_aae' outputs_dir = PROJECT_ROOT / 'outputs' bootstrap_dir = outputs_dir / 'bootstrap_analysis' model_dir = bootstrap_dir / model_name # ---------------------------------------------------------------------------- dataset_name = 'ADNI' participants_path = PROJECT_ROOT / 'data' / dataset_name / 'participants.tsv' freesurfer_path = PROJECT_ROOT / 'data' / dataset_name / 'freesurferData.csv' ids_path = PROJECT_ROOT / 'outputs' / (dataset_name + '_homogeneous_ids.csv') adni_df = load_dataset(participants_path, ids_path, freesurfer_path) mean_adni_list = [] for i_bootstrap in tqdm(range(n_bootstrap)): bootstrap_model_dir = model_dir / '{:03d}'.format(i_bootstrap) output_dataset_dir = bootstrap_model_dir / dataset_name output_dataset_dir.mkdir(exist_ok=True) reconstruction_error_df = pd.read_csv(output_dataset_dir / 'reconstruction_error.csv') error_hc = reconstruction_error_df.loc[adni_df['Diagn'] == 1]['Reconstruction error'] error_emci = reconstruction_error_df.loc[adni_df['Diagn'] == 27]['Reconstruction error'] error_lmci = reconstruction_error_df.loc[adni_df['Diagn'] == 28]['Reconstruction error'] error_ad = reconstruction_error_df.loc[adni_df['Diagn'] == 17]['Reconstruction error'] mean_adni_list.append([error_hc.mean(), error_emci.mean(), error_lmci.mean(), error_ad.mean()]) mean_adni_list = np.array(mean_adni_list) plt.hlines(range(4), np.percentile(mean_adni_list, 2.5, axis=0), np.percentile(mean_adni_list, 97.5, axis=0)) plt.plot(np.mean(mean_adni_list, axis=0), range(4), 's', color='k') plt.savefig(bootstrap_dir / 'ADNI.eps', format='eps') plt.close() plt.clf() results = pd.DataFrame(columns={'Measure', 'HC', 'EMCI', 'LMCI', 'AD'}) results = results.append({'Measure': 'Mean', 'HC': np.mean(mean_adni_list, axis=0)[0], 'EMCI': np.mean(mean_adni_list, axis=0)[1], 'LMCI': np.mean(mean_adni_list, axis=0)[2], 'AD': np.mean(mean_adni_list, axis=0)[3], }, ignore_index=True) results = results.append({'Measure': 'Lower', 'HC': np.percentile(mean_adni_list, 2.5, axis=0)[0], 'EMCI': np.percentile(mean_adni_list, 2.5, axis=0)[1], 'LMCI': np.percentile(mean_adni_list, 2.5, axis=0)[2], 'AD': np.percentile(mean_adni_list, 2.5, axis=0)[3], }, ignore_index=True) results = results.append({'Measure': 'Upper', 'HC': np.percentile(mean_adni_list, 97.5, axis=0)[0], 'EMCI': np.percentile(mean_adni_list, 97.5, axis=0)[1], 'LMCI': np.percentile(mean_adni_list, 97.5, axis=0)[2], 'AD':
np.percentile(mean_adni_list, 97.5, axis=0)
numpy.percentile
import unittest import sys import numpy as np import os import warnings from pyiron.atomistics.structure.atom import Atom from pyiron.atomistics.structure.atoms import Atoms, CrystalStructure from pyiron.atomistics.structure.sparse_list import SparseList from pyiron.atomistics.structure.periodic_table import PeriodicTable, ChemicalElement from pyiron.base.generic.hdfio import FileHDFio class TestAtoms(unittest.TestCase): @classmethod def tearDownClass(cls): if sys.version_info[0] >= 3: file_location = os.path.dirname(os.path.abspath(__file__)) if os.path.isfile(os.path.join(file_location, "../../static/atomistics/test_hdf")): os.remove(os.path.join(file_location, "../../static/atomistics/test_hdf")) @classmethod def setUpClass(cls): C = Atom('C').element cls.C3 = Atoms([C, C, C], positions=[[0, 0, 0], [0, 0, 2], [0, 2, 0]]) cls.C2 = Atoms(2 * [Atom('C')]) def setUp(self): # These atoms are reset before every test. self.CO2 = Atoms("CO2", positions=[[0, 0, 0], [0, 0, 1.5], [0, 1.5, 0]]) def test__init__(self): pos, cell = generate_fcc_lattice() pse = PeriodicTable() el = pse.element("Al") basis = Atoms() self.assertIsInstance(basis, Atoms) self.assertIsInstance(basis.info, dict) self.assertIsInstance(basis.arrays, dict) self.assertIsInstance(basis.adsorbate_info, dict) self.assertIsInstance(basis.units, dict) self.assertIsInstance(basis.pbc, (bool, list, np.ndarray)) self.assertIsInstance(basis.indices, np.ndarray) self.assertIsNone(basis.positions) self.assertIsInstance(basis.species, list) self.assertIsInstance(basis.elements, np.ndarray) self.assertIsNone(basis.cell) basis = Atoms(symbols='Al', positions=pos, cell=cell) self.assertIsInstance(basis, Atoms) self.assertEqual(basis.get_spacegroup()["Number"], 225) basis = Atoms(elements='Al', positions=pos, cell=cell) self.assertIsInstance(basis, Atoms) basis = Atoms(elements=['Al'], positions=pos, cell=cell) self.assertIsInstance(basis, Atoms) self.assertRaises(ValueError, Atoms, symbols="Pt", elements='Al', positions=pos, cell=cell) basis = Atoms(numbers=[13], positions=pos, cell=cell) self.assertEqual(basis.get_majority_species()['symbol'], "Al") basis = Atoms(species=[el], indices=[0], positions=pos, cell=cell) self.assertEqual(basis.get_majority_species()['symbol'], "Al") self.assertIsInstance(basis, Atoms) self.assertIsInstance(basis.info, dict) self.assertIsInstance(basis.arrays, dict) self.assertIsInstance(basis.adsorbate_info, dict) self.assertIsInstance(basis.units, dict) self.assertIsInstance(basis.pbc, (bool, list, np.ndarray)) self.assertIsInstance(basis.indices, np.ndarray) self.assertIsInstance(basis.species, list) self.assertIsInstance(basis.cell, np.ndarray) self.assertIsInstance(basis.positions, np.ndarray) self.assertIsInstance(basis.get_scaled_positions(), np.ndarray) self.assertIsInstance(basis.elements, np.ndarray) def test_set_species(self): pos, cell = generate_fcc_lattice() pse = PeriodicTable() el = pse.element("Pt") basis = Atoms(symbols='Al', positions=pos, cell=cell) self.assertEqual(basis.get_chemical_formula(), "Al") basis.set_species([el]) self.assertEqual(basis.get_chemical_formula(), "Pt") self.assertTrue("Al" not in [sp.Abbreviation] for sp in basis._species_to_index_dict.keys()) self.assertTrue("Pt" in [sp.Abbreviation] for sp in basis._species_to_index_dict.keys()) def test_new_array(self): pos, cell = generate_fcc_lattice() basis = Atoms(symbols='Al', positions=pos, cell=cell) basis.set_repeat([10, 10, 10]) spins = np.ones(len(basis)) basis.new_array(name="spins", a=spins) self.assertTrue(np.array_equal(basis.arrays['spins'], spins)) def test_set_array(self): pos, cell = generate_fcc_lattice() basis = Atoms(symbols='Al', positions=pos, cell=cell) basis.set_repeat([10, 10, 10]) spins = np.ones(len(basis), dtype=float) basis.set_array(name="spins", a=2*spins, dtype=int) self.assertTrue(np.array_equal(basis.arrays['spins'], 2 * spins)) def test_get_array(self): pos, cell = generate_fcc_lattice() basis = Atoms(symbols='Al', positions=pos, cell=cell) basis.set_repeat([10, 10, 10]) spins = np.ones(len(basis), dtype=float) basis.set_array(name="spins", a=2*spins, dtype=int) self.assertTrue(np.array_equal(basis.arrays['spins'], 2 * spins)) self.assertTrue(np.array_equal(basis.get_array(name="spins"), 2 * spins)) def test_add_tags(self): self.CO2.add_tag(test_tag="a") self.assertIsInstance(self.CO2.test_tag, SparseList) self.assertEqual(self.CO2.test_tag[0], "a") self.assertEqual(self.CO2.test_tag[0], self.CO2.test_tag[2]) self.assertIsInstance(self.CO2.test_tag.list(), list) self.CO2.add_tag(selective_dynamics=[True, True, True]) self.CO2.selective_dynamics[1] = [True, False, True] self.assertEqual(self.CO2.selective_dynamics[1], [True, False, True]) self.assertIsInstance(self.CO2.selective_dynamics.list(), list) def test_get_tags(self): self.CO2.add_tag(test_tag="a") self.assertIsInstance(self.CO2.test_tag, SparseList) self.assertIsInstance(self.CO2.get_tags(), type(dict().keys())) def test_get_pbc(self): self.assertTrue(np.array_equal(self.CO2.pbc, self.CO2.get_pbc())) self.assertEqual(len(self.CO2.get_pbc()), 3) def test_set_pbc(self): self.CO2.set_pbc(value=[True, True, False]) self.assertTrue(np.array_equal(self.CO2.pbc, self.CO2.get_pbc())) self.assertTrue(np.array_equal([True, True, False], self.CO2.get_pbc())) self.CO2.set_pbc(value=False) self.assertTrue(np.array_equal([False, False, False], self.CO2.get_pbc())) self.assertTrue(np.array_equal(self.CO2.pbc, self.CO2.get_pbc())) def test_chemical_element(self): conv = self.CO2.convert_element('C') self.assertIsInstance(conv, ChemicalElement) self.assertIsInstance(self.CO2.convert_element(conv), ChemicalElement) self.assertIsInstance(self.CO2.convert_element(self.CO2[0]), ChemicalElement) with self.assertRaises(AssertionError): self.assertIsInstance(self.CO2.convert_element(self.CO2), ChemicalElement) self.assertEqual(len(self.CO2.species), 2) def test_copy(self): pos, cell = generate_fcc_lattice() basis = Atoms(symbols='Al', positions=pos, cell=cell) basis_copy = basis.copy() self.assertEqual(basis, basis_copy) basis_copy[:] = "Pt" self.assertNotEqual(basis, basis_copy) def test_numbers_to_elements(self): num_list = [1, 12, 13, 6] self.assertTrue(np.array_equal([el.Abbreviation for el in self.CO2.numbers_to_elements(num_list)], ['H', 'Mg', 'Al', 'C'])) def test_scaled_pos_xyz(self): basis = Atoms(symbols='AlAl', positions=[3*[0], 3*[1]], cell=2*np.eye(3)) pos_xyz = basis.pos_xyz() self.assertAlmostEqual(np.linalg.norm(pos_xyz[0]-np.array([0, 1])), 0) scaled_pos_xyz = basis.scaled_pos_xyz() self.assertAlmostEqual(np.linalg.norm(pos_xyz[0]-basis.cell[0,0]*scaled_pos_xyz[0]), 0) def test_to_hdf(self): if sys.version_info[0] >= 3: filename = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../../static/atomistics/test_hdf") abs_filename = os.path.abspath(filename) hdf_obj = FileHDFio(abs_filename) pos, cell = generate_fcc_lattice() basis = Atoms(symbols='Al', positions=pos, cell=cell) basis.set_repeat([2, 2, 2]) basis.to_hdf(hdf_obj, "test_structure") self.assertTrue(np.array_equal(hdf_obj["test_structure/positions"], basis.positions)) basis_new = Atoms().from_hdf(hdf_obj, "test_structure") self.assertEqual(basis, basis_new) def test_from_hdf(self): if sys.version_info[0] >= 3: filename = os.path.join(os.path.dirname(os.path.abspath(__file__)), "../../static/atomistics/test_hdf") abs_filename = os.path.abspath(filename) hdf_obj = FileHDFio(abs_filename) pos, cell = generate_fcc_lattice() basis_store = Atoms(symbols='Al', positions=pos, cell=cell) basis_store.set_repeat([2, 2, 2]) basis_store.to_hdf(hdf_obj, "simple_structure") basis = Atoms().from_hdf(hdf_obj, group_name="simple_structure") self.assertEqual(len(basis), 8) self.assertEqual(basis.get_majority_species()['symbol'], "Al") self.assertEqual(basis.get_spacegroup()['Number'], 225) def test_create_Fe_bcc(self): self.pse = PeriodicTable() self.pse.add_element("Fe", "Fe_up", spin="up", pseudo_name='GGA') self.pse.add_element("Fe", "Fe_down", spin="down", pseudo_name='GGA') Fe_up = self.pse.element("Fe_up") Fe_down = self.pse.element("Fe_down") self.Fe_bcc = Atoms([Fe_up, Fe_down], scaled_positions=[[0, 0, 0], [0.25, 0.25, 0.25]], cell=np.identity(3)) self.Fe_bcc.add_tag("group") self.Fe_bcc.group[:] = 0 def test_convert_formula(self): self.assertEqual(self.CO2.convert_formula('C'), ['C']) self.assertEqual(self.CO2.convert_formula('C3'), ['C', 'C', 'C']) self.assertEqual(self.CO2.convert_formula('CO2'), ['C', 'O', 'O']) self.assertEqual(self.CO2.convert_formula('CO2Fe'), ['C', 'O', 'O', 'Fe']) self.assertEqual(self.CO2.convert_formula('CO2FeF21'), ['C', 'O', 'O', 'Fe', 'F', 'F']) def test__getitem__(self): self.assertEqual(self.CO2[0].symbol, 'C') self.assertEqual(self.C3[2].position.tolist(), [0, 2, 0]) self.assertTrue((self.C3[1:].positions == np.array([[0, 0, 2], [0, 2, 0]])).all()) short_basis = self.CO2[0] self.assertIsInstance(short_basis, Atom) short_basis = self.CO2[[0]] self.assertIsInstance(short_basis, Atoms) self.assertEqual(short_basis.indices[0], 0) self.assertEqual(len(short_basis.species), 1) short_basis = self.CO2[[2]] self.assertIsInstance(short_basis, Atoms) self.assertEqual(short_basis.indices[0], 0) self.assertEqual(len(short_basis.species), 1) basis_Mg = CrystalStructure("Mg", bravais_basis="fcc", lattice_constant=4.2) basis_O = CrystalStructure("O", bravais_basis="fcc", lattice_constant=4.2) basis_O.positions += [0., 0., 0.5] basis = basis_Mg + basis_O basis.center_coordinates_in_unit_cell() basis.set_repeat([3, 3, 3]) mg_indices = basis.select_index("Mg") o_indices = basis.select_index("O") basis_new = basis[mg_indices] + basis[o_indices] self.assertEqual(len(basis_new._tag_list), len(basis[mg_indices]) + len(basis[o_indices])) self.assertEqual(basis_new.get_spacegroup()["Number"], 225) def test_positions(self): self.assertEqual(self.CO2[1:].positions[1:].tolist(), [[0.0, 1.5, 0.0]]) self.CO2.positions[1][0] = 5. self.assertEqual(self.CO2.positions[1].tolist(), [5.0, 0, 1.5]) def test_set_positions(self): pos, cell = generate_fcc_lattice() basis = Atoms(symbols='Al', positions=pos, cell=cell) basis.set_positions(np.array([[2.5, 2.5, 2.5]])) self.assertTrue(np.array_equal(basis.positions, [[2.5, 2.5, 2.5]])) def test_set_scaled_positions(self): pos, cell = generate_fcc_lattice() basis = Atoms(symbols='Al', positions=pos, cell=cell, a=4.2) basis.set_scaled_positions(np.array([[0.5, 0.5, 0.5]])) self.assertTrue(np.array_equal(basis.get_scaled_positions(), [[0.5, 0.5, 0.5]])) self.assertTrue(np.array_equal(basis.positions, np.dot([[0.5, 0.5, 0.5]], basis.cell))) with warnings.catch_warnings(record=True): basis.scaled_positions = np.array([[0.5, 0.5, 0.5]]) self.assertTrue(np.array_equal(basis.scaled_positions, [[0.5, 0.5, 0.5]])) def test_cell(self): CO = Atoms("CO", positions=[[0, 0, 0], [0, 0, 2]], cell=[[1, 0, 0], [0, 1, 0], [0, 0, 1]], pbc=[True, True, True]) self.assertTrue((CO.get_cell() == np.identity(3)).all()) self.assertTrue((CO.cell == np.identity(3)).all()) CO.cell[2][2] = 10. self.assertTrue(CO.cell[2, 2] == 10.) self.assertAlmostEqual(CO.get_volume(), 10) self.assertAlmostEqual(CO.get_volume(per_atom=True), 0.5*10) with self.assertRaises(ValueError): CO.cell = -np.eye(3) with self.assertRaises(ValueError): CO.cell = [2,1] def test_add(self): COX = self.C2 + Atom("O", position=[0, 0, -2]) COX += Atom("O", position=[0, 0, -4]) COX += COX n_objects = len(set(COX.get_species_objects())) n_species = len(set(COX.get_chemical_elements())) self.assertEqual(n_objects, n_species) def test_pbc(self): CO = Atoms("CO", positions=[[0, 0, 0], [0, 0, 2]], cell=[[1, 0, 0], [0, 1, 0], [0, 0, 1]], pbc=[True, True, True]) self.assertTrue((CO.pbc == np.array([True, True, True])).all()) CO.set_pbc((True, True, False)) def test_get_masses_DOF(self): self.assertEqual(len(self.CO2.get_masses_dof()), len(self.CO2.positions.flatten())) def test_get_center_of_mass(self): basis = Atoms(elements='AlFe', positions=[3*[0.5], 3*[1.5]], cell=2*np.eye(3)) mass = np.array(basis.get_masses()) self.assertAlmostEqual((mass[0]*0.5+mass[1]*1.5)/mass.sum(), basis.get_center_of_mass()[0]) basis.set_repeat(2) self.assertAlmostEqual((mass[0]*0.5+mass[1]*1.5)/mass.sum()+1, basis.get_center_of_mass()[0]) def test_rotate(self): unitcell = Atoms(elements='AlFe', positions=[3*[0], 3*[1]], cell=2*np.eye(3)) basis = unitcell.copy() basis.rotate(vector=[0, 0, 0.1*np.pi]) self.assertAlmostEqual(np.arccos(basis.positions[1, :2].sum()/2)/np.pi, 0.1) basis = unitcell.copy() basis.rotate(vector=[0, 0, 1], angle=0.1*np.pi) self.assertAlmostEqual(np.arccos(basis.positions[1, :2].sum()/2)/np.pi, 0.1) basis = unitcell.copy() center_of_mass = basis.get_center_of_mass() basis.rotate(vector=[0, 0, 0.1*np.pi], center='com') self.assertTrue(np.allclose(basis.get_center_of_mass(), center_of_mass)) basis = unitcell.copy() center_of_positions = basis.positions.mean(axis=0) basis.rotate(vector=[0, 0, 1], center='cop') self.assertTrue(np.allclose(center_of_positions, basis.positions.mean(axis=0))) basis = unitcell.copy() position = basis.positions[1] basis.rotate(vector=[0, 0, 1], center='cou') self.assertTrue(np.allclose(position, basis.positions[1])) basis = unitcell.copy() basis.rotate(vector=np.random.random(3), rotate_cell=True) self.assertAlmostEqual(basis.get_scaled_positions()[1,0], 0.5) basis = unitcell.copy() basis.rotate(vector=np.random.random(3), index_list=[0]) self.assertTrue(np.allclose(unitcell.positions.flatten(), basis.positions.flatten())) def test_rotate_euler(self): unitcell = Atoms(elements='AlFe', positions=[3*[0], 3*[1]], cell=2*np.eye(3)) basis = unitcell.copy() basis.rotate_euler(phi=0.1*np.pi) self.assertAlmostEqual(np.arccos(basis.positions[1, :2].sum()/2)/np.pi, 0.1) basis = unitcell.copy() center_of_mass = basis.get_center_of_mass() basis.rotate_euler(phi=0.1*np.pi, center='com') self.assertTrue(np.allclose(basis.get_center_of_mass(), center_of_mass)) basis = unitcell.copy() center_of_positions = basis.positions.mean(axis=0) basis.rotate_euler(phi=0.1*np.pi, center='cop') self.assertTrue(np.allclose(center_of_positions, basis.positions.mean(axis=0))) basis = unitcell.copy() position = basis.positions[1] basis.rotate_euler(phi=0.1*np.pi, center='cou') self.assertTrue(np.allclose(position, basis.positions[1])) def test_get_parent_basis(self): periodic_table = PeriodicTable() periodic_table.add_element(parent_element="O", new_element="O_up") O_up = periodic_table.element("O_up") O_basis = Atoms([O_up], cell=10.0 * np.eye(3), scaled_positions=[[0.5, 0.5, 0.5]]) O_simple = Atoms(["O"], cell=10.0 * np.eye(3), scaled_positions=[[0.5, 0.5, 0.5]]) O_parent = O_basis.get_parent_basis() self.assertNotEqual(O_basis, O_parent) self.assertEqual(O_simple, O_parent) self.assertEqual(O_parent[0].symbol, "O") periodic_table.add_element(parent_element="O", new_element="O_down") O_down = periodic_table.element("O_down") O_basis = Atoms([O_up, O_down], cell=10.0 * np.eye(3), scaled_positions=[[0.5, 0.5, 0.5], [0, 0, 0]]) O_simple = Atoms(["O", "O"], cell=10.0 * np.eye(3), scaled_positions=[[0.5, 0.5, 0.5]]) O_parent = O_basis.get_parent_basis() self.assertNotEqual(O_basis, O_parent) self.assertEqual(O_simple, O_parent) self.assertEqual(O_parent.get_chemical_formula(), "O2") self.assertEqual(len(O_basis.species), 2) self.assertEqual(len(O_simple.species), 1) self.assertEqual(len(O_parent.species), 1) def test_profiling(self): num = 1000 C100 = Atoms(num * ["C"], positions=[(0, 0, 0) for _ in range(num)]) self.assertEqual(len(C100), num) def test_Au(self): a = 4.05 # Gold lattice constant b = a / 2. fcc = Atoms(['Au'], cell=[(0, b, b), (b, 0, b), (b, b, 0)], pbc=True) # print fcc # print "volume: ", fcc.get_volume() def test_set_absolute(self): a = 4.05 # Gold lattice constant b = a / 2. positions = np.array([(0.5, 0.4, 0.)]) fcc = Atoms(symbols=['Au'], scaled_positions=positions, cell=[(0, b, b), (b, 0, b), (b, b, 0)], pbc=True) # fcc.set_absolute() # print fcc.positions # fcc.set_relative() self.assertTrue(np.linalg.norm(fcc.get_scaled_positions() - positions) < 1e-10) def test_set_relative(self): lattice = CrystalStructure(element='Al', bravais_basis='fcc', lattice_constants=4) basis_relative = lattice.copy() basis_relative.set_relative() basis_relative.cell[0,0] = 6 basis_absolute = lattice.copy() basis_absolute.set_absolute() basis_absolute.cell[0,0] = 6 self.assertAlmostEqual(basis_relative.positions[-1,0]*1.5, basis_absolute.positions[-1,0]) basis = lattice.copy() self.assertAlmostEqual(basis.get_scaled_positions()[-1,0], basis_relative.get_scaled_positions()[-1,0]) basis.cell[0,0] = 6 self.assertAlmostEqual(basis.positions[-1,0], basis_absolute.positions[-1,0]) basis = lattice.copy() basis_relative = lattice.copy() basis_relative.set_relative() basis.positions[-1,0] = 0.5 basis_relative.positions[-1,0] = 0.5 self.assertAlmostEqual(basis.positions[-1,0], basis_relative.positions[-1,0]) basis.cell = 3*np.ones(3) self.assertAlmostEqual(basis.get_volume(), 27) basis.cell = np.append(np.ones(3), 90-np.random.random(3)).flatten() self.assertLess(basis.get_volume(), 1) def test_repeat(self): basis_Mg = CrystalStructure("Mg", bravais_basis="fcc", lattice_constant=4.2) basis_O = CrystalStructure("O", bravais_basis="fcc", lattice_constant=4.2) basis_O.set_scaled_positions(basis_O.get_scaled_positions()+[0., 0., 0.5]) basis = basis_Mg + basis_O basis.center_coordinates_in_unit_cell() basis.add_tag(selective_dynamics=[True, True, True]) basis.selective_dynamics[basis.select_index("O")] = [False, False, False] len_before = len(basis) sel_dyn_before = np.array(basis.selective_dynamics.list()) self.assertTrue(np.alltrue(np.logical_not(np.alltrue(sel_dyn_before[basis.select_index("O")], axis=1)))) self.assertTrue(np.alltrue(np.alltrue(sel_dyn_before[basis.select_index("Mg")], axis=1))) basis.set_repeat([3, 3, 2]) sel_dyn_after = np.array(basis.selective_dynamics.list()) len_after = len(basis) self.assertEqual(basis.get_spacegroup()["Number"], 225) self.assertEqual(len_before * 18, len_after) self.assertEqual(len(sel_dyn_before) * 18, len(sel_dyn_after)) self.assertTrue(np.alltrue(np.logical_not(np.alltrue(sel_dyn_after[basis.select_index("O")], axis=1)))) self.assertTrue(np.alltrue(np.alltrue(sel_dyn_after[basis.select_index("Mg")], axis=1))) basis = basis_Mg + basis_O basis.add_tag(spin=None) basis.spin[basis.select_index("Mg")] = 1 basis.spin[basis.select_index("O")] = -1 self.assertTrue(np.array_equal(basis.spin[basis.select_index("Mg")].list(), 1 * np.ones(len(basis.select_index("Mg"))))) self.assertTrue(np.array_equal(basis.spin[basis.select_index("O")].list(), -1 * np.ones(len(basis.select_index("O"))))) basis.set_repeat(2) self.assertTrue(np.array_equal(basis.spin[basis.select_index("Mg")].list(), 1 * np.ones(len(basis.select_index("Mg"))))) self.assertTrue(np.array_equal(basis.spin[basis.select_index("O")].list(), -1 * np.ones(len(basis.select_index("O"))))) basis = basis_Mg + basis_O basis.add_tag(spin=None) # Indices set as int Mg_indices = np.array(basis.select_index("Mg"), dtype=int).tolist() for ind in Mg_indices: basis.spin[ind] = 1 O_indices = np.array(basis.select_index("O"), dtype=int).tolist() for ind in O_indices: basis.spin[ind] = -1 basis.set_repeat(2) self.assertTrue(np.array_equal(basis.spin[basis.select_index("Mg")].list(), 1 * np.ones(len(basis.select_index("Mg"))))) self.assertTrue(np.array_equal(basis.spin[basis.select_index("O")].list(), -1 * np.ones(len(basis.select_index("O"))))) # Indices set as numpy.int Mg_indices = np.array(basis.select_index("Mg"), dtype=np.int) for ind in Mg_indices: basis.spin[ind] = 1 O_indices = np.array(basis.select_index("O"), dtype=np.int) for ind in O_indices: basis.spin[ind] = -1 basis.set_repeat(2) self.assertTrue(np.array_equal(basis.spin[basis.select_index("Mg")].list(), 1 * np.ones(len(basis.select_index("Mg"))))) self.assertTrue(np.array_equal(basis.spin[basis.select_index("O")].list(), -1 * np.ones(len(basis.select_index("O"))))) def test_boundary(self): cell = 2.2 * np.identity(3) NaCl = Atoms('NaCl', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=cell) NaCl.set_repeat([3, 3, 3]) # NaCl.plot3d() NaCl_bound = NaCl.get_boundary_region(0.2) # NaCl_bound.plot3d() def test_get_distance(self): cell = 2.2 * np.identity(3) NaCl = Atoms('NaCl', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=cell) self.assertAlmostEqual(NaCl.get_distance(0, 1), 2.2*0.5*np.sqrt(3)) self.assertAlmostEqual(NaCl.get_distance(0, [0, 0, 0.5]), 0.5) self.assertAlmostEqual(NaCl.get_distance([0, 0, 0], [0, 0, 0.5]), 0.5) def test_get_neighborhood(self): basis = Atoms('FeFe', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=np.identity(3)) neigh = basis.get_neighborhood([0, 0, 0.1]) self.assertEqual(neigh.distances[0], 0.1) def test_get_neighbors(self): cell = 2.2 * np.identity(3) NaCl = Atoms('NaCl', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=cell) # NaCl.repeat([3, 3, 3]) # NaCl.positions = [(1,1,1)] boundary = NaCl.get_boundary_region(3.5) extended_cell = NaCl + boundary # extended_cell.plot3d() nbr_dict = NaCl.get_neighbors(num_neighbors=12, t_vec=True) basis = Atoms(symbols='FeFe', positions=[3*[0], 3*[1]], cell=2*np.eye(3)) neigh = basis.get_neighbors(include_boundary=False) self.assertAlmostEqual(neigh.distances[0][0], np.sqrt(3)) basis.set_repeat(2) self.assertAlmostEqual(neigh.distances[0][0], np.sqrt(3)) # print nbr_dict.distances # print [set(s) for s in nbr_dict.shells] def test_center_coordinates(self): cell = 2.2 * np.identity(3) NaCl = Atoms('NaCl', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=cell) NaCl.set_repeat([3, 3, 3]) NaCl.positions += [2.2, 2.2, 2.2] NaCl.center_coordinates_in_unit_cell(origin=-0.5) self.assertTrue(-0.5 <= np.min(NaCl.get_scaled_positions())) self.assertTrue(np.max(NaCl.get_scaled_positions() < 0.5)) NaCl.center_coordinates_in_unit_cell(origin=0.) self.assertTrue(0 <= np.min(NaCl.positions)) self.assertTrue(np.max(NaCl.get_scaled_positions() < 1)) @unittest.skip("skip ovito because it is not installed in the test environment") def test_analyse_ovito_cna_adaptive(self): basis = Atoms('FeFe', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=np.identity(3)) basis.analyse_ovito_cna_adaptive()['CommonNeighborAnalysis.counts.BCC']==2 @unittest.skip("skip ovito because it is not installed in the test environment") def test_analyse_ovito_centro_symmetry(self): basis = Atoms('FeFe', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=np.identity(3)) self.assertTrue(all(basis.analyse_ovito_centro_symmetry()==np.array([0.75, 0.75]))) @unittest.skip("skip ovito because it is not installed in the test environment") def test_analyse_ovito_voronoi_volume(self): basis = Atoms('FeFe', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=np.identity(3)) self.assertTrue(all(basis.analyse_ovito_centro_symmetry()==np.array([0.5, 0.5]))) @unittest.skip("skip nglview because it is not installed in the test environment") def test_plot3d(self): basis = Atoms('FeFe', scaled_positions=[(0, 0, 0), (0.5, 0.5, 0.5)], cell=
np.identity(3)
numpy.identity
"""Classes for making pretty diagnostic plots for redmapper catalogs """ import os import numpy as np import fitsio import esutil import scipy.optimize import scipy.ndimage import copy from .configuration import Configuration from .utilities import gaussFunction, CubicSpline, interpol class SpecPlot(object): """ Class to make plots comparing the cluster spec-z with cluster z_lambda (photo-z). In the case of real data, the most likely central is used as a proxy for the cluster redshift (so miscenters look like wrong redshifts). In the case of mock data, the mean redshift of the members can be used instead. """ def __init__(self, conf, binsize=0.02, nsig=4.0): """ Instantiate a SpecPlot. Parameters ---------- conf: `redmapper.Configuration` or `str` Configuration object or filename binsize: `float`, optional Redshift smoothing bin size. Default is 0.02. nsig: `float`, optional Number of sigma to be considered a redshift outlier. Default is 4.0. """ if not isinstance(conf, Configuration): self.config = Configuration(conf) else: self.config = conf self.binsize = binsize self.nsig = nsig self._withversion = False def plot_cluster_catalog(self, cat, title=None, figure_return=False, withversion=False): """ Plot the spectroscopic comparison for a cluster catalog, using the default catalog values. This plot will compare the catalog cg_spec_z (most likely central galaxy redshift) with the cluster z_lambda. Parameters ---------- cat: `redmapper.ClusterCatalog` Cluster catalog to plot. title: `str`, optional Title string for plot. Default is None. figure_return: `bool`, optional Return the figure instead of saving a png. Default is False. withversion: `bool`, optional Plots should be saved with the version string. Returns ------- fig: `matplotlib.Figure` or `None` Figure to show, if figure_return is True. """ return self.plot_values(cat.cg_spec_z, cat.z_lambda, cat.z_lambda_e, title=title, figure_return=figure_return, withversion=withversion) def plot_cluster_catalog_from_members(self, cat, mem, title=None, figure_return=False, withversion=False): """ Plot the spectroscopic comparison for a cluster catalog, using the average member redshift. This plot will compare the catalog median redshift with the cluster z_lambda. Generally only useful for simulated catalogs where you have complete coverage. Parameters ---------- cat: `redmapper.ClusterCatalog` Cluster catalog to plot. mem: `redmapper.Catalog` Member catalog associated with cat. title: `str`, optional Title string for plot. Default is None. figure_return: `bool`, optional Return the figure instead of saving a png. Default is False. withversion: `bool`, optional Plots should be saved with the version string. Returns ------- fig: `matplotlib.Figure` or `None` Figure to show, if figure_return is True. """ # Not sure why this is necessary on the mocks, but there are some -1s... ok, = np.where(mem.zspec > 0.0) mem = mem[ok] a, b = esutil.numpy_util.match(cat.mem_match_id, mem.mem_match_id) h, rev = esutil.stat.histogram(a, rev=True) mem_zmed = np.zeros(cat.size) for i in range(h.size): if h[i] == 0: continue i1a = rev[rev[i]: rev[i + 1]] mem_zmed[i] = np.median(mem.zspec[i1a]) return self.plot_values(mem_zmed, cat.z_lambda, cat.z_lambda_e, title=title, figure_return=figure_return, withversion=withversion) def plot_values(self, z_spec, z_phot, z_phot_e, name=r'z_\lambda', specname=r'z_{\mathrm{spec}}', title=None, figure_return=False, calib_zrange=None, withversion=False): """ Make a pretty spectrscopic plot from an arbitrary list of values. Parameters ---------- z_spec: `np.array` Float array of spectroscopic redshifts z_phot: `np.array` Float array of photometric redshifts z_phot_e: `np.array` Float array of photometric redshift errors name: `str`, optional Name of photo-z field for label. Default is 'z_lambda'. title: `str`, optional Title string. Default is None figure_return: `bool`, optional Return the figure instead of saving a png. Default is False. calib_zrange: `np.array` or `list` 2-element array with calibration redshift range to mark. Default is None. withversion: `bool`, optional Plots should be saved with the version string. Returns ------- fig: `matplotlib.Figure` or `None` Figure to show, if figure_return is True. """ # We will need to remove any underscores in name for some usage... name_clean = name.replace('_', '') name_clean = name_clean.replace('^', '') name_e = f'\delta_{{{name}}}' use, = np.where(z_spec > 0.0) import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator plot_xrange = np.array([0.0, self.config.zrange[1] + 0.1]) fig = plt.figure(figsize=(8, 6)) fig.clf() ax = fig.add_subplot(211) # Need to do the map, then need to get the levels and make a contour # z_bins, z_map = self._make_photoz_map(z_spec[use], z_phot[use]) #@jacobic: mara prefers z_spec on x axis z_bins, z_map = self._make_photoz_map(z_phot[use], z_spec[use]) nlevs = 5 levbinsize = (1.0 - 0.1) / nlevs levs = np.arange(nlevs) * levbinsize + 0.1 levs = np.append(levs, 10) levs = -levs[::-1] colors = ['#000000', '#333333', '#666666', '#9A9A9A', '#CECECE', '#FFFFFF'] ax.contourf(z_bins, z_bins, -z_map.T, levs, colors=colors) ax.plot(plot_xrange, plot_xrange, 'b--', linewidth=3) ax.set_xlim(plot_xrange) ax.set_ylim(plot_xrange) ax.tick_params(axis='y', which='major', labelsize=14, length=5, left=True, right=True, direction='in') ax.tick_params(axis='y', which='minor', left=True, right=True, direction='in') ax.tick_params(axis='x', labelbottom=False, which='major', length=5, direction='in', bottom=True, top=True) ax.tick_params(axis='x', which='minor', bottom=True, top=True, direction='in') minorLocator = MultipleLocator(0.05) ax.yaxis.set_minor_locator(minorLocator) minorLocator = MultipleLocator(0.02) ax.xaxis.set_minor_locator(minorLocator) # ax.set_ylabel(r'$%s$' % (specname), fontsize=16) ax.set_ylabel(fr'${name}$', fontsize=16) if calib_zrange is not None: if len(calib_zrange) == 2: ylim = ax.get_ylim() ax.plot([calib_zrange[0], calib_zrange[0]], ylim, 'k:') ax.plot([calib_zrange[1], calib_zrange[1]], ylim, 'k:') # Plot the outliers bad, = np.where(np.abs(z_phot[use] - z_spec[use]) / z_phot_e[use] > self.nsig) self.fracout = float(bad.size) / float(use.size) if bad.size > 0: # ax.plot(z_phot[use[bad]], z_spec[use[bad]], 'r*') ax.plot(z_spec[use[bad]], z_phot[use[bad]], 'r*', label=f'${self.nsig}\sigma$ Outliers ({self.fracout * 100:.2f}%)') ax.legend(loc=4, fontsize=14, title=f'{len(z_spec)} Spectroscopic ' f'Clusters') # fout_label = fr'$f_\mathrm{{out}}({self.nsig:.2f} std) ={fracout:7.4f}$' # fout_label = fr'$f_\mathrm{{out}}({specname} - {name} > {int(self.nsig):d} {name_e}) = {fracout:7.4f}$' # ax.annotate(fout_label, (plot_xrange[0] + 0.1, self.config.zrange[1]), # xycoords='data', ha='left', va='top', fontsize=16) ax.set_title(title) # Compute the bias / scatter # h, rev = esutil.stat.histogram(z_phot[use], min=0.0, max=self.config.zrange[1]-0.001, rev=True, binsize=self.binsize) h, rev = esutil.stat.histogram(z_spec[use], min=0.0, max=self.config.zrange[1]-0.001, rev=True, binsize=self.binsize) bins = np.arange(h.size) * self.binsize + 0.0 + self.binsize/2. bias = np.zeros(h.size) scatter = np.zeros_like(bias) errs = np.zeros_like(bias) gd, = np.where(h >= 3) for ind in gd: i1a = rev[rev[ind]: rev[ind + 1]] bias[ind] =
np.median(z_spec[use[i1a]] - z_phot[use[i1a]])
numpy.median
import numpy as np from numpy import random from scipy.interpolate import interp1d import pandas as pd msun = 1.9891e30 rsun = 695500000.0 G = 6.67384e-11 AU = 149597870700.0 def component_noise(tessmag, readmod=1, zodimod=1): sys = 59.785 star_mag_level, star_noise_level = np.array( [ [4.3885191347753745, 12.090570910640581], [12.023294509151416, 467.96434635620614], [17.753743760399338, 7779.603209291808], ] ).T star_pars = np.polyfit(star_mag_level, np.log10(star_noise_level), 1) zodi_mag_level, zodi_noise_level = np.array( [ [8.686356073211314, 18.112513551189224], [13.08901830282862, 688.2812796087189], [16.68801996672213, 19493.670323892282], ] ).T zodi_pars = np.polyfit(zodi_mag_level, np.log10(zodi_noise_level), 1) read_mag_level, read_noise_level = np.array( [ [8.476705490848586, 12.31474807751376], [13.019134775374376, 522.4985702369348], [17.841098169717142, 46226.777232915076], ] ).T read_pars = np.polyfit(read_mag_level, np.log10(read_noise_level), 1) c1, c2, c3, c4 = ( 10 ** (tessmag * star_pars[0] + star_pars[1]), 10 ** (tessmag * zodi_pars[0] + zodi_pars[1]), 10 ** (tessmag * read_pars[0] + read_pars[1]), sys, ) return np.sqrt( c1 ** 2 + (readmod * c2) ** 2 + (zodimod * c3) ** 2 + c4 ** 2 ) def rndm(a, b, g, size=1): """Power-law gen for pdf(x)\propto x^{g-1} for a<=x<=b""" r = np.random.random(size=size) ag, bg = a ** g, b ** g return (ag + (bg - ag) * r) ** (1.0 / g) def Fressin13_select_extrap(nselect=1): # create a pot for dressing numbers (balls) balls = np.array([]) # pot 1 contains rp=0.8-0.1.25, p=0.8-2 p1 = np.zeros(180) + 1 # pot 2 contains rp=1.25-2.0, p=0.8-2 p2 = np.zeros(170) + 2 # pot 3 contains rp=2-4, p=0.8-2 p3 = np.zeros(35) + 3 # pot 4 contains rp=4-6, p=0.8-2 p4 = np.zeros(4) + 4 # pot 5 contains rp=6-22, p=0.8-2 p5 = np.zeros(15) + 5 # pot 6 contains rp=0.8-0.1.25, p=2-3.4 p6 = np.zeros(610) + 6 # pot 7 contains rp=1.25-2.0, p=2-3.4 p7 = np.zeros(740) + 7 # pot 8 contains rp=2-4, p=2-3.4 p8 = np.zeros(180) + 8 # pot 9 contains rp=4-6, p=2-3.4 p9 = np.zeros(6) + 9 # pot 10 contains rp=6-22, p=2-3.4 p10 = np.zeros(67) + 10 # pot 11 contains rp=0.8-0.1.25, p=3.4-5.9 p11 = np.zeros(1720) + 11 # pot 12 contains rp=1.25-2.0, p=3.4-5.9 p12 = np.zeros(1490) + 12 # pot 13 contains rp=2-4, p=3.4-5.9 p13 = np.zeros(730) + 13 # pot 14 contains rp=4-6, p=3.4-5.9 p14 = np.zeros(110) + 14 # pot 15 contains rp=6-22, p=3.4-5.9 p15 = np.zeros(170) + 15 # pot 16 contains rp=0.8-0.1.25, p=5.9-10 p16 = np.zeros(2700) + 16 # pot 17 contains rp=1.25-2.0, p=5.9-10 p17 = np.zeros(2900) + 17 # pot 18 contains rp=2-4, p=5.9-10 p18 = np.zeros(1930) + 18 # pot 19 contains rp=4-6, p=5.9-10 p19 = np.zeros(91) + 19 # pot 20 contains rp=6-22, p=5.9-10 p20 = np.zeros(180) + 20 # pot 21 contains rp=0.8-0.1.25, p=10-17 p21 = np.zeros(2700) + 21 # pot 22 contains rp=1.25-2.0, p=10-17 p22 = np.zeros(4300) + 22 # pot 23 contains rp=2-4, p=10-17 p23 = np.zeros(3670) + 23 # pot 24 contains rp=4-6, p=10-17 p24 = np.zeros(290) + 24 # pot 25 contains rp=6-22, p=10-17 p25 = np.zeros(270) + 25 # pot 26 contains rp=0.8-0.1.25, p=17-29 p26 = np.zeros(2930) + 26 # pot 27 contains rp=1.25-2.0, p=17-29 p27 = np.zeros(4490) + 27 # pot 28 contains rp=2-4, p=17-29 p28 = np.zeros(5290) + 28 # pot 29 contains rp=4-6, p=17-29 p29 = np.zeros(320) + 29 # pot 30 contains rp=6-22, p=17-29 p30 = np.zeros(230) + 30 # pot 31 contains rp=0.8-0.1.25, p=29-50 p31 = np.zeros(4080) + 31 # pot 32 contains rp=1.25-2.0, p=29-50 p32 = np.zeros(5290) + 32 # pot 33 contains rp=2-4, p=29-50 p33 = np.zeros(6450) + 33 # pot 34 contains rp=4-6, p=29-50 p34 = np.zeros(490) + 34 # pot 35 contains rp=6-22, p=29-50 p35 = np.zeros(350) + 35 # pot 36 contains rp=0.8-0.1.25, p=50-85 p36 = np.zeros(3460) + 36 # pot 37 contains rp=1.25-2.0, p=50-85 p37 = np.zeros(3660) + 37 # pot 38 contains rp=2-4, p=50-85 p38 = np.zeros(5250) + 38 # pot 39 contains rp=4-6, p=50-85 p39 = np.zeros(660) + 39 # pot 40 contains rp=6-22, p=50-85 p40 = np.zeros(710) + 40 # pot 36 contains rp=0.8-0.1.25, p=50-85 p41 = np.zeros(3460) + 41 # pot 37 contains rp=1.25-2.0, p=50-85 p42 = np.zeros(3660) + 42 # pot 38 contains rp=2-4, p=50-85 p43 = np.zeros(5250) + 43 # pot 39 contains rp=4-6, p=50-85 p44 = np.zeros(660) + 44 # pot 40 contains rp=6-22, p=50-85 p45 = np.zeros(710) + 45 # pot 36 contains rp=0.8-0.1.25, p=50-85 p46 = np.zeros(3460) + 46 # pot 37 contains rp=1.25-2.0, p=50-85 p47 = np.zeros(3660) + 47 # pot 38 contains rp=2-4, p=50-85 p48 = np.zeros(5250) + 48 # pot 39 contains rp=4-6, p=50-85 p49 = np.zeros(660) + 49 # pot 40 contains rp=6-22, p=50-85 p50 = np.zeros(710) + 50 # pot 36 contains rp=0.8-0.1.25, p=50-85 p51 = np.zeros(3460) + 51 # pot 37 contains rp=1.25-2.0, p=50-85 p52 = np.zeros(3660) + 52 # pot 38 contains rp=2-4, p=50-85 p53 = np.zeros(5250) + 53 # pot 39 contains rp=4-6, p=50-85 p54 = np.zeros(660) + 54 # pot 40 contains rp=6-22, p=50-85 p55 = np.zeros(710) + 55 balls = np.r_[ balls, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p38, p39, p40, p41, p42, p43, p44, p45, p46, p47, p48, p49, p50, p51, p52, p53, p54, p55, ] # lookup for what the balls mean # outputs radlow, radhigh, Plow, Phigh ball_lookup = { 0: [0.0, 0.0, 0.0, 0.0], 1: [0.8, 1.25, 0.8, 2.0], 2: [1.25, 2.0, 0.8, 2.0], 3: [2.0, 4.0, 0.8, 2.0], 4: [4.0, 6.0, 0.8, 2.0], 5: [6.0, 22.0, 0.8, 2.0], 6: [0.8, 1.25, 2.0, 3.4], 7: [1.25, 2.0, 2.0, 3.4], 8: [2.0, 4.0, 2.0, 3.4], 9: [4.0, 6.0, 2.0, 3.4], 10: [6.0, 22.0, 2.0, 3.4], 11: [0.8, 1.25, 3.4, 5.9], 12: [1.25, 2.0, 3.4, 5.9], 13: [2.0, 4.0, 3.4, 5.9], 14: [4.0, 6.0, 3.4, 5.9], 15: [6.0, 22.0, 3.4, 5.9], 16: [0.8, 1.25, 5.9, 10.0], 17: [1.25, 2.0, 5.9, 10.0], 18: [2.0, 4.0, 5.9, 10.0], 19: [4.0, 6.0, 5.9, 10.0], 20: [6.0, 22.0, 5.9, 10.0], 21: [0.8, 1.25, 10.0, 17.0], 22: [1.25, 2.0, 10.0, 17.0], 23: [2.0, 4.0, 10.0, 17.0], 24: [4.0, 6.0, 10.0, 17.0], 25: [6.0, 22.0, 10.0, 17.0], 26: [0.8, 1.25, 17.0, 29.0], 27: [1.25, 2.0, 17.0, 29.0], 28: [2.0, 4.0, 17.0, 29.0], 29: [4.0, 6.0, 17.0, 29.0], 30: [6.0, 22.0, 17.0, 29.0], 31: [0.8, 1.25, 29.0, 50.0], 32: [1.25, 2.0, 29.0, 50.0], 33: [2.0, 4.0, 29.0, 50.0], 34: [4.0, 6.0, 29.0, 50.0], 35: [6.0, 22.0, 29.0, 50.0], 36: [0.8, 1.25, 50.0, 85.0], 37: [1.25, 2.0, 50.0, 85.0], 38: [2.0, 4.0, 50.0, 85.0], 39: [4.0, 6.0, 50.0, 85.0], 40: [6.0, 22.0, 50.0, 85.0], 41: [0.8, 1.25, 50.0, 150.0], 42: [1.25, 2.0, 50.0, 150.0], 43: [2.0, 4.0, 50.0, 150.0], 44: [4.0, 6.0, 50.0, 150.0], 45: [6.0, 22.0, 50.0, 150.0], 46: [0.8, 1.25, 150.0, 270.0], 47: [1.25, 2.0, 150.0, 270.0], 48: [2.0, 4.0, 150.0, 270.0], 49: [4.0, 6.0, 150.0, 270.0], 50: [6.0, 22.0, 150.0, 270.0], 51: [0.8, 1.25, 270.0, 480.0], 52: [1.25, 2.0, 270.0, 480.0], 53: [2.0, 4.0, 270.0, 480.0], 54: [4.0, 6.0, 270.0, 480.0], 55: [6.0, 22.0, 270.0, 480.0], } rsamps = random.choice(balls, size=nselect) radius = np.zeros(nselect) period = np.zeros(nselect) for i, samp in enumerate(rsamps): rl, rh, pl, ph = ball_lookup[samp] if samp in [5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55]: # check for giant planets # if a giant planet than draw power law radius[i] = rndm(6, 22, -1.7) else: radius[i] = random.uniform(low=rl, high=rh) period[i] = random.uniform(low=pl, high=ph) return radius, period def Dressing15_select_extrap(nselect=1): """ period bins = 0.5, 0.91, 1.66, 3.02, 5.49, 10.0, 18.2, 33.1, 60.3, 110., 200. """ # create a pot for dressing numbers (balls) balls = np.array([]) # pot 1 contains rp=0.5-1.0, p=0.5-0.91 p1 = np.zeros(400) + 1 # pot 2 contains rp=1.0-1.5, p=0.5-0.91 p2 = np.zeros(460) + 2 # pot 3 contains rp=1.5-2.0, p=0.5-0.91 p3 = np.zeros(61) + 3 # pot 4 contains rp=2.0-2.5, p=0.5-0.91 p4 = np.zeros(2) + 4 # pot 5 contains rp=2.5-3.0, p=0.5-0.91 p5 = np.zeros(0) + 5 # pot 6 contains rp=3.0-3.5, p=0.5-0.91 p6 = np.zeros(0) + 6 # pot 7 contains rp=3.5-4.0, p=0.5-0.91 p7 = np.zeros(0) + 7 # pot 1 contains rp=0.5-1.0, p=0.91, 1.66 p8 = np.zeros(1500) + 8 # pot 2 contains rp=1.0-1.5, p=0.91, 1.66 p9 = np.zeros(1400) + 9 # pot 3 contains rp=1.5-2.0, p=0.91, 1.66 p10 = np.zeros(270) + 10 # pot 4 contains rp=2.0-2.5, p=0.91, 1.66 p11 = np.zeros(9) + 11 # pot 5 contains rp=2.5-3.0, p=0.91, 1.66 p12 = np.zeros(4) + 12 # pot 6 contains rp=3.0-3.5, p=0.91, 1.66 p13 = np.zeros(6) + 13 # pot 7 contains rp=3.5-4.0, p=0.91, 1.66 p14 = np.zeros(8) + 14 # pot 1 contains rp=0.5-1.0, p=1.66, 3.02 p15 = np.zeros(4400) + 15 # pot 2 contains rp=1.0-1.5, p=1.66, 3.02 p16 = np.zeros(3500) + 16 # pot 3 contains rp=1.5-2.0, p=1.66, 3.02 p17 = np.zeros(1200) + 17 # pot 4 contains rp=2.0-2.5, p=1.66, 3.02 p18 = np.zeros(420) + 18 # pot 5 contains rp=2.5-3.0, p=1.66, 3.02 p19 = np.zeros(230) + 19 # pot 6 contains rp=3.0-3.5, p=1.66, 3.02 p20 = np.zeros(170) + 20 # pot 7 contains rp=3.5-4.0, p=1.66, 3.02 p21 = np.zeros(180) + 21 # pot 1 contains rp=0.5-1.0, p=3.02, 5.49 p22 = np.zeros(5500) + 22 # pot 2 contains rp=1.0-1.5, p=3.02, 5.49 p23 = np.zeros(5700) + 23 # pot 3 contains rp=1.5-2.0, p=3.02, 5.49 p24 = np.zeros(2500) + 24 # pot 4 contains rp=2.0-2.5, p=3.02, 5.49 p25 = np.zeros(1800) + 25 # pot 5 contains rp=2.5-3.0, p=3.02, 5.49 p26 = np.zeros(960) + 26 # pot 6 contains rp=3.0-3.5, p=3.02, 5.49 p27 = np.zeros(420) + 27 # pot 7 contains rp=3.5-4.0, p=3.02, 5.49 p28 = np.zeros(180) + 28 # pot 1 contains rp=0.5-1.0, p=5.49, 10.0 p29 = np.zeros(10000) + 29 # pot 2 contains rp=1.0-1.5, p=5.49, 10.0 p30 = np.zeros(10000) + 30 # pot 3 contains rp=1.5-2.0, p=5.49, 10.0 p31 = np.zeros(6700) + 31 # pot 4 contains rp=2.0-2.5, p=5.49, 10.0 p32 = np.zeros(6400) + 32 # pot 5 contains rp=2.5-3.0, p=5.49, 10.0 p33 = np.zeros(2700) + 33 # pot 6 contains rp=3.0-3.5, p=5.49, 10.0 p34 = np.zeros(1100) + 34 # pot 7 contains rp=3.5-4.0, p=5.49, 10.0 p35 = np.zeros(360) + 35 # pot 1 contains rp=0.5-1.0, p=10.0, 18.2 p36 = np.zeros(12000) + 36 # pot 2 contains rp=1.0-1.5, p=10.0, 18.2 p37 = np.zeros(13000) + 37 # pot 3 contains rp=1.5-2.0, p=10.0, 18.2 p38 = np.zeros(13000) + 38 # pot 4 contains rp=2.0-2.5, p=10.0, 18.2 p39 = np.zeros(9300) + 39 # pot 5 contains rp=2.5-3.0, p=10.0, 18.2 p40 = np.zeros(3800) + 40 # pot 6 contains rp=3.0-3.5, p=10.0, 18.2 p41 = np.zeros(1400) + 41 # pot 7 contains rp=3.5-4.0, p=10.0, 18.2 p42 = np.zeros(510) + 42 # pot 1 contains rp=0.5-1.0, p=18.2, 33.1 p43 = np.zeros(11000) + 43 # pot 2 contains rp=1.0-1.5, p=18.2, 33.1 p44 = np.zeros(16000) + 44 # pot 3 contains rp=1.5-2.0, p=18.2, 33.1 p45 = np.zeros(14000) + 45 # pot 4 contains rp=2.0-2.5, p=18.2, 33.1 p46 = np.zeros(10000) + 46 # pot 5 contains rp=2.5-3.0, p=18.2, 33.1 p47 = np.zeros(4600) + 47 # pot 6 contains rp=3.0-3.5, p=18.2, 33.1 p48 = np.zeros(810) + 48 # pot 7 contains rp=3.5-4.0, p=18.2, 33.1 p49 = np.zeros(320) + 49 # pot 1 contains rp=0.5-1.0, p=33.1, 60.3 p50 = np.zeros(6400) + 50 # pot 2 contains rp=1.0-1.5, p=33.1, 60.3 p51 = np.zeros(6400) + 51 # pot 3 contains rp=1.5-2.0, p=33.1, 60.3 p52 = np.zeros(12000) + 52 # pot 4 contains rp=2.0-2.5, p=33.1, 60.3 p53 = np.zeros(12000) + 53 # pot 5 contains rp=2.5-3.0, p=33.1, 60.3 p54 = np.zeros(5800) + 54 # pot 6 contains rp=3.0-3.5, p=33.1, 60.3 p55 = np.zeros(1600) + 55 # pot 7 contains rp=3.5-4.0, p=33.1, 60.3 p56 = np.zeros(210) + 56 # pot 1 contains rp=0.5-1.0, p=60.3, 110. p57 = np.zeros(10000) + 57 # pot 2 contains rp=1.0-1.5, p=60.3, 110. p58 = np.zeros(10000) + 58 # pot 3 contains rp=1.5-2.0, p=60.3, 110. p59 = np.zeros(8300) + 59 # pot 4 contains rp=2.0-2.5, p=60.3, 110. p60 = np.zeros(9600) + 60 # pot 5 contains rp=2.5-3.0, p=60.3, 110. p61 = np.zeros(4200) + 61 # pot 6 contains rp=3.0-3.5, p=60.3, 110. p62 = np.zeros(1700) + 62 # pot 7 contains rp=3.5-4.0, p=60.3, 110. p63 = np.zeros(420) + 63 # pot 1 contains rp=0.5-1.0, p=110., 200. p64 = np.zeros(19000) + 64 # pot 2 contains rp=1.0-1.5, p=110., 200. p65 = np.zeros(19000) + 65 # pot 3 contains rp=1.5-2.0, p=110., 200. p66 = np.zeros(10000) + 66 # pot 4 contains rp=2.0-2.5, p=110., 200. p67 = np.zeros(4500) + 67 # pot 5 contains rp=2.5-3.0, p=110., 200. p68 = np.zeros(1100) + 68 # pot 6 contains rp=3.0-3.5, p=110., 200. p69 = np.zeros(160) + 69 # pot 7 contains rp=3.5-4.0, p=110., 200. p70 = np.zeros(80) + 70 # pot 1 contains rp=0.5-1.0, p=110., 200. p71 = np.zeros(19000) + 71 # pot 2 contains rp=1.0-1.5, p=110., 200. p72 = np.zeros(19000) + 72 # pot 3 contains rp=1.5-2.0, p=110., 200. p73 = np.zeros(10000) + 73 # pot 4 contains rp=2.0-2.5, p=110., 200. p74 = np.zeros(4500) + 74 # pot 5 contains rp=2.5-3.0, p=110., 200. p75 = np.zeros(1100) + 75 # pot 6 contains rp=3.0-3.5, p=110., 200. p76 = np.zeros(160) + 76 # pot 7 contains rp=3.5-4.0, p=110., 200. p77 = np.zeros(80) + 77 balls = np.r_[ balls, p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13, p14, p15, p16, p17, p18, p19, p20, p21, p22, p23, p24, p25, p26, p27, p28, p29, p30, p31, p32, p33, p34, p35, p36, p37, p38, p39, p40, p41, p42, p43, p44, p45, p46, p47, p48, p49, p50, p51, p52, p53, p54, p55, p56, p57, p58, p59, p60, p61, p62, p63, p64, p65, p66, p67, p68, p69, p70, p71, p72, p73, p74, p75, p76, p77, ] # lookup for what the balls mean # outputs radlow, radhigh, Plow, Phigh # 0.5, 0.91, 1.66, 3.02, 5.49, 10.0, 18.2, 33.1, 60.3, 110., 200. ball_lookup = { 1: [0.5, 1.0, 0.5, 0.91], 2: [1.0, 1.5, 0.5, 0.91], 3: [1.5, 2.0, 0.5, 0.91], 4: [2.0, 2.5, 0.5, 0.91], 5: [2.5, 3.0, 0.5, 0.91], 6: [3.0, 3.5, 0.5, 0.91], 7: [3.5, 4.0, 0.5, 0.91], 8: [0.5, 1.0, 0.91, 1.66], 9: [1.0, 1.5, 0.91, 1.66], 10: [1.5, 2.0, 0.91, 1.66], 11: [2.0, 2.5, 0.91, 1.66], 12: [2.5, 3.0, 0.91, 1.66], 13: [3.0, 3.5, 0.91, 1.66], 14: [3.5, 4.0, 0.91, 1.66], 15: [0.5, 1.0, 1.66, 3.02], 16: [1.0, 1.5, 1.66, 3.02], 17: [1.5, 2.0, 1.66, 3.02], 18: [2.0, 2.5, 1.66, 3.02], 19: [2.5, 3.0, 1.66, 3.02], 20: [3.0, 3.5, 1.66, 3.02], 21: [3.5, 4.0, 1.66, 3.02], 22: [0.5, 1.0, 3.02, 5.49], 23: [1.0, 1.5, 3.02, 5.49], 24: [1.5, 2.0, 3.02, 5.49], 25: [2.0, 2.5, 3.02, 5.49], 26: [2.5, 3.0, 3.02, 5.49], 27: [3.0, 3.5, 3.02, 5.49], 28: [3.5, 4.0, 3.02, 5.49], 29: [0.5, 1.0, 5.49, 10.0], 30: [1.0, 1.5, 5.49, 10.0], 31: [1.5, 2.0, 5.49, 10.0], 32: [2.0, 2.5, 5.49, 10.0], 33: [2.5, 3.0, 5.49, 10.0], 34: [3.0, 3.5, 5.49, 10.0], 35: [3.5, 4.0, 5.49, 10.0], 36: [0.5, 1.0, 10.0, 18.2], 37: [1.0, 1.5, 10.0, 18.2], 38: [1.5, 2.0, 10.0, 18.2], 39: [2.0, 2.5, 10.0, 18.2], 40: [2.5, 3.0, 10.0, 18.2], 41: [3.0, 3.5, 10.0, 18.2], 42: [3.5, 4.0, 10.0, 18.2], 43: [0.5, 1.0, 18.2, 33.1], 44: [1.0, 1.5, 18.2, 33.1], 45: [1.5, 2.0, 18.2, 33.1], 46: [2.0, 2.5, 18.2, 33.1], 47: [2.5, 3.0, 18.2, 33.1], 48: [3.0, 3.5, 18.2, 33.1], 49: [3.5, 4.0, 18.2, 33.1], 50: [0.5, 1.0, 33.1, 60.3], 51: [1.0, 1.5, 33.1, 60.3], 52: [1.5, 2.0, 33.1, 60.3], 53: [2.0, 2.5, 33.1, 60.3], 54: [2.5, 3.0, 33.1, 60.3], 55: [3.0, 3.5, 33.1, 60.3], 56: [3.5, 4.0, 33.1, 60.3], 57: [0.5, 1.0, 60.3, 110.0], 58: [1.0, 1.5, 60.3, 110.0], 59: [1.5, 2.0, 60.3, 110.0], 60: [2.0, 2.5, 60.3, 110.0], 61: [2.5, 3.0, 60.3, 110.0], 62: [3.0, 3.5, 60.3, 110.0], 63: [3.5, 4.0, 60.3, 110.0], 64: [0.5, 1.0, 110.0, 200.0], 65: [1.0, 1.5, 110.0, 200.0], 66: [1.5, 2.0, 110.0, 200.0], 67: [2.0, 2.5, 110.0, 200.0], 68: [2.5, 3.0, 110.0, 200.0], 69: [3.0, 3.5, 110.0, 200.0], 70: [3.5, 4.0, 110.0, 200.0], 71: [0.5, 1.0, 200.0, 365.0], 72: [1.0, 1.5, 200.0, 365.0], 73: [1.5, 2.0, 200.0, 365.0], 74: [2.0, 2.5, 200.0, 365.0], 75: [2.5, 3.0, 200.0, 365.0], 76: [3.0, 3.5, 200.0, 365.0], 77: [3.5, 4.0, 200.0, 365.0], } rsamps = random.choice(balls, size=nselect) radius = np.zeros(nselect) period = np.zeros(nselect) for i, samp in enumerate(rsamps): rl, rh, pl, ph = ball_lookup[samp] radius[i] = random.uniform(low=rl, high=rh) period[i] = random.uniform(low=pl, high=ph) return radius, period def Petigura18_select(nselect=1): # create a pot for pedigura numbers (balls) balls =
np.array([])
numpy.array
""" Generate figures for the DeepCytometer paper for v7 of the pipeline. Partly deprecated by klf14_b6ntac_exp_0110_paper_figures_v8.py: * Some figures have been updated to have v8 of the pipeline in the paper. Code cannibalised from: * klf14_b6ntac_exp_0097_full_slide_pipeline_v7.py """ """ This file is part of Cytometer Copyright 2021 Medical Research Council SPDX-License-Identifier: Apache-2.0 Author: <NAME> <<EMAIL>> """ # script name to identify this experiment experiment_id = 'klf14_b6ntac_exp_0099_paper_figures' # cross-platform home directory from pathlib import Path home = str(Path.home()) import os import sys sys.path.extend([os.path.join(home, 'Software/cytometer')]) # json_annotation_files_dict here needs to have the same files as in # klf14_b6ntac_exp_0098_full_slide_size_analysis_v7.py # SQWAT: list of annotation files json_annotation_files_dict = {} json_annotation_files_dict['sqwat'] = [ 'KLF14-B6NTAC 36.1d PAT 99-16 C1 - 2016-02-11 11.48.31.json', 'KLF14-B6NTAC-MAT-16.2d 214-16 C1 - 2016-02-17 16.02.46.json', 'KLF14-B6NTAC-MAT-17.1a 44-16 C1 - 2016-02-01 11.14.17.json', 'KLF14-B6NTAC-MAT-17.1e 48-16 C1 - 2016-02-01 16.27.05.json', 'KLF14-B6NTAC-MAT-18.2a 57-16 C1 - 2016-02-03 09.10.17.json', 'KLF14-B6NTAC-PAT-37.3c 414-16 C1 - 2016-03-15 17.15.41.json', 'KLF14-B6NTAC-MAT-18.1d 53-16 C1 - 2016-02-02 14.32.03.json', 'KLF14-B6NTAC-MAT-17.2b 65-16 C1 - 2016-02-04 10.24.22.json', 'KLF14-B6NTAC-MAT-17.2g 69-16 C1 - 2016-02-04 16.15.05.json', 'KLF14-B6NTAC 37.1a PAT 106-16 C1 - 2016-02-12 16.21.00.json', 'KLF14-B6NTAC-36.1b PAT 97-16 C1 - 2016-02-10 17.38.06.json', # 'KLF14-B6NTAC-PAT-37.2d 411-16 C1 - 2016-03-15 12.42.26.json', 'KLF14-B6NTAC-MAT-17.2a 64-16 C1 - 2016-02-04 09.17.52.json', 'KLF14-B6NTAC-MAT-16.2f 216-16 C1 - 2016-02-18 10.28.27.json', 'KLF14-B6NTAC-MAT-17.1d 47-16 C1 - 2016-02-01 15.25.53.json', 'KLF14-B6NTAC-MAT-16.2e 215-16 C1 - 2016-02-18 09.19.26.json', 'KLF14-B6NTAC 36.1g PAT 102-16 C1 - 2016-02-11 17.20.14.json', 'KLF14-B6NTAC-37.1g PAT 112-16 C1 - 2016-02-16 13.33.09.json', 'KLF14-B6NTAC-38.1e PAT 94-16 C1 - 2016-02-10 12.13.10.json', 'KLF14-B6NTAC-MAT-18.2d 60-16 C1 - 2016-02-03 13.13.57.json', 'KLF14-B6NTAC-MAT-18.2g 63-16 C1 - 2016-02-03 16.58.52.json', 'KLF14-B6NTAC-MAT-18.2f 62-16 C1 - 2016-02-03 15.46.15.json', 'KLF14-B6NTAC-MAT-18.1b 51-16 C1 - 2016-02-02 09.59.16.json', 'KLF14-B6NTAC-MAT-19.2c 220-16 C1 - 2016-02-18 17.03.38.json', 'KLF14-B6NTAC-MAT-18.1f 55-16 C1 - 2016-02-02 16.14.30.json', 'KLF14-B6NTAC-PAT-36.3b 412-16 C1 - 2016-03-15 14.37.55.json', 'KLF14-B6NTAC-MAT-16.2c 213-16 C1 - 2016-02-17 14.51.18.json', 'KLF14-B6NTAC-PAT-37.4a 417-16 C1 - 2016-03-16 15.55.32.json', 'KLF14-B6NTAC 36.1e PAT 100-16 C1 - 2016-02-11 14.06.56.json', 'KLF14-B6NTAC-MAT-18.1c 52-16 C1 - 2016-02-02 12.26.58.json', 'KLF14-B6NTAC-MAT-18.2b 58-16 C1 - 2016-02-03 11.10.52.json', 'KLF14-B6NTAC-36.1a PAT 96-16 C1 - 2016-02-10 16.12.38.json', 'KLF14-B6NTAC-PAT-39.2d 454-16 C1 - 2016-03-17 14.33.38.json', 'KLF14-B6NTAC 36.1c PAT 98-16 C1 - 2016-02-11 10.45.00.json', 'KLF14-B6NTAC-MAT-18.2e 61-16 C1 - 2016-02-03 14.19.35.json', 'KLF14-B6NTAC-MAT-19.2g 222-16 C1 - 2016-02-25 15.13.00.json', 'KLF14-B6NTAC-PAT-37.2a 406-16 C1 - 2016-03-14 12.01.56.json', 'KLF14-B6NTAC 36.1j PAT 105-16 C1 - 2016-02-12 14.33.33.json', 'KLF14-B6NTAC-37.1b PAT 107-16 C1 - 2016-02-15 11.43.31.json', 'KLF14-B6NTAC-MAT-17.1c 46-16 C1 - 2016-02-01 14.02.04.json', 'KLF14-B6NTAC-MAT-19.2f 217-16 C1 - 2016-02-18 11.48.16.json', 'KLF14-B6NTAC-MAT-17.2d 67-16 C1 - 2016-02-04 12.34.32.json', 'KLF14-B6NTAC-MAT-18.3c 218-16 C1 - 2016-02-18 13.12.09.json', 'KLF14-B6NTAC-PAT-37.3a 413-16 C1 - 2016-03-15 15.54.12.json', 'KLF14-B6NTAC-MAT-19.1a 56-16 C1 - 2016-02-02 17.23.31.json', 'KLF14-B6NTAC-37.1h PAT 113-16 C1 - 2016-02-16 15.14.09.json', 'KLF14-B6NTAC-MAT-18.3d 224-16 C1 - 2016-02-26 11.13.53.json', 'KLF14-B6NTAC-PAT-37.2g 415-16 C1 - 2016-03-16 11.47.52.json', 'KLF14-B6NTAC-37.1e PAT 110-16 C1 - 2016-02-15 17.33.11.json', 'KLF14-B6NTAC-MAT-17.2f 68-16 C1 - 2016-02-04 15.05.54.json', 'KLF14-B6NTAC 36.1h PAT 103-16 C1 - 2016-02-12 10.15.22.json', # 'KLF14-B6NTAC-PAT-39.1h 453-16 C1 - 2016-03-17 11.38.04.json', 'KLF14-B6NTAC-MAT-16.2b 212-16 C1 - 2016-02-17 12.49.00.json', 'KLF14-B6NTAC-MAT-17.1f 49-16 C1 - 2016-02-01 17.51.46.json', 'KLF14-B6NTAC-PAT-36.3d 416-16 C1 - 2016-03-16 14.44.11.json', 'KLF14-B6NTAC-MAT-16.2a 211-16 C1 - 2016-02-17 11.46.42.json', 'KLF14-B6NTAC-38.1f PAT 95-16 C1 - 2016-02-10 14.41.44.json', 'KLF14-B6NTAC-PAT-36.3a 409-16 C1 - 2016-03-15 10.18.46.json', 'KLF14-B6NTAC-MAT-19.2b 219-16 C1 - 2016-02-18 15.41.38.json', 'KLF14-B6NTAC-MAT-17.1b 45-16 C1 - 2016-02-01 12.23.50.json', 'KLF14-B6NTAC 36.1f PAT 101-16 C1 - 2016-02-11 15.23.06.json', 'KLF14-B6NTAC-MAT-18.1e 54-16 C1 - 2016-02-02 15.26.33.json', 'KLF14-B6NTAC-37.1d PAT 109-16 C1 - 2016-02-15 15.19.08.json', 'KLF14-B6NTAC-MAT-18.2c 59-16 C1 - 2016-02-03 11.56.52.json', 'KLF14-B6NTAC-PAT-37.2f 405-16 C1 - 2016-03-14 10.58.34.json', 'KLF14-B6NTAC-PAT-37.2e 408-16 C1 - 2016-03-14 16.23.30.json', 'KLF14-B6NTAC-MAT-19.2e 221-16 C1 - 2016-02-25 14.00.14.json', # 'KLF14-B6NTAC-PAT-37.2c 407-16 C1 - 2016-03-14 14.13.54.json', # 'KLF14-B6NTAC-PAT-37.2b 410-16 C1 - 2016-03-15 11.24.20.json', 'KLF14-B6NTAC-PAT-37.4b 419-16 C1 - 2016-03-17 10.22.54.json', 'KLF14-B6NTAC-37.1c PAT 108-16 C1 - 2016-02-15 14.49.45.json', 'KLF14-B6NTAC-MAT-18.1a 50-16 C1 - 2016-02-02 09.12.41.json', 'KLF14-B6NTAC 36.1i PAT 104-16 C1 - 2016-02-12 12.14.38.json', 'KLF14-B6NTAC-PAT-37.2h 418-16 C1 - 2016-03-16 17.01.17.json', 'KLF14-B6NTAC-MAT-17.2c 66-16 C1 - 2016-02-04 11.46.39.json', 'KLF14-B6NTAC-MAT-18.3b 223-16 C2 - 2016-02-26 10.35.52.json', 'KLF14-B6NTAC-37.1f PAT 111-16 C2 - 2016-02-16 11.26 (1).json', 'KLF14-B6NTAC-PAT 37.2b 410-16 C4 - 2020-02-14 10.27.23.json', 'KLF14-B6NTAC-PAT 37.2c 407-16 C4 - 2020-02-14 10.15.57.json', # 'KLF14-B6NTAC-PAT 37.2d 411-16 C4 - 2020-02-14 10.34.10.json' ] # GWAT: list of annotation files json_annotation_files_dict['gwat'] = [ 'KLF14-B6NTAC-36.1a PAT 96-16 B1 - 2016-02-10 15.32.31.json', 'KLF14-B6NTAC-36.1b PAT 97-16 B1 - 2016-02-10 17.15.16.json', 'KLF14-B6NTAC-36.1c PAT 98-16 B1 - 2016-02-10 18.32.40.json', 'KLF14-B6NTAC 36.1d PAT 99-16 B1 - 2016-02-11 11.29.55.json', 'KLF14-B6NTAC 36.1e PAT 100-16 B1 - 2016-02-11 12.51.11.json', 'KLF14-B6NTAC 36.1f PAT 101-16 B1 - 2016-02-11 14.57.03.json', 'KLF14-B6NTAC 36.1g PAT 102-16 B1 - 2016-02-11 16.12.01.json', 'KLF14-B6NTAC 36.1h PAT 103-16 B1 - 2016-02-12 09.51.08.json', # 'KLF14-B6NTAC 36.1i PAT 104-16 B1 - 2016-02-12 11.37.56.json', 'KLF14-B6NTAC 36.1j PAT 105-16 B1 - 2016-02-12 14.08.19.json', 'KLF14-B6NTAC 37.1a PAT 106-16 B1 - 2016-02-12 15.33.02.json', 'KLF14-B6NTAC-37.1b PAT 107-16 B1 - 2016-02-15 11.25.20.json', 'KLF14-B6NTAC-37.1c PAT 108-16 B1 - 2016-02-15 12.33.10.json', 'KLF14-B6NTAC-37.1d PAT 109-16 B1 - 2016-02-15 15.03.44.json', 'KLF14-B6NTAC-37.1e PAT 110-16 B1 - 2016-02-15 16.16.06.json', 'KLF14-B6NTAC-37.1g PAT 112-16 B1 - 2016-02-16 12.02.07.json', 'KLF14-B6NTAC-37.1h PAT 113-16 B1 - 2016-02-16 14.53.02.json', 'KLF14-B6NTAC-38.1e PAT 94-16 B1 - 2016-02-10 11.35.53.json', 'KLF14-B6NTAC-38.1f PAT 95-16 B1 - 2016-02-10 14.16.55.json', 'KLF14-B6NTAC-MAT-16.2a 211-16 B1 - 2016-02-17 11.21.54.json', 'KLF14-B6NTAC-MAT-16.2b 212-16 B1 - 2016-02-17 12.33.18.json', 'KLF14-B6NTAC-MAT-16.2c 213-16 B1 - 2016-02-17 14.01.06.json', 'KLF14-B6NTAC-MAT-16.2d 214-16 B1 - 2016-02-17 15.43.57.json', 'KLF14-B6NTAC-MAT-16.2e 215-16 B1 - 2016-02-17 17.14.16.json', 'KLF14-B6NTAC-MAT-16.2f 216-16 B1 - 2016-02-18 10.05.52.json', # 'KLF14-B6NTAC-MAT-17.1a 44-16 B1 - 2016-02-01 09.19.20.json', 'KLF14-B6NTAC-MAT-17.1b 45-16 B1 - 2016-02-01 12.05.15.json', 'KLF14-B6NTAC-MAT-17.1c 46-16 B1 - 2016-02-01 13.01.30.json', 'KLF14-B6NTAC-MAT-17.1d 47-16 B1 - 2016-02-01 15.11.42.json', 'KLF14-B6NTAC-MAT-17.1e 48-16 B1 - 2016-02-01 16.01.09.json', 'KLF14-B6NTAC-MAT-17.1f 49-16 B1 - 2016-02-01 17.12.31.json', 'KLF14-B6NTAC-MAT-17.2a 64-16 B1 - 2016-02-04 08.57.34.json', 'KLF14-B6NTAC-MAT-17.2b 65-16 B1 - 2016-02-04 10.06.00.json', 'KLF14-B6NTAC-MAT-17.2c 66-16 B1 - 2016-02-04 11.14.28.json', 'KLF14-B6NTAC-MAT-17.2d 67-16 B1 - 2016-02-04 12.20.20.json', 'KLF14-B6NTAC-MAT-17.2f 68-16 B1 - 2016-02-04 14.01.40.json', 'KLF14-B6NTAC-MAT-17.2g 69-16 B1 - 2016-02-04 15.52.52.json', 'KLF14-B6NTAC-MAT-18.1a 50-16 B1 - 2016-02-02 08.49.06.json', 'KLF14-B6NTAC-MAT-18.1b 51-16 B1 - 2016-02-02 09.46.31.json', 'KLF14-B6NTAC-MAT-18.1c 52-16 B1 - 2016-02-02 11.24.31.json', 'KLF14-B6NTAC-MAT-18.1d 53-16 B1 - 2016-02-02 14.11.37.json', # 'KLF14-B6NTAC-MAT-18.1e 54-16 B1 - 2016-02-02 15.06.05.json', 'KLF14-B6NTAC-MAT-18.2a 57-16 B1 - 2016-02-03 08.54.27.json', 'KLF14-B6NTAC-MAT-18.2b 58-16 B1 - 2016-02-03 09.58.06.json', 'KLF14-B6NTAC-MAT-18.2c 59-16 B1 - 2016-02-03 11.41.32.json', 'KLF14-B6NTAC-MAT-18.2d 60-16 B1 - 2016-02-03 12.56.49.json', 'KLF14-B6NTAC-MAT-18.2e 61-16 B1 - 2016-02-03 14.02.25.json', 'KLF14-B6NTAC-MAT-18.2f 62-16 B1 - 2016-02-03 15.00.17.json', 'KLF14-B6NTAC-MAT-18.2g 63-16 B1 - 2016-02-03 16.40.37.json', 'KLF14-B6NTAC-MAT-18.3b 223-16 B1 - 2016-02-25 16.53.42.json', 'KLF14-B6NTAC-MAT-18.3c 218-16 B1 - 2016-02-18 12.51.46.json', 'KLF14-B6NTAC-MAT-18.3d 224-16 B1 - 2016-02-26 10.48.56.json', 'KLF14-B6NTAC-MAT-19.1a 56-16 B1 - 2016-02-02 16.57.46.json', 'KLF14-B6NTAC-MAT-19.2b 219-16 B1 - 2016-02-18 14.21.50.json', 'KLF14-B6NTAC-MAT-19.2c 220-16 B1 - 2016-02-18 16.40.48.json', 'KLF14-B6NTAC-MAT-19.2e 221-16 B1 - 2016-02-25 13.15.27.json', 'KLF14-B6NTAC-MAT-19.2f 217-16 B1 - 2016-02-18 11.23.22.json', 'KLF14-B6NTAC-MAT-19.2g 222-16 B1 - 2016-02-25 14.51.57.json', 'KLF14-B6NTAC-PAT-36.3a 409-16 B1 - 2016-03-15 09.24.54.json', 'KLF14-B6NTAC-PAT-36.3b 412-16 B1 - 2016-03-15 14.11.47.json', 'KLF14-B6NTAC-PAT-36.3d 416-16 B1 - 2016-03-16 14.22.04.json', # 'KLF14-B6NTAC-PAT-37.2a 406-16 B1 - 2016-03-14 11.46.47.json', 'KLF14-B6NTAC-PAT-37.2b 410-16 B1 - 2016-03-15 11.12.01.json', 'KLF14-B6NTAC-PAT-37.2c 407-16 B1 - 2016-03-14 12.54.55.json', 'KLF14-B6NTAC-PAT-37.2d 411-16 B1 - 2016-03-15 12.01.13.json', 'KLF14-B6NTAC-PAT-37.2e 408-16 B1 - 2016-03-14 16.06.43.json', 'KLF14-B6NTAC-PAT-37.2f 405-16 B1 - 2016-03-14 09.49.45.json', 'KLF14-B6NTAC-PAT-37.2g 415-16 B1 - 2016-03-16 11.04.45.json', 'KLF14-B6NTAC-PAT-37.2h 418-16 B1 - 2016-03-16 16.42.16.json', 'KLF14-B6NTAC-PAT-37.3a 413-16 B1 - 2016-03-15 15.31.26.json', 'KLF14-B6NTAC-PAT-37.3c 414-16 B1 - 2016-03-15 16.49.22.json', 'KLF14-B6NTAC-PAT-37.4a 417-16 B1 - 2016-03-16 15.25.38.json', 'KLF14-B6NTAC-PAT-37.4b 419-16 B1 - 2016-03-17 09.10.42.json', 'KLF14-B6NTAC-PAT-38.1a 90-16 B1 - 2016-02-04 17.27.42.json', 'KLF14-B6NTAC-PAT-39.1h 453-16 B1 - 2016-03-17 11.15.50.json', 'KLF14-B6NTAC-PAT-39.2d 454-16 B1 - 2016-03-17 12.16.06.json' ] ######################################################################################################################## ## Explore training/test data of different folds ######################################################################################################################## import pickle import numpy as np import pandas as pd import matplotlib.pyplot as plt os.environ['KERAS_BACKEND'] = 'tensorflow' import keras.backend as K import cytometer import cytometer.data import tensorflow as tf # limit number of GPUs os.environ['CUDA_VISIBLE_DEVICES'] = '1' LIMIT_GPU_MEMORY = False # limit GPU memory used if LIMIT_GPU_MEMORY: from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.9 set_session(tf.Session(config=config)) # specify data format as (n, row, col, channel) K.set_image_data_format('channels_last') DEBUG = False '''Directories and filenames''' # data paths klf14_root_data_dir = os.path.join(home, 'Data/cytometer_data/klf14') klf14_training_dir = os.path.join(klf14_root_data_dir, 'klf14_b6ntac_training') klf14_training_data_dir = os.path.join(klf14_root_data_dir, 