prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
# Copyright (c) 2017-present, Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################## """Representation of the standard COCO json dataset format. When working with a new dataset, we strongly suggest to convert the dataset into the COCO json format and use the existing code; it is not recommended to write code to support new dataset formats. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import copy import cPickle as pickle import logging import numpy as np import os import scipy.sparse from PIL import Image import cv2 # Must happen before importing COCO API (which imports matplotlib) import detectron.utils.env as envu envu.set_up_matplotlib() # COCO API from pycocotools import mask as COCOmask from pycocotools.coco import COCO from detectron.core.config import cfg from detectron.utils.timer import Timer import detectron.datasets.dataset_catalog as dataset_catalog import detectron.utils.boxes as box_utils import detectron.utils.segms as segm_utils from detectron.datasets.dataset_catalog_LIP import ANN_FN from detectron.datasets.dataset_catalog_LIP import DATASETS from detectron.datasets.dataset_catalog_LIP import IM_DIR from detectron.datasets.dataset_catalog_LIP import IM_IDS from detectron.datasets.dataset_catalog_LIP import IM_PREFIX logger = logging.getLogger(__name__) class JsonDataset(object): """A class representing a COCO json dataset.""" def __init__(self, name): assert name in DATASETS.keys(), \ 'Unknown dataset name: {}'.format(name) assert os.path.exists(DATASETS[name][IM_DIR]), \ 'Image directory \'{}\' not found'.format(DATASETS[name][IM_DIR]) if 'train' in name: assert os.path.exists(DATASETS[name][ANN_FN]), \ 'Annotation file \'{}\' not found'.format(DATASETS[name][ANN_FN]) assert os.path.exists(DATASETS[name][IM_IDS]), \ 'im_ids file \'{}\' not found'.format(DATASETS[name][IM_IDS]) logger.debug('Creating: {}'.format(name)) self.name = name self.dataset = name.split('_')[-1] # 'train' or 'val' self.image_directory = DATASETS[name][IM_DIR] self.image_prefix = ( '' if IM_PREFIX not in DATASETS[name] else DATASETS[name][IM_PREFIX] ) #self.COCO = COCO(DATASETS[name][ANN_FN]) self.debug_timer = Timer() # Set up dataset classes #category_ids = self.COCO.getCatIds() if 'ATR' in self.name: category_ids = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17] categories = ['background', 'hat', 'hair', 'sunglasses', 'upperclothes', 'skirt', 'pants', 'dress', 'belt', 'leftShoes', 'right-shoe', 'face', 'left-leg', 'right-leg', 'left-arm', 'right-arm', 'bag', 'scarf'] else: category_ids = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19] #categories = [c['name'] for c in self.COCO.loadCats(category_ids)] categories = ['background', 'hat', 'hair', 'glove', 'sunglasses', 'upperclothes', 'dress', 'coat', 'socks', 'pants', 'jumpsuits', 'scarf', 'skirt', 'face', 'leftArm', 'rightArm', 'leftLeg', 'rightLeg', 'leftShoe','rightShoe'] if cfg.Ignore_left: # 14,15, 16,17, 18,19 if 'ATR' in self.name: categories = ['background', 'hat', 'hair', 'sunglasses', 'upperclothes', 'skirt', 'pants', 'dress', 'belt', 'shoe', 'face', 'leg', 'arm', 'bag', 'scarf'] category_ids = range(len(categories)) self.category_id_to_Ignore_left_id = { v: i for i, v in enumerate(range(18)) } self.category_id_to_Ignore_left_id[10] = 9 self.category_id_to_Ignore_left_id[11] = 10 self.category_id_to_Ignore_left_id[12] = 11 self.category_id_to_Ignore_left_id[13] = 11 self.category_id_to_Ignore_left_id[14] = 12 self.category_id_to_Ignore_left_id[15] = 12 self.category_id_to_Ignore_left_id[16] = 13 self.category_id_to_Ignore_left_id[17] = 14 else: categories = ['background', 'hat', 'hair', 'glove', 'sunglasses', 'upperclothes', 'dress', 'coat', 'socks', 'pants', 'jumpsuits', 'scarf', 'skirt', 'face', 'Arm', 'Leg', 'Shoe'] category_ids = range(len(categories)) self.category_id_to_Ignore_left_id = { v: i for i, v in enumerate(range(20)) } self.category_id_to_Ignore_left_id[15] = 14 self.category_id_to_Ignore_left_id[16] = 15 self.category_id_to_Ignore_left_id[17] = 15 self.category_id_to_Ignore_left_id[18] = 16 self.category_id_to_Ignore_left_id[19] = 16 self.category_to_id_map = dict(zip(categories, category_ids)) self.classes = categories self.num_classes = len(self.classes) logger.info('classes: {}'.format(self.classes)) logger.info('num_classes: {}'.format(self.num_classes)) self.json_category_id_to_contiguous_id = { v: i for i, v in enumerate(category_ids) } self.contiguous_category_id_to_json_id = { v: k for k, v in self.json_category_id_to_contiguous_id.items() } self._init_keypoints() def get_roidb( self, gt=False, proposal_file=None, min_proposal_size=2, proposal_limit=-1, crowd_filter_thresh=0 ): """Return an roidb corresponding to the json dataset. Optionally: - include ground truth boxes in the roidb - add proposals specified in a proposals file - filter proposals based on a minimum side length - filter proposals that intersect with crowd regions """ assert gt is True or crowd_filter_thresh == 0, \ 'Crowd filter threshold must be 0 if ground-truth annotations ' \ 'are not included.' roidb = self._load_lip() # load data when train or test if gt: # include gt object annotations self.debug_timer.tic() self.load_lip_annotations(roidb) logger.debug( 'load_lip_annotations took {:.3f}s'. format(self.debug_timer.toc(average=False)) ) ############################################# if proposal_file is not None: # Include proposals from a file self.debug_timer.tic() self._add_proposals_from_file( roidb, proposal_file, min_proposal_size, proposal_limit, crowd_filter_thresh ) logger.debug( '_add_proposals_from_file took {:.3f}s'. format(self.debug_timer.toc(average=False)) ) _add_class_assignments(roidb) return roidb def _load_lip(self): """ gao: load train or test dadaset of LIP""" imglist_file = DATASETS[self.name][IM_IDS] assert os.path.exists(imglist_file), 'path does not exist: {}'.format(imglist_file) imgids_list = [] with open(imglist_file) as f: for line in f.readlines(): if len(line)>1: imgids_list.append(line.strip()) # mistake label id if 'LIP_train' in self.name: mistakelist_file = os.path.join(os.path.dirname(imglist_file), 'train_mistake_id.txt') assert os.path.exists(mistakelist_file), 'path does not exist: {}'.format(mistakelist_file) im_mistake_ids = [] with open(mistakelist_file) as f: for line in f.readlines(): if len(line)>1: im_mistake_ids.append(line.strip()) roidb = [] for i in range(len(imgids_list)): if 'LIP_train' in self.name: if imgids_list[i] in im_mistake_ids: continue roi_entry = dict() roi_entry['dataset'] = self roi_entry['id'] = imgids_list[i] roi_entry['image'] = os.path.join(DATASETS[self.name][IM_DIR], imgids_list[i] + '.jpg') assert os.path.exists(roi_entry['image']), 'image path does not exist: {}'.format(roi_entry['images']) img = cv2.imread(roi_entry['image']) size = img.shape roi_entry['height'] = size[0] roi_entry['width'] = size[1] roi_entry['flipped'] = False roi_entry['has_visible_keypoints'] = False roi_entry['boxes'] = np.empty((0,4), dtype=np.float32) roi_entry['gt_classes'] = np.empty((0), dtype=np.int32) roi_entry['box_to_gt_ind_map'] = np.empty((0), dtype=np.int32) roi_entry['gt_overlaps'] = scipy.sparse.csr_matrix( np.empty((0,self.num_classes), dtype=np.float32) ) roi_entry['is_crowd'] = np.empty((0), dtype=np.bool) roi_entry['seg_areas'] = np.empty((0), dtype=np.float32) roidb.append(roi_entry) return roidb def load_lip_annotations(self,roidb): # load from label of png for i in range(len(roidb)): roi_entry = roidb[i] if roi_entry['id'] in ['27969_199668']: continue #print(i, roi_entry['id']) boxes, gt_classes, ins_id, label_path, gt_overlaps = self.load_from_seg(roi_entry['id']) if boxes.size == 0: total_num_objs = 0 boxes = np.zeros((total_num_objs, 4), dtype=np.uint16) gt_overlaps = np.zeros((total_num_objs, self.num_classes), dtype=np.float32) gt_classes = np.zeros((total_num_objs, ), dtype=np.int32) roi_entry['boxes'] = boxes roi_entry['gt_classes'] = gt_classes roi_entry['box_to_gt_ind_map'] = ins_id roi_entry['ins_seg'] = label_path # full path of label png # im_label = Image.open(label_path) # pixel = list(im_label.getdata()) # im_label = np.array(pixel).reshape([im_label.size[1], im_label.size[0]]) # roi_entry['ins_seg'] = im_label roi_entry['gt_overlaps'] = gt_overlaps roi_entry['gt_overlaps'] = scipy.sparse.csr_matrix(roi_entry['gt_overlaps']) #roi_entry['max_overlaps'] = gt_overlaps.max(axis=1) #roi_entry['max_class'] = gt_overlaps.argmax(axis=1) roi_entry['is_crowd'] = np.zeros((boxes.shape[0]), dtype=np.bool) #roi_entry['has_visible_keypoints'] = False roi_entry['seg_areas'] = np.zeros((boxes.shape[0]), dtype=np.float32) roi_entry['seg_areas'][:] = 50 #roi_entry['gt_boxes'] = boxes #roidb.append(roi_entry) #return roidb def load_from_seg(self,seg_gt_id): """ gao: load from seg label png """ seg_gt = os.path.join(DATASETS[self.name][ANN_FN], seg_gt_id + '.png') assert os.path.exists(seg_gt), 'path does not exist: {}'.format(seg_gt) im = Image.open(seg_gt) pixel = list(im.getdata()) pixel = np.array(pixel).reshape([im.size[1], im.size[0]]) gt_classes = [] boxes = [] box_to_gt_ind_map = [] gt_overlaps = [] ins_id = 0 for c in range(1,self.num_classes): px = np.where(pixel == c) if len(px[0])==0: continue x_min = np.min(px[1]) y_min = np.min(px[0]) x_max = np.max(px[1]) y_max = np.max(px[0]) if x_max - x_min <= 1 or y_max - y_min <= 1: continue if cfg.Ignore_left: c = self.category_id_to_Ignore_left_id[c] # gt_classes.append(c) # boxes.append([x_min, y_min, x_max, y_max]) # box_to_gt_ind_map.append(ins_id) # ins_id += 1 # overlaps = np.zeros(self.num_classes,dtype=np.float32) # overlaps[c] = 1 # gt_overlaps.append(overlaps) if (c==3 or c==8) and 'LIP' in cfg.TRAIN.DATASETS[0]: # has gloves or socks box,gt_class,box_to_gt_ind,gt_overlap,ins_id = _get_socks_glove(pixel,c,ins_id,self.num_classes) for i in range(len(box)): boxes.append(box[i]) gt_classes.append(gt_class[i]) box_to_gt_ind_map.append(box_to_gt_ind[i]) gt_overlaps.append(gt_overlap[i]) else: gt_classes.append(c) boxes.append([x_min, y_min, x_max, y_max]) box_to_gt_ind_map.append(ins_id) ins_id += 1 overlaps = np.zeros(self.num_classes) overlaps[c] = 1 gt_overlaps.append(overlaps) return np.asarray(boxes, dtype=np.float32),
np.asarray(gt_classes,dtype=np.int32)
numpy.asarray
import scanpy as sc import pandas as pd import numpy as np import math from scipy.sparse import csr_matrix, find import matplotlib.pyplot as plt import time from scipy.stats import norm from joblib import Parallel, delayed def which(x): n = len(x) m = sum(x) y = np.zeros(m) j = -1 for i in range(0, n): if x[i]: j = j+1 y[j] = i y = y.astype(int) return y def sparsetoid(sp_mtx, x = 0, y = 0): (id_x, id_y) = sp_mtx.nonzero() if len(id_x)*len(id_y) == 0: v = np.array([]) else: v = np.asarray(sp_mtx[id_x, id_y])[0] d = {'x_id': id_x+x, 'y_id': id_y+y, 'value': v} df = pd.DataFrame(data=d) return df def id_concat(pair): frames = [pair[0], pair[1]] result = pd.concat(frames) return result def idtosparse(df, G1=None, G2=None): if G1 is None: G1 = max(df.x_id) + 1 if G2 is None: G2 = max(df.y_id) + 1 sp_mtx = csr_matrix((df.value, (df.x_id, df.y_id)), shape=(G1, G2)) return sp_mtx def csntoflat(csn_mat): if type(csn_mat) is list: n2 = len(csn_mat) n1 = csn_mat[0].shape[0] csn_flat = np.zeros((int(n1*(n1-1)/2), n2)) k = 0 for i in range(0, n1-1): for j in range(i+1, n1): csn_flat[k, :] = np.asarray([item[i,j] for item in csn_mat]) k = k + 1 else: (n1, n11, n2) = csn_mat.shape if n1 != n11: print('dimension not match!') return csn_flat = np.zeros((int(n1*(n1-1)/2), n2)) k = 0 for i in range(0, n1-1): for j in range(i+1, n1): csn_flat[k, :] = csn[i, j, :] k = k + 1 return csn_flat def csn(data_full, g_mtx = None, wd_q = 0.1, dev = True, md = 1, iteration = False, fuzzy = False, ncore = 4): (n1, n2) = data_full.shape eps = np.finfo(float).eps if g_mtx is None: g_mtx = np.ones((n1, n1)) - np.tri(n1) zero_id = np.where(data_full.sum(axis = 1)==0) g_mtx[zero_id, :] = 0 g_mtx[:, zero_id] = 0 #csn = [[[0 for col in range(n1)]for row in range(n1)] for x in range(n2)] #csn = np.zeros((n1, n1, n2)) (I, J, S) = find(g_mtx) L = len(I) print(*[L , 'pairs need calculation']) csn_mat = np.zeros((L, n2)) def valuetosparse(value, I, J, G1 = None, G2 = None): if G1 is None: G1 = max(df.x_id) + 1 if G2 is None: G2 = max(df.y_id) + 1 I = I[value != 0] J = J[value != 0] value = value[value != 0] sp_mtx = csr_matrix((value, (I, J)), shape = (G1, G2)) return sp_mtx if dev: if fuzzy: selected_gene = np.unique([I, J]) grid_gene = np.zeros((n1, n2)) gene_first_zero = np.zeros(n1) for s in selected_gene: gene_temp = data_full[s, :] max_gene = max(gene_temp[gene_temp!=0]) min_gene = min(gene_temp[gene_temp!=0]) range_temp = max_gene - min_gene if range_temp == 0: gene_cut = np.array([min_gene]) else: gene_cut = np.arange(min_gene, max_gene, range_temp/20) if sum(gene_temp == 0) > 1: gene_cut = np.insert(gene_cut, 0, 0) gene_first_zero[s] = 1 grid_gene[s,:] = np.digitize(gene_temp, gene_cut) def inner_fuzzy_fun(m): i = I[m] j = J[m] gene1 = data_full[i, :] gene2 = data_full[j, :] data = data_full[[i, j], :] grid1 = grid_gene[i, :] grid2 = grid_gene[j, :] grid_mix = grid1*30 + grid2 u_grid = np.unique(grid_mix) n_grid = np.zeros(len(u_grid)) for s in range(0, len(u_grid)): n_grid[s] = sum(grid_mix == u_grid[s]) u_grid_mix = np.vstack((np.floor((u_grid - 1)/30), (u_grid - 1)%30 + 1, u_grid, n_grid)) if gene_first_zero[i] == 1: u_grid_mix = u_grid_mix[:, u_grid_mix[0, :]!=1] if gene_first_zero[j] == 1: u_grid_mix = u_grid_mix[:, u_grid_mix[1, :]!=1] cell_id = np.zeros(u_grid_mix.shape[1]) cell_id_full = [] for t in range(0, u_grid_mix.shape[1]): cell_id_full.append(np.where(grid_mix == u_grid_mix[2, t])[0]) cell_id[t] = np.random.choice(cell_id_full[t], 1) cell_id = cell_id.astype(int) (upper, lower) = upperlower_dev(gene1, gene2, wd_q, md, iteration, cell_id) csn_temp = np.zeros(n2) for t in range(0, len(cell_id)): k = cell_id[t] B = np.zeros((2, n2)) for l in range(0, n2): B[:, l] = (data[:,l] <= upper[:, k]) & (data[:, l] >= lower[:, k]) & (data[:, k] > 0) a = B.sum(axis = 1) a = np.reshape(a, (2, 1)) temp = ([email protected]*n2 - [email protected])/np.sqrt(([email protected])*((n2-a)@(n2-a).T)/(n2-1)+eps) csn_temp[cell_id_full[t]] = temp[0, 1] return csn_temp csn_arr_temp = np.asarray(Parallel(n_jobs = ncore)(delayed(inner_fuzzy_fun)(m) for m in range(0, L))) csn = [valuetosparse(v, I, J, n1, n1) for v in list(csn_arr_temp.T)] else: def inner_fun(m): i = I[m] j = J[m] gene1 = data_full[i,:] gene2 = data_full[j,:] data = data_full[[i,j],:] csn_temp = np.zeros(n2) (upper, lower) = upperlower_dev(gene1, gene2, boxsize = wd_q, md = md, iteration = iteration) for k in range(0, n2): if gene1[k]*gene2[k] > 0: B = np.zeros((2, n2)) for l in range(0, n2): B[:, l] = (data[:,l] <= upper[:, k]) & (data[:, l] >= lower[:, k]) & (data[:, k] > 0) a = B.sum(axis = 1) a = np.reshape(a, (2, 1)) temp = ([email protected]*n2 - [email protected])/np.sqrt(([email protected])*((n2-a)@(n2-a).T)/(n2-1)+eps) csn_temp[k] = temp[0, 1] return csn_temp csn_arr_temp = np.asarray(Parallel(n_jobs = ncore)(delayed(inner_fun)(m) for m in range(0, L))) csn = [valuetosparse(v, I, J, n1, n1) for v in list(csn_arr_temp.T)] else: (upper, lower) = upperlower(data_full, boxsize = wd_q) csn = [] for k in range(0, n2): B = np.zeros((n1, n2)) for j in range(0, n2): B[:, j] = (data_full[:, j] <= upper[:, k]) & (data_full[:, j] >= lower[:, k]) & (data_full[:, k] > 0) a = B.sum(axis = 1) a = np.reshape(a, (n1, 1)) temp = ([email protected]*n2 - [email protected])/np.sqrt(([email protected])*((n2-a)@(n2-a).T)/(n2-1)+eps) np.fill_diagonal(temp, 0) csn.append(csr_matrix(temp)) return csn def upperlower_dev(gene1, gene2, boxsize = 0.1, md = 1, iteration = False, cell_id = None): if len(gene1) != len(gene2): return n1 = 2 n2 = len(gene1) data = np.append([gene1], [gene2], axis= 0) if cell_id is None: cell_id = range(0, n2) (up_q, low_q) = upperlower(data, boxsize) upper = np.zeros((n1, n2)) lower = np.zeros((n1, n2)) if iteration: maxiter = 10000 for k in cell_id: if gene1[k] * gene2[k] > 0: d2_0 = md * gene2[(gene1 <= up_q[0,k]) & (gene1 >= low_q[0, k])].std() d1_0 = md * gene1[(gene2 <= up_q[1,k]) & (gene2 >= low_q[1, k])].std() d2_1 = md * gene2[(gene1 <= gene1[k] + d1_0) & (gene1 >= gene1[k] - d1_0)].std() d1_1 = md * gene1[(gene2 <= gene2[k] + d2_0) & (gene2 >= gene2[k] - d2_0)].std() count = 0 while (math.sqrt(pow(d2_0-d2_1, 2)+pow(d1_0-d1_1, 2)) < pow(10, -5)) & count < maxiter: d2_0 = d2_1 d1_0 = d1_1 d2_1 = md * gene2[(gene1 <= gene1[k] + d1_0) & (gene1 >= gene1[k] - d1_0)].std() d1_1 = md * gene1[(gene2 <= gene2[k] + d2_0) & (gene2 >= gene2[k] - d2_0)].std() count = count + 1 if count >= 10000: print('Iteration at cell' , k, ' exceeds ', maxiter) return upper[0, k] = gene1[k] + d1_1 upper[1, k] = gene2[k] + d2_1 lower[0, k] = gene1[k] - d1_1 lower[1, k] = gene2[k] - d2_1 else: for k in cell_id: if gene1[k] * gene2[k] > 0: d2 = md * gene2[(gene1 <= up_q[0,k]) & (gene1 >= low_q[0, k])].std() d1 = md * gene1[(gene2 <= up_q[1,k]) & (gene2 >= low_q[1, k])].std() upper[0, k] = gene1[k] + d1 upper[1, k] = gene2[k] + d2 lower[0, k] = gene1[k] - d1 lower[1, k] = gene2[k] - d2 return (upper, lower) def upperlower(data, boxsize = 0.1): (n1, n2) = data.shape # n1 gene; n2 cells upper = np.zeros((n1, n2)) lower = np.zeros((n1, n2)) for i in range(0, n1): s1 = sorted(data[i,:]) s2 = data[i,:].argsort() #s1.append(0) h = round(boxsize/2 * n2) k = 0 while k < n2: s = 0 #while (k + s + 1 < n2) & (s1[k + s + 1] == s1[k]): while k+s+1 < n2: if s1[k+s+1] == s1[k]: s = s + 1 else: break if s >= h: upper[i, s2[k:k + s + 1]] = data[i, s2[k]] lower[i, s2[k:k + s + 1]] = data[i, s2[k]] else: upper[i, s2[k:k + s + 1]] = data[i, s2[min(n2 - 1, k + s + h)]] lower[i, s2[k:k + s + 1]] = data[i, s2[max(0, k - h)]] k = k + s + 1 return (upper, lower) def upperlower_soft(data_full, soft_c, wd_q = 0.1): (n2, K) = soft_c.shape (n1, n2) = data_full.shape F_c = soft_c/sum(soft_c) upper = [np.zeros((n1, n2)), np.zeros((n1, n2))] lower = [np.zeros((n1, n2)), np.zeros((n1, n2))] for cl in range(0, K): fc = F_c[:, cl] for i in range(0, n1): s1 = sorted(data_full[i,:]) s2 = data_full[i,:].argsort() n3 = s1.count(0) k = 0 while k < n2: s = 0 while k+s+1 < n2: if s1[k+s+1] == s1[k]: s = s + 1 else: break if sum(fc[s2[k:k+s+1]]) >= wd_q/2: upper[cl][i, s2[k:k+s+1]] = data_full[i, s2[k]] lower[cl][i, s2[k:k+s+1]] = data_full[i, s2[k]] else: h = 1 while (h+k+s < n2) & (sum(fc[s2[k:k+s+h+1]]) < wd_q/2): h = h+1 upper[cl][i, s2[k:k+s+1]] = data_full[i, s2[min(n2-1, k+h+s)]] h = 1 while (k-h>=0) & (sum(fc[s2[k-h:k+1]]) < wd_q/2): h = h+1 lower[cl][i, s2[k:k+s+1]] = data_full[i, s2[max(n3*(n3>h), k-h)]] k = k + s + 1 print('soft cluster', cl+1, 'gene', i , 'is done!') return(upper, lower) def csn_soft_dev(data_full, soft_c, upper = None, lower = None, wd_q = 0.1, md = 1, iteration = False, maxiter = 10000): if upper is None or lower is None: (upper, lower) = upperlower_soft(data_full, soft_c, wd_q) K = soft_c.shape[1] (n1, n2) = data_full.shape csn = [np.zeros((n1, n1, n2)), np.zeros((n1, n1, n2))] for cl in range(0, K): n_cl = sum(soft_c[:, cl]) soft_cl = soft_c[:, cl] for i in range(0, n1): for j in range(i+1, n1): nz_index = which(data_full[i,:]*data_full[j,:]*soft_cl > 0) for k in nz_index: btw_i = (data_full[i,:] <= upper[cl][i, k]) & (data_full[i, :] >= lower[cl][i, k]) btw_j = (data_full[j,:] <= upper[cl][j, k]) & (data_full[j, :] >= lower[cl][j, k]) sdj_0 = md*np.sqrt(np.cov(data_full[j,btw_i], aweights=soft_cl[btw_i])) sdi_0 = md*np.sqrt(np.cov(data_full[i,btw_j], aweights=soft_cl[btw_j])) if iteration: btw_i = (data_full[i,:] <= data_full[i, k]+sdi_0) & (data_full[i, :] >= data_full[i, k]-sdi_0) btw_j = (data_full[j,:] <= data_full[j, k]+sdj_0) & (data_full[j, :] >= data_full[j, k]-sdj_0) sdj_1 = md*np.sqrt(np.cov(data_full[j,btw_i], aweights=soft_cl[btw_i])) sdi_1 = md*np.sqrt(np.cov(data_full[i,btw_j], aweights=soft_cl[btw_j])) count = 0 while ((sdi_0-sdi_1)**2 + (sdj_0-sdj_1)**2 > pow(10, -12)) & (count < maxiter) & (sdi_1*sdj_1 >0): sdi_0 = sdi_1 sdj_0 = sdj_1 btw_i = (data_full[i,:] <= data_full[i, k]+sdi_0) & (data_full[i, :] >= data_full[i, k]-sdi_0) btw_j = (data_full[j,:] <= data_full[j, k]+sdj_0) & (data_full[j, :] >= data_full[j, k]-sdj_0) sdj_1 = md*np.sqrt(np.cov(data_full[j,btw_i], aweights=soft_cl[btw_i])) sdi_1 = md*np.sqrt(np.cov(data_full[i,btw_j], aweights=soft_cl[btw_j])) count = count + 1 if count >= maxiter: print('Iteration of Cluster', cl+1, 'at gene', i+1, 'and gene', j+1, 'at cell', k+1, 'have exceed ', maxiter) return sdj = sdj_1 sdi = sdi_1 else: sdj = sdj_0 sdi = sdi_0 nx = soft_cl[(data_full[i, :]<= data_full[i,k]+sdi) & (data_full[i, :] >= data_full[i,k]-sdi)].sum() ny = soft_cl[(data_full[j, :]<= data_full[j,k]+sdj) & (data_full[j, :] >= data_full[j,k]-sdj)].sum() nxy = soft_cl[(data_full[i, :]<= data_full[i,k]+sdi) & (data_full[i, :] >= data_full[i,k]-sdi) & (data_full[j, :]<= data_full[j,k]+sdj) & (data_full[j, :] >= data_full[j,k]-sdj)].sum() rho_xy = nxy/n_cl - (nx/n_cl)*(ny/n_cl) sigma_xy = nx*ny*(n_cl-nx)*(n_cl-ny)/(n_cl**4*(n_cl-1)) csn[cl][i, j, k] = rho_xy/np.sqrt(sigma_xy) csn[cl][j, i, k] = rho_xy/np.sqrt(sigma_xy) print('soft cluster', cl+1) return csn def csn_comb_cluster(csn, soft_c): (n2, K) = soft_c.shape scale = np.sqrt(soft_c[:, 1]**2 + soft_c[:, 0]**2) n1 = csn[0].shape[0] csn_comb = np.zeros((n1, n1, n2)) for k in range(0, K): for i in range(0, n2): csn_comb[:, :, i] = (csn_comb[:, :, i] + csn[k][:, :, i]*soft_c[i, k])/scale[i] return csn_comb def csn_rec(data1, data2, g_mtx = None, wd_q = 0.1, dev = True, md = 1, iteration = False, fuzzy = False, ncore = 4): (G1, N) = data1.shape G2 = data2.shape[0] eps = np.finfo(float).eps data = [data1, data2] if g_mtx is None: g_mtx = np.ones((G1, G2)) zero_id1 = np.where(data1.sum(axis = 1)==0) g_mtx[zero_id1, :] = 0 zero_id2 = np.where(data2.sum(axis = 1)==0) g_mtx[:, zero_id2] = 0 #csn = np.zeros((G1, G2, N)) (I, J, S) = find(g_mtx) L = len(I) print(*[L , 'pairs need calculation']) csn_mat = np.zeros((L, N)) if dev: if fuzzy: selected_gene = [np.unique(I), np.unique(J)] grid_gene = [np.zeros((G1, N)), np.zeros((G2, N))] gene_first_zero = [np.zeros(G1), np.zeros(G2)] for k in range(0, 1): for s in selected_gene[k]: gene_temp = data[k][s, :] max_gene = max(gene_temp[gene_temp!=0]) min_gene = min(gene_temp[gene_temp!=0]) range_temp = max_gene - min_gene if range_temp == 0: gene_cut = np.array([min_gene]) else: gene_cut = np.arange(min_gene, max_gene, range_temp/20) if sum(gene_temp == 0) > 1: gene_cut = np.insert(gene_cut, 0, 0) gene_first_zero[k][s] = 1 grid_gene[k][s,:] = np.digitize(gene_temp, gene_cut) def inner_fuzzy_fun(m): i = I[m] j = J[m] gene1 = data1[i, :] gene2 = data2[j, :] data = np.append([gene1], [gene2], axis= 0) grid1 = grid_gene[0][i, :] grid2 = grid_gene[1][j, :] grid_mix = grid1*30 + grid2 u_grid = np.unique(grid_mix) n_grid = np.zeros(len(u_grid)) for s in range(0, len(u_grid)): n_grid[s] = sum(grid_mix == u_grid[s]) u_grid_mix = np.vstack((np.floor((u_grid - 1)/30), (u_grid - 1)%30 + 1, u_grid, n_grid)) if gene_first_zero[0][i] == 1: u_grid_mix = u_grid_mix[:, u_grid_mix[0, :]!=1] if gene_first_zero[1][j] == 1: u_grid_mix = u_grid_mix[:, u_grid_mix[1, :]!=1] cell_id = np.zeros(u_grid_mix.shape[1]) cell_id_full = [] for t in range(0, u_grid_mix.shape[1]): cell_id_full.append(np.where(grid_mix == u_grid_mix[2, t])[0]) cell_id[t] = np.random.choice(cell_id_full[t], 1) cell_id = cell_id.astype(int) (upper, lower) = upperlower_dev(gene1, gene2, wd_q, md, iteration, cell_id) csn_temp = np.zeros(N) for t in range(0, len(cell_id)): k = cell_id[t] B = np.zeros((2, N)) for l in range(0, N): B[:, l] = (data[:,l] <= upper[:, k]) & (data[:, l] >= lower[:, k]) & (data[:, k] > 0) a = B.sum(axis = 1) a = np.reshape(a, (2, 1)) temp = ([email protected]*N - [email protected])/np.sqrt(([email protected])*((N-a)@(N-a).T)/(N-1)+eps) csn_temp[cell_id_full[t]] = temp[0, 1] return csn_temp csn_arr_temp = np.asarray(Parallel(n_jobs = ncore)(delayed(inner_fuzzy_fun)(m) for m in range(0, L))) #for k in range(0, n2): # csn[I, J, k] = csn_mat[:, k] # csn[J, I, k] = csn_mat[:, k] else: def inner_fun(m): i = I[m] j = J[m] gene1 = data1[i, :] gene2 = data2[j, :] data = np.append([gene1], [gene2], axis= 0) csn_temp = np.zeros(N) (upper, lower) = upperlower_dev(gene1, gene2, boxsize = wd_q, md = md, iteration = iteration) for k in range(0, N): if gene1[k]*gene2[k] > 0: B = np.zeros((2, N)) for l in range(0, N): B[:, l] = (data[:,l] <= upper[:, k]) & (data[:, l] >= lower[:, k]) & (data[:, k] > 0) a = B.sum(axis = 1) a = np.reshape(a, (2, 1)) temp = ([email protected]*N - [email protected])/np.sqrt(([email protected])*((N-a)@(N-a).T)/(N-1)+eps) csn_temp[k] = temp[0, 1] return csn_temp csn_arr_temp = np.asarray(Parallel(n_jobs = ncore)(delayed(inner_fun)(m) for m in range(0, L))) def valuetosparse(value, I, J, G1 = None, G2 = None): if G1 is None: G1 = max(df.x_id) + 1 if G2 is None: G2 = max(df.y_id) + 1 I = I[value != 0] J = J[value != 0] value = value[value != 0] sp_mtx = csr_matrix((value, (I, J)), shape = (G1, G2)) return sp_mtx csn = [valuetosparse(v, I, J, G1, G2) for v in list(csn_arr_temp.T)] else: print('Please use csn directly') return return csn def csn_block(data, M = 100, g_mtx = None, wd_q = 0.1, dev = True, md = 1, iteration = False, fuzzy = False, ncore = 4): (G, K) = data.shape n = math.ceil(G/M) group_n = np.zeros(G) for i in range(0, n): group_n[i*M:min((i+1)*M, G)] = i if g_mtx is None: g_mtx = np.ones((G, G)) - np.tri(G) zero_id = np.where(data.sum(axis = 1)==0) g_mtx[zero_id, :] = 0 g_mtx[:, zero_id] = 0 csn_mtx_id = [] for k in range(0, K): csn_mtx_id.append(pd.DataFrame(data={'x_id': np.array([], dtype = int), 'y_id': np.array([], dtype = int), 'value': np.array([])})) for i in range(0, n): data_i = data[group_n == i, :] for j in range(i, n): if i == j: g_mtx_temp = g_mtx[group_n == i,:][:, group_n == i] csn_temp = csn(data_i, g_mtx_temp, wd_q, dev, md, iteration, fuzzy, ncore) csn_id_temp = [sparsetoid(item, i*M, j*M) for item in csn_temp] csn_mtx_id = [id_concat(pair) for pair in zip(csn_mtx_id, csn_id_temp)] else: data_j = data[group_n == j,:] g_mtx_temp = g_mtx[group_n == i,:][:, group_n == j] csn_temp = csn_rec(data_i, data_j, g_mtx_temp, wd_q, dev, md, iteration, fuzzy, ncore) csn_id_temp = [sparsetoid(item, i*M, j*M) for item in csn_temp] csn_mtx_id = [id_concat(pair) for pair in zip(csn_mtx_id, csn_id_temp)] csn_id_temp = [item[item.columns[[1, 0, 2]]].rename(columns={'y_id': 'x_id', 'x_id': 'y_id'}) for item in csn_id_temp] csn_mtx_id = [id_concat(pair) for pair in zip(csn_mtx_id, csn_id_temp)] print('block [', i , ',', j, '] finished!') csn_mtx = [idtosparse(item, G, G) for item in csn_mtx_id] return csn_mtx def csn_loc(data_full, knn_index, wd_q = 0.1, dev = True, md = 1, iteration = False, ncore = 4): (n1, n2) = data_full.shape (nk, nc) = knn_index.shape eps = np.finfo(float).eps if nc != n2: print('dimension of data and knn do not match!') return #csn_mat = np.zeros((n1, n1, n2)) def inner_fun(k): #csn_temp = np.zeros((n1, n1)) index_temp = knn_index[:, k] data_sub = data_full[:, index_temp-1] g_index = which(data_sub[:, 0] > 0).astype(int) L_temp = len(g_index) I = np.zeros(L_temp*(L_temp-1)) J = np.zeros(L_temp*(L_temp-1)) S =
np.zeros(L_temp*(L_temp-1))
numpy.zeros
"""Basic tests for bq utils.""" import numpy as np import pytest from probnum.quad._utils import as_domain # fmt: off @pytest.mark.parametrize( "dom, in_dim", [ ((0, 1), -2), # negative dimension ((np.zeros(2), np.ones(2)), 3), # length of bounds does not match dimension ((np.zeros(2), np.ones(3)), None), # lower and upper bounds not equal lengths ((np.array([0, 0]), np.array([1, 0])), None), # integration domain is empty ((np.zeros([2, 1]), np.ones([2, 1])), None), # bounds have too many dimensions ((np.zeros([2, 1]), np.ones([2, 1])), 2), # bounds have too many dimensions ] ) def test_as_domain_wrong_input(dom, in_dim): with pytest.raises(ValueError): as_domain(dom, in_dim) @pytest.mark.parametrize( "dom, in_dim", [ ((0, 1), 1), # convert bounds to 1D array ((0, 1), 3), # expand bounds to 3D array ((np.zeros(3),
np.ones(3)
numpy.ones
# Copyright (c) 2013-2017 LSST Dark Energy Science Collaboration (DESC) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from __future__ import print_function import numpy as np import math import datetime import warnings from .angle import Angle, _Angle from .angleunit import radians, degrees, hours, arcsec from . import util class CelestialCoord(object): """This class defines a position on the celestial sphere, normally given by two angles, ``ra`` and ``dec``. This class can be used to perform various calculations in spherical coordinates, such as finding the angular distance between two points in the sky, calculating the angles in spherical triangles, projecting from sky coordinates onto a Euclidean tangent plane, etc. **Initialization:** A `CelestialCoord` object is constructed from the right ascension and declination: :meth:`coord.CelestialCoord.__init__` >>> c = CelestialCoord(ra=12*hours, dec=31*degrees) >>> print(c) coord.CelestialCoord(3.141592653589793 radians, 0.5410520681182421 radians) **Attributes:** A CelestialCoord has the following (read-only) attributes: :ra: The right ascension (an Angle instance) :dec: The declination (an Angle instance) >>> print(c.ra / degrees, c.dec / degrees) 180.0 31.0 In addition there is a convenience access property that returns ra and dec in radians. :rad: A tuple (ra.rad, dec.rad) >>> print(c.rad) (3.141592653589793, 0.5410520681182421) **Spherical Geometry:** The basic spherical geometry operations are available to work with spherical triangles For three coordinates cA, cB, cC making a spherical triangle, one can calculate the sides and angles via: | :meth:`coord.CelestialCoord.distanceTo` | :meth:`coord.CelestialCoord.angleBetween` >>> cA = CelestialCoord(0 * degrees, 0 * degrees) >>> cB = CelestialCoord(0 * degrees, 10 * degrees) >>> cC = CelestialCoord(10 * degrees, 0 * degrees) >>> a = cB.distanceTo(cC) >>> b = cC.distanceTo(cA) >>> c = cA.distanceTo(cB) >>> print(a.deg, b.deg, c.deg) 14.106044260566366 10.0 10.0 >>> A = cA.angleBetween(cB, cC) >>> B = cB.angleBetween(cC, cA) >>> C = cC.angleBetween(cA, cB) >>> print(A.deg, B.deg, C.deg) 90.0 45.43854858674231 45.43854858674231 **Projections:** Local tangent plane projections of an area of the sky can be performed using the project method: :meth:`coord.CelestialCoord.project` >>> center = CelestialCoord(ra=10*hours, dec=30*degrees) >>> sky_coord = CelestialCoord(ra=10.5*hours, dec=31*degrees) >>> print(sky_coord) coord.CelestialCoord(2.748893571891069 radians, 0.5410520681182421 radians) >>> u, v = center.project(sky_coord) >>> print(u.deg, v.deg) -6.452371275343261 1.21794987288635 and back: :meth:`coord.CelestialCoord.deproject` >>> sky_coord = center.deproject(u,v) >>> print(sky_coord) coord.CelestialCoord(2.748893571891069 radians, 0.5410520681182421 radians) where u and v are Angles and center and sky_coord are CelestialCoords. """ def __init__(self, ra, dec=None): """ :param ra: The right ascension. Must be an Angle instance. :param dec: The declination. Must be an Angle instance. """ if isinstance(ra, CelestialCoord) and dec is None: # Copy constructor self._ra = ra._ra self._dec = ra._dec self._x = None elif ra is None or dec is None: raise TypeError("ra and dec are both required") elif not isinstance(ra, Angle): raise TypeError("ra must be a coord.Angle") elif not isinstance(dec, Angle): raise TypeError("dec must be a coord.Angle") elif dec/degrees > 90. or dec/degrees < -90.: raise ValueError("dec must be between -90 deg and +90 deg.") else: # Normal case self._ra = ra self._dec = dec self._x = None # Indicate that x,y,z are not set yet. @property def ra(self): """A read-only attribute, giving the Right Ascension as an Angle""" return self._ra @property def dec(self): """A read-only attribute, giving the Declination as an Angle""" return self._dec @property def rad(self): """A convenience property, giving a tuple (ra.rad, dec.rad) """ return (self._ra.rad, self._dec.rad) def _set_aux(self): if self._x is None: self._sindec, self._cosdec = self._dec.sincos() self._sinra, self._cosra = self._ra.sincos() self._x = self._cosdec * self._cosra self._y = self._cosdec * self._sinra self._z = self._sindec def get_xyz(self): """Get the (x,y,z) coordinates on the unit sphere corresponding to this (RA, Dec). .. math:: x &= \\cos(dec) \\cos(ra) \\\\ y &= \\cos(dec) \\sin(ra) \\\\ z &= \\sin(dec) :returns: a tuple (x,y,z) """ self._set_aux() return self._x, self._y, self._z @staticmethod def from_xyz(x, y, z): """Construct a CelestialCoord from a given (x,y,z) position in three dimensions. The 3D (x,y,z) position does not need to fall on the unit sphere. The RA, Dec will be inferred from the relations: .. math:: x &= r \\cos(dec) \\cos(ra) \\\\ y &= r \\cos(dec) \\sin(ra) \\\\ z &= r \\sin(dec) where :math:`r` is arbitrary. :param x: The x position in 3 dimensions. Corresponds to r cos(dec) cos(ra) :param y: The y position in 3 dimensions. Corresponds to r cos(dec) sin(ra) :param z: The z position in 3 dimensions. Corresponds to r sin(dec) :returns: a CelestialCoord instance """ norm = np.sqrt(x*x + y*y + z*z) if norm == 0.: raise ValueError("CelestialCoord for position (0,0,0) is undefined.") ret = CelestialCoord.__new__(CelestialCoord) ret._x = x / norm ret._y = y / norm ret._z = z / norm ret._sindec = ret._z ret._cosdec = np.sqrt(ret._x*ret._x + ret._y*ret._y) if ret._cosdec == 0.: ret._sinra = 0. ret._cosra = 1. else: ret._sinra = ret._y / ret._cosdec ret._cosra = ret._x / ret._cosdec ret._ra = (np.arctan2(ret._sinra, ret._cosra) * radians).wrap(_Angle(math.pi)) ret._dec = np.arctan2(ret._sindec, ret._cosdec) * radians return ret @staticmethod def radec_to_xyz(ra, dec, r=1.): """Convert ra, dec (in radians) to 3D x,y,z coordinates on the unit sphere. The connection between (ra,dec) and (x,y,z) are given by the following formulae: .. math:: x &= r \\cos(dec) \\cos(ra) \\\\ y &= r \\cos(dec) \\sin(ra) \\\\ z &= r \\sin(dec) For a single ra,dec pair, the following are essentially equivalent: >>> ra = 12*hours/radians # May be any angle measured >>> dec = 31*degrees/radians # in radians >>> CelestialCoord.radec_to_xyz(ra, dec) (-0.8571673007021123, 1.0497271911386187e-16, 0.5150380749100542) >>> CelestialCoord(ra * radians, dec * radians).get_xyz() (-0.8571673007021123, 1.0497271911386187e-16, 0.5150380749100542) However, the advantage of this function is that the input values may be numpy arrays, in which case, the return values will also be numpy arrays. :param ra: The right ascension(s) in radians. May be a numpy array. :param dec: The declination(s) in radians. May be a numpy array. :param r: The distance(s) from Earth (default 1.). May be a numpy array. :returns: x, y, z as a tuple. """ cosdec = np.cos(dec) x = cosdec * np.cos(ra) * r y = cosdec * np.sin(ra) * r z = np.sin(dec) * r return x,y,z @staticmethod def xyz_to_radec(x, y, z, return_r=False): """Convert 3D x,y,z coordinates to ra, dec (in radians). The connection between (ra,dec) and (x,y,z) are given by the following formulae: .. math:: x &= r \\cos(dec) \\cos(ra) \\\\ y &= r \\cos(dec) \\sin(ra) \\\\ z &= r \\sin(dec) For a single (x,y,z) position, the following are essentially equivalent: >>> x = 0.839 # May be any any 3D location >>> y = 0.123 # Not necessarily on unit sphere >>> z = 0.530 >>> CelestialCoord.xyz_to_radec(x, y, z) (0.14556615088111796, 0.558616191048523) >>> c = CelestialCoord.from_xyz(x, y, z) >>> c.ra.rad, c.dec.rad (0.145566150881118, 0.558616191048523) However, the advantage of this function is that the input values may be numpy arrays, in which case, the return values will also be numpy arrays. :param x: The x position(s) in 3 dimensions. May be a numpy array. :param y: The y position(s) in 3 dimensions. May be a numpy array. :param z: The z position(s) in 3 dimensions. May be a numpy array. :param return_r: Whether to return r as well as ra, dec. (default: False) :returns: ra, dec as a tuple. Or if return_r is True, (ra, dec, r). """ xy2 = x**2 + y**2 ra = np.arctan2(y, x) # Note: We don't need arctan2, since always quadrant 1 or 4. # Using plain arctan is slightly faster. About 10% for the whole function. # However, if any points have x=y=0, then this will raise a numpy warning. # It still gives the right answer, but we catch and ignore the warning here. with warnings.catch_warnings(): warnings.filterwarnings("ignore",category=RuntimeWarning) dec = np.arctan(z/np.sqrt(xy2)) if return_r: return ra, dec, np.sqrt(xy2 + z**2) else: return ra, dec def normal(self): """Return the coordinate in the "normal" convention of having 0 <= ra < 24 hours. This convention is not enforced on construction, so this function exists to make it easy to convert if desired. Functions such as `from_galactic` and `from_xyz` will return normal coordinates. """ return _CelestialCoord(self.ra.wrap(_Angle(math.pi)), self.dec) @staticmethod def _raw_dsq(c1, c2): # Compute the raw dsq between two coordinates. # Both are expected to already have _set_aux() called. return (c1._x-c2._x)**2 + (c1._y-c2._y)**2 + (c1._z-c2._z)**2 @staticmethod def _raw_cross(c1, c2): # Compute the raw cross product between two coordinates. # Both are expected to already have _set_aux() called. return (c1._y * c2._z - c2._y * c1._z, c1._z * c2._x - c2._z * c1._x, c1._x * c2._y - c2._x * c1._y) def distanceTo(self, coord2): """Returns the great circle distance between this coord and another one. The return value is an Angle object :param coord2: The CelestialCoord to calculate the distance to. :returns: the great circle distance to ``coord2``. """ # The easiest way to do this in a way that is stable for small separations # is to calculate the (x,y,z) position on the unit sphere corresponding to each # coordinate position. # # x = cos(dec) cos(ra) # y = cos(dec) sin(ra) # z = sin(dec) self._set_aux() coord2._set_aux() # The direct distance between the two points is # # d^2 = (x1-x2)^2 + (y1-y2)^2 + (z1-z2)^2 dsq = self._raw_dsq(self, coord2) if dsq < 3.99: # (The usual case. This formula is perfectly stable here.) # This direct distance can then be converted to a great circle distance via # # sin(theta/2) = d/2 theta = 2. * math.asin(0.5 * math.sqrt(dsq)) else: # Points are nearly antipodes where the accuracy of this formula starts to break down. # But in this case, the cross product provides an accurate distance. cx, cy, cz = self._raw_cross(self, coord2) crosssq = cx**2 + cy**2 + cz**2 theta = math.pi - math.asin(math.sqrt(crosssq)) return _Angle(theta) def greatCirclePoint(self, coord2, theta): """Returns a point on the great circle connecting self and coord2. Two points, c1 and c2, on the unit sphere define a great circle (so long as the two points are not either coincident or antipodal). We can define points on this great circle by their angle from c1, such that the angle for c2 has 0 < theta2 < pi. I.e. theta increases from 0 as the points move from c1 towards c2. This function then returns the coordinate on this great circle (where c1 is ``self`` and c2 is ``coord2``) that corresponds to the given angle ``theta``. :param coord2: Another CelestialCoord defining the great circle to use. :param theta: The Angle along the great circle corresponding to the desired point. :returns: the corresponding CelestialCoord """ self._set_aux() coord2._set_aux() # Define u = self # v = coord2 # w = (u x v) x u # The great circle through u and v is then # # R(t) = u cos(t) + w sin(t) # # Rather than directly calculate (u x v) x u, let's do some simplification first. # u x v = ( uy vz - uz vy ) # ( uz vx - ux vz ) # ( ux vy - uy vx ) # wx = (u x v)_y uz - (u x v)_z uy # = (uz vx - ux vz) uz - (ux vy - uy vx) uy # = vx uz^2 - vz ux uz - vy ux uy + vx uy^2 # = vx (1 - ux^2) - ux (uz vz + uy vy) # = vx - ux (u . v) # = vx - ux (1 - d^2/2) # = vx - ux + ux d^2/2 # wy = vy - uy + uy d^2/2 # wz = vz - uz + uz d^2/2 dsq = self._raw_dsq(self, coord2) # These are unnormalized yet. wx = coord2._x - self._x + self._x * dsq/2. wy = coord2._y - self._y + self._y * dsq/2. wz = coord2._z - self._z + self._z * dsq/2. # Normalize wr = (wx**2 + wy**2 + wz**2)**0.5 if wr == 0.: raise ValueError("coord2 does not define a unique great circle with self.") wx /= wr wy /= wr wz /= wr # R(theta) s, c = theta.sincos() rx = self._x * c + wx * s ry = self._y * c + wy * s rz = self._z * c + wz * s return CelestialCoord.from_xyz(rx,ry,rz) def _triple(self, coord2, coord3): """Compute the scalar triple product of the three vectors: (A x C). B = sina sinb sinC where C = self, A = coord2, B = coord3. This is used by both angleBetween and area. (Although note that the triple product is invariant to the ordering modulo a sign.) """ # Note, the scalar triple product, (AxC).B, is the determinant of the 3x3 matrix # [ xA yA zA ] # [ xC yC zC ] # [ xB yB zB ] # Furthermore, it is more stable to calculate it that way than computing the cross # product by hand and then dotting it to the other vector. return np.linalg.det([ [ coord2._x, coord2._y, coord2._z ], [ self._x, self._y, self._z ], [ coord3._x, coord3._y, coord3._z ] ]) def _alt_triple(self, coord2, coord3): """Compute a different triple product of the three vectors: (A x C). (B x C) = sina sinb cosC where C = self, A = coord2, B = coord3. This is used by both angleBetween and area. """ # We can simplify (AxC).(BxC) as follows: # (A x C) . (B x C) # = (C x (BxC)) . A Rotation of triple product with (BxC) one of the vectors # = ((C.C)B - (C.B)C) . A Vector triple product identity # = A.B - (A.C) (B.C) C.C = 1 # Dot products for nearby coordinates are not very accurate. Better to use the distances # between the points: A.B = 1 - d_AB^2/2 # = 1 - d_AB^2/2 - (1-d_AC^2/2) (1-d_BC^2/2) # = d_AC^2 / 2 + d_BC^2 / 2 - d_AB^2 / 2 - d_AC^2 d_BC^2 / 4 dsq_AC = (self._x-coord2._x)**2 + (self._y-coord2._y)**2 + (self._z-coord2._z)**2 dsq_BC = (self._x-coord3._x)**2 + (self._y-coord3._y)**2 + (self._z-coord3._z)**2 dsq_AB = (coord3._x-coord2._x)**2 + (coord3._y-coord2._y)**2 + (coord3._z-coord2._z)**2 return 0.5 * (dsq_AC + dsq_BC - dsq_AB - 0.5 * dsq_AC * dsq_BC) def angleBetween(self, coord2, coord3): """Find the open angle at the location of the current coord between ``coord2`` and ``coord3``. The current coordinate along with the two other coordinates form a spherical triangle on the sky. This function calculates the angle between the two sides at the location of the current coordinate. Note that this returns a signed angle. The angle is positive if the sweep direction from ``coord2`` to ``coord3`` is counter-clockwise (as observed from Earth). It is negative if the direction is clockwise. :param coord2: A second CelestialCoord :param coord3: A third CelestialCoord :returns: the angle between the great circles joining the other two coordinates to the current coordinate. """ # Call A = coord2, B = coord3, C = self # Then we are looking for the angle ACB. # If we treat each coord as a (x,y,z) vector, then we can use the following spherical # trig identities: # # (A x C) . B = sina sinb sinC # (A x C) . (B x C) = sina sinb cosC # # Then we can just use atan2 to find C, and atan2 automatically gets the sign right. # And we only need 1 trig call, assuming that x,y,z are already set up, which is often # the case. self._set_aux() coord2._set_aux() coord3._set_aux() sinC = self._triple(coord2, coord3) cosC = self._alt_triple(coord2, coord3) C = math.atan2(sinC, cosC) return _Angle(C) def area(self, coord2, coord3): """Find the area of a spherical triangle in steradians. The current coordinate along with the two other coordinates form a spherical triangle on the sky. This function calculates the area of that spherical triangle, which is measured in steradians (i.e. surface area of the triangle on the unit sphere). :param coord2: A second CelestialCoord :param coord3: A third CelestialCoord :returns: the area in steradians of the given spherical triangle. """ # The area of a spherical triangle is defined by the "spherical excess", E. # There are several formulae for E: # (cf. http://en.wikipedia.org/wiki/Spherical_trigonometry#Area_and_spherical_excess) # # E = A + B + C - pi # tan(E/4) = sqrt(tan(s/2) tan((s-a)/2) tan((s-b)/2) tan((s-c)/2) # tan(E/2) = tan(a/2) tan(b/2) sin(C) / (1 + tan(a/2) tan(b/2) cos(C)) # # We use the last formula, which is stable both for small triangles and ones that are # nearly degenerate (which the middle formula may have trouble with). # # Furthermore, we can use some of the math for angleBetween and distanceTo to simplify # this further: # # In angleBetween, we have formulae for sina sinb sinC and sina sinb cosC. # In distanceTo, we have formulae for sin(a/2) and sin(b/2). # # Define: F = sina sinb sinC # G = sina sinb cosC # da = 2 sin(a/2) # db = 2 sin(b/2) # # tan(E/2) = sin(a/2) sin(b/2) sin(C) / (cos(a/2) cos(b/2) + sin(a/2) sin(b/2) cos(C)) # = sin(a) sin(b) sin(C) / (4 cos(a/2)^2 cos(b/2)^2 + sin(a) sin(b) cos(C)) # = F / (4 (1-sin(a/2)^2) (1-sin(b/2)^2) + G) # = F / (4-da^2) (4-db^2)/4 + G) self._set_aux() coord2._set_aux() coord3._set_aux() F = self._triple(coord2, coord3) G = self._alt_triple(coord2, coord3) dasq = (self._x-coord2._x)**2 + (self._y-coord2._y)**2 + (self._z-coord2._z)**2 dbsq = (self._x-coord3._x)**2 + (self._y-coord3._y)**2 + (self._z-coord3._z)**2 tanEo2 = F / ( 0.25 * (4.-dasq) * (4.-dbsq) + G) E = 2. * math.atan( abs(tanEo2) ) return E _valid_projections = [None, 'gnomonic', 'stereographic', 'lambert', 'postel'] def project(self, coord2, projection=None): """Use the currect coord as the center point of a tangent plane projection to project the ``coord2`` coordinate onto that plane. This function return a tuple (u,v) in the Euclidean coordinate system defined by a tangent plane projection around the current coordinate, with +v pointing north and +u pointing west. (i.e. to the right on the sky if +v is up.) There are currently four options for the projection, which you can specify with the optional ``projection`` keyword argument: :gnomonic: [default] uses a gnomonic projection (i.e. a projection from the center of the sphere, which has the property that all great circles become straight lines. For more information, see http://mathworld.wolfram.com/GnomonicProjection.html This is the usual TAN projection used by most FITS images. :stereographic: uses a stereographic proejection, which preserves angles, but not area. For more information, see http://mathworld.wolfram.com/StereographicProjection.html :lambert: uses a Lambert azimuthal projection, which preserves area, but not angles. For more information, see http://mathworld.wolfram.com/LambertAzimuthalEqual-AreaProjection.html :postel: uses a Postel equidistant proejection, which preserves distances from the projection point, but not area or angles. For more information, see http://mathworld.wolfram.com/AzimuthalEquidistantProjection.html The distance or angle errors increase with distance from the projection point of course. :param coord2: The coordinate to project onto the tangent plane. :param projection: The name of the projection to be used. [default: gnomonic, see above for other options] :returns: (u,v) as Angle instances """ if projection not in CelestialCoord._valid_projections: raise ValueError('Unknown projection: %s'%projection) self._set_aux() coord2._set_aux() # The core calculation is done in a helper function: u, v = self._project(coord2._cosra, coord2._sinra, coord2._cosdec, coord2._sindec, projection) return u * radians, v * radians def project_rad(self, ra, dec, projection=None): """This is basically identical to the project() function except that the input ``ra``, ``dec`` are given in radians rather than packaged as a CelestialCoord object and the returned u,v are given in radians. The main advantage to this is that it will work if ``ra`` and ``dec`` are NumPy arrays, in which case the output ``u``, ``v`` will also be NumPy arrays. :param ra: The right ascension in radians to project onto the tangent plane. :param dec: The declination in radians to project onto the tangent plane. :param projection: The name of the projection to be used. [default: gnomonic, see ``project`` docstring for other options] :returns: (u,v) in radians """ if projection not in CelestialCoord._valid_projections: raise ValueError('Unknown projection: %s'%projection) self._set_aux() cosra = np.cos(ra) sinra = np.sin(ra) cosdec = np.cos(dec) sindec = np.sin(dec) return self._project(cosra, sinra, cosdec, sindec, projection) def _project(self, cosra, sinra, cosdec, sindec, projection): # The equations are given at the above mathworld websites. They are the same except # for the definition of k: # # x = k cos(dec) sin(ra-ra0) # y = k ( cos(dec0) sin(dec) - sin(dec0) cos(dec) cos(ra-ra0) ) # # Lambert: # k = sqrt( 2 / ( 1 + cos(c) ) ) # Stereographic: # k = 2 / ( 1 + cos(c) ) # Gnomonic: # k = 1 / cos(c) # Postel: # k = c / sin(c) # where cos(c) = sin(dec0) sin(dec) + cos(dec0) cos(dec) cos(ra-ra0) # cos(dra) = cos(ra-ra0) = cos(ra0) cos(ra) + sin(ra0) sin(ra) cosdra = self._cosra * cosra cosdra += self._sinra * sinra # sin(dra) = -sin(ra - ra0) # Note: - sign here is to make +x correspond to -ra, # so x increases for decreasing ra. # East is to the left on the sky! # sin(dra) = -cos(ra0) sin(ra) + sin(ra0) cos(ra) sindra = self._sinra * cosra sindra -= self._cosra * sinra # Calculate k according to which projection we are using cosc = cosdec * cosdra cosc *= self._cosdec cosc += self._sindec * sindec if projection is None or projection[0] == 'g': k = 1. / cosc elif projection[0] == 's': k = 2. / (1. + cosc) elif projection[0] == 'l': k = np.sqrt( 2. / (1.+cosc) ) else: c = np.arccos(cosc) # k = c / np.sin(c) # np.sinc is defined as sin(pi x) / (pi x) # So need to divide by pi first. k = 1. / np.sinc(c / np.pi) # u = k * cosdec * sindra # v = k * ( self._cosdec * sindec - self._sindec * cosdec * cosdra ) u = cosdec * sindra v = cosdec * cosdra v *= -self._sindec v += self._cosdec * sindec u *= k v *= k return u, v def deproject(self, u, v, projection=None): """Do the reverse process from the project() function. i.e. This takes in a position (u,v) and returns the corresponding celestial coordinate, using the current coordinate as the center point of the tangent plane projection. :param u: The u position on the tangent plane to deproject (must be an Angle instance) :param v: The v position on the tangent plane to deproject (must be an Angle instance) :param projection: The name of the projection to be used. [default: gnomonic, see ``project`` docstring for other options] :returns: the corresponding CelestialCoord for that position. """ if projection not in CelestialCoord._valid_projections: raise ValueError('Unknown projection: %s'%projection) # Again, do the core calculations in a helper function ra, dec = self._deproject(u / radians, v / radians, projection) return CelestialCoord(_Angle(ra), _Angle(dec)) def deproject_rad(self, u, v, projection=None): """This is basically identical to the deproject() function except that the output ``ra``, ``dec`` are returned as a tuple (ra, dec) in radians rather than packaged as a CelestialCoord object and ``u`` and ``v`` are in radians rather than Angle instances. The main advantage to this is that it will work if ``u`` and ``v`` are NumPy arrays, in which case the output ``ra``, ``dec`` will also be NumPy arrays. :param u: The u position in radians on the tangent plane to deproject :param v: The v position in radians on the tangent plane to deproject :param projection: The name of the projection to be used. [default: gnomonic, see ``project`` docstring for other options] :returns: the corresponding RA, Dec in radians """ if projection not in CelestialCoord._valid_projections: raise ValueError('Unknown projection: %s'%projection) return self._deproject(u, v, projection) def _deproject(self, u, v, projection): # The inverse equations are also given at the same web sites: # # sin(dec) = cos(c) sin(dec0) + v sin(c) cos(dec0) / r # tan(ra-ra0) = u sin(c) / (r cos(dec0) cos(c) - v sin(dec0) sin(c)) # # where # # r = sqrt(u^2+v^2) # c = tan^(-1)(r) for gnomonic # c = 2 tan^(-1)(r/2) for stereographic # c = 2 sin^(-1)(r/2) for lambert # c = r for postel # Note that we can rewrite the formulae as: # # sin(dec) = cos(c) sin(dec0) + v (sin(c)/r) cos(dec0) # tan(ra-ra0) = u (sin(c)/r) / (cos(dec0) cos(c) - v sin(dec0) (sin(c)/r)) # # which means we only need cos(c) and sin(c)/r. For most of the projections, # this saves us from having to take sqrt(rsq). rsq = u*u rsq += v*v if projection is None or projection[0] == 'g': # c = arctan(r) # cos(c) = 1 / sqrt(1+r^2) # sin(c) = r / sqrt(1+r^2) cosc = sinc_over_r = 1./
np.sqrt(1.+rsq)
numpy.sqrt