'klf14_b6ntac_training') klf14_training_non_overlap_data_dir = os.path.join(klf14_root_data_dir, 'klf14_b6ntac_training_non_overlap') figures_dir = os.path.join(home, 'GoogleDrive/Research/20190727_cytometer_paper/figures') saved_models_dir = os.path.join(klf14_root_data_dir, 'saved_models') ndpi_dir = os.path.join(home, 'scan_srv2_cox/Maz Yon') metainfo_dir = os.path.join(home, 'Data/cytometer_data/klf14') saved_kfolds_filename = 'klf14_b6ntac_exp_0079_generate_kfolds.pickle' saved_extra_kfolds_filename = 'klf14_b6ntac_exp_0094_generate_extra_training_images.pickle' # original dataset used in pipelines up to v6 + extra "other" tissue images kfold_filename = os.path.join(saved_models_dir, saved_extra_kfolds_filename) with open(kfold_filename, 'rb') as f: aux = pickle.load(f) file_svg_list = aux['file_list'] idx_test_all = aux['idx_test'] idx_train_all = aux['idx_train'] # correct home directory file_svg_list = [x.replace('/users/rittscher/rcasero', home) for x in file_svg_list] file_svg_list = [x.replace('/home/rcasero', home) for x in file_svg_list] # number of images n_im = len(file_svg_list) # CSV file with metainformation of all mice metainfo_csv_file = os.path.join(metainfo_dir, 'klf14_b6ntac_meta_info.csv') metainfo = pd.read_csv(metainfo_csv_file) # HACK: If file_svg_list_extra is used above, this block will not work but you don't need it # for the loop before that calculates the rows of Table MICE with the breakdown of # cells/other/background objects by mouse # # loop the folds to get the ndpi files that correspond to testing of each fold, ndpi_files_test_list = {} for i_fold in range(len(idx_test_all)): # list of .svg files for testing file_svg_test = np.array(file_svg_list)[idx_test_all[i_fold]] # list of .ndpi files that the .svg windows came from file_ndpi_test = [os.path.basename(x).replace('.svg', '') for x in file_svg_test] file_ndpi_test = np.unique([x.split('_row')[0] for x in file_ndpi_test]) # add to the dictionary {file: fold} for file in file_ndpi_test: ndpi_files_test_list[file] = i_fold if DEBUG: # list of NDPI files for key in ndpi_files_test_list.keys(): print(key) # init dataframe to aggregate training numbers of each mouse table = pd.DataFrame(columns=['Cells', 'Other', 'Background', 'Windows', 'Windows with cells']) # loop files with hand traced contours for i, file_svg in enumerate(file_svg_list): print('file ' + str(i) + '/' + str(len(file_svg_list) - 1) + ': ' + os.path.basename(file_svg)) # read the ground truth cell contours in the SVG file. This produces a list [contour_0, ..., contour_N-1] # where each contour_i = [(X_0, Y_0), ..., (X_P-1, X_P-1)] cell_contours = cytometer.data.read_paths_from_svg_file(file_svg, tag='Cell', add_offset_from_filename=False, minimum_npoints=3) other_contours = cytometer.data.read_paths_from_svg_file(file_svg, tag='Other', add_offset_from_filename=False, minimum_npoints=3) brown_contours = cytometer.data.read_paths_from_svg_file(file_svg, tag='Brown', add_offset_from_filename=False, minimum_npoints=3) background_contours = cytometer.data.read_paths_from_svg_file(file_svg, tag='Background', add_offset_from_filename=False, minimum_npoints=3) contours = cell_contours + other_contours + brown_contours + background_contours # make a list with the type of cell each contour is classified as contour_type = [np.zeros(shape=(len(cell_contours),), dtype=np.uint8), # 0: white-adipocyte np.ones(shape=(len(other_contours),), dtype=np.uint8), # 1: other types of tissue np.ones(shape=(len(brown_contours),), dtype=np.uint8), # 1: brown cells (treated as "other" tissue) np.zeros(shape=(len(background_contours),), dtype=np.uint8)] # 0: background contour_type = np.concatenate(contour_type) print('Cells: ' + str(len(cell_contours)) + '. Other: ' + str(len(other_contours)) + '. Brown: ' + str(len(brown_contours)) + '. Background: ' + str(len(background_contours))) # create dataframe for this image df_common = cytometer.data.tag_values_with_mouse_info(metainfo=metainfo, s=os.path.basename(file_svg), values=[i,], values_tag='i', tags_to_keep=['id', 'ko_parent', 'sex']) # mouse ID as a string id = df_common['id'].values[0] sex = df_common['sex'].values[0] ko = df_common['ko_parent'].values[0] # row to add to the table df = pd.DataFrame( [(sex, ko, len(cell_contours), len(other_contours) + len(brown_contours), len(background_contours), 1, int(len(cell_contours)>0))], columns=['Sex', 'Genotype', 'Cells', 'Other', 'Background', 'Windows', 'Windows with cells'], index=[id]) if id in table.index: num_cols = ['Cells', 'Other', 'Background', 'Windows', 'Windows with cells'] table.loc[id, num_cols] = (table.loc[id, num_cols] + df.loc[id, num_cols]) else: table = table.append(df, sort=False, ignore_index=False, verify_integrity=True) # alphabetical order by mouse IDs table = table.sort_index() # total number of sampled windows print('Total number of windows = ' + str(np.sum(table['Windows']))) print('Total number of windows with cells = ' + str(np.sum(table['Windows with cells']))) # total number of "Other" and background areas print('Total number of Other areas = ' + str(np.sum(table['Other']))) print('Total number of Background areas = ' + str(np.sum(table['Background']))) # aggregate by sex and genotype idx_f = table['Sex'] == 'f' idx_m = table['Sex'] == 'm' idx_pat = table['Genotype'] == 'PAT' idx_mat = table['Genotype'] == 'MAT' print('f PAT: ' + str(np.sum(table.loc[idx_f * idx_pat, 'Cells']))) print('f MAT: ' + str(np.sum(table.loc[idx_f * idx_mat, 'Cells']))) print('m PAT: ' + str(np.sum(table.loc[idx_m * idx_pat, 'Cells']))) print('m MAT: ' + str(np.sum(table.loc[idx_m * idx_mat, 'Cells']))) # find folds that test images belong to for i_file, ndpi_file_kernel in enumerate(ndpi_files_test_list): # fold where the current .ndpi image was not used for training i_fold = ndpi_files_test_list[ndpi_file_kernel] print('File ' + str(i_file) + '/' + str(len(ndpi_files_test_list) - 1) + ': ' + ndpi_file_kernel + '. Fold = ' + str(i_fold)) # mean and std of mouse weight weight_f_mat = [22.07, 26.39, 30.65, 24.28, 27.72] weight_f_pat = [31.42, 29.25, 27.18, 23.69, 21.20] weight_m_mat = [46.19, 40.87, 40.02, 41.98, 34.52, 36.08] weight_m_pat = [36.55, 40.77, 36.98, 36.11] print('f MAT: mean = ' + str(np.mean(weight_f_mat)) + ', std = ' + str(np.std(weight_f_mat))) print('f PAT: mean = ' + str(np.mean(weight_f_pat)) + ', std = ' + str(np.std(weight_f_pat))) print('m MAT: mean = ' + str(np.mean(weight_m_mat)) + ', std = ' + str(np.std(weight_m_mat))) print('m PAT: mean = ' + str(np.mean(weight_m_pat)) + ', std = ' + str(np.std(weight_m_pat))) ######################################################################################################################## ## Statistics of hand traced white adipocytes ######################################################################################################################## import shapely import cytometer.utils import scipy rectangle_sides_ratios = [] areas = [] perimeters = [] sphericities = [] # loop files with hand traced contours for i, file_svg in enumerate(file_svg_list): print('file ' + str(i) + '/' + str(len(file_svg_list) - 1) + ': ' + os.path.basename(file_svg)) # read the ground truth cell contours in the SVG file. This produces a list [contour_0, ..., contour_N-1] # where each contour_i = [(X_0, Y_0), ..., (X_P-1, X_P-1)] cell_contours = cytometer.data.read_paths_from_svg_file(file_svg, tag='Cell', add_offset_from_filename=False, minimum_npoints=3) # compute contour properties for j, cell_contour in enumerate(cell_contours): poly_cell = shapely.geometry.Polygon(cell_contour) x, y = poly_cell.minimum_rotated_rectangle.exterior.coords.xy edge_length = (shapely.geometry.Point(x[0], y[0]).distance(shapely.geometry.Point(x[1], y[1])), shapely.geometry.Point(x[1], y[1]).distance(shapely.geometry.Point(x[2], y[2]))) rectangle_sides_ratio = np.max(edge_length) / np.min(edge_length) area = poly_cell.area perimeter = poly_cell.length inv_compactness = poly_cell.length ** 2 / (4 * np.pi * area) sphericity = cytometer.utils.sphericity(poly_cell) # if j == 58: # raise ValueError('foo: ' + str(j)) # if (inv_compactness) < 2.2 and (inv_compactness) > 2.15: # raise ValueError('foo: ' + str(j)) rectangle_sides_ratios.append(rectangle_sides_ratio) areas.append(area) perimeters.append(perimeter) sphericities.append(sphericity) # compactness measure inv_compactnesses = list(np.array(perimeters)**2 / (4 * np.pi * np.array(areas))) print('Max rectangle sides ratio: ' + str(np.max(rectangle_sides_ratios))) print('Min area: ' + str(np.min(areas))) print('Max area: ' + str(np.max(areas))) print('Min perimeter: ' + str(np.min(perimeters))) print('Max perimeter: ' + str(np.max(perimeters))) print('Min sphericity: ' + str(np.min(sphericities))) print('Max sphericity: ' + str(np.max(sphericities))) print('Min inv_compactness: ' + str(np.min(inv_compactnesses))) print('Max inv_compactness: ' + str(np.max(inv_compactnesses))) if DEBUG: plt.clf() plt.hist(rectangle_sides_ratios, bins=100) plt.clf() plt.boxplot(rectangle_sides_ratios) plt.ylabel('Rectangle sides ratio') q = scipy.stats.mstats.hdquantiles(rectangle_sides_ratios, prob=[0.98], axis=0) plt.plot([0.75, 1.25], [q, q], 'r', 'LineWidth', 2) plt.xlim(0.5, 1.5) plt.legend(['$Q_{98\%}$ = ' + '%.2f' %q]) plt.clf() plt.boxplot(areas) plt.ylabel('Pixel$^2$') q = scipy.stats.mstats.hdquantiles(areas, prob=[0.98], axis=0) plt.plot([0.75, 1.25], [q, q], 'r', 'LineWidth', 2) plt.xlim(0.5, 1.5) plt.legend(['$Q_{98\%}$ = ' + '%.0f' %q]) plt.clf() plt.boxplot(inv_compactnesses) plt.ylabel('Compatncess$^{-1}$ ratio') q = scipy.stats.mstats.hdquantiles(inv_compactnesses, prob=[0.98], axis=0) plt.plot([0.75, 1.25], [q, q], 'r', 'LineWidth', 2) plt.xlim(0.5, 1.5) plt.legend(['$Q_{98\%}$ = ' + '%.2f' %q]) plt.clf() plt.boxplot(sphericities) plt.ylabel('Sphericity') q = scipy.stats.mstats.hdquantiles(sphericities, prob=[0.02], axis=0) plt.plot([0.75, 1.25], [q, q], 'r', 'LineWidth', 2) plt.xlim(0.5, 1.5) plt.legend(['$Q_{2\%}$ = ' + '%.2f' %q]) ######################################################################################################################## ## Plots of get_next_roi_to_process(): Adaptive Block Algorithm # # Note: the quantitative comparison versus uniform tiling is provided in klf14_b6ntac_exp_0105_adaptive_blocks_analysis.py ######################################################################################################################## import pickle import cytometer.utils # Filter out INFO & WARNING messages os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # # limit number of GPUs # os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' os.environ['KERAS_BACKEND'] = 'tensorflow' import time import openslide import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Rectangle from scipy.signal import fftconvolve from cytometer.utils import rough_foreground_mask import PIL from keras import backend as K LIMIT_GPU_MEMORY = False # limit GPU memory used if LIMIT_GPU_MEMORY: import tensorflow as tf from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.95 set_session(tf.Session(config=config)) DEBUG = False SAVE_FIGS = False root_data_dir = os.path.join(home, 'Data/cytometer_data/klf14') data_dir = os.path.join(home, 'scan_srv2_cox/Maz Yon') training_dir = os.path.join(home, root_data_dir, 'klf14_b6ntac_training') figures_dir = os.path.join(home, 'GoogleDrive/Research/20190727_cytometer_paper/figures') saved_models_dir = os.path.join(root_data_dir, 'saved_models') results_dir = os.path.join(root_data_dir, 'klf14_b6ntac_results') annotations_dir = os.path.join(home, 'Data/cytometer_data/aida_data_Klf14_v7/annotations') # k-folds file saved_extra_kfolds_filename = 'klf14_b6ntac_exp_0094_generate_extra_training_images.pickle' # model names dmap_model_basename = 'klf14_b6ntac_exp_0086_cnn_dmap' contour_model_basename = 'klf14_b6ntac_exp_0091_cnn_contour_after_dmap' classifier_model_basename = 'klf14_b6ntac_exp_0095_cnn_tissue_classifier_fcn' correction_model_basename = 'klf14_b6ntac_exp_0089_cnn_segmentation_correction_overlapping_scaled_contours' # full resolution image window and network expected receptive field parameters fullres_box_size = np.array([2751, 2751]) receptive_field = np.array([131, 131]) # rough_foreground_mask() parameters downsample_factor = 8.0 dilation_size = 25 component_size_threshold = 1e6 hole_size_treshold = 8000 # contour parameters contour_downsample_factor = 0.1 bspline_k = 1 # block_split() parameters in downsampled image block_len = np.ceil((fullres_box_size - receptive_field) / downsample_factor) block_overlap = np.ceil((receptive_field - 1) / 2 / downsample_factor).astype(np.int) # segmentation parameters min_cell_area = 1500 max_cell_area = 100e3 min_mask_overlap = 0.8 phagocytosis = True min_class_prop = 0.5 correction_window_len = 401 correction_smoothing = 11 batch_size = 16 # segmentation correction parameters # load list of images, and indices for training vs. testing indices saved_kfolds_filename = os.path.join(saved_models_dir, saved_extra_kfolds_filename) with open(saved_kfolds_filename, 'rb') as f: aux = pickle.load(f) file_svg_list = aux['file_list'] idx_test_all = aux['idx_test'] idx_train_all = aux['idx_train'] # correct home directory file_svg_list = [x.replace('/users/rittscher/rcasero', home) for x in file_svg_list] file_svg_list = [x.replace('/home/rcasero', home) for x in file_svg_list] # loop the folds to get the ndpi files that correspond to testing of each fold ndpi_files_test_list = {} for i_fold in range(len(idx_test_all)): # list of .svg files for testing file_svg_test = np.array(file_svg_list)[idx_test_all[i_fold]] # list of .ndpi files that the .svg windows came from file_ndpi_test = [os.path.basename(x).replace('.svg', '') for x in file_svg_test] file_ndpi_test = np.unique([x.split('_row')[0] for x in file_ndpi_test]) # add to the dictionary {file: fold} for file in file_ndpi_test: ndpi_files_test_list[file] = i_fold # File 4/19: KLF14-B6NTAC-MAT-17.1c 46-16 C1 - 2016-02-01 14.02.04. Fold = 2 i_file = 4 # File 10/19: KLF14-B6NTAC-36.1a PAT 96-16 C1 - 2016-02-10 16.12.38. Fold = 5 i_file = 10 ndpi_file_kernel = list(ndpi_files_test_list.keys())[i_file] # for i_file, ndpi_file_kernel in enumerate(ndpi_files_test_list): # fold where the current .ndpi image was not used for training i_fold = ndpi_files_test_list[ndpi_file_kernel] print('File ' + str(i_file) + '/' + str(len(ndpi_files_test_list) - 1) + ': ' + ndpi_file_kernel + '. Fold = ' + str(i_fold)) # make full path to ndpi file ndpi_file = os.path.join(data_dir, ndpi_file_kernel + '.ndpi') contour_model_file = os.path.join(saved_models_dir, contour_model_basename + '_model_fold_' + str(i_fold) + '.h5') dmap_model_file = os.path.join(saved_models_dir, dmap_model_basename + '_model_fold_' + str(i_fold) + '.h5') classifier_model_file = os.path.join(saved_models_dir, classifier_model_basename + '_model_fold_' + str(i_fold) + '.h5') correction_model_file = os.path.join(saved_models_dir, correction_model_basename + '_model_fold_' + str(i_fold) + '.h5') # name of file to save annotations annotations_file = os.path.basename(ndpi_file) annotations_file = os.path.splitext(annotations_file)[0] annotations_file = os.path.join(annotations_dir, annotations_file + '_exp_0097.json') # name of file to save areas and contours results_file = os.path.basename(ndpi_file) results_file = os.path.splitext(results_file)[0] results_file = os.path.join(results_dir, results_file + '_exp_0097.npz') # rough segmentation of the tissue in the image lores_istissue0, im_downsampled = rough_foreground_mask(ndpi_file, downsample_factor=downsample_factor, dilation_size=dilation_size, component_size_threshold=component_size_threshold, hole_size_treshold=hole_size_treshold, return_im=True) if DEBUG: plt.clf() plt.imshow(im_downsampled) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_histology_i_file_' + str(i_file) + '.png'), bbox_inches='tight') plt.clf() plt.imshow(im_downsampled) plt.contour(lores_istissue0, colors='k') plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_rough_mask_i_file_' + str(i_file) + '.png'), bbox_inches='tight') # segmentation copy, to keep track of what's left to do lores_istissue = lores_istissue0.copy() # open full resolution histology slide im = openslide.OpenSlide(ndpi_file) # pixel size assert(im.properties['tiff.ResolutionUnit'] == 'centimeter') xres = 1e-2 / float(im.properties['tiff.XResolution']) yres = 1e-2 / float(im.properties['tiff.YResolution']) # # init empty list to store area values and contour coordinates # areas_all = [] # contours_all = [] # keep extracting histology windows until we have finished step = -1 time_0 = time_curr = time.time() while np.count_nonzero(lores_istissue) > 0: # next step (it starts from 0) step += 1 time_prev = time_curr time_curr = time.time() print('File ' + str(i_file) + '/' + str(len(ndpi_files_test_list) - 1) + ': step ' + str(step) + ': ' + str(np.count_nonzero(lores_istissue)) + '/' + str(np.count_nonzero(lores_istissue0)) + ': ' + "{0:.1f}".format(100.0 - np.count_nonzero(lores_istissue) / np.count_nonzero(lores_istissue0) * 100) + '% completed: ' + 'step time ' + "{0:.2f}".format(time_curr - time_prev) + ' s' + ', total time ' + "{0:.2f}".format(time_curr - time_0) + ' s') ## Code extracted from: ## get_next_roi_to_process() # variables for get_next_roi_to_process() seg = lores_istissue.copy() downsample_factor = downsample_factor max_window_size = fullres_box_size border = np.round((receptive_field - 1) / 2) # convert to np.array so that we can use algebraic operators max_window_size = np.array(max_window_size) border = np.array(border) # convert segmentation mask to [0, 1] seg = (seg != 0).astype('int') # approximate measures in the downsampled image (we don't round them) lores_max_window_size = max_window_size / downsample_factor lores_border = border / downsample_factor # kernels that flipped correspond to top line and left line. They need to be pre-flipped # because the convolution operation internally flips them (two flips cancel each other) kernel_top = np.zeros(shape=np.round(lores_max_window_size - 2 * lores_border).astype('int')) kernel_top[int((kernel_top.shape[0] - 1) / 2), :] = 1 kernel_left = np.zeros(shape=np.round(lores_max_window_size - 2 * lores_border).astype('int')) kernel_left[:, int((kernel_top.shape[1] - 1) / 2)] = 1 if DEBUG: plt.clf() plt.imshow(kernel_top) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_kernel_top_i_file_' + str(i_file) + '.png'), bbox_inches='tight') plt.imshow(kernel_left) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_kernel_left_i_file_' + str(i_file) + '.png'), bbox_inches='tight') seg_top = np.round(fftconvolve(seg, kernel_top, mode='same')) seg_left = np.round(fftconvolve(seg, kernel_left, mode='same')) # window detections detection_idx = np.nonzero(seg_left * seg_top) # set top-left corner of the box = top-left corner of first box detected lores_first_row = detection_idx[0][0] lores_first_col = detection_idx[1][0] # first, we look within a window with the maximum size lores_last_row = detection_idx[0][0] + lores_max_window_size[0] - 2 * lores_border[0] lores_last_col = detection_idx[1][0] + lores_max_window_size[1] - 2 * lores_border[1] # second, if the segmentation is smaller than the window, we reduce the window size window = seg[lores_first_row:int(np.round(lores_last_row)), lores_first_col:int(np.round(lores_last_col))] idx = np.any(window, axis=1) # reduce rows size last_segmented_pixel_len = np.max(np.where(idx)) lores_last_row = detection_idx[0][0] + np.min((lores_max_window_size[0] - 2 * lores_border[0], last_segmented_pixel_len)) idx = np.any(window, axis=0) # reduce cols size last_segmented_pixel_len = np.max(np.where(idx)) lores_last_col = detection_idx[1][0] + np.min((lores_max_window_size[1] - 2 * lores_border[1], last_segmented_pixel_len)) # save coordinates for plot (this is only for a figure in the paper and doesn't need to be done in the real # implementation) lores_first_col_bak = lores_first_col lores_first_row_bak = lores_first_row lores_last_col_bak = lores_last_col lores_last_row_bak = lores_last_row # add a border around the window lores_first_row = np.max([0, lores_first_row - lores_border[0]]) lores_first_col = np.max([0, lores_first_col - lores_border[1]]) lores_last_row = np.min([seg.shape[0], lores_last_row + lores_border[0]]) lores_last_col = np.min([seg.shape[1], lores_last_col + lores_border[1]]) # convert low resolution indices to high resolution first_row = np.int(np.round(lores_first_row * downsample_factor)) last_row = np.int(np.round(lores_last_row * downsample_factor)) first_col = np.int(np.round(lores_first_col * downsample_factor)) last_col = np.int(np.round(lores_last_col * downsample_factor)) # round down indices in downsampled segmentation lores_first_row = int(lores_first_row) lores_last_row = int(lores_last_row) lores_first_col = int(lores_first_col) lores_last_col = int(lores_last_col) # load window from full resolution slide tile = im.read_region(location=(first_col, first_row), level=0, size=(last_col - first_col, last_row - first_row)) tile = np.array(tile) tile = tile[:, :, 0:3] # interpolate coarse tissue segmentation to full resolution istissue_tile = lores_istissue[lores_first_row:lores_last_row, lores_first_col:lores_last_col] istissue_tile = cytometer.utils.resize(istissue_tile, size=(last_col - first_col, last_row - first_row), resample=PIL.Image.NEAREST) if DEBUG: plt.clf() plt.imshow(tile) plt.imshow(istissue_tile, alpha=0.5) plt.contour(istissue_tile, colors='k') plt.title('Yellow: Tissue. Purple: Background') plt.axis('off') # clear keras session to prevent each segmentation iteration from getting slower. Note that this forces us to # reload the models every time K.clear_session() # segment histology, split into individual objects, and apply segmentation correction labels, labels_class, todo_edge, \ window_im, window_labels, window_labels_corrected, window_labels_class, index_list, scaling_factor_list \ = cytometer.utils.segmentation_pipeline6(tile, dmap_model=dmap_model_file, contour_model=contour_model_file, correction_model=correction_model_file, classifier_model=classifier_model_file, min_cell_area=min_cell_area, mask=istissue_tile, min_mask_overlap=min_mask_overlap, phagocytosis=phagocytosis, min_class_prop=min_class_prop, correction_window_len=correction_window_len, correction_smoothing=correction_smoothing, return_bbox=True, return_bbox_coordinates='xy', batch_size=batch_size) # downsample "to do" mask so that the rough tissue segmentation can be updated lores_todo_edge = PIL.Image.fromarray(todo_edge.astype(np.uint8)) lores_todo_edge = lores_todo_edge.resize((lores_last_col - lores_first_col, lores_last_row - lores_first_row), resample=PIL.Image.NEAREST) lores_todo_edge = np.array(lores_todo_edge) # update coarse tissue mask (this is only necessary here to plot figures for the paper. In the actual code, # the coarse mask gets directly updated, without this intermediate step) seg_updated = seg.copy() seg_updated[lores_first_row:lores_last_row, lores_first_col:lores_last_col] = lores_todo_edge if DEBUG: plt.clf() fig = plt.imshow(seg, cmap='Greys') plt.contour(seg_left * seg_top > 0, colors='r') rect = Rectangle((lores_first_col, lores_first_row), lores_last_col - lores_first_col, lores_last_row - lores_first_row, alpha=0.5, facecolor='g', edgecolor='g', zorder=2) fig.axes.add_patch(rect) rect2 = Rectangle((lores_first_col_bak, lores_first_row_bak), lores_last_col_bak - lores_first_col_bak, lores_last_row_bak - lores_first_row_bak, alpha=1.0, facecolor=None, fill=False, edgecolor='g', lw=1, zorder=3) fig.axes.add_patch(rect2) plt.scatter(detection_idx[1][0], detection_idx[0][0], color='k', s=5, zorder=3) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_fftconvolve_i_file_' + str(i_file) + '_step_' + str(step) + '.png'), bbox_inches='tight') if DEBUG: plt.clf() fig = plt.imshow(seg, cmap='Greys') plt.contour(seg_left * seg_top > 0, colors='r') plt.contour(seg_updated, colors='w', zorder=4) rect = Rectangle((lores_first_col, lores_first_row), lores_last_col - lores_first_col, lores_last_row - lores_first_row, alpha=0.5, facecolor='g', edgecolor='g', zorder=2) fig.axes.add_patch(rect) rect2 = Rectangle((lores_first_col_bak, lores_first_row_bak), lores_last_col_bak - lores_first_col_bak, lores_last_row_bak - lores_first_row_bak, alpha=1.0, facecolor=None, fill=False, edgecolor='g', lw=3, zorder=3) fig.axes.add_patch(rect2) plt.scatter(detection_idx[1][0], detection_idx[0][0], color='k', s=5, zorder=3) plt.axis('off') plt.tight_layout() plt.xlim(int(lores_first_col - 50), int(lores_last_col + 50)) plt.ylim(int(lores_last_row + 50), int(lores_first_row - 50)) plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_fftconvolve_detail_i_file_' + str(i_file) + '_step_' + str(step) + '.png'), bbox_inches='tight') # update coarse tissue mask for next iteration lores_istissue[lores_first_row:lores_last_row, lores_first_col:lores_last_col] = lores_todo_edge ######################################################################################################################## ## Show examples of what each deep CNN do (code cannibilised from the "inspect" scripts of the networks) ######################################################################################################################## import pickle import warnings # other imports import numpy as np import cv2 import matplotlib.pyplot as plt os.environ['KERAS_BACKEND'] = 'tensorflow' import keras import keras.backend as K import cytometer.data import cytometer.utils import cytometer.model_checkpoint_parallel import tensorflow as tf import skimage from PIL import Image, ImageDraw import math LIMIT_GPU_MEMORY = False # limit GPU memory used if LIMIT_GPU_MEMORY: from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.9 set_session(tf.Session(config=config)) # specify data format as (n, row, col, channel) K.set_image_data_format('channels_last') DEBUG = False '''Directories and filenames''' # data paths klf14_root_data_dir = os.path.join(home, 'Data/cytometer_data/klf14') klf14_training_dir = os.path.join(klf14_root_data_dir, 'klf14_b6ntac_training') klf14_training_non_overlap_data_dir = os.path.join(klf14_root_data_dir, 'klf14_b6ntac_training_non_overlap') figures_dir = os.path.join(home, 'GoogleDrive/Research/20190727_cytometer_paper/figures') saved_models_dir = os.path.join(klf14_root_data_dir, 'saved_models') saved_kfolds_filename = 'klf14_b6ntac_exp_0079_generate_kfolds.pickle' # model names dmap_model_basename = 'klf14_b6ntac_exp_0086_cnn_dmap' contour_model_basename = 'klf14_b6ntac_exp_0091_cnn_contour_after_dmap' classifier_model_basename = 'klf14_b6ntac_exp_0095_cnn_tissue_classifier_fcn' correction_model_basename = 'klf14_b6ntac_exp_0089_cnn_segmentation_correction_overlapping_scaled_contours' '''Load folds''' # load list of images, and indices for training vs. testing indices contour_model_kfold_filename = os.path.join(saved_models_dir, saved_kfolds_filename) with open(contour_model_kfold_filename, 'rb') as f: aux = pickle.load(f) svg_file_list = aux['file_list'] idx_test_all = aux['idx_test'] idx_train_all = aux['idx_train'] if DEBUG: for i, file in enumerate(svg_file_list): print(str(i) + ': ' + file) # correct home directory svg_file_list = [x.replace('/home/rcasero', home) for x in svg_file_list] # KLF14-B6NTAC-36.1b PAT 97-16 C1 - 2016-02-10 17.38.06_row_017204_col_019444.tif (fold 5 for testing. No .svg) # KLF14-B6NTAC-36.1b PAT 97-16 C1 - 2016-02-10 17.38.06_row_009644_col_061660.tif (fold 5 for testing. No .svg) # KLF14-B6NTAC 36.1c PAT 98-16 C1 - 2016-02-11 10.45.00_row_019228_col_015060.svg (fold 7 for testing. With .svg) # find which fold the testing image belongs to np.where(['36.1c' in x for x in svg_file_list]) idx_test_all[7] # TIFF files that correspond to the SVG files (without augmentation) im_orig_file_list = [] for i, file in enumerate(svg_file_list): im_orig_file_list.append(file.replace('.svg', '.tif')) im_orig_file_list[i] = os.path.join(os.path.dirname(im_orig_file_list[i]) + '_augmented', 'im_seed_nan_' + os.path.basename(im_orig_file_list[i])) # check that files exist if not os.path.isfile(file): # warnings.warn('i = ' + str(i) + ': File does not exist: ' + os.path.basename(file)) warnings.warn('i = ' + str(i) + ': File does not exist: ' + file) if not os.path.isfile(im_orig_file_list[i]): # warnings.warn('i = ' + str(i) + ': File does not exist: ' + os.path.basename(im_orig_file_list[i])) warnings.warn('i = ' + str(i) + ': File does not exist: ' + im_orig_file_list[i]) '''Inspect model results''' # for i_fold, idx_test in enumerate(idx_test_all): i_fold = 7; idx_test = idx_test_all[i_fold] print('Fold ' + str(i_fold) + '/' + str(len(idx_test_all)-1)) '''Load data''' # split the data list into training and testing lists im_test_file_list, im_train_file_list = cytometer.data.split_list(im_orig_file_list, idx_test) # load the test data (im, dmap, mask) test_dataset, test_file_list, test_shuffle_idx = \ cytometer.data.load_datasets(im_test_file_list, prefix_from='im', prefix_to=['im', 'dmap', 'mask', 'contour'], nblocks=1, shuffle_seed=None) # fill in the little gaps in the mask kernel = np.ones((3, 3), np.uint8) for i in range(test_dataset['mask'].shape[0]): test_dataset['mask'][i, :, :, 0] = cv2.dilate(test_dataset['mask'][i, :, :, 0].astype(np.uint8), kernel=kernel, iterations=1) # load dmap model, and adjust input size saved_model_filename = os.path.join(saved_models_dir, dmap_model_basename + '_model_fold_' + str(i_fold) + '.h5') dmap_model = keras.models.load_model(saved_model_filename) if dmap_model.input_shape[1:3] != test_dataset['im'].shape[1:3]: dmap_model = cytometer.utils.change_input_size(dmap_model, batch_shape=test_dataset['im'].shape) # estimate dmaps pred_dmap = dmap_model.predict(test_dataset['im'], batch_size=4) if DEBUG: for i in range(test_dataset['im'].shape[0]): plt.clf() plt.subplot(221) plt.imshow(test_dataset['im'][i, :, :, :]) plt.axis('off') plt.subplot(222) plt.imshow(test_dataset['dmap'][i, :, :, 0]) plt.axis('off') plt.subplot(223) plt.imshow(test_dataset['mask'][i, :, :, 0]) plt.axis('off') plt.subplot(224) plt.imshow(pred_dmap[i, :, :, 0]) plt.axis('off') # KLF14-B6NTAC 36.1c PAT 98-16 C1 - 2016-02-11 10.45.00_row_019228_col_015060.svg i = 2 if DEBUG: plt.clf() plt.imshow(test_dataset['im'][i, :, :, :]) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') plt.clf() plt.imshow(test_dataset['dmap'][i, :, :, 0]) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'dmap_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') plt.clf() plt.imshow(pred_dmap[i, :, :, 0]) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'pred_dmap_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') # load dmap to contour model, and adjust input size saved_model_filename = os.path.join(saved_models_dir, contour_model_basename + '_model_fold_' + str(i_fold) + '.h5') contour_model = keras.models.load_model(saved_model_filename) if contour_model.input_shape[1:3] != pred_dmap.shape[1:3]: contour_model = cytometer.utils.change_input_size(contour_model, batch_shape=pred_dmap.shape) # estimate contours pred_contour = contour_model.predict(pred_dmap, batch_size=4) if DEBUG: plt.clf() plt.imshow(test_dataset['contour'][i, :, :, 0]) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'contour_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') plt.clf() plt.imshow(pred_contour[i, :, :, 0]) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'pred_contour_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') # load classifier model, and adjust input size saved_model_filename = os.path.join(saved_models_dir, classifier_model_basename + '_model_fold_' + str(i_fold) + '.h5') classifier_model = keras.models.load_model(saved_model_filename) if classifier_model.input_shape[1:3] != test_dataset['im'].shape[1:3]: classifier_model = cytometer.utils.change_input_size(classifier_model, batch_shape=test_dataset['im'].shape) # estimate pixel-classification pred_class = classifier_model.predict(test_dataset['im'], batch_size=4) if DEBUG: plt.clf() plt.imshow(pred_class[i, :, :, 0]) plt.contour(pred_class[i, :, :, 0] > 0.5, colors='r', linewidhts=3) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'pred_class_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') plt.clf() plt.imshow(pred_class[i, :, :, 0] > 0.5) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'pred_class_thresh_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') ## plot of classifier ground truth # print('file ' + str(i) + '/' + str(len(file_svg_list) - 1)) # init output im_array_all = [] out_class_all = [] out_mask_all = [] contour_type_all = [] file_tif = os.path.join(klf14_training_dir, os.path.basename(im_test_file_list[i])) file_tif = file_tif.replace('im_seed_nan_', '') # change file extension from .svg to .tif file_svg = file_tif.replace('.tif', '.svg') # open histology training image im = Image.open(file_tif) # make array copy im_array = np.array(im) # read the ground truth cell contours in the SVG file. This produces a list [contour_0, ..., contour_N-1] # where each contour_i = [(X_0, Y_0), ..., (X_P-1, X_P-1)] cell_contours = cytometer.data.read_paths_from_svg_file(file_svg, tag='Cell', add_offset_from_filename=False, minimum_npoints=3) other_contours = cytometer.data.read_paths_from_svg_file(file_svg, tag='Other', add_offset_from_filename=False, minimum_npoints=3) brown_contours = cytometer.data.read_paths_from_svg_file(file_svg, tag='Brown', add_offset_from_filename=False, minimum_npoints=3) background_contours = cytometer.data.read_paths_from_svg_file(file_svg, tag='Background', add_offset_from_filename=False, minimum_npoints=3) contours = cell_contours + other_contours + brown_contours + background_contours # make a list with the type of cell each contour is classified as contour_type = [np.zeros(shape=(len(cell_contours),), dtype=np.uint8), # 0: white-adipocyte np.ones(shape=(len(other_contours),), dtype=np.uint8), # 1: other types of tissue np.ones(shape=(len(brown_contours),), dtype=np.uint8), # 1: brown cells (treated as "other" tissue) np.zeros(shape=(len(background_contours),), dtype=np.uint8)] # 0: background contour_type = np.concatenate(contour_type) contour_type_all.append(contour_type) print('Cells: ' + str(len(cell_contours))) print('Other: ' + str(len(other_contours))) print('Brown: ' + str(len(brown_contours))) print('Background: ' + str(len(background_contours))) # initialise arrays for training out_class = np.zeros(shape=im_array.shape[0:2], dtype=np.uint8) out_mask = np.zeros(shape=im_array.shape[0:2], dtype=np.uint8) # loop ground truth cell contours for j, contour in enumerate(contours): plt.plot([p[0] for p in contour], [p[1] for p in contour]) plt.text(contour[0][0], contour[0][1], str(j)) if DEBUG: plt.clf() plt.subplot(121) plt.imshow(im_array) plt.plot([p[0] for p in contour], [p[1] for p in contour]) xy_c = (np.mean([p[0] for p in contour]), np.mean([p[1] for p in contour])) plt.scatter(xy_c[0], xy_c[1]) # rasterise current ground truth segmentation cell_seg_gtruth = Image.new("1", im_array.shape[0:2][::-1], "black") # I = 32-bit signed integer pixels draw = ImageDraw.Draw(cell_seg_gtruth) draw.polygon(contour, outline="white", fill="white") cell_seg_gtruth = np.array(cell_seg_gtruth, dtype=np.bool) # we are going to save the ground truth segmentation of the cell that we are going to later use in the figures if j == 106: cell_seg_gtruth_106 = cell_seg_gtruth.copy() if DEBUG: plt.subplot(122) plt.cla() plt.imshow(im_array) plt.contour(cell_seg_gtruth.astype(np.uint8)) # add current object to training output and mask out_mask[cell_seg_gtruth] = 1 out_class[cell_seg_gtruth] = contour_type[j] if DEBUG: plt.clf() aux = (1- out_class).astype(np.float32) aux = np.ma.masked_where(out_mask < 0.5, aux) plt.imshow(aux) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'class_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') ## Segmentation correction CNN # segmentation parameters min_cell_area = 1500 max_cell_area = 100e3 min_mask_overlap = 0.8 phagocytosis = True min_class_prop = 0.5 correction_window_len = 401 correction_smoothing = 11 batch_size = 2 # segment histology labels, labels_class, _ \ = cytometer.utils.segment_dmap_contour_v6(im_array, contour_model=contour_model, dmap_model=dmap_model, classifier_model=classifier_model, border_dilation=0) labels = labels[0, :, :] labels_class = labels_class[0, :, :, 0] if DEBUG: plt.clf() plt.imshow(labels) if DEBUG: plt.clf() plt.imshow(labels) plt.clf() aux = skimage.segmentation.find_boundaries(labels, mode='thick') kernel = np.ones((3, 3), np.uint8) aux = cv2.dilate(aux.astype(np.uint8), kernel=kernel, iterations=1) plt.imshow(aux) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'watershed_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') # remove labels that touch the edges, that are too small or too large, don't overlap enough with the tissue mask, # are fully surrounded by another label or are not white adipose tissue labels, todo_edge = cytometer.utils.clean_segmentation( labels, min_cell_area=min_cell_area, max_cell_area=max_cell_area, remove_edge_labels=True, mask=None, min_mask_overlap=min_mask_overlap, phagocytosis=phagocytosis, labels_class=labels_class, min_class_prop=min_class_prop) if DEBUG: plt.clf() plt.imshow(im_array) plt.contour(labels, levels=np.unique(labels), colors='k') plt.contourf(labels == 0) plt.clf() aux = skimage.segmentation.find_boundaries(labels, mode='thick') kernel = np.ones((3, 3), np.uint8) aux = cv2.dilate(aux.astype(np.uint8), kernel=kernel, iterations=1) plt.imshow(aux) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'cleaned_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') # split image into individual labels im_array = np.expand_dims(im_array, axis=0) labels = np.expand_dims(labels, axis=0) labels_class = np.expand_dims(labels_class, axis=0) cell_seg_gtruth_106 = np.expand_dims(cell_seg_gtruth_106, axis=0) window_mask = None (window_labels, window_im, window_labels_class, window_cell_seg_gtruth_106), index_list, scaling_factor_list \ = cytometer.utils.one_image_per_label_v2((labels, im_array, labels_class, cell_seg_gtruth_106.astype(np.uint8)), resize_to=(correction_window_len, correction_window_len), resample=(Image.NEAREST, Image.LINEAR, Image.NEAREST, Image.NEAREST), only_central_label=True, return_bbox=True) # load correction model saved_model_filename = os.path.join(saved_models_dir, correction_model_basename + '_model_fold_' + str(i_fold) + '.h5') correction_model = keras.models.load_model(saved_model_filename) if correction_model.input_shape[1:3] != window_im.shape[1:3]: correction_model = cytometer.utils.change_input_size(correction_model, batch_shape=window_im.shape) # multiply image by mask window_im_masked = cytometer.utils.quality_model_mask( np.expand_dims(window_labels, axis=-1), im=window_im, quality_model_type='-1_1') # process (histology * mask) to estimate which pixels are underestimated and which overestimated in the segmentation window_im_masked = correction_model.predict(window_im_masked, batch_size=batch_size) # compute the correction to be applied to the segmentation correction = (window_im[:, :, :, 0].copy() * 0).astype(np.float32) correction[window_im_masked[:, :, :, 0] >= 0.5] = 1 # the segmentation went too far correction[window_im_masked[:, :, :, 0] <= -0.5] = -1 # the segmentation fell short if DEBUG: j = 0 plt.clf() plt.imshow(correction[j, :, :]) # plt.contour(window_labels[j, ...], colors='r', linewidths=1) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'pred_correction_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') plt.clf() plt.imshow(correction[j, :, :]) plt.contour(window_labels[j, ...], colors='r', linewidths=1) plt.contour(window_cell_seg_gtruth_106[j, ...], colors='w', linewidths=1) plt.axis('off') plt.tight_layout() plt.savefig( os.path.join(figures_dir, 'pred_correction_gtruth_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') # correct segmentation (full operation) window_im = window_im.astype(np.float32) window_im /= 255.0 window_labels_corrected = cytometer.utils.correct_segmentation( im=window_im, seg=window_labels, correction_model=correction_model, model_type='-1_1', smoothing=correction_smoothing, batch_size=batch_size) if DEBUG: # plot input to and output from Correction CNN examples for j in [13, 15, 18]: plt.clf() plt.imshow(window_im[j, :, :, :]) plt.contour(window_labels[j, ...], colors='g', linewidths=4) plt.axis('off') plt.tight_layout() plt.savefig( os.path.join(figures_dir, 'correction_input_j_' + str(j) + '_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') plt.savefig( os.path.join(figures_dir, 'correction_input_j_' + str(j) + '_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.svg')), bbox_inches='tight') plt.clf() plt.imshow(window_im[j, :, :, :]) plt.contour(window_labels_corrected[j, ...], colors='r', linewidths=4) plt.axis('off') plt.tight_layout() plt.savefig( os.path.join(figures_dir, 'correction_output_j_' + str(j) + '_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') plt.savefig( os.path.join(figures_dir, 'correction_output_j_' + str(j) + '_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.svg')), bbox_inches='tight') # convert overlap labels in cropped images to contours (points), and add cropping window offset so that the # contours are in the tile-window coordinates offset_xy = np.array(index_list)[:, [2, 3]] # index_list: [i, lab, x0, y0, xend, yend] contours = cytometer.utils.labels2contours(window_labels, offset_xy=offset_xy, scaling_factor_xy=scaling_factor_list) contours_corrected = cytometer.utils.labels2contours(window_labels_corrected, offset_xy=offset_xy, scaling_factor_xy=scaling_factor_list) # crop contours that overflow the edges for j in range(len(contours_corrected)): contours_corrected[j] = np.clip(contours_corrected[j], a_min=0, a_max=1000) if DEBUG: # plot corrected overlapping contours all together ax = plt.clf() plt.imshow(labels[0, :, :] * 0) for j in range(len(contours_corrected)): plt.fill(contours_corrected[j][:, 1], contours_corrected[j][:, 0], edgecolor=(0.993248, 0.906157, 0.143936, 1.0), fill=False, lw=1.5) plt.axis('off') plt.tight_layout() plt.savefig( os.path.join(figures_dir, 'corrected_contours_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') plt.savefig( os.path.join(figures_dir, 'corrected_contours_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.svg')), bbox_inches='tight') if DEBUG: j = 0 plt.clf() plt.imshow(window_im[j, ...]) plt.contour(window_labels[j, ...], colors='r', linewidths=3) plt.text(185, 210, '+1', fontsize=30) plt.text(116, 320, '-1', fontsize=30) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'im_for_correction_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') plt.clf() plt.imshow(window_im[j, ...]) plt.contour(window_labels_corrected[j, ...], colors='g', linewidths=3) plt.text(185, 210, '+1', fontsize=30) plt.text(116, 320, '-1', fontsize=30) plt.axis('off') plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'corrected_seg_' + os.path.basename(im_test_file_list[i]).replace('.tif', '.png')), bbox_inches='tight') aux = np.array(contours[j]) plt.plot(aux[:, 0], aux[:, 1]) ######################################################################################################################## ## Check whether manual correction of pipeline results makes a difference # For this experiment, we corrected by hand on AIDA the automatic segmentations produced by the pipeline, # and compared the segmentation error. ######################################################################################################################## import matplotlib.pyplot as plt import cytometer.data from shapely.geometry import Polygon import openslide import numpy as np import scipy.stats import pandas as pd from mlxtend.evaluate import permutation_test from statsmodels.stats.multitest import multipletests import math # directories klf14_root_data_dir = os.path.join(home, 'Data/cytometer_data/klf14') annotations_dir = os.path.join(home, 'Data/cytometer_data/aida_data_Klf14_v7/annotations') ndpi_dir = os.path.join(home, 'scan_srv2_cox/Maz Yon') figures_dir = os.path.join(home, 'GoogleDrive/Research/20190727_cytometer_paper/figures') metainfo_dir = os.path.join(home, 'Data/cytometer_data/klf14') DEBUG = False depot = 'sqwat' # depot = 'gwat' permutation_sample_size = 9 # the factorial of this number is the number of repetitions in the permutation tests # list of annotation files for this depot json_annotation_files = json_annotation_files_dict[depot] # modify filenames to select the particular segmentation we want (e.g. the automatic ones, or the manually refined ones) json_pipeline_annotation_files = [x.replace('.json', '_exp_0097_corrected_monolayer_left.json') for x in json_annotation_files] json_pipeline_annotation_files = [os.path.join(annotations_dir, x) for x in json_pipeline_annotation_files] # modify filenames to select the particular segmentation we want (e.g. the automatic ones, or the manually refined ones) json_refined_annotation_files = [x.replace('.json', '_exp_0097_refined_left.json') for x in json_annotation_files] json_refined_annotation_files = [os.path.join(annotations_dir, x) for x in json_refined_annotation_files] # CSV file with metainformation of all mice metainfo_csv_file = os.path.join(metainfo_dir, 'klf14_b6ntac_meta_info.csv') metainfo = pd.read_csv(metainfo_csv_file) # make sure that in the boxplots PAT comes before MAT metainfo['sex'] = metainfo['sex'].astype(pd.api.types.CategoricalDtype(categories=['f', 'm'], ordered=True)) metainfo['ko_parent'] = metainfo['ko_parent'].astype(pd.api.types.CategoricalDtype(categories=['PAT', 'MAT'], ordered=True)) metainfo['genotype'] = metainfo['genotype'].astype(pd.api.types.CategoricalDtype(categories=['KLF14-KO:WT', 'KLF14-KO:Het'], ordered=True)) quantiles = np.linspace(0, 1, 11) quantiles = quantiles[1:-1] pipeline_area_q_all = [] refined_area_q_all = [] pipeline_area_mean_all = [] refined_area_mean_all = [] id_all = [] for i_file, (json_pipeline_annotation_file, json_refined_annotation_file) in enumerate(zip(json_pipeline_annotation_files, json_refined_annotation_files)): # create dataframe for this image df_common = cytometer.data.tag_values_with_mouse_info(metainfo=metainfo, s=os.path.basename(json_pipeline_annotation_file), values=[i_file, ], values_tag='i_file', tags_to_keep=['id', 'ko_parent', 'genotype', 'sex', 'BW', 'gWAT', 'SC']) # mouse ID as a string id = df_common['id'].values[0] # we have only refined some of the segmentations for testing if not id in ['16.2a', '16.2b', '16.2c', '16.2d', '16.2e', '16.2f', '17.1a', '17.1b', '17.1c', '17.1d', '17.1e', '17.1f', '17.2a', '17.2b', '17.2c', '17.2d', '17.2f', '17.2g', '18.1a', '18.1b', '18.1c', '18.1d']: continue print('File ' + str(i_file) + '/' + str(len(json_annotation_files)-1) + ': ') if os.path.isfile(json_pipeline_annotation_file): print('\t' + os.path.basename(json_pipeline_annotation_file)) else: print('\t' + os.path.basename(json_pipeline_annotation_file) + ' ... missing') if os.path.isfile(json_refined_annotation_file): print('\t' + os.path.basename(json_refined_annotation_file)) else: print('\t' + os.path.basename(json_refined_annotation_file) + ' ... missing') # ndpi file that corresponds to this .json file ndpi_file = json_pipeline_annotation_file.replace('_exp_0097_corrected_monolayer_left.json', '.ndpi') ndpi_file = ndpi_file.replace(annotations_dir, ndpi_dir) # open full resolution histology slide im = openslide.OpenSlide(ndpi_file) # pixel size assert (im.properties['tiff.ResolutionUnit'] == 'centimeter') xres = 1e-2 / float(im.properties['tiff.XResolution']) # m yres = 1e-2 / float(im.properties['tiff.YResolution']) # m # ko = df_common['ko_parent'].values[0] # genotype = df_common['genotype'].values[0] # sex = df_common['sex'].values[0] # bw = df_common['BW'].values[0] # gwat = df_common['gWAT'].values[0] # sc = df_common['SC'].values[0] # read contours from AIDA annotations pipeline_contours = cytometer.data.aida_get_contours(json_pipeline_annotation_file, layer_name='White adipocyte.*') refined_contours = cytometer.data.aida_get_contours(json_refined_annotation_file, layer_name='White adipocyte.*') # compute area of each contour pipeline_areas = [Polygon(c).area * xres * yres for c in pipeline_contours] # (um^2) refined_areas = [Polygon(c).area * xres * yres for c in refined_contours] # (um^2) # compute HD quantiles pipeline_area_q = scipy.stats.mstats.hdquantiles(pipeline_areas, prob=quantiles, axis=0) refined_area_q = scipy.stats.mstats.hdquantiles(refined_areas, prob=quantiles, axis=0) # compute average cell size pipeline_area_mean = np.mean(pipeline_areas) refined_area_mean = np.mean(refined_areas) pipeline_area_q_all.append(pipeline_area_q) refined_area_q_all.append(refined_area_q) pipeline_area_mean_all.append(pipeline_area_mean) refined_area_mean_all.append(refined_area_mean) id_all.append(id) print('Removed cells: %.2f' % (1 - len(refined_areas) / len(pipeline_areas))) print((np.array(pipeline_area_q) - np.array(refined_area_q)) * 1e12) if DEBUG: plt.clf() plt.plot(quantiles, pipeline_area_q * 1e12, label='Pipeline', linewidth=3) plt.plot(quantiles, refined_area_q * 1e12, label='Refined', linewidth=3) plt.tick_params(axis='both', which='major', labelsize=14) plt.xlabel('Quantiles', fontsize=14) plt.ylabel('Area ($\mu m^2$)', fontsize=14) plt.legend(fontsize=12) # convert the list of vectors into a matrix pipeline_area_q_all = np.vstack(pipeline_area_q_all) refined_area_q_all = np.vstack(refined_area_q_all) refined_area_mean_all = np.array(refined_area_mean_all) pipeline_area_mean_all = np.array(pipeline_area_mean_all) if DEBUG: plt.clf() pipeline_area_q_mean = np.mean(pipeline_area_q_all, axis=0) for i in range(pipeline_area_q_all.shape[0]): plt.plot(quantiles, 100 * (refined_area_q_all[i, :] - pipeline_area_q_all[i, :]) / pipeline_area_q_mean, label=id_all[i], linewidth=3) plt.tick_params(axis='both', which='major', labelsize=14) plt.xlabel('Quantiles', fontsize=14) plt.ylabel('Area change with refinement (%)', fontsize=14) plt.legend(fontsize=12) plt.tight_layout() if DEBUG: plt.clf() plt.boxplot(100 * (refined_area_mean_all - pipeline_area_mean_all) / pipeline_area_mean_all, labels=['Mean size']) plt.tick_params(axis='both', which='major', labelsize=14) plt.ylabel('Area change with refinement (%)', fontsize=14) plt.tight_layout() ######################################################################################################################## ## Plots of segmented full slides with quantile colourmaps ######################################################################################################################## # This is done in klf14_b6ntac_exp_0098_full_slide_size_analysis_v7 ######################################################################################################################## ## Analysis of time and blocks that took to compute full slide segmentation from the server logs ######################################################################################################################## # The results were noted down in klf14_b6ntac_exp_0097_full_slide_pipeline_v7_logs.csv. This file is in the GoogleDrive # directory with the rest of the paper. import numpy as np import pandas as pd import matplotlib.pyplot as plt import openslide import statsmodels.api as sm import scipy.stats DEBUG = False '''Directories and filenames''' # data paths klf14_root_data_dir = os.path.join(home, 'Data/cytometer_data/klf14') saved_models_dir = os.path.join(klf14_root_data_dir, 'saved_models') ndpi_dir = os.path.join(home, 'scan_srv2_cox/Maz Yon') annotations_dir = os.path.join(home, 'Data/cytometer_data/aida_data_Klf14_v7/annotations') times_dir = os.path.join(home, 'GoogleDrive/Research/20190727_cytometer_paper') # load filenames, number of blocks and time it took to segment them times_file = 'klf14_b6ntac_exp_0097_full_slide_pipeline_v7_logs.csv' times_file = os.path.join(times_dir, times_file) times_df = pd.read_csv(times_file) # read rough masks of the files in the dataframe, to measure the tissue area in each for i, file in enumerate(times_df['File']): # filename of the coarse tissue mask coarse_mask_file = os.path.join(annotations_dir, file + '_rough_mask.npz') # load coarse tissue mask with np.load(coarse_mask_file) as data: mask = data['lores_istissue0'] if DEBUG: plt.clf() plt.imshow(mask) # open full resolution histology slide to get pixel size ndpi_file = os.path.join(ndpi_dir, file + '.ndpi') im = openslide.OpenSlide(ndpi_file) # pixel size assert (im.properties['tiff.ResolutionUnit'] == 'centimeter') xres = 1e-2 / float(im.properties['tiff.XResolution']) yres = 1e-2 / float(im.properties['tiff.YResolution']) # scaling factor to get pixel size in the coarse mask k = np.array(im.dimensions) / mask.shape[::-1] # add tissue area to the dataframe. Calculations for full resolution slide, even though they # are computed from the coarse mask times_df.loc[i, 'tissue_area_pix'] = np.count_nonzero(mask) * k[0] * k[1] times_df.loc[i, 'tissue_area_mm2'] = times_df.loc[i, 'tissue_area_pix'] * xres * yres * 1e6 if DEBUG: # plot tissue area vs. time to compute plt.clf() plt.scatter(times_df['tissue_area_mm2'], times_df['Blocks Time (s)']) # fit linear model model = sm.formula.ols('Q("Blocks Time (s)") ~ tissue_area_mm2', data=times_df).fit() print(model.summary()) # Pearson coefficient rho, rho_p = scipy.stats.pearsonr(times_df['tissue_area_mm2'], times_df['Blocks Time (s)']) print('Pearson coeff = ' + str(rho)) print('p-val = ' + str(rho_p)) # tissue area print('Tissue area') print('min = ' + str(np.min(times_df['tissue_area_mm2'])) + ' mm2 = ' + str(np.min(times_df['tissue_area_pix']) * 1e-6) + ' Mpix') print('max = ' + str(np.max(times_df['tissue_area_mm2'])) + ' mm2 = ' + str(np.max(times_df['tissue_area_pix']) * 1e-6) + ' Mpix') # corresponding time to compute print('Time to compute') time_pred = model.predict(times_df['tissue_area_mm2']) print('min = ' + str(np.min(time_pred) / 3600) + ' h') print('max = ' + str(np.max(time_pred) / 3600) + ' h') tissue_area_mm2_q1 = scipy.stats.mstats.hdquantiles(times_df['tissue_area_mm2'], prob=0.25, axis=0) tissue_area_mm2_q2 = scipy.stats.mstats.hdquantiles(times_df['tissue_area_mm2'], prob=0.5, axis=0) tissue_area_mm2_q3 = scipy.stats.mstats.hdquantiles(times_df['tissue_area_mm2'], prob=0.75, axis=0) aux_df = times_df.loc[0:2, :].copy() aux_df.loc[0, 'tissue_area_mm2'] = tissue_area_mm2_q1 aux_df.loc[1, 'tissue_area_mm2'] = tissue_area_mm2_q2 aux_df.loc[2, 'tissue_area_mm2'] = tissue_area_mm2_q3 tissue_time_pred_q = model.predict(aux_df) print('q1 = ' + str(tissue_area_mm2_q1) + ' mm2 -> ' + str(tissue_time_pred_q[0] / 3600) + ' h') print('q2 = ' + str(tissue_area_mm2_q2) + ' mm2 -> ' + str(tissue_time_pred_q[1] / 3600) + ' h') print('q3 = ' + str(tissue_area_mm2_q3) + ' mm2 -> ' + str(tissue_time_pred_q[2] / 3600) + ' h') ######################################################################################################################## ## Segmentation validation ######################################################################################################################## # This is done in klf14_b6ntac_exp_0096_pipeline_v7_validation.py ######################################################################################################################## ## Time that it takes to do Auto vs. Corrected segmentation ######################################################################################################################## import numpy as np import time import pandas as pd import pickle import matplotlib.pyplot as plt import cytometer.data import cytometer.utils from PIL import Image, ImageDraw, ImageEnhance DEBUG = False # data paths klf14_root_data_dir = os.path.join(home, 'Data/cytometer_data/klf14') saved_models_dir = os.path.join(klf14_root_data_dir, 'saved_models') metainfo_dir = os.path.join(home, 'Data/cytometer_data/klf14') times_dir = os.path.join(home, 'GoogleDrive/Research/20190727_cytometer_paper') saved_kfolds_filename = 'klf14_b6ntac_exp_0079_generate_kfolds.pickle' saved_extra_kfolds_filename = 'klf14_b6ntac_exp_0094_generate_extra_training_images.pickle' # model names dmap_model_basename = 'klf14_b6ntac_exp_0086_cnn_dmap' contour_model_basename = 'klf14_b6ntac_exp_0091_cnn_contour_after_dmap' classifier_model_basename = 'klf14_b6ntac_exp_0095_cnn_tissue_classifier_fcn' correction_model_basename = 'klf14_b6ntac_exp_0089_cnn_segmentation_correction_overlapping_scaled_contours' # training window length training_window_len = 401 # segmentation parameters min_cell_area = 1500 max_cell_area = 100e3 min_mask_overlap = 0.8 phagocytosis = True # min_class_prop = 0.5 # correction_window_len = 401 # correction_smoothing = 11 batch_size = 2 '''Load folds''' # load list of images, and indices for training vs. testing indices saved_kfolds_filename = os.path.join(saved_models_dir, saved_kfolds_filename) with open(saved_kfolds_filename, 'rb') as f: aux = pickle.load(f) file_svg_list = aux['file_list'] idx_test_all = aux['idx_test'] idx_train_all = aux['idx_train'] # correct home directory file_svg_list = [x.replace('/users/rittscher/rcasero', home) for x in file_svg_list] file_svg_list = [x.replace('/home/rcasero', home) for x in file_svg_list] # number of images n_im = len(file_svg_list) # number of folds n_folds = len(idx_test_all) # CSV file with metainformation of all mice metainfo_csv_file = os.path.join(metainfo_dir, 'klf14_b6ntac_meta_info.csv') metainfo = pd.read_csv(metainfo_csv_file) # # correct home directory in file paths # file_svg_list = cytometer.data.change_home_directory(list(file_svg_list), '/home/rcasero', home, check_isfile=True) # file_svg_list = cytometer.data.change_home_directory(list(file_svg_list), '/users/rittscher/rcasero', home, check_isfile=True) ## compute and save results (you can skip this section if this has been done before, and go straight where you load the ## results) # load data computed in 0096 validation script data_filename = os.path.join(saved_models_dir, 'klf14_b6ntac_exp_0096_pipeline_v7_validation' + '_data.npz') with np.load(data_filename) as data: im_array_all = data['im_array_all'] rough_mask_all = data['rough_mask_all'] out_class_all = 1 - data['out_class_all'] # encode as 0: other, 1: WAT out_mask_all = data['out_mask_all'] # init dataframes df_manual_all = pd.DataFrame() df_auto_all = pd.DataFrame() # init time vectors time_auto = [] time_corrected = [] for i_fold in range(len(idx_test_all)): # start timer t0 = time.time() ''' Get the images/masks/classification that were not used for training of this particular fold ''' print('# Fold ' + str(i_fold) + '/' + str(len(idx_test_all) - 1)) # test and training image indices. These indices refer to file_list idx_test = idx_test_all[i_fold] # list of test files (used later for the dataframe) file_list_test = np.array(file_svg_list)[idx_test] print('## len(idx_test) = ' + str(len(idx_test))) # split data into training and testing im_array_test = im_array_all[idx_test, :, :, :] rough_mask_test = rough_mask_all[idx_test, :, :] out_class_test = out_class_all[idx_test, :, :, :] out_mask_test = out_mask_all[idx_test, :, :] ''' Segmentation into non-overlapping objects ''' # names of contour, dmap and tissue classifier models contour_model_filename = \ os.path.join(saved_models_dir, contour_model_basename + '_model_fold_' + str(i_fold) + '.h5') dmap_model_filename = \ os.path.join(saved_models_dir, dmap_model_basename + '_model_fold_' + str(i_fold) + '.h5') classifier_model_filename = \ os.path.join(saved_models_dir, classifier_model_basename + '_model_fold_' + str(i_fold) + '.h5') # segment histology pred_seg_test, pred_class_test, _ \ = cytometer.utils.segment_dmap_contour_v6(im_array_test, dmap_model=dmap_model_filename, contour_model=contour_model_filename, classifier_model=classifier_model_filename, border_dilation=0, batch_size=batch_size) if DEBUG: i = 0 plt.clf() plt.subplot(221) plt.cla() plt.imshow(im_array_test[i, :, :, :]) plt.axis('off') plt.subplot(222) plt.cla() plt.imshow(im_array_test[i, :, :, :]) plt.contourf(pred_class_test[i, :, :, 0].astype(np.float32), alpha=0.5) plt.axis('off') plt.subplot(223) plt.cla() plt.imshow(im_array_test[i, :, :, :]) plt.contour(pred_seg_test[i, :, :], levels=np.unique(pred_seg_test[i, :, :]), colors='k') plt.axis('off') plt.subplot(224) plt.cla() plt.imshow(im_array_test[i, :, :, :]) plt.contourf(pred_class_test[i, :, :, 0].astype(np.float32), alpha=0.5) plt.contour(pred_seg_test[i, :, :], levels=np.unique(pred_seg_test[i, :, :]), colors='k') plt.axis('off') plt.tight_layout() # clean segmentation: remove labels that are too small or that don't overlap enough with # the rough foreground mask pred_seg_test, _ \ = cytometer.utils.clean_segmentation(pred_seg_test, min_cell_area=min_cell_area, max_cell_area=max_cell_area, remove_edge_labels=False, mask=rough_mask_test, min_mask_overlap=min_mask_overlap, phagocytosis=phagocytosis, labels_class=None) # record processing time time_auto.append((time.time() - t0) / im_array_test.shape[0]) if DEBUG: plt.clf() aux = np.stack((rough_mask_test[i, :, :],) * 3, axis=2) plt.imshow(im_array_test[i, :, :, :] * aux) plt.contour(pred_seg_test[i, ...], levels=np.unique(pred_seg_test[i, ...]), colors='k') plt.axis('off') ''' Split image into individual labels and correct segmentation to take overlaps into account ''' (window_seg_test, window_im_test, window_class_test, window_rough_mask_test), index_list, scaling_factor_list \ = cytometer.utils.one_image_per_label_v2((pred_seg_test, im_array_test, pred_class_test[:, :, :, 0].astype(np.uint8), rough_mask_test.astype(np.uint8)), resize_to=(training_window_len, training_window_len), resample=(Image.NEAREST, Image.LINEAR, Image.NEAREST, Image.NEAREST), only_central_label=True) # correct segmentations correction_model_filename = os.path.join(saved_models_dir, correction_model_basename + '_model_fold_' + str(i_fold) + '.h5') window_seg_corrected_test = cytometer.utils.correct_segmentation(im=window_im_test, seg=window_seg_test, correction_model=correction_model_filename, model_type='-1_1', batch_size=batch_size, smoothing=11) # record processing time time_corrected.append((time.time() - t0 - time_auto[-1]) / im_array_test.shape[0]) # save for later use times_file = os.path.join(times_dir, 'klf14_b6ntac_exp_0099_time_comparison_auto_corrected.npz') np.savez(times_file, time_auto=time_auto, time_corrected=time_corrected) # compute what proportion of time the algorithm spends on the Auto segmentatiom vs. corrected segmentation time_auto_ratio = np.array(time_auto) / (np.array(time_auto) + np.array(time_corrected)) print('Time Auto ratio:') print('mean = ' + str(100 * np.mean(time_auto_ratio)) + ' %') print('std = ' + str(100 * np.std(time_auto_ratio)) + ' %') print('Ratio of total time to Auto') print('mean = ' + 'x' + str(np.mean(1 / time_auto_ratio))) print('std = ' + 'x' + str(np.std(1 / time_auto_ratio))) time_corrected_ratio = np.array(time_corrected) / (np.array(time_auto) + np.array(time_corrected)) print('Time Corrected ratio:') print('mean = ' + str(100 * np.mean(time_corrected_ratio)) + ' %') print('std = ' + str(100 * np.std(time_corrected_ratio)) + ' %') ######################################################################################################################## ## Cell populations from automatically segmented images in two depots: SQWAT and GWAT. ## This section needs to be run for each of the depots. But the results are saved, so in later sections, it's possible ## to get all the data together ### USED IN PAPER ######################################################################################################################## import matplotlib.pyplot as plt import cytometer.data from shapely.geometry import Polygon import openslide import numpy as np import scipy.stats import pandas as pd from mlxtend.evaluate import permutation_test from statsmodels.stats.multitest import multipletests import math # directories klf14_root_data_dir = os.path.join(home, 'Data/cytometer_data/klf14') annotations_dir = os.path.join(home, 'Data/cytometer_data/aida_data_Klf14_v8/annotations') ndpi_dir = os.path.join(home, 'scan_srv2_cox/Maz Yon') figures_dir = os.path.join(home, 'GoogleDrive/Research/20190727_cytometer_paper/figures') metainfo_dir = os.path.join(home, 'Data/cytometer_data/klf14') DEBUG = False permutation_sample_size = 9 # the factorial of this number is the number of repetitions in the permutation tests for depot in ['sqwat', 'gwat']: # list of annotation files for this depot json_annotation_files = json_annotation_files_dict[depot] # modify filenames to select the particular segmentation we want (e.g. the automatic ones, or the manually refined ones) json_annotation_files = [x.replace('.json', '_exp_0097_corrected.json') for x in json_annotation_files] json_annotation_files = [os.path.join(annotations_dir, x) for x in json_annotation_files] # CSV file with metainformation of all mice metainfo_csv_file = os.path.join(metainfo_dir, 'klf14_b6ntac_meta_info.csv') metainfo = pd.read_csv(metainfo_csv_file) # make sure that in the boxplots PAT comes before MAT metainfo['sex'] = metainfo['sex'].astype(pd.api.types.CategoricalDtype(categories=['f', 'm'], ordered=True)) metainfo['ko_parent'] = metainfo['ko_parent'].astype(pd.api.types.CategoricalDtype(categories=['PAT', 'MAT'], ordered=True)) metainfo['genotype'] = metainfo['genotype'].astype(pd.api.types.CategoricalDtype(categories=['KLF14-KO:WT', 'KLF14-KO:Het'], ordered=True)) quantiles = np.linspace(0, 1, 11) quantiles = quantiles[1:-1] # compute areas of the rough masks filename_rough_mask_area = os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_rough_mask_area_' + depot + '.npz') id_all = [] rough_mask_area_all = [] for i_file, json_file in enumerate(json_annotation_files): print('File ' + str(i_file) + '/' + str(len(json_annotation_files)-1) + ': ' + os.path.basename(json_file)) if not os.path.isfile(json_file): print('Missing file') # continue # open full resolution histology slide ndpi_file = json_file.replace('_exp_0097_corrected.json', '.ndpi') ndpi_file = os.path.join(ndpi_dir, os.path.basename(ndpi_file)) im = openslide.OpenSlide(ndpi_file) # pixel size assert (im.properties['tiff.ResolutionUnit'] == 'centimeter') xres = 1e-2 / float(im.properties['tiff.XResolution']) yres = 1e-2 / float(im.properties['tiff.YResolution']) # load mask rough_mask_file = json_file.replace('_exp_0097_corrected.json', '_rough_mask.npz') rough_mask_file = os.path.join(annotations_dir, rough_mask_file) if not os.path.isfile(rough_mask_file): print('No mask: ' + rough_mask_file) aux = np.load(rough_mask_file) lores_istissue0 = aux['lores_istissue0'] if DEBUG: foo = aux['im_downsampled'] foo = PIL.Image.fromarray(foo) foo = foo.resize(tuple((np.round(np.array(foo.size[0:2]) / 4)).astype(np.int))) plt.imshow(foo) plt.title(os.path.basename(ndpi_file)) # compute scaling factor between downsampled mask and original image size_orig = np.array(im.dimensions) # width, height size_downsampled = np.array(lores_istissue0.shape)[::-1] # width, height downsample_factor = size_orig / size_downsampled # width, height # create dataframe for this image rough_mask_area = np.count_nonzero(lores_istissue0) * (xres * downsample_factor[0]) * (yres * downsample_factor[1]) # m^2 df_common = cytometer.data.tag_values_with_mouse_info(metainfo=metainfo, s=os.path.basename(json_file), values=[rough_mask_area,], values_tag='SC_rough_mask_area', tags_to_keep=['id', 'ko_parent', 'sex']) # mouse ID as a string id = df_common['id'].values[0] # correct area because most slides contain two slices, but some don't if depot == 'sqwat' and not (id in ['16.2d', '17.1e', '17.2g', '16.2e', '18.1f', '37.4a', '37.2e']): # two slices in the slide, so slice area is approx. one half rough_mask_area /= 2 elif depot == 'gwat' and not (id in ['36.1d', '16.2a', '16.2b', '16.2c', '16.2d', '16.2e', '17.1b', '17.1d', '17.1e', '17.1f', '17.2c', '17.2d', '17.2f', '17.2g', '18.1b', '18.1c', '18.1d', '18.2a', '18.2c', '18.2d', '18.2f', '18.2g', '18.3c', '19.1a', '19.2e', '19.2f', '19.2g', '36.3d', '37.2e', '37.2f', '37.2g', '37.2h', '37.3a', '37.4a', '37.4b', '39.2d']): # two slices in the slide, so slice area is approx. one half rough_mask_area /= 2 # add to output id_all.append(id) rough_mask_area_all.append(rough_mask_area) # save results np.savez_compressed(filename_rough_mask_area, id_all=id_all, rough_mask_area_all=rough_mask_area_all) # load or compute area quantiles filename_quantiles = os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_area_quantiles_' + depot + '.npz') if os.path.isfile(filename_quantiles): with np.load(filename_quantiles) as aux: area_mean_all = aux['area_mean_all'] area_q_all = aux['area_q_all'] id_all = aux['id_all'] ko_all = aux['ko_all'] genotype_all = aux['genotype_all'] sex_all = aux['sex_all'] else: area_mean_all = [] area_q_all = [] id_all = [] ko_all = [] genotype_all = [] sex_all = [] bw_all = [] gwat_all = [] sc_all = [] for i_file, json_file in enumerate(json_annotation_files): print('File ' + str(i_file) + '/' + str(len(json_annotation_files)-1) + ': ' + os.path.basename(json_file)) if not os.path.isfile(json_file): print('Missing file') continue # ndpi file that corresponds to this .json file ndpi_file = json_file.replace('_exp_0097_corrected.json', '.ndpi') ndpi_file = ndpi_file.replace(annotations_dir, ndpi_dir) # open full resolution histology slide im = openslide.OpenSlide(ndpi_file) # pixel size assert (im.properties['tiff.ResolutionUnit'] == 'centimeter') xres = 1e-2 / float(im.properties['tiff.XResolution']) # m yres = 1e-2 / float(im.properties['tiff.YResolution']) # m # create dataframe for this image df_common = cytometer.data.tag_values_with_mouse_info(metainfo=metainfo, s=os.path.basename(json_file), values=[i_file,], values_tag='i_file', tags_to_keep=['id', 'ko_parent', 'genotype', 'sex', 'BW', 'gWAT', 'SC']) # mouse ID as a string id = df_common['id'].values[0] ko = df_common['ko_parent'].values[0] genotype = df_common['genotype'].values[0] sex = df_common['sex'].values[0] bw = df_common['BW'].values[0] gwat = df_common['gWAT'].values[0] sc = df_common['SC'].values[0] # read contours from AIDA annotations contours = cytometer.data.aida_get_contours(os.path.join(annotations_dir, json_file), layer_name='White adipocyte.*') # compute area of each contour areas = [Polygon(c).area * xres * yres for c in contours] # (um^2) # compute average area of all contours area_mean = np.mean(areas) # compute HD quantiles area_q = scipy.stats.mstats.hdquantiles(areas, prob=quantiles, axis=0) # append to totals area_mean_all.append(area_mean) area_q_all.append(area_q) id_all.append(id) ko_all.append(ko) genotype_all.append(genotype) sex_all.append(sex) bw_all.append(bw) gwat_all.append(gwat) sc_all.append(sc) # reorder from largest to smallest final area value area_mean_all = np.array(area_mean_all) area_q_all = np.array(area_q_all) id_all = np.array(id_all) ko_all = np.array(ko_all) genotype_all = np.array(genotype_all) sex_all = np.array(sex_all) bw_all = np.array(bw_all) gwat_all = np.array(gwat_all) sc_all = np.array(sc_all) idx = np.argsort(area_q_all[:, -1]) idx = idx[::-1] # sort from larger to smaller area_mean_all = area_mean_all[idx] area_q_all = area_q_all[idx, :] id_all = id_all[idx] ko_all = ko_all[idx] genotype_all = genotype_all[idx] sex_all = sex_all[idx] bw_all = bw_all[idx] gwat_all = gwat_all[idx] sc_all = sc_all[idx] np.savez_compressed(filename_quantiles, area_mean_all=area_mean_all, area_q_all=area_q_all, id_all=id_all, ko_all=ko_all, genotype_all=genotype_all, sex_all=sex_all, bw_all=bw_all, gwat_all=gwat_all, sc_all=sc_all) if DEBUG: plt.clf() for i in range(len(area_q_all)): # plot if ko_all[i] == 'PAT': color = 'g' elif ko_all[i] == 'MAT': color = 'r' else: raise ValueError('Unknown ko value: ' + ko) if sex_all[i] == 'f': plt.subplot(121) plt.plot(quantiles, area_q_all[i] * 1e12 * 1e-3, color=color) elif sex_all[i] == 'm': plt.subplot(122) plt.plot(quantiles, area_q_all[i] * 1e12 * 1e-3, color=color) else: raise ValueError('Unknown sex value: ' + sex) legend_f = [i + ' ' + j.replace('KLF14-KO:', '') for i, j in zip(id_all[sex_all == 'f'], genotype_all[sex_all == 'f'])] legend_m = [i + ' ' + j.replace('KLF14-KO:', '') for i, j in zip(id_all[sex_all == 'm'], genotype_all[sex_all == 'm'])] plt.subplot(121) plt.title('Female', fontsize=14) plt.tick_params(labelsize=14) plt.xlabel('Quantile', fontsize=14) plt.ylabel('Area ($10^{3}\ \mu m^2$)', fontsize=14) plt.legend(legend_f, fontsize=12) plt.subplot(122) plt.title('Male', fontsize=14) plt.tick_params(labelsize=14) plt.xlabel('Quantile', fontsize=14) plt.legend(legend_m, fontsize=12) # DEBUG: # area_q_all = np.vstack((area_q_all, area_q_all)) # id_all = np.hstack((id_all, id_all)) # ko_all = np.hstack((ko_all, ko_all)) # genotype_all = np.hstack((genotype_all, genotype_all)) # sex_all = np.hstack((sex_all, sex_all)) # compute variability of area values for each quantile area_q_f_pat = area_q_all[(sex_all == 'f') * (ko_all == 'PAT'), :] area_q_m_pat = area_q_all[(sex_all == 'm') * (ko_all == 'PAT'), :] area_q_f_mat = area_q_all[(sex_all == 'f') * (ko_all == 'MAT'), :] area_q_m_mat = area_q_all[(sex_all == 'm') * (ko_all == 'MAT'), :] area_interval_f_pat = scipy.stats.mstats.hdquantiles(area_q_f_pat, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_interval_m_pat = scipy.stats.mstats.hdquantiles(area_q_m_pat, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_interval_f_mat = scipy.stats.mstats.hdquantiles(area_q_f_mat, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_interval_m_mat = scipy.stats.mstats.hdquantiles(area_q_m_mat, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_q_f_pat_wt = area_q_all[(sex_all == 'f') * (ko_all == 'PAT') * (genotype_all == 'KLF14-KO:WT'), :] area_q_m_pat_wt = area_q_all[(sex_all == 'm') * (ko_all == 'PAT') * (genotype_all == 'KLF14-KO:WT'), :] area_q_f_mat_wt = area_q_all[(sex_all == 'f') * (ko_all == 'MAT') * (genotype_all == 'KLF14-KO:WT'), :] area_q_m_mat_wt = area_q_all[(sex_all == 'm') * (ko_all == 'MAT') * (genotype_all == 'KLF14-KO:WT'), :] area_interval_f_pat_wt = scipy.stats.mstats.hdquantiles(area_q_f_pat_wt, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_interval_m_pat_wt = scipy.stats.mstats.hdquantiles(area_q_m_pat_wt, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_interval_f_mat_wt = scipy.stats.mstats.hdquantiles(area_q_f_mat_wt, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_interval_m_mat_wt = scipy.stats.mstats.hdquantiles(area_q_m_mat_wt, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_q_f_pat_het = area_q_all[(sex_all == 'f') * (ko_all == 'PAT') * (genotype_all == 'KLF14-KO:Het'), :] area_q_m_pat_het = area_q_all[(sex_all == 'm') * (ko_all == 'PAT') * (genotype_all == 'KLF14-KO:Het'), :] area_q_f_mat_het = area_q_all[(sex_all == 'f') * (ko_all == 'MAT') * (genotype_all == 'KLF14-KO:Het'), :] area_q_m_mat_het = area_q_all[(sex_all == 'm') * (ko_all == 'MAT') * (genotype_all == 'KLF14-KO:Het'), :] area_interval_f_pat_het = scipy.stats.mstats.hdquantiles(area_q_f_pat_het, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_interval_m_pat_het = scipy.stats.mstats.hdquantiles(area_q_m_pat_het, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_interval_f_mat_het = scipy.stats.mstats.hdquantiles(area_q_f_mat_het, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) area_interval_m_mat_het = scipy.stats.mstats.hdquantiles(area_q_m_mat_het, prob=[0.025, 0.25, 0.5, 0.75, 0.975], axis=0) n_f_pat_wt = area_q_f_pat_wt.shape[0] n_m_pat_wt = area_q_m_pat_wt.shape[0] n_f_mat_wt = area_q_f_mat_wt.shape[0] n_m_mat_wt = area_q_m_mat_wt.shape[0] n_f_pat_het = area_q_f_pat_het.shape[0] n_m_pat_het = area_q_m_pat_het.shape[0] n_f_mat_het = area_q_f_mat_het.shape[0] n_m_mat_het = area_q_m_mat_het.shape[0] if DEBUG: # plots of female median ECDF^-1 with quartile shaded area plt.clf() plt.subplot(121) plt.plot(quantiles, area_interval_f_pat_wt[2, :] * 1e12 * 1e-3, 'C0', linewidth=3, label=str(n_f_pat_wt) + ' WT') plt.fill_between(quantiles, area_interval_f_pat_wt[1, :] * 1e12 * 1e-3, area_interval_f_pat_wt[3, :] * 1e12 * 1e-3, facecolor='C0', alpha=0.3) plt.plot(quantiles, area_interval_f_pat_het[2, :] * 1e12 * 1e-3, 'k', linewidth=3, label=str(n_f_pat_het) + ' Het') plt.fill_between(quantiles, area_interval_f_pat_het[1, :] * 1e12 * 1e-3, area_interval_f_pat_het[3, :] * 1e12 * 1e-3, facecolor='k', alpha=0.3) plt.title('Female PAT', fontsize=14) plt.xlabel('Quantile', fontsize=14) plt.ylabel('White adipocyte area ($\cdot 10^3 \mu$m$^2$)', fontsize=14) plt.tick_params(axis='both', which='major', labelsize=14) plt.legend(loc='upper left', prop={'size': 12}) plt.ylim(0, 15) plt.tight_layout() plt.subplot(122) plt.plot(quantiles, area_interval_f_mat_wt[2, :] * 1e12 * 1e-3, 'C0', linewidth=3, label=str(n_f_mat_wt) + ' WT') plt.fill_between(quantiles, area_interval_f_mat_wt[1, :] * 1e12 * 1e-3, area_interval_f_mat_wt[3, :] * 1e12 * 1e-3, facecolor='C0', alpha=0.3) plt.plot(quantiles, area_interval_f_mat_het[2, :] * 1e12 * 1e-3, 'k', linewidth=3, label=str(n_f_mat_het) + ' Het') plt.fill_between(quantiles, area_interval_f_mat_het[1, :] * 1e12 * 1e-3, area_interval_f_mat_het[3, :] * 1e12 * 1e-3, facecolor='k', alpha=0.3) plt.title('Female MAT', fontsize=14) plt.xlabel('Quantile', fontsize=14) plt.tick_params(axis='both', which='major', labelsize=14) plt.legend(loc='upper left', prop={'size': 12}) plt.ylim(0, 15) plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'exp_0099_' + depot + '_cell_area_female_pat_vs_mat_bands.svg')) plt.savefig(os.path.join(figures_dir, 'exp_0099_' + depot + '_cell_area_female_pat_vs_mat_bands.png')) if DEBUG: # plots of male median ECDF^-1 with quartile shaded area plt.clf() plt.subplot(121) plt.plot(quantiles, area_interval_m_pat_wt[2, :] * 1e12 * 1e-3, 'C0', linewidth=3, label=str(n_m_pat_wt) + ' WT') plt.fill_between(quantiles, area_interval_m_pat_wt[1, :] * 1e12 * 1e-3, area_interval_m_pat_wt[3, :] * 1e12 * 1e-3, facecolor='C0', alpha=0.3) plt.plot(quantiles, area_interval_m_pat_het[2, :] * 1e12 * 1e-3, 'k', linewidth=3, label=str(n_m_pat_het) + ' Het') plt.fill_between(quantiles, area_interval_m_pat_het[1, :] * 1e12 * 1e-3, area_interval_m_pat_het[3, :] * 1e12 * 1e-3, facecolor='k', alpha=0.3) plt.title('Male PAT', fontsize=14) plt.xlabel('Quantile', fontsize=14) plt.ylabel('White adipocyte area ($\cdot 10^3 \mu$m$^2$)', fontsize=14) plt.tick_params(axis='both', which='major', labelsize=14) plt.legend(loc='upper left', prop={'size': 12}) plt.ylim(0, 16) plt.tight_layout() plt.subplot(122) plt.plot(quantiles, area_interval_m_mat_wt[2, :] * 1e12 * 1e-3, 'C0', linewidth=3, label=str(n_m_mat_wt) + ' WT') plt.fill_between(quantiles, area_interval_m_mat_wt[1, :] * 1e12 * 1e-3, area_interval_m_mat_wt[3, :] * 1e12 * 1e-3, facecolor='C0', alpha=0.3) plt.plot(quantiles, area_interval_m_mat_het[2, :] * 1e12 * 1e-3, 'k', linewidth=3, label=str(n_m_mat_het) + ' Het') plt.fill_between(quantiles, area_interval_m_mat_het[1, :] * 1e12 * 1e-3, area_interval_m_mat_het[3, :] * 1e12 * 1e-3, facecolor='k', alpha=0.3) plt.title('Male MAT', fontsize=14) plt.xlabel('Quantile', fontsize=14) plt.tick_params(axis='both', which='major', labelsize=14) plt.legend(loc='upper left', prop={'size': 12}) plt.ylim(0, 16) plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'exp_0099_' + depot + '_cell_area_male_pat_vs_mat_bands.svg')) plt.savefig(os.path.join(figures_dir, 'exp_0099_' + depot + '_cell_area_male_pat_vs_mat_bands.png')) filename_pvals = os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_pvals_' + depot + '.npz') if os.path.isfile(filename_pvals): with np.load(filename_pvals) as aux: pval_perc_f_pat2mat = aux['pval_perc_f_pat2mat'] pval_perc_m_pat2mat = aux['pval_perc_m_pat2mat'] pval_perc_f_pat_wt2het = aux['pval_perc_f_pat_wt2het'] pval_perc_f_mat_wt2het = aux['pval_perc_f_mat_wt2het'] pval_perc_m_pat_wt2het = aux['pval_perc_m_pat_wt2het'] pval_perc_m_mat_wt2het = aux['pval_perc_m_mat_wt2het'] permutation_sample_size = aux['permutation_sample_size'] else: # test whether the median values are different enough between two groups func = lambda x, y: np.abs(scipy.stats.mstats.hdquantiles(x, prob=0.5, axis=0).data[0] - scipy.stats.mstats.hdquantiles(y, prob=0.5, axis=0).data[0]) # func = lambda x, y: np.abs(np.mean(x) - np.mean(y)) ## PAT vs. MAT # test whether the median values are different enough between PAT vs. MAT pval_perc_f_pat2mat = np.zeros(shape=(len(quantiles),)) for i, q in enumerate(quantiles): pval_perc_f_pat2mat[i] = permutation_test(x=area_q_f_pat[:, i], y=area_q_f_mat[:, i], func=func, seed=None, method='approximate', num_rounds=math.factorial(permutation_sample_size)) pval_perc_m_pat2mat = np.zeros(shape=(len(quantiles),)) for i, q in enumerate(quantiles): pval_perc_m_pat2mat[i] = permutation_test(x=area_q_m_pat[:, i], y=area_q_m_mat[:, i], func=func, seed=None, method='approximate', num_rounds=math.factorial(permutation_sample_size)) ## WT vs. Het # PAT Females pval_perc_f_pat_wt2het = np.zeros(shape=(len(quantiles),)) for i, q in enumerate(quantiles): pval_perc_f_pat_wt2het[i] = permutation_test(x=area_q_f_pat_wt[:, i], y=area_q_f_pat_het[:, i], func=func, seed=None, method='approximate', num_rounds=math.factorial(permutation_sample_size)) # MAT Females pval_perc_f_mat_wt2het = np.zeros(shape=(len(quantiles),)) for i, q in enumerate(quantiles): pval_perc_f_mat_wt2het[i] = permutation_test(x=area_q_f_mat_wt[:, i], y=area_q_f_mat_het[:, i], func=func, seed=None, method='approximate', num_rounds=math.factorial(permutation_sample_size)) # PAT Males pval_perc_m_pat_wt2het = np.zeros(shape=(len(quantiles),)) for i, q in enumerate(quantiles): pval_perc_m_pat_wt2het[i] = permutation_test(x=area_q_m_pat_wt[:, i], y=area_q_m_pat_het[:, i], func=func, seed=None, method='approximate', num_rounds=math.factorial(permutation_sample_size)) # MAT Males pval_perc_m_mat_wt2het = np.zeros(shape=(len(quantiles),)) for i, q in enumerate(quantiles): pval_perc_m_mat_wt2het[i] = permutation_test(x=area_q_m_mat_wt[:, i], y=area_q_m_mat_het[:, i], func=func, seed=None, method='approximate', num_rounds=math.factorial(permutation_sample_size)) np.savez_compressed(filename_pvals, permutation_sample_size=permutation_sample_size, pval_perc_f_pat2mat=pval_perc_f_pat2mat, pval_perc_m_pat2mat=pval_perc_m_pat2mat, pval_perc_f_pat_wt2het=pval_perc_f_pat_wt2het, pval_perc_f_mat_wt2het=pval_perc_f_mat_wt2het, pval_perc_m_pat_wt2het=pval_perc_m_pat_wt2het, pval_perc_m_mat_wt2het=pval_perc_m_mat_wt2het) # data has been loaded or computed np.set_printoptions(precision=2) print('PAT vs. MAT before multitest correction') print('Female:') print(pval_perc_f_pat2mat) print('Male:') print(pval_perc_m_pat2mat) np.set_printoptions(precision=8) # multitest correction using Benjamini-Hochberg _, pval_perc_f_pat2mat, _, _ = multipletests(pval_perc_f_pat2mat, method='fdr_bh', alpha=0.05, returnsorted=False) _, pval_perc_m_pat2mat, _, _ = multipletests(pval_perc_m_pat2mat, method='fdr_bh', alpha=0.05, returnsorted=False) np.set_printoptions(precision=2) print('PAT vs. MAT with multitest correction') print('Female:') print(pval_perc_f_pat2mat) print('Male:') print(pval_perc_m_pat2mat) np.set_printoptions(precision=8) np.set_printoptions(precision=3) print('WT vs. Het before multitest correction') print('Female:') print(pval_perc_f_pat_wt2het) print(pval_perc_f_mat_wt2het) print('Male:') print(pval_perc_m_pat_wt2het) print(pval_perc_m_mat_wt2het) np.set_printoptions(precision=8) # multitest correction using Benjamini-Hochberg _, pval_perc_f_pat_wt2het, _, _ = multipletests(pval_perc_f_pat_wt2het, method='fdr_bh', alpha=0.05, returnsorted=False) _, pval_perc_f_mat_wt2het, _, _ = multipletests(pval_perc_f_mat_wt2het, method='fdr_bh', alpha=0.05, returnsorted=False) _, pval_perc_m_pat_wt2het, _, _ = multipletests(pval_perc_m_pat_wt2het, method='fdr_bh', alpha=0.05, returnsorted=False) _, pval_perc_m_mat_wt2het, _, _ = multipletests(pval_perc_m_mat_wt2het, method='fdr_bh', alpha=0.05, returnsorted=False) np.set_printoptions(precision=3) print('WT vs. Het with multitest correction') print('Female:') print(pval_perc_f_pat_wt2het) print(pval_perc_f_mat_wt2het) print('Male:') print(pval_perc_m_pat_wt2het) print(pval_perc_m_mat_wt2het) np.set_printoptions(precision=8) # # plot the median difference and the population quantiles at which the difference is significant # if DEBUG: # plt.clf() # idx = pval_perc_f_pat2mat < 0.05 # delta_a_f_pat2mat = (area_interval_f_mat[1, :] - area_interval_f_pat[1, :]) / area_interval_f_pat[1, :] # if np.any(idx): # plt.stem(quantiles[idx], 100 * delta_a_f_pat2mat[idx], # markerfmt='.', linefmt='C6-', basefmt='C6', # label='p-val$_{\mathrm{PAT}}$ < 0.05') # # idx = pval_perc_m_pat2mat < 0.05 # delta_a_m_pat2mat = (area_interval_m_mat[1, :] - area_interval_m_pat[1, :]) / area_interval_m_pat[1, :] # if np.any(idx): # plt.stem(quantiles[idx], 100 * delta_a_m_pat2mat[idx], # markerfmt='.', linefmt='C7-', basefmt='C7', bottom=250, # label='p-val$_{\mathrm{MAT}}$ < 0.05') # # plt.plot(quantiles, 100 * delta_a_f_pat2mat, 'C6', linewidth=3, label='Female PAT to MAT') # plt.plot(quantiles, 100 * delta_a_m_pat2mat, 'C7', linewidth=3, label='Male PAT to MAT') # # plt.xlabel('Cell population quantile', fontsize=14) # plt.ylabel('Area change (%)', fontsize=14) # plt.tick_params(axis='both', which='major', labelsize=14) # plt.legend(loc='lower right', prop={'size': 12}) # plt.tight_layout() # # plt.savefig(os.path.join(figures_dir, 'exp_0099_' + depot + '_cell_area_change_pat_2_mat.svg')) # plt.savefig(os.path.join(figures_dir, 'exp_0099_' + depot + '_cell_area_change_pat_2_mat.png')) ######################################################################################################################## ## Linear models of body weight (BW), fat depots weight (SC and gWAT), and categorical variables (sex, ko, genotype) ######################################################################################################################## import matplotlib.pyplot as plt import numpy as np import scipy.stats import pandas as pd import statsmodels.api as sm import re # directories klf14_root_data_dir = os.path.join(home, 'Data/cytometer_data/klf14') annotations_dir = os.path.join(home, 'Data/cytometer_data/aida_data_Klf14_v7/annotations') ndpi_dir = os.path.join(home, 'scan_srv2_cox/Maz Yon') figures_dir = os.path.join(home, 'GoogleDrive/Research/20190727_cytometer_paper/figures') metainfo_dir = os.path.join(home, 'Data/cytometer_data/klf14') DEBUG = False quantiles = np.linspace(0, 1, 11) quantiles = quantiles[1:-1] # load metainfo file metainfo_csv_file = os.path.join(metainfo_dir, 'klf14_b6ntac_meta_info.csv') metainfo = pd.read_csv(metainfo_csv_file) # make sure that in the boxplots PAT comes before MAT metainfo['sex'] = metainfo['sex'].astype(pd.api.types.CategoricalDtype(categories=['f', 'm'], ordered=True)) metainfo['ko_parent'] = metainfo['ko_parent'].astype(pd.api.types.CategoricalDtype(categories=['PAT', 'MAT'], ordered=True)) metainfo['genotype'] = metainfo['genotype'].astype(pd.api.types.CategoricalDtype(categories=['KLF14-KO:WT', 'KLF14-KO:Het'], ordered=True)) # add litter and mother ID columns to the data for i, id in enumerate(metainfo['id']): litter = re.sub('[a-zA-Z]', '', id) metainfo.loc[i, 'litter'] = litter metainfo.loc[i, 'mother_id'] = litter.split('.')[0] # add rough mask area column to the data depot = 'sqwat' filename_rough_mask_area = os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_rough_mask_area_' + depot + '.npz') aux = np.load(filename_rough_mask_area) id_all = aux['id_all'] rough_mask_area_all = aux['rough_mask_area_all'] for id, rough_mask_area in zip(id_all, rough_mask_area_all): metainfo.loc[metainfo['id'] == id, 'SC_rough_mask_area'] = rough_mask_area # add rough mask area column to the data depot = 'gwat' filename_rough_mask_area = os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_rough_mask_area_' + depot + '.npz') aux = np.load(filename_rough_mask_area) aux = np.load(filename_rough_mask_area) id_all = aux['id_all'] rough_mask_area_all = aux['rough_mask_area_all'] for id, rough_mask_area in zip(id_all, rough_mask_area_all): metainfo.loc[metainfo['id'] == id, 'gWAT_rough_mask_area'] = rough_mask_area ######################################################################################################################## ### Plot SC vs. gWAT to look for outliers ######################################################################################################################## idx_not_nan = np.where(~np.isnan(metainfo['SC']) * ~np.isnan(metainfo['gWAT']) * ~np.isnan(metainfo['BW']))[0] if DEBUG: idx = idx_not_nan plt.clf() plt.scatter(metainfo['SC'][idx], metainfo['gWAT'][idx], color='k', label='All mice') for i in idx: plt.annotate(metainfo['id'][i], (metainfo['SC'][i], metainfo['gWAT'][i])) plt.xlabel('SC', fontsize=14) plt.ylabel('gWAT', fontsize=14) plt.legend() if DEBUG: plt.clf() plt.subplot(221) idx = np.where((metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT'))[0] plt.scatter(metainfo['SC'][idx], metainfo['gWAT'][idx], color='k', label='f PAT') for i in idx: plt.annotate(metainfo['id'][i], (metainfo['SC'][i], metainfo['gWAT'][i])) plt.xlabel('SC', fontsize=14) plt.ylabel('gWAT', fontsize=14) plt.legend() plt.subplot(222) idx = np.where((metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT'))[0] plt.scatter(metainfo['SC'][idx], metainfo['gWAT'][idx], color='k', label='f MAT') for i in idx: plt.annotate(metainfo['id'][i], (metainfo['SC'][i], metainfo['gWAT'][i])) plt.xlabel('SC', fontsize=14) plt.ylabel('gWAT', fontsize=14) plt.legend() plt.subplot(223) idx = np.where((metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT'))[0] plt.scatter(metainfo['SC'][idx], metainfo['gWAT'][idx], color='k', label='m PAT') for i in idx: plt.annotate(metainfo['id'][i], (metainfo['SC'][i], metainfo['gWAT'][i])) plt.xlabel('SC', fontsize=14) plt.ylabel('gWAT', fontsize=14) plt.legend() plt.subplot(224) idx = np.where((metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT'))[0] plt.scatter(metainfo['SC'][idx], metainfo['gWAT'][idx], color='k', label='m MAT') for i in idx: plt.annotate(metainfo['id'][i], (metainfo['SC'][i], metainfo['gWAT'][i])) plt.xlabel('SC', fontsize=14) plt.ylabel('gWAT', fontsize=14) plt.legend() # 64 and 65 are outliers. ######################################################################################################################## ### Plot SC and gWAT vs. corresponding rough mask areas ######################################################################################################################## if DEBUG: plt.clf() plt.subplot(121) plt.scatter(np.power(metainfo['SC_rough_mask_area'] * 1e6, 3/2), metainfo['SC']) # for i in range(metainfo.shape[0]): # plt.annotate(metainfo['id'][i], (np.power(metainfo['SC_rough_mask_area'][i] * 1e6, 3/2), metainfo['SC'][i])) plt.xlabel('Subcutaneous vol from slice area mm$^3$', fontsize=14) plt.ylabel('m$_{SC}$ (g)', fontsize=14) plt.tick_params(labelsize=14) plt.subplot(122) plt.scatter(np.power(metainfo['gWAT_rough_mask_area'] * 1e6, 3/2), metainfo['gWAT']) # for i in range(metainfo.shape[0]): # plt.annotate(metainfo['id'][i], (metainfo['gWAT_rough_mask_area'][i] * 1e6, metainfo['gWAT'][i])) plt.xlabel('Gonadal slice area mm$^2$', fontsize=14) plt.ylabel('m$_{G}$ (g)', fontsize=14) plt.tick_params(labelsize=14) ######################################################################################################################## # Explore mice dataset in terms of weights alive and culled ######################################################################################################################## # plot weight when alive vs. weight after death idx = np.where(~np.isnan(metainfo['BW_alive']) * ~np.isnan(metainfo['BW']))[0] plt.clf() plt.scatter(metainfo['BW_alive'], metainfo['BW']) plt.plot([20, 50], [20, 50]) for i in idx: plt.annotate(i, (metainfo['BW_alive'][i], metainfo['BW'][i])) # plot weight evolution over time plt.clf() for i in idx: plt.plot([metainfo['BW_alive_date'][i], metainfo['cull_age'][i]], [metainfo['BW_alive'][i], metainfo['BW'][i]]) # plot SC vs. BW (females) if DEBUG: plt.clf() plt.subplot(121) for litter in np.unique(metainfo['litter']): # index of animals from this litter idx = np.where((metainfo['litter'] == litter) * (metainfo['sex'] == 'f'))[0] if (len(idx) > 1): # order in order of increasing SC idx_sort = np.argsort(metainfo['SC'][idx]) if np.array(metainfo['ko_parent'][idx])[0] == 'PAT': color = 'k' elif np.array(metainfo['ko_parent'][idx])[0] == 'MAT': color = 'r' plt.scatter(np.array(metainfo.loc[idx, 'SC'])[idx_sort], np.array(metainfo.loc[idx, 'BW'])[idx_sort], color=color) plt.plot(np.array(metainfo.loc[idx, 'SC'])[idx_sort], np.array(metainfo.loc[idx, 'BW'])[idx_sort], color=color) # if litter in ['19.1', '19.2']: for i in idx: plt.annotate(metainfo['id'][i], (metainfo['SC'][i], metainfo['BW'][i])) plt.title('Females') plt.xlabel('$m_{SC}$ (g)', fontsize=14) plt.ylabel('BW (g)', fontsize=14) plt.tick_params(labelsize=14) plt.tight_layout() # plot SC vs. BW (males) plt.subplot(122) for litter in np.unique(metainfo['litter']): # index of animals from this litter idx = np.where((metainfo['litter'] == litter) * (metainfo['sex'] == 'm'))[0] if (len(idx) > 1): # order in order of increasing SC idx_sort = np.argsort(metainfo['SC'][idx]) if np.array(metainfo['ko_parent'][idx])[0] == 'PAT': color = 'k' elif np.array(metainfo['ko_parent'][idx])[0] == 'MAT': color = 'r' plt.scatter(np.array(metainfo.loc[idx, 'SC'])[idx_sort], np.array(metainfo.loc[idx, 'BW'])[idx_sort], color=color) plt.plot(np.array(metainfo.loc[idx, 'SC'])[idx_sort], np.array(metainfo.loc[idx, 'BW'])[idx_sort], color=color) # if litter in ['19.1', '19.2']: for i in idx: plt.annotate(metainfo['id'][i], (metainfo['SC'][i], metainfo['BW'][i])) plt.title('Males') plt.xlabel('$m_{SC}$ (g)', fontsize=14) plt.ylabel('BW (g)', fontsize=14) plt.tick_params(labelsize=14) plt.tight_layout() # plot gWAT vs. BW (female) plt.clf() for litter in np.unique(metainfo['litter']): # index of animals from this litter idx = np.where((metainfo['litter'] == litter) * (metainfo['sex'] == 'f'))[0] if len(idx) > 1: # order in order of increasing gWAT idx_sort = np.argsort(metainfo['gWAT'][idx]) if np.array(metainfo['ko_parent'][idx])[0] == 'PAT': color = 'k' elif np.array(metainfo['ko_parent'][idx])[0] == 'MAT': color = 'r' plt.scatter(np.array(metainfo.loc[idx, 'gWAT'])[idx_sort], np.array(metainfo.loc[idx, 'BW'])[idx_sort], color=color) plt.plot(np.array(metainfo.loc[idx, 'gWAT'])[idx_sort], np.array(metainfo.loc[idx, 'BW'])[idx_sort], color=color) # if (litter == '19.2'): for i in idx: plt.annotate(i, (metainfo['gWAT'][i], metainfo['BW'][i])) plt.xlabel('$m_{G}$ (g)', fontsize=14) plt.ylabel('BW (g)', fontsize=14) plt.tick_params(labelsize=14) plt.tight_layout() ######################################################################################################################## ### Model BW ~ (C(sex) + C(ko_parent) + C(genotype)) * (SC * gWAT) ### WARNING: This model is an example of having too many variables ######################################################################################################################## idx_not_nan = np.where(~np.isnan(metainfo['SC']) * ~np.isnan(metainfo['gWAT']) * ~np.isnan(metainfo['BW']))[0] model = sm.formula.ols('BW ~ (C(sex) + C(ko_parent) + C(genotype)) * (SC * gWAT)', data=metainfo, subset=idx_not_nan).fit() print(model.summary()) # OLS Regression Results # ============================================================================== # Dep. Variable: BW R-squared: 0.816 # Model: OLS Adj. R-squared: 0.769 # Method: Least Squares F-statistic: 17.69 # Date: Mon, 24 Feb 2020 Prob (F-statistic): 1.19e-16 # Time: 15:32:07 Log-Likelihood: -197.81 # No. Observations: 76 AIC: 427.6 # Df Residuals: 60 BIC: 464.9 # Df Model: 15 # Covariance Type: nonrobust # ======================================================================================================= # coef std err t P>|t| [0.025 0.975] # ------------------------------------------------------------------------------------------------------- # Intercept 20.8129 3.915 5.317 0.000 12.982 28.644 # C(sex)[T.m] 8.2952 5.920 1.401 0.166 -3.547 20.138 # C(ko_parent)[T.MAT] -3.1038 4.417 -0.703 0.485 -11.938 5.731 # C(genotype)[T.KLF14-KO:Het] 0.4508 4.154 0.109 0.914 -7.858 8.759 # SC -1.7885 8.152 -0.219 0.827 -18.096 14.519 # C(sex)[T.m]:SC 14.4534 9.416 1.535 0.130 -4.382 33.289 # C(ko_parent)[T.MAT]:SC 13.9682 12.136 1.151 0.254 -10.307 38.244 # C(genotype)[T.KLF14-KO:Het]:SC -4.4397 8.417 -0.527 0.600 -21.277 12.397 # gWAT 4.6153 4.514 1.022 0.311 -4.414 13.644 # C(sex)[T.m]:gWAT -1.1889 5.786 -0.205 0.838 -12.763 10.385 # C(ko_parent)[T.MAT]:gWAT 11.1354 4.622 2.409 0.019 1.890 20.380 # C(genotype)[T.KLF14-KO:Het]:gWAT -0.6653 4.608 -0.144 0.886 -9.883 8.553 # SC:gWAT 5.7281 7.709 0.743 0.460 -9.692 21.148 # C(sex)[T.m]:SC:gWAT -8.8374 8.256 -1.070 0.289 -25.352 7.678 # C(ko_parent)[T.MAT]:SC:gWAT -20.5613 9.163 -2.244 0.029 -38.889 -2.234 # C(genotype)[T.KLF14-KO:Het]:SC:gWAT 1.2538 7.420 0.169 0.866 -13.589 16.096 # ============================================================================== # Omnibus: 0.893 Durbin-Watson: 1.584 # Prob(Omnibus): 0.640 Jarque-Bera (JB): 0.419 # Skew: 0.138 Prob(JB): 0.811 # Kurtosis: 3.236 Cond. No. 103. # ============================================================================== # Warnings: # [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. # partial regression and influence plots if DEBUG: sm.graphics.plot_partregress_grid(model) sm.graphics.influence_plot(model, criterion="cooks") # list of point with high influence (large residuals and leverage) idx_influence = [35, 36, 37, 64, 65] idx_no_influence = list(set(range(metainfo.shape[0])) - set(idx_influence)) print(metainfo.loc[idx_influence, ['id', 'ko_parent', 'sex', 'genotype', 'BW', 'SC', 'gWAT']]) model = sm.formula.ols('BW ~ (C(sex) + C(ko_parent) + C(genotype)) * (SC * gWAT)', data=metainfo, subset=idx_no_influence).fit() print(model.summary()) # OLS Regression Results # ============================================================================== # Dep. Variable: BW R-squared: 0.817 # Model: OLS Adj. R-squared: 0.768 # Method: Least Squares F-statistic: 16.41 # Date: Wed, 26 Feb 2020 Prob (F-statistic): 3.87e-15 # Time: 14:08:33 Log-Likelihood: -183.06 # No. Observations: 71 AIC: 398.1 # Df Residuals: 55 BIC: 434.3 # Df Model: 15 # Covariance Type: nonrobust # ======================================================================================================= # coef std err t P>|t| [0.025 0.975] # ------------------------------------------------------------------------------------------------------- # Intercept 22.4929 5.698 3.948 0.000 11.074 33.912 # C(sex)[T.m] 7.2408 6.769 1.070 0.289 -6.324 20.806 # C(ko_parent)[T.MAT] -2.6859 4.448 -0.604 0.548 -11.600 6.229 # C(genotype)[T.KLF14-KO:Het] -0.0971 4.440 -0.022 0.983 -8.996 8.802 # SC -9.2532 23.095 -0.401 0.690 -55.537 37.031 # C(sex)[T.m]:SC 21.7051 21.391 1.015 0.315 -21.164 64.574 # C(ko_parent)[T.MAT]:SC 10.9030 13.041 0.836 0.407 -15.231 37.037 # C(genotype)[T.KLF14-KO:Het]:SC -2.7711 11.164 -0.248 0.805 -25.145 19.603 # gWAT 2.5214 5.410 0.466 0.643 -8.321 13.364 # C(sex)[T.m]:gWAT 0.0320 6.181 0.005 0.996 -12.356 12.420 # C(ko_parent)[T.MAT]:gWAT 11.2072 4.596 2.439 0.018 1.997 20.417 # C(genotype)[T.KLF14-KO:Het]:gWAT -0.3474 4.714 -0.074 0.942 -9.795 9.100 # SC:gWAT 13.9732 19.484 0.717 0.476 -25.074 53.020 # C(sex)[T.m]:SC:gWAT -16.5886 17.869 -0.928 0.357 -52.398 19.221 # C(ko_parent)[T.MAT]:SC:gWAT -18.1201 9.764 -1.856 0.069 -37.687 1.447 # C(genotype)[T.KLF14-KO:Het]:SC:gWAT -0.2622 9.087 -0.029 0.977 -18.472 17.948 # ============================================================================== # Omnibus: 1.715 Durbin-Watson: 1.455 # Prob(Omnibus): 0.424 Jarque-Bera (JB): 1.060 # Skew: 0.245 Prob(JB): 0.589 # Kurtosis: 3.342 Cond. No. 229. # ============================================================================== # Warnings: # [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. print(model.pvalues) ######################################################################################################################## ### Model BW ~ C(sex) + C(sex):gWAT + C(ko_parent) + gWAT ### Deprecated model by the next one. This one is too simple, and forces the slopes of the lines to be parallel ######################################################################################################################## # don't use lines with NaNs (these should be removed by fit(), but just in case) idx_not_nan = np.where(~np.isnan(metainfo['SC']) * ~np.isnan(metainfo['gWAT']) * ~np.isnan(metainfo['BW']))[0] # data that we are going to use idx_subset = idx_not_nan # fit linear model to data model = sm.formula.ols('BW ~ C(sex) + C(sex):gWAT + C(ko_parent) + gWAT', data=metainfo, subset=idx_subset).fit() print(model.summary()) # OLS Regression Results # ============================================================================== # Dep. Variable: BW R-squared: 0.740 # Model: OLS Adj. R-squared: 0.726 # Method: Least Squares F-statistic: 50.60 # Date: Tue, 25 Feb 2020 Prob (F-statistic): 4.45e-20 # Time: 15:24:38 Log-Likelihood: -210.82 # No. Observations: 76 AIC: 431.6 # Df Residuals: 71 BIC: 443.3 # Df Model: 4 # Covariance Type: nonrobust # ======================================================================================= # coef std err t P>|t| [0.025 0.975] # --------------------------------------------------------------------------------------- # Intercept 19.4126 1.598 12.144 0.000 16.225 22.600 # C(sex)[T.m] 17.6887 2.981 5.934 0.000 11.745 23.633 # C(ko_parent)[T.MAT] 2.7743 0.927 2.991 0.004 0.925 4.624 # gWAT 8.0439 1.721 4.674 0.000 4.612 11.476 # C(sex)[T.m]:gWAT -7.2480 2.845 -2.548 0.013 -12.921 -1.575 # ============================================================================== # Omnibus: 4.048 Durbin-Watson: 1.411 # Prob(Omnibus): 0.132 Jarque-Bera (JB): 3.306 # Skew: 0.378 Prob(JB): 0.191 # Kurtosis: 3.687 Cond. No. 16.2 # ============================================================================== # Warnings: # [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. # helper function to plot the different lines created by the model def model_line(model, sex, ko_parent, gWAT): sex = np.float(sex == 'm') ko_parent = np.float(ko_parent == 'MAT') return model.params['Intercept'] +\ model.params['C(sex)[T.m]'] * sex + \ model.params['C(ko_parent)[T.MAT]'] * ko_parent + \ model.params['gWAT'] * gWAT + \ model.params['C(sex)[T.m]:gWAT'] * sex * gWAT # plot BW as a function of gWAT if DEBUG: annotate = False plt.clf() # f PAT idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:WT') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) plt.scatter(metainfo['gWAT'][idx], metainfo['BW'][idx], label='f PAT WT', color='C0', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:Het') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) plt.scatter(metainfo['gWAT'][idx], metainfo['BW'][idx], label='f PAT Het', color='C0') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) BW = model_line(model, sex='f', ko_parent='PAT', gWAT=gWAT) plt.plot(gWAT, BW, color='C0', linewidth=3) # f MAT idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:WT') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) plt.scatter(metainfo['gWAT'][idx], metainfo['BW'][idx], label='f MAT WT', color='C2', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:Het') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) plt.scatter(metainfo['gWAT'][idx], metainfo['BW'][idx], label='f MAT Het', color='C2') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) BW = model_line(model, sex='f', ko_parent='MAT', gWAT=gWAT) plt.plot(gWAT, BW, color='C2', linewidth=3) # m PAT idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:WT') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) plt.scatter(metainfo['gWAT'][idx], metainfo['BW'][idx], label='m PAT WT', color='k', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:Het') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) plt.scatter(metainfo['gWAT'][idx], metainfo['BW'][idx], label='m PAT Het', color='k') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) BW = model_line(model, sex='m', ko_parent='PAT', gWAT=gWAT) plt.plot(gWAT, BW, color='k', linewidth=3) # m MAT idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:WT') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) plt.scatter(metainfo['gWAT'][idx], metainfo['BW'][idx], label='m MAT WT', color='C3', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:Het') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) plt.scatter(metainfo['gWAT'][idx], metainfo['BW'][idx], label='m MAT Het', color='C3') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) BW = model_line(model, sex='m', ko_parent='MAT', gWAT=gWAT) plt.plot(gWAT, BW, color='C3', linewidth=3) plt.legend() plt.xlabel('m$_G$ (g)', fontsize=14) plt.ylabel('BW (g)', fontsize=14) plt.tick_params(labelsize=14) plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_bw_model_mG_simpler.png'), bbox_inches='tight') plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_bw_model_mG_simpler.svg'), bbox_inches='tight') ######################################################################################################################## ### Model BW ~ C(sex) * C(ko_parent) * gWAT ### VALID model ######################################################################################################################## # don't use lines with NaNs (these should be removed by fit(), but just in case) idx_not_nan = np.where(~np.isnan(metainfo['SC']) * ~np.isnan(metainfo['gWAT']) * ~np.isnan(metainfo['BW']))[0] # data that we are going to use idx_subset = idx_not_nan # Mixed-effects linear model aux = metainfo.loc[idx_subset, :] formula = 'BW ~ C(sex) * C(ko_parent) * gWAT' vc = {'litter': '0 + C(litter)'} # litter is a random effected nested inside mother_id model = sm.formula.mixedlm(formula, vc_formula=vc, re_formula='1', groups='mother_id', data=aux).fit() print(model.summary()) # fit linear model to data formula = 'BW ~ C(sex) * C(ko_parent) * gWAT' model = sm.formula.ols(formula, data=metainfo, subset=idx_subset).fit() print(model.summary()) # OLS Regression Results # ============================================================================== # Dep. Variable: BW R-squared: 0.773 # Model: OLS Adj. R-squared: 0.749 # Method: Least Squares F-statistic: 33.01 # Date: Thu, 27 Feb 2020 Prob (F-statistic): 1.65e-19 # Time: 10:14:01 Log-Likelihood: -205.77 # No. Observations: 76 AIC: 427.5 # Df Residuals: 68 BIC: 446.2 # Df Model: 7 # Covariance Type: nonrobust # ======================================================================================================== # coef std err t P>|t| [0.025 0.975] # -------------------------------------------------------------------------------------------------------- # Intercept 19.8526 1.975 10.053 0.000 15.912 23.793 # C(sex)[T.m] 12.2959 3.705 3.318 0.001 4.902 19.690 # C(ko_parent)[T.MAT] 1.8066 2.984 0.605 0.547 -4.148 7.762 # C(sex)[T.m]:C(ko_parent)[T.MAT] 12.8513 5.808 2.213 0.030 1.261 24.441 # gWAT 6.7074 2.246 2.986 0.004 2.225 11.189 # C(sex)[T.m]:gWAT -0.5933 3.647 -0.163 0.871 -7.870 6.684 # C(ko_parent)[T.MAT]:gWAT 2.5961 3.308 0.785 0.435 -4.005 9.197 # C(sex)[T.m]:C(ko_parent)[T.MAT]:gWAT -14.5795 5.526 -2.638 0.010 -25.607 -3.552 # ============================================================================== # Omnibus: 4.620 Durbin-Watson: 1.636 # Prob(Omnibus): 0.099 Jarque-Bera (JB): 4.493 # Skew: 0.308 Prob(JB): 0.106 # Kurtosis: 4.019 Cond. No. 40.4 # ============================================================================== # Warnings: # [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. print(model.pvalues) # helper function to plot the different lines created by the model def model_line(model, sex, ko_parent, gWAT): sex = np.float(sex == 'm') ko_parent = np.float(ko_parent == 'MAT') return model.params['Intercept'] +\ model.params['C(sex)[T.m]'] * sex + \ model.params['C(ko_parent)[T.MAT]'] * ko_parent + \ model.params['C(sex)[T.m]:C(ko_parent)[T.MAT]'] * sex * ko_parent + \ model.params['gWAT'] * gWAT + \ model.params['C(sex)[T.m]:gWAT'] * sex * gWAT + \ model.params['C(ko_parent)[T.MAT]:gWAT'] * ko_parent * gWAT + \ model.params['C(sex)[T.m]:C(ko_parent)[T.MAT]:gWAT'] * sex * ko_parent * gWAT # plot BW as a function of gWAT if DEBUG: annotate = False plt.clf() # f PAT idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:WT') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) plt.scatter(metainfo['gWAT'][idx], metainfo['BW'][idx], label='f PAT WT', color='C0', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:Het') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) plt.scatter(metainfo['gWAT'][idx], metainfo['BW'][idx], label='f PAT Het', color='C0') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) BW = model_line(model, sex='f', ko_parent='PAT', gWAT=gWAT) plt.plot(gWAT, BW, color='C0', linewidth=3) # f MAT idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:WT') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) plt.scatter(metainfo['gWAT'][idx], metainfo['BW'][idx], label='f MAT WT', color='C2', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:Het') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) plt.scatter(metainfo['gWAT'][idx], metainfo['BW'][idx], label='f MAT Het', color='C2') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) BW = model_line(model, sex='f', ko_parent='MAT', gWAT=gWAT) plt.plot(gWAT, BW, color='C2', linewidth=3) # m PAT idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:WT') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) plt.scatter(metainfo['gWAT'][idx], metainfo['BW'][idx], label='m PAT WT', color='k', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:Het') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) plt.scatter(metainfo['gWAT'][idx], metainfo['BW'][idx], label='m PAT Het', color='k') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) BW = model_line(model, sex='m', ko_parent='PAT', gWAT=gWAT) plt.plot(gWAT, BW, color='k', linewidth=3) # m MAT idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:WT') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) plt.scatter(metainfo['gWAT'][idx], metainfo['BW'][idx], label='m MAT WT', color='C3', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:Het') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) plt.scatter(metainfo['gWAT'][idx], metainfo['BW'][idx], label='m MAT Het', color='C3') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') gWAT = np.linspace(np.min(metainfo['gWAT'][idx]), np.max(metainfo['gWAT'][idx])) BW = model_line(model, sex='m', ko_parent='MAT', gWAT=gWAT) plt.plot(gWAT, BW, color='C3', linewidth=3) plt.legend() plt.xlabel('m$_G$ (g)', fontsize=14) plt.ylabel('BW (g)', fontsize=14) plt.tick_params(labelsize=14) plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_bw_model_mG.png'), bbox_inches='tight') plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_bw_model_mG.svg'), bbox_inches='tight') ######################################################################################################################## ### Model BW ~ C(sex) * C(ko_parent) * gWAT ### Add nested random effects: mother_id -> litter -> mouse # https://www.statsmodels.org/dev/generated/statsmodels.formula.api.mixedlm.html?highlight=mixedlm#statsmodels.formula.api.mixedlm ### EXPERIMENTAL model ######################################################################################################################## # don't use lines with NaNs (these should be removed by fit(), but just in case) idx_not_nan = np.where(~np.isnan(metainfo['SC']) * ~np.isnan(metainfo['gWAT']) * ~np.isnan(metainfo['BW']))[0] # data that we are going to use idx_subset = idx_not_nan # Mixed-effects linear model aux = metainfo.loc[idx_subset, :] formula = 'BW ~ C(sex) * C(ko_parent) * gWAT' vc = {'litter': '0 + C(litter)'} # litter is a random effected nested inside mother_id model = sm.formula.mixedlm(formula, vc_formula=vc, re_formula='1', groups='mother_id', data=aux).fit() print(model.summary()) # /home/rcasero/.conda/envs/cytometer_tensorflow/lib/python3.6/site-packages/statsmodels/base/model.py:1286: RuntimeWarning: invalid value encountered in sqrt # bse_ = np.sqrt(np.diag(self.cov_params())) # Mixed Linear Model Regression Results # ================================================================================= # Model: MixedLM Dependent Variable: BW # No. Observations: 76 Method: REML # No. Groups: 8 Scale: 9.5401 # Min. group size: 1 Likelihood: -189.5050 # Max. group size: 20 Converged: Yes # Mean group size: 9.5 # --------------------------------------------------------------------------------- # Coef. Std.Err. z P>|z| [0.025 0.975] # --------------------------------------------------------------------------------- # Intercept 22.692 2.227 10.191 0.000 18.328 27.056 # C(sex)[T.m] 9.604 3.253 2.953 0.003 3.229 15.980 # C(ko_parent)[T.MAT] -2.804 3.152 -0.889 0.374 -8.982 3.375 # C(sex)[T.m]:C(ko_parent)[T.MAT] 7.670 6.151 1.247 0.212 -4.386 19.727 # gWAT 4.437 2.195 2.022 0.043 0.136 8.739 # C(sex)[T.m]:gWAT 1.656 3.157 0.524 0.600 -4.533 7.844 # C(ko_parent)[T.MAT]:gWAT 6.823 3.262 2.092 0.036 0.430 13.216 # C(sex)[T.m]:C(ko_parent)[T.MAT]:gWAT -10.814 5.674 -1.906 0.057 -21.935 0.308 # mother_id Var 0.000 # litter Var 7.659 # ================================================================================= ######################################################################################################################## ### BW ~ C(sex) * C(ko_parent) * SC ### VALID model, but bad fit because of 5 outliers (we remove them in the next model) ######################################################################################################################## # don't use lines with NaNs (these should be removed by fit(), but just in case) idx_not_nan = np.where(~np.isnan(metainfo['SC']) * ~np.isnan(metainfo['gWAT']) * ~np.isnan(metainfo['BW']))[0] # SC outliers idx_outliers = [] # data that we are going to use idx_subset = list(set(idx_not_nan) - set(idx_outliers)) # fit linear model to data model = sm.formula.ols('BW ~ C(sex) * C(ko_parent) * SC', data=metainfo, subset=idx_subset).fit() print(model.summary()) # OLS Regression Results # ============================================================================== # Dep. Variable: BW R-squared: 0.706 # Model: OLS Adj. R-squared: 0.676 # Method: Least Squares F-statistic: 23.32 # Date: Thu, 27 Feb 2020 Prob (F-statistic): 8.42e-16 # Time: 14:56:57 Log-Likelihood: -215.55 # No. Observations: 76 AIC: 447.1 # Df Residuals: 68 BIC: 465.7 # Df Model: 7 # Covariance Type: nonrobust # ====================================================================================================== # coef std err t P>|t| [0.025 0.975] # ------------------------------------------------------------------------------------------------------ # Intercept 23.4759 1.721 13.637 0.000 20.041 26.911 # C(sex)[T.m] 10.4744 3.158 3.317 0.001 4.173 16.776 # C(ko_parent)[T.MAT] 4.6399 2.384 1.946 0.056 -0.117 9.397 # C(sex)[T.m]:C(ko_parent)[T.MAT] 4.6208 4.142 1.116 0.269 -3.645 12.887 # SC 2.9539 2.518 1.173 0.245 -2.071 7.979 # C(sex)[T.m]:SC 3.0082 4.049 0.743 0.460 -5.072 11.088 # C(ko_parent)[T.MAT]:SC 1.0103 4.400 0.230 0.819 -7.770 9.790 # C(sex)[T.m]:C(ko_parent)[T.MAT]:SC -12.2497 6.355 -1.928 0.058 -24.931 0.432 # ============================================================================== # Omnibus: 3.016 Durbin-Watson: 1.576 # Prob(Omnibus): 0.221 Jarque-Bera (JB): 2.498 # Skew: 0.440 Prob(JB): 0.287 # Kurtosis: 3.118 Cond. No. 27.7 # ============================================================================== # Warnings: # [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. print(model.pvalues) def model_line(model, sex, ko_parent, SC): sex = np.float(sex == 'm') ko_parent = np.float(ko_parent == 'MAT') return model.params['Intercept'] + \ model.params['C(sex)[T.m]'] * sex + \ model.params['C(ko_parent)[T.MAT]'] * ko_parent + \ model.params['C(sex)[T.m]:C(ko_parent)[T.MAT]'] * sex * ko_parent + \ model.params['SC'] * SC + \ model.params['C(sex)[T.m]:SC'] * sex * SC + \ model.params['C(ko_parent)[T.MAT]:SC'] * ko_parent * SC + \ model.params['C(sex)[T.m]:C(ko_parent)[T.MAT]:SC'] * sex * ko_parent * SC # plot BW as a function of SC if DEBUG: annotate = False plt.clf() # f PAT idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:WT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='f PAT WT', color='C0', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:Het') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='f PAT Het', color='C0') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) BW = model_line(model, sex='f', ko_parent='PAT', SC=SC) plt.plot(SC, BW, color='C0', linewidth=3) # f MAT idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:WT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='f MAT WT', color='C2', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:Het') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='f MAT Het', color='C2') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) BW = model_line(model, sex='f', ko_parent='MAT', SC=SC) plt.plot(SC, BW, color='C2', linewidth=3) # m PAT idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:WT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='m PAT WT', color='k', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:Het') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='m PAT Het', color='k') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) BW = model_line(model, sex='m', ko_parent='PAT', SC=SC) plt.plot(SC, BW, color='k', linewidth=3) # m MAT idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:WT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='m MAT WT', color='C3', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:Het') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='m MAT Het', color='C3') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) BW = model_line(model, sex='m', ko_parent='MAT', SC=SC) plt.plot(SC, BW, color='C3', linewidth=3) plt.legend() plt.xlabel('m$_{SC}$ (g)', fontsize=14) plt.ylabel('BW (g)', fontsize=14) plt.tick_params(labelsize=14) plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_bw_model_mSC.png'), bbox_inches='tight') plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_bw_model_mSC.svg'), bbox_inches='tight') ######################################################################################################################## ### BW ~ C(sex) * C(ko_parent) * SC ### VALID model, 5 outliers removed ######################################################################################################################## # don't use lines with NaNs (these should be removed by fit(), but just in case) idx_not_nan = np.where(~np.isnan(metainfo['SC']) * ~np.isnan(metainfo['gWAT']) * ~np.isnan(metainfo['BW']))[0] # SC outliers idx_outliers = [35, 36, 37, 64, 65] # data that we are going to use idx_subset = list(set(idx_not_nan) - set(idx_outliers)) # fit linear model to data model = sm.formula.ols('BW ~ C(sex) * C(ko_parent) * SC', data=metainfo, subset=idx_subset).fit() print(model.summary()) # OLS Regression Results # ============================================================================== # Dep. Variable: BW R-squared: 0.754 # Model: OLS Adj. R-squared: 0.727 # Method: Least Squares F-statistic: 27.62 # Date: Thu, 27 Feb 2020 Prob (F-statistic): 6.14e-17 # Time: 15:14:50 Log-Likelihood: -193.59 # No. Observations: 71 AIC: 403.2 # Df Residuals: 63 BIC: 421.3 # Df Model: 7 # Covariance Type: nonrobust # ====================================================================================================== # coef std err t P>|t| [0.025 0.975] # ------------------------------------------------------------------------------------------------------ # Intercept 21.6675 1.715 12.634 0.000 18.240 25.095 # C(sex)[T.m] 12.2828 2.936 4.184 0.000 6.416 18.150 # C(ko_parent)[T.MAT] 0.2006 3.291 0.061 0.952 -6.375 6.777 # C(sex)[T.m]:C(ko_parent)[T.MAT] 9.0601 4.486 2.020 0.048 0.095 18.025 # SC 8.4782 2.989 2.837 0.006 2.506 14.450 # C(sex)[T.m]:SC -2.5161 4.132 -0.609 0.545 -10.774 5.742 # C(ko_parent)[T.MAT]:SC 20.4707 10.549 1.941 0.057 -0.609 41.550 # C(sex)[T.m]:C(ko_parent)[T.MAT]:SC -31.7102 11.327 -2.799 0.007 -54.346 -9.074 # ============================================================================== # Omnibus: 5.918 Durbin-Watson: 1.687 # Prob(Omnibus): 0.052 Jarque-Bera (JB): 5.075 # Skew: 0.575 Prob(JB): 0.0790 # Kurtosis: 3.626 Cond. No. 53.2 # ============================================================================== # Warnings: # [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. print(model.pvalues) # partial regression and influence plots if DEBUG: sm.graphics.plot_partregress_grid(model) sm.graphics.influence_plot(model, criterion="cooks") def model_line(model, sex, ko_parent, SC): sex = np.float(sex == 'm') ko_parent = np.float(ko_parent == 'MAT') return model.params['Intercept'] + \ model.params['C(sex)[T.m]'] * sex + \ model.params['C(ko_parent)[T.MAT]'] * ko_parent + \ model.params['C(sex)[T.m]:C(ko_parent)[T.MAT]'] * sex * ko_parent + \ model.params['SC'] * SC + \ model.params['C(sex)[T.m]:SC'] * sex * SC + \ model.params['C(ko_parent)[T.MAT]:SC'] * ko_parent * SC + \ model.params['C(sex)[T.m]:C(ko_parent)[T.MAT]:SC'] * sex * ko_parent * SC # plot BW as a function of SC if DEBUG: annotate = False plt.clf() # f PAT idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:WT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='f PAT WT', color='C0', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:Het') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='f PAT Het', color='C0') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) BW = model_line(model, sex='f', ko_parent='PAT', SC=SC) plt.plot(SC, BW, color='C0', linewidth=3) # f MAT idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:WT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='f MAT WT', color='C2', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:Het') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='f MAT Het', color='C2') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) BW = model_line(model, sex='f', ko_parent='MAT', SC=SC) plt.plot(SC, BW, color='C2', linewidth=3) # m PAT idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:WT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='m PAT WT', color='k', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:Het') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='m PAT Het', color='k') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) BW = model_line(model, sex='m', ko_parent='PAT', SC=SC) plt.plot(SC, BW, color='k', linewidth=3) # m MAT idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:WT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='m MAT WT', color='C3', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:Het') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='m MAT Het', color='C3') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) BW = model_line(model, sex='m', ko_parent='MAT', SC=SC) plt.plot(SC, BW, color='C3', linewidth=3) plt.legend() plt.xlabel('m$_{SC}$ (g)', fontsize=14) plt.ylabel('BW (g)', fontsize=14) plt.tick_params(labelsize=14) plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_bw_model_mSC_no_outliers.png'), bbox_inches='tight') plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_bw_model_mSC_no_outliers.svg'), bbox_inches='tight') ######################################################################################################################## ### BW ~ C(sex) * C(ko_parent) * SC ### VALID model, 2 outliers removed ######################################################################################################################## # don't use lines with NaNs (these should be removed by fit(), but just in case) idx_not_nan = np.where(~np.isnan(metainfo['SC']) * ~np.isnan(metainfo['gWAT']) * ~np.isnan(metainfo['BW']))[0] # SC outliers idx_outliers = [35, 36, 65] # data that we are going to use idx_subset = list(set(idx_not_nan) - set(idx_outliers)) # fit linear model to data model = sm.formula.ols('BW ~ C(sex) * C(ko_parent) * SC', data=metainfo, subset=idx_subset).fit() print(model.summary()) # OLS Regression Results # ============================================================================== # Dep. Variable: BW R-squared: 0.743 # Model: OLS Adj. R-squared: 0.715 # Method: Least Squares F-statistic: 26.85 # Date: Wed, 04 Mar 2020 Prob (F-statistic): 6.67e-17 # Time: 02:52:03 Log-Likelihood: -201.43 # No. Observations: 73 AIC: 418.9 # Df Residuals: 65 BIC: 437.2 # Df Model: 7 # Covariance Type: nonrobust # ====================================================================================================== # coef std err t P>|t| [0.025 0.975] # ------------------------------------------------------------------------------------------------------ # Intercept 21.7064 1.769 12.273 0.000 18.174 25.239 # C(sex)[T.m] 12.2438 3.028 4.044 0.000 6.197 18.291 # C(ko_parent)[T.MAT] 3.6077 2.575 1.401 0.166 -1.535 8.751 # C(sex)[T.m]:C(ko_parent)[T.MAT] 5.6530 4.064 1.391 0.169 -2.464 13.770 # SC 7.4582 3.031 2.460 0.017 1.404 13.512 # C(sex)[T.m]:SC -1.4961 4.225 -0.354 0.724 -9.934 6.942 # C(ko_parent)[T.MAT]:SC 7.5800 6.199 1.223 0.226 -4.801 19.961 # C(sex)[T.m]:C(ko_parent)[T.MAT]:SC -18.8194 7.520 -2.503 0.015 -33.838 -3.801 # ============================================================================== # Omnibus: 5.698 Durbin-Watson: 1.666 # Prob(Omnibus): 0.058 Jarque-Bera (JB): 4.862 # Skew: 0.571 Prob(JB): 0.0879 # Kurtosis: 3.544 Cond. No. 34.6 # ============================================================================== # Warnings: # [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. print(model.pvalues) # partial regression and influence plots if DEBUG: sm.graphics.plot_partregress_grid(model) sm.graphics.influence_plot(model, criterion="cooks") def model_line(model, sex, ko_parent, SC): sex = np.float(sex == 'm') ko_parent = np.float(ko_parent == 'MAT') return model.params['Intercept'] + \ model.params['C(sex)[T.m]'] * sex + \ model.params['C(ko_parent)[T.MAT]'] * ko_parent + \ model.params['C(sex)[T.m]:C(ko_parent)[T.MAT]'] * sex * ko_parent + \ model.params['SC'] * SC + \ model.params['C(sex)[T.m]:SC'] * sex * SC + \ model.params['C(ko_parent)[T.MAT]:SC'] * ko_parent * SC + \ model.params['C(sex)[T.m]:C(ko_parent)[T.MAT]:SC'] * sex * ko_parent * SC # plot BW as a function of SC if DEBUG: annotate = False plt.clf() # f PAT idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:WT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='f PAT WT', color='C0', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:Het') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='f PAT Het', color='C0') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) BW = model_line(model, sex='f', ko_parent='PAT', SC=SC) plt.plot(SC, BW, color='C0', linewidth=3) # f MAT idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:WT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='f MAT WT', color='C2', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:Het') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='f MAT Het', color='C2') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) BW = model_line(model, sex='f', ko_parent='MAT', SC=SC) plt.plot(SC, BW, color='C2', linewidth=3) # m PAT idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:WT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='m PAT WT', color='k', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:Het') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='m PAT Het', color='k') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) BW = model_line(model, sex='m', ko_parent='PAT', SC=SC) plt.plot(SC, BW, color='k', linewidth=3) # m MAT idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:WT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='m MAT WT', color='C3', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:Het') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='m MAT Het', color='C3') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) BW = model_line(model, sex='m', ko_parent='MAT', SC=SC) plt.plot(SC, BW, color='C3', linewidth=3) plt.legend() plt.xlabel('m$_{SC}$ (g)', fontsize=14) plt.ylabel('BW (g)', fontsize=14) plt.tick_params(labelsize=14) plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_bw_model_mSC_3_outliers.png'), bbox_inches='tight') plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_bw_model_mSC_3_outliers.svg'), bbox_inches='tight') ######################################################################################################################## ### Model BW ~ C(sex) * C(ko_parent) * gWAT ### Add nested random effects: mother_id -> litter -> mouse # https://www.statsmodels.org/dev/generated/statsmodels.formula.api.mixedlm.html?highlight=mixedlm#statsmodels.formula.api.mixedlm ### EXPERIMENTAL model ######################################################################################################################## # don't use lines with NaNs (these should be removed by fit(), but just in case) idx_not_nan = np.where(~np.isnan(metainfo['SC']) * ~np.isnan(metainfo['gWAT']) * ~np.isnan(metainfo['BW']))[0] # data that we are going to use idx_subset = idx_not_nan # Mixed-effects linear model aux = metainfo.loc[idx_subset, :] formula = 'BW ~ C(sex) * C(ko_parent) * SC' vc = {'litter': '0 + C(litter)'} # litter is a random effected nested inside mother_id model = sm.formula.mixedlm(formula, vc_formula=vc, re_formula='1', groups='mother_id', data=aux).fit() print(model.summary()) # /home/rcasero/.conda/envs/cytometer_tensorflow/lib/python3.6/site-packages/pandas/core/computation/expressions.py:183: UserWarning: evaluating in Python space because the '*' operator is not supported by numexpr for the bool dtype, use '&' instead # .format(op=op_str, alt_op=unsupported[op_str])) # Mixed Linear Model Regression Results # =============================================================================== # Model: MixedLM Dependent Variable: BW # No. Observations: 76 Method: REML # No. Groups: 8 Scale: 13.6930 # Min. group size: 1 Likelihood: -199.2320 # Max. group size: 20 Converged: Yes # Mean group size: 9.5 # ------------------------------------------------------------------------------- # Coef. Std.Err. z P>|z| [0.025 0.975] # ------------------------------------------------------------------------------- # Intercept 25.506 2.129 11.981 0.000 21.333 29.678 # C(sex)[T.m] 8.618 2.990 2.882 0.004 2.757 14.479 # C(ko_parent)[T.MAT] 2.191 3.433 0.638 0.523 -4.539 8.920 # C(sex)[T.m]:C(ko_parent)[T.MAT] 4.530 4.099 1.105 0.269 -3.504 12.565 # SC 1.437 2.447 0.587 0.557 -3.360 6.233 # C(sex)[T.m]:SC 4.643 3.661 1.268 0.205 -2.531 11.818 # C(ko_parent)[T.MAT]:SC 4.991 5.019 0.994 0.320 -4.847 14.829 # C(sex)[T.m]:C(ko_parent)[T.MAT]:SC -13.179 6.603 -1.996 0.046 -26.120 -0.238 # mother_id Var 2.805 3.306 # litter Var 4.728 2.638 # =============================================================================== def model_line(model, sex, ko_parent, SC): sex = np.float(sex == 'm') ko_parent = np.float(ko_parent == 'MAT') return model.params['Intercept'] + \ model.params['C(sex)[T.m]'] * sex + \ model.params['C(ko_parent)[T.MAT]'] * ko_parent + \ model.params['C(sex)[T.m]:C(ko_parent)[T.MAT]'] * sex * ko_parent + \ model.params['SC'] * SC + \ model.params['C(sex)[T.m]:SC'] * sex * SC + \ model.params['C(ko_parent)[T.MAT]:SC'] * ko_parent * SC + \ model.params['C(sex)[T.m]:C(ko_parent)[T.MAT]:SC'] * sex * ko_parent * SC # plot BW as a function of SC if DEBUG: annotate = False plt.clf() # f PAT idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:WT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='f PAT WT', color='C0', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:Het') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='f PAT Het', color='C0') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) BW = model_line(model, sex='f', ko_parent='PAT', SC=SC) plt.plot(SC, BW, color='C0', linewidth=3) # f MAT idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:WT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='f MAT WT', color='C2', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:Het') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='f MAT Het', color='C2') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) BW = model_line(model, sex='f', ko_parent='MAT', SC=SC) plt.plot(SC, BW, color='C2', linewidth=3) # m PAT idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:WT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='m PAT WT', color='k', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:Het') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='m PAT Het', color='k') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) BW = model_line(model, sex='m', ko_parent='PAT', SC=SC) plt.plot(SC, BW, color='k', linewidth=3) # m MAT idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:WT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='m MAT WT', color='C3', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:Het') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) plt.scatter(metainfo['SC'][idx], metainfo['BW'][idx], label='m MAT Het', color='C3') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC'][i], metainfo['BW'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') SC = np.linspace(np.min(metainfo['SC'][idx]), np.max(metainfo['SC'][idx])) BW = model_line(model, sex='m', ko_parent='MAT', SC=SC) plt.plot(SC, BW, color='C3', linewidth=3) plt.legend() plt.xlabel('m$_{SC}$ (g)', fontsize=14) plt.ylabel('BW (g)', fontsize=14) plt.tick_params(labelsize=14) plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_bw_mixed_model_mSC.png'), bbox_inches='tight') plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_bw_mixed_model_mSC.svg'), bbox_inches='tight') ######################################################################################################################## ## Load SQWAT and gWAT quantile data computed in a previous section ### USED IN PAPER ######################################################################################################################## import matplotlib.pyplot as plt import numpy as np import scipy.stats import pandas as pd import statsmodels.api as sm from statsmodels.stats.multicomp import pairwise_tukeyhsd from statsmodels.stats.multicomp import MultiComparison from statsmodels.stats.multitest import multipletests import scipy.stats # directories klf14_root_data_dir = os.path.join(home, 'Data/cytometer_data/klf14') annotations_dir = os.path.join(home, 'Data/cytometer_data/aida_data_Klf14_v7/annotations') ndpi_dir = os.path.join(home, 'scan_srv2_cox/Maz Yon') figures_dir = os.path.join(home, 'GoogleDrive/Research/20190727_cytometer_paper/figures') metainfo_dir = os.path.join(home, 'Data/cytometer_data/klf14') DEBUG = False quantiles = np.linspace(0, 1, 11) quantiles = quantiles[1:-1] # load metainfo file metainfo_csv_file = os.path.join(metainfo_dir, 'klf14_b6ntac_meta_info.csv') metainfo = pd.read_csv(metainfo_csv_file) # make sure that in the boxplots PAT comes before MAT metainfo['sex'] = metainfo['sex'].astype(pd.api.types.CategoricalDtype(categories=['f', 'm'], ordered=True)) metainfo['ko_parent'] = metainfo['ko_parent'].astype(pd.api.types.CategoricalDtype(categories=['PAT', 'MAT'], ordered=True)) metainfo['genotype'] = metainfo['genotype'].astype(pd.api.types.CategoricalDtype(categories=['KLF14-KO:WT', 'KLF14-KO:Het'], ordered=True)) # load SQWAT data depot = 'sqwat' filename_quantiles = os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_area_quantiles_' + depot + '.npz') aux = np.load(filename_quantiles) area_mean_sqwat = aux['area_mean_all'] area_q_sqwat = aux['area_q_all'] id_sqwat = aux['id_all'] ko_sqwat = aux['ko_all'] genotype_sqwat = aux['genotype_all'] sex_sqwat = aux['sex_all'] # load gWAT data depot = 'gwat' filename_quantiles = os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_area_quantiles_' + depot + '.npz') aux = np.load(filename_quantiles) area_mean_gwat = aux['area_mean_all'] area_q_gwat = aux['area_q_all'] id_gwat = aux['id_all'] ko_gwat = aux['ko_all'] genotype_gwat = aux['genotype_all'] sex_gwat = aux['sex_all'] # add a new column to the metainfo frame with the mean cell area for SQWAT metainfo_idx = [np.where(metainfo['id'] == x)[0][0] for x in id_sqwat] metainfo.loc[metainfo_idx, 'SC_area_mean'] = area_mean_sqwat # m^2 metainfo['SC_area_mean_1e12'] = metainfo['SC_area_mean'] * 1e12 # um^2 # add a new column to the metainfo frame with the mean cell area for gWAT metainfo_idx = [np.where(metainfo['id'] == x)[0][0] for x in id_gwat] metainfo.loc[metainfo_idx, 'gWAT_area_mean'] = area_mean_gwat # m^2 metainfo['gWAT_area_mean_1e12'] = metainfo['gWAT_area_mean'] * 1e12 # um^2 # volume sphere with same radius as given circle def vol_sphere(area_circle): return (4 / 3 / np.sqrt(np.pi)) * np.power(area_circle, 3/2) # add a new column to the metainfo frame with the mean cell volume for SQWAT metainfo.loc[metainfo_idx, 'SC_vol_mean'] = vol_sphere(metainfo['SC_area_mean']) # m^3 metainfo['SC_vol_mean_1e12'] = metainfo['SC_vol_mean'] * 1e12 # mean(gWAT_vol_mean_1e12) = 0.2013305044030984 metainfo['SC_vol_mean_1e18'] = metainfo['SC_vol_mean'] * 1e18 # mean(gWAT_vol_mean_1e18) = 201331 um^3 # add a new column to the metainfo frame with the mean cell volume for gWAT metainfo.loc[metainfo_idx, 'gWAT_vol_mean'] = vol_sphere(metainfo['gWAT_area_mean']) # m^3 metainfo['gWAT_vol_mean_1e12'] = metainfo['gWAT_vol_mean'] * 1e12 # mean(gWAT_vol_mean_1e12) = 0.3281878940926992 metainfo['gWAT_vol_mean_1e18'] = metainfo['gWAT_vol_mean'] * 1e18 # mean(gWAT_vol_mean_1e18) = 328188 um^3 # add a new column to the metainfo frame with the median cell volume for SQWAT metainfo_idx = [np.where(metainfo['id'] == x)[0][0] for x in id_sqwat] metainfo['SC_vol_median'] = np.NaN metainfo.loc[metainfo_idx, 'SC_vol_median'] = vol_sphere(area_q_sqwat[:, 4]) # m^3 metainfo['SC_vol_median_1e12'] = metainfo['SC_vol_median'] * 1e12 # add a new column to the metainfo frame with the median cell volume for gWAT metainfo_idx = [np.where(metainfo['id'] == x)[0][0] for x in id_gwat] metainfo['gWAT_vol_median'] = np.NaN metainfo.loc[metainfo_idx, 'gWAT_vol_median'] = vol_sphere(area_q_gwat[:, 4]) # m^3 metainfo['gWAT_vol_median_1e12'] = metainfo['gWAT_vol_median'] * 1e12 # add new column with fat depot weights normalised by body weight metainfo['SC_BW'] = metainfo['SC'] / metainfo['BW'] metainfo['gWAT_BW'] = metainfo['gWAT'] / metainfo['BW'] # add new column with estimates number of cells fat_density_SC = 0.9038 # g / cm^3 fat_density_gWAT = 0.9029 # g / cm^3 metainfo['SC_kN'] = metainfo['SC'] / (fat_density_SC * 1e6 * metainfo['SC_vol_mean']) metainfo['gWAT_kN'] = metainfo['gWAT'] / (fat_density_gWAT * 1e6 * metainfo['gWAT_vol_mean']) # shorthand for subgroups idx_f = metainfo['sex'] == 'f' idx_m = metainfo['sex'] == 'm' idx_pat = metainfo['ko_parent'] == 'PAT' idx_mat = metainfo['ko_parent'] == 'MAT' idx_wt = metainfo['genotype'] == 'KLF14-KO:WT' idx_het = metainfo['genotype'] == 'KLF14-KO:Het' print('Females N = ' + str(np.count_nonzero(idx_f))) print('Males N = ' + str(np.count_nonzero(idx_m))) print('PAT N = ' + str(np.count_nonzero(idx_pat))) print('MAT N = ' + str(np.count_nonzero(idx_mat))) print('WT N = ' + str(np.count_nonzero(idx_wt))) print('Het N = ' + str(np.count_nonzero(idx_het))) # number of animals by group # SC_area_mean female, SC_area_mean male print( str(np.count_nonzero(~np.isnan(metainfo['SC_area_mean']) & idx_f & idx_pat & idx_wt)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['SC_area_mean']) & idx_f & idx_pat & idx_het)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['SC_area_mean']) & idx_f & idx_mat & idx_wt)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['SC_area_mean']) & idx_f & idx_mat & idx_het)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['SC_area_mean']) & idx_m & idx_pat & idx_wt)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['SC_area_mean']) & idx_m & idx_pat & idx_het)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['SC_area_mean']) & idx_m & idx_mat & idx_wt)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['SC_area_mean']) & idx_m & idx_mat & idx_het)) ) # gWAT_area_mean female, gWAT_area_mean male print( str(np.count_nonzero(~np.isnan(metainfo['gWAT_area_mean']) & idx_f & idx_pat & idx_wt)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['gWAT_area_mean']) & idx_f & idx_pat & idx_het)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['gWAT_area_mean']) & idx_f & idx_mat & idx_wt)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['gWAT_area_mean']) & idx_f & idx_mat & idx_het)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['gWAT_area_mean']) & idx_m & idx_pat & idx_wt)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['gWAT_area_mean']) & idx_m & idx_pat & idx_het)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['gWAT_area_mean']) & idx_m & idx_mat & idx_wt)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['gWAT_area_mean']) & idx_m & idx_mat & idx_het)) ) # SC_kN female, SC_area_mean male print( str(np.count_nonzero(~np.isnan(metainfo['SC_kN']) & idx_f & idx_pat & idx_wt)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['SC_kN']) & idx_f & idx_pat & idx_het)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['SC_kN']) & idx_f & idx_mat & idx_wt)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['SC_kN']) & idx_f & idx_mat & idx_het)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['SC_kN']) & idx_m & idx_pat & idx_wt)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['SC_kN']) & idx_m & idx_pat & idx_het)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['SC_kN']) & idx_m & idx_mat & idx_wt)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['SC_kN']) & idx_m & idx_mat & idx_het)) ) # gWAT_area_mean female, gWAT_area_mean male print( str(np.count_nonzero(~np.isnan(metainfo['gWAT_kN']) & idx_f & idx_pat & idx_wt)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['gWAT_kN']) & idx_f & idx_pat & idx_het)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['gWAT_kN']) & idx_f & idx_mat & idx_wt)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['gWAT_kN']) & idx_f & idx_mat & idx_het)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['gWAT_kN']) & idx_m & idx_pat & idx_wt)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['gWAT_kN']) & idx_m & idx_pat & idx_het)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['gWAT_kN']) & idx_m & idx_mat & idx_wt)) + ', ' + str(np.count_nonzero(~np.isnan(metainfo['gWAT_kN']) & idx_m & idx_mat & idx_het)) ) if DEBUG: plt.clf() plt.scatter(metainfo['gWAT_vol_mean'], metainfo['gWAT_vol_median']) plt.clf() plt.scatter(metainfo['SC_vol_mean'], metainfo['SC_vol_median']) if DEBUG: # compare SQWAT to gWAT plt.clf() plt.scatter(metainfo['SC_vol_median'], metainfo['gWAT_vol_median']) plt.scatter(metainfo['SC_vol_mean'], metainfo['gWAT_vol_median']) # BW vs. SQWAT plt.clf() plt.scatter(metainfo['SC_vol_median'], metainfo['BW']) plt.scatter(metainfo['SC_vol_mean'], metainfo['BW']) # BW vs. gWAT plt.clf() plt.scatter(metainfo['gWAT_vol_median'], metainfo['BW']) plt.scatter(metainfo['gWAT_vol_mean'], metainfo['BW']) if DEBUG: print(np.min(metainfo['SC_vol_mean']) * 1e12) # cm^3 print(np.max(metainfo['SC_vol_mean']) * 1e12) # cm^3 print(np.min(metainfo['gWAT_vol_mean']) * 1e12) # cm^3 print(np.max(metainfo['gWAT_vol_mean']) * 1e12) # cm^3 print(np.min(metainfo['SC_kN'])) print(np.max(metainfo['SC_kN'])) print(np.min(metainfo['gWAT_kN'])) print(np.max(metainfo['gWAT_kN'])) ######################################################################################################################## ### Statistical tests comparing sex, ko_parent and genotype for SC and gWAT mean areas ### All possible combinations between: PAT WT, PAT Het, MAT WT, MAT Het ### NOT USED IN PAPER ######################################################################################################################## def make_groups(metainfo, indices, groups): metainfo['groups'] = np.nan indices_acc = set({}) for index, group in zip(indices, groups): if len(indices_acc.intersection(set(index))) > 0: raise ValueError('Index in more than one group') metainfo.loc[index, 'groups'] = group # ANOVA: sex groups model = sm.formula.ols('SC_area_mean_1e12 ~ C(sex)', data=metainfo).fit() print(model.summary()) # Tukey's HSD post-hoc comparison: SC: sex+genotype groups idx_not_nan = ~np.isnan(metainfo['SC_area_mean']) make_groups(metainfo, (idx_f & idx_wt, idx_f & idx_het, idx_m & idx_wt, idx_m & idx_het), ('f_WT', 'f_Het', 'm_WT', 'm_Het')) idx = idx_not_nan mc = MultiComparison(metainfo.loc[idx, 'SC_area_mean'] * 1e12, metainfo.loc[idx, 'groups']) mc_results = mc.tukeyhsd() print(mc_results) if DEBUG: plt.clf() mc_results.plot_simultaneous() plt.clf() plt.boxplot( (metainfo.loc[idx_f & idx_wt & idx_not_nan, 'SC_area_mean'] * 1e12, metainfo.loc[idx_f & idx_het & idx_not_nan, 'SC_area_mean'] * 1e12, metainfo.loc[idx_m & idx_wt & idx_not_nan, 'SC_area_mean'] * 1e12, metainfo.loc[idx_m & idx_het & idx_not_nan, 'SC_area_mean'] * 1e12), notch=True, labels=('f WT', 'f Het', 'm WT', 'm Het') ) plt.ylabel('Area ($\mu m^2$)', fontsize=14) plt.tick_params(labelsize=14) plt.tight_layout() # Tukey's HSD post-hoc comparison: Female SC: ko_parent + genotype groups idx_not_nan = ~np.isnan(metainfo['SC_area_mean']) make_groups(metainfo, (idx_f & idx_pat & idx_wt, idx_f & idx_pat & idx_het, idx_f & idx_mat & idx_wt, idx_f & idx_mat & idx_het), ('PAT_WT', 'PAT_Het', 'MAT_WT', 'MAT_Het')) idx = idx_not_nan & idx_f mc = MultiComparison(metainfo.loc[idx, 'SC_area_mean'] * 1e12, metainfo.loc[idx, 'groups']) mc_results = mc.tukeyhsd() print(mc_results) if DEBUG: mc_results.plot_simultaneous() plt.clf() plt.boxplot( (metainfo['SC_area_mean'][idx_f & idx_pat & idx_wt & idx_not_nan] * 1e12, metainfo['SC_area_mean'][idx_f & idx_pat & idx_het & idx_not_nan] * 1e12, metainfo['SC_area_mean'][idx_f & idx_mat & idx_wt & idx_not_nan] * 1e12, metainfo['SC_area_mean'][idx_f & idx_mat & idx_het & idx_not_nan] * 1e12), notch=False, labels=('PAT WT', 'PAT Het', 'MAT WT', 'MAT Het') ) plt.ylabel('Area ($\mu m^2$)', fontsize=14) plt.tick_params(labelsize=14) plt.tight_layout() # Tukey's HSD post-hoc comparison: Female gWAT: ko_parent + genotype groups idx_not_nan = ~np.isnan(metainfo['gWAT_area_mean']) make_groups(metainfo, (idx_f & idx_pat & idx_wt, idx_f & idx_pat & idx_het, idx_f & idx_mat & idx_wt, idx_f & idx_mat & idx_het), ('PAT_WT', 'PAT_Het', 'MAT_WT', 'MAT_Het')) idx = idx_not_nan & idx_f mc = MultiComparison(metainfo.loc[idx, 'gWAT_area_mean'] * 1e12, metainfo.loc[idx, 'groups']) mc_results = mc.tukeyhsd() print(mc_results) if DEBUG: mc_results.plot_simultaneous() plt.clf() plt.boxplot( (metainfo['gWAT_area_mean'][idx_f & idx_pat & idx_wt & idx_not_nan] * 1e12, metainfo['gWAT_area_mean'][idx_f & idx_pat & idx_het & idx_not_nan] * 1e12, metainfo['gWAT_area_mean'][idx_f & idx_mat & idx_wt & idx_not_nan] * 1e12, metainfo['gWAT_area_mean'][idx_f & idx_mat & idx_het & idx_not_nan] * 1e12), notch=False, labels=('PAT WT', 'PAT Het', 'MAT WT', 'MAT Het') ) plt.ylabel('Area ($\mu m^2$)', fontsize=14) plt.tick_params(labelsize=14) plt.tight_layout() # Tukey's HSD post-hoc comparison: Male SC: ko_parent + genotype groups idx_not_nan = ~np.isnan(metainfo['SC_area_mean']) make_groups(metainfo, (idx_m & idx_pat & idx_wt, idx_m & idx_pat & idx_het, idx_m & idx_mat & idx_wt, idx_m & idx_mat & idx_het), ('PAT_WT', 'PAT_Het', 'MAT_WT', 'MAT_Het')) idx = idx_not_nan * idx_m mc = MultiComparison(metainfo.loc[idx, 'SC_area_mean'] * 1e12, metainfo.loc[idx, 'groups']) mc_results = mc.tukeyhsd() print(mc_results) idx_not_nan = ~np.isnan(metainfo['SC_kN']) make_groups(metainfo, (idx_m & idx_pat & idx_wt, idx_m & idx_pat & idx_het, idx_m & idx_mat & idx_wt, idx_m & idx_mat & idx_het), ('PAT_WT', 'PAT_Het', 'MAT_WT', 'MAT_Het')) idx = idx_not_nan * idx_m mc = MultiComparison(metainfo.loc[idx, 'SC_kN'], metainfo.loc[idx, 'groups']) mc_results = mc.tukeyhsd() print(mc_results) if DEBUG: mc_results.plot_simultaneous() plt.clf() plt.boxplot( (metainfo['SC_kN'][idx_m & idx_pat & idx_wt & idx_not_nan], metainfo['SC_kN'][idx_m & idx_pat & idx_het & idx_not_nan], metainfo['SC_kN'][idx_m & idx_mat & idx_wt & idx_not_nan], metainfo['SC_kN'][idx_m & idx_mat & idx_het & idx_not_nan]), notch=False, labels=('PAT WT', 'PAT Het', 'MAT WT', 'MAT Het') ) plt.ylabel('Weighted cell count', fontsize=14) plt.tick_params(labelsize=14) plt.tight_layout() # Tukey's HSD post-hoc comparison: Male gWAT: ko_parent + genotype groups idx_not_nan = ~np.isnan(metainfo['gWAT_area_mean']) make_groups(metainfo, (idx_m & idx_pat & idx_wt, idx_m & idx_pat & idx_het, idx_m & idx_mat & idx_wt, idx_m & idx_mat & idx_het), ('PAT_WT', 'PAT_Het', 'MAT_WT', 'MAT_Het')) idx = idx_not_nan * idx_m mc = MultiComparison(metainfo.loc[idx, 'gWAT_area_mean'] * 1e12, metainfo.loc[idx, 'groups']) mc_results = mc.tukeyhsd() print(mc_results) idx_not_nan = ~np.isnan(metainfo['gWAT_kN']) make_groups(metainfo, (idx_m & idx_pat & idx_wt, idx_m & idx_pat & idx_het, idx_m & idx_mat & idx_wt, idx_m & idx_mat & idx_het), ('PAT_WT', 'PAT_Het', 'MAT_WT', 'MAT_Het')) idx = idx_not_nan * idx_m mc = MultiComparison(metainfo.loc[idx, 'gWAT_kN'], metainfo.loc[idx, 'groups']) mc_results = mc.tukeyhsd() print(mc_results) if DEBUG: mc_results.plot_simultaneous() plt.clf() plt.boxplot( (metainfo['gWAT_kN'][idx_f & idx_pat & idx_wt & idx_not_nan], metainfo['gWAT_kN'][idx_f & idx_pat & idx_het & idx_not_nan], metainfo['gWAT_kN'][idx_f & idx_mat & idx_wt & idx_not_nan], metainfo['gWAT_kN'][idx_f & idx_mat & idx_het & idx_not_nan]), notch=False, labels=('PAT WT', 'PAT Het', 'MAT WT', 'MAT Het') ) plt.ylabel('Weighted cell count', fontsize=14) plt.tick_params(labelsize=14) plt.tight_layout() ######################################################################################################################## ### Female and male SC and gWAT mean cell area stratified in MAT and PAT ### Only compare: PAT WT vs. PAT Het and MAT WT vs. MAT Het ### USED IN PAPER ######################################################################################################################## pval = [] idx_not_nan = ~np.isnan(metainfo['SC_area_mean']) # Female PAT, WT vs Het idx_subset = idx_not_nan & idx_f & idx_pat model = sm.formula.ols('SC_area_mean ~ C(genotype)', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('SC Female PAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(1e12 * model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Female MAT, WT vs Het idx_subset = idx_not_nan & idx_f & idx_mat model = sm.formula.ols('SC_area_mean ~ C(genotype)', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('SC Female MAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(1e12 * model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Male PAT, WT vs Het idx_subset = idx_not_nan & idx_m & idx_pat model = sm.formula.ols('SC_area_mean ~ C(genotype)', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('SC male PAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(1e12 * model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Male MAT, WT vs Het idx_subset = idx_not_nan & idx_m & idx_mat model = sm.formula.ols('SC_area_mean ~ C(genotype) ', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('SC male MAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(1e12 * model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) idx_not_nan = ~np.isnan(metainfo['gWAT_area_mean']) # Female PAT, WT vs Het idx_subset = idx_not_nan & idx_f & idx_pat model = sm.formula.ols('gWAT_area_mean ~ C(genotype)', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('gWAT Female PAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(1e12 * model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Female MAT, WT vs Het idx_subset = idx_not_nan & idx_f & idx_mat model = sm.formula.ols('gWAT_area_mean ~ C(genotype)', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('gWAT Female MAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(1e12 * model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Male PAT, WT vs Het idx_subset = idx_not_nan & idx_m & idx_pat model = sm.formula.ols('gWAT_area_mean ~ C(genotype)', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('gWAT male PAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(1e12 * model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Male MAT, WT vs Het idx_subset = idx_not_nan & idx_m & idx_mat model = sm.formula.ols('gWAT_area_mean ~ C(genotype)', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('gWAT male MAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(1e12 * model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) ######################################################################################################################## ### Female and male SC and gWAT cell count (k N) stratified in MAT and PAT ### Only compare: PAT WT vs. PAT Het and MAT WT vs. MAT Het ### USED IN PAPER ######################################################################################################################## idx_not_nan = ~np.isnan(metainfo['SC_kN']) # Female PAT, WT vs Het idx_subset = idx_not_nan & idx_f & idx_pat model = sm.formula.ols('SC_kN ~ C(genotype)', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('SC Female PAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Female MAT, WT vs Het idx_subset = idx_not_nan & idx_f & idx_mat model = sm.formula.ols('SC_kN ~ C(genotype)', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('SC Female MAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Male PAT, WT vs Het idx_subset = idx_not_nan & idx_m & idx_pat model = sm.formula.ols('SC_kN ~ C(genotype)', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('SC male PAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Male MAT, WT vs Het idx_subset = idx_not_nan & idx_m & idx_mat model = sm.formula.ols('SC_kN ~ C(genotype) ', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('SC male MAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) idx_not_nan = ~np.isnan(metainfo['gWAT_kN']) # Female PAT, WT vs Het idx_subset = idx_not_nan & idx_f & idx_pat model = sm.formula.ols('gWAT_kN ~ C(genotype)', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('gWAT Female PAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Female MAT, WT vs Het idx_subset = idx_not_nan & idx_f & idx_mat model = sm.formula.ols('gWAT_kN ~ C(genotype)', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('gWAT Female MAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Male PAT, WT vs Het idx_subset = idx_not_nan & idx_m & idx_pat model = sm.formula.ols('gWAT_kN ~ C(genotype)', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('gWAT male PAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Male MAT, WT vs Het idx_subset = idx_not_nan & idx_m & idx_mat model = sm.formula.ols('gWAT_kN ~ C(genotype)', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('gWAT male MAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) ######################################################################################################################## ### Control for BW ### Female and male SC and gWAT mean cell area stratified in MAT and PAT ### Only compare: PAT WT vs. PAT Het and MAT WT vs. MAT Het ### USED IN PAPER ######################################################################################################################## idx_not_nan = ~np.isnan(metainfo['SC_vol_mean']) # Female PAT, WT vs Het idx_subset = idx_not_nan & idx_f & idx_pat model = sm.formula.ols('SC_vol_mean ~ C(genotype) + BW', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('SC Female PAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(1e18 * model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Female MAT, WT vs Het idx_subset = idx_not_nan & idx_f & idx_mat model = sm.formula.ols('SC_vol_mean ~ C(genotype) + BW', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('SC Female MAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(1e18 * model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Male PAT, WT vs Het idx_subset = idx_not_nan & idx_m & idx_pat model = sm.formula.ols('SC_vol_mean ~ C(genotype) + BW', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('SC male PAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(1e18 * model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Male MAT, WT vs Het idx_subset = idx_not_nan & idx_m & idx_mat model = sm.formula.ols('SC_vol_mean ~ C(genotype) + BW', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('SC male MAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(1e18 * model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) idx_not_nan = ~np.isnan(metainfo['gWAT_vol_mean']) # Female PAT, WT vs Het idx_subset = idx_not_nan & idx_f & idx_pat model = sm.formula.ols('gWAT_vol_mean ~ C(genotype) + BW', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('gWAT Female PAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(1e18 * model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Female MAT, WT vs Het idx_subset = idx_not_nan & idx_f & idx_mat model = sm.formula.ols('gWAT_vol_mean ~ C(genotype) + BW', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('gWAT Female MAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(1e18 * model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Male PAT, WT vs Het idx_subset = idx_not_nan & idx_m & idx_pat model = sm.formula.ols('gWAT_vol_mean ~ C(genotype) + BW', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('gWAT male PAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(1e18 * model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Male MAT, WT vs Het idx_subset = idx_not_nan & idx_m & idx_mat model = sm.formula.ols('gWAT_vol_mean ~ C(genotype) + BW', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('gWAT male MAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(1e18 * model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) ######################################################################################################################## ### Adjust for BW ### Female and male SC and gWAT cell count (k N) stratified in MAT and PAT ### Only compare: PAT WT vs. PAT Het and MAT WT vs. MAT Het ### USED IN PAPER ######################################################################################################################## idx_not_nan = ~np.isnan(metainfo['SC_kN']) # Female PAT, WT vs Het idx_subset = idx_not_nan & idx_f & idx_pat model = sm.formula.ols('SC_kN ~ C(genotype) + BW', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('SC Female PAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Female MAT, WT vs Het idx_subset = idx_not_nan & idx_f & idx_mat model = sm.formula.ols('SC_kN ~ C(genotype) + BW', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('SC Female MAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Male PAT, WT vs Het idx_subset = idx_not_nan & idx_m & idx_pat model = sm.formula.ols('SC_kN ~ C(genotype) + BW', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('SC male PAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Male MAT, WT vs Het idx_subset = idx_not_nan & idx_m & idx_mat model = sm.formula.ols('SC_kN ~ C(genotype) + BW', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('SC male MAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) idx_not_nan = ~np.isnan(metainfo['gWAT_kN']) # Female PAT, WT vs Het idx_subset = idx_not_nan & idx_f & idx_pat model = sm.formula.ols('gWAT_kN ~ C(genotype) + BW', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('gWAT Female PAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Female MAT, WT vs Het idx_subset = idx_not_nan & idx_f & idx_mat model = sm.formula.ols('gWAT_kN ~ C(genotype) + BW', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('gWAT Female MAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Male PAT, WT vs Het idx_subset = idx_not_nan & idx_m & idx_pat model = sm.formula.ols('gWAT_kN ~ C(genotype) + BW', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('gWAT male PAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Male MAT, WT vs Het idx_subset = idx_not_nan & idx_m & idx_mat model = sm.formula.ols('gWAT_kN ~ C(genotype) + BW', data=metainfo, subset=idx_subset).fit() # print(model.summary()) pval.append(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) print('gWAT male MAT, WT vs Het: p = ' + str(model.pvalues['C(genotype)[T.KLF14-KO:Het]']) + ', meandiff = ' + str(model.params['C(genotype)[T.KLF14-KO:Het]']) + ',\n' + 'F = ' + str(model.fvalue) + '(' + str(int(model.df_model)) + ', ' + str(int(model.df_resid)) + ')' ) # Benjamini/Hochberg tests reject_h0, pval_adj, _, _ = multipletests(pval, alpha=0.05, method='fdr_bh', is_sorted=False, returnsorted=False) print('Original pvalues:\n' + str(np.reshape(pval, (8, 4)))) print('Adjusted pvalues:\n' + str(np.reshape(pval_adj, (8, 4)))) ######################################################################################################################## ### Model gWAT ~ gWAT_vol_mean_1e12 * C(ko_parent) * C(sex) ### INVALID model: No significance for ko_parent ### NOT USED IN PAPER ######################################################################################################################## idx_not_nan = np.where(~np.isnan(metainfo['SC']) * ~np.isnan(metainfo['gWAT']) * ~np.isnan(metainfo['BW']))[0] # data that we are going to use idx_subset = idx_not_nan model = sm.formula.ols('gWAT ~ gWAT_vol_mean_1e12 * C(ko_parent) * C(sex)', data=metainfo, subset=idx_subset).fit() print(model.summary()) # OLS Regression Results # ============================================================================== # Dep. Variable: gWAT R-squared: 0.386 # Model: OLS Adj. R-squared: 0.316 # Method: Least Squares F-statistic: 5.557 # Date: Fri, 28 Feb 2020 Prob (F-statistic): 5.36e-05 # Time: 19:36:00 Log-Likelihood: -13.303 # No. Observations: 70 AIC: 42.61 # Df Residuals: 62 BIC: 60.59 # Df Model: 7 # Covariance Type: nonrobust # ====================================================================================================================== # coef std err t P>|t| [0.025 0.975] # ---------------------------------------------------------------------------------------------------------------------- # Intercept 0.2711 0.179 1.513 0.135 -0.087 0.629 # C(ko_parent)[T.MAT] 0.0546 0.255 0.214 0.831 -0.455 0.564 # C(sex)[T.m] 0.1560 0.606 0.258 0.798 -1.054 1.366 # C(ko_parent)[T.MAT]:C(sex)[T.m] 1.6161 0.858 1.883 0.064 -0.099 3.331 # gWAT_vol_mean_1e12 2.5752 0.839 3.068 0.003 0.897 4.253 # gWAT_vol_mean_1e12:C(ko_parent)[T.MAT] -0.7311 1.031 -0.709 0.481 -2.792 1.329 # gWAT_vol_mean_1e12:C(sex)[T.m] -1.0670 1.574 -0.678 0.500 -4.214 2.080 # gWAT_vol_mean_1e12:C(ko_parent)[T.MAT]:C(sex)[T.m] -3.1432 2.181 -1.441 0.154 -7.502 1.216 # ============================================================================== # Omnibus: 5.047 Durbin-Watson: 1.692 # Prob(Omnibus): 0.080 Jarque-Bera (JB): 4.181 # Skew: 0.550 Prob(JB): 0.124 # Kurtosis: 3.472 Cond. No. 105. # ============================================================================== # Warnings: # [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. # partial regression and influence plots if DEBUG: sm.graphics.plot_partregress_grid(model) sm.graphics.influence_plot(model, criterion="cooks") def model_line(model, sex, ko_parent, gWAT_vol_mean_1e12): sex = np.float(sex == 'm') ko_parent = np.float(ko_parent == 'MAT') return model.params['Intercept'] + \ model.params['C(ko_parent)[T.MAT]'] * ko_parent + \ model.params['C(sex)[T.m]'] * sex + \ model.params['C(ko_parent)[T.MAT]:C(sex)[T.m]'] * ko_parent * sex + \ model.params['gWAT_vol_mean_1e12'] * gWAT_vol_mean_1e12 + \ model.params['gWAT_vol_mean_1e12:C(ko_parent)[T.MAT]'] * gWAT_vol_mean_1e12 * ko_parent + \ model.params['gWAT_vol_mean_1e12:C(sex)[T.m]'] * gWAT_vol_mean_1e12 * sex + \ model.params['gWAT_vol_mean_1e12:C(ko_parent)[T.MAT]:C(sex)[T.m]'] * gWAT_vol_mean_1e12 * ko_parent * sex # plot BW as a function of gWAT if DEBUG: annotate = False plt.clf() # f PAT idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:WT') gWAT_vol_mean_1e12 = np.linspace(np.min(metainfo['gWAT_vol_mean_1e12'][idx]), np.max(metainfo['gWAT_vol_mean_1e12'][idx])) plt.scatter(metainfo['gWAT_vol_mean_1e12'][idx], metainfo['gWAT'][idx], label='f PAT WT', color='C0', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT_vol_mean_1e12'][i], metainfo['gWAT'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:Het') gWAT_vol_mean_1e12 = np.linspace(np.min(metainfo['gWAT_vol_mean_1e12'][idx]), np.max(metainfo['gWAT_vol_mean_1e12'][idx])) plt.scatter(metainfo['gWAT_vol_mean_1e12'][idx], metainfo['gWAT'][idx], label='f PAT Het', color='C0') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT_vol_mean_1e12'][i], metainfo['gWAT'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') gWAT_vol_mean_1e12 = np.linspace(np.min(metainfo['gWAT_vol_mean_1e12'][idx]), np.max(metainfo['gWAT_vol_mean_1e12'][idx])) gWAT = model_line(model, sex='f', ko_parent='PAT', gWAT_vol_mean_1e12=gWAT_vol_mean_1e12) plt.plot(gWAT_vol_mean_1e12, gWAT, color='C0', linewidth=3) # f MAT idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:WT') gWAT_vol_mean_1e12 = np.linspace(np.min(metainfo['gWAT_vol_mean_1e12'][idx]), np.max(metainfo['gWAT_vol_mean_1e12'][idx])) plt.scatter(metainfo['gWAT_vol_mean_1e12'][idx], metainfo['gWAT'][idx], label='f MAT WT', color='C2', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT_vol_mean_1e12'][i], metainfo['gWAT'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:Het') gWAT_vol_mean_1e12 = np.linspace(np.min(metainfo['gWAT_vol_mean_1e12'][idx]), np.max(metainfo['gWAT_vol_mean_1e12'][idx])) plt.scatter(metainfo['gWAT_vol_mean_1e12'][idx], metainfo['gWAT'][idx], label='f MAT Het', color='C2') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT_vol_mean_1e12'][i], metainfo['gWAT'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') gWAT_vol_mean_1e12 = np.linspace(np.min(metainfo['gWAT_vol_mean_1e12'][idx]), np.max(metainfo['gWAT_vol_mean_1e12'][idx])) gWAT = model_line(model, sex='f', ko_parent='MAT', gWAT_vol_mean_1e12=gWAT_vol_mean_1e12) plt.plot(gWAT_vol_mean_1e12, gWAT, color='C2', linewidth=3) # m PAT idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:WT') gWAT_vol_mean_1e12 = np.linspace(np.min(metainfo['gWAT_vol_mean_1e12'][idx]), np.max(metainfo['gWAT_vol_mean_1e12'][idx])) plt.scatter(metainfo['gWAT_vol_mean_1e12'][idx], metainfo['gWAT'][idx], label='m PAT WT', color='k', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT_vol_mean_1e12'][i], metainfo['gWAT'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:Het') gWAT_vol_mean_1e12 = np.linspace(np.min(metainfo['gWAT_vol_mean_1e12'][idx]), np.max(metainfo['gWAT_vol_mean_1e12'][idx])) plt.scatter(metainfo['gWAT_vol_mean_1e12'][idx], metainfo['gWAT'][idx], label='m PAT Het', color='k') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT_vol_mean_1e12'][i], metainfo['gWAT'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') gWAT_vol_mean_1e12 = np.linspace(np.min(metainfo['gWAT_vol_mean_1e12'][idx]), np.max(metainfo['gWAT_vol_mean_1e12'][idx])) gWAT = model_line(model, sex='m', ko_parent='PAT', gWAT_vol_mean_1e12=gWAT_vol_mean_1e12) plt.plot(gWAT_vol_mean_1e12, gWAT, color='k', linewidth=3) # m MAT idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:WT') gWAT_vol_mean_1e12 = np.linspace(np.min(metainfo['gWAT_vol_mean_1e12'][idx]), np.max(metainfo['gWAT_vol_mean_1e12'][idx])) plt.scatter(metainfo['gWAT_vol_mean_1e12'][idx], metainfo['gWAT'][idx], label='m MAT WT', color='C3', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT_vol_mean_1e12'][i], metainfo['gWAT'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:Het') gWAT_vol_mean_1e12 = np.linspace(np.min(metainfo['gWAT_vol_mean_1e12'][idx]), np.max(metainfo['gWAT_vol_mean_1e12'][idx])) plt.scatter(metainfo['gWAT_vol_mean_1e12'][idx], metainfo['gWAT'][idx], label='m MAT Het', color='C3') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['gWAT_vol_mean_1e12'][i], metainfo['gWAT'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'MAT') gWAT_vol_mean_1e12 = np.linspace(np.min(metainfo['gWAT_vol_mean_1e12'][idx]), np.max(metainfo['gWAT_vol_mean_1e12'][idx])) gWAT = model_line(model, sex='m', ko_parent='MAT', gWAT_vol_mean_1e12=gWAT_vol_mean_1e12) plt.plot(gWAT_vol_mean_1e12, gWAT, color='C3', linewidth=3) plt.legend() plt.xlabel(r'$\overline{V}_{gWAT}$ (g)', fontsize=14) plt.ylabel('m$_{gWAT}$ (g)', fontsize=14) plt.tick_params(labelsize=14) plt.tight_layout() plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_gWAT_model_Vm.png'), bbox_inches='tight') plt.savefig(os.path.join(figures_dir, 'klf14_b6ntac_exp_0099_gWAT_model_Vm.svg'), bbox_inches='tight') ######################################################################################################################## ### Model SC ~ SC_vol_mean_1e12 * C(ko_parent) * C(sex) ### INVALID model, like previous ### NOT USED IN PAPER ######################################################################################################################## idx_not_nan = np.where(~np.isnan(metainfo['SC']) * ~np.isnan(metainfo['gWAT']) * ~np.isnan(metainfo['BW']))[0] # data that we are going to use idx_subset = idx_not_nan model = sm.formula.ols('SC ~ SC_vol_mean_1e12 * C(ko_parent) * C(sex)', data=metainfo, subset=idx_subset).fit() print(model.summary()) # OLS Regression Results # ============================================================================== # Dep. Variable: SC R-squared: 0.362 # Model: OLS Adj. R-squared: 0.294 # Method: Least Squares F-statistic: 5.347 # Date: Thu, 27 Feb 2020 Prob (F-statistic): 7.01e-05 # Time: 16:08:51 Log-Likelihood: -12.523 # No. Observations: 74 AIC: 41.05 # Df Residuals: 66 BIC: 59.48 # Df Model: 7 # Covariance Type: nonrobust # ==================================================================================================================== # coef std err t P>|t| [0.025 0.975] # -------------------------------------------------------------------------------------------------------------------- # Intercept 0.0901 0.165 0.546 0.587 -0.239 0.419 # C(ko_parent)[T.MAT] 0.1587 0.218 0.729 0.468 -0.276 0.593 # C(sex)[T.m] -0.1723 0.324 -0.532 0.597 -0.819 0.475 # C(ko_parent)[T.MAT]:C(sex)[T.m] 0.5270 0.455 1.159 0.251 -0.381 1.435 # SC_vol_mean_1e12 4.1312 1.309 3.156 0.002 1.518 6.744 # SC_vol_mean_1e12:C(ko_parent)[T.MAT] -3.4677 1.480 -2.342 0.022 -6.424 -0.512 # SC_vol_mean_1e12:C(sex)[T.m] -0.8534 1.670 -0.511 0.611 -4.189 2.482 # SC_vol_mean_1e12:C(ko_parent)[T.MAT]:C(sex)[T.m] 0.0342 2.143 0.016 0.987 -4.245 4.314 # ============================================================================== # Omnibus: 22.663 Durbin-Watson: 1.433 # Prob(Omnibus): 0.000 Jarque-Bera (JB): 30.557 # Skew: 1.358 Prob(JB): 2.31e-07 # Kurtosis: 4.593 Cond. No. 119. # ============================================================================== # Warnings: # [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. # partial regression and influence plots if DEBUG: sm.graphics.plot_partregress_grid(model) sm.graphics.influence_plot(model, criterion="cooks") def model_line(model, sex, ko_parent, SC_vol_mean_1e12): sex = np.float(sex == 'm') ko_parent = np.float(ko_parent == 'MAT') return model.params['Intercept'] + \ model.params['C(ko_parent)[T.MAT]'] * ko_parent + \ model.params['C(sex)[T.m]'] * sex + \ model.params['C(ko_parent)[T.MAT]:C(sex)[T.m]'] * ko_parent * sex + \ model.params['SC_vol_mean_1e12'] * SC_vol_mean_1e12 + \ model.params['SC_vol_mean_1e12:C(ko_parent)[T.MAT]'] * SC_vol_mean_1e12 * ko_parent + \ model.params['SC_vol_mean_1e12:C(sex)[T.m]'] * SC_vol_mean_1e12 * sex + \ model.params['SC_vol_mean_1e12:C(ko_parent)[T.MAT]:C(sex)[T.m]'] * SC_vol_mean_1e12 * ko_parent * sex # plot BW as a function of SC if DEBUG: annotate = False plt.clf() # f PAT idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:WT') SC_vol_mean_1e12 = np.linspace(np.min(metainfo['SC_vol_mean_1e12'][idx]), np.max(metainfo['SC_vol_mean_1e12'][idx])) plt.scatter(metainfo['SC_vol_mean_1e12'][idx], metainfo['SC'][idx], label='f PAT WT', color='C0', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC_vol_mean_1e12'][i], metainfo['SC'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:Het') SC_vol_mean_1e12 = np.linspace(np.min(metainfo['SC_vol_mean_1e12'][idx]), np.max(metainfo['SC_vol_mean_1e12'][idx])) plt.scatter(metainfo['SC_vol_mean_1e12'][idx], metainfo['SC'][idx], label='f PAT Het', color='C0') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC_vol_mean_1e12'][i], metainfo['SC'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'PAT') SC_vol_mean_1e12 = np.linspace(np.min(metainfo['SC_vol_mean_1e12'][idx]), np.max(metainfo['SC_vol_mean_1e12'][idx])) SC = model_line(model, sex='f', ko_parent='PAT', SC_vol_mean_1e12=SC_vol_mean_1e12) plt.plot(SC_vol_mean_1e12, SC, color='C0', linewidth=3) # f MAT idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:WT') SC_vol_mean_1e12 = np.linspace(np.min(metainfo['SC_vol_mean_1e12'][idx]), np.max(metainfo['SC_vol_mean_1e12'][idx])) plt.scatter(metainfo['SC_vol_mean_1e12'][idx], metainfo['SC'][idx], label='f MAT WT', color='C2', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC_vol_mean_1e12'][i], metainfo['SC'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') * (metainfo['genotype'] == 'KLF14-KO:Het') SC_vol_mean_1e12 = np.linspace(np.min(metainfo['SC_vol_mean_1e12'][idx]), np.max(metainfo['SC_vol_mean_1e12'][idx])) plt.scatter(metainfo['SC_vol_mean_1e12'][idx], metainfo['SC'][idx], label='f MAT Het', color='C2') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC_vol_mean_1e12'][i], metainfo['SC'][i])) idx = (metainfo['sex'] == 'f') * (metainfo['ko_parent'] == 'MAT') SC_vol_mean_1e12 = np.linspace(np.min(metainfo['SC_vol_mean_1e12'][idx]), np.max(metainfo['SC_vol_mean_1e12'][idx])) SC = model_line(model, sex='f', ko_parent='MAT', SC_vol_mean_1e12=SC_vol_mean_1e12) plt.plot(SC_vol_mean_1e12, SC, color='C2', linewidth=3) # m PAT idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:WT') SC_vol_mean_1e12 = np.linspace(np.min(metainfo['SC_vol_mean_1e12'][idx]), np.max(metainfo['SC_vol_mean_1e12'][idx])) plt.scatter(metainfo['SC_vol_mean_1e12'][idx], metainfo['SC'][idx], label='m PAT WT', color='k', facecolor='none') if annotate: for i in np.where(idx)[0]: plt.annotate(i, (metainfo['SC_vol_mean_1e12'][i], metainfo['SC'][i])) idx = (metainfo['sex'] == 'm') * (metainfo['ko_parent'] == 'PAT') * (metainfo['genotype'] == 'KLF14-KO:Het') SC_vol_mean_1e12 = np.linspace(np.min(metainfo['SC_vol_mean_1e12'][idx]), np.max(metainfo['SC_vol_mean_1e12'][idx])) plt.scatter(metainfo['SC_vol_mean_1e12'][idx], metainfo['SC'][idx], label='m PAT Het', color='k') if annotate: for i in
np.where(idx)
numpy.where
# -*- coding: utf-8 -*- """ Created on Mon Apr 29 17:23:20 2019 Functions for smoothing generating the pdf, cdf. @author: Yanlong """ from __future__ import unicode_literals import numpy as np #import matplotlib as mpl #mpl.use('Agg') import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams['text.usetex'] = True matplotlib.rcParams['xtick.direction'] = 'in' matplotlib.rcParams['ytick.direction'] = 'in' matplotlib.rcParams['xtick.top'] = True matplotlib.rcParams['ytick.right'] = True from scipy.optimize import curve_fit import sys import glob import lmfit from scipy import signal from scipy import interpolate from scipy import special from scipy import optimize from scipy import stats def release_list(a): del a[:] del a def func(x, rho, a, b, rc): return np.log(np.exp(rho)/(np.exp(x)/np.exp(rc))**a / (1.+np.exp(x)/np.exp(rc))**(b-a)) def func_pw(x, rho, a, b, rc): return np.log(np.exp(rho)/((np.exp(x)/np.exp(rc))**a + (np.exp(x)/np.exp(rc))**b ) ) def func_cdf(x, rho, a, b, rc): rc = np.exp(rc) rho = np.exp(rho) x = np.exp(x) x = x/rc aa = 3-a bb = 1+a-b beta = x**aa / aa * special.hyp2f1(aa, 1-bb, aa+1, -x) try: res = np.log(4*np.pi*rho*rc**3 * beta) except: pass return res def func_cdf_inv(frac, rho, a, b, c): m_h = func_cdf(np.log(1e8), rho, a, b, c) + np.log(frac) rmin = np.log(1e-10) rmax = np.log(1e10) alpha = 0.5 while rmax - rmin > 1e-6: rmid = alpha*rmax + (1.-alpha)*rmin if func_cdf(rmid, rho, a, b, c)>m_h: rmax = rmid else: rmin = rmid rmid = alpha*rmax + (1.-alpha)*rmin return np.exp(rmid) def func_cdf_pw(x, rho, a, b, rc): rc = np.exp(rc) rho = np.exp(rho) x = np.exp(x) x = x/rc #print(rho, x, rc) ab = (a-3.) /(a-b) #print(aa, bb) hgf = x**(3.-a) / (3.-a) * special.hyp2f1(1, ab, ab+1, -x**(b-a)) return np.log(4*np.pi*rho*rc**3 * hgf) def func_cdf_pw_inv(frac, rho, a, b, c): m_h = func_cdf_pw(np.log(1e8), rho, a, b, c) + np.log(frac) rmin = np.log(1e-10) rmax = np.log(1e10) alpha = 0.5 while rmax - rmin > 1e-6: rmid = alpha*rmax + (1.-alpha)*rmin if func_cdf_pw(rmid, rho, a, b, c)>m_h: rmax = rmid else: rmin = rmid rmid = alpha*rmax + (1.-alpha)*rmin return np.exp(rmid) def cdf_sample(r_m): rmin = r_m[3,0] *1.01 rmax = r_m[-1,0] *1.01 n_points = 500 r = np.logspace(np.log10(rmin), np.log10(rmax), num=n_points) mcum = np.zeros(n_points) mt = 0. i = j = 0 for i in range(n_points): if j>=len(r_m): mcum[i] = mt continue while r_m[j, 0]<r[i]: mt += r_m[j, 1] j += 1 if j >=len(r_m): break mcum[i] = mt #print(r[i], r_m[j-1,0], mcum[i]) return np.array(list(zip(r, mcum))) def pdf_sample(r_m): rmin = r_m[3,0] *1.01 rmax = r_m[-1,0] *1.01 n_points = 20 r = np.logspace(np.log10(rmin), np.log10(rmax), num=n_points-1) eta = r[2]/r[1] dmcum = np.zeros(n_points-1) i = j = 0 for i in range(n_points-1): while j < len(r_m): if r_m[j, 0]<r[i+1]: dmcum[i]+=r_m[j, 1] j+=1 continue else: break dmcum[i] /= ((r[i]*eta)**3 - r[i]**3)*4.*np.pi/3. #print(r[i], r_m[j-1,0], mcum[i]) result = np.array(list(zip(r*np.sqrt(eta), dmcum))) return result[np.all(result > 1e-3, axis=1)] def cdf_smooth(raw_cdf): n_points = 500 x = np.log(raw_cdf[:,0]) y = np.log(raw_cdf[:,1]) #tck = interpolate.splrep(x, y, s=0) #tck, u = interpolate.splprep([x, y], s=0) f = interpolate.interp1d(x, y, kind='linear') xnew = np.linspace(x[0], x[-1], n_points) #ynew = interpolate.splev(xnew, tck, der=0) ynew = f(xnew) #spl = interpolate.UnivariateSpline(xnew, ynew) #spl.set_smoothing_factor(0.9) #ynew = spl(xnew) ynew = signal.savgol_filter(ynew, 349, 2) return np.array(list(zip(np.exp(xnew), np.exp(ynew)))) def cdf_smooth_cheby(raw_cdf): n_points = 500 x = np.log(raw_cdf[:,0]) y = np.log(raw_cdf[:,1]) #tck = interpolate.splrep(x, y, s=0) #tck, u = interpolate.splprep([x, y], s=0) f = interpolate.interp1d(x, y, kind='linear') xnew = np.linspace(x[0], x[-1], n_points) #ynew = interpolate.splev(xnew, tck, der=0) ynew = f(xnew) #spl = interpolate.UnivariateSpline(xnew, ynew) #spl.set_smoothing_factor(0.9) #ynew = spl(xnew) #ynew = signal.savgol_filter(ynew, 349, 2) cheby = np.polynomial.Chebyshev.fit(xnew, ynew, 4) #y = signal.savgol_filter(y, len(x)//8*2+1, 3) ynew = cheby(xnew) return np.array(list(zip(np.exp(xnew), np.exp(ynew)))) def cdf_smooth_mono(raw_cdf): return def pdf_cal(cdf): x = np.log(cdf[:,0]) y = np.log(cdf[:,1]) dydx_log = np.diff(y)/np.diff(x) z = dydx_log * np.exp(y[:-1])/4./np.pi/(np.exp(x[:-1]))**3 return np.array(list(zip(
np.exp(x[:-1])
numpy.exp