#------------------------imports------------------------ from astropy.io import fits from astropy.wcs import WCS import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from matplotlib.patches import Ellipse from matplotlib.patches import Rectangle import warnings warnings.filterwarnings('ignore') from astropy import units as u from astropy.cosmology import Planck18 import math import img_scale from functions import * import argparse from astropy.wcs import utils import os from os import path import cmasher as cmr import glob from astropy.convolution import convolve from astropy.convolution import Gaussian2DKernel from astropy.coordinates import SkyCoord defaultfile='/Users/emma/GitHub/possum-tools/DataProcess/pilot_sources.txt' xraysrcs=['2129-5053','2144-5637','2052-5246'] WISEfolder='/Volumes/NARNIA/pilot_cutouts/WISEfiles/' dpi=300 #set parameters for plots # get colour maps and set bad values to be transparent bluecmap=plt.cm.Blues bluecmap.set_bad('white',0) redcmap=plt.cm.Reds redcmap.set_bad('white',0) yellowcmap=plt.cm.YlOrBr_r yellowcmap.set_bad('white',0) purplecmap=plt.cm.Purples purplecmap.set_bad('white',0) greyscale=plt.cm.gray greyscale.set_bad('black',1) greyscale_r=plt.cm.gray_r greyscale_r.set_bad('white',1) cmap1=cmr.get_sub_cmap('plasma', 0, 0.333) cmap1.set_bad('white',0) cmap2=cmr.get_sub_cmap('plasma', 0.333, 0.666) cmap2.set_bad('white',0) cmap3=cmr.get_sub_cmap('plasma', 0.666, 1) cmap3.set_bad('white',0) #perceptively uniform cmap that will be used for contours twilightcmap = plt.cm.get_cmap('twilight') # contour levels #the step parameter is the factor of 2^step each contour goes up by # so use step=1 for contours which double each time contourexps=np.arange(start=0,stop=32,step=0.5) contourmults=np.power(2,contourexps) contourexps_1=np.arange(start=0,stop=32,step=1) contourmults_1=np.power(2,contourexps_1) contourexps_2=np.arange(start=0,stop=32,step=2) contourmults_2=np.power(2,contourexps_2) plt.rcParams.update({'lines.linewidth':0.3}) plt.rcParams['mathtext.fontset'] = 'cm' plt.rcParams['font.family'] = 'cmu serif' SMALL_SIZE = 10 MEDIUM_SIZE = 12 BIGGER_SIZE = 14 plt.rc('font', size=MEDIUM_SIZE) # controls default text sizes plt.rc('axes', titlesize=MEDIUM_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize beampad=5 def main(args): ########################################################################### #read in sources print('Reading in source list') sources=np.loadtxt(args.filename,dtype='str') nsrc=sources.shape[0] ########################################################################### sourcecount=0 for i in range(nsrc-2,nsrc-1): if 1+1==2: src=sources[i,0] print(src) ra=sources[i,1] dec=sources[i,2] coords=SkyCoord(ra,dec) POSSUMSB=sources[i,3] EMUSB=sources[i,4] LAS=float(sources[i,5]) #arcmin FOV=float(sources[i,7]) #degrees z=float(sources[i,8]) EMUrms=float(sources[i,9]) POSSUMrms=float(sources[i,10]) #rmscale=float(sources[i,11]) xmin=float(sources[i,12]) ymin=float(sources[i,13]) xmax=float(sources[i,14]) ymax=float(sources[i,15]) ratio=(ymax-ymin)/(xmax-xmin) scalebarkpc=float(sources[i,16]) if z!=None: dist = Planck18.comoving_distance(z) #distance in MPc scale=Planck18.arcsec_per_kpc_comoving(z) # scale in arcsec per kpc sb_length_arcsec=scale*scalebarkpc*u.kpc imagefolder='/Volumes/NARNIA/pilot_cutouts/'+src+'/' if src in xraysrcs: purple_im_folder=imagefolder+'/xmm/pps/' xrayims=glob.glob(purple_im_folder+'*M1S*IMAGE_8000.FTZ') purple_im=xrayims[0] else: purple_im=None #blue try: ra_str=str(coords.ra.deg)[0:5] dec_str=str(coords.dec.deg)[0:5] #WISEim=glob.glob(WISEfolder+'*-w1-*ra{}*dec{}*'.format(ra_str,dec_str)) #blue_im=WISEim[0] blue_im=imagefolder+'2200-5611_wise.fits' blue_thresh=5 #threshold for lowest contour (typically 3x rms noise level) blue_label=r'WISE 3.4 $\mu$m' except: try: WISEim=glob.glob(imagefolder+'*WISE_3.4.fits'.format(ra_str,dec_str)) blue_im=WISEim[0] blue_thresh=5 blue_label=r'WISE 3.4 $\mu$m' except: print("uh oh") greyscale_im=imagefolder+src+'_DSS.fits' #fits data file to load and display in greyscale greyscale_label='DSS' # get DES data R,Rhead=fitsopen(glob.glob(imagefolder+'DES*_i*.fits')[0]) G,Ghead=fitsopen(glob.glob(imagefolder+'DES*_r*.fits')[0]) B,Bhead=fitsopen(glob.glob(imagefolder+'DES*_g*.fits')[0]) DES_wcs=WCS(Rhead) #bins=np.arange(0,200,1) #plt.hist(np.ndarray.flatten(R),alpha=0.3,color='r',bins=bins) #plt.hist(np.ndarray.flatten(G),alpha=0.3,color='g',bins=bins) #plt.hist(np.ndarray.flatten(B),alpha=0.3,color='b',bins=bins) #plt.show() #break #R=R-np.nanmean(R) #G=G-np.nanmean(G) #B=B-np.nanmean(B) #R=R/2. img = np.zeros((R.shape[0], R.shape[1], 3), dtype=float) img[:,:,0] = img_scale.linear(R, scale_min=0, scale_max=1000) img[:,:,1] = img_scale.linear(G, scale_min=0, scale_max=1000) img[:,:,2] = img_scale.linear(B, scale_min=0, scale_max=1000) #R2,Rhead2=fitsopen(glob.glob(imagefolder+'DES*_i*.fits')[1]) #G2,Ghead2=fitsopen(glob.glob(imagefolder+'DES*_r*.fits')[1]) #B2,Bhead2=fitsopen(glob.glob(imagefolder+'DES*_g*.fits')[1]) #DES_wcs2=WCS(Rhead2) #img2 = np.zeros((R2.shape[0], R2.shape[1], 3), dtype=float) #img2[:,:,0] = img_scale.linear(R2, scale_min=0.1, scale_max=500) #img2[:,:,1] = img_scale.linear(G2, scale_min=0.1, scale_max=500) #img2[:,:,2] = img_scale.linear(B2, scale_min=0.1, scale_max=500) plt.figure(dpi= dpi,figsize=(8.25,8.25*ratio)) # load the data for the background greyscale greyscale_data,greyscale_header=fitsopen(greyscale_im) wcs=WCS(greyscale_header) pix_scale=greyscale_header['CDELT2']*3600*u.arcsec # plot the greyscale ax=plt.subplot(projection=wcs) ax.imshow(greyscale_data,origin='lower',cmap=greyscale,vmin=vmax(greyscale_data,5),vmax=vmax(greyscale_data,99.9)) ax.imshow(img,transform=ax.get_transform(DES_wcs),origin='lower') #ax.imshow(img2,transform=ax.get_transform(DES_wcs2),origin='lower') #purple data if purple_im!=None: purple_data,purple_header=fitsopen(purple_im) purple_wcs=WCS(purple_header) kernel = Gaussian2DKernel(x_stddev=1) smoothed=convolve(purple_data,kernel) purple_contours = [1,2,4,8,16,32,64] purple_thresh=1 ax.contour(smoothed, transform=ax.get_transform(purple_wcs), colors=[twilightcmap(0.4)],levels=purple_contours,linewidths=1) # calculate transparency array for map (alphas) by normalising the data to be between 0 and 1 # any data below the threshold value will have alpha=0 # if you want to saturate the scale at a value lower than the maximum, change np.nanmax(purple_data) in the line below #purple_alphas=np.divide(purple_data-purple_thresh,np.nanmax(purple_data)-purple_thresh) #purple_alphas=np.where(purple_alphas<0,0,purple_alphas) #ax2=plt.imshow(purple_data,origin='lower',transform=ax.get_transform(purple_wcs),cmap=purplecmap,alpha=purple_alphas) purple_label='XMM-Newton' if purple_label!=None: ax.plot(-100,-100,'-',c=twilightcmap(0.4),label=purple_label,linewidth=3) #blue data if blue_im!=None: blue_data,blue_header=fitsopen(blue_im) blue_wcs=WCS(blue_header) blue_contours = [blue_thresh * i for i in contourmults_1] ax.contour(blue_data, transform=ax.get_transform(blue_wcs), colors=[twilightcmap(0.2)],levels=blue_contours[:1],linewidths=0.1) # calculate transparency array for map (alphas) by normalising the data to be between 0 and 1 blue_alphas=np.divide(blue_data-blue_thresh,np.nanmax(blue_data)-blue_thresh) blue_alphas=np.where(blue_alphas<0,0,blue_alphas) blue_alphas=np.where(blue_alphas>1,1,blue_alphas) ax3=plt.imshow(blue_data,origin='lower',transform=ax.get_transform(blue_wcs),cmap=bluecmap,alpha=blue_alphas,vmin=-10*np.nanmax(blue_data),vmax=10*np.nanmax(blue_data)) if blue_label!=None: ax.plot(-100,-100,'-',c=twilightcmap(0.2),label=blue_label,linewidth=3) #add EMU data if EMUSB!='NaN': red_data,red_header=fitsopen(imagefolder+src+'_EMU.fits') red_label='ASKAP 944 MHz' red_wcs=WCS(red_header) red_thresh=3.*EMUrms red_contours = [red_thresh * i for i in contourmults_1] ax.contour(red_data, transform=ax.get_transform(red_wcs), colors=[twilightcmap(0.7)],levels=red_contours[:1],linewidths=0.1) # calculate transparency array for map (alphas) by normalising the data to be between 0 and 1 red_alphas=np.divide(red_data-red_thresh,vmax(red_data,99.9)-red_thresh) red_alphas=np.where(red_alphas<0,0,red_alphas) red_alphas=np.where(red_alphas>1,1,red_alphas) red_alphas=0.333*np.sqrt(red_alphas) ax5=plt.imshow(red_data,origin='lower',transform=ax.get_transform(red_wcs),cmap=redcmap,alpha=red_alphas,vmin=-10*np.nanmax(red_data),vmax=10*np.nanmax(red_data)) if red_label!=None: ax.plot(-100,-100,'-',c=twilightcmap(0.75),label=red_label,linewidth=3) r_bmaj=red_header['BMAJ']*u.degree r_bmin=red_header['BMIN']*u.degree r_bpa=red_header['BPA'] r_bmaj_pix=r_bmaj/pix_scale r_bmin_pix=r_bmin/pix_scale lowerleft=utils.skycoord_to_pixel(utils.pixel_to_skycoord(xmin,ymin,red_wcs),wcs) upperright=utils.skycoord_to_pixel(utils.pixel_to_skycoord(xmax,ymax,red_wcs),wcs) greyxmin=lowerleft[0] greyymin=lowerleft[1] greyxmax=upperright[0] greyymax=upperright[1] #add possum data if POSSUMSB!='NaN' and POSSUMSB!='10035': yellow_data,yellow_header=fitsopen(imagefolder+src+'_POSSUM.fits') yellow_label='ASKAP 1368 MHz' yellow_thresh=3.*POSSUMrms yellow_wcs=WCS(yellow_header) yellow_contours = [yellow_thresh * i for i in contourmults_1] ax.contour(yellow_data, transform=ax.get_transform(yellow_wcs), colors=[twilightcmap(0.85)],levels=yellow_contours[:1],linewidths=0.1) # calculate transparency array for map (alphas) by normalising the data to be between 0 and 1 yellow_alphas=np.divide(yellow_data-yellow_thresh,vmax(yellow_data,99.9)-yellow_thresh) yellow_alphas=np.where(yellow_alphas<0,0,yellow_alphas) yellow_alphas=np.where(yellow_alphas>1,1,yellow_alphas) yellow_alphas=0.333*np.sqrt(yellow_alphas) ax5=plt.imshow(yellow_data,origin='lower',transform=ax.get_transform(yellow_wcs),cmap=yellowcmap,alpha=yellow_alphas,vmin=-10*np.nanmax(yellow_data),vmax=10*np.nanmax(yellow_data)) if yellow_label!=None: ax.plot(-100,-100,'-',c='gold',label=yellow_label,linewidth=3) y_bmaj=yellow_header['BMAJ']*u.degree y_bmin=yellow_header['BMIN']*u.degree y_bpa=yellow_header['BPA'] y_bmaj_pix=y_bmaj/pix_scale y_bmin_pix=y_bmin/pix_scale lowerleft=utils.skycoord_to_pixel(utils.pixel_to_skycoord(xmin,ymin,yellow_wcs),wcs) upperright=utils.skycoord_to_pixel(utils.pixel_to_skycoord(xmax,ymax,yellow_wcs),wcs) greyxmin=lowerleft[0] greyymin=lowerleft[1] greyxmax=upperright[0] greyymax=upperright[1] if z!=None: sb_length_pix= sb_length_arcsec/pix_scale scalebar=Rectangle(xy=(greyxmax-sb_length_pix-10,greyymin+5),width=sb_length_pix,height=sb_length_pix/40.,edgecolor='none',fc='white',alpha=1) ax.add_patch(scalebar) try: scaletext='{} kpc'.format(int(scalebarkpc)) plt.annotate(xy=(greyxmax-(sb_length_pix/2.)-10,greyymin+5+(sb_length_pix/12.)),text=scaletext,c='white',ha="center") except: print("shrug") plt.gca().set_aspect("equal") plt.xlabel('Right Ascension [J2000]') plt.ylabel('Declination [J2000]') ax.set_xlim(greyxmin,greyxmax) ax.set_ylim(greyymin,greyymax) #plt.legend(loc=3) plt.savefig('/Volumes/NARNIA/pilot_cutouts/'+src+'_DES.png',dpi=dpi,transparent=True,bbox_inches='tight') plt.savefig('/Users/emma/OneDrive/PhD/thesis/Figures/new/'+src+'_mwl_RBG.png',dpi=dpi,transparent=True,bbox_inches='tight') ############################################################################################## plt.figure(dpi= dpi,figsize=(8.25,8.25*ratio)) # plot the greyscale ax=plt.subplot(projection=wcs) ax.imshow(greyscale_data,origin='lower',cmap=greyscale_r,vmin=vmax(greyscale_data,1),vmax=vmax(greyscale_data,99.9)) ax.imshow(R,transform=ax.get_transform(DES_wcs),origin='lower',vmin=vmax(R,1),vmax=vmax(R,99.5),cmap=greyscale_r) #purple data if purple_im!=None: #ax.contour(smoothed, transform=ax.get_transform(purple_wcs), colors=[twilightcmap(0.4)],levels=purple_contours,linewidths=0.2) kernel = Gaussian2DKernel(x_stddev=2) smoothed=convolve(purple_data,kernel) # calculate transparency array for map (alphas) by normalising the data to be between 0 and 1 # any data below the threshold value will have alpha=0 # if you want to saturate the scale at a value lower than the maximum, change np.nanmax(purple_data) in the line below purple_alphas=np.divide(smoothed-purple_thresh,vmax(smoothed,99.9)-purple_thresh) purple_alphas=np.where(purple_alphas<0,0,purple_alphas) purple_alphas=np.where(purple_alphas>1,1,purple_alphas) purple_alphas=0.5*np.sqrt(purple_alphas) ax2=plt.imshow(purple_data,origin='lower',transform=ax.get_transform(purple_wcs),cmap=cmap1,alpha=purple_alphas,vmin=-10*np.nanmax(purple_data),vmax=10*np.nanmax(purple_data)) purple_label='XMM-Newton' ax.contour(smoothed, transform=ax.get_transform(purple_wcs), colors=[twilightcmap(0.4)],levels=purple_contours,linewidths=0.8) if purple_label!=None: ax.plot(-100,-100,'-',c=twilightcmap(0.4),label=purple_label,linewidth=3) #blue data if blue_im!=None: blue_data,blue_header=fitsopen(blue_im) blue_wcs=WCS(blue_header) blue_contours = [blue_thresh * i for i in contourmults] ax.contour(blue_data, transform=ax.get_transform(blue_wcs), colors=[twilightcmap(0.2)],levels=blue_contours,linewidths=0.8) # calculate transparency array for map (alphas) by normalising the data to be between 0 and 1 blue_alphas=np.divide(blue_data-blue_thresh,np.nanmax(blue_data)-blue_thresh) blue_alphas=np.sqrt(np.where(blue_alphas<0,0,blue_alphas)) ax3=plt.imshow(blue_data,origin='lower',transform=ax.get_transform(blue_wcs),cmap=bluecmap,alpha=blue_alphas,vmin=-10*np.nanmax(blue_data),vmax=10*np.nanmax(blue_data)) if blue_label!=None: ax.plot(-100,-100,'-',c=twilightcmap(0.2),label=blue_label,linewidth=3) #add EMU data if EMUSB!='NaN': # calculate transparency array for map (alphas) by normalising the data to be between 0 and 1 red_alphas=np.divide(red_data-red_thresh,vmax(red_data,99.9)-red_thresh) red_alphas=np.where(red_alphas<0,0,red_alphas) red_alphas=np.where(red_alphas>1,1,red_alphas) red_alphas=0.8*np.sqrt(red_alphas) red_contours = [red_thresh * i for i in contourmults] ax.contour(red_data, transform=ax.get_transform(red_wcs), colors=[twilightcmap(0.7)],levels=red_contours,linewidths=0.8) ax4=plt.imshow(red_data,origin='lower',transform=ax.get_transform(red_wcs),cmap=cmap2,alpha=red_alphas,vmin=-10*np.nanmax(red_data),vmax=10*np.nanmax(red_data)) if red_label!=None: ax.plot(-100,-100,'-',c=twilightcmap(0.75),label=red_label,linewidth=3) ellipse= Ellipse(xy=(greyxmin+5,greyymin+5),width=r_bmaj_pix,height=r_bmin_pix,angle=r_bpa+90,edgecolor=twilightcmap(0.7),fc=twilightcmap(0.7),lw=1) ax.add_patch(ellipse) #add possum data if POSSUMSB!='NaN' and POSSUMSB!='10035': #ax.contour(yellow_data, transform=ax.get_transform(yellow_wcs), colors=['gold'],levels=yellow_contours,linewidths=0.2) # calculate transparency array for map (alphas) by normalising the data to be between 0 and 1 yellow_alphas=np.divide(yellow_data-yellow_thresh,vmax(yellow_data,99.9)-yellow_thresh) yellow_alphas=np.where(yellow_alphas<0,0,yellow_alphas) yellow_alphas=np.where(yellow_alphas>1,1,yellow_alphas) yellow_alphas=0.5*np.sqrt(yellow_alphas) ax5=plt.imshow(yellow_data,origin='lower',transform=ax.get_transform(yellow_wcs),cmap=cmap3,alpha=yellow_alphas,vmin=-10*
np.nanmax(yellow_data)
numpy.nanmax
# Built-in import sys import os import warnings if sys.version[0] == '3': import inspect else: # Python 2 back-porting import funcsigs as inspect # Common import numpy as np # tofu try: import tofu.geom._core as _core except Exception: from . import _core __all__ = ['coords_transform', 'get_nIne1e2', 'get_X12fromflat', 'compute_RaysCones', 'create_config', 'create_CamLOS1D', 'create_CamLOS2D'] _sep = '_' _dict_lexcept_key = [] _lok = np.arange(0,9) _lok = np.array([_lok, _lok+10]) _here = os.path.abspath(os.path.dirname(__file__)) _root = _here[:_here.rfind('/tofu')] _path_testcases = os.path.join(_root,'tofu/geom/inputs') ########################################################### # COCOS ########################################################### class CoordinateInputError(Exception): _cocosref = "<NAME>, <NAME>, " _cocosref += "Computer Physics Communications 184 (2103) 293-302" msg = "The provided coords flag should be a str\n" msg += "It should match a known flag:\n" msg += " - 'cart' / 'xyz' : cartesian coordinates\n" msg += " - cocos flag indicating the cocos number (1-8, 11-18)\n" msg += " Valid cocos flags include:\n" msg += " '11', '02', '5', '14', ..." msg += "\n" msg += "The cocos (COordinates COnvetionS) are descibed in:\n" msg += " [1] %s"%_cocosref def __init__(self, msg, errors): # Call the base class constructor with the parameters it # needs super(CoordinateInputError, self).__init__(msg + '\n\n' + self.msg) # Now for your custom code... self.errors = errors def _coords_checkformatcoords(coords='11'): if not type(coords) is str: msg = "Arg coords must be a str !" raise CoordinateInputError(msg) coords = coords.lower() iint = np.array([ss.isdigit() for ss in coords]).nonzero()[0] if coords in ['cart','xyz']: coords = 'xyz' elif iint.size in [1,2]: coords = int(''.join([coords[jj] for jj in iint])) if not coords in _lok.ravel(): msg = 'Not allowed number ({0) !'.format(coords) raise CoordinateInputError(msg) else: msg = "Not allowed coords ({0}) !".format(coords) raise CoordinateInputError(msg) return coords def _coords_cocos2cart(pts, coords=11): R = pts[0,:] if (coords%0)%2==1: indphi, indZi, sig = 1, 2, 1. else: indphi, indZ , sig= 2, 1, -1. phi = sig*pts[indphi,:] X = R*np.cos(phi) Y = R*np.sin(phi) Z = pts[indZ,:] return np.array([X,Y,Z]) def _coords_cart2cocos(pts, coords=11): R = np.hypot(pts[0,:],pts[1,:]) phi = np.arctan2(pts[1,:],pts[0,:]) Z = pts[2,:] if (coords%0)%2==1: indphi, indZ, sig = 1, 2, 1. else: indphi, indZ , sig= 2, 1, -1. pts_out = np.empty((3,pts.shape[1]),dtype=float) pts_out[0,:] = R pts_out[indphi,:] = sig*phi pts_out[indZ,:] = Z return pts_out def coords_transform(pts, coords_in='11', coords_out='11'): coords_in = _coords_checkformatcoords(coords=coords_in) coords_out = _coords_checkformatcoords(coords=coords_out) if coords_in==coords_out: pass elif coords_in=='xyz': pts = _coords_cart2cocos(pts, coords_out) elif coords_out=='xyz': pts = _coords_cocos2cart(pts, coords_out) else: pts = _coords_cocos2cart(pts, coords_in) pts = _coords_cocos2cart(pts, coords_out) return pts ########################################################### ########################################################### # Useful functions ########################################################### def get_nIne1e2(P, nIn=None, e1=None, e2=None): assert np.hypot(P[0],P[1])>1.e-12 phi = np.arctan2(P[1],P[0]) ephi = np.array([-np.sin(phi), np.cos(phi), 0.]) ez = np.array([0.,0.,1.]) if nIn is None: nIn = -P nIn = nIn / np.linalg.norm(nIn) if e1 is None: if np.abs(np.abs(nIn[2])-1.) < 1.e-12: e1 = ephi else: e1 = np.cross(nIn,ez) e1 = e1 if np.sum(e1*ephi) > 0. else -e1 e1 = e1 / np.linalg.norm(e1) if not np.abs(np.sum(nIn*e1))<1.e-12: msg = "Identified local base does not seem valid!\n" msg += "nIn = %s\n"%str(nIn) msg += "e1 = %s\n"%str(e1) msg += "np.sum(nIn*e1) = sum(%s) = %s"%(nIn*e1, np.sum(nIn*e1)) raise Exception(msg) if e2 is None: e2 = np.cross(nIn,e1) e2 = e2 / np.linalg.norm(e2) return nIn, e1, e2 def get_X12fromflat(X12, x12u=None, nx12=None): if x12u is None: x1u, x2u = np.unique(X12[0,:]), np.unique(X12[1,:]) if x1u.size*x2u.size != X12.shape[1]: tol = np.linalg.norm(np.diff(X12[:,:2],axis=1))/100. tolmag = int(np.log10(tol))-1 x1u = np.unique(np.round(X12[0,:], -tolmag)) x2u = np.unique(np.round(X12[1,:], -tolmag)) indx1 = np.digitize(X12[0,:], 0.5*(x1u[1:]+x1u[:-1])) indx2 = np.digitize(X12[1,:], 0.5*(x2u[1:]+x2u[:-1])) indx1u, indx2u = np.unique(indx1), np.unique(indx2) x1u = np.unique([np.mean(X12[0,indx1==ii]) for ii in indx1u]) x2u = np.unique([np.mean(X12[1,indx2==ii]) for ii in indx2u]) else: x1u, x2u = x12u if nx12 is None: nx1, nx2 = x1u.size, x2u.size else: nx1, nx2 = nx12 Dx12 = (x1u[1]-x1u[0], x2u[1]-x2u[0]) ind = np.zeros((nx1,nx2),dtype=int) indr = np.array([np.digitize(X12[0,:], 0.5*(x1u[1:]+x1u[:-1])), np.digitize(X12[1,:], 0.5*(x2u[1:]+x2u[:-1]))]) ind[indr[0,:],indr[1,:]] = np.arange(0,X12.shape[1]) return x1u, x2u, ind, Dx12 ########################################################### ########################################################### # Fast computation of cones with rays ########################################################### def compute_RaysCones(Ds, us, angs=np.pi/90., nP=40): # Check inputs Ddim, udim = Ds.ndim, us.ndim assert Ddim in [1,2] assert Ds.shape[0]==3 and Ds.size%3==0 assert udim in [1,2] assert us.shape[0]==3 and us.size%3==0 assert type(angs) in [int,float,np.int64,np.float64] if udim==2: assert Ds.shape==us.shape if Ddim==1: Ds = Ds.reshape((3,1)) nD = Ds.shape[1] # Compute phi = np.linspace(0.,2.*np.pi, nP) phi = np.tile(phi,nD)[np.newaxis,:] if udim==1: us = us[:,np.newaxis]/np.linalg.norm(us) us = us.repeat(nD,axis=1) else: us = us/np.sqrt(np.sum(us**2,axis=0))[np.newaxis,:] us = us.repeat(nP, axis=1) e1 = np.array([us[1,:],-us[0,:],np.zeros((us.shape[1],))]) e2 = np.array([-us[2,:]*e1[1,:], us[2,:]*e1[0,:], us[0,:]*e1[1,:]-us[1,:]*e1[0,:]]) ub = (us*np.cos(angs) + (np.cos(phi)*e1+np.sin(phi)*e2)*np.sin(angs)) Db = Ds.repeat(nP,axis=1) return Db, ub ########################################################### ########################################################### # Fast computation of poly ########################################################### def _compute_VesPoly(R=2.4, r=1., elong=0., Dshape=0., divlow=True, divup=True, nP=200): """ Utility to compute three 2D (R,Z) polygons One represents a vacuum vessel, one an outer bumper, one a baffle The vessel polygon is centered on (R,0.), with minor radius r It can have a vertical (>0) or horizontal(<0) elongation in [-1;1] It can be D-shaped (Dshape in [0.,1.], typically 0.2) It can be non-convex, with: * a lower divertor-like shape * a upper divertor-like shape The elongation also affects the outer bumper and baffle Parameters ---------- R: int / float Major radius used as a center of the vessel r : int / float Minor radius of the vessel elong: int / float Dimensionless elongation parameter in [-1;1] Dshape: int / float Dimensionless parameter for the D-shape (in-out asymmetry) in [0;1] divlow: bool Flag indicating whether to incude a lower divertor-like shape divup: bool Flag indicating whether to incude an upper divertor-like shape nP : int Parameter specifying approximately the number of points of the vessel Return ------ poly: np.ndarray Closed (2,nP) polygon of the vacuum vessel, optionnally with divertors pbump: np.ndarray Closed (2,N) polygon defining the outer bumper pbaffle: np.ndarray Closed (2,N) polygon defining the lower baffle """ # Basics (center, theta, unit vectors) cent = np.r_[R,0.] theta = np.linspace(-np.pi,np.pi,nP) poly = np.array([np.cos(theta), np.sin(theta)]) # Divertors pdivR = np.r_[-0.1,0.,0.1] pdivZ = np.r_[-0.1,0.,-0.1] if divlow: ind = (np.sin(theta)<-0.85).nonzero()[0] pinsert = np.array([pdivR, -1.+pdivZ]) poly = np.concatenate((poly[:,:ind[0]], pinsert, poly[:,ind[-1]+1:]), axis=1) if divup: theta = np.arctan2(poly[1,:], poly[0,:]) ind = (np.sin(theta)>0.85).nonzero()[0] pinsert = np.array([pdivR[::-1], 1.-pdivZ]) poly = np.concatenate((poly[:,:ind[0]], pinsert, poly[:,ind[-1]+1:]), axis=1) # Modified radius (by elongation and Dshape) rbis = r*np.hypot(poly[0,:],poly[1,:]) theta = np.arctan2(poly[1,:],poly[0,:]) rbis = rbis*(1+elong*0.15*np.sin(2.*theta-np.pi/2.)) if Dshape>0.: ind = np.cos(theta)<0. coef = 1 + Dshape*(
np.sin(theta[ind])