from unittest import TestCase from tempfile import TemporaryDirectory from pathlib import Path from giant.camera_models import PinholeModel, OwenModel, BrownModel, OpenCVModel, save, load import numpy as np import giant.rotations as at import lxml.etree as etree class TestPinholeModel(TestCase): def setUp(self): self.Class = PinholeModel def test___init__(self): model = self.Class(intrinsic_matrix=np.array([[1, 2, 3], [4, 5, 6]]), focal_length=10.5, field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], estimation_parameters='basic intrinsic', a1=1, a2=2, a3=3) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 2, 3], [4, 5, 6]]) self.assertEqual(model.focal_length, 10.5) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['basic intrinsic']) self.assertEqual(model.a1, 1) self.assertEqual(model.a2, 2) self.assertEqual(model.a3, 3) model = self.Class(kx=1, ky=2, px=4, py=5, focal_length=10.5, field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], estimation_parameters=['focal_length', 'px']) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 0, 4], [0, 2, 5]]) self.assertEqual(model.focal_length, 10.5) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['focal_length', 'px']) def test_estimation_parameters(self): model = self.Class() model.estimation_parameters = 'kx' self.assertEqual(model.estimation_parameters, ['kx']) model.estimate_multiple_misalignments = False model.estimation_parameters = ['px', 'py', 'Multiple misalignments'] self.assertEqual(model.estimation_parameters, ['px', 'py', 'multiple misalignments']) self.assertTrue(model.estimate_multiple_misalignments) def test_kx(self): model = self.Class(intrinsic_matrix=np.array([[1, 0, 0], [0, 0, 0]])) self.assertEqual(model.kx, 1) model.kx = 100 self.assertEqual(model.kx, 100) self.assertEqual(model.intrinsic_matrix[0, 0], 100) def test_ky(self): model = self.Class(intrinsic_matrix=np.array([[0, 0, 0], [0, 3, 0]])) self.assertEqual(model.ky, 3) model.ky = 100 self.assertEqual(model.ky, 100) self.assertEqual(model.intrinsic_matrix[1, 1], 100) def test_px(self): model = self.Class(intrinsic_matrix=np.array([[0, 0, 20], [0, 3, 0]])) self.assertEqual(model.px, 20) model.px = 100 self.assertEqual(model.px, 100) self.assertEqual(model.intrinsic_matrix[0, 2], 100) def test_py(self): model = self.Class(intrinsic_matrix=np.array([[0, 0, 0], [0, 0, 10]])) self.assertEqual(model.py, 10) model.py = 100 self.assertEqual(model.py, 100) self.assertEqual(model.intrinsic_matrix[1, 2], 100) def test_a1(self): model = self.Class(temperature_coefficients=np.array([10, 0, 0])) self.assertEqual(model.a1, 10) model.a1 = 100 self.assertEqual(model.a1, 100) self.assertEqual(model.temperature_coefficients[0], 100) def test_a2(self): model = self.Class(temperature_coefficients=np.array([0, 10, 0])) self.assertEqual(model.a2, 10) model.a2 = 100 self.assertEqual(model.a2, 100) self.assertEqual(model.temperature_coefficients[1], 100) def test_a3(self): model = self.Class(temperature_coefficients=np.array([0, 0, 10])) self.assertEqual(model.a3, 10) model.a3 = 100 self.assertEqual(model.a3, 100) self.assertEqual(model.temperature_coefficients[2], 100) def test_intrinsic_matrix_inv(self): model = self.Class(kx=5, ky=10, px=100, py=-5) np.testing.assert_array_almost_equal(model.intrinsic_matrix @ np.vstack([model.intrinsic_matrix_inv, [0, 0, 1]]), [[1, 0, 0], [0, 1, 0]]) np.testing.assert_array_almost_equal(model.intrinsic_matrix_inv @ np.vstack([model.intrinsic_matrix, [0, 0, 1]]), [[1, 0, 0], [0, 1, 0]]) def test_get_temperature_scale(self): model = self.Class(temperature_coefficients=[1, 2, 3.]) self.assertEqual(model.get_temperature_scale(1), 7) np.testing.assert_array_equal(model.get_temperature_scale([1, 2]), [7, 35]) np.testing.assert_array_equal(model.get_temperature_scale([-1, 2.]), [-1, 35]) def test_apply_distortion(self): inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] model = self.Class() for inp in inputs: gnom_dist = model.apply_distortion(np.array(inp)) np.testing.assert_array_almost_equal(gnom_dist, inp) def test_get_projections(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, a1=1, a2=2, a3=3) with self.subTest(misalignment=None): for point in points: gnom, _, pix = model.get_projections(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(gnom, gnom_true) np.testing.assert_array_equal(pix, pix_true) with self.subTest(temperature=1): for point in points: gnom, _, pix = model.get_projections(point, temperature=1) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true *= model.get_temperature_scale(1) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(gnom, gnom_true) np.testing.assert_array_equal(pix, pix_true) with self.subTest(temperature=-10.5): for point in points: gnom, _, pix = model.get_projections(point, temperature=-10.5) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true *= model.get_temperature_scale(-10.5) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(gnom, gnom_true) np.testing.assert_array_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[0, 0, np.pi]) with self.subTest(misalignment=[0, 0, np.pi]): for point in points: gnom, _, pix = model.get_projections(point) gnom_true = -model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[np.pi, 0, 0]) with self.subTest(misalignment=[np.pi, 0, 0]): for point in points: gnom, _, pix = model.get_projections(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true[0] *= -1 pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[0, np.pi, 0]) with self.subTest(misalignment=[0, np.pi, 0]): for point in points: gnom, _, pix = model.get_projections(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true[1] *= -1 pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[1, 0.2, 0.3]) with self.subTest(misalignment=[1, 0.2, 0.3]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point gnom, _, pix = model.get_projections(point) gnom_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): for point in points: rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() point_new = rot_mat @ point gnom, _, pix = model.get_projections(point, image=0) gnom_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) gnom, _, pix = model.get_projections(point, image=1) gnom_true = -model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) def test_project_onto_image(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, a1=-1e-3, a2=1e-6, a3=-7e-8) with self.subTest(misalignment=None): for point in points: pix = model.project_onto_image(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(pix, pix_true) with self.subTest(temperature=1): for point in points: pix = model.project_onto_image(point, temperature=1) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true *= model.get_temperature_scale(1) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(pix, pix_true) with self.subTest(temperature=-10.5): for point in points: pix = model.project_onto_image(point, temperature=-10.5) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true *= model.get_temperature_scale(-10.5) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[0, 0, np.pi]) with self.subTest(misalignment=[0, 0, np.pi]): for point in points: pix = model.project_onto_image(point) gnom_true = -model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[np.pi, 0, 0]) with self.subTest(misalignment=[np.pi, 0, 0]): for point in points: pix = model.project_onto_image(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true[0] *= -1 pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[0, np.pi, 0]) with self.subTest(misalignment=[0, np.pi, 0]): for point in points: pix = model.project_onto_image(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true[1] *= -1 pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[1, 0.2, 0.3]) with self.subTest(misalignment=[1, 0.2, 0.3]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point pix = model.project_onto_image(point) gnom_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): for point in points: rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() point_new = rot_mat @ point pix = model.project_onto_image(point, image=0) gnom_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) pix = model.project_onto_image(point, image=1) gnom_true = -model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) def test_compute_pixel_jacobian(self): def num_deriv(uvec, cmodel, delta=1e-8, image=0, temperature=0) -> np.ndarray: uvec = np.array(uvec).reshape(3, -1) pix_true = cmodel.project_onto_image(uvec, image=image, temperature=temperature) uvec_pert = uvec + [[delta], [0], [0]] pix_pert_x_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec + [[0], [delta], [0]] pix_pert_y_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec + [[0], [0], [delta]] pix_pert_z_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[delta], [0], [0]] pix_pert_x_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[0], [delta], [0]] pix_pert_y_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[0], [0], [delta]] pix_pert_z_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) return np.array([(pix_pert_x_f-pix_pert_x_b)/(2*delta), (pix_pert_y_f-pix_pert_y_b)/(2*delta), (pix_pert_z_f-pix_pert_z_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "kx": 30, "ky": 40, "px": 4005.23, "py": 4005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0.5, 0, 1]]).T, np.array([[0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1]]).T, np.array([[0.1, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [1, 2, 1200.23]]).T] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for temp in temperatures: for input in inputs: for image in range(3): with self.subTest(image=image, temp=temp, input=input): jac_ana = model.compute_pixel_jacobian(input, image=image, temperature=temp) jac_num = num_deriv(input, model, image=image, temperature=temp, delta=1e-2) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test__compute_dcamera_point_dgnomic(self): def num_deriv(gnomic_locations, cmodel, delta=1e-6) -> np.ndarray: def g2u(g): v = np.vstack([g, cmodel.focal_length*np.ones(g.shape[-1])]) return v/np.linalg.norm(v, axis=0, keepdims=True) gnomic_locations = np.asarray(gnomic_locations).reshape(2, -1) gnom_pert = gnomic_locations + [[delta], [0]] cam_loc_pert_x_f = g2u(gnom_pert) gnom_pert = gnomic_locations + [[0], [delta]] cam_loc_pert_y_f = g2u(gnom_pert) gnom_pert = gnomic_locations - [[delta], [0]] cam_loc_pert_x_b = g2u(gnom_pert) gnom_pert = gnomic_locations - [[0], [delta]] cam_loc_pert_y_b = g2u(gnom_pert) return np.array([(cam_loc_pert_x_f -cam_loc_pert_x_b)/(2*delta), (cam_loc_pert_y_f -cam_loc_pert_y_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "kx": 300, "ky": 400, "px": 1005.23, "py": 1005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0, 0]]).T, np.array([[0, 2000], [2000, 0], [2000, 2000]]).T, np.array([[1000, 1000], [1000, 2000], [2000, 1000], [0, 1000], [1000, 0]]).T] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for input in inputs: with self.subTest(input=input): jac_ana = [] for gnom in input.T: jac_ana.append( model._compute_dcamera_point_dgnomic(gnom, np.sqrt(np.sum(gnom*gnom) + model.focal_length**2))) jac_ana = np.array(jac_ana) jac_num = num_deriv(input, model) np.testing.assert_almost_equal(jac_ana, jac_num) def test__compute_dgnomic_ddist_gnomic(self): def num_deriv(dist_gnomic_locations, cmodel, delta=1e-6) -> np.ndarray: def dg2g(dg): gnomic_guess = dg.copy() # perform the fpa for _ in np.arange(20): # get the distorted location assuming the current guess is correct gnomic_guess_distorted = cmodel.apply_distortion(gnomic_guess) # subtract off the residual distortion from the gnomic guess gnomic_guess += dg - gnomic_guess_distorted # check for convergence if np.all(np.linalg.norm(gnomic_guess_distorted - dg, axis=0) <= 1e-15): break return gnomic_guess dist_gnomic_locations = np.asarray(dist_gnomic_locations).reshape(2, -1) dist_gnom_pert = dist_gnomic_locations + [[delta], [0]] gnom_loc_pert_x_f = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations + [[0], [delta]] gnom_loc_pert_y_f = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations - [[delta], [0]] gnom_loc_pert_x_b = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations - [[0], [delta]] gnom_loc_pert_y_b = dg2g(dist_gnom_pert) return np.array([(gnom_loc_pert_x_f - gnom_loc_pert_x_b)/(2*delta), (gnom_loc_pert_y_f - gnom_loc_pert_y_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "kx": 300, "ky": 400, "px": 1005.23, "py": 1005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0, 0]]).T, np.array([[0, 0.1], [0.1, 0], [0.1, 0.1]]).T, np.array([[-0.1, 0], [0, -0.1], [-0.1, -0.1], [0.1, -0.1], [-0.1, 0.1]]).T] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for input in inputs: with self.subTest(input=input): jac_ana = [] for dist_gnom in input.T: jac_ana.append(model._compute_dgnomic_ddist_gnomic(dist_gnom)) jac_ana = np.array(jac_ana) jac_num = num_deriv(input, model) np.testing.assert_almost_equal(jac_ana, jac_num) def test_compute_unit_vector_jacobian(self): def num_deriv(pixels, cmodel, delta=1e-6, image=0, temperature=0) -> np.ndarray: pixels = np.array(pixels).reshape(2, -1) pix_pert = pixels + [[delta], [0]] uvec_pert_x_f = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels + [[0], [delta]] uvec_pert_y_f = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels - [[delta], [0]] uvec_pert_x_b = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels - [[0], [delta]] uvec_pert_y_b = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) return np.array([(uvec_pert_x_f-uvec_pert_x_b)/(2*delta), (uvec_pert_y_f-uvec_pert_y_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "kx": 300, "ky": 400, "px": 1005.23, "py": 1005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0, 0]]).T, np.array([[0, 2000], [2000, 0], [2000, 2000]]).T, np.array([[1000, 1000], [1000, 2000], [2000, 1000], [0, 1000], [1000, 0]]).T] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for temp in temperatures: for input in inputs: for image in range(3): with self.subTest(image=image, temp=temp, input=input): jac_ana = model.compute_unit_vector_jacobian(input, image=image, temperature=temp) jac_num = num_deriv(input, model, image=image, temperature=temp, delta=1e-2) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test__compute_dcamera_point_dmisalignment(self): def num_deriv(loc, dtheta, delta=1e-10) -> np.ndarray: mis_pert = at.rotvec_to_rotmat(np.array(dtheta) + [delta, 0, 0]).squeeze() point_pert_x_f = mis_pert @ loc mis_pert = at.rotvec_to_rotmat(np.array(dtheta) + [0, delta, 0]).squeeze() point_pert_y_f = mis_pert @ loc mis_pert = at.rotvec_to_rotmat(np.array(dtheta) + [0, 0, delta]).squeeze() point_pert_z_f = mis_pert @ loc mis_pert = at.rotvec_to_rotmat(np.array(dtheta) - [delta, 0, 0]).squeeze() point_pert_x_b = mis_pert @ loc mis_pert = at.rotvec_to_rotmat(np.array(dtheta) - [0, delta, 0]).squeeze() point_pert_y_b = mis_pert @ loc mis_pert = at.rotvec_to_rotmat(np.array(dtheta) - [0, 0, delta]).squeeze() point_pert_z_b = mis_pert @ loc return np.array([(point_pert_x_f - point_pert_x_b) / (2 * delta), (point_pert_y_f - point_pert_y_b) / (2 * delta), (point_pert_z_f - point_pert_z_b) / (2 * delta)]).T inputs = [[1, 0, 0], [0, 1, 0], [0, 0, 1], [np.sqrt(3), np.sqrt(3), np.sqrt(3)], [-1, 0, 0], [0, -1, 0], [0, 0, -1], [-np.sqrt(3), -np.sqrt(3), -np.sqrt(3)], [1, 0, 100], [0, 0.5, 1]] misalignment = [[1e-8, 0, 0], [0, 1e-8, 0], [0, 0, 1e-8], [1e-9, 1e-9, 1e-9], [-1e-8, 0, 0], [0, -1e-8, 0], [0, 0, -1e-8], [-1e-9, -1e-9, -1e-9], [1e-9, 2.3e-9, -0.5e-9]] for mis in misalignment: with self.subTest(misalignment=mis): for inp in inputs: num = num_deriv(inp, mis) # noinspection PyTypeChecker ana = self.Class._compute_dcamera_point_dmisalignment(inp) np.testing.assert_allclose(num, ana, atol=1e-10, rtol=1e-4) def test__compute_dpixel_ddistorted_gnomic(self): def num_deriv(loc, cmodel, delta=1e-8, temperature=0) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_x_f = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) + [0, delta] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_y_f = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) - [delta, 0] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_x_b = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) - [0, delta] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_y_b = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] return np.array( [(pix_pert_x_f - pix_pert_x_b) / (2 * delta), (pix_pert_y_f - pix_pert_y_b) / (2 * delta)]).T intrins_coefs = [{"kx": 1.5, "ky": 0, "px": 0, "py": 0, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 1.5, "px": 0, "py": 0, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 1.5, "py": 0, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 1.5, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 0, 'a1': 1.5, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 0, 'a1': 0, 'a2': 1.5, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 0, 'a1': 0, 'a2': 0, 'a3': 1.5}, {"kx": 1.5, "ky": 1.5, "px": 1.5, "py": 1.5, 'a1': 1.5, 'a2': 1.5, 'a3': 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] temperatures = [0, 1, -1, 10.5, -10.5] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) for temp in temperatures: with self.subTest(temp=temp, **intrins_coef): for inp in inputs: num = num_deriv(inp, model, temperature=temp) ana = model._compute_dpixel_ddistorted_gnomic(temperature=temp) np.testing.assert_allclose(num, ana, atol=1e-10) def test__compute_dgnomic_dcamera_point(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0, 0] gnom_pert_x_f = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) + [0, delta, 0] gnom_pert_y_f = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) + [0, 0, delta] gnom_pert_z_f = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) - [delta, 0, 0] gnom_pert_x_b = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) - [0, delta, 0] gnom_pert_y_b = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) - [0, 0, delta] gnom_pert_z_b = cmodel.get_projections(loc_pert)[0] return np.array([(gnom_pert_x_f - gnom_pert_x_b) / (2 * delta), (gnom_pert_y_f - gnom_pert_y_b) / (2 * delta), (gnom_pert_z_f - gnom_pert_z_b) / (2 * delta)]).T intrins_coefs = [{"focal_length": 1}, {"focal_length": 2.5}, {"focal_length": 1000}, {"focal_length": 0.1}] inputs = [[0, 0, 1], [0.5, 0, 1], [0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1], [0, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [0.5, 1e-14, 1]] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) with self.subTest(**intrins_coef): for inp in inputs: num = num_deriv(inp, model) ana = model._compute_dgnomic_dcamera_point(np.array(inp)) np.testing.assert_allclose(num, ana, atol=1e-9, rtol=1e-5) def test__compute_dgnomic_dfocal_length(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: model_pert = cmodel.copy() model_pert.focal_length += delta gnom_pert_f = model_pert.get_projections(loc)[0] model_pert = cmodel.copy() model_pert.focal_length -= delta gnom_pert_b = model_pert.get_projections(loc)[0] # noinspection PyTypeChecker return np.asarray((gnom_pert_f - gnom_pert_b) / (2 * delta)) intrins_coefs = [{"focal_length": 1}, {"focal_length": 2.5}, {"focal_length": 1000}, {"focal_length": 0.1}] inputs = [[0, 0, 1], [0.5, 0, 1], [0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1], [0, -0.5, 1], [-0.5, -0.5, 1]] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) with self.subTest(**intrins_coef): for inp in inputs: num = num_deriv(inp, model) ana = model._compute_dgnomic_dfocal_length(np.array(inp)) np.testing.assert_allclose(num, ana, atol=1e-10, rtol=1e-5) def test__compute_dpixel_dintrinsic(self): def num_deriv(loc, cmodel, delta=1e-6) -> np.ndarray: model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] return np.array([(pix_pert_kx_f - pix_pert_kx_b) / (2 * delta), (pix_pert_ky_f - pix_pert_ky_b) / (2 * delta), (pix_pert_px_f - pix_pert_px_b) / (2 * delta), (pix_pert_py_f - pix_pert_py_b) / (2 * delta)]).T intrins_coefs = [{"kx": 1.5, "ky": 0, "px": 0, "py": 0}, {"kx": 0, "ky": 1.5, "px": 0, "py": 0}, {"kx": 0, "ky": 0, "px": 1.5, "py": 0}, {"kx": 0, "ky": 0, "px": 0, "py": 1.5}, {"kx": 1.5, "ky": 1.5, "px": 1.5, "py": 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) with self.subTest(**intrins_coef): for inp in inputs: num = num_deriv(inp, model) ana = model._compute_dpixel_dintrinsic(np.array(inp)) np.testing.assert_allclose(num, ana, atol=1e-10) def test__compute_dpixel_dtemperature_coeffs(self): def num_deriv(loc, cmodel, delta=1e-6, temperature=0) -> np.ndarray: loc = np.array(loc) model_pert = cmodel.copy() model_pert.a1 += delta loc_copy = loc * model_pert.get_temperature_scale(temperature) pix_pert_a1_f = model_pert.intrinsic_matrix[:, :2] @ loc_copy + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.a2 += delta loc_copy = loc * model_pert.get_temperature_scale(temperature) pix_pert_a2_f = model_pert.intrinsic_matrix[:, :2] @ loc_copy + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.a3 += delta loc_copy = loc * model_pert.get_temperature_scale(temperature) pix_pert_a3_f = model_pert.intrinsic_matrix[:, :2] @ loc_copy + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.a1 -= delta loc_copy = loc * model_pert.get_temperature_scale(temperature) pix_pert_a1_b = model_pert.intrinsic_matrix[:, :2] @ loc_copy + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.a2 -= delta loc_copy = loc * model_pert.get_temperature_scale(temperature) pix_pert_a2_b = model_pert.intrinsic_matrix[:, :2] @ loc_copy + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.a3 -= delta loc_copy = loc * model_pert.get_temperature_scale(temperature) pix_pert_a3_b = model_pert.intrinsic_matrix[:, :2] @ loc_copy + model_pert.intrinsic_matrix[:, 2] return np.array([(pix_pert_a1_f - pix_pert_a1_b) / (2 * delta), (pix_pert_a2_f - pix_pert_a2_b) / (2 * delta), (pix_pert_a3_f - pix_pert_a3_b) / (2 * delta)]).T intrins_coefs = [{"kx": 1.5, "ky": 0, "px": 0, "py": 0, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 1.5, "px": 0, "py": 0, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 1.5, "py": 0, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 1.5, 'a1': 0, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 0, 'a1': 1.5, 'a2': 0, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 0, 'a1': 0, 'a2': 1.5, 'a3': 0}, {"kx": 0, "ky": 0, "px": 0, "py": 0, 'a1': 0, 'a2': 0, 'a3': 1.5}, {"kx": 1.5, "ky": 1.5, "px": 1.5, "py": 1.5, 'a1': 1.5, 'a2': 1.5, 'a3': 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] temperatures = [0, 1, -1, -10.5, 10.5] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) for temp in temperatures: with self.subTest(temp=temp, **intrins_coef): for inp in inputs: num = num_deriv(inp, model, temperature=temp) ana = model._compute_dpixel_dtemperature_coeffs(inp, temperature=temp) np.testing.assert_allclose(num, ana, atol=1e-10) def test_get_jacobian_row(self): def num_deriv(loc, cmodel, delta=1e-8, image=0, temperature=0) -> np.ndarray: model_pert = cmodel.copy() model_pert.focal_length += delta pix_pert_f_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.focal_length -= delta pix_pert_f_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 += delta pix_pert_a1_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 += delta pix_pert_a2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 += delta pix_pert_a3_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 -= delta pix_pert_a1_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 -= delta pix_pert_a2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 -= delta pix_pert_a3_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() delta_misalignment = 1e-6 model_pert = cmodel.copy() model_pert.misalignment[image][0] += delta_misalignment pix_pert_mx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] += delta_misalignment pix_pert_my_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] += delta_misalignment pix_pert_mz_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] -= delta_misalignment pix_pert_mx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] -= delta_misalignment pix_pert_my_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] -= delta_misalignment pix_pert_mz_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() return np.vstack([(pix_pert_f_f - pix_pert_f_b) / (delta * 2), (pix_pert_kx_f - pix_pert_kx_b) / (delta * 2), (pix_pert_ky_f - pix_pert_ky_b) / (delta * 2), (pix_pert_px_f - pix_pert_px_b) / (delta * 2), (pix_pert_py_f - pix_pert_py_b) / (delta * 2), (pix_pert_a1_f - pix_pert_a1_b) / (delta * 2), (pix_pert_a2_f - pix_pert_a2_b) / (delta * 2), (pix_pert_a3_f - pix_pert_a3_b) / (delta * 2), np.zeros((image * 3, 2)), (pix_pert_mx_f - pix_pert_mx_b) / (delta_misalignment * 2), (pix_pert_my_f - pix_pert_my_b) / (delta_misalignment * 2), (pix_pert_mz_f - pix_pert_mz_b) / (delta_misalignment * 2)]).T # TODO: investigate why this fails with slightly larger misalignments and temperature coefficients model_param = {"focal_length": 100.75, "kx": 30, "ky": 40, "px": 4005.23, "py": 4005.23, "a1": 1e-4, "a2": 2e-7, "a3": 3e-8, "misalignment": [[2e-15, -1.2e-14, 5e-16], [-1e-14, 2e-14, -1e-15]]} inputs = [[0.5, 0, 1], [0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1], [0, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [[10], [-22], [1200.23]]] temperatures = [0, -1, 1, -10.5, 10.5] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for inp in inputs: for temp in temperatures: with self.subTest(temp=temp, inp=inp): num = num_deriv(inp, model, delta=1, temperature=temp) ana = model._get_jacobian_row(np.array(inp), 0, 1, temperature=temp) np.testing.assert_allclose(ana, num, rtol=1e-2, atol=1e-10) num = num_deriv(inp, model, delta=1, image=1, temperature=temp) ana = model._get_jacobian_row(np.array(inp), 1, 2, temperature=temp) np.testing.assert_allclose(ana, num, atol=1e-10, rtol=1e-2) def test_compute_jacobian(self): def num_deriv(loc, cmodel, delta=1e-8, image=0, nimages=1, temperature=0) -> np.ndarray: model_pert = cmodel.copy() model_pert.focal_length += delta pix_pert_f_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.focal_length -= delta pix_pert_f_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 += delta pix_pert_a1_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 += delta pix_pert_a2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 += delta pix_pert_a3_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 -= delta pix_pert_a1_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 -= delta pix_pert_a2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 -= delta pix_pert_a3_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() delta_misalignment = 1e-6 model_pert = cmodel.copy() model_pert.misalignment[image][0] += delta_misalignment pix_pert_mx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] += delta_misalignment pix_pert_my_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] += delta_misalignment pix_pert_mz_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] -= delta_misalignment pix_pert_mx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] -= delta_misalignment pix_pert_my_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] -= delta_misalignment pix_pert_mz_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() return np.vstack([(pix_pert_f_f - pix_pert_f_b) / (delta * 2), (pix_pert_kx_f - pix_pert_kx_b) / (delta * 2), (pix_pert_ky_f - pix_pert_ky_b) / (delta * 2), (pix_pert_px_f - pix_pert_px_b) / (delta * 2), (pix_pert_py_f - pix_pert_py_b) / (delta * 2), (pix_pert_a1_f - pix_pert_a1_b) / (delta * 2), (pix_pert_a2_f - pix_pert_a2_b) / (delta * 2), (pix_pert_a3_f - pix_pert_a3_b) / (delta * 2), np.zeros((image * 3, 2)), (pix_pert_mx_f - pix_pert_mx_b) / (delta_misalignment * 2), (pix_pert_my_f - pix_pert_my_b) / (delta_misalignment * 2), (pix_pert_mz_f - pix_pert_mz_b) / (delta_misalignment * 2), np.zeros(((nimages - image - 1) * 3, 2))]).T model_param = {"focal_length": 100.75, "kx": 30, "ky": 40, "px": 4005.23, "py": 4005.23, "a1": 1e-5, "a2": 1e-6, "a3": 1e-7, "misalignment": [[0, 0, 1e-15], [0, 2e-15, 0], [3e-15, 0, 0]]} inputs = [np.array([[0.5, 0, 1]]).T, np.array([[0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1000]]).T, np.array([[0.1, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [1, 2, 1200.23]]).T] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(**model_param, estimation_parameters=['intrinsic', 'temperature dependence', 'multiple misalignments']) for temp in temperatures: with self.subTest(temp=temp): model.use_a_priori = False jac_ana = model.compute_jacobian(inputs, temperature=temp) jac_num = [] numim = len(inputs) for ind, inp in enumerate(inputs): for vec in inp.T: jac_num.append(num_deriv(vec.T, model, delta=1, image=ind, nimages=numim, temperature=temp)) np.testing.assert_allclose(jac_ana, np.vstack(jac_num), rtol=1e-2, atol=1e-10) model.use_a_priori = True jac_ana = model.compute_jacobian(inputs, temperature=temp) jac_num = [] numim = len(inputs) for ind, inp in enumerate(inputs): for vec in inp.T: jac_num.append(num_deriv(vec.T, model, delta=1, image=ind, nimages=numim, temperature=temp)) jac_num = np.vstack(jac_num) jac_num = np.pad(jac_num, [(0, jac_num.shape[1]), (0, 0)], 'constant', constant_values=0) jac_num[-jac_num.shape[1]:] = np.eye(jac_num.shape[1]) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-2, atol=1e-10) def test_remove_jacobian_columns(self): jac = np.arange(30).reshape(1, -1) model = self.Class() for est_param, vals in model.element_dict.items(): model.estimation_parameters = [est_param] expected = jac[0, vals] np.testing.assert_array_equal(model._remove_jacobian_columns(jac), [expected]) def test_apply_update(self): model_param = {"focal_length": 0, "kx": 0, "ky": 0, "px": 0, "py": 0, "a1": 0, "a2": 0, "a3": 0, "misalignment": [[0, 0, 0], [0, 0, 0]]} model = self.Class(**model_param, estimation_parameters=['intrinsic', 'temperature dependence', 'multiple misalignments']) update_vec = np.arange(14) model.apply_update(update_vec) keys = list(model_param.keys()) keys.remove('misalignment') for key in keys: self.assertEqual(getattr(model, key), update_vec[model.element_dict[key][0]]) for ind, vec in enumerate(update_vec[8:].reshape(-1, 3)): np.testing.assert_array_almost_equal(at.Rotation(vec).q, at.Rotation(model.misalignment[ind]).q) def test_pixels_to_gnomic(self): gnomic = [[1, 0], [0, 1], [-1, 0], [0, -1], [0.5, 0], [0, 0.5], [-0.5, 0], [0, -0.5], [0.5, 0.5], [-0.5, -0.5], [0.5, -0.5], [-0.5, 0.5], [[1, 0, 0.5], [0, 1.5, -0.5]]] model = self.Class(kx=2000, ky=-3000.2, px=1025, py=937.567, a1=1e-3, a2=2e-6, a3=-5.5e-8) temperatures = [0, 1, -1, 10.5, -10.5] for gnoms in gnomic: for temp in temperatures: with self.subTest(gnoms=gnoms, temp=temp): dis_gnoms = np.asarray(model.apply_distortion(gnoms)).astype(float) dis_gnoms *= model.get_temperature_scale(temp) pixels = ((model.intrinsic_matrix[:, :2] @ dis_gnoms).T + model.intrinsic_matrix[:, 2]).T gnoms_solved = model.pixels_to_gnomic(pixels, temperature=temp) np.testing.assert_allclose(gnoms_solved, gnoms) def test_undistort_pixels(self): intrins_param = {"kx": 3000, "ky": 4000, "px": 4005.23, 'py': 2000.33, 'a1': 1e-6, 'a2': 1e-5, 'a3': 2e-5} pinhole = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] model = self.Class(**intrins_param) temperatures = [0, 1, -1, 10.5, -10.5] for gnom in pinhole: gnom = np.asarray(gnom).astype(float) for temp in temperatures: with self.subTest(gnom=gnom, temp=temp): mm_dist = model.apply_distortion(np.array(gnom)) temp_scale = model.get_temperature_scale(temp) mm_dist *= temp_scale pix_dist = ((model.intrinsic_matrix[:, :2] @ mm_dist).T + model.intrinsic_matrix[:, 2]).T pix_undist = model.undistort_pixels(pix_dist, temperature=temp) gnom *= temp_scale pix_pinhole = ((model.intrinsic_matrix[:, :2] @ gnom).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_allclose(pix_undist, pix_pinhole, atol=1e-13) def test_pixels_to_unit(self): intrins_param = {"focal_length": 32.7, "kx": 3000, "ky": 4000, "px": 4005.23, 'py': 2000.33, 'a1': 1e-5, 'a2': -1e-10, 'a3': 2e-4, 'misalignment': [[1e-10, 2e-13, -3e-12], [4e-8, -5.3e-9, 9e-15]]} camera_vecs = [[0, 0, 1], [0.01, 0, 1], [-0.01, 0, 1], [0, 0.01, 1], [0, -0.01, 1], [0.01, 0.01, 1], [-0.01, -0.01, 1], [[0.01, -0.01], [-0.01, 0.01], [1, 1]]] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(**intrins_param) # TODO: consider adjusting so this isn't needed model.estimate_multiple_misalignments = True for vec in camera_vecs: for image in [0, 1]: for temp in temperatures: with self.subTest(vec=vec, image=image, temp=temp): pixel_loc = model.project_onto_image(vec, image=image, temperature=temp) unit_vec = model.pixels_to_unit(pixel_loc, image=image, temperature=temp) unit_true = np.array(vec).astype(np.float64) unit_true /= np.linalg.norm(unit_true, axis=0, keepdims=True) np.testing.assert_allclose(unit_vec, unit_true, atol=1e-13) def test_overwrite(self): model1 = self.Class(field_of_view=10, intrinsic_matrix=np.array([[1, 0, 3], [0, 5, 6]]), focal_length=60, misalignment=[[1, 2, 3], [4, 5, 6]], use_a_priori=False, estimation_parameters=['multiple misalignments']) model2 = self.Class(field_of_view=20, intrinsic_matrix=np.array([[11, 0, 13], [0, 15, 16]]), focal_length=160, misalignment=[[11, 12, 13], [14, 15, 16]], use_a_priori=True, estimation_parameters=['single misalignment']) modeltest = model1.copy() modeltest.overwrite(model2) self.assertEqual(model2.field_of_view, modeltest.field_of_view) self.assertEqual(model2.use_a_priori, modeltest.use_a_priori) self.assertEqual(model2.estimate_multiple_misalignments, modeltest.estimate_multiple_misalignments) np.testing.assert_array_equal(model2.intrinsic_matrix, modeltest.intrinsic_matrix) np.testing.assert_array_equal(model2.misalignment, modeltest.misalignment) np.testing.assert_array_equal(model2.estimation_parameters, modeltest.estimation_parameters) modeltest = model2.copy() modeltest.overwrite(model1) self.assertEqual(model1.field_of_view, modeltest.field_of_view) self.assertEqual(model1.use_a_priori, modeltest.use_a_priori) self.assertEqual(model1.estimate_multiple_misalignments, modeltest.estimate_multiple_misalignments) np.testing.assert_array_equal(model1.intrinsic_matrix, modeltest.intrinsic_matrix) np.testing.assert_array_equal(model1.misalignment, modeltest.misalignment) np.testing.assert_array_equal(model1.estimation_parameters, modeltest.estimation_parameters) def test_distort_pixels(self): model = self.Class(kx=1000, ky=-950.5, px=4500, py=139.32, a1=1e-3, a2=1e-4, a3=1e-5) pixels = [[0, 1], [1, 0], [-1, 0], [0, -1], [9000., 200.2], [[4500, 100, 10.98], [0, 139.23, 200.3]]] temperatures = [0, 1, -1, 10.5, -10.5] for pix in pixels: for temp in temperatures: with self.subTest(pix=pix, temp=temp): undist_pix = model.undistort_pixels(pix, temperature=temp) dist_pix = model.distort_pixels(undist_pix, temperature=temp) np.testing.assert_allclose(dist_pix, pix) def test_distortion_map(self): model = self.Class(kx=100, ky=-985.234, px=1000, py=1095) rows, cols, dist = model.distortion_map((2000, 250), step=10) # noinspection PyTypeChecker np.testing.assert_allclose(dist, 0, atol=1e-10) rl, cl = np.arange(0, 2000, 10), np.arange(0, 250, 10) rs, cs = np.meshgrid(rl, cl, indexing='ij') np.testing.assert_array_equal(rows, rs) np.testing.assert_array_equal(cols, cs) def test_undistort_image(self): # not sure how best to do this test... pass def test_copy(self): model = self.Class() model_copy = model.copy() model.kx = 1000 model.ky = 999 model.px = 100 model.py = -20 model.a1 = 5 model.a2 = 6 model.a3 = 7 model._focal_length = 11231 model.field_of_view = 1231231 model.use_a_priori = True model.estimation_parameters = ['a1', 'kx', 'ky'] model.estimate_multiple_misalignments = True model.misalignment = [1231241, 123124, .12] self.assertNotEqual(model.kx, model_copy.kx) self.assertNotEqual(model.ky, model_copy.ky) self.assertNotEqual(model.px, model_copy.px) self.assertNotEqual(model.py, model_copy.py) self.assertNotEqual(model.a1, model_copy.a1) self.assertNotEqual(model.a2, model_copy.a2) self.assertNotEqual(model.a3, model_copy.a3) self.assertNotEqual(model.focal_length, model_copy.focal_length) self.assertNotEqual(model.field_of_view, model_copy.field_of_view) self.assertNotEqual(model.use_a_priori, model_copy.use_a_priori) self.assertNotEqual(model.estimate_multiple_misalignments, model_copy.estimate_multiple_misalignments) self.assertNotEqual(model.estimation_parameters, model_copy.estimation_parameters) self.assertTrue((model.misalignment != model_copy.misalignment).all()) def test_to_from_elem(self): element = etree.Element(self.Class.__name__) model = self.Class(focal_length=20, field_of_view=5, use_a_priori=True, misalignment=[1, 2, 3], kx=2, ky=200, px=50, py=300, a1=37, a2=1, a3=-1230, estimation_parameters=['a1', 'multiple misalignments'], n_rows=20, n_cols=30) model_copy = model.copy() with self.subTest(misalignment=True): element = model.to_elem(element, misalignment=True) self.assertEqual(model, model_copy) model_new = self.Class.from_elem(element) self.assertEqual(model, model_new) with self.subTest(misalignment=False): element = model.to_elem(element, misalignment=False) self.assertEqual(model, model_copy) model_new = self.Class.from_elem(element) model.estimation_parameters[-1] = 'single misalignment' model.estimate_multiple_misalignments = False model.misalignment = np.zeros(3) self.assertEqual(model, model_new) class TestOwenModel(TestPinholeModel): def setUp(self): self.Class = OwenModel def test___init__(self): model = self.Class(intrinsic_matrix=np.array([[1, 2, 3], [4, 5, 6]]), focal_length=10.5, field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], distortion_coefficients=np.array([1, 2, 3, 4, 5, 6]), estimation_parameters='basic intrinsic', a1=1, a2=2, a3=3) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 2, 3], [4, 5, 6]]) self.assertEqual(model.focal_length, 10.5) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['basic intrinsic']) self.assertEqual(model.a1, 1) self.assertEqual(model.a2, 2) self.assertEqual(model.a3, 3) np.testing.assert_array_equal(model.distortion_coefficients, np.arange(1, 7)) model = self.Class(kx=1, ky=2, px=4, py=5, focal_length=10.5, field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], kxy=80, kyx=90, estimation_parameters=['focal_length', 'px'], n_rows=500, n_cols=600, e1=1, radial2=2, pinwheel2=3, e4=4, tangential_x=6, e5=5) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 80, 4], [90, 2, 5]]) self.assertEqual(model.focal_length, 10.5) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['focal_length', 'px']) self.assertEqual(model.n_rows, 500) self.assertEqual(model.n_cols, 600) np.testing.assert_array_equal(model.distortion_coefficients, [2, 4, 5, 6, 1, 3]) def test_kxy(self): model = self.Class(intrinsic_matrix=np.array([[0, 1, 0], [0, 0, 0]])) self.assertEqual(model.kxy, 1) model.kxy = 100 self.assertEqual(model.kxy, 100) self.assertEqual(model.intrinsic_matrix[0, 1], 100) def test_kyx(self): model = self.Class(intrinsic_matrix=np.array([[0, 0, 0], [3, 0, 0]])) self.assertEqual(model.kyx, 3) model.kyx = 100 self.assertEqual(model.kyx, 100) self.assertEqual(model.intrinsic_matrix[1, 0], 100) def test_e1(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 1, 0])) self.assertEqual(model.e1, 1) model.e1 = 100 self.assertEqual(model.e1, 100) self.assertEqual(model.distortion_coefficients[4], 100) def test_e2(self): model = self.Class(distortion_coefficients=np.array([1, 0, 0, 0, 0, 0])) self.assertEqual(model.e2, 1) model.e2 = 100 self.assertEqual(model.e2, 100) self.assertEqual(model.distortion_coefficients[0], 100) def test_e3(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 1])) self.assertEqual(model.e3, 1) model.e3 = 100 self.assertEqual(model.e3, 100) self.assertEqual(model.distortion_coefficients[5], 100) def test_e4(self): model = self.Class(distortion_coefficients=np.array([0, 1, 0, 0, 0, 0])) self.assertEqual(model.e4, 1) model.e4 = 100 self.assertEqual(model.e4, 100) self.assertEqual(model.distortion_coefficients[1], 100) def test_e5(self): model = self.Class(distortion_coefficients=np.array([0, 0, 1, 0, 0, 0])) self.assertEqual(model.e5, 1) model.e5 = 100 self.assertEqual(model.e5, 100) self.assertEqual(model.distortion_coefficients[2], 100) def test_e6(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 1, 0, 0])) self.assertEqual(model.e6, 1) model.e6 = 100 self.assertEqual(model.e6, 100) self.assertEqual(model.distortion_coefficients[3], 100) def test_pinwheel1(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 1, 0])) self.assertEqual(model.pinwheel1, 1) model.pinwheel1 = 100 self.assertEqual(model.pinwheel1, 100) self.assertEqual(model.distortion_coefficients[4], 100) def test_radial2(self): model = self.Class(distortion_coefficients=np.array([1, 0, 0, 0, 0, 0])) self.assertEqual(model.radial2, 1) model.radial2 = 100 self.assertEqual(model.radial2, 100) self.assertEqual(model.distortion_coefficients[0], 100) def test_pinwheel2(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 1])) self.assertEqual(model.pinwheel2, 1) model.pinwheel2 = 100 self.assertEqual(model.pinwheel2, 100) self.assertEqual(model.distortion_coefficients[5], 100) def test_radial4(self): model = self.Class(distortion_coefficients=np.array([0, 1, 0, 0, 0, 0])) self.assertEqual(model.radial4, 1) model.radial4 = 100 self.assertEqual(model.radial4, 100) self.assertEqual(model.distortion_coefficients[1], 100) def test_tangential_y(self): model = self.Class(distortion_coefficients=np.array([0, 0, 1, 0, 0, 0])) self.assertEqual(model.tangential_y, 1) model.tangential_y = 100 self.assertEqual(model.tangential_y, 100) self.assertEqual(model.distortion_coefficients[2], 100) def test_tangential_x(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 1, 0, 0])) self.assertEqual(model.tangential_x, 1) model.tangential_x = 100 self.assertEqual(model.tangential_x, 100) self.assertEqual(model.distortion_coefficients[3], 100) def test_apply_distortion(self): dist_coefs = [{"radial2": 1.5, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 1.5, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 1.5, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 1.5, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 1.5, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 1.5}] inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] solus = [[[0, 0], [2.5, 0], [-2.5, 0], [1.5 + 1.5 ** 4, 0], [-(1.5 + 1.5 ** 4), 0], [[(1.5 + 1.5 ** 4)], [0]], [[(1.5 + 1.5 ** 4), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 4)], [0, -(1.5 + 1.5 ** 4)], [[0], [(1.5 + 1.5 ** 4)]], [[0, 0], [(1.5 + 1.5 ** 4), -2.5]], [1 + 2 * 1.5, 1 + 2 * 1.5]], [[0, 0], [2.5, 0], [-2.5, 0], [(1.5 + 1.5 ** 6), 0], [-(1.5 + 1.5 ** 6), 0], [[(1.5 + 1.5 ** 6)], [0]], [[(1.5 + 1.5 ** 6), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 6)], [0, -(1.5 + 1.5 ** 6)], [[0], [(1.5 + 1.5 ** 6)]], [[0, 0], [(1.5 + 1.5 ** 6), -2.5]], [1 + 4 * 1.5, 1 + 4 * 1.5]], [[0, 0], [2.5, 0], [0.5, 0], [(1.5 + 1.5 ** 3), 0], [-1.5 + 1.5 ** 3, 0], [[(1.5 + 1.5 ** 3)], [0]], [[(1.5 + 1.5 ** 3), 0.5], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [2.5, 2.5]], [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 2.5], [0, 0.5], [0, 1.5 + 1.5 ** 3], [0, -1.5 + 1.5 ** 3], [[0], [1.5 + 1.5 ** 3]], [[0, 0], [1.5 + 1.5 ** 3, 0.5]], [2.5, 2.5]], [[0, 0], [1, 1.5], [-1, -1.5], [1.5, 1.5 ** 3], [-1.5, -1.5 ** 3], [[1.5], [1.5 ** 3]], [[1.5, -1], [1.5 ** 3, -1.5]], [-1.5, 1], [1.5, -1], [-1.5 ** 3, 1.5], [1.5 ** 3, -1.5], [[-1.5 ** 3], [1.5]], [[-1.5 ** 3, 1.5], [1.5, -1]], [1 - np.sqrt(2) * 1.5, 1 + np.sqrt(2) * 1.5]], [[0, 0], [1, 1.5], [-1, -1.5], [1.5, 1.5 ** 5], [-1.5, -1.5 ** 5], [[1.5], [1.5 ** 5]], [[1.5, -1], [1.5 ** 5, -1.5]], [-1.5, 1], [1.5, -1], [-1.5 ** 5, 1.5], [1.5 ** 5, -1.5], [[-1.5 ** 5], [1.5]], [[-1.5 ** 5, 1.5], [1.5, -1]], [1 - 2 * np.sqrt(2) * 1.5, 1 + 2 * np.sqrt(2) * 1.5]]] for dist, sols in zip(dist_coefs, solus): with self.subTest(**dist): model = self.Class(**dist) for inp, solu in zip(inputs, sols): gnom_dist = model.apply_distortion(np.array(inp)) np.testing.assert_array_almost_equal(gnom_dist, solu) def test_get_projections(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23e-8, a1=1e-1, a2=1e-6, a3=-3e-7) temps = [0, 1, -1, 10, -10] for temp in temps: with self.subTest(misalignment=None, temp=temp): for point in points: pin, dist, pix = model.get_projections(point, temperature=temp) pin_true = model.focal_length * np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) dist_true *= model.get_temperature_scale(temp) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(pin, pin_true) np.testing.assert_array_equal(dist, dist_true) np.testing.assert_array_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, misalignment=[0, 0, np.pi]) with self.subTest(misalignment=[0, 0, np.pi]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = -model.focal_length * np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, misalignment=[np.pi, 0, 0]) with self.subTest(misalignment=[np.pi, 0, 0]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = model.focal_length * np.array(point[:2]) / point[2] pin_true[0] *= -1 dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, misalignment=[0, np.pi, 0]) with self.subTest(misalignment=[0, np.pi, 0]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = model.focal_length * np.array(point[:2]) / point[2] pin_true[1] *= -1 dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, misalignment=[1, 0.2, 0.3]) with self.subTest(misalignment=[1, 0.2, 0.3]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point pin, dist, pix = model.get_projections(point) pin_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point pin, dist, pix = model.get_projections(point, image=0) pin_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) pin, dist, pix = model.get_projections(point, image=1) pin_true = -model.focal_length * np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) def test_project_onto_image(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, a1=1, a2=2, a3=-3) temps = [0, 1, -1, 10, -10] for temp in temps: with self.subTest(misalignment=None, temp=temp): for point in points: _, __, pix = model.get_projections(point, temperature=temp) pix_proj = model.project_onto_image(point, temperature=temp) np.testing.assert_array_equal(pix, pix_proj) model = self.Class(focal_length=8.7, kx=500, ky=500.5, kxy=1.5, kyx=-1.5, px=1500, py=1500.5, radial2=1e-3, radial4=-2.2e-5, tangential_y=1e-3, tangential_x=1e-6, pinwheel1=1e-6, pinwheel2=-2.23 - 8, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): for point in points: _, __, pix = model.get_projections(point, image=0) pix_proj = model.project_onto_image(point, image=0) np.testing.assert_array_equal(pix, pix_proj) _, __, pix = model.get_projections(point, image=1) pix_proj = model.project_onto_image(point, image=1) np.testing.assert_array_equal(pix, pix_proj) def test_compute_pixel_jacobian(self): def num_deriv(uvec, cmodel, delta=1e-8, image=0, temperature=0) -> np.ndarray: uvec = np.array(uvec).reshape(3, -1) pix_true = cmodel.project_onto_image(uvec, image=image, temperature=temperature) uvec_pert = uvec + [[delta], [0], [0]] pix_pert_x_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec + [[0], [delta], [0]] pix_pert_y_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec + [[0], [0], [delta]] pix_pert_z_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[delta], [0], [0]] pix_pert_x_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[0], [delta], [0]] pix_pert_y_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[0], [0], [delta]] pix_pert_z_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) return np.array([(pix_pert_x_f-pix_pert_x_b)/(2*delta), (pix_pert_y_f-pix_pert_y_b)/(2*delta), (pix_pert_z_f-pix_pert_z_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "radial2": 1.5e-5, "radial4": 1.5e-5, "tangential_x": 1.5e-5, "tangential_y": 1.5e-5, "pinwheel1": 1.5e-5, "pinwheel2": 1.5e-5, "kx": 30, "ky": 40, "kxy": 0.5, "kyx": -0.8, "px": 4005.23, "py": 4005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0.5, 0, 1]]).T, np.array([[0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1]]).T, np.array([[0.1, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [1, 2, 1200.23]]).T] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for temp in temperatures: for input in inputs: for image in range(3): with self.subTest(image=image, temp=temp, input=input): jac_ana = model.compute_pixel_jacobian(input, image=image, temperature=temp) jac_num = num_deriv(input, model, image=image, temperature=temp, delta=1e-6) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test__compute_dcamera_point_dgnomic(self): def num_deriv(gnomic_locations, cmodel, delta=1e-6) -> np.ndarray: def g2u(g): v = np.vstack([g, cmodel.focal_length*np.ones(g.shape[-1])]) return v/np.linalg.norm(v, axis=0, keepdims=True) gnomic_locations = np.asarray(gnomic_locations).reshape(2, -1) gnom_pert = gnomic_locations + [[delta], [0]] cam_loc_pert_x_f = g2u(gnom_pert) gnom_pert = gnomic_locations + [[0], [delta]] cam_loc_pert_y_f = g2u(gnom_pert) gnom_pert = gnomic_locations - [[delta], [0]] cam_loc_pert_x_b = g2u(gnom_pert) gnom_pert = gnomic_locations - [[0], [delta]] cam_loc_pert_y_b = g2u(gnom_pert) return np.array([(cam_loc_pert_x_f -cam_loc_pert_x_b)/(2*delta), (cam_loc_pert_y_f -cam_loc_pert_y_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "radial2": 1.5e-8, "radial4": 1.5e-8, "tangential_x": 1.5e-8, "tangential_y": 1.5e-8, "pinwheel1": 1.5e-8, "pinwheel2": 1.5e-8, "kx": 300, "ky": 400, "kxy": 0.5, "kyx": -0.8, "px": 1005.23, "py": 1005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0, 0]]).T, np.array([[0, 2000], [2000, 0], [2000, 2000]]).T, np.array([[1000, 1000], [1000, 2000], [2000, 1000], [0, 1000], [1000, 0]]).T] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for input in inputs: with self.subTest(input=input): jac_ana = [] for gnom in input.T: jac_ana.append( model._compute_dcamera_point_dgnomic(gnom, np.sqrt(np.sum(gnom*gnom) + model.focal_length**2))) jac_ana = np.array(jac_ana) jac_num = num_deriv(input, model) np.testing.assert_almost_equal(jac_ana, jac_num) def test__compute_dgnomic_ddist_gnomic(self): def num_deriv(dist_gnomic_locations, cmodel, delta=1e-6) -> np.ndarray: def dg2g(dg): gnomic_guess = dg.copy() # perform the fpa for _ in np.arange(20): # get the distorted location assuming the current guess is correct gnomic_guess_distorted = cmodel.apply_distortion(gnomic_guess) # subtract off the residual distortion from the gnomic guess gnomic_guess += dg - gnomic_guess_distorted # check for convergence if np.all(np.linalg.norm(gnomic_guess_distorted - dg, axis=0) <= 1e-15): break return gnomic_guess dist_gnomic_locations = np.asarray(dist_gnomic_locations).reshape(2, -1) dist_gnom_pert = dist_gnomic_locations + [[delta], [0]] gnom_loc_pert_x_f = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations + [[0], [delta]] gnom_loc_pert_y_f = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations - [[delta], [0]] gnom_loc_pert_x_b = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations - [[0], [delta]] gnom_loc_pert_y_b = dg2g(dist_gnom_pert) return np.array([(gnom_loc_pert_x_f - gnom_loc_pert_x_b)/(2*delta), (gnom_loc_pert_y_f - gnom_loc_pert_y_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "radial2": 1.5e-8, "radial4": 1.5e-8, "tangential_x": 1.5e-8, "tangential_y": 1.5e-8, "pinwheel1": 1.5e-8, "pinwheel2": 1.5e-8, "kx": 300, "ky": 400, "kxy": 0.5, "kyx": -0.8, "px": 1005.23, "py": 1005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0, 0]]).T, np.array([[0, 0.1], [0.1, 0], [0.1, 0.1]]).T, np.array([[-0.1, 0], [0, -0.1], [-0.1, -0.1], [0.1, -0.1], [-0.1, 0.1]]).T] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for input in inputs: with self.subTest(input=input): jac_ana = [] for dist_gnom in input.T: jac_ana.append(model._compute_dgnomic_ddist_gnomic(dist_gnom)) jac_ana = np.array(jac_ana) jac_num = num_deriv(input, model) np.testing.assert_almost_equal(jac_ana, jac_num) def test_compute_unit_vector_jacobian(self): def num_deriv(pixels, cmodel, delta=1e-6, image=0, temperature=0) -> np.ndarray: pixels = np.array(pixels).reshape(2, -1) pix_pert = pixels + [[delta], [0]] uvec_pert_x_f = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels + [[0], [delta]] uvec_pert_y_f = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels - [[delta], [0]] uvec_pert_x_b = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels - [[0], [delta]] uvec_pert_y_b = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) return np.array([(uvec_pert_x_f-uvec_pert_x_b)/(2*delta), (uvec_pert_y_f-uvec_pert_y_b)/(2*delta)]).swapaxes(0, -1) model_param = {"focal_length": 100.75, "radial2": 1.5e-8, "radial4": 1.5e-8, "tangential_x": 1.5e-8, "tangential_y": 1.5e-8, "pinwheel1": 1.5e-8, "pinwheel2": 1.5e-8, "kx": 300, "ky": 400, "kxy": 0.5, "kyx": -0.8, "px": 1005.23, "py": 1005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0, 0]]).T, np.array([[0, 2000], [2000, 0], [2000, 2000]]).T, np.array([[1000, 1000], [1000, 2000], [2000, 1000], [0, 1000], [1000, 0]]).T] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for temp in temperatures: for input in inputs: for image in range(3): with self.subTest(image=image, temp=temp, input=input): jac_ana = model.compute_unit_vector_jacobian(input, image=image, temperature=temp) jac_num = num_deriv(input, model, image=image, temperature=temp, delta=1e-2) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test__compute_ddistortion_dgnomic(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0] dist_pert_x_f = cmodel.apply_distortion(loc_pert) - loc_pert loc_pert = np.array(loc) + [0, delta] dist_pert_y_f = cmodel.apply_distortion(loc_pert) - loc_pert loc_pert = np.array(loc) - [delta, 0] dist_pert_x_b = cmodel.apply_distortion(loc_pert) - loc_pert loc_pert = np.array(loc) - [0, delta] dist_pert_y_b = cmodel.apply_distortion(loc_pert) - loc_pert return np.array( [(dist_pert_x_f - dist_pert_x_b) / (2 * delta), (dist_pert_y_f - dist_pert_y_b) / (2 * delta)]).T dist_coefs = [{"radial2": 1.5, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 1.5, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 1.5, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 1.5, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 1.5, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 1.5}, {"e1": -1.5, "e2": -1.5, "e3": -1.5, "e4": -1.5, "e5": -1.5, "e6": -1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for dist_coef in dist_coefs: model = self.Class(**dist_coef) with self.subTest(**dist_coef): for inp in inputs: r = np.sqrt(inp[0] ** 2 + inp[1] ** 2) r2 = r ** 2 r3 = r ** 3 r4 = r ** 4 num = num_deriv(inp, model) ana = model._compute_ddistortion_dgnomic(np.array(inp), r, r2, r3, r4) np.testing.assert_allclose(num, ana, atol=1e-10) def test__compute_dpixel_ddistorted_gnomic(self): def num_deriv(loc, cmodel, delta=1e-8, temperature=0) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_x_f = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) + [0, delta] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_y_f = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) - [delta, 0] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_x_b = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) - [0, delta] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_y_b = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] return np.array( [(pix_pert_x_f - pix_pert_x_b) / (2 * delta), (pix_pert_y_f - pix_pert_y_b) / (2 * delta)]).T intrins_coefs = [{"kx": 1.5, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 0}, {"kx": 0, "kxy": 1.5, "ky": 0, "kyx": 0, "px": 0, "py": 0}, {"kx": 0, "kxy": 0, "ky": 1.5, "kyx": 0, "px": 0, "py": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 1.5, "px": 0, "py": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 1.5, "py": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 1.5}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 0, "a1": 1.5, "a2": 0, "a3": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 0, "a1": 0, "a2": 1.5, "a3": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 0, "a1": 0, "a2": 0, "a3": 1.5}, {"kx": 1.5, "kxy": 1.5, "ky": 1.5, "kyx": 1.5, "px": 1.5, "py": 1.5, "a1": 1.5, "a2": 1.5, "a3": 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] temps = [0, 1, -1, 10.5, -10.5] for temp in temps: for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) with self.subTest(**intrins_coef, temp=temp): for inp in inputs: num = num_deriv(inp, model, temperature=temp) ana = model._compute_dpixel_ddistorted_gnomic(temperature=temp) np.testing.assert_allclose(num, ana, atol=1e-10) def test__compute_dpixel_dintrinsic(self): def num_deriv(loc, cmodel, delta=1e-6) -> np.ndarray: model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kxy += delta pix_pert_kxy_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kyx += delta pix_pert_kyx_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kxy -= delta pix_pert_kxy_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kyx -= delta pix_pert_kyx_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] return np.array([(pix_pert_kx_f - pix_pert_kx_b) / (2 * delta), (pix_pert_kxy_f - pix_pert_kxy_b) / (2 * delta), (pix_pert_kyx_f - pix_pert_kyx_b) / (2 * delta), (pix_pert_ky_f - pix_pert_ky_b) / (2 * delta), (pix_pert_px_f - pix_pert_px_b) / (2 * delta), (pix_pert_py_f - pix_pert_py_b) / (2 * delta)]).T intrins_coefs = [{"kx": 1.5, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 0}, {"kx": 0, "kxy": 1.5, "ky": 0, "kyx": 0, "px": 0, "py": 0}, {"kx": 0, "kxy": 0, "ky": 1.5, "kyx": 0, "px": 0, "py": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 1.5, "px": 0, "py": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 1.5, "py": 0}, {"kx": 0, "kxy": 0, "ky": 0, "kyx": 0, "px": 0, "py": 1.5}, {"kx": 1.5, "kxy": 1.5, "ky": 1.5, "kyx": 1.5, "px": 1.5, "py": 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) with self.subTest(**intrins_coef): for inp in inputs: num = num_deriv(inp, model) ana = model._compute_dpixel_dintrinsic(np.array(inp)) np.testing.assert_allclose(num, ana, atol=1e-10) def test__compute_ddistorted_gnomic_ddistortion(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: model_pert = cmodel.copy() model_pert.radial2 += delta loc_pert_r2_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.radial4 += delta loc_pert_r4_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.tangential_y += delta loc_pert_ty_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.tangential_x += delta loc_pert_tx_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.pinwheel1 += delta loc_pert_p1_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.pinwheel2 += delta loc_pert_p2_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.radial2 -= delta loc_pert_r2_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.radial4 -= delta loc_pert_r4_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.tangential_y -= delta loc_pert_ty_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.tangential_x -= delta loc_pert_tx_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.pinwheel1 -= delta loc_pert_p1_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.pinwheel2 -= delta loc_pert_p2_b = model_pert.apply_distortion(loc) return np.array([(loc_pert_r2_f - loc_pert_r2_b) / (2 * delta), (loc_pert_r4_f - loc_pert_r4_b) / (2 * delta), (loc_pert_ty_f - loc_pert_ty_b) / (2 * delta), (loc_pert_tx_f - loc_pert_tx_b) / (2 * delta), (loc_pert_p1_f - loc_pert_p1_b) / (2 * delta), (loc_pert_p2_f - loc_pert_p2_b) / (2 * delta)]).T dist_coefs = [{"radial2": 1.5, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 1.5, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 1.5, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 1.5, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 1.5, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for dist_coef in dist_coefs: model = self.Class(**dist_coef) with self.subTest(**dist_coef): for inp in inputs: r = np.sqrt(inp[0] ** 2 + inp[1] ** 2) r2 = r ** 2 r3 = r ** 3 r4 = r ** 4 num = num_deriv(inp, model) ana = model._compute_ddistorted_gnomic_ddistortion(np.array(inp), r, r2, r3, r4) np.testing.assert_allclose(num, ana, atol=1e-10) def test_get_jacobian_row(self): def num_deriv(loc, cmodel, delta=1e-8, image=0, temperature=0) -> np.ndarray: model_pert = cmodel.copy() model_pert.focal_length += delta pix_pert_f_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.focal_length -= delta pix_pert_f_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kxy += delta pix_pert_kxy_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kyx += delta pix_pert_kyx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kxy -= delta pix_pert_kxy_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kyx -= delta pix_pert_kyx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial2 += delta pix_pert_r2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial4 += delta pix_pert_r4_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_y += delta pix_pert_ty_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_x += delta pix_pert_tx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel1 += delta pix_pert_p1_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel2 += delta