numpy.sin
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jan 14 13:54:36 2021 @author: suraj """ import numpy as np import keras from numpy.random import seed seed(10) import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, Input from tensorflow.keras.layers import concatenate import tensorflow.keras.backend as K import os from keras import backend as kb from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from keras.regularizers import l2 import matplotlib.pyplot as plt import tensorflow as tf tf.python.framework_ops.disable_eager_execution() def deep_ensemble_regression_nll_loss(sigma_sq, epsilon = 1e-6): """ Regression loss for a Deep Ensemble, using the negative log-likelihood loss. This function returns a keras regression loss, given a symbolic tensor for the sigma square output of the model. The training model should return the mean, while the testing/prediction model should return the mean and variance.4 """ def nll_loss(y_true, y_pred): return 0.5 * K.mean(K.log(sigma_sq + epsilon) + K.square(y_true - y_pred) / (sigma_sq + epsilon)) return nll_loss def toy_dataset(input): output = [] for inp in input: std = 3 if inp < 0 else 1 out = [inp ** 3 + np.random.normal(0, std), 10*
np.sin(inp)
numpy.sin
"""Tests for the policies in the hbaselines/base_policies subdirectory.""" import unittest import numpy as np import tensorflow as tf from gym.spaces import Box from hbaselines.base_policies import ActorCriticPolicy from hbaselines.base_policies import ImitationLearningPolicy from hbaselines.algorithms.off_policy import FEEDFORWARD_PARAMS class TestActorCriticPolicy(unittest.TestCase): """Test ActorCriticPolicy in hbaselines/base_policies/actor_critic.py.""" def setUp(self): sess = tf.compat.v1.Session() self.policy_params = { 'sess': sess, 'ac_space': Box(low=-1, high=1, shape=(1,)), 'ob_space': Box(low=-2, high=2, shape=(2,)), 'co_space': Box(low=-3, high=3, shape=(3,)), 'verbose': 0, } self.policy_params.update(FEEDFORWARD_PARAMS.copy()) def tearDown(self): self.policy_params['sess'].close() del self.policy_params def test_init(self): """Validate that the variables are initialized properly.""" policy = ActorCriticPolicy(**self.policy_params) # Check that the abstract class has all the required attributes. self.assertEqual(policy.sess, self.policy_params['sess']) self.assertEqual(policy.ac_space, self.policy_params['ac_space']) self.assertEqual(policy.ob_space, self.policy_params['ob_space']) self.assertEqual(policy.co_space, self.policy_params['co_space']) self.assertEqual(policy.buffer_size, self.policy_params['buffer_size']) self.assertEqual(policy.batch_size, self.policy_params['batch_size']) self.assertEqual(policy.actor_lr, self.policy_params['actor_lr']) self.assertEqual(policy.critic_lr, self.policy_params['critic_lr']) self.assertEqual(policy.verbose, self.policy_params['verbose']) self.assertEqual(policy.tau, self.policy_params['tau']) self.assertEqual(policy.gamma, self.policy_params['gamma']) self.assertEqual(policy.use_huber, self.policy_params['use_huber']) # Check that the abstract class has all the required methods. self.assertRaises(NotImplementedError, policy.initialize) self.assertRaises(NotImplementedError, policy.update, update_actor=None) self.assertRaises(NotImplementedError, policy.get_action, obs=None, context=None, apply_noise=None, random_actions=None) self.assertRaises(NotImplementedError, policy.store_transition, obs0=None, context0=None, action=None, reward=None, obs1=None, context1=None, done=None, is_final_step=None, evaluate=False) self.assertRaises(NotImplementedError, policy.get_td_map) def test_init_assertions(self): """Test the assertions in the __init__ methods. This tests the following cases: 1. the required model_params are not specified 2. the required conv-related model_params are not specified 3. the model_type is not an applicable one. """ # test case 1 policy_params = self.policy_params.copy() model_type = policy_params["model_params"]["model_type"] layers = policy_params["model_params"]["layers"] del policy_params["model_params"]["model_type"] del policy_params["model_params"]["layers"] self.assertRaises(AssertionError, ActorCriticPolicy, **policy_params) # Undo changes. policy_params["model_params"]["model_type"] = model_type policy_params["model_params"]["layers"] = layers # test case 2 policy_params = policy_params.copy() policy_params["model_params"]["model_type"] = "conv" strides = policy_params["model_params"]["strides"] filters = policy_params["model_params"]["filters"] del policy_params["model_params"]["strides"] del policy_params["model_params"]["filters"] self.assertRaises(AssertionError, ActorCriticPolicy, **policy_params) # Undo changes. policy_params["model_params"]["strides"] = strides policy_params["model_params"]["filters"] = filters # test case 3 policy_params = self.policy_params.copy() policy_params["model_params"]["model_type"] = "blank" self.assertRaises(AssertionError, ActorCriticPolicy, **policy_params) # Undo changes. policy_params["model_params"]["model_type"] = "fcnet" def test_get_obs(self): """Check the functionality of the _get_obs() method. This method is tested for three cases: 1. when the context is None 2. for 1-D observations and contexts 3. for 2-D observations and contexts """ policy = ActorCriticPolicy(**self.policy_params) # test case 1 obs = np.array([0, 1, 2]) context = None expected = obs np.testing.assert_almost_equal(policy._get_obs(obs, context), expected) # test case 2 obs = np.array([0, 1, 2]) context = np.array([3, 4]) expected = np.array([0, 1, 2, 3, 4]) np.testing.assert_almost_equal(policy._get_obs(obs, context), expected) # test case 3 obs = np.array([[0, 1, 2]]) context = np.array([[3, 4]]) expected = np.array([[0, 1, 2, 3, 4]]) np.testing.assert_almost_equal(policy._get_obs(obs, context, axis=1), expected) def test_get_ob_dim(self): """Check the functionality of the _get_ob_dim() method. This method is tested for two cases: 1. when the context is None 2. when the context is not None """ policy = ActorCriticPolicy(**self.policy_params) # test case 1 ob_space = Box(0, 1, shape=(2,)) co_space = None self.assertTupleEqual(policy._get_ob_dim(ob_space, co_space), (2,)) # test case 2 ob_space = Box(0, 1, shape=(2,)) co_space = Box(0, 1, shape=(3,)) self.assertTupleEqual(policy._get_ob_dim(ob_space, co_space), (5,)) def test_setup_target_updates(self): """Check the functionality of the _setup_target_updates() method. This test validates both the init and soft update procedures generated by the tested method. """ policy = ActorCriticPolicy(**self.policy_params) _ = tf.Variable(initial_value=[[1, 1, 1, 1]], dtype=tf.float32, name="0") val1 = tf.Variable(initial_value=[[0, 0, 0, 0]], dtype=tf.float32, name="1") # Initialize the variables of the policy. policy.sess.run(tf.compat.v1.global_variables_initializer()) init, soft = policy._setup_target_updates("0", "1", None, 0.1, 0) # test soft update policy.sess.run(soft) expected = np.array([[0.1, 0.1, 0.1, 0.1]]) np.testing.assert_almost_equal(policy.sess.run(val1), expected) # test init update policy.sess.run(init) expected = np.array([[1, 1, 1, 1]]) np.testing.assert_almost_equal(policy.sess.run(val1), expected) class TestImitationLearningPolicy(unittest.TestCase): """Test ImitationLearningPolicy in hbaselines/base_policies.""" def setUp(self): sess = tf.compat.v1.Session() self.policy_params = { 'sess': sess, 'ac_space': Box(low=-1, high=1, shape=(1,)), 'ob_space': Box(low=-2, high=2, shape=(2,)), 'co_space': Box(low=-3, high=3, shape=(3,)), 'verbose': 0, } self.policy_params.update({ "buffer_size": 200000, "batch_size": 128, "learning_rate": 3e-4, "layer_norm": False, "layers": [256, 256], "act_fun": tf.nn.relu, "use_huber": False, "stochastic": False }) def tearDown(self): self.policy_params['sess'].close() del self.policy_params def test_init(self): """Validate that the variables are initialized properly.""" policy = ImitationLearningPolicy(**self.policy_params) # Check that the abstract class has all the required attributes. self.assertEqual(policy.sess, self.policy_params['sess']) self.assertEqual(policy.ob_space, self.policy_params['ob_space']) self.assertEqual(policy.ac_space, self.policy_params['ac_space']) self.assertEqual(policy.co_space, self.policy_params['co_space']) self.assertEqual(policy.buffer_size, self.policy_params['buffer_size']) self.assertEqual(policy.batch_size, self.policy_params['batch_size']) self.assertEqual(policy.learning_rate, self.policy_params['learning_rate']) self.assertEqual(policy.verbose, self.policy_params['verbose']) self.assertEqual(policy.layer_norm, self.policy_params['layer_norm']) self.assertEqual(policy.layers, self.policy_params['layers']) self.assertEqual(policy.act_fun, self.policy_params['act_fun']) self.assertEqual(policy.use_huber, self.policy_params['use_huber']) self.assertEqual(policy.stochastic, self.policy_params['stochastic']) # Check that the abstract class has all the required methods. self.assertRaises(NotImplementedError, policy.update) self.assertRaises(NotImplementedError, policy.get_action, obs=None, context=None) self.assertRaises(NotImplementedError, policy.store_transition, obs0=None, context0=None, action=None, obs1=None, context1=None) self.assertRaises(NotImplementedError, policy.get_td_map) def test_get_obs(self): """Check the functionality of the _get_obs() method. This method is tested for three cases: 1. when the context is None 2. for 1-D observations and contexts 3. for 2-D observations and contexts """ policy = ImitationLearningPolicy(**self.policy_params) # test case 1 obs =
np.array([0, 1, 2])
numpy.array
import cv2 import numpy as np def find_contours(heatmap, threshold=None, dilation=True, erosion=False): """ Find and sort text line contour based on score link image @Parameters: - heatmap: score link heatmap image - threshold: threshold method, choices=[otsu, adaptive, simple] - dilate: whether or not to use dilation @Returns: - contours: list of contours - contour_index: contour sort index """ # Convert to grayscale gray = heatmap # cv2.cvtColor(heatmap, cv2.COLOR_RGB2GRAY) # gray = cv2.GaussianBlur(gray, (5,5), 0) height, width = gray.shape[:2] # Threshold thresh = gray if threshold == "otsu": thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1] elif threshold == "adaptive": thresh = cv2.adaptiveThreshold( gray, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2 ) elif threshold == "simple": # 180 -> 127 thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)[1] # kernel = np.ones((3, 1), np.uint8) # thresh = cv2.erode(thresh, kernel, iterations=1) # Dilate dilate = thresh if dilation: # width // 50 kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (width // 50, 1)) dilate = cv2.dilate(thresh, kernel, iterations=3) # Erode erode = dilate if erosion: kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (2, 1)) erode = cv2.erode(dilate, kernel, iterations=1) # Find and sort contour contours = cv2.findContours(erode, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) contours = contours[0] if len(contours) == 2 else contours[1] contours = [c.squeeze() for c in contours if len(c) > 2] contour_left = [] for c in contours: index = np.argsort(c[:, 0]) contour_left.append(c[index[0], 1]) contour_index = np.argsort(contour_left) return contours, contour_index def arrange_boxes(boxes, contours, contour_index, ratio, ratio_net=2): """ Arrange word bounding boxes to lines based on contour @Parameters: - boxes: array of word bounding boxes - contours: list of contours - contour_index: contour sorting index - ratio: image resize ratio - ratio_net: CRAFT resize ratio, default=2 @Returns: - lines: line index of each bounding box """ # Calculate distance from each box center to each contour centers = (boxes[:, 0:2] + boxes[:, 4:6]) // (2 * ratio * ratio_net) distances = np.zeros((len(contours), len(boxes))) for idx, c_idx in enumerate(contour_index): c = contours[c_idx] distances[idx, :] = p_poly_dist(centers, c) line_idx = np.argmin(distances, axis=0) # Sorting boxes on the same line idx = np.argsort(line_idx) boxes = boxes[idx] _, count = np.unique(line_idx, return_counts=True) start = 0 lines = np.zeros(boxes.shape[0], dtype=np.int) for i, c in enumerate(count): # Get boxes on the same line box_line = boxes[start : start + c] # Sorting in order of increasing x idx = np.argsort(box_line[:, 0]) box_line = box_line[idx] # Update boxes and move to next line boxes[start : start + c] = box_line lines[start : start + c] = i start += c return boxes, lines def p_poly_dist(p, poly): """ Calculate distance from a list of points to a polygon @Parameters: - p: array of points [x,y] - poly: polygon, array of points [x,y] @Returns: - d: distance from each point in p to polygon poly Algorithm: https://www.mathworks.com/matlabcentral/fileexchange/12744-distance-from-points-to-polyline-or-polygon """ # Polygon must have at least 3 points assert len(poly) > 2 # Check if poly is closed, if not then close it if ~(poly[0] == poly[-1]).all(): poly = np.vstack((poly, poly[0])) # Get number of point and number of vertices Np = len(p) Nv = len(poly) # Calculate distance from each point to polygon vertices dpv = np.hypot( np.tile(np.expand_dims(p[:, 0], axis=1), [1, Nv]) - np.tile(poly[:, 0].T, [Np, 1]), np.tile(np.expand_dims(p[:, 1], axis=1), [1, Nv]) - np.tile(poly[:, 1].T, [Np, 1]), ) # Find closest vertex dpv_min = np.amin(dpv, axis=1) I_dpv_min = np.argmin(dpv, axis=1) # coordinate of consecutive vertices P1 = poly[:-1, :] P2 = poly[1:, :] dv = P2 - P1 # distance between consecutive vertices vds = np.hypot(dv[:, 0], dv[:, 1]) # Find rotation matrix ctheta = dv[:, 0] / vds stheta = dv[:, 1] / vds Cer = np.zeros((2, 2, Nv - 1)) Cer[0, 0, :] = ctheta Cer[0, 1, :] = stheta Cer[1, 0, :] = -stheta Cer[1, 1, :] = ctheta # rotate P1 vector P1r = np.array( [P1[:, 0] * ctheta + P1[:, 1] * stheta, -P1[:, 0] * stheta + P1[:, 1] * ctheta] ).T # compute points new coordinate: rotation -> translation Cer21 = Cer[0, :, :] Cer22 = Cer[1, :, :] Pp1 =
np.zeros((2, Np, Nv - 1))
numpy.zeros
#!/usr/bin/env python2.7 import rospy import cv2 import numpy as np from sensor_msgs.msg import CompressedImage, PointCloud2 from tf2_geometry_msgs import PoseStamped from geometry_msgs.msg import Quaternion import sensor_msgs.point_cloud2 as pc2 import tf2_ros import tf # This scirpt is still at developing... by <NAME> global kinect2 class pointcloud(): def __init__(self, cloud_topic): rospy.Subscriber(cloud_topic, PointCloud2, self.cb) def cb(self, msg): self.data = msg def edges_map(heights, th=0.05, display=False): heights = np.abs(heights.reshape(heights.shape[0:2])) height_sh = heights.shape # Calculate the horizinal and vertical edges and sum them edges_map = (np.abs(np.concatenate((np.diff(heights, axis=0), np.zeros((1, height_sh[1]))), axis=0)) + np.abs(np.concatenate((
np.diff(heights, axis=1)
numpy.diff
import difflib import functools import operator import sys from functools import reduce from itertools import islice import numpy as np from .misc import indent __all__ = ['fixed_width_indent', 'diff_values', 'report_diff_values', 'where_not_allclose'] # Smaller default shift-width for indent fixed_width_indent = functools.partial(indent, width=2) def diff_values(a, b, rtol=0.0, atol=0.0): """ Diff two scalar values. If both values are floats, they are compared to within the given absolute and relative tolerance. Parameters ---------- a, b : int, float, str Scalar values to compare. rtol, atol : float Relative and absolute tolerances as accepted by :func:`numpy.allclose`. Returns ------- is_different : bool `True` if they are different, else `False`. """ if isinstance(a, float) and isinstance(b, float): if np.isnan(a) and np.isnan(b): return False return not np.allclose(a, b, rtol=rtol, atol=atol) else: return a != b def report_diff_values(a, b, fileobj=sys.stdout, indent_width=0): """ Write a diff report between two values to the specified file-like object. Parameters ---------- a, b Values to compare. Anything that can be turned into strings and compared using :py:mod:`difflib` should work. fileobj : obj File-like object to write to. The default is ``sys.stdout``, which writes to terminal. indent_width : int Character column(s) to indent. Returns ------- identical : bool `True` if no diff, else `False`. """ typea = type(a) typeb = type(b) if (isinstance(a, str) and not isinstance(b, str)): a = repr(a).lstrip('u') elif (isinstance(b, str) and not isinstance(a, str)): b = repr(b).lstrip('u') if isinstance(a, (int, float, complex, np.number)): a = repr(a) if isinstance(b, (int, float, complex, np.number)): b = repr(b) if isinstance(a, np.ndarray) and isinstance(b, np.ndarray): diff_indices = np.where(a != b) # NOTE: Two 5x5 arrays that are completely different would # report num_diffs of 625 (25 * 25). num_diffs = reduce(operator.mul, map(len, diff_indices), 1) for idx in islice(zip(*diff_indices), 3): fileobj.write( fixed_width_indent(' at {!r}:\n'.format(list(idx)), indent_width)) report_diff_values(a[idx], b[idx], fileobj=fileobj, indent_width=indent_width + 1) if num_diffs > 3: fileobj.write(fixed_width_indent( ' ...and at {} more indices.\n'.format(num_diffs - 3), indent_width)) return num_diffs == 0 padding = max(len(typea.__name__), len(typeb.__name__)) + 3 identical = True for line in difflib.ndiff(str(a).splitlines(), str(b).splitlines()): if line[0] == '-': identical = False line = 'a>' + line[1:] if typea != typeb: typename = '(' + typea.__name__ + ') ' line = typename.rjust(padding) + line elif line[0] == '+': identical = False line = 'b>' + line[1:] if typea != typeb: typename = '(' + typeb.__name__ + ') ' line = typename.rjust(padding) + line else: line = ' ' + line if typea != typeb: line = ' ' * padding + line fileobj.write(fixed_width_indent( ' {}\n'.format(line.rstrip('\n')), indent_width)) return identical def where_not_allclose(a, b, rtol=1e-5, atol=1e-8): """ A version of :func:`numpy.allclose` that returns the indices where the two arrays differ, instead of just a boolean value. Parameters ---------- a, b : array_like Input arrays to compare. rtol, atol : float Relative and absolute tolerances as accepted by :func:`numpy.allclose`. Returns ------- idx : tuple of arrays Indices where the two arrays differ. """ # Create fixed mask arrays to handle INF and NaN; currently INF and NaN # are handled as equivalent if not np.all(np.isfinite(a)): a = np.ma.fix_invalid(a).data if not np.all(np.isfinite(b)): b = np.ma.fix_invalid(b).data if atol == 0.0 and rtol == 0.0: # Use a faster comparison for the most simple (and common) case return
np.where(a != b)
numpy.where
# -------------------------------------------------------- # P2ORM: Formulation, Inference & Application # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> # -------------------------------------------------------- import cv2 import sys import torch import numpy as np import torch.nn as nn import torch.nn.functional as F import itertools import time from PIL import Image from scipy import pi, ndimage from .edge_nms import * sys.path.append('../..') from math import atan, tan PI = 3.1416 # ===================================== functions for dataset generation ============================================= # def gen_occ_order(K, depth, label_map, invalid_mask, ROI_sz, thr_depth, normal=None, lbl_type='mask', depth_avg=False, dataset='interiornet', thr_pix=False, fast_abs_diff=False): """ convert depth to pixel-wise occ edge and pairwise occ order with givendepth , then corrected by normal map and instance mask edge(optional) :param K: current image camera intrinsic :param depth: Euclidean distance between camera center and relevant pixel's 3D point :param label_map: instance mask or edge mask which indicates image edge :param invalid_mask: invalid raw data mask; [valid:0, invalid:1] :param ROI_sz: size of region to determine occlusion order, default=3 :param lbl_type: ['edge'|'mask']: labeled occlusion edge or semantic mask :param thr_depth: neighbor pixels depth difference rate (depth_diff / pixel_dist) thresh to detect occlusion :param depth_avg: whether use average depth over one pixel's neighbor as pixel depth :param dataset: dataset name, for dataset-specific pre-processing :param thr_pix: whether use pixel-wise discontinuity threshold :return occ_label: [H, W, (1(edge) + 8(order))] """ # pre-process depth, normal, label H, W = depth.shape padding = 2 # padding for depth depth_pad_2 = cv2.copyMakeBorder(depth, padding, padding, padding, padding, cv2.BORDER_REPLICATE) # H+2,W+2 invalid_mask_pad = cv2.copyMakeBorder(invalid_mask, padding, padding, padding, padding, cv2.BORDER_REPLICATE) # H+2,W+2 if normal is not None: if normal.dtype == np.uint16: # [0,65535] => [-1, 1] normal = normal.astype(np.float32) / 65535.0 * 2 - 1.0 # H,W,3 normal[:, :, 1] = -normal[:, :, 1] # y-down => y-up, interiornet case normal[:, :, 2] = -normal[:, :, 2] # z-in => z-out normal_pad = cv2.copyMakeBorder(normal, 1, 1, 1, 1, cv2.BORDER_REPLICATE) if lbl_type == 'edge': # occ edge map edge_mask = label_map edge_mask_pad = cv2.copyMakeBorder(edge_mask, 1, 1, 1, 1, cv2.BORDER_REPLICATE) # init for ray-casting method occ_edge = np.zeros(depth.shape[:2]) # 2-pix width occ edge (fg+bg) occ_label = np.zeros((depth.shape[0], depth.shape[1], 9)) # occ edge + occ order (-1,0,1) w.r.t. 8 neighbors occ_label_tmp = np.zeros((depth.shape[0], depth.shape[1], 9)) diff_abs_depth = np.zeros((depth.shape[0], depth.shape[1], 8)) # depth diff w.r.t 8 neighbors diff_adj_depth = np.zeros((depth.shape[0], depth.shape[1], 8)) # adjusted depth diff (mid-pix ray) w.r.t 8 neighbors shifts_pix = [[-1, -1], [-1, 0], [-1, 1], [0, -1], [0, 1], [1, -1], [1, 0], [1, 1]] shift_midpix = np.array([[-0.5, -0.5], [-0.5, 0.0], [-0.5, 0.5], [0.0, -0.5], [0.0, 0.5], [0.5, -0.5], [0.5, 0.0], [0.5, 0.5]]) # shift from center pix to mid pix origin = np.zeros((8, 3)) # I0 of rays, namely camera optical center depth_err_map = np.zeros(depth.shape[:2]) # estimated GT depth error (only for real dataset) # thr_depth_const = thr_depth # firstly check absolute depth diff (avoid ROI op, check) depth_pad_1 = depth_pad_2[1:-1, 1:-1] # H+1,W+1 for idx, shift_pix in enumerate(shifts_pix): shift_h, shift_w = shift_pix pix_dist = 1.414 if idx in [0, 2, 5, 7] else 1. # distance between neighbor pixels depth_diff = (depth_pad_1[1 + shift_h:H + 1 + shift_h, 1 + shift_w:W + 1 + shift_w] - depth) / pix_dist # H,W diff_abs_depth[:, :, idx] = depth_diff occ_label_tmp[depth_diff > thr_depth, idx + 1] = 1. # fg occ_label_tmp[depth_diff < -thr_depth, idx + 1] = -1. # bg occ_exist_bool = np.any((occ_label_tmp != 0), axis=2) # H,W if fast_abs_diff: # fast mode using only absolute depth difference as ablation study occ_edge[occ_exist_bool] = 1.0 occ_label = occ_label_tmp occ_label[occ_exist_bool, 0] = 1.0 return occ_edge, occ_label, diff_abs_depth, diff_adj_depth, depth_err_map # gen occ order for each pixel over the image for y_idx in range(0, depth.shape[0]): for x_idx in range(0, depth.shape[1]): if invalid_mask[y_idx, x_idx] == 1: continue # skip pixel if occ_exist_bool[y_idx, x_idx] != 1: continue ROI_depth_L = np.copy(depth_pad_2[y_idx:(y_idx + ROI_sz + padding), x_idx:(x_idx + ROI_sz + padding)]) ROI_invalid_L = np.copy(invalid_mask_pad[y_idx:(y_idx + ROI_sz + padding), x_idx:(x_idx + ROI_sz + padding)]) # ============================= special pre-processing for dataset ======================================= # if dataset in ['interiornet', 'scenenet']: if ROI_depth_L.min() == 0.0: # inf depth ROI_depth_L[ROI_depth_L != 0.] = ROI_depth_L.max() # rm depth edge problem ROI_depth_L[ROI_depth_L == 0.] = 65535.0 # max depth for inf depth elif dataset == 'ibims': if ROI_depth_L[2, 2] == 0: continue # invalid center pixel, skip else: if thr_pix: # cal curr pixel depth discontinuity thresh eta_d_ibims = 0.002 # depth angular err for ibims-1 dataset err_d_ibims = 1. # depth translational err for ibims-1 dataset center_2D = np.array([y_idx + 0.5, x_idx + 0.5], dtype=np.float32) # 2, neighbors_2D = center_2D + 2. * shift_midpix # 8,2 ROI_2D = np.insert(neighbors_2D, int((ROI_sz ** 2 - 1) / 2), center_2D, axis=0).astype(np.float32) # 9,2 center_ray = np.array([center_2D[1] - K[0, 2], K[1, 2] - center_2D[0], -K[0, 0]]) # 3, # center_ray_unit = center_ray / np.linalg.norm(center_ray) # 3, ROI_rays = np.stack((ROI_2D[:, 1] - K[0, 2], K[1, 2] - ROI_2D[:, 0], -K[0, 0].repeat(9)), axis=1) # 9,3 ROI_rays_unit = ROI_rays / np.linalg.norm(ROI_rays, axis=1).reshape(-1, 1) # 9,3 ROI_normal = np.copy(normal_pad[y_idx:(y_idx + ROI_sz), x_idx:(x_idx + ROI_sz), :]).reshape(-1, 3) # 3,3,3 => 9,3 ROI_normal_unit = ROI_normal / np.linalg.norm(ROI_normal, axis=1).reshape(-1, 1) # 9,3 center_normal = np.copy(normal_pad[y_idx+1, x_idx+1, :]) # 3, center_normal_unit = center_normal / np.linalg.norm(center_normal) # gazing angle between surface and line of sight # gamma = np.arccos(np.sum(center_ray_unit * center_normal_unit)) - PI / 2 gamma_roi = np.arccos(np.sum(ROI_rays_unit * ROI_normal_unit, axis=1)) - PI / 2 # 9, # if np.any(gamma_roi <= eta_d_ibims): continue # condition for depth err caused by angular err tan_gamma = np.minimum(np.tan(gamma_roi), 1.) # consider possible normal estimation err tan_gamma = np.maximum(tan_gamma, 0.0001) # required: tan(gamma) >> tan(err_d_ibims) depth_err = eta_d_ibims / tan_gamma * ROI_depth_L[2, 2] + err_d_ibims thr_depth = 25. + depth_err[4] + np.delete(depth_err, 4) # 8, depth_err_map[y_idx, x_idx] = depth_err[4] # guess zero-value neighbor depth by 3x3 average depth if np.any(ROI_depth_L[1:-1, 1:-1] == 0): for y in range(0, ROI_sz): for x in range(0, ROI_sz): if ROI_depth_L[y+1, x+1] == 0.: ROI_depth_valid = ROI_depth_L[y:y + ROI_sz, x:x + ROI_sz] ROI_depth_valid = ROI_depth_valid[ROI_depth_valid != 0] ROI_depth_L[y+1, x+1] = ROI_depth_valid.mean() # ======================================================================================================== # ROI_depth = np.zeros((ROI_sz, ROI_sz)) if depth_avg: # avg each pixel depth in ROI for y in range(0, ROI_sz): for x in range(0, ROI_sz): ROI_depth[y, x] = np.mean(ROI_depth_L[y:y + ROI_sz, x:x + ROI_sz]) else: ROI_depth = ROI_depth_L[1:-1, 1:-1] # 3x3 ROI_invalid = ROI_invalid_L[1:-1, 1:-1] # 3x3 # pixel idx in flat vector and its relevant location in connectivity-8 neighborhood # 0 1 2 # 3 4 # 5 6 7 center_depth = ROI_depth[int((ROI_sz - 1) / 2), int((ROI_sz - 1) / 2)] ROI_depth_flat = ROI_depth.flatten() neighbors_depth_flat = np.delete(ROI_depth_flat, (ROI_sz * ROI_sz - 1) / 2) # 8, ROI_invalid_flat = ROI_invalid.flatten() neighbors_invalid_flat = np.delete(ROI_invalid_flat, (ROI_sz * ROI_sz - 1) / 2) # 8, ROI_depth_diff = ROI_depth - center_depth # cal abs depth diff ROI_depth_diff_flat = ROI_depth_diff.flatten() # row-wise flatten ROI_depth_diff_flat = np.delete(ROI_depth_diff_flat, (ROI_sz * ROI_sz - 1) / 2) # 8, ROI_depth_diff_flat[[0, 2, 5, 7]] = ROI_depth_diff_flat[[0, 2, 5, 7]] / 1.414 # for diagonal neighbors gen_occ_lbl = False if lbl_type == 'edge' and edge_mask[y_idx, x_idx] == 1: gen_occ_lbl = True elif lbl_type == 'mask' and np.any(np.abs(ROI_depth_diff).max() > thr_depth): gen_occ_lbl = True if gen_occ_lbl: # gen occ edge/order # ======================= cal relevant discontinuities if normal is available ======================== # if normal is not None: ROI_normal = np.copy(normal_pad[y_idx:(y_idx + ROI_sz), x_idx:(x_idx + ROI_sz), :]).reshape(-1, 3) # 3,3,3 => 9,3 center_normal = ROI_normal[int((ROI_sz ** 2 - 1) / 2), :] # 3, neighbors_normal = np.delete(ROI_normal, int((ROI_sz ** 2 - 1) / 2), axis=0) # 8,3 # gen relevant pixels coordinates on image plane center_2D = np.array([y_idx + 0.5, x_idx + 0.5], dtype=np.float32) mid_2D = center_2D + shift_midpix # 8,2 neighbors_2D = center_2D + 2. * shift_midpix # 8,2 ROI_2D = np.insert(neighbors_2D, int((ROI_sz ** 2 - 1) / 2), center_2D, axis=0).astype(np.float32) # 9,2 # gen rays from camera center to pixels/middle-pixels mid_pix_rays = np.stack((mid_2D[:, 1] - K[0, 2], K[1, 2] - mid_2D[:, 0], -K[0, 0].repeat(8)), axis=1) # 8,3 ROI_rays = np.stack((ROI_2D[:, 1] - K[0, 2], K[1, 2] - ROI_2D[:, 0], -K[0, 0].repeat(9)), axis=1) # 9,3 ROI_rays_unit = ROI_rays / np.linalg.norm(ROI_rays, axis=1).reshape(-1, 1) # 9,3 # gen 3D points coordinates w.r.t. 2D ROI pixels ROI_3D = ROI_rays_unit * ROI_depth.reshape(-1, 1) # 9,3 center_3D = ROI_3D[int((ROI_sz ** 2 - 1) / 2), :] # 3, neighbors_3D = np.delete(ROI_3D, int((ROI_sz ** 2 - 1) / 2), axis=0) # rm center; 8,3 # cal intersected points between mid pix rays and local tangent planes in 3D pts_midray_centerplane = insect_line_plane_3d_batch(origin, mid_pix_rays, center_3D, center_normal) # 8,3 pts_midray_neighborplanes = insect_line_plane_3d_batch(origin, mid_pix_rays, neighbors_3D, neighbors_normal) # 8,3 # ignore case where lines are parallel to planes pts_midray_centerplane[np.isnan(pts_midray_centerplane)] = 0. pts_midray_neighborplanes[np.isnan(pts_midray_neighborplanes)] = 0. # cal intersected points between center ray and neighbors local planes pts_centerray_neighborplanes = insect_line_plane_3d_batch(origin, center_3D, neighbors_3D, neighbors_normal) # cal intersected point between neighbors rays and center local plane pts_neighborrays_centerplane = insect_line_plane_3d_batch(origin, neighbors_3D, center_3D, center_normal) # ignore case where lines are parallel to plane pts_centerray_neighborplanes[np.isnan(pts_centerray_neighborplanes)] = 0. # 8, pts_neighborrays_centerplane[
np.isnan(pts_neighborrays_centerplane)
numpy.isnan
"""Generate halfway phase shifted ring. TODO[Faruk]: I need to revisit and seriously cleanup this script once revision rush is over. """ import os import numpy as np import matplotlib.pyplot as plt OUTDIR = "/home/faruk/gdrive/paper-350_micron/paper_figures/revision-distortions" DIMS = 900, 900 RADIUS_OUTER = 450 RADIUS_INNER = 150 SEGMENTS_INNER = 25 NR_LAYERS = 11 KAYCUBE_FACTOR = 32 DPI = 192 plt.style.use('dark_background') # ============================================================================= # Generate coordinates coords = np.zeros((DIMS[0], DIMS[1], 2)) center = DIMS[0]/2, DIMS[1]/2 for i in range(DIMS[0]): for j in range(DIMS[1]): coords[i, j, 0] = i coords[i, j, 1] = j coords[:, :, 0] -= center[0] coords[:, :, 1] -= center[1] # ----------------------------------------------------------------------------- # Generate ring mag = np.linalg.norm(coords, axis=-1) data = np.zeros(DIMS) data[mag < RADIUS_OUTER] = 200 data[mag < RADIUS_INNER] = 0 # Extend horizontally DIMS2 = DIMS[0], DIMS[1]+DIMS[1]*2//3 data2 = np.zeros((DIMS2[0], DIMS2[1])) data2[0:DIMS[0]//2, 0:DIMS[1]] = data[0:DIMS[0]//2, :] data2[DIMS[0]//2:, DIMS[1]*2//3:] = data[DIMS[0]//2:, :] # Add notebook texture lines = np.zeros(data2.shape) lines[::KAYCUBE_FACTOR, :] = 100 lines[:, ::KAYCUBE_FACTOR] = 100 lines[data2 == 0] = 0 data3 = np.copy(data2) data3[lines != 0] = 100 # ----------------------------------------------------------------------------- # Compute circumference ratio of equal line segments circum_ratio = (2 * np.pi * RADIUS_OUTER) / (2 * np.pi * RADIUS_INNER) SEGMENTS_OUTER = int(SEGMENTS_INNER / circum_ratio) circum_ratio2 = (2 * np.pi * ((RADIUS_OUTER+RADIUS_INNER)/2)) / (2 * np.pi * RADIUS_INNER) SEGMENTS_MIDDLE = int((SEGMENTS_INNER + circum_ratio) // 2) nr_segments_outer = 360 // SEGMENTS_OUTER nr_segments_inner = 360 // SEGMENTS_INNER nr_segments_middle = 360 // SEGMENTS_MIDDLE rhos = np.linspace(RADIUS_INNER, RADIUS_OUTER, NR_LAYERS) # ============================================================================= # Generate points def pol2cart(rho, phi): x = rho * np.cos(phi) y = rho * np.sin(phi) return(x, y) def cart2pol(x, y): rho = np.sqrt(x**2 + y**2) phi = np.arctan2(y, x) return(rho, phi) # ============================================================================= # Deep surface mesh # ============================================================================= # Part 1 points1 = np.zeros((NR_LAYERS, nr_segments_outer, 2)) phis = np.linspace(np.pi, 2*np.pi, nr_segments_outer) for k, r in enumerate(rhos): for i, j in enumerate(phis): points1[k, i, :] = pol2cart(r, j) # Adjust point coordinates to array grid coordinates points1[k, :, :] += center # Part 2 points2 = np.zeros((NR_LAYERS, nr_segments_inner, 2)) phis =
np.linspace(0, np.pi, nr_segments_inner)
numpy.linspace
import pandas as pd import numpy as np import talib class Indicators(object): """ Input: Price DataFrame, Moving average/lookback period and standard deviation multiplier This function returns a dataframe with 5 columns Output: Prices, Moving Average, Upper BB, Lower BB and BB Val """ def bb(self, l_sym, df_price, time_period, st_dev_u, st_dev_l): df_bb_u = pd.DataFrame(columns=l_sym, index=df_price.index) df_bb_m = pd.DataFrame(columns=l_sym, index=df_price.index) df_bb_l = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_bb_u[sym], df_bb_m[sym], df_bb_l[sym] = talib.BBANDS(np.asarray(df_price[sym]), timeperiod=time_period, nbdevup=st_dev_u, nbdevdn=st_dev_l) except: pass return df_bb_u, df_bb_m, df_bb_l def ema(self, l_sym, df_price, time_period): df_ema = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_ema[sym] = talib.EMA(np.asarray(df_price[sym]), timeperiod=time_period) except: pass return df_ema def ma(self, l_sym, df_price, time_period): df_ma = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_ma[sym] = talib.MA(np.asarray(df_price[sym]), timeperiod=time_period) except: pass return df_ma def sma(self, l_sym, df_price, time_period): df_sma = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_sma[sym] = talib.SMA(np.asarray(df_price[sym]), timeperiod=time_period) except: pass return df_sma def adx(self, l_sym, df_high, df_low, df_close, time_period): df_adx = pd.DataFrame(columns=l_sym, index=df_high.index) for sym in l_sym: try: df_adx[sym] = talib.ADX(high=np.asarray(df_high[sym]), low=np.asarray(df_low[sym]), close=np.asarray(df_close[sym]), timeperiod = time_period) except: pass return df_adx def mom(self, l_sym, df_price, time_period): df_mom = pd.DataFrame(columns=l_sym, index=df_price.index) for sym in l_sym: try: df_mom[sym] = talib.MOM(np.asarray(df_price[sym]), timeperiod = time_period) except: pass return df_mom def atr(self, l_sym, df_high, df_low, df_close, time_period): df_atr = pd.DataFrame(columns=l_sym, index=df_high.index) for sym in l_sym: try: df_atr[sym] = talib.ATR(high=np.asarray(df_high[sym]), low=np.asarray(df_low[sym]), close=