pix_pert_p2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial2 -= delta pix_pert_r2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial4 -= delta pix_pert_r4_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_y -= delta pix_pert_ty_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_x -= delta pix_pert_tx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel1 -= delta pix_pert_p1_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel2 -= delta pix_pert_p2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 += delta pix_pert_a1_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 += delta pix_pert_a2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 += delta pix_pert_a3_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 -= delta pix_pert_a1_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 -= delta pix_pert_a2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 -= delta pix_pert_a3_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() delta_m = 1e-6 model_pert = cmodel.copy() model_pert.misalignment[image][0] += delta_m pix_pert_mx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] += delta_m pix_pert_my_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] += delta_m pix_pert_mz_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] -= delta_m pix_pert_mx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] -= delta_m pix_pert_my_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] -= delta_m pix_pert_mz_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() return np.vstack([(pix_pert_f_f - pix_pert_f_b) / (delta * 2), (pix_pert_kx_f - pix_pert_kx_b) / (delta * 2), (pix_pert_kxy_f - pix_pert_kxy_b) / (delta * 2), (pix_pert_kyx_f - pix_pert_kyx_b) / (delta * 2), (pix_pert_ky_f - pix_pert_ky_b) / (delta * 2), (pix_pert_px_f - pix_pert_px_b) / (delta * 2), (pix_pert_py_f - pix_pert_py_b) / (delta * 2), (pix_pert_r2_f - pix_pert_r2_b) / (delta * 2), (pix_pert_r4_f - pix_pert_r4_b) / (delta * 2), (pix_pert_ty_f - pix_pert_ty_b) / (delta * 2), (pix_pert_tx_f - pix_pert_tx_b) / (delta * 2), (pix_pert_p1_f - pix_pert_p1_b) / (delta * 2), (pix_pert_p2_f - pix_pert_p2_b) / (delta * 2), (pix_pert_a1_f - pix_pert_a1_b) / (delta * 2), (pix_pert_a2_f - pix_pert_a2_b) / (delta * 2), (pix_pert_a3_f - pix_pert_a3_b) / (delta * 2), np.zeros((image * 3, 2)), (pix_pert_mx_f - pix_pert_mx_b) / (delta_m * 2), (pix_pert_my_f - pix_pert_my_b) / (delta_m * 2), (pix_pert_mz_f - pix_pert_mz_b) / (delta_m * 2)]).T model_param = {"focal_length": 100.75, "radial2": 1.5e-5, "radial4": 1.5e-5, "tangential_x": 1.5e-5, "tangential_y": 1.5e-5, "pinwheel1": 1.5e-5, "pinwheel2": 1.5e-5, "kx": 30, "ky": 40, "kxy": 0.5, "kyx": -0.8, "px": 4005.23, "py": 4005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [[0.1, 0, 1], [0, 0.1, 1], [0.1, 0.1, 1], [-0.1, 0, 1], [0, -0.1, 1], [-0.1, -0.1, 1], [5, 10, 1000.23], [[1], [2], [1200.23]]] temps = [0, 1, -1, 10.5, -10.5] model = self.Class(**model_param) model.estimate_multiple_misalignments = True for temp in temps: for inp in inputs: with self.subTest(temp=temp, inp=inp): num = num_deriv(inp, model, delta=1e-3, temperature=temp) ana = model._get_jacobian_row(np.array(inp), 0, 1, temperature=temp) np.testing.assert_allclose(ana, num, rtol=1e-3, atol=1e-10) num = num_deriv(inp, model, delta=1e-3, image=1, temperature=temp) ana = model._get_jacobian_row(np.array(inp), 1, 2, temperature=temp) np.testing.assert_allclose(ana, num, atol=1e-10, rtol=1e-3) def test_compute_jacobian(self): def num_deriv(loc, cmodel, delta=1e-8, image=0, nimages=1, temperature=0) -> np.ndarray: model_pert = cmodel.copy() model_pert.focal_length += delta pix_pert_f_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.focal_length -= delta pix_pert_f_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kxy += delta pix_pert_kxy_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kyx += delta pix_pert_kyx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kxy -= delta pix_pert_kxy_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.kyx -= delta pix_pert_kyx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial2 += delta pix_pert_r2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial4 += delta pix_pert_r4_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_y += delta pix_pert_ty_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_x += delta pix_pert_tx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel1 += delta pix_pert_p1_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel2 += delta pix_pert_p2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial2 -= delta pix_pert_r2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.radial4 -= delta pix_pert_r4_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_y -= delta pix_pert_ty_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.tangential_x -= delta pix_pert_tx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel1 -= delta pix_pert_p1_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.pinwheel2 -= delta pix_pert_p2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 += delta pix_pert_a1_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 += delta pix_pert_a2_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 += delta pix_pert_a3_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a1 -= delta pix_pert_a1_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a2 -= delta pix_pert_a2_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.a3 -= delta pix_pert_a3_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] += delta pix_pert_mx_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] += delta pix_pert_my_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] += delta pix_pert_mz_f = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] -= delta pix_pert_mx_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] -= delta pix_pert_my_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] -= delta pix_pert_mz_b = model_pert.project_onto_image(loc, image=image, temperature=temperature).flatten() return np.vstack([(pix_pert_f_f - pix_pert_f_b) / (delta * 2), (pix_pert_kx_f - pix_pert_kx_b) / (delta * 2), (pix_pert_kxy_f - pix_pert_kxy_b) / (delta * 2), (pix_pert_kyx_f - pix_pert_kyx_b) / (delta * 2), (pix_pert_ky_f - pix_pert_ky_b) / (delta * 2), (pix_pert_px_f - pix_pert_px_b) / (delta * 2), (pix_pert_py_f - pix_pert_py_b) / (delta * 2), (pix_pert_r2_f - pix_pert_r2_b) / (delta * 2), (pix_pert_r4_f - pix_pert_r4_b) / (delta * 2), (pix_pert_ty_f - pix_pert_ty_b) / (delta * 2), (pix_pert_tx_f - pix_pert_tx_b) / (delta * 2), (pix_pert_p1_f - pix_pert_p1_b) / (delta * 2), (pix_pert_p2_f - pix_pert_p2_b) / (delta * 2), (pix_pert_a1_f - pix_pert_a1_b) / (delta * 2), (pix_pert_a2_f - pix_pert_a2_b) / (delta * 2), (pix_pert_a3_f - pix_pert_a3_b) / (delta * 2), np.zeros((image * 3, 2)), (pix_pert_mx_f - pix_pert_mx_b) / (delta * 2), (pix_pert_my_f - pix_pert_my_b) / (delta * 2), (pix_pert_mz_f - pix_pert_mz_b) / (delta * 2), np.zeros(((nimages - image - 1) * 3, 2))]).T model_param = {"focal_length": 100.75, "radial2": 1.5e-5, "radial4": 1.5e-5, "tangential_x": 1.5e-5, "tangential_y": 1.5e-5, "pinwheel1": 1.5e-5, "pinwheel2": 1.5e-5, "kx": 30, "ky": 40, "kxy": 0.5, "kyx": -0.8, "px": 4005.23, "py": 4005.23, "misalignment": [[1e-8, 1e-9, 1e-10], [-1e-8, 2e-9, -1e-11], [2e-10, -5e-12, 1e-9]], "a1": 1e-6, "a2": 2e-7, "a3": 3e-8} inputs = [np.array([[0.5, 0, 1]]).T, np.array([[0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1]]).T, np.array([[0.1, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [1, 2, 1200.23]]).T] temperatures = [0, 1, -1, 10.5, -10.5, [1, -10, 10]] model = self.Class(**model_param, estimation_parameters=['intrinsic', 'temperature dependence', 'multiple misalignments']) for temp in temperatures: with self.subTest(temp=temp): model.use_a_priori = False jac_ana = model.compute_jacobian(inputs, temperature=temp) jac_num = [] numim = len(inputs) for ind, inp in enumerate(inputs): if isinstance(temp, list): templ = temp[ind] else: templ = temp for vec in inp.T: jac_num.append(num_deriv(vec.T, model, delta=1e-4, image=ind, nimages=numim, temperature=templ)) np.testing.assert_allclose(jac_ana, np.vstack(jac_num), rtol=1e-3, atol=1e-10) model.use_a_priori = True jac_ana = model.compute_jacobian(inputs, temperature=temp) jac_num = [] numim = len(inputs) for ind, inp in enumerate(inputs): if isinstance(temp, list): templ = temp[ind] else: templ = temp for vec in inp.T: jac_num.append(num_deriv(vec.T, model, delta=1e-4, image=ind, nimages=numim, temperature=templ)) jac_num = np.vstack(jac_num) jac_num = np.pad(jac_num, [(0, jac_num.shape[1]), (0, 0)], 'constant', constant_values=0) jac_num[-jac_num.shape[1]:] = np.eye(jac_num.shape[1]) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test_apply_update(self): model_param = {"focal_length": 0, "radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0, "kx": 0, "ky": 0, "kxy": 0, "kyx": 0, "px": 0, "misalignment": [[0, 0, 0], [0, 0, 0]], "a1": 0, "a2": 0, "a3": 0} model = self.Class(**model_param, estimation_parameters=['intrinsic', "temperature dependence", 'multiple misalignments']) update_vec = np.arange(22) model.apply_update(update_vec) keys = list(model_param.keys()) keys.remove('misalignment') for key in keys: self.assertEqual(getattr(model, key), update_vec[model.element_dict[key][0]]) for ind, vec in enumerate(update_vec[16:].reshape(-1, 3)): np.testing.assert_array_almost_equal(at.Rotation(vec).q, at.Rotation(model.misalignment[ind]).q) def test_pixels_to_gnomic(self): intrins_param = {"kx": 3000, "ky": 4000, "kxy": 0.5, "kyx": -0.8, "px": 4005.23, 'py': 2000.33, 'a1': 1e-6, 'a2': 1e-7, 'a3': 1e-8} dist_coefs = [{"radial2": 1.5e-3, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 1.5e-3, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 1.5e-3, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 1.5e-3, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 1.5e-3, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 1.5e-3}, {"radial2": 1.5e-3, "radial4": 1.5e-3, "tangential_x": 1.5e-3, "tangential_y": 1.5e-3, "pinwheel1": 1.5e-3, "pinwheel2": 1.5e-3}] pinhole = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] temperatures = [0, 1, -1, 10.5, -10.5] for temp in temperatures: for dist in dist_coefs: model = self.Class(**dist, **intrins_param) for gnoms in pinhole: with self.subTest(**dist, temp=temp, gnoms=gnoms): mm_dist = model.apply_distortion(np.array(gnoms)) mm_dist *= model.get_temperature_scale(temp) pix_dist = ((model.intrinsic_matrix[:, :2] @ mm_dist).T + model.intrinsic_matrix[:, 2]).T mm_undist = model.pixels_to_gnomic(pix_dist, temperature=temp) np.testing.assert_allclose(mm_undist, gnoms, atol=1e-13) def test_undistort_pixels(self): intrins_param = {"kx": 3000, "ky": 4000, "kxy": 0.5, "kyx": -0.8, "px": 4005.23, 'py': 2000.33, "a1": 1e-3, "a2": 1e-4, "a3": 1e-5} dist_coefs = [{"radial2": 1.5e-3, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 1.5e-3, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 1.5e-3, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 1.5e-3, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 1.5e-3, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 1.5e-3}, {"radial2": 1.5e-3, "radial4": 1.5e-3, "tangential_x": 1.5e-3, "tangential_y": 1.5e-3, "pinwheel1": 1.5e-3, "pinwheel2": 1.5e-3}] pinhole = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] temperatures = [0, 1, -1, 10.5, -10.5] for temp in temperatures: for dist in dist_coefs: model = self.Class(**dist, **intrins_param) for gnoms in pinhole: with self.subTest(**dist, temp=temp, gnoms=gnoms): gnoms = np.array(gnoms).astype(np.float64) mm_dist = model.apply_distortion(np.array(gnoms)) mm_dist *= model.get_temperature_scale(temp) pix_dist = ((model.intrinsic_matrix[:, :2] @ mm_dist).T + model.intrinsic_matrix[:, 2]).T pix_undist = model.undistort_pixels(pix_dist, temperature=temp) gnoms *= model.get_temperature_scale(temp) pix_pinhole = ((model.intrinsic_matrix[:, :2] @ gnoms).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_allclose(pix_undist, pix_pinhole, atol=1e-13) def test_pixels_to_unit(self): intrins_param = {"focal_length": 32.7, "kx": 3000, "ky": 4000, "kxy": 0.5, "kyx": -0.8, "px": 4005.23, 'py': 2000.33, "a1": 1e-6, "a2": 1e-7, "a3": -3e-5} dist_coefs = [{"radial2": 1.5e-3, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 1.5e-3, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 1.5e-3, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 1.5e-3, "pinwheel1": 0, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 1.5e-3, "pinwheel2": 0}, {"radial2": 0, "radial4": 0, "tangential_x": 0, "tangential_y": 0, "pinwheel1": 0, "pinwheel2": 1.5e-3}, {"radial2": 1.5e-3, "radial4": 1.5e-3, "tangential_x": 1.5e-3, "tangential_y": 1.5e-3, "pinwheel1": 1.5e-3, "pinwheel2": 1.5e-3}, {"misalignment": np.array([1e-11, 2e-12, -1e-10])}, {"misalignment": np.array([[1e-11, 2e-12, -1e-10], [-1e-13, 1e-11, 2e-12]]), "estimation_parameters": "multiple misalignments"}] camera_vecs = [[0, 0, 1], [0.01, 0, 1], [-0.01, 0, 1], [0, 0.01, 1], [0, -0.01, 1], [0.01, 0.01, 1], [-0.01, -0.01, 1], [[0.01, -0.01], [-0.01, 0.01], [1, 1]]] temperatures = [0, 1, -1, 10.5, -10.5] for temp in temperatures: for dist in dist_coefs: model = self.Class(**dist, **intrins_param) for vec in camera_vecs: with self.subTest(**dist, temp=temp, vec=vec): pixel_loc = model.project_onto_image(vec, image=-1, temperature=temp) unit_vec = model.pixels_to_unit(pixel_loc, image=-1, temperature=temp) unit_true = np.array(vec).astype(np.float64) unit_true /= np.linalg.norm(unit_true, axis=0, keepdims=True) np.testing.assert_allclose(unit_vec, unit_true, atol=1e-13) def test_overwrite(self): model1 = self.Class(field_of_view=10, intrinsic_matrix=np.array([[1, 2, 3], [4, 5, 6]]), distortion_coefficients=np.array([1, 2, 3, 4, 5, 6]), focal_length=60, misalignment=[[1, 2, 3], [4, 5, 6]], use_a_priori=False, estimation_parameters=['multiple misalignments'], a1=0, a2=3, a3=5) model2 = self.Class(field_of_view=20, intrinsic_matrix=np.array([[11, 12, 13], [14, 15, 16]]), distortion_coefficients=np.array([11, 12, 13, 14, 15, 16]), focal_length=160, misalignment=[[11, 12, 13], [14, 15, 16]], use_a_priori=True, estimation_parameters=['single misalignment'], a1=-100, a2=-200, a3=-300) modeltest = model1.copy() modeltest.overwrite(model2) self.assertEqual(modeltest, model2) modeltest = model2.copy() modeltest.overwrite(model1) self.assertEqual(modeltest, model1) def test_intrinsic_matrix_inv(self): model = self.Class(kx=5, ky=10, kxy=20, kyx=-30.4, px=100, py=-5) np.testing.assert_array_almost_equal( model.intrinsic_matrix @ np.vstack([model.intrinsic_matrix_inv, [0, 0, 1]]), [[1, 0, 0], [0, 1, 0]]) np.testing.assert_array_almost_equal( model.intrinsic_matrix_inv @ np.vstack([model.intrinsic_matrix, [0, 0, 1]]), [[1, 0, 0], [0, 1, 0]]) def test_distort_pixels(self): model = self.Class(kx=1000, ky=-950.5, px=4500, py=139.32, a1=1e-3, a2=1e-4, a3=1e-5, kxy=0.5, kyx=-8, radial2=1e-5, radial4=1e-5, pinwheel2=1e-7, pinwheel1=-1e-12, tangential_x=1e-6, tangential_y=2e-12) pixels = [[0, 1], [1, 0], [-1, 0], [0, -1], [9000., 200.2], [[4500, 100, 10.98], [0, 139.23, 200.3]]] temperatures = [0, 1, -1, 10.5, -10.5] for pix in pixels: for temp in temperatures: with self.subTest(pix=pix, temp=temp): undist_pix = model.undistort_pixels(pix, temperature=temp) dist_pix = model.distort_pixels(undist_pix, temperature=temp) np.testing.assert_allclose(dist_pix, pix, atol=1e-10) def test_distortion_map(self): model = self.Class(kx=100, ky=-985.234, px=1000, py=1095, kxy=10, kyx=-5, e1=1e-6, e2=1e-12, e3=-4e-10, e5=6e-7, e6=-1e-5, e4=1e-7, a1=1e-6, a2=-1e-7, a3=4e-12) rows, cols, dist = model.distortion_map((2000, 250), step=10) rl, cl = np.arange(0, 2000, 10), np.arange(0, 250, 10) rs, cs = np.meshgrid(rl, cl, indexing='ij') np.testing.assert_array_equal(rows, rs) np.testing.assert_array_equal(cols, cs) distl = model.distort_pixels(np.vstack([cs.flatten(), rs.flatten()])) np.testing.assert_array_equal(distl - np.vstack([cs.flatten(), rs.flatten()]), dist) class TestBrownModel(TestPinholeModel): def setUp(self): self.Class = BrownModel # Not supported for this model test__compute_dgnomic_dfocal_length = None def test___init__(self): model = self.Class(intrinsic_matrix=np.array([[1, 2, 3], [4, 5, 6]]), field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], distortion_coefficients=np.array([1, 2, 3, 4, 5]), estimation_parameters='basic intrinsic', a1=1, a2=2, a3=3) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 2, 3], [4, 5, 6]]) self.assertEqual(model.focal_length, 1) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['basic intrinsic']) self.assertEqual(model.a1, 1) self.assertEqual(model.a2, 2) self.assertEqual(model.a3, 3) np.testing.assert_array_equal(model.distortion_coefficients, np.arange(1, 6)) model = self.Class(kx=1, fy=2, px=4, py=5, field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], kxy=80, estimation_parameters=['kx', 'px'], n_rows=500, n_cols=600, radial2=1, radial4=2, k3=3, p1=4, tiptilt_x=5) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 80, 4], [0, 2, 5]]) self.assertEqual(model.focal_length, 1) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['kx', 'px']) self.assertEqual(model.n_rows, 500) self.assertEqual(model.n_cols, 600) np.testing.assert_array_equal(model.distortion_coefficients, np.arange(1, 6)) def test_fx(self): model = self.Class(intrinsic_matrix=np.array([[1, 0, 0], [0, 0, 0]])) self.assertEqual(model.kx, 1) model.kx = 100 self.assertEqual(model.kx, 100) self.assertEqual(model.intrinsic_matrix[0, 0], 100) def test_fy(self): model = self.Class(intrinsic_matrix=np.array([[0, 0, 0], [0, 1, 0]])) self.assertEqual(model.ky, 1) model.ky = 100 self.assertEqual(model.ky, 100) self.assertEqual(model.intrinsic_matrix[1, 1], 100) def test_kxy(self): model = self.Class(intrinsic_matrix=np.array([[0, 1, 0], [0, 0, 0]])) self.assertEqual(model.kxy, 1) model.kxy = 100 self.assertEqual(model.kxy, 100) self.assertEqual(model.intrinsic_matrix[0, 1], 100) def test_alpha(self): model = self.Class(intrinsic_matrix=np.array([[0, 1, 0], [0, 0, 0]])) self.assertEqual(model.alpha, 1) model.alpha = 100 self.assertEqual(model.alpha, 100) self.assertEqual(model.intrinsic_matrix[0, 1], 100) def test_k1(self): model = self.Class(distortion_coefficients=np.array([1, 0, 0, 0, 0])) self.assertEqual(model.k1, 1) model.k1 = 100 self.assertEqual(model.k1, 100) self.assertEqual(model.distortion_coefficients[0], 100) def test_k2(self): model = self.Class(distortion_coefficients=np.array([0, 1, 0, 0, 0])) self.assertEqual(model.k2, 1) model.k2 = 100 self.assertEqual(model.k2, 100) self.assertEqual(model.distortion_coefficients[1], 100) def test_k3(self): model = self.Class(distortion_coefficients=np.array([0, 0, 1, 0, 0])) self.assertEqual(model.k3, 1) model.k3 = 100 self.assertEqual(model.k3, 100) self.assertEqual(model.distortion_coefficients[2], 100) def test_p1(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 1, 0])) self.assertEqual(model.p1, 1) model.p1 = 100 self.assertEqual(model.p1, 100) self.assertEqual(model.distortion_coefficients[3], 100) def test_p2(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 1])) self.assertEqual(model.p2, 1) model.p2 = 100 self.assertEqual(model.p2, 100) self.assertEqual(model.distortion_coefficients[4], 100) def test_radial2(self): model = self.Class(distortion_coefficients=np.array([1, 0, 0, 0, 0])) self.assertEqual(model.radial2, 1) model.radial2 = 100 self.assertEqual(model.radial2, 100) self.assertEqual(model.distortion_coefficients[0], 100) def test_radial4(self): model = self.Class(distortion_coefficients=np.array([0, 1, 0, 0, 0])) self.assertEqual(model.radial4, 1) model.radial4 = 100 self.assertEqual(model.radial4, 100) self.assertEqual(model.distortion_coefficients[1], 100) def test_radial6(self): model = self.Class(distortion_coefficients=np.array([0, 0, 1, 0, 0])) self.assertEqual(model.radial6, 1) model.radial6 = 100 self.assertEqual(model.radial6, 100) self.assertEqual(model.distortion_coefficients[2], 100) def test_tiptilt_y(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 1, 0])) self.assertEqual(model.tiptilt_y, 1) model.tiptilt_y = 100 self.assertEqual(model.tiptilt_y, 100) self.assertEqual(model.distortion_coefficients[3], 100) def test_tiptilt_x(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 1])) self.assertEqual(model.tiptilt_x, 1) model.tiptilt_x = 100 self.assertEqual(model.tiptilt_x, 100) self.assertEqual(model.distortion_coefficients[4], 100) def test_apply_distortion(self): dist_coefs = [{"k1": 1.5, "k2": 0, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 1.5, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 1.5, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 1.5, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 0, "p2": 1.5}] inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] solus = [[[0, 0], [2.5, 0], [-2.5, 0], [1.5 + 1.5 ** 4, 0], [-(1.5 + 1.5 ** 4), 0], [[(1.5 + 1.5 ** 4)], [0]], [[(1.5 + 1.5 ** 4), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 4)], [0, -(1.5 + 1.5 ** 4)], [[0], [(1.5 + 1.5 ** 4)]], [[0, 0], [(1.5 + 1.5 ** 4), -2.5]], [1 + 2 * 1.5, 1 + 2 * 1.5]], [[0, 0], [2.5, 0], [-2.5, 0], [(1.5 + 1.5 ** 6), 0], [-(1.5 + 1.5 ** 6), 0], [[(1.5 + 1.5 ** 6)], [0]], [[(1.5 + 1.5 ** 6), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 6)], [0, -(1.5 + 1.5 ** 6)], [[0], [(1.5 + 1.5 ** 6)]], [[0, 0], [(1.5 + 1.5 ** 6), -2.5]], [1 + 4 * 1.5, 1 + 4 * 1.5]], [[0, 0], [2.5, 0], [-2.5, 0], [(1.5 + 1.5 ** 8), 0], [-(1.5 + 1.5 ** 8), 0], [[(1.5 + 1.5 ** 8)], [0]], [[(1.5 + 1.5 ** 8), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 8)], [0, -(1.5 + 1.5 ** 8)], [[0], [(1.5 + 1.5 ** 8)]], [[0, 0], [(1.5 + 1.5 ** 8), -2.5]], [1 + 8 * 1.5, 1 + 8 * 1.5]], [[0, 0], [1, 1.5], [-1, 1.5], [1.5, 1.5 ** 3], [-1.5, 1.5 ** 3], [[1.5], [1.5 ** 3]], [[1.5, -1], [1.5 ** 3, 1.5]], [0, 1 + 3 * 1.5], [0, -1 + 3 * 1.5], [0, 1.5 + 3 * 1.5 ** 3], [0, -1.5 + 3 * 1.5 ** 3], [[0], [1.5 + 3 * 1.5 ** 3]], [[0, 0], [1.5 + 3 * 1.5 ** 3, -1 + 3 * 1.5]], [1 + 2 * 1.5, 1 + 4 * 1.5]], [[0, 0], [1 + 3 * 1.5, 0], [-1 + 3 * 1.5, 0], [1.5 + 3 * 1.5 ** 3, 0], [-1.5 + 3 * 1.5 ** 3, 0], [[1.5 + 3 * 1.5 ** 3], [0]], [[1.5 + 3 * 1.5 ** 3, -1 + 3 * 1.5], [0, 0]], [1.5, 1], [1.5, -1], [1.5 ** 3, 1.5], [1.5 ** 3, -1.5], [[1.5 ** 3], [1.5]], [[1.5 ** 3, 1.5], [1.5, -1]], [1 + 4 * 1.5, 1 + 2 * 1.5]]] for dist, sols in zip(dist_coefs, solus): with self.subTest(**dist): model = self.Class(**dist) for inp, solu in zip(inputs, sols): gnom_dist = model.apply_distortion(np.array(inp)) np.testing.assert_array_almost_equal(gnom_dist, solu) def test_get_projections(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, a1=1e-1, a2=-1e-6, a3=3e-7) temps = [0, 1, -1, 10, -10] for temp in temps: with self.subTest(misalignment=None, temp=temp): for point in points: pin, dist, pix = model.get_projections(point, temperature=temp) pin_true = np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) dist_true *= model.get_temperature_scale(temp) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(pin, pin_true) np.testing.assert_array_equal(dist, dist_true) np.testing.assert_array_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[0, 0, np.pi]) with self.subTest(misalignment=[0, 0, np.pi]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = -np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[np.pi, 0, 0]) with self.subTest(misalignment=[np.pi, 0, 0]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = np.array(point[:2]) / point[2] pin_true[0] *= -1 dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[0, np.pi, 0]) with self.subTest(misalignment=[0, np.pi, 0]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = np.array(point[:2]) / point[2] pin_true[1] *= -1 dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[1, 0.2, 0.3]) with self.subTest(misalignment=[1, 0.2, 0.3]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point pin, dist, pix = model.get_projections(point) pin_true = np.array(point_new[:2]) / np.array(point_new[2]) dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point pin, dist, pix = model.get_projections(point, image=0) pin_true = np.array(point_new[:2]) / np.array(point_new[2]) dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) pin, dist, pix = model.get_projections(point, image=1) pin_true = -np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) def test_project_onto_image(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, a1=1, a2=2, a3=-3) temps = [0, 1, -1, 10, -10] for temp in temps: with self.subTest(temp=temp, misalignment=None): for point in points: _, __, pix = model.get_projections(point, temperature=temp) pix_proj = model.project_onto_image(point, temperature=temp) np.testing.assert_array_equal(pix, pix_proj) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): for point in points: _, __, pix = model.get_projections(point, image=0) pix_proj = model.project_onto_image(point, image=0) np.testing.assert_array_equal(pix, pix_proj) _, __, pix = model.get_projections(point, image=1) pix_proj = model.project_onto_image(point, image=1) np.testing.assert_array_equal(pix, pix_proj) def test_compute_pixel_jacobian(self): def num_deriv(uvec, cmodel, delta=1e-8, image=0, temperature=0) -> np.ndarray: uvec = np.array(uvec).reshape(3, -1) pix_true = cmodel.project_onto_image(uvec, image=image, temperature=temperature) uvec_pert = uvec + [[delta], [0], [0]] pix_pert_x_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec + [[0], [delta], [0]] pix_pert_y_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec + [[0], [0], [delta]] pix_pert_z_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[delta], [0], [0]] pix_pert_x_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[0], [delta], [0]] pix_pert_y_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[0], [0], [delta]] pix_pert_z_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) return np.array([(pix_pert_x_f-pix_pert_x_b)/(2*delta), (pix_pert_y_f-pix_pert_y_b)/(2*delta), (pix_pert_z_f-pix_pert_z_b)/(2*delta)]).swapaxes(0, -1) inputs = [np.array([[0.5, 0, 1]]).T, np.array([[0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1]]).T, np.array([[0.1, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [1, 2, 1200.23]]).T] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=1500, py=1500.5, a1=0.15e-7, a2=-0.01e-8, a3=1e-9, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9]]) model.estimate_multiple_misalignments = True for temp in temperatures: for input in inputs: for image in range(2): with self.subTest(image=image, temp=temp, input=input): jac_ana = model.compute_pixel_jacobian(input, image=image, temperature=temp) jac_num = num_deriv(input, model, image=image, temperature=temp, delta=1e-2) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test__compute_dcamera_point_dgnomic(self): def num_deriv(gnomic_locations, cmodel, delta=1e-6) -> np.ndarray: def g2u(g): v = np.vstack([g, cmodel.focal_length*np.ones(g.shape[-1])]) return v/np.linalg.norm(v, axis=0, keepdims=True) gnomic_locations = np.asarray(gnomic_locations).reshape(2, -1) gnom_pert = gnomic_locations + [[delta], [0]] cam_loc_pert_x_f = g2u(gnom_pert) gnom_pert = gnomic_locations + [[0], [delta]] cam_loc_pert_y_f = g2u(gnom_pert) gnom_pert = gnomic_locations - [[delta], [0]] cam_loc_pert_x_b = g2u(gnom_pert) gnom_pert = gnomic_locations - [[0], [delta]] cam_loc_pert_y_b = g2u(gnom_pert) return np.array([(cam_loc_pert_x_f -cam_loc_pert_x_b)/(2*delta), (cam_loc_pert_y_f -cam_loc_pert_y_b)/(2*delta)]).swapaxes(0, -1) inputs = [np.array([[0, 0]]).T, np.array([[0, 2000], [2000, 0], [2000, 2000]]).T, np.array([[1000, 1000], [1000, 2000], [2000, 1000], [0, 1000], [1000, 0]]).T] model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=1500, py=1500.5, a1=0.15e-7, a2=-0.01e-8, a3=1e-9, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9]]) model.estimate_multiple_misalignments = True for input in inputs: with self.subTest(input=input): jac_ana = [] for gnom in input.T: jac_ana.append( model._compute_dcamera_point_dgnomic(gnom, np.sqrt(np.sum(gnom*gnom) + model.focal_length**2))) jac_ana = np.array(jac_ana) jac_num = num_deriv(input, model) np.testing.assert_almost_equal(jac_ana, jac_num) def test__compute_dgnomic_ddist_gnomic(self): def num_deriv(dist_gnomic_locations, cmodel, delta=1e-6) -> np.ndarray: def dg2g(dg): gnomic_guess = dg.copy() # perform the fpa for _ in np.arange(20): # get the distorted location assuming the current guess is correct gnomic_guess_distorted = cmodel.apply_distortion(gnomic_guess) # subtract off the residual distortion from the gnomic guess gnomic_guess += dg - gnomic_guess_distorted # check for convergence if np.all(np.linalg.norm(gnomic_guess_distorted - dg, axis=0) <= 1e-15): break return gnomic_guess dist_gnomic_locations = np.asarray(dist_gnomic_locations).reshape(2, -1) dist_gnom_pert = dist_gnomic_locations + [[delta], [0]] gnom_loc_pert_x_f = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations + [[0], [delta]] gnom_loc_pert_y_f = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations - [[delta], [0]] gnom_loc_pert_x_b = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations - [[0], [delta]] gnom_loc_pert_y_b = dg2g(dist_gnom_pert) return np.array([(gnom_loc_pert_x_f - gnom_loc_pert_x_b)/(2*delta), (gnom_loc_pert_y_f - gnom_loc_pert_y_b)/(2*delta)]).swapaxes(0, -1) inputs = [np.array([[0, 0]]).T, np.array([[0, 0.1], [0.1, 0], [0.1, 0.1]]).T, np.array([[-0.1, 0], [0, -0.1], [-0.1, -0.1], [0.1, -0.1], [-0.1, 0.1]]).T] model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=1500, py=1500.5, a1=0.15e-7, a2=-0.01e-8, a3=1e-9, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9]]) model.estimate_multiple_misalignments = True for input in inputs: with self.subTest(input=input): jac_ana = [] for dist_gnom in input.T: jac_ana.append(model._compute_dgnomic_ddist_gnomic(dist_gnom)) jac_ana = np.array(jac_ana) jac_num = num_deriv(input, model, delta=1e-8) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-1, atol=1e-10) def test_compute_unit_vector_jacobian(self): def num_deriv(pixels, cmodel, delta=1e-6, image=0, temperature=0) -> np.ndarray: pixels = np.array(pixels).reshape(2, -1) pix_pert = pixels + [[delta], [0]] uvec_pert_x_f = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels + [[0], [delta]] uvec_pert_y_f = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels - [[delta], [0]] uvec_pert_x_b = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels - [[0], [delta]] uvec_pert_y_b = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) return np.array([(uvec_pert_x_f-uvec_pert_x_b)/(2*delta), (uvec_pert_y_f-uvec_pert_y_b)/(2*delta)]).swapaxes(0, -1) inputs = [np.array([[0, 0]]).T, np.array([[0, 2000], [2000, 0], [2000, 2000]]).T/10, np.array([[1000, 1000], [1000, 2000], [2000, 1000], [0, 1000], [1000, 0]]).T/10] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=100, py=100.5, a1=0.15e-7, a2=-0.01e-8, a3=1e-9, k1=0.05, k2=-0.03, k3=0.015, p1=1e-7, p2=1e-6, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9]]) model.estimate_multiple_misalignments = True for temp in temperatures: for input in inputs: for image in range(2): with self.subTest(image=image, temp=temp, input=input): jac_ana = model.compute_unit_vector_jacobian(input, image=image, temperature=temp) jac_num = num_deriv(input, model, image=image, temperature=temp, delta=1e-2) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test__compute_ddistorted_gnomic_dgnomic(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0] dist_pert_x_f = cmodel.apply_distortion(loc_pert) loc_pert = np.array(loc) + [0, delta] dist_pert_y_f = cmodel.apply_distortion(loc_pert) loc_pert = np.array(loc) - [delta, 0] dist_pert_x_b = cmodel.apply_distortion(loc_pert) loc_pert = np.array(loc) - [0, delta] dist_pert_y_b = cmodel.apply_distortion(loc_pert) return np.array( [(dist_pert_x_f - dist_pert_x_b) / (2 * delta), (dist_pert_y_f - dist_pert_y_b) / (2 * delta)]).T dist_coefs = [{"k1": 1.5, "k2": 0, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 1.5, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 1.5, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 1.5, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 0, "p2": 1.5}, {"k1": -1.5, "k2": -1.5, "k3": -1.5, "p1": -1.5, "p2": -1.5}] inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for dist_coef in dist_coefs: model = self.Class(**dist_coef) with self.subTest(**dist_coef): for inp in inputs: r = np.sqrt(inp[0] ** 2 + inp[1] ** 2) r2 = r ** 2 r4 = r ** 4 r6 = r ** 6 num = num_deriv(inp, model) ana = model._compute_ddistorted_gnomic_dgnomic(np.array(inp), r2, r4, r6) np.testing.assert_allclose(num, ana, atol=1e-14) def test__compute_dpixel_ddistorted_gnomic(self): def num_deriv(loc, cmodel, delta=1e-8, temperature=0) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_x_f = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) + [0, delta] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_y_f = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) - [delta, 0] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_x_b = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) - [0, delta] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_y_b = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] return np.array( [(pix_pert_x_f - pix_pert_x_b) / (2 * delta), (pix_pert_y_f - pix_pert_y_b) / (2 * delta)]).T intrins_coefs = [{"fx": 1.5, "fy": 0, "alpha": 0, "px": 0, "py": 0}, {"fx": 0, "fy": 1.5, "alpha": 0, "px": 0, "py": 0}, {"fx": 0, "fy": 0, "alpha": 1.5, "px": 0, "py": 0}, {"fx": 0, "fy": 0, "alpha": 0, "px": 1.5, "py": 0}, {"fx": 0, "fy": 0, "alpha": 0, "px": 0, "py": 1.5}, {"fx": -1.5, "fy": -1.5, "alpha": -1.5, "px": 1.5, "py": 1.5}] inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] temps = [0, 1, -1, 10.5, -10.5] for temp in temps: for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) with self.subTest(**intrins_coef, temp=temp): for inp in inputs: num = num_deriv(np.array(inp), model, temperature=temp) ana = model._compute_dpixel_ddistorted_gnomic(temperature=temp) np.testing.assert_allclose(num, ana, atol=1e-14) def test__compute_dpixel_dintrinsic(self): def num_deriv(loc, cmodel, delta=1e-6) -> np.ndarray: model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kxy += delta pix_pert_kxy_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kxy -= delta pix_pert_kxy_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] return np.array([(pix_pert_kx_f - pix_pert_kx_b) / (2 * delta), (pix_pert_ky_f - pix_pert_ky_b) / (2 * delta), (pix_pert_kxy_f - pix_pert_kxy_b) / (2 * delta), (pix_pert_px_f - pix_pert_px_b) / (2 * delta), (pix_pert_py_f - pix_pert_py_b) / (2 * delta)]).T intrins_coefs = [{"fx": 1.5, "fy": 0, "alpha": 0, "px": 0, "py": 0}, {"fx": 0, "fy": 1.5, "alpha": 0, "px": 0, "py": 0}, {"fx": 0, "fy": 0, "alpha": 1.5, "px": 0, "py": 0}, {"fx": 0, "fy": 0, "alpha": 0, "px": 1.5, "py": 0}, {"fx": 0, "fy": 0, "alpha": 0, "px": 0, "py": 1.5}, {"fx": -1.5, "fy": -1.5, "alpha": -1.5, "px": 1.5, "py": 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) for inp in inputs: with self.subTest(**intrins_coef, inp=inp): num = num_deriv(inp, model, delta=1e-5) ana = model._compute_dpixel_dintrinsic(np.array(inp)) np.testing.assert_allclose(num, ana, atol=1e-14, rtol=1e-5) def test__compute_ddistorted_gnomic_ddistortion(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: model_pert = cmodel.copy() model_pert.k1 += delta loc_pert_k1_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k2 += delta loc_pert_k2_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k3 += delta loc_pert_k3_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.p1 += delta loc_pert_p1_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.p2 += delta loc_pert_p2_f = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k1 -= delta loc_pert_k1_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k2 -= delta loc_pert_k2_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.k3 -= delta loc_pert_k3_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.p1 -= delta loc_pert_p1_b = model_pert.apply_distortion(loc) model_pert = cmodel.copy() model_pert.p2 -= delta loc_pert_p2_b = model_pert.apply_distortion(loc) return np.array([(loc_pert_k1_f - loc_pert_k1_b) / (2 * delta), (loc_pert_k2_f - loc_pert_k2_b) / (2 * delta), (loc_pert_k3_f - loc_pert_k3_b) / (2 * delta), (loc_pert_p1_f - loc_pert_p1_b) / (2 * delta), (loc_pert_p2_f - loc_pert_p2_b) / (2 * delta)]).T dist_coefs = [{"k1": 1.5, "k2": 0, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 1.5, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 1.5, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 1.5, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 0, "p2": 1.5}] inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for dist_coef in dist_coefs: model = self.Class(**dist_coef) with self.subTest(**dist_coef): for inp in inputs: r = np.sqrt(inp[0] ** 2 + inp[1] ** 2) r2 = r ** 2 r4 = r ** 4 r6 = r ** 6 num = num_deriv(np.array(inp), model) ana = model._compute_ddistorted_gnomic_ddistortion(np.array(inp), r2, r4, r6) np.testing.assert_allclose(num, ana, atol=1e-14) def test__compute_dgnomic_dcamera_point(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0, 0] gnom_pert_x_f = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) + [0, delta, 0] gnom_pert_y_f = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) + [0, 0, delta] gnom_pert_z_f = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) - [delta, 0, 0] gnom_pert_x_b = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) - [0, delta, 0] gnom_pert_y_b = cmodel.get_projections(loc_pert)[0] loc_pert = np.array(loc) - [0, 0, delta] gnom_pert_z_b = cmodel.get_projections(loc_pert)[0] return np.array([(gnom_pert_x_f - gnom_pert_x_b) / (2 * delta), (gnom_pert_y_f - gnom_pert_y_b) / (2 * delta), (gnom_pert_z_f - gnom_pert_z_b) / (2 * delta)]).T inputs = [[0, 0, 1], [0.5, 0, 1], [0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1], [0, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [0.5, 1e-14, 1]] model = self.Class() for inp in inputs: num = num_deriv(inp, model) ana = model._compute_dgnomic_dcamera_point(np.array(inp)) np.testing.assert_allclose(num, ana, atol=1e-9, rtol=1e-5) def test_get_jacobian_row(self): def num_deriv(loc, temp, cmodel, delta=1e-8, image=0) -> np.ndarray: model_pert = cmodel.copy() model_pert.fx += delta pix_pert_fx_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.fy += delta pix_pert_fy_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.alpha += delta pix_pert_skew_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a1 += delta pix_pert_a1_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a2 += delta pix_pert_a2_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a3 += delta pix_pert_a3_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.fx -= delta pix_pert_fx_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.fy -= delta pix_pert_fy_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.alpha -= delta pix_pert_skew_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k1 += delta pix_pert_k1_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k2 += delta pix_pert_k2_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k3 += delta pix_pert_k3_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p1 += delta pix_pert_p1_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p2 += delta pix_pert_p2_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k1 -= delta pix_pert_k1_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k2 -= delta pix_pert_k2_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k3 -= delta pix_pert_k3_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p1 -= delta pix_pert_p1_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p2 -= delta pix_pert_p2_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] += delta pix_pert_mx_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] += delta pix_pert_my_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] += delta pix_pert_mz_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] -= delta pix_pert_mx_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] -= delta pix_pert_my_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] -= delta pix_pert_mz_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a1 -= delta pix_pert_a1_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a2 -= delta pix_pert_a2_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a3 -= delta pix_pert_a3_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() return np.vstack([(pix_pert_fx_f - pix_pert_fx_b) / (delta * 2), (pix_pert_fy_f - pix_pert_fy_b) / (delta * 2), (pix_pert_skew_f - pix_pert_skew_b) / (delta * 2), (pix_pert_px_f - pix_pert_px_b) / (delta * 2), (pix_pert_py_f - pix_pert_py_b) / (delta * 2), (pix_pert_k1_f - pix_pert_k1_b) / (delta * 2), (pix_pert_k2_f - pix_pert_k2_b) / (delta * 2), (pix_pert_k3_f - pix_pert_k3_b) / (delta * 2), (pix_pert_p1_f - pix_pert_p1_b) / (delta * 2), (pix_pert_p2_f - pix_pert_p2_b) / (delta * 2), (pix_pert_a1_f - pix_pert_a1_b) / (delta * 2), (pix_pert_a2_f - pix_pert_a2_b) / (delta * 2), (pix_pert_a3_f - pix_pert_a3_b) / (delta * 2), np.zeros((image * 3, 2)), (pix_pert_mx_f - pix_pert_mx_b) / (delta * 2), (pix_pert_my_f - pix_pert_my_b) / (delta * 2), (pix_pert_mz_f - pix_pert_mz_b) / (delta * 2)]).T model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=1500, py=1500.5, a1=0.15e-7, a2=-0.01e-8, a3=1e-9, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9]]) model.estimate_multiple_misalignments = True inputs = [[0.5, 0, 1], [0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1], [0, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [[1], [2], [1200.23]]] temps = [0, 1.5, -10] # TODO: investigate if this is actually correct for temperature in temps: for inp in inputs: with self.subTest(temperature=temperature, inp=inp): num = num_deriv(inp, temperature, model, delta=1e-2) ana = model._get_jacobian_row(np.array(inp), 0, 1, temperature=temperature) np.testing.assert_allclose(ana, num, rtol=1e-1, atol=1e-10) num = num_deriv(inp, temperature, model, delta=1e-2, image=1) ana = model._get_jacobian_row(np.array(inp), 1, 2, temperature=temperature) np.testing.assert_allclose(ana, num, atol=1e-10, rtol=1e-1) def test_compute_jacobian(self): def num_deriv(loc, temp, cmodel, delta=1e-8, image=0, nimages=2) -> np.ndarray: model_pert = cmodel.copy() model_pert.fx += delta pix_pert_fx_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.fy += delta pix_pert_fy_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.alpha += delta pix_pert_skew_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a1 += delta pix_pert_a1_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a2 += delta pix_pert_a2_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a3 += delta pix_pert_a3_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.fx -= delta pix_pert_fx_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.fy -= delta pix_pert_fy_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.alpha -= delta pix_pert_skew_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k1 += delta pix_pert_k1_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k2 += delta pix_pert_k2_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k3 += delta pix_pert_k3_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p1 += delta pix_pert_p1_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p2 += delta pix_pert_p2_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k1 -= delta pix_pert_k1_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k2 -= delta pix_pert_k2_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.k3 -= delta pix_pert_k3_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p1 -= delta pix_pert_p1_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.p2 -= delta pix_pert_p2_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] += delta pix_pert_mx_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] += delta pix_pert_my_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] += delta pix_pert_mz_f = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][0] -= delta pix_pert_mx_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][1] -= delta pix_pert_my_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.misalignment[image][2] -= delta pix_pert_mz_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a1 -= delta pix_pert_a1_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a2 -= delta pix_pert_a2_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() model_pert = cmodel.copy() model_pert.a3 -= delta pix_pert_a3_b = model_pert.project_onto_image(loc, image=image, temperature=temp).flatten() return np.vstack([(pix_pert_fx_f - pix_pert_fx_b) / (delta * 2), (pix_pert_fy_f - pix_pert_fy_b) / (delta * 2), (pix_pert_skew_f - pix_pert_skew_b) / (delta * 2), (pix_pert_px_f - pix_pert_px_b) / (delta * 2), (pix_pert_py_f - pix_pert_py_b) / (delta * 2), (pix_pert_k1_f - pix_pert_k1_b) / (delta * 2), (pix_pert_k2_f - pix_pert_k2_b) / (delta * 2), (pix_pert_k3_f - pix_pert_k3_b) / (delta * 2), (pix_pert_p1_f - pix_pert_p1_b) / (delta * 2), (pix_pert_p2_f - pix_pert_p2_b) / (delta * 2), (pix_pert_a1_f - pix_pert_a1_b) / (delta * 2), (pix_pert_a2_f - pix_pert_a2_b) / (delta * 2), (pix_pert_a3_f - pix_pert_a3_b) / (delta * 2), np.zeros((image * 3, 2)), (pix_pert_mx_f - pix_pert_mx_b) / (delta * 2), (pix_pert_my_f - pix_pert_my_b) / (delta * 2), (pix_pert_mz_f - pix_pert_mz_b) / (delta * 2), np.zeros(((nimages - image - 1) * 3, 2))]).T model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9], [1e-10, 2e-11, 3e-12]], a1=0.15e-6, a2=-0.01e-7, a3=0.5e-8, estimation_parameters=['intrinsic', 'temperature dependence', 'multiple misalignments']) inputs = [np.array([[0.5, 0, 1]]).T, np.array([[0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1]]).T, np.array([[0.1, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [1, 2, 1200.23]]).T] model.use_a_priori = False temps = [0, -20, 20.5] jac_ana = model.compute_jacobian(inputs, temperature=temps) jac_num = [] numim = len(inputs) for ind, inp in enumerate(inputs): temperature = temps[ind] for vec in inp.T: jac_num.append(num_deriv(vec.T, temperature, model, delta=1e-3, image=ind, nimages=numim)) np.testing.assert_allclose(jac_ana, np.vstack(jac_num), rtol=1e-1, atol=1e-9) model.use_a_priori = True jac_ana = model.compute_jacobian(inputs, temperature=temps) jac_num = [] numim = len(inputs) for ind, inp in enumerate(inputs): temperature = temps[ind] for vec in inp.T: jac_num.append(num_deriv(vec.T, temperature, model, delta=1e-3, image=ind, nimages=numim)) jac_num = np.vstack(jac_num) jac_num = np.pad(jac_num, [(0, jac_num.shape[1]), (0, 0)], 'constant', constant_values=0) jac_num[-jac_num.shape[1]:] = np.eye(jac_num.shape[1]) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-1, atol=1e-9) def test_apply_update(self): model_param = {"fx": 0, "fy": 0, "alpha": 0, "k1": 0, "k2": 0, "k3": 0, "p1": 0, "p2": 0, 'a1': 0, 'a2': 0, 'a3': 0, "px": 0, "py": 0, "misalignment": [[0, 0, 0], [0, 0, 0]]} model = self.Class(**model_param, estimation_parameters=['intrinsic', 'temperature dependence', 'multiple misalignments']) update_vec = np.arange(19) model.apply_update(update_vec) keys = list(model_param.keys()) keys.remove('misalignment') for key in keys: self.assertEqual(getattr(model, key), update_vec[model.element_dict[key][0]]) for ind, vec in enumerate(update_vec[13:].reshape(-1, 3)): np.testing.assert_array_almost_equal(at.Rotation(vec).q, at.Rotation(model.misalignment[ind]).q) def test_pixels_to_gnomic(self): intrins_param = {"fx": 3000, "fy": 4000, "alpha": 0.5, "px": 4005.23, 'py': 2000.33, 'a1': 1e-5, 'a2': 1e-6, 'a3': -1e-7} dist_coefs = [{"k1": 1.5e-1, "k2": 0, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 1.5e-1, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 1.5e-1, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 1.5e-6, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 0, "p2": 1.5e-6}] pinhole = [[0, 0], [0.1, 0], [-0.1, 0], [0.15, 0], [-0.15, 0], [[0.15], [0]], [[0.15, -0.1], [0, 0]], [0, 0.1], [0, -0.1], [0, 0.15], [0, -0.15], [[0], [0.15]], [[0, 0], [0.15, -0.1]], [0.1, 0.1]] temperatures = [0, 1, -1, 10.5, -10.5] for temp in temperatures: for dist in dist_coefs: model = self.Class(**dist, **intrins_param) for fp_pinhole in pinhole: with self.subTest(**dist, temp=temp, fp_pinhole=fp_pinhole): fp_dist = model.apply_distortion(np.array(fp_pinhole)) fp_dist *= model.get_temperature_scale(temp) pix_dist = ((model.intrinsic_matrix[:, :2] @ fp_dist).T + model.intrinsic_matrix[:, 2]).T fp_undist = model.pixels_to_gnomic(pix_dist, temperature=temp) np.testing.assert_allclose(fp_undist, fp_pinhole, atol=1e-13) def test_undistort_pixels(self): intrins_param = {"fx": 3000, "fy": 4000, "alpha": 0.5, "px": 4005.23, 'py': 2000.33, 'a1': 1e-5, 'a2': 1e-6, 'a3': -1e-7} dist_coefs = [{"k1": 1.5e-1, "k2": 0, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 1.5e-1, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 1.5e-1, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 1.5e-6, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 0, "p2": 1.5e-6}] pinhole = [[0, 0], [0.1, 0], [-0.1, 0], [0.15, 0], [-0.15, 0], [[0.15], [0]], [[0.15, -0.1], [0, 0]], [0, 0.1], [0, -0.1], [0, 0.15], [0, -0.15], [[0], [0.15]], [[0, 0], [0.15, -0.1]], [0.1, 0.1]] temperatures = [0, 1, -1, 10.5, -10.5] for temp in temperatures: for dist in dist_coefs: model = self.Class(**dist, **intrins_param) with self.subTest(**dist, temp=temp): for fp_pinhole in pinhole: fp_pinhole = np.array(fp_pinhole).astype(np.float64) fp_dist = model.apply_distortion(fp_pinhole) fp_dist *= model.get_temperature_scale(temp) pix_dist = ((model.intrinsic_matrix[:, :2] @ fp_dist).T + model.intrinsic_matrix[:, 2]).T pix_undist = model.undistort_pixels(pix_dist, temperature=temp) fp_pinhole *= model.get_temperature_scale(temp) pix_pinhole = ((model.intrinsic_matrix[:, :2] @ fp_pinhole).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_allclose(pix_undist, pix_pinhole, atol=1e-13) def test_pixels_to_unit(self): intrins_param = {"fx": 3000, "fy": 4000, "alpha": 0.5, "px": 4005.23, 'py': 2000.33, 'a1': 1e-6, 'a2': -2e-7, 'a3': 4.5e-8} dist_coefs = [{"k1": 1.5e-1, "k2": 0, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 1.5e-1, "k3": 0, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 1.5e-1, "p1": 0, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 1.5e-6, "p2": 0}, {"k1": 0, "k2": 0, "k3": 0, "p1": 0, "p2": 1.5e-6}, {"misalignment": np.array([1e-11, 2e-12, -1e-10])}, {"misalignment": np.array([[1e-11, 2e-12, -1e-10], [-1e-13, 1e-11, 2e-12]]), "estimation_parameters": "multiple misalignments"}] camera_vecs = [[0, 0, 1], [0.1, 0, 1], [-0.1, 0, 1], [0, 0.1, 1], [0, -0.1, 1], [0.1, 0.1, 1], [-0.1, -0.1, 1], [[0.1, -0.1], [-0.1, 0.1], [1, 1]]] temperatures = [0, 1, -1, 10.5, -10.5] for temp in temperatures: for dist in dist_coefs: model = self.Class(**dist, **intrins_param) with self.subTest(**dist, temp=temp): for vec in camera_vecs: pixel_loc = model.project_onto_image(vec, image=-1, temperature=temp) unit_vec = model.pixels_to_unit(pixel_loc, image=-1, temperature=temp) unit_true = np.array(vec).astype(np.float64) unit_true /= np.linalg.norm(unit_true, axis=0, keepdims=True) np.testing.assert_allclose(unit_vec, unit_true, atol=1e-13) def test_overwrite(self): model1 = self.Class(field_of_view=10, intrinsic_matrix=np.array([[1, 2, 3], [0, 5, 6]]), distortion_coefficients=np.array([1, 2, 3, 4, 5]), misalignment=[[1, 2, 3], [4, 5, 6]], use_a_priori=False, estimation_parameters=['multiple misalignments']) model2 = self.Class(field_of_view=20, intrinsic_matrix=np.array([[11, 12, 13], [0, 15, 16]]), distortion_coefficients=np.array([11, 12, 13, 14, 15]), misalignment=[[11, 12, 13], [14, 15, 16]], use_a_priori=True, estimation_parameters=['single misalignment']) modeltest = model1.copy() modeltest.overwrite(model2) self.assertEqual(model2.field_of_view, modeltest.field_of_view) self.assertEqual(model2.use_a_priori, modeltest.use_a_priori) self.assertEqual(model2.estimate_multiple_misalignments, modeltest.estimate_multiple_misalignments) np.testing.assert_array_equal(model2.intrinsic_matrix, modeltest.intrinsic_matrix) np.testing.assert_array_equal(model2.distortion_coefficients, modeltest.distortion_coefficients) np.testing.assert_array_equal(model2.misalignment, modeltest.misalignment) np.testing.assert_array_equal(model2.estimation_parameters, modeltest.estimation_parameters) modeltest = model2.copy() modeltest.overwrite(model1) self.assertEqual(model1.field_of_view, modeltest.field_of_view) self.assertEqual(model1.use_a_priori, modeltest.use_a_priori) self.assertEqual(model1.estimate_multiple_misalignments, modeltest.estimate_multiple_misalignments) np.testing.assert_array_equal(model1.intrinsic_matrix, modeltest.intrinsic_matrix) np.testing.assert_array_equal(model1.distortion_coefficients, modeltest.distortion_coefficients) np.testing.assert_array_equal(model1.misalignment, modeltest.misalignment) np.testing.assert_array_equal(model1.estimation_parameters, modeltest.estimation_parameters) def test_distort_pixels(self): model = self.Class(kx=1000, ky=-950.5, px=4500, py=139.32, a1=1e-3, a2=1e-4, a3=1e-5, kxy=0.5, radial2=1e-5, radial4=1e-5, radial6=1e-7, tiptilt_x=1e-6, tiptilt_y=2e-12) pixels = [[0, 1], [1, 0], [-1, 0], [0, -1], [9000., 200.2], [[4500, 100, 10.98], [0, 139.23, 200.3]]] temperatures = [0, 1, -1, 10.5, -10.5] for pix in pixels: for temp in temperatures: with self.subTest(pix=pix, temp=temp): undist_pix = model.undistort_pixels(pix, temperature=temp) dist_pix = model.distort_pixels(undist_pix, temperature=temp) np.testing.assert_allclose(dist_pix, pix, atol=1e-10) def test_to_from_elem(self): element = etree.Element(self.Class.