np.asarray(df_close[sym])
numpy.asarray
from networkx.algorithms.assortativity import neighbor_degree import pandas as pd import networkx as nx import numpy as np from scipy.spatial.distance import cosine import numpy as np from copy import deepcopy from tqdm import tqdm from sklearn.neighbors import NearestNeighbors import random import pickle5 as pickle import time import scipy.sparse import matplotlib.pyplot as plt import tensorflow.compat.v1 as tf tf.disable_v2_behavior() def difference(start, end, interval): x = end - start r = { 'week': int(x / np.timedelta64(1, 'W')), 'fortnight': int(x / np.timedelta64(2, 'W')), 'month': int(x / np.timedelta64(1, 'M')) } return r[interval] def make_hin(X, df, id_feature='GKGRECORDID', date_feature='date_str', theme_feature='Themes', location_feature='Locations', person_feature='Persons', org_feature='Organizations'): G = nx.Graph() for index,row in df.iterrows(): node_id = row[id_feature] # date conversion date_value = pd.to_datetime(row[date_feature], format='%Y-%m-%d') node_date = str(date_value.week) + '-' + str(date_value.year) #node_themes_array = '' node_locations_array = '' node_people_array = '' node_organizations_array = '' try: node_themes_array = row[theme_feature].split(';') except: node_themes_array = [] try: node_locations_array = row[location_feature].split(';') except: node_locations_array = [] try: node_people_array = row[person_feature].split(';') except: node_people_array = [] try: node_organizations_array = row[org_feature].split(';') except: node_organizations_array = [] # event <-> date G.add_edge(node_id,node_date,edge_type='event_date', edge_value=date_value) G.nodes[node_id]['node_type'] = 'event' G.nodes[node_date]['node_type'] = 'date' # event <-> theme for theme in node_themes_array: if len(theme) > 0: G.add_edge(node_id,theme,edge_type='event_theme') G.nodes[theme]['node_type'] = 'theme' # event <-> locations for location in node_locations_array: if len(location) > 0: G.add_edge(node_id,location,edge_type='event_location') G.nodes[location]['node_type'] = 'location' # event <-> persons for person in node_people_array: if len(person) > 0: G.add_edge(node_id,person,edge_type='event_person') G.nodes[person]['node_type'] = 'person' # event <-> organization for org in node_organizations_array: if len(org) > 0: G.add_edge(node_id,org,edge_type='event_org') G.nodes[org]['node_type'] = 'org' # embedding G.nodes[node_id]['embedding'] = X[index] return G def inner_connections(G, interval='week', embedding_feature='embedding', type_feature='edge_type', desired_type_feature='event_date', value_feature='edge_value', return_type_feature='event_event'): edges_to_add = [] for node1, neighbor1 in G.edges: if embedding_feature in G.nodes[node1]: if G[node1][neighbor1][type_feature] == desired_type_feature: for node2, neighbor2 in G.edges: if embedding_feature in G.nodes[node2]: if G[node2][neighbor2][type_feature] == desired_type_feature: temp_cosine = cosine(G.nodes[node1][embedding_feature], G.nodes[node2][embedding_feature]) if temp_cosine <= 0.5 and temp_cosine != 0.0: if abs(difference(G[node1][neighbor1][value_feature], G[node2][neighbor2][value_feature], interval)) <= 3: edges_to_add.append((node1,node2)) for new_edge in edges_to_add: G.add_edge(new_edge[0],new_edge[1],edge_type=return_type_feature) return G def inner_connections_dateless(G, embedding_feature='embedding', return_type_feature='event_event'): edges_to_add = [] for node1 in G.nodes(): if embedding_feature in G.nodes[node1]: for node2 in G.nodes(): if embedding_feature in G.nodes[node2]: temp_cosine = cosine(G.nodes[node1][embedding_feature], G.nodes[node2][embedding_feature]) if temp_cosine <= 0.5 and temp_cosine != 0.0: edges_to_add.append((node1,node2)) for new_edge in edges_to_add: G.add_edge(new_edge[0],new_edge[1],edge_type=return_type_feature) return G def is_equal(x, true_feature='true', restored_feature='restored'): if x[true_feature][0] == x[restored_feature][0] and x[true_feature][1] == x[restored_feature][1]: return 1 elif x[true_feature][0] == x[restored_feature][1] and x[true_feature][1] == x[restored_feature][0]: return 1 return 0 from sklearn.metrics import accuracy_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score def get_metric(metric, pred): if metric == 'acc': return accuracy_score([1] * pred.shape[0], list(pred)) elif metric == 'precision': return precision_score([1] * pred.shape[0], list(pred)) elif metric == 'recall': return recall_score([1] * pred.shape[0], list(pred)) elif metric == 'f1': return f1_score([1] * pred.shape[0], list(pred)) def disturbed_hin(G, split=0.1, random_state=None, edge_type=['event_date', 'event_event', 'event_location', 'event_person', 'event_org', 'event_theme'], type_feature='edge_type'): """ G: hin; split: percentage to be cut from the hin; random_state: ; edge_type: listlike object of types of edges to be cut; type_feature: feature name of edge_type on your hin. """ def keep_left(x, G): edge_split = x['type'].split('_') if G.nodes[x['node']]['node_type'] != edge_split[0]: x['node'], x['neighbor'] = x['neighbor'], x['node'] return x # prepare data for type counting edges = list(G.edges) edge_types = [G[edge[0]][edge[1]][type_feature] for edge in edges] edges = pd.DataFrame(edges) edges = edges.rename(columns={0: 'node', 1: 'neighbor'}) edges['type'] = edge_types edges = edges.apply(keep_left, G=G, axis=1) edges_group = edges.groupby(by=['type'], as_index=False).count().reset_index(drop=True) # preparar arestas para eliminar edges = edges.sample(frac=1, random_state=random_state).reset_index(drop=True) edges_group = edges_group.rename(columns={'node': 'count', 'neighbor': 'to_cut_count'}) edges_group['to_cut_count'] = edges_group['to_cut_count'].apply(lambda x:round(x * split)) to_cut = {} for index, row in edges_group.iterrows(): if row['type'] in edge_type: to_cut[row['type']] = edges[edges['type'] == row['type']].reset_index(drop=True).loc[0:row['to_cut_count']-1] G_disturbed = deepcopy(G) for key, tc_df in to_cut.items(): for index, row in tc_df.iterrows(): G_disturbed.remove_edge(row['node'],row['neighbor']) return G_disturbed, to_cut def hide_nodes(G, percentual=0.4, random_state=None, node_type=['event'], type_feature='node_type'): nodes = list(G.nodes) node_types = [G.nodes[node][type_feature] for node in nodes] nodes = pd.DataFrame(nodes) nodes = nodes.rename(columns={0: 'node'}) nodes['type'] = node_types nodes_group = nodes.groupby(by=['type'], as_index=False).count().reset_index(drop=True) nodes = nodes.sample(frac=1, random_state=random_state).reset_index(drop=True) nodes_group = nodes_group.rename(columns={'node': 'count'}) nodes_group['to_cut_count'] = nodes_group['count'].apply(lambda x:round(x * percentual)) to_hide = {} for index, row in nodes_group.iterrows(): if row['type'] in node_type: to_hide[row['type']] = nodes[nodes['type'] == row['type']].reset_index(drop=True).loc[0:row['to_cut_count']-1] G_hidden = deepcopy(G) for key, th_df in to_hide.items(): neighbors = [] for index, row in th_df.iterrows(): event_neighbors = list(G_hidden.neighbors(row['node'])) neighbors.append(event_neighbors) for neighbor in event_neighbors: G_hidden.remove_edge(row['node'],neighbor) th_df['neighbors'] = neighbors return G_hidden, to_hide def find_nodes(G, hidden, percentual=1.0, random_state=None, type_feature='node_type'): G_found = deepcopy(G) for key, th_df in hidden.items(): th_df = th_df.sample(frac=1, random_state=random_state).reset_index(drop=True) adding_df = th_df.loc[0:round(th_df.shape[0] * percentual)-1] remaining_df = th_df.loc[round(th_df.shape[0] * percentual):th_df.shape[0]-1] for index, row in adding_df.iterrows(): to_add = row.neighbors for add in to_add: edge_type_str = '{}_{}'.format(row['type'], G.nodes[add][type_feature]) G_found.add_edge(row['node'], add, edge_type=edge_type_str) hidden[key] = remaining_df return G_found, hidden def regularization(G, dim=512, embedding_feature: str = 'embedding', iterations=15, mi=0.85): nodes = [] # inicializando vetor f para todos os nodes for node in G.nodes(): if 'f' not in G.nodes[node]: G.nodes[node]['f'] = np.array([0.0]*dim) elif embedding_feature in G.nodes[node]: G.nodes[node]['f'] = G.nodes[node][embedding_feature]*1.0 nodes.append(node) pbar = tqdm(range(0, iterations)) for iteration in pbar: random.shuffle(nodes) energy = 0.0 # percorrendo cada node for node in nodes: f_new = np.array([0.0]*dim) f_old = np.array(G.nodes[node]['f'])*1.0 sum_w = 0.0 # percorrendo vizinhos do onde for neighbor in G.neighbors(node): w = 1.0 if 'weight' in G[node][neighbor]: w = G[node][neighbor]['weight'] w /= np.sqrt(G.degree[neighbor]) f_new = f_new + w*G.nodes[neighbor]['f'] sum_w = sum_w + w if sum_w == 0.0: sum_w = 1.0 f_new /= sum_w G.nodes[node]['f'] = f_new*1.0 if embedding_feature in G.nodes[node]: G.nodes[node]['f'] = G.nodes[node][embedding_feature] * \ mi + G.nodes[node]['f']*(1.0-mi) energy = energy + np.linalg.norm(f_new-f_old) iteration = iteration + 1 message = 'Iteration '+str(iteration)+' | Energy = '+str(energy) pbar.set_description(message) return G def get_knn_data(G, node, embedding_feature: str = 'f'): knn_data, knn_nodes = [], [] for node in nx.non_neighbors(G, node): if embedding_feature in G.nodes[node]: knn_data.append(G.nodes[node][embedding_feature]) knn_nodes.append(node) return pd.DataFrame(knn_data), pd.DataFrame(knn_nodes) def run_knn(k, G_restored, row, knn_data, knn_nodes, node_feature='node', embedding_feature='f'): if k == -1: k = knn_data.shape[0] knn = NearestNeighbors(n_neighbors=k, metric='cosine') knn.fit(knn_data) indice = knn.kneighbors(G_restored.nodes[row[node_feature]][embedding_feature].reshape(-1, 512), return_distance=False) return [knn_nodes[0].iloc[indice[0][i]] for i in range(k)] from annoy import AnnoyIndex def run_annoy(k, G_restored, row, knn_data, knn_nodes, node_feature='node', embedding_feature='f', dim=512): knn = AnnoyIndex(dim, 'angular') for knn_index, knn_row in knn_data.iterrows(): knn.add_item(knn_index, knn_row) knn.build(k) indice = knn.get_nns_by_vector(G_restored.nodes[row[node_feature]][embedding_feature], k, include_distances=False) return [knn_nodes[0].loc[indice[i]] for i in range(k)] import multiprocessing def restore_hin(G, cutted_dict, nn_method='knn', n_jobs=-1, k=-1, node_feature='node', neighbor_feature='neighbor', node_type_feature='node_type', embedding_feature='f'): def process(start, end, G, nearest_neighbor_selector, key, value, return_dict, thread_id): value_thread = value.loc[start:(end-1)] restored_dict_thread = {'true': [], 'restored': [], 'edge_type': []} for index, row in tqdm(value_thread.iterrows(), total=value_thread.shape[0]): edge_to_add = key.split('_') edge_to_add[0] = row[node_feature] edge_to_add = [row[node_feature] if e == G.nodes[row[node_feature]][node_type_feature] and row[node_feature] != edge_to_add[0] else e for e in edge_to_add] knn_data, knn_nodes = get_knn_data(G, row[node_feature]) knn_nodes['type'] = knn_nodes[0].apply(lambda x: G.nodes[x][node_type_feature]) knn_data = knn_data[knn_nodes['type'].isin(edge_to_add)] knn_nodes = knn_nodes[knn_nodes['type'].isin(edge_to_add)] edge_to_add[1] = nearest_neighbor_selector[nn_method](k, G, row, knn_data, knn_nodes) restored_dict_thread['true'].append([row[node_feature], row[neighbor_feature]]) restored_dict_thread['restored'].append(edge_to_add) restored_dict_thread['edge_type'].append(key) for key in restored_dict_thread.keys(): _key = key + str(thread_id) return_dict[_key] = (restored_dict_thread[key]) def split_processing(n_jobs, G, nearest_neighbor_selector, key, value, return_dict): split_size = round(len(value) / n_jobs) threads = [] for i in range(n_jobs): # determine the indices of the list this thread will handle start = i * split_size # special case on the last chunk to account for uneven splits end = len(value) if i+1 == n_jobs else (i+1) * split_size # create the thread threads.append( multiprocessing.Process(target=process, args=(start, end, G, nearest_neighbor_selector, key, value, return_dict, i))) threads[-1].start() # start the thread we just created # wait for all threads to finish for t in threads: t.join() if n_jobs == -1: n_jobs = multiprocessing.cpu_count() restored_dict = {'true': [], 'restored': [], 'edge_type': []} return_dict = multiprocessing.Manager().dict() nearest_neighbor_selector = { 'knn': run_knn, 'annoy': run_annoy } for key, value in cutted_dict.items(): split_processing(n_jobs, G, nearest_neighbor_selector, key, value, return_dict) return_dict = dict(return_dict) for thread_key in restored_dict.keys(): for job in range(n_jobs): for res in return_dict[thread_key + str(job)]: restored_dict[thread_key].append(res) return pd.DataFrame(restored_dict) def restore_edges(G, restored): G_restored = deepcopy(G) for idx, restored in enumerate(restored.restored.to_list()): G_restored.add_edge(restored[0],restored[1][0], edge_type=restored.edge_type.to_list()[idx]) return G_restored # put embeddings on graph def embedding_graph(G, embeddings, embedding_feature='f'): for key, value in embeddings.items(): G.nodes[key][embedding_feature] = value return G def masked_softmax_cross_entropy(preds, labels, mask): """Softmax cross-entropy loss with masking.""" loss = tf.nn.softmax_cross_entropy_with_logits(logits=preds, labels=labels) mask = tf.cast(mask, dtype=tf.float32) mask /= tf.reduce_mean(mask) loss *= mask return tf.reduce_mean(loss) def masked_accuracy(preds, labels, mask): """Accuracy with masking.""" correct_prediction = tf.equal(tf.argmax(preds, 1), tf.argmax(labels, 1)) accuracy_all = tf.cast(correct_prediction, tf.float32) mask = tf.cast(mask, dtype=tf.float32) mask /= tf.reduce_mean(mask) accuracy_all *= mask return tf.reduce_mean(accuracy_all) import layers.graph as lg import utils.sparse as us def gcn(G, target, i, split, label_feature='node_type', label_number='type_code', embedding_feature='f'): node_list = [] for node in G.nodes(): node_list.append(node) label_codes = {} for node in node_list: if label_feature in G.nodes[node]: label = G.nodes[node][label_feature] if label not in label_codes: label_codes[label] = len(label_codes) G.nodes[node][label_number] = label_codes[label] else: G.nodes[node][label_number] = -1 else: G.nodes[node][label_number] = -1 adj = nx.adj_matrix(G,nodelist=node_list) # Get important parameters of adjacency matrix n_nodes = adj.shape[0] # Some preprocessing adj_tilde = adj + np.identity(n=adj.shape[0]) d_tilde_diag = np.squeeze(np.sum(np.array(adj_tilde), axis=1)) d_tilde_inv_sqrt_diag = np.power(d_tilde_diag, -1/2) d_tilde_inv_sqrt = np.diag(d_tilde_inv_sqrt_diag) adj_norm = np.dot(np.dot(d_tilde_inv_sqrt, adj_tilde), d_tilde_inv_sqrt) adj_norm_tuple = us.sparse_to_tuple(scipy.sparse.coo_matrix(adj_norm)) # Features are just the identity matrix feat_x = np.identity(n=adj.shape[0]) feat_x_tuple = us.sparse_to_tuple(scipy.sparse.coo_matrix(feat_x)) # Preparing train data memberships = [m for m in nx.get_node_attributes(G, label_number).values()] nb_classes = len(set(memberships)) targets = np.array([memberships], dtype=np.int32).reshape(-1) one_hot_targets = np.eye(nb_classes)[targets] labels_to_keep = [i for i in range(len(node_list))] y_train = np.zeros(shape=one_hot_targets.shape, dtype=np.float32) train_mask = np.zeros(shape=(n_nodes,), dtype=np.bool) for l in labels_to_keep: y_train[l, :] = one_hot_targets[l, :] train_mask[l] = True # TensorFlow placeholders ph = { 'adj_norm': tf.sparse_placeholder(tf.float32, name="adj_mat"), 'x': tf.sparse_placeholder(tf.float32, name="x"), 'labels': tf.placeholder(tf.float32, shape=(n_nodes, nb_classes)), 'mask': tf.placeholder(tf.int32)} l_sizes = [1024, 1024, 512, nb_classes] name_text = str(target) + '_' + str(i) + '_' + str(split) o_fc1 = lg.GraphConvLayer( input_dim=feat_x.shape[-1], output_dim=l_sizes[0], name='fc1_'+name_text, activation=tf.nn.tanh)(adj_norm=ph['adj_norm'], x=ph['x'], sparse=True) o_fc2 = lg.GraphConvLayer( input_dim=l_sizes[0], output_dim=l_sizes[1], name='fc2_'+name_text, activation=tf.nn.tanh)(adj_norm=ph['adj_norm'], x=o_fc1) o_fc3 = lg.GraphConvLayer( input_dim=l_sizes[1], output_dim=l_sizes[2], name='fc3_'+name_text, activation=tf.nn.tanh)(adj_norm=ph['adj_norm'], x=o_fc2) o_fc4 = lg.GraphConvLayer( input_dim=l_sizes[2], output_dim=l_sizes[3], name='fc4_'+name_text, activation=tf.identity)(adj_norm=ph['adj_norm'], x=o_fc3) with tf.name_scope('optimizer'): loss = masked_softmax_cross_entropy(preds=o_fc4, labels=ph['labels'], mask=ph['mask']) accuracy = masked_accuracy(preds=o_fc4, labels=ph['labels'], mask=ph['mask']) optimizer = tf.train.AdamOptimizer(learning_rate=1e-2) opt_op = optimizer.minimize(loss) feed_dict_train = {ph['adj_norm']: adj_norm_tuple, ph['x']: feat_x_tuple, ph['labels']: y_train, ph['mask']: train_mask} sess = tf.Session() sess.run(tf.global_variables_initializer()) epochs = 20 save_every = 50 t = time.time() embedding_out = [] # Train model for epoch in range(epochs): _, train_loss, train_acc = sess.run( (opt_op, loss, accuracy), feed_dict=feed_dict_train) if True: val_loss, val_acc = sess.run((loss, accuracy), feed_dict=feed_dict_train) # # Print results # #print("Epoch:", '%04d' % (epoch + 1), # "train_loss=", "{:.5f}".format(train_loss), # "time=", "{:.5f}".format(time.time() - t)) feed_dict_output = {ph['adj_norm']: adj_norm_tuple, ph['x']: feat_x_tuple} embeddings = sess.run(o_fc3, feed_dict=feed_dict_output) if epoch + 1 == epochs: embedding_out = embeddings for idx, node in enumerate(G.nodes()): G.nodes[node][embedding_feature] = embedding_out[idx] return G def date_string(x): x = str(x) l = [] l[:0] = x l.insert(4,'-') l.insert(7,'-') l = l[:10] s = '' return s.join(l) from bs4 import BeautifulSoup def decode_html_text(x): x = BeautifulSoup(x, 'html.parser') return x.get_text() from gensim.models import Word2Vec from stellargraph.data import UniformRandomMetaPathWalk from stellargraph import StellarGraph def metapath2vec(graph, dimensions = 512, num_walks = 1, walk_length = 100, context_window_size = 10, num_iter = 1, workers = 1, node_type='node_type', edge_type='edge_type', user_metapaths=[ ['event','date','event'],['event','what','event'],['event','where','event'], ['event','who','event'],['event','why','event'],['event','how','event'], ['event','date','event','trend','event'],['event','what','event','trend','event'], ['event','where','event','trend','event'],['event','who','event','trend','event'], ['event','why','event','trend','event'],['event','how','event','trend','event'], ] ): s_graph = StellarGraph.from_networkx(graph, node_type_attr=node_type, edge_type_attr=edge_type) rw = UniformRandomMetaPathWalk(s_graph) walks = rw.run( s_graph.nodes(), n=num_walks, length=walk_length, metapaths=user_metapaths ) print(f"Number of random walks: {len(walks)}") model = Word2Vec( walks, size=dimensions, window=context_window_size, min_count=0, sg=1, workers=workers, iter=num_iter, ) def get_embeddings(model, graph): if model is None: print("model not train") return {} _embeddings = {} for word in graph.nodes(): try: _embeddings[word] = model.wv[word] except: _embeddings[word] =