__name__) model = self.Class(field_of_view=5, use_a_priori=True, misalignment=[1, 2, 3], kx=2, ky=200, px=50, py=300, kxy=12123, a1=37, a2=1, a3=-1230, k1=5, k2=10, k3=20, p1=-10, p2=35, estimation_parameters=['kx', 'multiple misalignments'], n_rows=20, n_cols=30) model_copy = model.copy() with self.subTest(misalignment=True): element = model.to_elem(element, misalignment=True) self.assertEqual(model, model_copy) model_new = self.Class.from_elem(element) self.assertEqual(model, model_new) with self.subTest(misalignment=False): element = model.to_elem(element, misalignment=False) self.assertEqual(model, model_copy) model_new = self.Class.from_elem(element) model.estimation_parameters[-1] = 'single misalignment' model.estimate_multiple_misalignments = False model.misalignment = np.zeros(3) self.assertEqual(model, model_new) def test_distortion_map(self): model = self.Class(kx=100, ky=-985.234, px=1000, py=1095, kxy=10, k1=1e-6, k2=1e-12, k3=-4e-10, p1=6e-7, p2=-1e-5, a1=1e-6, a2=-1e-7, a3=4e-12) rows, cols, dist = model.distortion_map((2000, 250), step=10) rl, cl = np.arange(0, 2000, 10), np.arange(0, 250, 10) rs, cs = np.meshgrid(rl, cl, indexing='ij') np.testing.assert_array_equal(rows, rs) np.testing.assert_array_equal(cols, cs) distl = model.distort_pixels(np.vstack([cs.flatten(), rs.flatten()])) np.testing.assert_array_equal(distl - np.vstack([cs.flatten(), rs.flatten()]), dist) class TestOpenCVModel(TestPinholeModel): def setUp(self): self.Class = OpenCVModel # Not supported for this model test__compute_dgnomic_dfocal_length = None def test___init__(self): model = self.Class(intrinsic_matrix=np.array([[1, 2, 3], [4, 5, 6]]), field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], distortion_coefficients=np.array([1, 2, 3, 4, 5]), estimation_parameters='basic intrinsic', a1=1, a2=2, a3=3) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 2, 3], [4, 5, 6]]) self.assertEqual(model.focal_length, 1) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['basic intrinsic']) self.assertEqual(model.a1, 1) self.assertEqual(model.a2, 2) self.assertEqual(model.a3, 3) np.testing.assert_array_equal(model.distortion_coefficients, np.arange(1, 6)) model = self.Class(kx=1, fy=2, px=4, py=5, field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], kxy=80, estimation_parameters=['kx', 'px'], n_rows=500, n_cols=600, radial2n=1, radial4n=2, k3=3, p1=4, tiptilt_x=5, radial2d=9, k5=100, k6=-90, s1=400, thinprism_2=-500, s3=600, s4=5) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 80, 4], [0, 2, 5]]) self.assertEqual(model.focal_length, 1) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['kx', 'px']) self.assertEqual(model.n_rows, 500) self.assertEqual(model.n_cols, 600) np.testing.assert_array_equal(model.distortion_coefficients, [1, 2, 3, 9, 100, -90, 4, 5, 400, -500, 600, 5]) def test_fx(self): model = self.Class(intrinsic_matrix=np.array([[1, 0, 0], [0, 0, 0]])) self.assertEqual(model.kx, 1) model.kx = 100 self.assertEqual(model.kx, 100) self.assertEqual(model.intrinsic_matrix[0, 0], 100) def test_fy(self): model = self.Class(intrinsic_matrix=np.array([[0, 0, 0], [0, 1, 0]])) self.assertEqual(model.ky, 1) model.ky = 100 self.assertEqual(model.ky, 100) self.assertEqual(model.intrinsic_matrix[1, 1], 100) def test_kxy(self): model = self.Class(intrinsic_matrix=np.array([[0, 1, 0], [0, 0, 0]])) self.assertEqual(model.kxy, 1) model.kxy = 100 self.assertEqual(model.kxy, 100) self.assertEqual(model.intrinsic_matrix[0, 1], 100) def test_alpha(self): model = self.Class(intrinsic_matrix=np.array([[0, 1, 0], [0, 0, 0]])) self.assertEqual(model.alpha, 1) model.alpha = 100 self.assertEqual(model.alpha, 100) self.assertEqual(model.intrinsic_matrix[0, 1], 100) def test_k1(self): model = self.Class(distortion_coefficients=np.array([1, 0, 0, 0, 0])) self.assertEqual(model.k1, 1) model.k1 = 100 self.assertEqual(model.k1, 100) self.assertEqual(model.distortion_coefficients[0], 100) def test_k2(self): model = self.Class(distortion_coefficients=np.array([0, 1, 0, 0, 0])) self.assertEqual(model.k2, 1) model.k2 = 100 self.assertEqual(model.k2, 100) self.assertEqual(model.distortion_coefficients[1], 100) def test_k3(self): model = self.Class(distortion_coefficients=np.array([0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0])) self.assertEqual(model.k3, 1) model.k3 = 100 self.assertEqual(model.k3, 100) self.assertEqual(model.distortion_coefficients[2], 100) def test_k4(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0])) self.assertEqual(model.k4, 1) model.k4 = 100 self.assertEqual(model.k4, 100) self.assertEqual(model.distortion_coefficients[3], 100) def test_k5(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0])) self.assertEqual(model.k5, 1) model.k5 = 100 self.assertEqual(model.k5, 100) self.assertEqual(model.distortion_coefficients[4], 100) def test_k6(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0])) self.assertEqual(model.k6, 1) model.k6 = 100 self.assertEqual(model.k6, 100) self.assertEqual(model.distortion_coefficients[5], 100) def test_p1(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 1, 0])) self.assertEqual(model.p1, 1) model.p1 = 100 self.assertEqual(model.p1, 100) self.assertEqual(model.distortion_coefficients[6], 100) def test_p2(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 0, 1])) self.assertEqual(model.p2, 1) model.p2 = 100 self.assertEqual(model.p2, 100) self.assertEqual(model.distortion_coefficients[7], 100) def test_s1(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0])) self.assertEqual(model.s1, 1) model.s1 = 100 self.assertEqual(model.s1, 100) self.assertEqual(model.distortion_coefficients[8], 100) def test_s2(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0])) self.assertEqual(model.s2, 1) model.s2 = 100 self.assertEqual(model.s2, 100) self.assertEqual(model.distortion_coefficients[9], 100) def test_s3(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0])) self.assertEqual(model.s3, 1) model.s3 = 100 self.assertEqual(model.s3, 100) self.assertEqual(model.distortion_coefficients[10], 100) def test_s4(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])) self.assertEqual(model.s4, 1) model.s4 = 100 self.assertEqual(model.s4, 100) self.assertEqual(model.distortion_coefficients[11], 100) def test_radial2n(self): model = self.Class(distortion_coefficients=np.array([1, 0, 0, 0, 0])) self.assertEqual(model.radial2n, 1) model.radial2n = 100 self.assertEqual(model.radial2n, 100) self.assertEqual(model.distortion_coefficients[0], 100) def test_radial4n(self): model = self.Class(distortion_coefficients=np.array([0, 1, 0, 0, 0])) self.assertEqual(model.radial4n, 1) model.radial4n = 100 self.assertEqual(model.radial4n, 100) self.assertEqual(model.distortion_coefficients[1], 100) def test_radial6n(self): model = self.Class(distortion_coefficients=np.array([0, 0, 1, 0, 0])) self.assertEqual(model.radial6n, 1) model.radial6n = 100 self.assertEqual(model.radial6n, 100) self.assertEqual(model.distortion_coefficients[2], 100) def test_radial2d(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0])) self.assertEqual(model.radial2d, 1) model.radial2d = 100 self.assertEqual(model.radial2d, 100) self.assertEqual(model.distortion_coefficients[3], 100) def test_radial4d(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0])) self.assertEqual(model.radial4d, 1) model.radial4d = 100 self.assertEqual(model.radial4d, 100) self.assertEqual(model.distortion_coefficients[4], 100) def test_radial6d(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0])) self.assertEqual(model.radial6d, 1) model.radial6d = 100 self.assertEqual(model.radial6d, 100) self.assertEqual(model.distortion_coefficients[5], 100) def test_tiptilt_y(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 1, 0])) self.assertEqual(model.tiptilt_y, 1) model.tiptilt_y = 100 self.assertEqual(model.tiptilt_y, 100) self.assertEqual(model.distortion_coefficients[6], 100) def test_tiptilt_x(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 0, 1])) self.assertEqual(model.tiptilt_x, 1) model.tiptilt_x = 100 self.assertEqual(model.tiptilt_x, 100) self.assertEqual(model.distortion_coefficients[7], 100) def test_thinprism_1(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0])) self.assertEqual(model.thinprism_1, 1) model.thinprism_1 = 100 self.assertEqual(model.thinprism_1, 100) self.assertEqual(model.distortion_coefficients[8], 100) def test_thinprism_2(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0])) self.assertEqual(model.thinprism_2, 1) model.thinprism_2 = 100 self.assertEqual(model.thinprism_2, 100) self.assertEqual(model.distortion_coefficients[9], 100) def test_thinprism_3(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0])) self.assertEqual(model.thinprism_3, 1) model.thinprism_3 = 100 self.assertEqual(model.thinprism_3, 100) self.assertEqual(model.distortion_coefficients[10], 100) def test_thinprism_4(self): model = self.Class(distortion_coefficients=np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])) self.assertEqual(model.thinprism_4, 1) model.thinprism_4 = 100 self.assertEqual(model.thinprism_4, 100) self.assertEqual(model.distortion_coefficients[11], 100) def test_apply_distortion(self): dist_coefs = [{"k1": 1.5}, {"k2": 1.5}, {"k3": 1.5}, {"p1": 1.5}, {"p2": 1.5}, {"k4": 1.5}, {"k5": 1.5}, {"k6": 1.5}, {"s1": 1.5}, {"s2": 1.5}, {"s3": 1.5}, {"s4": 1.5}] inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] solus = [ # k1 [[0, 0], [2.5, 0], [-2.5, 0], [1.5 + 1.5 ** 4, 0], [-(1.5 + 1.5 ** 4), 0], [[(1.5 + 1.5 ** 4)], [0]], [[(1.5 + 1.5 ** 4), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 4)], [0, -(1.5 + 1.5 ** 4)], [[0], [(1.5 + 1.5 ** 4)]], [[0, 0], [(1.5 + 1.5 ** 4), -2.5]], [1 + 2 * 1.5, 1 + 2 * 1.5]], # k2 [[0, 0], [2.5, 0], [-2.5, 0], [(1.5 + 1.5 ** 6), 0], [-(1.5 + 1.5 ** 6), 0], [[(1.5 + 1.5 ** 6)], [0]], [[(1.5 + 1.5 ** 6), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 6)], [0, -(1.5 + 1.5 ** 6)], [[0], [(1.5 + 1.5 ** 6)]], [[0, 0], [(1.5 + 1.5 ** 6), -2.5]], [1 + 4 * 1.5, 1 + 4 * 1.5]], # k3 [[0, 0], [2.5, 0], [-2.5, 0], [(1.5 + 1.5 ** 8), 0], [-(1.5 + 1.5 ** 8), 0], [[(1.5 + 1.5 ** 8)], [0]], [[(1.5 + 1.5 ** 8), -2.5], [0, 0]], [0, 2.5], [0, -2.5], [0, (1.5 + 1.5 ** 8)], [0, -(1.5 + 1.5 ** 8)], [[0], [(1.5 + 1.5 ** 8)]], [[0, 0], [(1.5 + 1.5 ** 8), -2.5]], [1 + 8 * 1.5, 1 + 8 * 1.5]], # p1 [[0, 0], [1, 1.5], [-1, 1.5], [1.5, 1.5 ** 3], [-1.5, 1.5 ** 3], [[1.5], [1.5 ** 3]], [[1.5, -1], [1.5 ** 3, 1.5]], [0, 1 + 3 * 1.5], [0, -1 + 3 * 1.5], [0, 1.5 + 3 * 1.5 ** 3], [0, -1.5 + 3 * 1.5 ** 3], [[0], [1.5 + 3 * 1.5 ** 3]], [[0, 0], [1.5 + 3 * 1.5 ** 3, -1 + 3 * 1.5]], [1 + 2 * 1.5, 1 + 4 * 1.5]], # p2 [[0, 0], [1 + 3 * 1.5, 0], [-1 + 3 * 1.5, 0], [1.5 + 3 * 1.5 ** 3, 0], [-1.5 + 3 * 1.5 ** 3, 0], [[1.5 + 3 * 1.5 ** 3], [0]], [[1.5 + 3 * 1.5 ** 3, -1 + 3 * 1.5], [0, 0]], [1.5, 1], [1.5, -1], [1.5 ** 3, 1.5], [1.5 ** 3, -1.5], [[1.5 ** 3], [1.5]], [[1.5 ** 3, 1.5], [1.5, -1]], [1 + 4 * 1.5, 1 + 2 * 1.5]], # k4 [[0, 0], [1 / 2.5, 0], [-1 / 2.5, 0], [1.5 / (1 + 1.5 ** 3), 0], [-1.5 / (1 + 1.5 ** 3), 0], [[1.5 / (1 + 1.5 ** 3)], [0]], [[1.5 / (1 + 1.5 ** 3), -1 / 2.5], [0, 0]], [0, 1 / 2.5], [0, -1 / 2.5], [0, 1.5 / (1 + 1.5 ** 3)], [0, -1.5 / (1 + 1.5 ** 3)], [[0], [1.5 / (1 + 1.5 ** 3)]], [[0, 0], [1.5 / (1 + 1.5 ** 3), -1 / 2.5]], [1 / 4, 1 / 4]], # k5 [[0, 0], [1 / 2.5, 0], [-1 / 2.5, 0], [1.5 / (1 + 1.5 ** 5), 0], [-1.5 / (1 + 1.5 ** 5), 0], [[1.5 / (1 + 1.5 ** 5)], [0]], [[1.5 / (1 + 1.5 ** 5), -1 / 2.5], [0, 0]], [0, 1 / 2.5], [0, -1 / 2.5], [0, 1.5 / (1 + 1.5 ** 5)], [0, -1.5 / (1 + 1.5 ** 5)], [[0], [1.5 / (1 + 1.5 ** 5)]], [[0, 0], [1.5 / (1 + 1.5 ** 5), -1 / 2.5]], [1 / 7, 1 / 7]], # k6 [[0, 0], [1 / 2.5, 0], [-1 / 2.5, 0], [1.5 / (1 + 1.5 ** 7), 0], [-1.5 / (1 + 1.5 ** 7), 0], [[1.5 / (1 + 1.5 ** 7)], [0]], [[1.5 / (1 + 1.5 ** 7), -1 / 2.5], [0, 0]], [0, 1 / 2.5], [0, -1 / 2.5], [0, 1.5 / (1 + 1.5 ** 7)], [0, -1.5 / (1 + 1.5 ** 7)], [[0], [1.5 / (1 + 1.5 ** 7)]], [[0, 0], [1.5 / (1 + 1.5 ** 7), -1 / 2.5]], [1 / 13, 1 / 13]], # s1 [[0, 0], [1 + 1.5, 0], [-1 + 1.5, 0], [1.5 + 1.5 ** 3, 0], [-1.5 + 1.5 ** 3, 0], [[1.5 + 1.5 ** 3], [0]], [[1.5 + 1.5 ** 3, -1 + 1.5], [0, 0]], [1.5, 1], [1.5, -1], [1.5 ** 3, 1.5], [1.5 ** 3, -1.5], [[1.5 ** 3], [1.5]], [[1.5 ** 3, 1.5], [1.5, -1]], [1 + 2 * 1.5, 1]], # s2 [[0, 0], [1 + 1.5, 0], [-1 + 1.5, 0], [1.5 + 1.5 ** 5, 0], [-1.5 + 1.5 ** 5, 0], [[1.5 + 1.5 ** 5], [0]], [[1.5 + 1.5 ** 5, -1 + 1.5], [0, 0]], [1.5, 1], [1.5, -1], [1.5 ** 5, 1.5], [1.5 ** 5, -1.5], [[1.5 ** 5], [1.5]], [[1.5 ** 5, 1.5], [1.5, -1]], [1 + 4 * 1.5, 1]], # s3 [[0, 0], [1, 1.5], [-1, 1.5], [1.5, 1.5 ** 3], [-1.5, 1.5 ** 3], [[1.5], [1.5 ** 3]], [[1.5, -1], [1.5 ** 3, 1.5]], [0, 1 + 1.5], [0, -1 + 1.5], [0, 1.5 + 1.5 ** 3], [0, -1.5 + 1.5 ** 3], [[0], [1.5 + 1.5 ** 3]], [[0, 0], [1.5 + 1.5 ** 3, -1 + 1.5]], [1, 1 + 2 * 1.5]], # s4 [[0, 0], [1, 1.5], [-1, 1.5], [1.5, 1.5 ** 5], [-1.5, 1.5 ** 5], [[1.5], [1.5 ** 5]], [[1.5, -1], [1.5 ** 5, 1.5]], [0, 1 + 1.5], [0, -1 + 1.5], [0, 1.5 + 1.5 ** 5], [0, -1.5 + 1.5 ** 5], [[0], [1.5 + 1.5 ** 5]], [[0, 0], [1.5 + 1.5 ** 5, -1 + 1.5]], [1, 1 + 4 * 1.5]] ] for dist, sols in zip(dist_coefs, solus): model = self.Class(**dist) for inp, solu in zip(inputs, sols): with self.subTest(**dist, inp=inp): gnom_dist = model.apply_distortion(np.array(inp)) np.testing.assert_array_almost_equal(gnom_dist, solu) def test_get_projections(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, a1=1e-1, a2=-1e-6, a3=3e-7, k4=1, k5=-5, k6=11, s1=1e-6, s2=1e2, s3=-3e-3, s4=5e-1) temps = [0, 1, -1, 10, -10] for temp in temps: with self.subTest(misalignment=None, temp=temp): for point in points: pin, dist, pix = model.get_projections(point, temperature=temp) pin_true = np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) dist_true *= model.get_temperature_scale(temp) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(pin, pin_true) np.testing.assert_array_equal(dist, dist_true) np.testing.assert_array_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, k4=1, k5=-5, k6=11, s1=1e-6, s2=1e2, s3=-3e-3, s4=5e-1, misalignment=[0, 0, np.pi]) with self.subTest(misalignment=[0, 0, np.pi]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = -np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, k4=1, k5=-5, k6=11, s1=1e-6, s2=1e2, s3=-3e-3, s4=5e-1, misalignment=[np.pi, 0, 0]) with self.subTest(misalignment=[np.pi, 0, 0]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = np.array(point[:2]) / point[2] pin_true[0] *= -1 dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, k4=1, k5=-5, k6=11, s1=1e-6, s2=1e2, s3=-3e-3, s4=5e-1, misalignment=[0, np.pi, 0]) with self.subTest(misalignment=[0, np.pi, 0]): for point in points: pin, dist, pix = model.get_projections(point) pin_true = np.array(point[:2]) / point[2] pin_true[1] *= -1 dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, k4=1, k5=-5, k6=11, s1=1e-6, s2=1e2, s3=-3e-3, s4=5e-1, misalignment=[1, 0.2, 0.3]) with self.subTest(misalignment=[1, 0.2, 0.3]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point pin, dist, pix = model.get_projections(point) pin_true = np.array(point_new[:2]) / np.array(point_new[2]) dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, k4=1, k5=-5, k6=11, s1=1e-6, s2=1e2, s3=-3e-3, s4=5e-1, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point pin, dist, pix = model.get_projections(point, image=0) pin_true = np.array(point_new[:2]) / np.array(point_new[2]) dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) pin, dist, pix = model.get_projections(point, image=1) pin_true = -np.array(point[:2]) / point[2] dist_true = model.apply_distortion(pin_true) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], dist_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pin, pin_true) np.testing.assert_array_almost_equal(dist, dist_true) np.testing.assert_array_almost_equal(pix, pix_true) def test_project_onto_image(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, a1=1, a2=2, a3=-3, k4=1, k5=-5, k6=11, s1=1e-6, s2=1e2, s3=-3e-3, s4=5e-1 ) temps = [0, 1, -1, 10, -10] for temp in temps: with self.subTest(temp=temp, misalignment=None): for point in points: _, __, pix = model.get_projections(point, temperature=temp) pix_proj = model.project_onto_image(point, temperature=temp) np.testing.assert_array_equal(pix, pix_proj) model = self.Class(fx=4050.5, fy=3050.25, alpha=1.5, px=1500, py=1500.5, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, k4=1, k5=-5, k6=11, s1=1e-6, s2=1e2, s3=-3e-3, s4=5e-1, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): for point in points: _, __, pix = model.get_projections(point, image=0) pix_proj = model.project_onto_image(point, image=0) np.testing.assert_array_equal(pix, pix_proj) _, __, pix = model.get_projections(point, image=1) pix_proj = model.project_onto_image(point, image=1) np.testing.assert_array_equal(pix, pix_proj) def test_compute_pixel_jacobian(self): def num_deriv(uvec, cmodel, delta=1e-8, image=0, temperature=0) -> np.ndarray: uvec = np.array(uvec).reshape(3, -1) pix_true = cmodel.project_onto_image(uvec, image=image, temperature=temperature) uvec_pert = uvec + [[delta], [0], [0]] pix_pert_x_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec + [[0], [delta], [0]] pix_pert_y_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec + [[0], [0], [delta]] pix_pert_z_f = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[delta], [0], [0]] pix_pert_x_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[0], [delta], [0]] pix_pert_y_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) uvec_pert = uvec - [[0], [0], [delta]] pix_pert_z_b = cmodel.project_onto_image(uvec_pert, image=image, temperature=temperature) return np.array([(pix_pert_x_f-pix_pert_x_b)/(2*delta), (pix_pert_y_f-pix_pert_y_b)/(2*delta), (pix_pert_z_f-pix_pert_z_b)/(2*delta)]).swapaxes(0, -1) inputs = [np.array([[0.5, 0, 1]]).T, np.array([[0, 0.5, 1], [0.5, 0.5, 1], [-0.5, 0, 1]]).T, np.array([[0.1, -0.5, 1], [-0.5, -0.5, 1], [5, 10, 1000.23], [1, 2, 1200.23]]).T] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=1500, py=1500.5, a1=0.15e-7, a2=-0.01e-8, a3=1e-9, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, k4=-0.5, k5=0.02, k6=0.01, s1=-0.45, s2=0.0045, s3=-0.8, s4=0.9, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9]]) model.estimate_multiple_misalignments = True for temp in temperatures: for input in inputs: for image in range(2): with self.subTest(image=image, temp=temp, input=input): jac_ana = model.compute_pixel_jacobian(input, image=image, temperature=temp) jac_num = num_deriv(input, model, image=image, temperature=temp, delta=1e-2) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test__compute_dcamera_point_dgnomic(self): def num_deriv(gnomic_locations, cmodel, delta=1e-6) -> np.ndarray: def g2u(g): v = np.vstack([g, cmodel.focal_length*np.ones(g.shape[-1])]) return v/np.linalg.norm(v, axis=0, keepdims=True) gnomic_locations = np.asarray(gnomic_locations).reshape(2, -1) gnom_pert = gnomic_locations + [[delta], [0]] cam_loc_pert_x_f = g2u(gnom_pert) gnom_pert = gnomic_locations + [[0], [delta]] cam_loc_pert_y_f = g2u(gnom_pert) gnom_pert = gnomic_locations - [[delta], [0]] cam_loc_pert_x_b = g2u(gnom_pert) gnom_pert = gnomic_locations - [[0], [delta]] cam_loc_pert_y_b = g2u(gnom_pert) return np.array([(cam_loc_pert_x_f -cam_loc_pert_x_b)/(2*delta), (cam_loc_pert_y_f -cam_loc_pert_y_b)/(2*delta)]).swapaxes(0, -1) inputs = [np.array([[0, 0]]).T, np.array([[0, 2000], [2000, 0], [2000, 2000]]).T, np.array([[1000, 1000], [1000, 2000], [2000, 1000], [0, 1000], [1000, 0]]).T] model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=1500, py=1500.5, a1=0.15e-7, a2=-0.01e-8, a3=1e-9, k1=0.5, k2=-0.3, k3=0.15, p1=1e-7, p2=1e-6, k4=-0.5, k5=0.02, k6=0.01, s1=-0.45, s2=0.0045, s3=-0.8, s4=0.9, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9]]) model.estimate_multiple_misalignments = True for input in inputs: with self.subTest(input=input): jac_ana = [] for gnom in input.T: jac_ana.append( model._compute_dcamera_point_dgnomic(gnom, np.sqrt(np.sum(gnom*gnom) + model.focal_length**2))) jac_ana = np.array(jac_ana) jac_num = num_deriv(input, model) np.testing.assert_almost_equal(jac_ana, jac_num) def test__compute_dgnomic_ddist_gnomic(self): def num_deriv(dist_gnomic_locations, cmodel, delta=1e-6) -> np.ndarray: def dg2g(dg): gnomic_guess = dg.copy() # perform the fpa for _ in np.arange(20): # get the distorted location assuming the current guess is correct gnomic_guess_distorted = cmodel.apply_distortion(gnomic_guess) # subtract off the residual distortion from the gnomic guess gnomic_guess += dg - gnomic_guess_distorted # check for convergence if np.all(np.linalg.norm(gnomic_guess_distorted - dg, axis=0) <= 1e-15): break return gnomic_guess dist_gnomic_locations = np.asarray(dist_gnomic_locations).reshape(2, -1) dist_gnom_pert = dist_gnomic_locations + [[delta], [0]] gnom_loc_pert_x_f = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations + [[0], [delta]] gnom_loc_pert_y_f = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations - [[delta], [0]] gnom_loc_pert_x_b = dg2g(dist_gnom_pert) dist_gnom_pert = dist_gnomic_locations - [[0], [delta]] gnom_loc_pert_y_b = dg2g(dist_gnom_pert) return np.array([(gnom_loc_pert_x_f - gnom_loc_pert_x_b)/(2*delta), (gnom_loc_pert_y_f - gnom_loc_pert_y_b)/(2*delta)]).swapaxes(0, -1) inputs = [np.array([[0, 0]]).T, np.array([[0, 0.1], [0.1, 0], [0.1, 0.1]]).T/100, np.array([[-0.1, 0], [0, -0.1], [-0.1, -0.1], [0.1, -0.1], [-0.1, 0.1]]).T/100] model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=1500, py=1500.5, a1=0.15e-7, a2=-0.01e-8, a3=1e-9, k1=0.005, k2=-0.003, k3=0.0015, p1=1e-7, p2=1e-6, k4=-0.005, k5=0.0002, k6=0.0001, s1=-0.0045, s2=0.000045, s3=-0.008, s4=0.009, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9]]) model.estimate_multiple_misalignments = True for input in inputs: with self.subTest(input=input): jac_ana = [] for dist_gnom in input.T: jac_ana.append(model._compute_dgnomic_ddist_gnomic(dist_gnom)) jac_ana = np.array(jac_ana) jac_num = num_deriv(input, model, delta=1e-4) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-1, atol=1e-10) def test_compute_unit_vector_jacobian(self): def num_deriv(pixels, cmodel, delta=1e-6, image=0, temperature=0) -> np.ndarray: pixels = np.array(pixels).reshape(2, -1) pix_pert = pixels + [[delta], [0]] uvec_pert_x_f = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels + [[0], [delta]] uvec_pert_y_f = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels - [[delta], [0]] uvec_pert_x_b = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) pix_pert = pixels - [[0], [delta]] uvec_pert_y_b = cmodel.pixels_to_unit(pix_pert, image=image, temperature=temperature) return np.array([(uvec_pert_x_f-uvec_pert_x_b)/(2*delta), (uvec_pert_y_f-uvec_pert_y_b)/(2*delta)]).swapaxes(0, -1) inputs = [np.array([[0, 0]]).T, np.array([[0, 2000], [2000, 0], [2000, 2000]]).T/10, np.array([[1000, 1000], [1000, 2000], [2000, 1000], [0, 1000], [1000, 0]]).T/10] temperatures = [0, 1, -1, 10.5, -10.5] model = self.Class(fx=4050.5, fy=5050.25, alpha=1.5, px=100, py=100.5, a1=0.15e-7, a2=-0.01e-8, a3=1e-9, k1=0.005, k2=-0.003, k3=0.0015, p1=1e-7, p2=1e-6, k4=-0.005, k5=0.0002, k6=0.0001, s1=-0.0045, s2=0.000045, s3=-0.008, s4=0.009, misalignment=[[1e-9, -1e-9, 2e-9], [-1e-9, 2e-9, -1e-9]]) model.estimate_multiple_misalignments = True for temp in temperatures: for input in inputs: for image in range(2): with self.subTest(image=image, temp=temp, input=input): jac_ana = model.compute_unit_vector_jacobian(input, image=image, temperature=temp) jac_num = num_deriv(input, model, image=image, temperature=temp, delta=1) np.testing.assert_allclose(jac_ana, jac_num, rtol=1e-3, atol=1e-10) def test__compute_ddistorted_gnomic_dgnomic(self): def num_deriv(loc, cmodel, delta=1e-8) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0] dist_pert_x_f = cmodel.apply_distortion(loc_pert) loc_pert = np.array(loc) + [0, delta] dist_pert_y_f = cmodel.apply_distortion(loc_pert) loc_pert = np.array(loc) - [delta, 0] dist_pert_x_b = cmodel.apply_distortion(loc_pert) loc_pert = np.array(loc) - [0, delta] dist_pert_y_b = cmodel.apply_distortion(loc_pert) return np.array( [(dist_pert_x_f - dist_pert_x_b) / (2 * delta), (dist_pert_y_f - dist_pert_y_b) / (2 * delta)]).T dist_coefs = [{"k1": 1.5}, {"k2": 1.5}, {"k3": 1.5}, {"p1": 1.5}, {"p2": 1.5}, {"k4": 1.5}, {"k5": 1.5}, {"k6": 1.5}, {"s1": 1.5}, {"s2": 1.5}, {"s3": 1.5}, {"s4": 1.5}, {"k1": -1.5, "k2": -1.5, "k3": -1.5, "p1": -1.5, "p2": -1.5, "k4": -1.5, "k5": -1.5, "k6": -1.5, "s1": -1.5, "s2": -1.5, "s3": -1.5, "s4": -1.5}] inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for dist_coef in dist_coefs: model = self.Class(**dist_coef) for inp in inputs: with self.subTest(**dist_coef, inp=inp): r = np.sqrt(inp[0] ** 2 + inp[1] ** 2) r2 = r ** 2 r4 = r ** 4 r6 = r ** 6 num = num_deriv(inp, model) ana = model._compute_ddistorted_gnomic_dgnomic(np.array(inp), r2, r4, r6) np.testing.assert_allclose(num, ana, atol=1e-14) def test__compute_dpixel_ddistorted_gnomic(self): def num_deriv(loc, cmodel, delta=1e-8, temperature=0) -> np.ndarray: loc_pert = np.array(loc) + [delta, 0] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_x_f = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) + [0, delta] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_y_f = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) - [delta, 0] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_x_b = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] loc_pert = np.array(loc) - [0, delta] loc_pert *= cmodel.get_temperature_scale(temperature) pix_pert_y_b = cmodel.intrinsic_matrix[:, :2] @ loc_pert + cmodel.intrinsic_matrix[:, 2] return np.array( [(pix_pert_x_f - pix_pert_x_b) / (2 * delta), (pix_pert_y_f - pix_pert_y_b) / (2 * delta)]).T intrins_coefs = [{"fx": 1.5, "fy": 0, "alpha": 0, "px": 0, "py": 0}, {"fx": 0, "fy": 1.5, "alpha": 0, "px": 0, "py": 0}, {"fx": 0, "fy": 0, "alpha": 1.5, "px": 0, "py": 0}, {"fx": 0, "fy": 0, "alpha": 0, "px": 1.5, "py": 0}, {"fx": 0, "fy": 0, "alpha": 0, "px": 0, "py": 1.5}, {"fx": -1.5, "fy": -1.5, "alpha": -1.5, "px": 1.5, "py": 1.5}] inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] temps = [0, 1, -1, 10.5, -10.5] for temp in temps: for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) with self.subTest(**intrins_coef, temp=temp): for inp in inputs: num = num_deriv(np.array(inp), model, temperature=temp) ana = model._compute_dpixel_ddistorted_gnomic(temperature=temp) np.testing.assert_allclose(num, ana, atol=1e-14) def test__compute_dpixel_dintrinsic(self): def num_deriv(loc, cmodel, delta=1e-6) -> np.ndarray: model_pert = cmodel.copy() model_pert.kx += delta pix_pert_kx_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kxy += delta pix_pert_kxy_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.ky += delta pix_pert_ky_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.px += delta pix_pert_px_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.py += delta pix_pert_py_f = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kx -= delta pix_pert_kx_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.kxy -= delta pix_pert_kxy_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.ky -= delta pix_pert_ky_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.px -= delta pix_pert_px_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] model_pert = cmodel.copy() model_pert.py -= delta pix_pert_py_b = model_pert.intrinsic_matrix[:, :2] @ loc + model_pert.intrinsic_matrix[:, 2] return np.array([(pix_pert_kx_f - pix_pert_kx_b) / (2 * delta), (pix_pert_ky_f - pix_pert_ky_b) / (2 * delta), (pix_pert_kxy_f - pix_pert_kxy_b) / (2 * delta), (pix_pert_px_f - pix_pert_px_b) / (2 * delta), (pix_pert_py_f - pix_pert_py_b) / (2 * delta)]).T intrins_coefs = [{"fx": 1.5, "fy": 0, "alpha": 0, "px": 0, "py": 0}, {"fx": 0, "fy": 1.5, "alpha": 0, "px": 0, "py": 0}, {"fx": 0, "fy": 0, "alpha": 1.5, "px": 0, "py": 0}, {"fx": 0, "fy": 0, "alpha": 0, "px": 1.5, "py": 0}, {"fx": 0, "fy": 0, "alpha": 0, "px": 0, "py": 1.5}, {"fx": -1.5, "fy": -1.5, "alpha": -1.5, "px": 1.5, "py": 1.5}] inputs = [[1e-6, 1e-6], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [1, 1]] for intrins_coef in intrins_coefs: model = self.Class(**intrins_coef) for inp in inputs: with self.subTest(**intrins_coef, inp=inp): num = num_deriv(inp, model, delta=1e-5) ana = model._compute_dpixel_dintrinsic(
np.array(inp)
numpy.array
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf import numpy as np import nltk import pickle from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer from create_sentiment_featuresets import create_feature_sets_and_labels #train_x, train_y, test_x, test_y = create_feature_sets_and_labels('./files/pos.txt', './files/neg.txt') n_nodes_hl1 = 500 n_nodes_hl2 = 500 n_nodes_hl3 = 500 n_classes = 2 batch_size = 100 #long_training = len(train_x[0]) long_training = 423 x = tf.placeholder('float', [None, long_training], name='x') #x = tf.placeholder('float', name='x') y = tf.placeholder('float', name='y') hidden_1_layer = {'weights':tf.Variable(tf.random_normal([long_training, n_nodes_hl1])), 'biases':tf.Variable(tf.random_normal([n_nodes_hl1]))} hidden_2_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl1, n_nodes_hl2])), 'biases':tf.Variable(tf.random_normal([n_nodes_hl2]))} hidden_3_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl2, n_nodes_hl3])), 'biases':tf.Variable(tf.random_normal([n_nodes_hl3]))} output_layer = {'weights':tf.Variable(tf.random_normal([n_nodes_hl3, n_classes])), 'biases':tf.Variable(tf.random_normal([n_classes]))} def neural_network_model(data): # y = (x * weights) + biases l1 = tf.add(tf.matmul(data, hidden_1_layer['weights']), hidden_1_layer['biases']) l1 = tf.nn.relu(l1) # f(x) = max(0, x) l2 = tf.add(tf.matmul(l1, hidden_2_layer['weights']), hidden_2_layer['biases']) l2 = tf.nn.relu(l2) l3 = tf.add(tf.matmul(l2, hidden_3_layer['weights']), hidden_3_layer['biases']) l3 = tf.nn.relu(l3) output = tf.matmul(l3, output_layer['weights']) + output_layer['biases'] return output, hidden_1_layer['weights'] saver = tf.train.Saver() def train_neural_network(x): prediction, whl1 = neural_network_model(x) cost = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(logits=prediction, labels=y) ) optimizer = tf.train.AdamOptimizer().minimize(cost) f = open('./outputs/loss.txt', 'w') f2 = open('./outputs/weights-epochs.csv', 'w') # feed forward + backpropagation = epoch hm_epochs = 10 with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for epoch in range(hm_epochs): epoch_loss = 0 i = 0 while i < len(train_x): start = i end = i + batch_size batch_x =
np.array(train_x[start:end])
numpy.array
"""Functions for rendering the final result in PyVista.""" import time import numpy as np import pyvista as pv from matplotlib.colors import LinearSegmentedColormap from util import latlon2xyz, find_percent_val, find_val_percent import cmocean # zmaps = cmocean.tools.get_dict(cmocean.cm.thermal, N=9) # zmaps = cmocean.cm.thermal # zmaps = cmocean.cm.get_cmap("thermal").copy() def add_points(pl, points): # Is it strictly necessary that these be np.arrays? for key, data in points.items(): dots = pv.PolyData(np.array(data)) pl.add_mesh(dots, point_size=10.0, color=key) def add_lines(pl, radius, tilt): x_axisline = pv.Line([-1.5*radius,0,0],[1.5*radius,0,0]) y_axisline = pv.Line([0,-1.5*radius,0],[0,1.5*radius,0]) z_axisline = pv.Line([0,0,-1.5*radius],[0,0,1.5*radius]) # Axial tilt line # ax, ay, az = latlon2xyz(tilt, 45, radius) ax, ay, az = latlon2xyz(tilt, 0, radius) t_axisline = pv.Line([0,0,0], [ax * 1.5, ay * 1.5, az * 1.5]) # Sun tilt line (line that is perpendicular to the incoming solar flux) # ax, ay, az = latlon2xyz(90-tilt, -135, radius) ax, ay, az = latlon2xyz(90-tilt, 180, radius) s_axisline = pv.Line([0,0,0], [ax * 1.5, ay * 1.5, az * 1.5]) pl.add_mesh(x_axisline, line_width=5, color = "red") pl.add_mesh(y_axisline, line_width=5, color = "green") pl.add_mesh(z_axisline, line_width=5, color = "blue") pl.add_mesh(t_axisline, line_width=5, color = "magenta") pl.add_mesh(s_axisline, line_width=5, color = "yellow") def visualize(verts, tris, heights=None, scalars=None, zero_level=0.0, surf_points=None, radius=1.0, tilt=0.0): """Visualize the output.""" pl = pv.Plotter() if scalars["s-mode"] in ("insolation", "temperature"): show_ocean_shell = False else: show_ocean_shell = True # pyvista expects that faces have a leading number telling it how many # vertices a face has, e.g. [3, 0, 11, 5] where 3 means triangle. # https://docs.pyvista.org/examples/00-load/create-poly.html # So we fill an array with the number '3' and merge it with the cells # from meshzoo to get a 'proper' array for pyvista. time_start = time.perf_counter() tri_size = np.full((len(tris), 1), 3) new_tris = np.hstack((tri_size, tris)) time_end = time.perf_counter() print(f"Time to reshape triangle array: {time_end - time_start :.5f} sec") tri_size = None # Create pyvista mesh from our icosphere time_start = time.perf_counter() planet_mesh = pv.PolyData(verts, new_tris) time_end = time.perf_counter() print(f"Time to create the PyVista planet mesh: {time_end - time_start :.5f} sec") # Separate mesh for ocean water if show_ocean_shell: ocean_shell = pv.ParametricEllipsoid(radius, radius, radius, u_res=300, v_res=300) pl.add_mesh(ocean_shell, show_edges=False, smooth_shading=True, color="blue", opacity=0.15) # Add any surface marker points or other floating marker points if surf_points is not None: add_points(pl, surf_points) # Add axis lines add_lines(pl, radius, tilt) # minval = np.amin(scalars["scalars"]) # maxval = np.amax(scalars["scalars"]) # heights = np.clip(heights, minval*1.001, maxval) # Prepare scalar gradient, scalar bar, and annotations color_map, anno = make_scalars(scalars["s-mode"], scalars["scalars"]) sargs = dict(n_labels=0, label_font_size=12, position_y=0.07) # ToDo: Add title to the scalar bar sargs and dynamically change it based on what is being visualized (e.g. Elevation, Surface Temperature, etc.) # title="whatever" (remove the quotes and make 'whatever' into a variable, like the s-mode or whatever. like title=scalars["s-mode"]) # "Current"? ".items()"? https://stackoverflow.com/questions/3545331/how-can-i-get-dictionary-key-as-variable-directly-in-python-not-by-searching-fr # https://stackoverflow.com/questions/16819222/how-to-return-dictionary-keys-as-a-list-in-python # pl.add_mesh(planet_mesh, show_edges=False, smooth_shading=True, color="white", below_color="blue", culling="back", scalars=scalars["scalars"], cmap=custom_cmap, scalar_bar_args=sargs, annotations=anno) pl.add_mesh(planet_mesh, show_edges=False, smooth_shading=True, color="white", culling="back", scalars=scalars["scalars"], cmap=color_map, scalar_bar_args=sargs, annotations=anno) pl.show_axes() pl.enable_terrain_style(mouse_wheel_zooms=True) # Use turntable style navigation print("Sending to PyVista.") pl.show() def make_scalars(mode, scalars): # Define the colors we want to use (NOT BEING USED AT THE MOMENT) blue = np.array([12/256, 238/256, 246/256, 1]) black =
np.array([11/256, 11/256, 11/256, 1])
numpy.array
import pytest import dpnp import numpy def test_choose(): a = numpy.r_[:4] ia = dpnp.array(a) b = numpy.r_[-4:0] ib = dpnp.array(b) c = numpy.r_[100:500:100] ic = dpnp.array(c) expected = numpy.choose([0, 0, 0, 0], [a, b, c]) result = dpnp.choose([0, 0, 0, 0], [ia, ib, ic]) numpy.testing.assert_array_equal(expected, result) @pytest.mark.parametrize("offset", [0, 1], ids=['0', '1']) @pytest.mark.parametrize("array", [[[0, 0], [0, 0]], [[1, 2], [1, 2]], [[1, 2], [3, 4]], [[0, 1, 2], [3, 4, 5], [6, 7, 8]], [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], [[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]], [[[[1, 2], [3, 4]], [[1, 2], [2, 1]]], [[[1, 3], [3, 1]], [[0, 1], [1, 3]]]], [[[[1, 2, 3], [3, 4, 5]], [[1, 2, 3], [2, 1, 0]]], [ [[1, 3, 5], [3, 1, 0]], [[0, 1, 2], [1, 3, 4]]]], [[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], [[[13, 14, 15], [16, 17, 18]], [[19, 20, 21], [22, 23, 24]]]]], ids=['[[0, 0], [0, 0]]', '[[1, 2], [1, 2]]', '[[1, 2], [3, 4]]', '[[0, 1, 2], [3, 4, 5], [6, 7, 8]]', '[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]', '[[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]]', '[[[[1, 2], [3, 4]], [[1, 2], [2, 1]]], [[[1, 3], [3, 1]], [[0, 1], [1, 3]]]]', '[[[[1, 2, 3], [3, 4, 5]], [[1, 2, 3], [2, 1, 0]]], [[[1, 3, 5], [3, 1, 0]], [[0, 1, 2], [1, 3, 4]]]]', '[[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], [[[13, 14, 15], [16, 17, 18]], [[19, 20, 21], [22, 23, 24]]]]']) def test_diagonal(array, offset): a = numpy.array(array) ia = dpnp.array(a) expected = numpy.diagonal(a, offset) result = dpnp.diagonal(ia, offset) numpy.testing.assert_array_equal(expected, result) @pytest.mark.parametrize("val", [-1, 0, 1], ids=['-1', '0', '1']) @pytest.mark.parametrize("array", [[[0, 0], [0, 0]], [[1, 2], [1, 2]], [[1, 2], [3, 4]], [[0, 1, 2], [3, 4, 5], [6, 7, 8]], [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], [[[[1, 2], [3, 4]], [[1, 2], [2, 1]]], [[[1, 3], [3, 1]], [[0, 1], [1, 3]]]]], ids=['[[0, 0], [0, 0]]', '[[1, 2], [1, 2]]', '[[1, 2], [3, 4]]', '[[0, 1, 2], [3, 4, 5], [6, 7, 8]]', '[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]', '[[[[1, 2], [3, 4]], [[1, 2], [2, 1]]], [[[1, 3], [3, 1]], [[0, 1], [1, 3]]]]']) def test_fill_diagonal(array, val): a = numpy.array(array) ia = dpnp.array(a) expected = numpy.fill_diagonal(a, val) result = dpnp.fill_diagonal(ia, val) numpy.testing.assert_array_equal(expected, result) @pytest.mark.parametrize("dimension", [(1, ), (2, ), (1, 2), (2, 3), (3, 2), [1], [2], [1, 2], [2, 3], [3, 2]], ids=['(1, )', '(2, )', '(1, 2)', '(2, 3)', '(3, 2)', '[1]', '[2]', '[1, 2]', '[2, 3]', '[3, 2]']) def test_indices(dimension): expected = numpy.indices(dimension) result = dpnp.indices(dimension) numpy.testing.assert_array_equal(expected, result) @pytest.mark.parametrize("array", [[], [[0, 0], [0, 0]], [[1, 0], [1, 0]], [[1, 2], [3, 4]], [[0, 1, 2], [3, 0, 5], [6, 7, 0]], [[0, 1, 0, 3, 0], [5, 0, 7, 0, 9]], [[[1, 2], [0, 4]], [[0, 2], [0, 1]], [[0, 0], [3, 1]]], [[[[1, 2, 3], [3, 4, 5]], [[1, 2, 3], [2, 1, 0]]], [ [[1, 3, 5], [3, 1, 0]], [[0, 1, 2], [1, 3, 4]]]]], ids=['[]', '[[0, 0], [0, 0]]', '[[1, 0], [1, 0]]', '[[1, 2], [3, 4]]', '[[0, 1, 2], [3, 0, 5], [6, 7, 0]]', '[[0, 1, 0, 3, 0], [5, 0, 7, 0, 9]]', '[[[1, 2], [0, 4]], [[0, 2], [0, 1]], [[0, 0], [3, 1]]]', '[[[[1, 2, 3], [3, 4, 5]], [[1, 2, 3], [2, 1, 0]]], [[[1, 3, 5], [3, 1, 0]], [[0, 1, 2], [1, 3, 4]]]]']) def test_nonzero(array): a = numpy.array(array) ia = dpnp.array(array) expected = numpy.nonzero(a) result = dpnp.nonzero(ia) numpy.testing.assert_array_equal(expected, result) @pytest.mark.parametrize("vals", [[100, 200], (100, 200)], ids=['[100, 200]', '(100, 200)']) @pytest.mark.parametrize("mask", [[[True, False], [False, True]], [[False, True], [True, False]], [[False, False], [True, True]]], ids=['[[True, False], [False, True]]', '[[False, True], [True, False]]', '[[False, False], [True, True]]']) @pytest.mark.parametrize("arr", [[[0, 0], [0, 0]], [[1, 2], [1, 2]], [[1, 2], [3, 4]]], ids=['[[0, 0], [0, 0]]', '[[1, 2], [1, 2]]', '[[1, 2], [3, 4]]']) def test_place1(arr, mask, vals): a = numpy.array(arr) ia = dpnp.array(a) m = numpy.array(mask) im = dpnp.array(m) numpy.place(a, m, vals) dpnp.place(ia, im, vals) numpy.testing.assert_array_equal(a, ia) @pytest.mark.parametrize("vals", [[100, 200], [100, 200, 300, 400, 500, 600], [100, 200, 300, 400, 500, 600, 800, 900]], ids=['[100, 200]', '[100, 200, 300, 400, 500, 600]', '[100, 200, 300, 400, 500, 600, 800, 900]']) @pytest.mark.parametrize("mask", [[[[True, False], [False, True]], [[False, True], [True, False]], [[False, False], [True, True]]]], ids=['[[[True, False], [False, True]], [[False, True], [True, False]], [[False, False], [True, True]]]']) @pytest.mark.parametrize("arr", [[[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]]], ids=['[[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]]']) def test_place2(arr, mask, vals): a = numpy.array(arr) ia = dpnp.array(a) m = numpy.array(mask) im = dpnp.array(m) numpy.place(a, m, vals) dpnp.place(ia, im, vals) numpy.testing.assert_array_equal(a, ia) @pytest.mark.parametrize("vals", [[100, 200], [100, 200, 300, 400, 500, 600], [100, 200, 300, 400, 500, 600, 800, 900]], ids=['[100, 200]', '[100, 200, 300, 400, 500, 600]', '[100, 200, 300, 400, 500, 600, 800, 900]']) @pytest.mark.parametrize("mask", [[[[[False, False], [True, True]], [[True, True], [True, True]]], [ [[False, False], [True, True]], [[False, False], [False, False]]]]], ids=['[[[[False, False], [True, True]], [[True, True], [True, True]]], [[[False, False], [True, True]], [[False, False], [False, False]]]]']) @pytest.mark.parametrize("arr", [[[[[1, 2], [3, 4]], [[1, 2], [2, 1]]], [[[1, 3], [3, 1]], [[0, 1], [1, 3]]]]], ids=['[[[[1, 2], [3, 4]], [[1, 2], [2, 1]]], [[[1, 3], [3, 1]], [[0, 1], [1, 3]]]]']) def test_place3(arr, mask, vals): a = numpy.array(arr) ia = dpnp.array(a) m = numpy.array(mask) im = dpnp.array(m) numpy.place(a, m, vals) dpnp.place(ia, im, vals) numpy.testing.assert_array_equal(a, ia) @pytest.mark.parametrize("v", [0, 1, 2, 3, 4], ids=['0', '1', '2', '3', '4']) @pytest.mark.parametrize("ind", [0, 1, 2, 3], ids=['0', '1', '2', '3']) @pytest.mark.parametrize("array", [[[0, 0], [0, 0]], [[1, 2], [1, 2]], [[1, 2], [3, 4]], [[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]], [[[[1, 2], [3, 4]], [[1, 2], [2, 1]]], [[[1, 3], [3, 1]], [[0, 1], [1, 3]]]]], ids=['[[0, 0], [0, 0]]', '[[1, 2], [1, 2]]', '[[1, 2], [3, 4]]', '[[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]]', '[[[[1, 2], [3, 4]], [[1, 2], [2, 1]]], [[[1, 3], [3, 1]], [[0, 1], [1, 3]]]]']) def test_put(array, ind, v): a = numpy.array(array) ia = dpnp.array(a) numpy.put(a, ind, v) dpnp.put(ia, ind, v) numpy.testing.assert_array_equal(a, ia) @pytest.mark.parametrize("v", [[10, 20], [30, 40]], ids=['[10, 20]', '[30, 40]']) @pytest.mark.parametrize("ind", [[0, 1], [2, 3]], ids=['[0, 1]', '[2, 3]']) @pytest.mark.parametrize("array", [[[0, 0], [0, 0]], [[1, 2], [1, 2]], [[1, 2], [3, 4]], [[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]], [[[[1, 2], [3, 4]], [[1, 2], [2, 1]]], [[[1, 3], [3, 1]], [[0, 1], [1, 3]]]]], ids=['[[0, 0], [0, 0]]', '[[1, 2], [1, 2]]', '[[1, 2], [3, 4]]', '[[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]]', '[[[[1, 2], [3, 4]], [[1, 2], [2, 1]]], [[[1, 3], [3, 1]], [[0, 1], [1, 3]]]]']) def test_put2(array, ind, v): a = numpy.array(array) ia = dpnp.array(a) numpy.put(a, ind, v) dpnp.put(ia, ind, v) numpy.testing.assert_array_equal(a, ia) def test_put3(): a = numpy.arange(5) ia = dpnp.array(a) dpnp.put(ia, [0, 2], [-44, -55]) numpy.put(a, [0, 2], [-44, -55]) numpy.testing.assert_array_equal(a, ia) def test_put_along_axis_val_int(): a = numpy.arange(16).reshape(4, 4) ai = dpnp.array(a) ind_r = numpy.array([[3, 0, 2, 1]]) ind_r_i = dpnp.array(ind_r) for axis in range(2): numpy.put_along_axis(a, ind_r, 777, axis) dpnp.put_along_axis(ai, ind_r_i, 777, axis) numpy.testing.assert_array_equal(a, ai) def test_put_along_axis1(): a = numpy.arange(64).reshape(4, 4, 4) ai = dpnp.array(a) ind_r = numpy.array([[[3, 0, 2, 1]]]) ind_r_i = dpnp.array(ind_r) for axis in range(3): numpy.put_along_axis(a, ind_r, 777, axis) dpnp.put_along_axis(ai, ind_r_i, 777, axis) numpy.testing.assert_array_equal(a, ai) def test_put_along_axis2(): a = numpy.arange(64).reshape(4, 4, 4) ai = dpnp.array(a) ind_r = numpy.array([[[3, 0, 2, 1]]]) ind_r_i = dpnp.array(ind_r) for axis in range(3): numpy.put_along_axis(a, ind_r, [100, 200, 300, 400], axis) dpnp.put_along_axis(ai, ind_r_i, [100, 200, 300, 400], axis) numpy.testing.assert_array_equal(a, ai) @pytest.mark.parametrize("vals", [[100, 200]], ids=['[100, 200]']) @pytest.mark.parametrize("mask", [[[True, False], [False, True]], [[False, True], [True, False]], [[False, False], [True, True]]], ids=['[[True, False], [False, True]]', '[[False, True], [True, False]]', '[[False, False], [True, True]]']) @pytest.mark.parametrize("arr", [[[0, 0], [0, 0]], [[1, 2], [1, 2]], [[1, 2], [3, 4]]], ids=['[[0, 0], [0, 0]]', '[[1, 2], [1, 2]]', '[[1, 2], [3, 4]]']) def test_putmask1(arr, mask, vals): a = numpy.array(arr) ia = dpnp.array(a) m = numpy.array(mask) im = dpnp.array(m) v = numpy.array(vals) iv = dpnp.array(v) numpy.putmask(a, m, v) dpnp.putmask(ia, im, iv) numpy.testing.assert_array_equal(a, ia) @pytest.mark.parametrize("vals", [[100, 200], [100, 200, 300, 400, 500, 600], [100, 200, 300, 400, 500, 600, 800, 900]], ids=['[100, 200]', '[100, 200, 300, 400, 500, 600]', '[100, 200, 300, 400, 500, 600, 800, 900]']) @pytest.mark.parametrize("mask", [[[[True, False], [False, True]], [[False, True], [True, False]], [[False, False], [True, True]]]], ids=['[[[True, False], [False, True]], [[False, True], [True, False]], [[False, False], [True, True]]]']) @pytest.mark.parametrize("arr", [[[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]]], ids=['[[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]]']) def test_putmask2(arr, mask, vals): a = numpy.array(arr) ia = dpnp.array(a) m = numpy.array(mask) im = dpnp.array(m) v = numpy.array(vals) iv = dpnp.array(v) numpy.putmask(a, m, v) dpnp.putmask(ia, im, iv) numpy.testing.assert_array_equal(a, ia) @pytest.mark.parametrize("vals", [[100, 200], [100, 200, 300, 400, 500, 600], [100, 200, 300, 400, 500, 600, 800, 900]], ids=['[100, 200]', '[100, 200, 300, 400, 500, 600]', '[100, 200, 300, 400, 500, 600, 800, 900]']) @pytest.mark.parametrize("mask", [[[[[False, False], [True, True]], [[True, True], [True, True]]], [ [[False, False], [True, True]], [[False, False], [False, False]]]]], ids=['[[[[False, False], [True, True]], [[True, True], [True, True]]], [[[False, False], [True, True]], [[False, False], [False, False]]]]']) @pytest.mark.parametrize("arr", [[[[[1, 2], [3, 4]], [[1, 2], [2, 1]]], [[[1, 3], [3, 1]], [[0, 1], [1, 3]]]]], ids=['[[[[1, 2], [3, 4]], [[1, 2], [2, 1]]], [[[1, 3], [3, 1]], [[0, 1], [1, 3]]]]']) def test_putmask3(arr, mask, vals): a = numpy.array(arr) ia = dpnp.array(a) m = numpy.array(mask) im = dpnp.array(m) v = numpy.array(vals) iv = dpnp.array(v) numpy.putmask(a, m, v) dpnp.putmask(ia, im, iv) numpy.testing.assert_array_equal(a, ia) def test_select(): cond_val1 = numpy.array([True, True, True, False, False, False, False, False, False, False]) cond_val2 = numpy.array([False, False, False, False, False, True, True, True, True, True]) icond_val1 = dpnp.array(cond_val1) icond_val2 = dpnp.array(cond_val2) condlist = [cond_val1, cond_val2] icondlist = [icond_val1, icond_val2] choice_val1 = numpy.full(10, -2) choice_val2 = numpy.full(10, -1) ichoice_val1 = dpnp.array(choice_val1) ichoice_val2 = dpnp.array(choice_val2) choicelist = [choice_val1, choice_val2] ichoicelist = [ichoice_val1, ichoice_val2] expected = numpy.select(condlist, choicelist) result = dpnp.select(icondlist, ichoicelist) numpy.testing.assert_array_equal(expected, result) @pytest.mark.parametrize("indices", [[[0, 0], [0, 0]], [[1, 2], [1, 2]], [[1, 2], [3, 4]]], ids=['[[0, 0], [0, 0]]', '[[1, 2], [1, 2]]', '[[1, 2], [3, 4]]']) @pytest.mark.parametrize("array", [[[0, 1, 2], [3, 4, 5], [6, 7, 8]], [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]], [[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]], [[[[1, 2], [3, 4]], [[1, 2], [2, 1]]], [[[1, 3], [3, 1]], [[0, 1], [1, 3]]]], [[[[1, 2, 3], [3, 4, 5]], [[1, 2, 3], [2, 1, 0]]], [ [[1, 3, 5], [3, 1, 0]], [[0, 1, 2], [1, 3, 4]]]], [[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], [[[13, 14, 15], [16, 17, 18]], [[19, 20, 21], [22, 23, 24]]]]], ids=['[[0, 1, 2], [3, 4, 5], [6, 7, 8]]', '[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]', '[[[1, 2], [3, 4]], [[1, 2], [2, 1]], [[1, 3], [3, 1]]]', '[[[[1, 2], [3, 4]], [[1, 2], [2, 1]]], [[[1, 3], [3, 1]], [[0, 1], [1, 3]]]]', '[[[[1, 2, 3], [3, 4, 5]], [[1, 2, 3], [2, 1, 0]]], [[[1, 3, 5], [3, 1, 0]], [[0, 1, 2], [1, 3, 4]]]]', '[[[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]], [[[13, 14, 15], [16, 17, 18]], [[19, 20, 21], [22, 23, 24]]]]']) def test_take(array, indices): a = numpy.array(array) ind = numpy.array(indices) ia = dpnp.array(a) iind = dpnp.array(ind) expected = numpy.take(a, ind) result = dpnp.take(ia, iind) numpy.testing.assert_array_equal(expected, result) def test_take_along_axis(): a = numpy.arange(16).reshape(4, 4) ai = dpnp.array(a) ind_r = numpy.array([[3, 0, 2, 1]]) ind_r_i = dpnp.array(ind_r) for axis in range(2): expected =
numpy.take_along_axis(a, ind_r, axis)
numpy.take_along_axis
import numpy as np #______________________________________Triangles__________________________________________________ def triangle_area(vertices, triangles): """ Compute the area of the given triangles. Parameters: vertices (Array (Nx3) type=float): The list of vertices of the triangles triangles (Array (Nx3) type=int): The list of triangles Return: ((float, float), Array): The first element is a tuple representing the range where the metric is defined and the second element is the array of the area of the given triangles """ b = vertices[triangles][:,1] - vertices[triangles][:,0] h = vertices[triangles][:,2] - vertices[triangles][:,1] return ((None, None), 0.5 * np.linalg.norm(np.cross(b, h), axis = 1)) def triangle_aspect_ratio(vertices, triangles): """ Compute the aspect ratio of the given triangles. Parameters: vertices (Array (Nx3) type=float): The list of vertices of the triangles triangles (Array (Nx3) type=int): The list of triangles Return: ((float, float), Array): The first element is a tuple representing the range where the metric is defined and the second element is the array of the aspect ration of the given triangles """ l1 = np.linalg.norm(vertices[triangles][:,0] - vertices[triangles][:,1], axis = 1) l2 = np.linalg.norm(vertices[triangles][:,1] - vertices[triangles][:,2], axis = 1) l3 = np.linalg.norm(vertices[triangles][:,2] - vertices[triangles][:,0], axis = 1) a = triangle_area(vertices, triangles)[1] r = (2 * a) / (l1 + l2 + l3) l_max = np.max(np.c_[l1, l2, l3], axis = 1) return ((None, None), l_max / (2 * np.sqrt(3) * r)) #______________________________________Quads__________________________________________________ def quad_area(vertices, quads): """ Compute the area of the given quadrilaterals. Parameters: vertices (Array (Nx3) type=float): The list of vertices of the quadrilaterals quads (Array (Nx4) type=int): The list of quadrilaterals Return: ((float, float), Array): The first element is a tuple representing the range where the metric is defined and the second element is the array of the area of the given quadrilaterals """ tris = np.c_[quads[:,:3], quads[:,2:], quads[:,0]] tris.shape = (-1, 3) idx_1 = range(0, tris.shape[0], 2) idx_2 = range(1, tris.shape[0], 2) a_tri1 = triangle_area(vertices, tris[idx_1])[1] a_tri2 = triangle_area(vertices, tris[idx_2])[1] return ((None, None), a_tri1+a_tri2) def quad_aspect_ratio(vertices, quads): """ Compute the aspect ratio of the given quadrilaterals. Parameters: vertices (Array (Nx3) type=float): The list of vertices of the quadrilaterals quads (Array (Nx4) type=int): The list of quadrilaterals Return: ((float, float), Array): The first element is a tuple representing the range where the metric is defined and the second element is the array of the aspect ratio of the given quadrilaterals """ l1 = np.linalg.norm(vertices[quads][:,0] - vertices[quads][:,1], axis = 1) l2 = np.linalg.norm(vertices[quads][:,1] - vertices[quads][:,2], axis = 1) l3 = np.linalg.norm(vertices[quads][:,2] - vertices[quads][:,3], axis = 1) l4 = np.linalg.norm(vertices[quads][:,3] - vertices[quads][:,0], axis = 1) a = quad_area(vertices, quads)[1] l_max = np.max(np.c_[l1, l2, l3, l4], axis = 1) return ((None, None), l_max / (4*a)) #______________________________________Tets______________________________________________________ def tet_scaled_jacobian(vertices, tets): """ Compute the scaled jacobian of the given tetrahedra. Parameters: vertices (Array (Nx3) type=float): The list of vertices of the tetrahedra tets (Array (Nx4) type=int): The list of tetrahedra Return: ((float, float), Array): The first element is a tuple representing the range where the metric is defined and the second element is the array of the scaled jacobian of the given tetrahedra """ p0 = vertices[tets[:,0]] p1 = vertices[tets[:,1]] p2 = vertices[tets[:,2]] p3 = vertices[tets[:,3]] l0 = p1 - p0 l1 = p2 - p1 l2 = p0 - p2 l3 = p3 - p0 l4 = p3 - p1 l5 = p3 - p2 l0_length = np.linalg.norm(l0, axis=1) l1_length = np.linalg.norm(l1, axis=1) l2_length = np.linalg.norm(l2, axis=1) l3_length = np.linalg.norm(l3, axis=1) l4_length = np.linalg.norm(l4, axis=1) l5_length = np.linalg.norm(l5, axis=1) J = np.einsum('ij,ij->i', np.cross(l2, l0, axis= 1), l3) lambda_1 = np.expand_dims(l0_length * l2_length * l3_length, axis = 0).transpose() lambda_2 = np.expand_dims(l0_length * l1_length * l4_length, axis = 0).transpose() lambda_3 = np.expand_dims(l1_length * l2_length * l5_length, axis = 0).transpose() lambda_4 = np.expand_dims(l3_length * l4_length * l5_length, axis = 0).transpose() lambda_5 = np.expand_dims(J, axis = 0).transpose() lambda_ = np.concatenate((lambda_1, lambda_2, lambda_3, lambda_4, lambda_5), axis = 1) max_el = np.amax(lambda_, axis=1) return ((-1., 1.), (J * np.sqrt(2)) / max_el) def tet_volume(vertices, tets): """ Compute the volume of the given tetrahedra. Parameters: vertices (Array (Nx3) type=float): The list of vertices of the tetrahedra tets (Array (Nx4) type=int): The list of tetrahedra Return: ((float, float), Array): The first element is a tuple representing the range where the metric is defined and the second element is the array of the volume of the given tetrahedra """ p0 = vertices[tets[:,0]] p1 = vertices[tets[:,1]] p2 = vertices[tets[:,2]] p3 = vertices[tets[:,3]] ones = np.ones(p0.shape[0]) p0 = np.c_[p0,ones] p1 = np.c_[p1,ones] p2 = np.c_[p2,ones] p3 = np.c_[p3,ones] matr = np.transpose(np.c_[p0, p1, p2, p3].reshape(-1,4,4), (0,2,1)) volume = np.abs(np.linalg.det(matr))/6 return ((None, None), volume) #______________________________________Hexes______________________________________________________ def hex_scaled_jacobian(vertices, hexes): """ Compute the scaled jacobian of the given hexahedra. Parameters: vertices (Array (Nx3) type=float): The list of vertices of the hexahedra hexes (Array (Nx8) type=int): The list of hexahedra Return: ((float, float), Array): The first element is a tuple representing the range where the metric is defined and the second element is the array of the scaled jacobian of the given hexahedra """ p0 = vertices[hexes[:,0]] p1 = vertices[hexes[:,1]] p2 = vertices[hexes[:,2]] p3 = vertices[hexes[:,3]] p4 = vertices[hexes[:,4]] p5 = vertices[hexes[:,5]] p6 = vertices[hexes[:,6]] p7 = vertices[hexes[:,7]] l0 = p1 - p0 l1 = p2 - p1 l2 = p3 - p2 l3 = p3 - p0 l4 = p4 - p0 l5 = p5 - p1 l6 = p6 - p2 l7 = p7 - p3 l8 = p5 - p4 l9 = p6 - p5 l10 = p7 - p6 l11 = p7 - p4 # cross-derivatives x1 = (p1 - p0) + (p2 - p3) + (p5 - p4) + (p6 - p7) x2 = (p3 - p0) + (p2 - p1) + (p7 - p4) + (p6 - p5) x3 = (p4 - p0) + (p5 - p1) + (p6 - p2) + (p7 - p3) l0norm = l0/np.linalg.norm(l0, axis=1).reshape(-1,1) l1norm = l1/np.linalg.norm(l1, axis=1).reshape(-1,1) l2norm = l2/np.linalg.norm(l2, axis=1).reshape(-1,1) l3norm = l3/np.linalg.norm(l3, axis=1).reshape(-1,1) l4norm = l4/np.linalg.norm(l4, axis=1).reshape(-1,1) l5norm = l5/np.linalg.norm(l5, axis=1).reshape(-1,1) l6norm = l6/np.linalg.norm(l6, axis=1).reshape(-1,1) l7norm = l7/np.linalg.norm(l7, axis=1).reshape(-1,1) l8norm = l8/np.linalg.norm(l8, axis=1).reshape(-1,1) l9norm = l9/np.linalg.norm(l9, axis=1).reshape(-1,1) l10norm = l10/np.linalg.norm(l10, axis=1).reshape(-1,1) l11norm = l11/np.linalg.norm(l11, axis=1).reshape(-1,1) x1norm = x1/np.linalg.norm(x1, axis=1).reshape(-1,1) x2norm = x2/np.linalg.norm(x2, axis=1).reshape(-1,1) x3norm = x3/np.linalg.norm(x3, axis=1).reshape(-1,1) # normalized jacobian matrices determinants alpha_1 = np.expand_dims(np.einsum('ij,ij->i', l0norm, np.cross(l3norm, l4norm, axis= 1)), axis = 0).transpose() alpha_2 = np.expand_dims(np.einsum('ij,ij->i', l1norm, np.cross(-l0norm, l5norm, axis=1)), axis = 0).transpose() alpha_3 = np.expand_dims(np.einsum('ij,ij->i', l2norm, np.cross(-l1norm, l6norm, axis=1)), axis = 0).transpose() alpha_4 = np.expand_dims(np.einsum('ij,ij->i', -l3norm, np.cross(-l2norm, l7norm, axis=1)), axis = 0).transpose() alpha_5 = np.expand_dims(np.einsum('ij,ij->i', l11norm,
np.cross(l8norm, -l4norm, axis=1)
numpy.cross
import numpy as np import pytest # pylint: disable=line-too-long from tensornetwork.block_sparse.charge import U1Charge, fuse_charges, charge_equal, fuse_ndarrays from tensornetwork.block_sparse.index import Index # pylint: disable=line-too-long from tensornetwork.block_sparse.block_tensor import flatten, get_flat_meta_data, fuse_stride_arrays, compute_sparse_lookup, _find_best_partition, compute_fused_charge_degeneracies, compute_unique_fused_charges, compute_num_nonzero np_dtypes = [np.float64, np.complex128] np_tensordot_dtypes = [np.float64, np.complex128] def test_flatten(): listoflist = [[1, 2], [3, 4], [5]] flat = flatten(listoflist) np.testing.assert_allclose(flat, [1, 2, 3, 4, 5]) def test_flat_meta_data(): i1 = Index([U1Charge.random(-2, 2, 20), U1Charge.random(-2, 2, 20)], flow=[True, False]) i2 = Index([U1Charge.random(-2, 2, 20), U1Charge.random(-2, 2, 20)], flow=[False, True]) expected_charges = [ i1._charges[0], i1._charges[1], i2._charges[0], i2._charges[1] ] expected_flows = [True, False, False, True] charges, flows = get_flat_meta_data([i1, i2]) np.testing.assert_allclose(flows, expected_flows) for n, c in enumerate(charges): assert charge_equal(c, expected_charges[n]) def test_fuse_stride_arrays(): dims = np.asarray([2, 3, 4, 5]) strides =
np.asarray([120, 60, 20, 5, 1])
numpy.asarray
#!/usr/bin/env python # Copyright (c) 2016, wradlib developers. # Distributed under the MIT License. See LICENSE.txt for more info. import os import numpy as np import wradlib.util as util import unittest import datetime as dt from deprecation import fail_if_not_removed class HelperFunctionsTest(unittest.TestCase): @fail_if_not_removed def test__get_func(self): self.assertEqual(util._get_func('arange').__class__, np.arange.__class__) self.assertEqual(util._get_func('arange').__module__, np.arange.__module__) self.assertRaises(AttributeError, lambda: util._get_func('aranged')) def test__shape2size(self): self.assertEqual(util._shape2size((10, 10, 10)), 10 * 10 * 10) @fail_if_not_removed def test__tdelta2seconds(self): self.assertEqual(util._tdelta2seconds(dt.datetime(2001, 1, 1, 1) - dt.datetime(2000, 1, 1)), 366 * 24 * 60 * 60 + 3600) self.assertEqual(util._tdelta2seconds(dt.datetime(2002, 1, 1, 1) - dt.datetime(2001, 1, 1)), 365 * 24 * 60 * 60 + 3600) @fail_if_not_removed def test__get_tdelta(self): tstart = dt.datetime(2000, 1, 1) tend = dt.datetime(2001, 1, 1, 1) tstart_str = "2000-01-01 00:00:00" tend_str = "2001-01-01 01:00:00" self.assertEqual(util._get_tdelta(tstart, tend), tend - tstart) self.assertEqual(util._get_tdelta(tstart_str, tend_str), tend - tstart) self.assertRaises(ValueError, lambda: util._get_tdelta(tstart_str, tend_str + ".00000")) self.assertEqual(util._get_tdelta(tstart_str, tend_str, as_secs=True), 366 * 24 * 60 * 60 + 3600) def test__idvalid(self): data = np.array( [np.inf, np.nan, -99., 99, -9999., -9999, -10., -5., 0., 5., 10.]) self.assertTrue( np.allclose(util._idvalid(data), np.array([6, 7, 8, 9, 10]))) self.assertTrue(np.allclose(util._idvalid(data, minval=-5., maxval=5.), np.array([7, 8, 9]))) self.assertTrue( np.allclose(util._idvalid(data, isinvalid=[-9999], maxval=5.),
np.array([2, 6, 7, 8, 9])
numpy.array
# Code adapted from Tensorflow Object Detection Framework # https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb # Tensorflow Object Detection Detector import numpy as np import tensorflow as tf import cv2 import time import socket import struct import pickle from PIL import Image from scipy.spatial import distance as dist from collections import OrderedDict #from script.my_codes.centroidtracker import CentroidTracker #from script.my_codes.nonmax_suppression import nms class DetectorAPI: def __init__(self, path_to_ckpt): self.path_to_ckpt = path_to_ckpt self.detection_graph = tf.Graph() with self.detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(self.path_to_ckpt, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') self.default_graph = self.detection_graph.as_default() self.sess = tf.Session(graph=self.detection_graph) # Definite input and output Tensors for detection_graph self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0') # Each box represents a part of the image where a particular object was detected. self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0') self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0') self.num_detections = self.detection_graph.get_tensor_by_name('num_detections:0') def processFrame(self, image): # Expand dimensions since the trained_model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image, axis=0) # Actual detection. start_time = time.time() (boxes, scores, classes, num) = self.sess.run( [self.detection_boxes, self.detection_scores, self.detection_classes, self.num_detections], feed_dict={self.image_tensor: image_np_expanded}) end_time = time.time() print("Elapsed Time:", end_time-start_time) im_height, im_width,_ = image.shape boxes_list = [None for i in range(boxes.shape[1])] for i in range(boxes.shape[1]): boxes_list[i] = (int(boxes[0,i,0] * im_height), int(boxes[0,i,1]*im_width), int(boxes[0,i,2] * im_height), int(boxes[0,i,3]*im_width)) return boxes_list, scores[0].tolist(), [int(x) for x in classes[0].tolist()], int(num[0]) def close(self): self.sess.close() self.default_graph.close() def nms(boxes, overlap_threshold=0.2, mode='union'): """Non-maximum suppression. Arguments: boxes: a float numpy array of shape [n, 5], where each row is (xmin, ymin, xmax, ymax, score). overlap_threshold: a float number. mode: 'union' or 'min'. Returns: list with indices of the selected boxes """ # if there are no boxes, return the empty list if len(boxes) == 0: return [] # list of picked indices pick = [] # grab the coordinates of the bounding boxes x1, y1, x2, y2, score = [boxes[:, i] for i in range(5)] area = (x2 - x1 + 1.0)*(y2 - y1 + 1.0) ids =
np.argsort(score)
numpy.argsort
''' This is a implementation of Quantum State Tomography for Qubits, using techniques of following papars. 'Iterative algorithm for reconstruction of entangled states(10.1103/PhysRevA.63.040303)' 'Diluted maximum-likelihood algorithm for quantum tomography(10.1103/PhysRevA.75.042108)' 'Qudit Quantum State Tomography(10.1103/PhysRevA.66.012303)' ''' import numpy as np from numpy import array, kron, trace, identity, sqrt, zeros, exp, pi, conjugate, random from scipy.linalg import sqrtm from datetime import datetime from concurrent import futures import os from pathlib import Path import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import pickle su2b = array([ [[ 1, 0], [ 0, 1]], [[ 0, 1], [ 1, 0]], [[ 0,-1j], [ 1j, 0]], [[ 1, 0], [ 0, -1]] ] ) su2Bases = [] newbases = su2b.copy() def makeSU2Bases(numberOfQubits): global newbases, su2Bases for _ in range(numberOfQubits-1): for i in range(len(newbases)): su2Bases.extend([kron(newbases[i], su2b[j]) for j in range(4)]) newbases = su2Bases.copy() su2Bases = [] su2Bases = array(newbases) / (2**numberOfQubits) bH = array([[1,0],[0,0]]) bV = array([[0,0],[0,1]]) bD = array([[1/2,1/2],[1/2,1/2]]) bR = array([[1/2,1j/2],[-1j/2,1/2]]) bL = array([[1/2,-1j/2],[1j/2,1/2]]) initialBases = array([bH, bV, bR, bD]) cycleBases1 = array([bH, bV, bR, bD]) cycleBases2 = array([bD, bR, bV, bH]) def makeBases(numberOfQubits): beforeBases = initialBases for _ in range(numberOfQubits - 1): afterBases = [] for i in range(len(beforeBases)): if i % 2 == 0: afterBases.extend([kron(beforeBases[i], cycleBase) for cycleBase in cycleBases1]) else: afterBases.extend([kron(beforeBases[i], cycleBase) for cycleBase in cycleBases2]) beforeBases = afterBases baseName = [] for i in range(2**numberOfQubits): if i%4 == 0: baseName.append("|"+ str(np.binary_repr(i, width=4)) +">") return array(afterBases), baseName def makeBMatrix(numberOfQubits, bases): global su2Bases B = np.zeros((4**numberOfQubits, 4**numberOfQubits)) for i in range(4**numberOfQubits): for j in range(4**numberOfQubits): B[i][j] = np.trace(bases[i] @ su2Bases[j]) return B def makeMMatrix(numberOfQubits, bases): global su2Bases B = makeBMatrix(numberOfQubits, bases) BInverse = np.linalg.inv(B) M = [] for i in range(4**numberOfQubits): M.append(sum([BInverse[j][i] * su2Bases[j] for j in range(4**numberOfQubits)])) return array(M) def makeInitialDensityMatrix(numberOfQubits, dataList, bases, M): # M = makeMMatrix(numberOfQubits, bases) N = sum([np.trace(M[i]) * dataList[i] for i in range(4**numberOfQubits)]) densityMatrix = sum([dataList[i] * M[i] for i in range(4**numberOfQubits)]) / N initialDensityMatrix = choleskyDecomposition(numberOfQubits, densityMatrix) return initialDensityMatrix """ cholesky decomposition """ def choleskyDecomposition(numberOfQubits, matrix): L = np.zeros([2**numberOfQubits, 2**numberOfQubits], dtype=np.complex) for i in range(2**numberOfQubits-1, -1, -1): s = matrix[i][i] for k in range(2**numberOfQubits-1, i, -1): s -= np.conjugate(L[k][i]) * L[k][i] if s >= 0: L[i][i] = np.sqrt(s) else: L[i][i] = np.sqrt(s) for j in range(i): t = matrix[i][j] for k in range(2**numberOfQubits-1, i, -1): t -= (np.conjugate(L[k][i]) * L[k][j]) if L[i][i] != 0: L[i][j] = t / np.conjugate(L[i][i]) else: L[i][j] = t / 1e-9 for i in range(2**numberOfQubits): L[i][i] = np.real(L[i][i]) return (np.conjugate(L).T @ L) / np.trace(np.conjugate(L).T @ L) """ Get Experimental Data """ def getExperimentalData(pathOfExperimentalData): """ getExperimentalData(pathOfExperimentalData(string)): This function is getting experimental data from file at "pathOfExperimentalData", ---------------------------------------------------------------------------------------- return: np.array of them. """ with open(pathOfExperimentalData) as f: experimentalData = [] for s in f.readlines(): experimentalData.extend(map(int, s.strip().split())) return array(experimentalData) def doIterativeAlgorithm(numberOfQubits, bases, listOfExperimentalDatas, MMatrix): """ doIterativeAlgorithm(): This function is to do iterative algorithm(10.1103/PhysRevA.63.040303) and diluted MLE algorithm(10.1103/PhysRevA.75.042108) to a set of datas given from a experiment. This recieve four variables (numberOfQubits, bases, listAsExperimentalDatas), and return most likely estimated density matrix (np.array) and total time of calculation(datetime.timedelta). First quantum state matrix for this algorithm is a identity matrix. -------------------------------------------------------------------------------------------------------------- Return: most likely estimated density matrix(np.array), """ """ Setting initial parameters """ iter = 0 epsilon = 1000 endDiff = 1e-11 diff = 100 # TolFun = 10e-11 # traceDistance = 100 maxNumberOfIteration = 100000 dataList = listOfExperimentalDatas totalCountOfData = sum(dataList) nDataList = dataList / totalCountOfData # nDataList is a list of normarized datas densityMatrix = makeInitialDensityMatrix(numberOfQubits, dataList, bases, MMatrix) # densityMatrix = identity(2 ** numberOfQubits) """ Start iteration """ # while traceDistance > TolFun and iter <= maxNumberOfIteration: while diff > endDiff and iter <= maxNumberOfIteration and epsilon > 1e-6: probList = [trace(base @ densityMatrix) for base in bases] nProbList = probList / sum(probList) rotationMatrix = sum([(nDataList[i] / probList[i]) * bases[i] for i in range(4 ** numberOfQubits) if probList[i] != 0]) """ Normalization of Matrices for Measurement Bases """ U = np.linalg.inv(sum(bases)) / sum(probList) rotationMatrixLeft = (identity(2 ** numberOfQubits) + epsilon * U @ rotationMatrix) / (1 + epsilon) rotationMatrixRight = (identity(2 ** numberOfQubits) + epsilon * rotationMatrix @ U) / (1 + epsilon) """ Calculation of updated density matrix """ modifiedDensityMatrix = rotationMatrixLeft @ densityMatrix @ rotationMatrixRight / trace(rotationMatrixLeft @ densityMatrix @ rotationMatrixRight) eigValueArray, eigVectors = np.linalg.eig(densityMatrix - modifiedDensityMatrix) traceDistance = sum(np.absolute(eigValueArray)) / 2 """ Update Likelihood Function, and Compared with older one """ LikelihoodFunction = sum([nDataList[i] * np.log(nProbList[i]) for i in range(4 ** numberOfQubits) if nProbList[i] != 0]) probList = [trace(base @ modifiedDensityMatrix) for base in bases] nProbList = probList / sum(probList) modifiedLikelihoodFunction = sum([nDataList[i] * np.log(nProbList[i]) for i in range(4 ** numberOfQubits) if nProbList[i] != 0]) nowdiff = np.real(modifiedLikelihoodFunction - LikelihoodFunction) """ Show Progress of Calculation """ progress = 100 * iter / maxNumberOfIteration if progress % 5 == 0: msg = "Progress of calculation: " + str(int(progress)) + "%" print(msg) """ Increment """ iter += 1 """ Check Increasing of Likelihood Function """ if nowdiff < 0: epsilon = epsilon * 0.1 continue else: diff = nowdiff """ Update Density Matrix """ densityMatrix = modifiedDensityMatrix.copy() """ Check That Max Iteration Number was appropriate """ if iter >= maxNumberOfIteration: print("----------------------------------------------") print("Iteration time reached max iteration number.") print("The number of max iteration times is too small.") print("----------------------------------------------") """ Show the total number of iteration """ endIterationTimes = iter print("Iteration was '" + str(endIterationTimes) + "' times.") return modifiedDensityMatrix, endIterationTimes """ Calculate Fidelity """ def calculateFidelity(idealDensityMatrix, estimatedDensityMatrix): """ calculateFidelity(idealDensityMatrix, estimatedDensityMatrix): """ fidelity = np.real(trace(sqrtm(sqrtm(idealDensityMatrix) @ estimatedDensityMatrix @ sqrtm(idealDensityMatrix)))) ** 2 return fidelity """ Iterative Simulation """ def doIterativeSimulation(numberOfQubits, bases, pathOfExperimentalData, idealDensityMatrix, resultDirectoryName, MMatrix, baseNames): """ doIterativeSimulation(numberOfQubits, bases, pathOfExperimentalData, idealDensityMatrix, resultDirectoryName, MMatrix) """ """ Get Experimental Data""" listOfExperimentalData = getExperimentalData(pathOfExperimentalData) """ Calculate """ estimatedDensityMatrix, totalIterationTime = doIterativeAlgorithm(numberOfQubits, bases, listOfExperimentalData, MMatrix) fidelity = calculateFidelity(idealDensityMatrix, estimatedDensityMatrix) """ Make File Name of result """ l = 0 r = len(pathOfExperimentalData)-1 for i in range(len(pathOfExperimentalData)): if pathOfExperimentalData[len(pathOfExperimentalData)-1-i] == ".": r = len(pathOfExperimentalData)-1-i if pathOfExperimentalData[len(pathOfExperimentalData)-1-i] == "/" or pathOfExperimentalData[len(pathOfExperimentalData)-1-i] == "\\": l = len(pathOfExperimentalData)-i break resultFileName = pathOfExperimentalData[l:r] resultFilePath = '.\\result\\qubit\\iterative\\' + resultDirectoryName + '\\' + 'result' + '.txt' resultIterationTimeFilePath = '.\\result\\qubit\\iterative\\' + resultDirectoryName + '\\' + 'resultIterationTime' + '.txt' """ Save Result """ with open(resultFilePath, mode='a') as f: f.writelines(str(fidelity) + '\n') with open(resultIterationTimeFilePath, mode='a') as f: f.writelines(str(totalIterationTime) + '\n') """ Make 3D Plot """ plotResult(numberOfQubits, estimatedDensityMatrix, baseNames) """ Poisson Distributed Simulation """ def doPoissonDistributedSimulation(numberOfQubits, bases, pathOfExperimentalData, idealDensityMatrix, resultDirectoryName, MMatrix): """ doPoissonDistributedSimulation(numberOfQubits, bases, pathOfExperimentalData, idealDensityMatrix, resultDirectoryName, MMatrix) """ """ Get Experimental Data""" listOfExperimentalData = getExperimentalData(pathOfExperimentalData) """ Calculate """ estimatedDensityMatrix, totalIterationTime = doIterativeAlgorithm(numberOfQubits, bases, random.poisson(listOfExperimentalData), MMatrix) fidelity = calculateFidelity(idealDensityMatrix, estimatedDensityMatrix) """ Make File Name of result """ l = 0 r = len(pathOfExperimentalData)-1 for i in range(len(pathOfExperimentalData)): if pathOfExperimentalData[len(pathOfExperimentalData)-1-i] == ".": r = len(pathOfExperimentalData)-1-i if pathOfExperimentalData[len(pathOfExperimentalData)-1-i] == "/" or pathOfExperimentalData[len(pathOfExperimentalData)-1-i] == "\\": l = len(pathOfExperimentalData)-i break resultFileName = pathOfExperimentalData[l:r] resultFilePath = '.\\result\\qubit\\poisson\\' + resultDirectoryName + "\\" + resultFileName + '_result' + '.txt' """ Save Result """ with open(resultFilePath, mode='a') as f: f.write(str(fidelity) + '\n') def plotResult(numberOfQubits, densityMatrix, baseNames): """ plotResult(densityMatrix) """ """ Plot Setting """ xedges, yedges = np.arange(2**numberOfQubits), np.arange(2**numberOfQubits) xpos, ypos =
np.meshgrid(xedges, yedges)
numpy.meshgrid
#!/usr/bin/python # # Inline, Crossline, True dip, Dip Azimuth using the vector filtered envelope weighted phase gradient # Derivatives calulated using Kroon's 3 point filter # import sys,os import numpy as np from scipy.signal import hilbert from numba import autojit # # Import the module with the I/O scaffolding of the External Attribute # sys.path.insert(0, os.path.join(sys.path[0], '..')) import extattrib as xa import extlib as xl # # These are the attribute parameters # xa.params = { 'Inputs': ['Input'], 'Output': ['Crl_dip', 'Inl_dip', 'True Dip', 'Dip Azimuth'], 'ZSampMargin' : {'Value':[-15,15], 'Minimum':[-2,2], 'Symmetric': True}, 'StepOut' : {'Value': [2,2], 'Minimum': [2,2], 'Symmetric': True}, 'Par_0' : {'Name': 'Vector Filter ZStepOut', 'Value': 1}, 'Par_1' : {'Name': 'Band', 'Value': 0.9}, 'Select': {'Name': 'Filter', 'Values': ['Mean Dip', 'Vector L1 Median Dip', 'Vector L2 Median Dip'], 'Selection': 0}, 'Help': 'http://waynegm.github.io/OpendTect-Plugin-Docs/external_attributes/DipandAzimuth.html' } # # Define the compute function # def doCompute(): xs = xa.SI['nrinl'] ys = xa.SI['nrcrl'] zs = xa.params['ZSampMargin']['Value'][1] - xa.params['ZSampMargin']['Value'][0] + 1 filt = xa.params['Select']['Selection'] filtFunc = autojit(xl.vecmean) if filt==0 else autojit(xl.vmf_l1) if filt==1 else autojit(xl.vmf_l2) inlFactor = xa.SI['zstep']/xa.SI['inldist'] * xa.SI['dipFactor'] crlFactor = xa.SI['zstep']/xa.SI['crldist'] * xa.SI['dipFactor'] band = xa.params['Par_1']['Value'] zw = min(2*int(xa.params['Par_0']['Value'])+1,3) N = xa.params['ZSampMargin']['Value'][1] kernel = xl.hilbert_kernel(N, band) while True: xa.doInput() indata = xa.Input['Input'] # # Analytic Signal # ansig = np.apply_along_axis(np.convolve,-1, indata, kernel, mode="same") sr = np.real(ansig) si = np.imag(ansig) # # Compute partial derivatives sx = xl.kroon3( sr, axis=0 ) sy = xl.kroon3( sr, axis=1 ) sz = xl.kroon3( sr, axis=2 ) shx = xl.kroon3( si, axis=0 ) shy = xl.kroon3( si, axis=1 ) shz = xl.kroon3( si, axis=2 ) px = sr[1:xs-1,1:ys-1,:] * shx[1:xs-1,1:ys-1,:] - si[1:xs-1,1:ys-1,:] * sx[1:xs-1,1:ys-1,:] py = sr[1:xs-1,1:ys-1,:] * shy[1:xs-1,1:ys-1,:] - si[1:xs-1,1:ys-1,:] * sy[1:xs-1,1:ys-1,:] pz = sr[1:xs-1,1:ys-1,:] * shz[1:xs-1,1:ys-1,:] - si[1:xs-1,1:ys-1,:] * sz[1:xs-1,1:ys-1,:] # # Normalise the gradients so Z component is positive p = np.sign(pz)/
np.sqrt(px*px+py*py+pz*pz)
numpy.sqrt
import itertools import numpy as np import pandas as pd try: from ortools.graph import pywrapgraph except ModuleNotFoundError: print('Could not import ortools') # import networkx as nx from .loading import subset2vec, vec2subset, compressSubsets __all__ = ['DenseICSDist', 'pwICSDist', 'decomposeDist', 'getDecomposed'] """Formulating polyfunctionality distance as a min cost flow problem""" def pwICSDist(cdf, magCol='pctpos', cyCol='cytokine', indexCols=['ptid', 'visitday', 'tcellsub', 'antigen'], factor=100000): """Compute all pairwise ICS distances among samples indicated by index columns. Parameters ---------- cdf : pd.DataFrame Contains one row per cell population, many rows per sample. magCol : str Column containing the magnitude which should add up to 1 for all rows in a sample cyCol : str Column containing the marker combination for the row. E.g. IFNg+IL2-TNFa+ indexCols : list List of columns that make each sample uniquely identifiable factor : int Since cost-flow estimates are based on integers, its effectively the number of decimal places to be accurate to. Default 1e5 means magCol is multiplied by 1e5 before rounding to int. Returns ------- dmatDf : pd.DataFrame Symetric pairwise distance matrix with hierarchical columns/index of indexCols""" cdf = cdf.set_index(indexCols + [cyCol])[magCol].unstack(indexCols).fillna(0) n = cdf.shape[1] dmat = np.zeros((n, n)) tab = [] for i in range(n): for j in range(n): if i <= j: d = DenseICSDist(cdf.iloc[:,i], cdf.iloc[:,j], factor=factor) dmat[i, j] = d dmat[j, i] = d dmatDf = pd.DataFrame(dmat, columns=cdf.columns, index=cdf.columns) return dmatDf def DenseICSDist(freq1, freq2, factor=100000, verbose=False, tabulate=False): """Compute a positive, symetric distance between two frequency distributions, where each node of the distribution can be related to every other node based on marker combination (e.g. IFNg+IL2-TNFa-). Uses a cost-flow optimization approach to finding the minimum dist/cost to move probability density from one node (marker combination) to another, to have the effect of turning freq1 into freq2. Parameters ---------- freq1, freq2 : pd.Series Frequency distribution that should sum to one, with identical indices containing all marker combinations factor : int Since cost-flow estimates are based on integers, its effectively the number of decimal places to be accurate to. Default 1e5 means magCol is multiplied by 1e5 before rounding to int. verbose : bool Print all cost-flow arcs. Useful for debugging. tabulate : bool Optionally return a tabulation of all the cost-flows. Returns ------- cost : float Total distance between distributions in probability units. costtab : np.ndarray [narcs x nmarkers + 1] Tabulation of the all the required flows to have freq1 == freq2 Each row is an arc. First nmarker columns indicate the costs between the two nodes and last colum is the cost-flow/distance along that arc.""" nodeLabels = freq1.index.tolist() nodeVecs = [subset2vec(m) for m in nodeLabels] markers = nodeLabels[0].replace('-', '+').split('+')[:-1] nmarkers = len(markers) # nodes = list(range(len(nodeLabels))) if nmarkers == 1: flow = freq1[markers[0] + '+'] - freq2[markers[0] + '+'] if tabulate: return np.abs(flow), np.zeros((0,nmarkers+1)) else: return np.abs(flow) def _cost(n1, n2): """Hamming distance between two node labels""" return int(np.sum(np.abs(np.array(nodeVecs[n1]) - np.array(nodeVecs[n2])))) diffv = freq1/freq1.sum() - freq2/freq2.sum() diffv = (diffv * factor).astype(int) extra = diffv.sum() if extra > 0: for i in range(extra): diffv[i] -= 1 elif extra < 0: for i in range(-extra): diffv[i] += 1 assert diffv.sum() == 0 posNodes = np.nonzero(diffv > 0)[0] negNodes = np.nonzero(diffv < 0)[0] if len(posNodes) == 0: """Returns None when freq1 - freq2 is 0 for every subset/row""" if tabulate: return 0, np.zeros((0,nmarkers+1)) else: return 0 """Creates a dense network connecting all sources and sinks with cost/distance specified by how many functions differ TODO: Could this instead be a sparse network connecting function combinations that only differ by 1? Cells have to move multiple times along the network then. This may minimize to the same solution??""" tmp = np.array([o for o in itertools.product(posNodes, negNodes)]) startNodes = tmp[:,0].tolist() endNodes = tmp[:,1].tolist() """Set capacity to max possible""" capacities = diffv[startNodes].tolist() costs = [_cost(n1,n2) for n1,n2 in zip(startNodes, endNodes)] supplies = diffv.tolist() """Instantiate a SimpleMinCostFlow solver.""" min_cost_flow = pywrapgraph.SimpleMinCostFlow() """Add each arc.""" for i in range(len(startNodes)): min_cost_flow.AddArcWithCapacityAndUnitCost(startNodes[i], endNodes[i], capacities[i], costs[i]) """Add node supplies.""" for i in range(len(supplies)): min_cost_flow.SetNodeSupply(i, supplies[i]) """Find the minimum cost flow""" res = min_cost_flow.SolveMaxFlowWithMinCost() if res != min_cost_flow.OPTIMAL: if verbose: print('No optimal solution found.') if tabulate: return np.nan, None else: return np.nan if verbose: print('Minimum cost:', min_cost_flow.OptimalCost()) print('') print(' Arc Flow / Capacity Cost') for i in range(min_cost_flow.NumArcs()): cost = min_cost_flow.Flow(i) * min_cost_flow.UnitCost(i) print('%1s -> %1s %3s / %3s %3s' % ( min_cost_flow.Tail(i), min_cost_flow.Head(i), min_cost_flow.Flow(i), min_cost_flow.Capacity(i), cost)) cost = min_cost_flow.OptimalCost()/factor if tabulate: costtab =
np.zeros((tmp.shape[0], nmarkers+1))
numpy.zeros
''' state variables: 7 phi values (0, 2pi), 7 dot phi values (real) parameters: alpha (>= 0), gamma (0, 1) calculated geometry: r_ij matrix, theta_ij matrix calculate forces: examine https://wolfram74.github.io/worked_problems/spring_20/week_2019_12_30/view.html set up flow: calculate the geometry values delta x/y -> rij+theta_ij store those generate force equations, include drag term force equations will take in full state vector and return their contribution to change of state 2*7 in, 2*7 out set initial phi values (0, and equi potentials) time evolution outline have state calculate kernel 1 by summing forces force equation could have as input self, state, and i,j, determine output from that, 1 function for all terms? i==j -> drag, else torque ''' import numpy cos = numpy.cos sin = numpy.sin atan = numpy.arctan2 pi = numpy.pi class System(): def __init__(self): self.r_vals = numpy.zeros((7,7)) self.theta_vals =
numpy.zeros((7,7))
numpy.zeros
import os import h5py import numpy as np import pyqtgraph as pg from pyqtgraph.Qt import QtCore from .area_mask import MaskAssemble from .find_center import find_center from .pyqtgraph_mod import LineROI from .file_reader import read_raw_file pg.setConfigOptions(imageAxisOrder='row-major') class SimpleMask(object): def __init__(self, pg_hdl, infobar): self.data_raw = None self.shape = None self.qmap = None self.mask = None self.mask_kernel = None self.saxs_lin = None self.saxs_log = None self.saxs_log_min = None self.plot_log = True self.new_partition = None self.meta = None self.hdl = pg_hdl self.infobar = infobar self.extent = None self.hdl.scene.sigMouseMoved.connect(self.show_location) self.bad_pixel_set = set() self.qrings = [] self.idx_map = { 0: "scattering", 1: "scattering * mask", 2: "mask", 3: "dqmap_partition", 4: "sqmap_partition", 5: "preview" } def is_ready(self): if self.meta is None or self.data_raw is None: return False else: return True def find_center(self): if self.saxs_lin is None: return mask = self.mask # center = (self.meta['bcy'], self.meta['bcx']) center = find_center(self.saxs_lin, mask=mask, center_guess=None, scale='log') return center def mask_evaluate(self, target, **kwargs): msg = self.mask_kernel.evaluate(target, **kwargs) # preview the mask mask = self.mask_kernel.get_one_mask(target) self.data_raw[5][:, :] = mask return msg def mask_apply(self, target): mask = self.mask_kernel.get_one_mask(target) self.mask_kernel.enable(target) self.mask = np.logical_and(self.mask, mask) self.data_raw[1] = self.saxs_log * self.mask self.data_raw[2] = self.mask if target == "mask_qring": self.qrings = self.mask_kernel.workers[target].get_qrings() if self.plot_log: log_min = np.min(self.saxs_log[self.mask > 0]) self.data_raw[1][np.logical_not(self.mask)] = log_min else: lin_min = np.min(self.saxs_lin[self.mask > 0]) self.data_raw[1][np.logical_not(self.mask)] = lin_min def get_pts_with_similar_intensity(self, cen=None, radius=50, variation=50): vmin = max(0, int(cen[0] - radius)) vmax = min(self.shape[0], int(cen[0] + radius)) hmin = max(0, int(cen[1] - radius)) hmax = min(self.shape[1], int(cen[1] + radius)) crop = self.saxs_lin[vmin:vmax, hmin:hmax] val = self.saxs_lin[cen] idx = np.abs(crop - val) <= variation / 100.0 * val pos = np.array(np.nonzero(idx)) pos[0] += vmin pos[1] += hmin pos = np.roll(pos, shift=1, axis=0) return pos.T def save_partition(self, save_fname): # if no partition is computed yet if self.new_partition is None: return with h5py.File(save_fname, 'w') as hf: if '/data' in hf: del hf['/data'] data = hf.create_group('data') data.create_dataset('mask', data=self.mask) for key, val in self.new_partition.items(): data.create_dataset(key, data=val) # directories that remain the same dt = h5py.vlen_dtype(np.dtype('int32')) version = data.create_dataset('Version', (1,), dtype=dt) version[0] = [5] maps = data.create_group("Maps") dt = h5py.special_dtype(vlen=str) map1name = maps.create_dataset('map1name', (1,), dtype=dt) map1name[0] = 'q' map2name = maps.create_dataset('map2name', (1,), dtype=dt) map2name[0] = 'phi' empty_arr = np.array([]) maps.create_dataset('q', data=self.qmap['q']) maps.create_dataset('phi', data=self.qmap['phi']) maps.create_dataset('x', data=empty_arr) maps.create_dataset('y', data=empty_arr) for key, val in self.meta.items(): if key in ['datetime', 'energy', 'det_dist', 'pix_dim', 'bcx', 'bcy', 'saxs']: continue val = np.array(val) if val.size == 1: val = val.reshape(1, 1) data.create_dataset(key, data=val) print('partition map is saved') # generate 2d saxs def read_data(self, fname=None, **kwargs): reader = read_raw_file(fname) saxs = reader.get_scattering(**kwargs) if saxs is None: print('cannot read the scattering data from raw data file.') return self.meta = reader.load_meta() # keep same self.data_raw = np.zeros(shape=(6, *saxs.shape)) self.mask = np.ones(saxs.shape, dtype=np.bool) saxs_nonzero = saxs[saxs > 0] # use percentile instead of min to be robust self.saxs_lin_min = np.percentile(saxs_nonzero, 1) self.saxs_log_min = np.log10(self.saxs_lin_min) self.saxs_lin = saxs.astype(np.float32) self.min_val = np.min(saxs[saxs > 0]) self.saxs_log = np.log10(saxs + self.min_val) self.shape = self.data_raw[0].shape # reset the qrings after data loading self.qrings = [] self.qmap = self.compute_qmap() self.mask_kernel = MaskAssemble(self.shape, self.saxs_log) self.mask_kernel.update_qmap(self.qmap) self.extent = self.compute_extent() # self.meta['saxs'] = saxs self.data_raw[0] = self.saxs_log self.data_raw[1] = self.saxs_log * self.mask self.data_raw[2] = self.mask def compute_qmap(self): k0 = 2 * np.pi / (12.398 / self.meta['energy']) v = np.arange(self.shape[0], dtype=np.uint32) - self.meta['bcy'] h = np.arange(self.shape[1], dtype=np.uint32) - self.meta['bcx'] vg, hg = np.meshgrid(v, h, indexing='ij') r = np.sqrt(vg * vg + hg * hg) * self.meta['pix_dim'] # phi = np.arctan2(vg, hg) # to be compatible with matlab xpcs-gui; phi = 0 starts at 6 clock # and it goes clockwise; phi = np.arctan2(hg, vg) phi[phi < 0] = phi[phi < 0] + np.pi * 2.0 phi = np.max(phi) - phi # make it clockwise alpha = np.arctan(r / self.meta['det_dist']) qr = np.sin(alpha) * k0 qr = 2 * np.sin(alpha / 2) * k0 qx = qr * np.cos(phi) qy = qr * np.sin(phi) phi = np.rad2deg(phi) # keep phi and q as np.float64 to keep the precision. qmap = { 'phi': phi, 'alpha': alpha.astype(np.float32), 'q': qr, 'qx': qx.astype(np.float32), 'qy': qy.astype(np.float32) } return qmap def get_qp_value(self, x, y): x = int(x) y = int(y) shape = self.qmap['q'].shape if 0 <= x < shape[1] and 0 <= y < shape[0]: return self.qmap['q'][y, x], self.qmap['phi'][y, x] else: return None, None def compute_extent(self): k0 = 2 * np.pi / (12.3980 / self.meta['energy']) x_range = np.array([0, self.shape[1]]) - self.meta['bcx'] y_range = np.array([-self.shape[0], 0]) + self.meta['bcy'] x_range = x_range * self.meta['pix_dim'] / self.meta['det_dist'] * k0 y_range = y_range * self.meta['pix_dim'] / self.meta['det_dist'] * k0 # the extent for matplotlib imshow is: # self._extent = xmin, xmax, ymin, ymax = extent # convert to a tuple of 4 elements; return (*x_range, *y_range) def show_location(self, pos): if not self.hdl.scene.itemsBoundingRect().contains(pos) or \ self.shape is None: return shape = self.shape mouse_point = self.hdl.getView().mapSceneToView(pos) col = int(mouse_point.x()) row = int(mouse_point.y()) if col < 0 or col >= shape[1]: return if row < 0 or row >= shape[0]: return qx = self.qmap['qx'][row, col] qy = self.qmap['qy'][row, col] phi = self.qmap['phi'][row, col] val = self.data_raw[self.hdl.currentIndex][row, col] # msg = f'{self.idx_map[self.hdl.currentIndex]}: ' + \ msg = f'[x={col:4d}, y={row:4d}, ' + \ f'qx={qx:.3e}Å⁻¹, qy={qy:.3e}Å⁻¹, phi={phi:.1f}deg], ' + \ f'val={val:.03e}' self.infobar.clear() self.infobar.setText(msg) return None def show_saxs(self, cmap='jet', log=True, invert=False, plot_center=True, plot_index=0, **kwargs): if self.meta is None or self.data_raw is None: return # self.hdl.reset_limits() self.hdl.clear() # self.data = np.copy(self.data_raw) # print('show_saxs', np.min(self.data[1])) center = (self.meta['bcx'], self.meta['bcy']) self.plot_log = log if not log: self.data_raw[0] = self.saxs_lin else: self.data_raw[0] = self.saxs_log # if invert: # temp = np.max(self.data[0]) - self.data[0] # self.data[0] = temp self.hdl.setImage(self.data_raw) self.hdl.adjust_viewbox() self.hdl.set_colormap(cmap) # plot center if plot_center: t = pg.ScatterPlotItem() t.addPoints(x=[center[0]], y=[center[1]], symbol='+', size=15) self.hdl.add_item(t, label='center') self.hdl.setCurrentIndex(plot_index) return def apply_drawing(self): if self.meta is None or self.data_raw is None: return ones = np.ones(self.data_raw[0].shape, dtype=np.bool) mask_n = np.zeros_like(ones, dtype=np.bool) mask_e = np.zeros_like(mask_n) mask_i = np.zeros_like(mask_n) for k, x in self.hdl.roi.items(): if not k.startswith('roi_'): continue mask_temp = np.zeros_like(ones, dtype=np.bool) # return slice and transfrom sl, _ = x.getArraySlice(self.data_raw[1], self.hdl.imageItem) y = x.getArrayRegion(ones, self.hdl.imageItem) # sometimes the roi size returned from getArraySlice and # getArrayRegion are different; nz_idx = np.nonzero(y) h_beg = np.min(nz_idx[1]) h_end = np.max(nz_idx[1]) v_beg = np.min(nz_idx[0]) v_end = np.max(nz_idx[0]) sl_v = slice(sl[0].start, sl[0].start + v_end - v_beg + 1) sl_h = slice(sl[1].start, sl[1].start + h_end - h_beg + 1) mask_temp[sl_v, sl_h] = y[v_beg:v_end + 1, h_beg: h_end + 1] if x.sl_mode == 'exclusive': mask_e[mask_temp] = 1 elif x.sl_mode == 'inclusive': mask_i[mask_temp] = 1 self.hdl.remove_rois(filter_str='roi_') if np.sum(mask_i) == 0: mask_i = 1 mask_p = np.logical_not(mask_e) * mask_i return mask_p def add_drawing(self, num_edges=None, radius=60, color='r', sl_type='Polygon', width=3, sl_mode='exclusive', second_point=None, label=None, movable=True): # label: label of roi; default is None, which is for roi-draw if label is not None and label in self.hdl.roi: self.hdl.remove_item(label) # cen = (shape[1] // 2, shape[2] // 2) cen = (self.meta['bcx'], self.meta['bcy']) if sl_mode == 'inclusive': pen = pg.mkPen(color=color, width=width, style=QtCore.Qt.DotLine) else: pen = pg.mkPen(color=color, width=width) handle_pen = pg.mkPen(color=color, width=width) kwargs = { 'pen': pen, 'removable': True, 'hoverPen': pen, 'handlePen': handle_pen, 'movable': movable } if sl_type == 'Ellipse': new_roi = pg.EllipseROI(cen, [60, 80], **kwargs) # add scale handle new_roi.addScaleHandle([0.5, 0], [0.5, 1], ) new_roi.addScaleHandle([0.5, 1], [0.5, 0]) new_roi.addScaleHandle([0, 0.5], [1, 0.5]) new_roi.addScaleHandle([1, 0.5], [0, 0.5]) elif sl_type == 'Circle': if second_point is not None: radius = np.sqrt((second_point[1] - cen[1]) ** 2 + (second_point[0] - cen[0]) ** 2) new_roi = pg.CircleROI(pos=[cen[0] - radius, cen[1] - radius], radius=radius, **kwargs) elif sl_type == 'Polygon': if num_edges is None: num_edges = np.random.random_integers(6, 10) # add angle offset so that the new rois don't overlap with each # other offset = np.random.random_integers(0, 359) theta = np.linspace(0, np.pi * 2, num_edges + 1) + offset x = radius * np.cos(theta) + cen[0] y = radius * np.sin(theta) + cen[1] pts =
np.vstack([x, y])
numpy.vstack
import os import importlib import random from imp import reload from mpl_toolkits.axes_grid1 import make_axes_locatable, axes_size from mpl_toolkits.axes_grid1.inset_locator import inset_axes import numpy as np import matplotlib.pyplot as plt from visualisation import network_visualisation as vis from visualisation import plotting_funcs as plotting_funcs from analysis import auditory_analysis as aan from analysis import quantify_aud_strfs as quant from analysis import sparse_analysis as san reload(plotting_funcs) reload(san) reload(quant) reload(aan) reload(vis) def plot_quant_aud_figure(weights, sparse_weights, rstrfs, Y_mds, t_pow_real, t_pow_model, t_pow_sparse, save_path=None, use_blobs=False): fig = plt.figure(figsize=[10,20]) gs = plt.GridSpec(200,100) pop_ax = np.empty((2,3), dtype=object) hist_ax = np.empty((2,2), dtype=object) mds_ax = fig.add_subplot(gs[:45,:45]) temp_ax = fig.add_subplot(gs[:45,64:]) pop_ax[0,0] = fig.add_subplot(gs[55:85,:30]) pop_ax[0,1] = fig.add_subplot(gs[55:85, 35:65]) pop_ax[0,2] = fig.add_subplot(gs[55:85, 70:]) hist_ax[0,0] = fig.add_subplot(gs[95:110, :45]) hist_ax[0,1] = fig.add_subplot(gs[95:110, 55:]) pop_ax[1,0] = fig.add_subplot(gs[120:150,:30]) pop_ax[1,1] = fig.add_subplot(gs[120:150, 35:65]) pop_ax[1,2] = fig.add_subplot(gs[120:150, 70:]) hist_ax[1,0] = fig.add_subplot(gs[160:175, :45]) hist_ax[1,1] = fig.add_subplot(gs[160:175, 55:]) # gs.update(wspace=0.005, hspace=0.05) # set the spacing between axes. labels = ['A1', 'predict', 'sparse', 'noise'] azure = '#006FFF' clors = ['red','black',azure,'y']# markers = ['o', '_', '|'] markers = ['8', 'o', '^'] # mds_ax.set_axis_off() # mds_ax.margins = [0,0] mds_axlim = 20 mds_axes = plotting_funcs.plot_2D_projection_with_hists(Y_mds,mds_ax, labels =None, clors = clors, markers = markers) mds_axes[0].set_xlim([-mds_axlim,mds_axlim]) mds_axes[0].set_ylim([-mds_axlim,mds_axlim]) for ax in mds_axes: ax.set_xticks([]) ax.set_yticks([]) ax.set_axis_off() ax = temp_ax divider = make_axes_locatable(ax) aspect = 4 pad_fraction = 0.05 width = axes_size.AxesY(ax, aspect=1/aspect) pad = axes_size.Fraction(pad_fraction, width) dummy_ax_x = divider.append_axes("top", size=width, pad=0.1, sharex=ax) # dummy_ax_y = divider.append_axes("right", size=width, pad=0.1, sharey=ax) dummy_ax_x.set_axis_off() # dummy_ax_y.set_axis_off() if use_blobs: markers = ['o', 'o', 'o'] else: markers = ['blob', 'blob', 'blob'] t_plot_kwargs = {} t_plot_kwargs['color']=clors[0] t_plot_kwargs['label']='A1' t_plot_kwargs['linewidth']=3 # ax.plot(real_measures.t_pow.mean(axis=0)/sum(real_measures.t_pow.mean(axis=0)),'o', **t_plot_kwargs ) # t_plot_kwargs['label']='' ax.plot(t_pow_real, **t_plot_kwargs) t_plot_kwargs = {} t_plot_kwargs['color']=clors[1] t_plot_kwargs['label']='prediction' t_plot_kwargs['linewidth']=3 # ax.plot(res_pd.iloc[0].t_pow.mean(axis=0)[2:]/sum(res_pd.iloc[0].t_pow.mean(axis=0)[2:]),'_', **t_plot_kwargs) # t_plot_kwargs['label']='' ax.plot(t_pow_model, **t_plot_kwargs) t_plot_kwargs['color']=clors[2] t_plot_kwargs['label']='sparse' t_plot_kwargs['linewidth']=3 # ax.plot(sparse_pd.iloc[11].t_pow.mean(axis=0)[2:]/sum(sparse_pd.iloc[11].t_pow.mean(axis=0)[2:]),'|', **t_plot_kwargs) # t_plot_kwargs['label']='' ax.plot(t_pow_sparse, **t_plot_kwargs) handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels) temp_ax = ax temp_ax.set_xticklabels(['-250', '-200','-150','-100','-50', '0']) temp_ax.set_ylabel('Proportion of power') temp_ax.set_xlabel('Time (msec)') [mf_peak_pos, mf_peak_neg, mf_bw_pos, mf_bw_neg, mt_peak_pos, mt_peak_neg, mt_bw_pos, mt_bw_neg, m_pow] = quant.quantify_strfs(weights) [sf_peak_pos, sf_peak_neg, sf_bw_pos, sf_bw_neg, st_peak_pos, st_peak_neg, st_bw_pos, st_bw_neg, s_pow] = quant.quantify_strfs(sparse_weights) [rf_peak_pos, rf_peak_neg, rf_bw_pos, rf_bw_neg, rt_peak_pos, rt_peak_neg, rt_bw_pos, rt_bw_neg, r_pow] = quant.quantify_strfs(rstrfs, n_h=38) mf_ix = [mf_bw_neg>0] #and [mf_bw_pos>0] rf_ix = [rf_bw_neg>0] #and [rf_bw_pos>0] mt_ix = [mt_bw_neg>0] #and [mt_bw_pos>0] rt_ix = [rt_bw_neg>0] #and [rt_bw_pos>0] sf_ix = [sf_bw_neg>0] #and [mf_bw_pos>0] st_ix = [st_bw_neg>0] #and [mt_bw_pos>0] print('Excluding units with 0 bw') print('model proportion included: ') print(np.sum(mt_ix[:])/len(mt_ix[0])) print('total: %i' %len(mt_ix[0])) print('included: %i' %np.sum(mt_ix[:])) print('excluded: %i' %(len(mt_ix[0])-np.sum(mt_ix[:]))) print('sparse proportion included: ') print(np.sum(st_ix[:])/len(st_ix[0])) print('total: %i' %len(st_ix[0])) print('included: %i' %np.sum(st_ix[:])) print('excluded: %i' %(len(st_ix[0])-np.sum(st_ix[:]))) print('real proportion included: ') print(np.sum(rt_ix[:])/len(rt_ix[0])) print('total: %i' %len(rt_ix[0])) print('included: %i' %np.sum(rt_ix[:])) print('excluded: %i' %(len(rt_ix[0])-np.sum(rt_ix[:]))) mf_bw_pos = mf_bw_pos[mf_ix] rf_bw_pos = rf_bw_pos[rf_ix] sf_bw_pos = sf_bw_pos[sf_ix] mt_bw_pos = mt_bw_pos[mt_ix] rt_bw_pos = rt_bw_pos[rt_ix] st_bw_pos = st_bw_pos[st_ix] mf_bw_neg = mf_bw_neg[mf_ix] rf_bw_neg = rf_bw_neg[rf_ix] sf_bw_neg = sf_bw_neg[sf_ix] mt_bw_neg = mt_bw_neg[mt_ix] rt_bw_neg = rt_bw_neg[rt_ix] st_bw_neg = st_bw_neg[st_ix] xs = np.empty((2,3), dtype=object) ys = np.empty((2,3), dtype=object) xs[0,:] = [rt_bw_pos, mt_bw_pos, st_bw_pos] ys[0,:] = [rt_bw_neg, mt_bw_neg, st_bw_neg] xs[1,:] = [rf_bw_pos, mf_bw_pos, sf_bw_pos] ys[1,:] = [rf_bw_neg, mf_bw_neg, sf_bw_neg] lims = [225,6] #Make the scatter plots on the population axes for ii in range(xs.shape[0]): for jj,ax in enumerate(pop_ax[ii,:]): x = xs[ii,jj] y = ys[ii,jj] clor = clors[jj] # '#444444' if use_blobs: pop_ax[ii,jj],_ = plotting_funcs.blobscatter(x,y, ax=ax, **{'facecolor':'none','edgecolor':clor}) else: ax.scatter(x,y) plt_kwargs = {'color':'k', 'linestyle':'--', 'alpha':0.8} pop_ax[ii,jj].plot(range(lims[ii]+1), **plt_kwargs) pop_ax[ii,jj].set_xlim([0,lims[ii]]) pop_ax[ii,jj].set_ylim([0,lims[ii]]) if ii==0: pop_ax[ii,jj].set_yticks([0, 50, 100, 150, 200]) pop_ax[ii,jj].set_xticks([0, 50, 100, 150, 200]) print('x or y>100', sum(np.logical_or(x>100, y>100)), 'out of ', len(x)) if ii==1: pop_ax[ii,jj].set_yticks([0,2,4,6]) print('x or y>4', sum(np.logical_or(x>4, y>4)), 'out of ', len(x)) if jj>0: # pop_ax[ii,jj].spines['left'].set_visible(False) # pop_ax[ii,jj].set_yticks([]) pop_ax[ii,jj].set_yticklabels([]) inset_lims = [50,1.5] inset_ticks = [[25,50], [0.75,1.5]] inset_binss = [np.arange(0.1,50,5), np.arange(0.05,2,0.15)] #Make insets to show details on first two scatter plots for ii in range(xs.shape[0]): for jj,ax in enumerate(pop_ax[ii,:2]): x = xs[ii,jj] y = ys[ii,jj] clor = clors[jj] # '#444444' inset_axes_kwargs = {'xlim':[0,inset_lims[ii]], 'ylim':[0,inset_lims[ii]], 'xticks':inset_ticks[ii], 'yticks':inset_ticks[ii]} inset_ax = inset_axes(pop_ax[ii,jj], width="40%", # width = 30% of parent_bbox height="40%", # height : 1 inch loc=1, axes_kwargs=inset_axes_kwargs) if use_blobs: inset_ax,_ = plotting_funcs.blobscatter(x,y, ax=inset_ax, **{'facecolor':'none','edgecolor':clor}) else: inset_ax.scatter(x,y) # inset_ax.hist2d(x,y, bins=inset_binss[ii]) # plt_kwargs = {'color':'k', 'linestyle':'--', 'alpha':0.8} # inset_ax.plot(range(lims[ii]+1), **plt_kwargs) binss = [
np.arange(-2.5,200,5)
numpy.arange
#!/usr/bin/env python # Copyright (c) 2015. <NAME> <<EMAIL>> # # This work is licensed under the terms of the Apache Software License, Version 2.0. See the file LICENSE for details. """ Description here """ import numpy as np def weighted_mode(a, w, axis=0): """Returns an array of the weighted modal (most common) value in a If there is more than one such value, only the first is returned. The bin-count for the modal bins is also returned. This is an extension of the algorithm in scipy.stats.mode. COPIED from sklearn.utils.extmath because the extmath functions are not exported outside scikit-learn itself. Parameters ---------- a : array_like n-dimensional array of which to find mode(s). w : array_like n-dimensional array of weights for each value axis : int, optional Axis along which to operate. Default is 0, i.e. the first axis. Returns ------- vals : ndarray Array of modal values. score : ndarray Array of weighted counts for each mode. Examples -------- >>> from sklearn.utils.extmath import weighted_mode >>> x = [4, 1, 4, 2, 4, 2] >>> weights = [1, 1, 1, 1, 1, 1] >>> weighted_mode(x, weights) (array([ 4.]), array([ 3.])) The value 4 appears three times: with uniform weights, the result is simply the mode of the distribution. >>> weights = [1, 3, 0.5, 1.5, 1, 2] # deweight the 4's >>> weighted_mode(x, weights) (array([ 2.]), array([ 3.5])) The value 2 has the highest score: it appears twice with weights of 1.5 and 2: the sum of these is 3. See Also -------- scipy.stats.mode """ if axis is None: a = np.ravel(a) w = np.ravel(w) axis = 0 else: a = np.asarray(a) w = np.asarray(w) axis = axis if a.shape != w.shape: w = np.zeros(a.shape, dtype=w.dtype) + w scores = np.unique(
np.ravel(a)
numpy.ravel
""" control method for one patient to retrieve the fitness value from the k number of features and pre-ictal period """ import os import numpy as np from Utils import getLabelsForSeizure from Utils import removeConstantFeatures from Utils import removeRedundantFeatures from Utils import filterFeatureSelectionCorr from Utils import filterFeatureSelectionAUC from sklearn import preprocessing from sklearn.feature_selection import RFE from sklearn.svm import SVR from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import make_classification from sklearn.metrics import confusion_matrix from Utils import specificity from Utils import sensitivity import time # due to the np.delete function import warnings warnings.filterwarnings("ignore") # where the data is # go back to data folder os.chdir("..") os.chdir("..") os.chdir("Data") os.chdir("Processed_data") path=os.getcwd() # go to where the data is os.chdir(path) patient_id=1321803 pre_ictal=35 k_features=10 def calculateFitness(patient_id,k_features,pre_ictal): t = time.process_time() contador=0; # load training seizures seizure_1_data=np.load("pat"+str(patient_id)+"_seizure1_featureMatrix.npy"); seizure_2_data=np.load("pat"+str(patient_id)+"_seizure2_featureMatrix.npy"); seizure_3_data=np.load("pat"+str(patient_id)+"_seizure3_featureMatrix.npy"); #removing ictal data, that is, where - last line (class) # ictal is equal to 2 # inter-ictal is equal to 0 seizure_1_data=seizure_1_data[:,(np.where(seizure_1_data[-1,:]==0)[0])] seizure_2_data=seizure_2_data[:,(np.where(seizure_2_data[-1,:]==0)[0])] seizure_3_data=seizure_3_data[:,(np.where(seizure_3_data[-1,:]==0)[0])] performance_values=0 # for each pre-ictal period value, we make a 3-fold cross validation for k in range(0,3): #seizure_1 for testing, seizure_2 and seizure_3 for training if k==0: # removing the class label for the feature vector testing_features=seizure_1_data[0:-1,:] # retrieving the training labels testing_labels=getLabelsForSeizure(testing_features,pre_ictal) # removing the class label for the feature vector, for one seizure training_features_1=seizure_2_data[0:-1,:] # retrieving the testing labels for one seizure training_labels_1=getLabelsForSeizure(training_features_1,pre_ictal) # removing the class label for the feature vector, for one seizure training_features_2=seizure_3_data[0:-1,:] # retrieving the testing labels for one seizure training_labels_2=getLabelsForSeizure(training_features_2,pre_ictal) # concatenate both testing_features and testing labels training_features=np.concatenate([training_features_1, training_features_2], axis=1) training_labels=np.concatenate([training_labels_1, training_labels_2], axis=1) del training_features_1 del training_features_2 del training_labels_1 del training_labels_2 #seizure_2 for testing, seizure_1 and seizure_3 for training elif k==1: # removing the class label for the feature vector testing_features=seizure_2_data[0:-1,:] # retrieving the training labels testing_labels=getLabelsForSeizure(testing_features,pre_ictal) # removing the class label for the feature vector, for one seizure training_features_1=seizure_1_data[0:-1,:] # retrieving the testing labels for one seizure training_labels_1=getLabelsForSeizure(training_features_1,pre_ictal) # removing the class label for the feature vector, for one seizure training_features_2=seizure_3_data[0:-1,:] # retrieving the testing labels for one seizure training_labels_2=getLabelsForSeizure(training_features_2,pre_ictal) # concatenate both testing_features and testing labels training_features=
np.concatenate([training_features_1, training_features_2], axis=1)
numpy.concatenate
import numpy as np from diautils import help from diautils.config import to_conf from bisect import bisect_left from scipy.stats import norm def siglog(v): return np.sign(v) * np.log(1.0 + np.abs(v)) def sigexp(v): sv = np.sign(v) return sv * (np.exp(sv * v) - 1.0) def z_norm(v, mean=None, std=None): if len(v.shape) == 1: if mean is None: mean = v.mean() if std is None: std = v.std() np.where(std == 0, 1, std) return (v - mean) / std else: if mean is None: mean = v.mean(axis=-2) if std is None: std = v.std(axis=-2) np.where(std == 0, 1, std) return (v -
np.expand_dims(mean, -2)
numpy.expand_dims
############################################################################### # actionAngle: a Python module to calculate actions, angles, and frequencies # # class: actionAngleStaeckelGrid # # build grid in integrals of motion to quickly evaluate # actionAngleStaeckel # # methods: # __call__: returns (jr,lz,jz) # ############################################################################### import numpy from scipy import interpolate, optimize, ndimage from . import actionAngleStaeckel from .actionAngle import actionAngle from . import actionAngleStaeckel_c from .actionAngleStaeckel_c import _ext_loaded as ext_loaded from .. import potential from ..potential.Potential import _evaluatePotentials from ..potential.Potential import flatten as flatten_potential from ..util import multi, coords, conversion _PRINTOUTSIDEGRID= False class actionAngleStaeckelGrid(actionAngle): """Action-angle formalism for axisymmetric potentials using Binney (2012)'s Staeckel approximation, grid-based interpolation""" def __init__(self,pot=None,delta=None,Rmax=5., nE=25,npsi=25,nLz=30,numcores=1, interpecc=False, **kwargs): """ NAME: __init__ PURPOSE: initialize an actionAngleStaeckelGrid object INPUT: pot= potential or list of potentials delta= focus of prolate confocal coordinate system (can be Quantity) Rmax = Rmax for building grids (natural units) nE=, npsi=, nLz= grid size interpecc= (False) if True, also interpolate the approximate eccentricity, zmax, rperi, and rapo numcores= number of cpus to use to parallellize ro= distance from vantage point to GC (kpc; can be Quantity) vo= circular velocity at ro (km/s; can be Quantity) OUTPUT: instance HISTORY: 2012-11-29 - Written - Bovy (IAS) 2017-12-15 - Written - Bovy (UofT) """ actionAngle.__init__(self, ro=kwargs.get('ro',None),vo=kwargs.get('vo',None)) if pot is None: raise IOError("Must specify pot= for actionAngleStaeckelGrid") self._pot= flatten_potential(pot) if delta is None: raise IOError("Must specify delta= for actionAngleStaeckelGrid") if ext_loaded and 'c' in kwargs and kwargs['c']: self._c= True else: self._c= False self._delta= conversion.parse_length(delta,ro=self._ro) self._Rmax= Rmax self._Rmin= 0.01 #Set up the actionAngleStaeckel object that we will use to interpolate self._aA= actionAngleStaeckel.actionAngleStaeckel(pot=self._pot,delta=self._delta,c=self._c) #Build grid self._Lzmin= 0.01 self._Lzs= numpy.linspace(self._Lzmin, self._Rmax\ *potential.vcirc(self._pot,self._Rmax), nLz) self._Lzmax= self._Lzs[-1] self._nLz= nLz #Calculate E_c(R=RL), energy of circular orbit self._RL= numpy.array([potential.rl(self._pot,l) for l in self._Lzs]) self._RLInterp= interpolate.InterpolatedUnivariateSpline(self._Lzs, self._RL,k=3) self._ERL= _evaluatePotentials(self._pot,self._RL, numpy.zeros(self._nLz))\ +self._Lzs**2./2./self._RL**2. self._ERLmax= numpy.amax(self._ERL)+1. self._ERLInterp= interpolate.InterpolatedUnivariateSpline(self._Lzs, numpy.log(-(self._ERL-self._ERLmax)),k=3) self._Ramax= 200./8. self._ERa= _evaluatePotentials(self._pot,self._Ramax,0.) +self._Lzs**2./2./self._Ramax**2. #self._EEsc= numpy.array([self._ERL[ii]+potential.vesc(self._pot,self._RL[ii])**2./4. for ii in range(nLz)]) self._ERamax= numpy.amax(self._ERa)+1. self._ERaInterp= interpolate.InterpolatedUnivariateSpline(self._Lzs, numpy.log(-(self._ERa-self._ERamax)),k=3) y= numpy.linspace(0.,1.,nE) self._nE= nE psis= numpy.linspace(0.,1.,npsi)*numpy.pi/2. self._npsi= npsi jr= numpy.zeros((nLz,nE,npsi)) jz= numpy.zeros((nLz,nE,npsi)) u0= numpy.zeros((nLz,nE)) jrLzE= numpy.zeros((nLz)) jzLzE= numpy.zeros((nLz)) #First calculate u0 thisLzs= (numpy.tile(self._Lzs,(nE,1)).T).flatten() thisERL= (numpy.tile(self._ERL,(nE,1)).T).flatten() thisERa= (numpy.tile(self._ERa,(nE,1)).T).flatten() thisy= (numpy.tile(y,(nLz,1))).flatten() thisE= _invEfunc(_Efunc(thisERa,thisERL)+thisy*(_Efunc(thisERL,thisERL)-_Efunc(thisERa,thisERL)),thisERL) if isinstance(self._pot,potential.interpRZPotential) and hasattr(self._pot,'_origPot'): u0pot= self._pot._origPot else: u0pot= self._pot if self._c: mu0= actionAngleStaeckel_c.actionAngleStaeckel_calcu0(thisE,thisLzs, u0pot, self._delta)[0] else: if numcores > 1: mu0= multi.parallel_map((lambda x: self.calcu0(thisE[x], thisLzs[x])), range(nE*nLz), numcores=numcores) else: mu0= list(map((lambda x: self.calcu0(thisE[x], thisLzs[x])), range(nE*nLz))) u0= numpy.reshape(mu0,(nLz,nE)) thisR= self._delta*numpy.sinh(u0) thisv= numpy.reshape(self.vatu0(thisE.flatten(),thisLzs.flatten(), u0.flatten(), thisR.flatten()),(nLz,nE)) self.thisv= thisv #reshape thisLzs= numpy.reshape(thisLzs,(nLz,nE)) thispsi= numpy.tile(psis,(nLz,nE,1)).flatten() thisLzs= numpy.tile(thisLzs.T,(npsi,1,1)).T.flatten() thisR= numpy.tile(thisR.T,(npsi,1,1)).T.flatten() thisv= numpy.tile(thisv.T,(npsi,1,1)).T.flatten() mjr, mlz, mjz= self._aA(thisR, #R thisv*numpy.cos(thispsi), #vR thisLzs/thisR, #vT numpy.zeros(len(thisR)), #z thisv*numpy.sin(thispsi), #vz fixed_quad=True) if interpecc: mecc, mzmax, mrperi, mrap=\ self._aA.EccZmaxRperiRap(thisR, #R thisv*numpy.cos(thispsi), #vR thisLzs/thisR, #vT numpy.zeros(len(thisR)), #z thisv*numpy.sin(thispsi)) #vz if isinstance(self._pot,potential.interpRZPotential) and hasattr(self._pot,'_origPot'): #Interpolated potentials have problems with extreme orbits indx= (mjr == 9999.99) indx+= (mjz == 9999.99) #Re-calculate these using the original potential, hopefully not too slow tmpaA= actionAngleStaeckel.actionAngleStaeckel(pot=self._pot._origPot,delta=self._delta,c=self._c) mjr[indx], dum, mjz[indx]= tmpaA(thisR[indx], #R thisv[indx]*numpy.cos(thispsi[indx]), #vR thisLzs[indx]/thisR[indx], #vT numpy.zeros(numpy.sum(indx)), #z thisv[indx]*numpy.sin(thispsi[indx]), #vz fixed_quad=True) if interpecc: mecc[indx], mzmax[indx], mrperi[indx], mrap[indx]=\ self._aA.EccZmaxRperiRap(thisR[indx], #R thisv[indx]*numpy.cos(thispsi[indx]), #vR thisLzs[indx]/thisR[indx], #vT numpy.zeros(numpy.sum(indx)), #z thisv[indx]*numpy.sin(thispsi[indx])) #vz jr= numpy.reshape(mjr,(nLz,nE,npsi)) jz= numpy.reshape(mjz,(nLz,nE,npsi)) if interpecc: ecc= numpy.reshape(mecc,(nLz,nE,npsi)) zmax= numpy.reshape(mzmax,(nLz,nE,npsi)) rperi= numpy.reshape(mrperi,(nLz,nE,npsi)) rap= numpy.reshape(mrap,(nLz,nE,npsi)) zmaxLzE= numpy.zeros((nLz)) rperiLzE= numpy.zeros((nLz)) rapLzE= numpy.zeros((nLz)) for ii in range(nLz): jrLzE[ii]= numpy.nanmax(jr[ii,(jr[ii,:,:] != 9999.99)])#:,:]) jzLzE[ii]= numpy.nanmax(jz[ii,(jz[ii,:,:] != 9999.99)])#:,:]) if interpecc: zmaxLzE[ii]= numpy.amax(zmax[ii,numpy.isfinite(zmax[ii])]) rperiLzE[ii]= numpy.amax(rperi[ii,numpy.isfinite(rperi[ii])]) rapLzE[ii]= numpy.amax(rap[ii,numpy.isfinite(rap[ii])]) jrLzE[(jrLzE == 0.)]= numpy.nanmin(jrLzE[(jrLzE > 0.)]) jzLzE[(jzLzE == 0.)]= numpy.nanmin(jzLzE[(jzLzE > 0.)]) if interpecc: zmaxLzE[(zmaxLzE == 0.)]= numpy.nanmin(zmaxLzE[(zmaxLzE > 0.)]) rperiLzE[(rperiLzE == 0.)]= numpy.nanmin(rperiLzE[(rperiLzE > 0.)]) rapLzE[(rapLzE == 0.)]= numpy.nanmin(rapLzE[(rapLzE > 0.)]) for ii in range(nLz): jr[ii,:,:]/= jrLzE[ii] jz[ii,:,:]/= jzLzE[ii] if interpecc: zmax[ii,:,:]/= zmaxLzE[ii] rperi[ii,:,:]/= rperiLzE[ii] rap[ii,:,:]/= rapLzE[ii] #Deal w/ 9999.99 jr[(jr > 1.)]= 1. jz[(jz > 1.)]= 1. #Deal w/ NaN jr[numpy.isnan(jr)]= 0. jz[numpy.isnan(jz)]= 0. if interpecc: ecc[(ecc < 0.)]= 0. ecc[(ecc > 1.)]= 1. ecc[numpy.isnan(ecc)]= 0. ecc[numpy.isinf(ecc)]= 1. zmax[(zmax > 1.)]= 1. zmax[numpy.isnan(zmax)]= 0. zmax[numpy.isinf(zmax)]= 1. rperi[(rperi > 1.)]= 1. rperi[numpy.isnan(rperi)]= 0. rperi[numpy.isinf(rperi)]= 0. # typically orbits that can reach 0 rap[(rap > 1.)]= 1. rap[numpy.isnan(rap)]= 0. rap[numpy.isinf(rap)]= 1. #First interpolate the maxima self._jr= jr self._jz= jz self._u0= u0 self._jrLzE= jrLzE self._jzLzE= jzLzE self._jrLzInterp= interpolate.InterpolatedUnivariateSpline(self._Lzs, numpy.log(jrLzE+10.**-5.),k=3) self._jzLzInterp= interpolate.InterpolatedUnivariateSpline(self._Lzs, numpy.log(jzLzE+10.**-5.),k=3) if interpecc: self._ecc= ecc self._zmax= zmax self._rperi= rperi self._rap= rap self._zmaxLzE= zmaxLzE self._rperiLzE= rperiLzE self._rapLzE= rapLzE self._zmaxLzInterp=\ interpolate.InterpolatedUnivariateSpline(self._Lzs, numpy.log(zmaxLzE+10.**-5.),k=3) self._rperiLzInterp=\ interpolate.InterpolatedUnivariateSpline(self._Lzs, numpy.log(rperiLzE+10.**-5.),k=3) self._rapLzInterp=\ interpolate.InterpolatedUnivariateSpline(self._Lzs, numpy.log(rapLzE+10.**-5.),k=3) #Interpolate u0 self._logu0Interp= interpolate.RectBivariateSpline(self._Lzs, y, numpy.log(u0), kx=3,ky=3,s=0.) #spline filter jr and jz, such that they can be used with ndimage.map_coordinates self._jrFiltered= ndimage.spline_filter(numpy.log(self._jr+10.**-10.),order=3) self._jzFiltered= ndimage.spline_filter(numpy.log(self._jz+10.**-10.),order=3) if interpecc: self._eccFiltered= ndimage.spline_filter(numpy.log(self._ecc+10.**-10.),order=3) self._zmaxFiltered= ndimage.spline_filter(numpy.log(self._zmax+10.**-10.),order=3) self._rperiFiltered= ndimage.spline_filter(numpy.log(self._rperi+10.**-10.),order=3) self._rapFiltered= ndimage.spline_filter(numpy.log(self._rap+10.**-10.),order=3) # Check the units self._check_consistent_units() return None def _evaluate(self,*args,**kwargs): """ NAME: __call__ (_evaluate) PURPOSE: evaluate the actions (jr,lz,jz) INPUT: Either: a) R,vR,vT,z,vz[,phi]: 1) floats: phase-space value for single object (phi is optional) (each can be a Quantity) 2) numpy.ndarray: [N] phase-space values for N objects (each can be a Quantity) b) Orbit instance: initial condition used if that's it, orbit(t) if there is a time given as well as the second argument Keywords for actionAngleStaeckel.__call__ for off-the-grid evaluations OUTPUT: (jr,lz,jz) HISTORY: 2012-11-29 - Written - Bovy (IAS) """ if len(args) == 5: #R,vR.vT, z, vz R,vR,vT, z, vz= args elif len(args) == 6: #R,vR.vT, z, vz, phi R,vR,vT, z, vz, phi= args else: self._parse_eval_args(*args) R= self._eval_R vR= self._eval_vR vT= self._eval_vT z= self._eval_z vz= self._eval_vz Lz= R*vT Phi= _evaluatePotentials(self._pot,R,z) E= Phi+vR**2./2.+vT**2./2.+vz**2./2. thisERL= -numpy.exp(self._ERLInterp(Lz))+self._ERLmax thisERa= -numpy.exp(self._ERaInterp(Lz))+self._ERamax if isinstance(R,numpy.ndarray): indx= ((E-thisERa)/(thisERL-thisERa) > 1.)\ *(((E-thisERa)/(thisERL-thisERa)-1.) < 10.**-2.) E[indx]= thisERL[indx] indx= ((E-thisERa)/(thisERL-thisERa) < 0.)\ *((E-thisERa)/(thisERL-thisERa) > -10.**-2.) E[indx]= thisERa[indx] indx= (Lz < self._Lzmin) indx+= (Lz > self._Lzmax) indx+= ((E-thisERa)/(thisERL-thisERa) > 1.) indx+= ((E-thisERa)/(thisERL-thisERa) < 0.) indxc= True^indx jr= numpy.empty(R.shape) jz= numpy.empty(R.shape) if numpy.sum(indxc) > 0: u0= numpy.exp(self._logu0Interp.ev(Lz[indxc], (_Efunc(E[indxc],thisERL[indxc])-_Efunc(thisERa[indxc],thisERL[indxc]))/(_Efunc(thisERL[indxc],thisERL[indxc])-_Efunc(thisERa[indxc],thisERL[indxc])))) sinh2u0= numpy.sinh(u0)**2. thisEr= self.Er(R[indxc],z[indxc],vR[indxc],vz[indxc], E[indxc],Lz[indxc],sinh2u0,u0) thisEz= self.Ez(R[indxc],z[indxc],vR[indxc],vz[indxc], E[indxc],Lz[indxc],sinh2u0,u0) thisv2= self.vatu0(E[indxc],Lz[indxc],u0,self._delta*numpy.sinh(u0),retv2=True) cos2psi= 2.*thisEr/thisv2/(1.+sinh2u0) #latter is cosh2u0 cos2psi[(cos2psi > 1.)*(cos2psi < 1.+10.**-5.)]= 1. indxCos2psi= (cos2psi > 1.) indxCos2psi+= (cos2psi < 0.) indxc[indxc]= True^indxCos2psi#Handle these two cases as off-grid indx= True^indxc psi= numpy.arccos(numpy.sqrt(cos2psi[True^indxCos2psi])) coords= numpy.empty((3,numpy.sum(indxc))) coords[0,:]= (Lz[indxc]-self._Lzmin)/(self._Lzmax-self._Lzmin)*(self._nLz-1.) y= (_Efunc(E[indxc],thisERL[indxc])-_Efunc(thisERa[indxc],thisERL[indxc]))/(_Efunc(thisERL[indxc],thisERL[indxc])-_Efunc(thisERa[indxc],thisERL[indxc])) coords[1,:]= y*(self._nE-1.) coords[2,:]= psi/numpy.pi*2.*(self._npsi-1.) jr[indxc]= (numpy.exp(ndimage.interpolation.map_coordinates(self._jrFiltered, coords, order=3, prefilter=False))-10.**-10.)*(numpy.exp(self._jrLzInterp(Lz[indxc]))-10.**-5.) #Switch to Ez-calculated psi sin2psi= 2.*thisEz[True^indxCos2psi]/thisv2[True^indxCos2psi]/(1.+sinh2u0[True^indxCos2psi]) #latter is cosh2u0 sin2psi[(sin2psi > 1.)*(sin2psi < 1.+10.**-5.)]= 1. indxSin2psi= (sin2psi > 1.) indxSin2psi+= (sin2psi < 0.) indxc[indxc]= True^indxSin2psi#Handle these two cases as off-grid indx= True^indxc psiz= numpy.arcsin(numpy.sqrt(sin2psi[True^indxSin2psi])) newcoords= numpy.empty((3,numpy.sum(indxc))) newcoords[0:2,:]= coords[0:2,True^indxSin2psi] newcoords[2,:]= psiz/numpy.pi*2.*(self._npsi-1.) jz[indxc]= (numpy.exp(ndimage.interpolation.map_coordinates(self._jzFiltered, newcoords, order=3, prefilter=False))-10.**-10.)*(numpy.exp(self._jzLzInterp(Lz[indxc]))-10.**-5.) if numpy.sum(indx) > 0: jrindiv, lzindiv, jzindiv= self._aA(R[indx], vR[indx], vT[indx], z[indx], vz[indx], **kwargs) jr[indx]= jrindiv jz[indx]= jzindiv """ jrindiv= numpy.empty(numpy.sum(indx)) jzindiv= numpy.empty(numpy.sum(indx)) for ii in range(numpy.sum(indx)): try: thisaA= actionAngleStaeckel.actionAngleStaeckelSingle(\ R[indx][ii], #R vR[indx][ii], #vR vT[indx][ii], #vT z[indx][ii], #z vz[indx][ii], #vz pot=self._pot,delta=self._delta) jrindiv[ii]= thisaA.JR(fixed_quad=True)[0] jzindiv[ii]= thisaA.Jz(fixed_quad=True)[0] except (UnboundError,OverflowError): jrindiv[ii]= numpy.nan jzindiv[ii]= numpy.nan jr[indx]= jrindiv jz[indx]= jzindiv """ else: jr,Lz, jz= self(numpy.array([R]), numpy.array([vR]), numpy.array([vT]), numpy.array([z]), numpy.array([vz]), **kwargs) return (jr[0],Lz[0],jz[0]) jr[jr < 0.]= 0. jz[jz < 0.]= 0. return (jr,R*vT,jz) def Jz(self,*args,**kwargs): """ NAME: Jz PURPOSE: evaluate the action jz INPUT: Either: a) R,vR,vT,z,vz b) Orbit instance: initial condition used if that's it, orbit(t) if there is a time given as well scipy.integrate.quadrature keywords OUTPUT: jz HISTORY: 2012-07-30 - Written - Bovy (IAS@MPIA) """ return self(*args,**kwargs)[2] def JR(self,*args,**kwargs): """ NAME: JR PURPOSE: evaluate the action jr INPUT: Either: a) R,vR,vT,z,vz b) Orbit instance: initial condition used if that's it, orbit(t) if there is a time given as well scipy.integrate.quadrature keywords OUTPUT: jr HISTORY: 2012-07-30 - Written - Bovy (IAS@MPIA) """ return self(*args,**kwargs)[0] def _EccZmaxRperiRap(self,*args,**kwargs): """ NAME: EccZmaxRperiRap (_EccZmaxRperiRap) PURPOSE: evaluate the eccentricity, maximum height above the plane, peri- and apocenter in the Staeckel approximation INPUT: Either: a) R,vR,vT,z,vz[,phi]: 1) floats: phase-space value for single object (phi is optional) (each can be a Quantity) 2) numpy.ndarray: [N] phase-space values for N objects (each can be a Quantity) b) Orbit instance: initial condition used if that's it, orbit(t) if there is a time given as well as the second argument OUTPUT: (e,zmax,rperi,rap) HISTORY: 2017-12-15 - Written - Bovy (UofT) """ if len(args) == 5: #R,vR.vT, z, vz R,vR,vT, z, vz= args elif len(args) == 6: #R,vR.vT, z, vz, phi R,vR,vT, z, vz, phi= args else: self._parse_eval_args(*args) R= self._eval_R vR= self._eval_vR vT= self._eval_vT z= self._eval_z vz= self._eval_vz Lz= R*vT Phi= _evaluatePotentials(self._pot,R,z) E= Phi+vR**2./2.+vT**2./2.+vz**2./2. thisERL= -numpy.exp(self._ERLInterp(Lz))+self._ERLmax thisERa= -numpy.exp(self._ERaInterp(Lz))+self._ERamax if isinstance(R,numpy.ndarray): indx= ((E-thisERa)/(thisERL-thisERa) > 1.)\ *(((E-thisERa)/(thisERL-thisERa)-1.) < 10.**-2.) E[indx]= thisERL[indx] indx= ((E-thisERa)/(thisERL-thisERa) < 0.)\ *((E-thisERa)/(thisERL-thisERa) > -10.**-2.) E[indx]= thisERa[indx] indx= (Lz < self._Lzmin) indx+= (Lz > self._Lzmax) indx+= ((E-thisERa)/(thisERL-thisERa) > 1.) indx+= ((E-thisERa)/(thisERL-thisERa) < 0.) indxc= True^indx ecc= numpy.empty(R.shape) zmax= numpy.empty(R.shape) rperi= numpy.empty(R.shape) rap= numpy.empty(R.shape) if numpy.sum(indxc) > 0: u0= numpy.exp(self._logu0Interp.ev(Lz[indxc], (_Efunc(E[indxc],thisERL[indxc])-_Efunc(thisERa[indxc],thisERL[indxc]))/(_Efunc(thisERL[indxc],thisERL[indxc])-_Efunc(thisERa[indxc],thisERL[indxc])))) sinh2u0= numpy.sinh(u0)**2. thisEr= self.Er(R[indxc],z[indxc],vR[indxc],vz[indxc], E[indxc],Lz[indxc],sinh2u0,u0) thisEz= self.Ez(R[indxc],z[indxc],vR[indxc],vz[indxc], E[indxc],Lz[indxc],sinh2u0,u0) thisv2= self.vatu0(E[indxc],Lz[indxc],u0,self._delta*numpy.sinh(u0),retv2=True) cos2psi= 2.*thisEr/thisv2/(1.+sinh2u0) #latter is cosh2u0 cos2psi[(cos2psi > 1.)*(cos2psi < 1.+10.**-5.)]= 1. indxCos2psi= (cos2psi > 1.) indxCos2psi+= (cos2psi < 0.) indxc[indxc]= True^indxCos2psi#Handle these two cases as off-grid indx= True^indxc psi= numpy.arccos(numpy.sqrt(cos2psi[True^indxCos2psi])) coords= numpy.empty((3,numpy.sum(indxc))) coords[0,:]= (Lz[indxc]-self._Lzmin)/(self._Lzmax-self._Lzmin)*(self._nLz-1.) y= (_Efunc(E[indxc],thisERL[indxc])-_Efunc(thisERa[indxc],thisERL[indxc]))/(_Efunc(thisERL[indxc],thisERL[indxc])-_Efunc(thisERa[indxc],thisERL[indxc])) coords[1,:]= y*(self._nE-1.) coords[2,:]= psi/numpy.pi*2.*(self._npsi-1.) ecc[indxc]= (numpy.exp(ndimage.interpolation.map_coordinates(self._eccFiltered, coords, order=3, prefilter=False))-10.**-10.) rperi[indxc]= (numpy.exp(ndimage.interpolation.map_coordinates(self._rperiFiltered, coords, order=3, prefilter=False))-10.**-10.)*(numpy.exp(self._rperiLzInterp(Lz[indxc]))-10.**-5.) # We do rap below with zmax #Switch to Ez-calculated psi sin2psi= 2.*thisEz[True^indxCos2psi]/thisv2[True^indxCos2psi]/(1.+sinh2u0[True^indxCos2psi]) #latter is cosh2u0 sin2psi[(sin2psi > 1.)*(sin2psi < 1.+10.**-5.)]= 1. indxSin2psi= (sin2psi > 1.) indxSin2psi+= (sin2psi < 0.) indxc[indxc]= True^indxSin2psi#Handle these two cases as off-grid indx= True^indxc psiz= numpy.arcsin(numpy.sqrt(sin2psi[True^indxSin2psi])) newcoords= numpy.empty((3,numpy.sum(indxc))) newcoords[0:2,:]= coords[0:2,True^indxSin2psi] newcoords[2,:]= psiz/numpy.pi*2.*(self._npsi-1.) zmax[indxc]= (numpy.exp(ndimage.interpolation.map_coordinates(self._zmaxFiltered, newcoords, order=3, prefilter=False))-10.**-10.)*(numpy.exp(self._zmaxLzInterp(Lz[indxc]))-10.**-5.) rap[indxc]= (numpy.exp(ndimage.interpolation.map_coordinates(self._rapFiltered, newcoords, order=3, prefilter=False))-10.**-10.)*(numpy.exp(self._rapLzInterp(Lz[indxc]))-10.**-5.) if numpy.sum(indx) > 0: eccindiv, zmaxindiv, rperiindiv, rapindiv=\ self._aA.EccZmaxRperiRap(R[indx], vR[indx], vT[indx], z[indx], vz[indx], **kwargs) ecc[indx]= eccindiv zmax[indx]= zmaxindiv rperi[indx]= rperiindiv rap[indx]= rapindiv else: ecc,zmax,rperi,rap= self.EccZmaxRperiRap(numpy.array([R]), numpy.array([vR]), numpy.array([vT]), numpy.array([z]), numpy.array([vz]), **kwargs) return (ecc[0],zmax[0],rperi[0],rap[0]) ecc[ecc < 0.]= 0. zmax[zmax < 0.]= 0. rperi[rperi < 0.]= 0. rap[rap < 0.]= 0. return (ecc,zmax,rperi,rap) def vatu0(self,E,Lz,u0,R,retv2=False): """ NAME: vatu0 PURPOSE: calculate the velocity at u0 INPUT: E - energy Lz - angular momentum u0 - u0 R - radius corresponding to u0,pi/2. retv2= (False), if True return v^2 OUTPUT: velocity HISTORY: 2012-11-29 - Written - Bovy (IAS) """ v2= (2.*(E-actionAngleStaeckel.potentialStaeckel(u0,numpy.pi/2., self._pot, self._delta)) -Lz**2./R**2.) if retv2: return v2 v2[(v2 < 0.)*(v2 > -10.**-7.)]= 0. return numpy.sqrt(v2) def calcu0(self,E,Lz): """ NAME: calcu0 PURPOSE: calculate the minimum of the u potential INPUT: E - energy Lz - angular momentum OUTPUT: u0 HISTORY: 2012-11-29 - Written - Bovy (IAS) """ logu0= optimize.brent(_u0Eq, args=(self._delta,self._pot, E,Lz**2./2.)) return numpy.exp(logu0) def Er(self,R,z,vR,vz,E,Lz,sinh2u0,u0): """ NAME: Er PURPOSE: calculate the 'radial energy' INPUT: R, z, vR, vz - coordinates E - energy Lz - angular momentum sinh2u0, u0 - sinh^2 and u0 OUTPUT: Er HISTORY: 2012-11-29 - Written - Bovy (IAS) """ u,v= coords.Rz_to_uv(R,z,self._delta) pu= (vR*numpy.cosh(u)*numpy.sin(v) +vz*numpy.sinh(u)*numpy.cos(v)) #no delta, bc we will divide it out out= (pu**2./2.+Lz**2./2./self._delta**2.*(1./numpy.sinh(u)**2.-1./sinh2u0) -E*(numpy.sinh(u)**2.-sinh2u0) +(numpy.sinh(u)**2.+1.)*actionAngleStaeckel.potentialStaeckel(u,numpy.pi/2.,self._pot,self._delta) -(sinh2u0+1.)*actionAngleStaeckel.potentialStaeckel(u0,numpy.pi/2.,self._pot,self._delta)) # +(numpy.sinh(u)**2.+numpy.sin(v)**2.)*actionAngleStaeckel.potentialStaeckel(u,v,self._pot,self._delta) # -(sinh2u0+numpy.sin(v)**2.)*actionAngleStaeckel.potentialStaeckel(u0,v,self._pot,self._delta)) return out def Ez(self,R,z,vR,vz,E,Lz,sinh2u0,u0): """ NAME: Ez PURPOSE: calculate the 'vertical energy' INPUT: R, z, vR, vz - coordinates E - energy Lz - angular momentum sinh2u0, u0 - sinh^2 and u0 OUTPUT: Ez HISTORY: 2012-12-23 - Written - Bovy (IAS) """ u,v= coords.Rz_to_uv(R,z,self._delta) pv= (vR*numpy.sinh(u)*numpy.cos(v) -vz*numpy.cosh(u)*numpy.sin(v)) #no delta, bc we will divide it out out= (pv**2./2.+Lz**2./2./self._delta**2.*(1./numpy.sin(v)**2.-1.) -E*(numpy.sin(v)**2.-1.) -(sinh2u0+1.)*actionAngleStaeckel.potentialStaeckel(u0,numpy.pi/2.,self._pot,self._delta) +(sinh2u0+numpy.sin(v)**2.)*actionAngleStaeckel.potentialStaeckel(u0,v,self._pot,self._delta)) return out def _u0Eq(logu,delta,pot,E,Lz22): """The equation that needs to be minimized to find u0""" u= numpy.exp(logu) sinh2u= numpy.sinh(u)**2. cosh2u= numpy.cosh(u)**2. dU= cosh2u*actionAngleStaeckel.potentialStaeckel(u,numpy.pi/2.,pot,delta) return -(E*sinh2u-dU-Lz22/delta**2./sinh2u) def _Efunc(E,*args): """Function to apply to the energy in building the grid (e.g., if this is a log, then the grid will be logarithmic""" # return ((E-args[0]))**0.5 return numpy.log((E-args[0]+10.**-10.)) def _invEfunc(Ef,*args): """Inverse of Efunc""" # return Ef**2.+args[0] return
numpy.exp(Ef)
numpy.exp