np.zeros(dimensions)
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jul 24 19:16:51 2019 @author: mostafamousavi, @filefolder last update: 08/05/21 """ from __future__ import division, print_function import numpy as np import h5py import matplotlib matplotlib.use('agg') from tqdm import tqdm import os os.environ['KERAS_BACKEND']='tensorflow' from tensorflow import keras from tensorflow.keras import backend as K from tensorflow.keras.layers import add, Activation, LSTM, Conv1D, InputSpec from tensorflow.keras.layers import MaxPooling1D, UpSampling1D, Cropping1D, SpatialDropout1D, Bidirectional, BatchNormalization from tensorflow.keras.models import Model from tensorflow.keras.optimizers import Adam from obspy.signal.trigger import trigger_onset import matplotlib from tensorflow.python.util import deprecation deprecation._PRINT_DEPRECATION_WARNINGS = False class DataGenerator(keras.utils.Sequence): """ Keras generator with preprocessing Parameters ---------- list_IDsx: str List of trace names. file_name: str Name of hdf5 file containing waveforms data. dim: tuple Dimension of input traces. batch_size: int, default=32 Batch size. n_channels: int, default=3 Number of channels. phase_window: int, fixed=40 The number of samples (window) around each phaset. shuffle: bool, default=True Shuffeling the list. norm_mode: str, default=max The mode of normalization, 'max' or 'std'. label_type: str, default=gaussian Labeling type: 'gaussian', 'triangle', or 'box'. augmentation: bool, default=True If True, half of each batch will be augmented version of the other half. add_event_r: {float, None}, default=None Chance for randomly adding a second event into the waveform. add_gap_r: {float, None}, default=None Add an interval with zeros into the waveform representing filled gaps. coda_ratio: {float, 0.4}, default=0.4 % of S-P time to extend event/coda envelope past S pick. shift_event_r: {float, None}, default=0.9 Rate of augmentation for randomly shifting the event within a trace. add_noise_r: {float, None}, default=None Chance for randomly adding Gaussian noise into the waveform. drop_channe_r: {float, None}, default=None Chance for randomly dropping some of the channels. scale_amplitude_r: {float, None}, default=None Chance for randomly amplifying the waveform amplitude. pre_emphasis: bool, default=False If True, waveforms will be pre emphasized. Returns -------- Tuple of (X, [y1,y2,y3], [sw1,sw2,sw3]), where: X = pre-processed waveform as input y1,y2,y3 = numpy arrays as labels for detection, P, and S respectively sw1,sw2,sw3 = sample weights for detection, P, and S respectively / e.g. sw1 = [.11,.89] if 11% of the the y1 labels are non-zero """ def __init__(self, list_IDs, file_name, dim, batch_size=32, n_channels=3, phase_window= 40, shuffle = True, norm_mode = 'max', label_type = 'gaussian', augmentation = False, add_event_r = None, add_gap_r = None, coda_ratio = 0.4, shift_event_r = None, add_noise_r = None, drop_channe_r = None, scale_amplitude_r = None, pre_emphasis = True): 'Initialization' self.dim = dim self.batch_size = batch_size self.phase_window = phase_window self.list_IDs = list_IDs self.file_name = file_name self.n_channels = n_channels self.shuffle = shuffle self.on_epoch_end() self.norm_mode = norm_mode self.label_type = label_type self.augmentation = augmentation self.add_event_r = add_event_r self.add_gap_r = add_gap_r self.coda_ratio = coda_ratio self.shift_event_r = shift_event_r self.add_noise_r = add_noise_r self.drop_channe_r = drop_channe_r self.scale_amplitude_r = scale_amplitude_r self.pre_emphasis = pre_emphasis def __len__(self): 'Denotes the number of batches per epoch' if self.augmentation: return 2*int(np.floor(len(self.list_IDs) / self.batch_size)) else: return int(np.floor(len(self.list_IDs) / self.batch_size)) def __getitem__(self, index): 'Generate one batch of data' if self.augmentation: indexes = self.indexes[index*self.batch_size//2:(index+1)*self.batch_size//2] indexes = np.append(indexes, indexes) else: indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] list_IDs_temp = [self.list_IDs[k] for k in indexes] X, y1, y2, y3 = self.__data_generation(list_IDs_temp) cw1 = np.array(np.where(y1==1)).size/y1.size cw2 = np.array(np.where( y2>0)).size/y2.size cw3 = np.array(np.where( y3>0)).size/y3.size class_weights = [[cw1, 1-cw1],[cw2, 1-cw2],[cw3, 1-cw3]] sample_weights = np.array([y1,y2,y3].copy()) for i,y in enumerate([y1,y2,y3]): sample_weights[i][np.where(y >0)] = class_weights[i][1] sample_weights[i][np.where(y==0)] = class_weights[i][0] return (X, [y1,y2,y3],list(sample_weights)) def on_epoch_end(self): 'Updates indexes after each epoch' self.indexes = np.arange(len(self.list_IDs)) if self.shuffle == True: np.random.shuffle(self.indexes) def _normalize(self, data, mode = 'max'): 'Normalize waveforms in each batch' data -= np.mean(data, axis=0, keepdims=True) if mode == 'max': max_data = np.max(data, axis=0, keepdims=True) assert(max_data.shape[-1] == data.shape[-1]) max_data[max_data == 0] = 1 data /= max_data elif mode == 'std': std_data = np.std(data, axis=0, keepdims=True) assert(std_data.shape[-1] == data.shape[-1]) std_data[std_data == 0] = 1 data /= std_data return data def _scale_amplitude(self, data, rate): 'Scale amplitude or waveforms' tmp = np.random.uniform(0, 1) if tmp < rate: data *= np.random.uniform(1, 3) elif tmp < 2*rate: data /= np.random.uniform(1, 3) return data def _drop_channel(self, data, snr, rate): 'Randomly replace values of one or two components to zeros in earthquake data' if np.random.uniform(0, 1) < rate and all(snr >= 10.0): data = np.copy(data) c1 = np.random.choice([0, 1]) c2 = np.random.choice([0, 1]) c3 = np.random.choice([0, 1]) if c1 + c2 + c3 > 0: data[..., np.array([c1, c2, c3]) == 0] = 0 return data def _drop_channel_noise(self, data, rate): 'Randomly replace values of one or two components to zeros in noise data' if np.random.uniform(0, 1) < rate: data = np.copy(data) c1 = np.random.choice([0, 1]) c2 = np.random.choice([0, 1]) c3 = np.random.choice([0, 1]) if c1 + c2 + c3 > 0: data[..., np.array([c1, c2, c3]) == 0] = 0 return data def _add_gaps(self, data, rate): 'Randomly add gaps (zeros) of different sizes into waveforms' if np.random.uniform(0, 1) < rate: data = np.copy(data) gap_start = np.random.randint(0, 4000) gap_end = np.random.randint(gap_start, 5900) data[gap_start:gap_end,:] = 0 return data def _add_noise(self, data, snr, rate): 'Randomly add Gaussian noise with a random SNR into waveforms' if np.random.uniform(0, 1) < rate and all(snr >= 6.0): #reduced snr from 10 to 6 data_noisy = np.empty((data.shape)) data_noisy[:, 0] = data[:,0] + np.random.normal(0, np.random.uniform(0, 0.15)*abs(max(data[:,0])), data.shape[0]) data_noisy[:, 1] = data[:,1] + np.random.normal(0, np.random.uniform(0, 0.15)*abs(max(data[:,1])), data.shape[0]) data_noisy[:, 2] = data[:,2] + np.random.normal(0, np.random.uniform(0, 0.15)*abs(max(data[:,2])), data.shape[0]) else: data_noisy = data return data_noisy def _adjust_amplitude_for_multichannels(self, data): 'Adjust the amplitude of multichannel data' tmp = np.max(np.abs(data), axis=0, keepdims=True) assert(tmp.shape[-1] == data.shape[-1]) if np.count_nonzero(tmp) > 0: data *= data.shape[-1] / np.count_nonzero(tmp) return data def _trilabel(self, a=0, b=20, c=40): 'Used for triangular labeling' z = np.linspace(a, c, num = 2*(b-a)+1) y = np.zeros(z.shape) y[z <= a] = 0 y[z >= c] = 0 first_half = np.logical_and(a < z, z <= b) y[first_half] = (z[first_half]-a) / (b-a) second_half = np.logical_and(b < z, z < c) y[second_half] = (c-z[second_half]) / (c-b) return y def _gausslabel(self,i,y2,y3,spt,sst,a=31): 'Used for gaussian labeling- do both y2 and y3 at once' dim = y2.shape[1] g = np.exp(-(np.arange(-a,a+1))**2/(2*(a/3)**2)) if spt: Lg = abs(min(0,spt-a)) Rg = len(g) - (spt+a-dim+1) L = max(0,spt-a) R = min(dim,spt+a+1) y2[i,L:R,0] = g[Lg:Rg] if sst: Lg = abs(min(0,sst-a)) Rg = len(g) - (sst+a-dim+1) L = max(0,sst-a) R = min(dim,sst+a+1) y3[i,L:R,0] = g[Lg:Rg] return y2,y3 def _add_event(self, data, addp, adds, coda_end, snr, rate): 'Add a scaled version of the event into the empty part of the trace' added = np.copy(data) additions = None spt_secondEV = None sst_secondEV = None if addp and adds: s_p = adds - addp if np.random.uniform(0, 1) < rate and all(snr>=10.0) and (data.shape[0]-s_p-21-coda_end) > 20: secondEV_strt = np.random.randint(coda_end, data.shape[0]-s_p-21) scaleAM = 1/np.random.randint(1, 10) space = data.shape[0]-secondEV_strt added[secondEV_strt:secondEV_strt+space, 0] += data[addp:addp+space, 0]*scaleAM added[secondEV_strt:secondEV_strt+space, 1] += data[addp:addp+space, 1]*scaleAM added[secondEV_strt:secondEV_strt+space, 2] += data[addp:addp+space, 2]*scaleAM spt_secondEV = secondEV_strt if spt_secondEV + s_p + 21 <= data.shape[0]: sst_secondEV = spt_secondEV + s_p if spt_secondEV and sst_secondEV: additions = [spt_secondEV, sst_secondEV] data = added return data, additions def _shift_event_orig(self, data, addp, adds, coda_end, snr, rate): 'Randomly rotate the array to shift the event location' org_len = len(data) data2 = np.copy(data) addp2 = adds2 = coda_end2 = None; if np.random.uniform(0, 1) < rate: nrotate = int(np.random.uniform(1, int(org_len - coda_end))) data2[:, 0] = list(data[:, 0])[-nrotate:] + list(data[:, 0])[:-nrotate] data2[:, 1] = list(data[:, 1])[-nrotate:] + list(data[:, 1])[:-nrotate] data2[:, 2] = list(data[:, 2])[-nrotate:] + list(data[:, 2])[:-nrotate] if addp+nrotate >= 0 and addp+nrotate < org_len: addp2 = addp+nrotate; else: addp2 = None; if adds+nrotate >= 0 and adds+nrotate < org_len: adds2 = adds+nrotate; else: adds2 = None; if coda_end+nrotate < org_len: coda_end2 = coda_end+nrotate else: coda_end2 = org_len if addp2 and adds2: data = data2; addp = addp2; adds = adds2; coda_end= coda_end2; return data, addp, adds, coda_end def _shift_event(self, data, addp, adds, coda_end, snr, rate): 'Randomly rotate the array to shift the event location' if rate == 1 or np.random.uniform(0, 1) < rate: org_len = len(data) nrotate = np.random.randint(0,org_len) data = np.roll(data,nrotate,axis=0) #shape of data is (6000,3) #define new values coda_end = (coda_end+nrotate)%org_len addp = (addp+nrotate)%org_len adds = (adds+nrotate)%org_len #truncate coda_end to end of data where needed & remove S-pick if truncated if coda_end < addp: coda_end = org_len if adds < addp: coda_end = org_len adds = None return data, addp, adds, coda_end def _pre_emphasis(self, data, pre_emphasis=0.97): 'apply the pre_emphasis' for ch in range(self.n_channels): bpf = data[:, ch] data[:, ch] = np.append(bpf[0], bpf[1:] - pre_emphasis * bpf[:-1]) return data def __data_generation(self, list_IDs_temp): 'read the waveforms' X = np.zeros((self.batch_size, self.dim, self.n_channels)) y1 = np.zeros((self.batch_size, self.dim, 1)) y2 = np.zeros((self.batch_size, self.dim, 1)) y3 = np.zeros((self.batch_size, self.dim, 1)) fl = h5py.File(self.file_name, 'r') # Generate data for i, ID in enumerate(list_IDs_temp): additions = None dataset = fl.get('data/'+str(ID)) if ID.split('_')[-1] == 'EV': data = np.array(dataset) spt = int(dataset.attrs['p_arrival_sample']); sst = int(dataset.attrs['s_arrival_sample']); coda_end = int(dataset.attrs['coda_end_sample']); snr = dataset.attrs['snr_db']; elif ID.split('_')[-1] == 'NO': data = np.array(dataset) ## augmentation if self.augmentation == True: if i <= self.batch_size//2: if self.shift_event_r and dataset.attrs['trace_category'] == 'earthquake_local': data, spt, sst, coda_end = self._shift_event(data, spt, sst, coda_end, snr, self.shift_event_r/2); if self.norm_mode: data = self._normalize(data, self.norm_mode) else: if dataset.attrs['trace_category'] == 'earthquake_local': if self.shift_event_r: data, spt, sst, coda_end = self._shift_event(data, spt, sst, coda_end, snr, self.shift_event_r) if self.add_event_r: data, additions = self._add_event(data, spt, sst, coda_end, snr, self.add_event_r) if self.add_noise_r: data = self._add_noise(data, snr, self.add_noise_r) if self.drop_channe_r: data = self._drop_channel(data, snr, self.drop_channe_r) data = self._adjust_amplitude_for_multichannels(data) if self.scale_amplitude_r: data = self._scale_amplitude(data, self.scale_amplitude_r) if self.pre_emphasis: data = self._pre_emphasis(data) if self.norm_mode: data = self._normalize(data, self.norm_mode) elif dataset.attrs['trace_category'] == 'noise': if self.drop_channe_r: data = self._drop_channel_noise(data, self.drop_channe_r) if self.add_noise_r: data = self._add_noise(data, np.array([10.]), self.add_noise_r) if self.add_gap_r: data = self._add_gaps(data, self.add_gap_r) if self.shift_event_r: data, _, __, ___ = self._shift_event(data, 0, 0, 0, 10., self.shift_event_r) if self.norm_mode: data = self._normalize(data, self.norm_mode) elif self.augmentation == False: if self.shift_event_r and dataset.attrs['trace_category'] == 'earthquake_local': data, spt, sst, coda_end = self._shift_event(data, spt, sst, coda_end, snr, self.shift_event_r/2) if self.norm_mode: data = self._normalize(data, self.norm_mode) X[i, :, :] = data ## labeling if dataset.attrs['trace_category'] == 'earthquake_local': if self.label_type == 'gaussian': sd = None if spt and sst: sd = sst - spt if sd and sst: if sst+int(self.coda_ratio*sd) <= self.dim: y1[i, spt:int(sst+(self.coda_ratio*sd)), 0] = 1 else: y1[i, spt:self.dim, 0] = 1 y2,y3 = self._gausslabel(i,y2,y3,spt,sst,a=31) """ if spt and (spt-20 >= 0) and (spt+20 < self.dim): y2[i, spt-20:spt+20, 0] = np.exp(-(np.arange(spt-20,spt+20)-spt)**2/(2*(10)**2))[:self.dim-(spt-20)] elif spt and (spt-20 < self.dim): y2[i, 0:spt+20, 0] = np.exp(-(np.arange(0,spt+20)-spt)**2/(2*(10)**2))[:self.dim-(spt-20)] if sst and (sst-20 >= 0) and (sst-20 < self.dim): y3[i, sst-20:sst+20, 0] = np.exp(-(np.arange(sst-20,sst+20)-sst)**2/(2*(10)**2))[:self.dim-(sst-20)] elif sst and (sst-20 < self.dim): y3[i, 0:sst+20, 0] = np.exp(-(np.arange(0,sst+20)-sst)**2/(2*(10)**2))[:self.dim-(sst-20)] """ if additions: add_sd = None add_spt = additions[0] add_sst = additions[1] if add_spt and add_sst: add_sd = add_sst - add_spt if add_sd and add_sst+int(self.coda_ratio*add_sd) <= self.dim: y1[i, add_spt:int(add_sst+(self.coda_ratio*add_sd)), 0] = 1 else: y1[i, add_spt:self.dim, 0] = 1 y2,y3 = self._gausslabel(i,y2,y3,add_spt,add_sst,a=31) """ if add_spt and (add_spt-20 >= 0) and (add_spt+20 < self.dim): y2[i, add_spt-20:add_spt+20, 0] = np.exp(-(np.arange(add_spt-20,add_spt+20)-add_spt)**2/(2*(10)**2))[:self.dim-(add_spt-20)] elif add_spt and (add_spt+20 < self.dim): y2[i, 0:add_spt+20, 0] = np.exp(-(np.arange(0,add_spt+20)-add_spt)**2/(2*(10)**2))[:self.dim-(add_spt-20)] if add_sst and (add_sst-20 >= 0) and (add_sst+20 < self.dim): y3[i, add_sst-20:add_sst+20, 0] = np.exp(-(np.arange(add_sst-20,add_sst+20)-add_sst)**2/(2*(10)**2))[:self.dim-(add_sst-20)] elif add_sst and (add_sst+20 < self.dim): y3[i, 0:add_sst+20, 0] = np.exp(-(np.arange(0,add_sst+20)-add_sst)**2/(2*(10)**2))[:self.dim-(add_sst-20)] """ elif self.label_type == 'triangle': sd = None if spt and sst: sd = sst - spt if sd and sst: if sst+int(self.coda_ratio*sd) <= self.dim: y1[i, spt:int(sst+(self.coda_ratio*sd)), 0] = 1 else: y1[i, spt:self.dim, 0] = 1 if spt and (spt-20 >= 0) and (spt+21 < self.dim): y2[i, spt-20:spt+21, 0] = self._trilabel() elif spt and (spt+21 < self.dim): y2[i, 0:spt+spt+1, 0] = self._trilabel(a=0, b=spt, c=2*spt) elif spt and (spt-20 >= 0): pdif = self.dim - spt y2[i, spt-pdif-1:self.dim, 0] = self._trilabel(a=spt-pdif, b=spt, c=2*pdif) if sst and (sst-20 >= 0) and (sst+21 < self.dim): y3[i, sst-20:sst+21, 0] = self._trilabel() elif sst and (sst+21 < self.dim): y3[i, 0:sst+sst+1, 0] = self._trilabel(a=0, b=sst, c=2*sst) elif sst and (sst-20 >= 0): sdif = self.dim - sst y3[i, sst-sdif-1:self.dim, 0] = self._trilabel(a=sst-sdif, b=sst, c=2*sdif) if additions: add_spt = additions[0] add_sst = additions[1] add_sd = None if add_spt and add_sst: add_sd = add_sst - add_spt if add_sd and add_sst+int(self.coda_ratio*add_sd) <= self.dim: y1[i, add_spt:int(add_sst+(self.coda_ratio*add_sd)), 0] = 1 else: y1[i, add_spt:self.dim, 0] = 1 if add_spt and (add_spt-20 >= 0) and (add_spt+21 < self.dim): y2[i, add_spt-20:add_spt+21, 0] = self._trilabel() elif add_spt and (add_spt+21 < self.dim): y2[i, 0:add_spt+add_spt+1, 0] = self._trilabel(a=0, b=add_spt, c=2*add_spt) elif add_spt and (add_spt-20 >= 0): pdif = self.dim - add_spt y2[i, add_spt-pdif-1:self.dim, 0] = self._trilabel(a=add_spt-pdif, b=add_spt, c=2*pdif) if add_sst and (add_sst-20 >= 0) and (add_sst+21 < self.dim): y3[i, add_sst-20:add_sst+21, 0] = self._trilabel() elif add_sst and (add_sst+21 < self.dim): y3[i, 0:add_sst+add_sst+1, 0] = self._trilabel(a=0, b=add_sst, c=2*add_sst) elif add_sst and (add_sst-20 >= 0): sdif = self.dim - add_sst y3[i, add_sst-sdif-1:self.dim, 0] = self._trilabel(a=add_sst-sdif, b=add_sst, c=2*sdif) elif self.label_type == 'box': sd = None if sst and spt: sd = sst - spt if sd and sst+int(self.coda_ratio*sd) <= self.dim: y1[i, spt:int(sst+(self.coda_ratio*sd)), 0] = 1 else: y1[i, spt:self.dim, 0] = 1 if spt: y2[i, spt-20:spt+20, 0] = 1 if sst: y3[i, sst-20:sst+20, 0] = 1 if additions: add_sd = None add_spt = additions[0] add_sst = additions[1] if add_spt and add_sst: add_sd = add_sst - add_spt if add_sd and add_sst+int(self.coda_ratio*add_sd) <= self.dim: y1[i, add_spt:int(add_sst+(self.coda_ratio*add_sd)), 0] = 1 else: y1[i, add_spt:self.dim, 0] = 1 if add_spt: y2[i, add_spt-20:add_spt+20, 0] = 1 if add_sst: y3[i, add_sst-20:add_sst+20, 0] = 1 fl.close() return X, y1.astype('float32'), y2.astype('float32'), y3.astype('float32') class PreLoadGenerator(keras.utils.Sequence): """ Keras generator with preprocessing. Pre-load version. Parameters ---------- list_IDsx: str List of trace names. inp_data: dic A dictionary of input hdf5 datasets. dim: tuple Dimension of input traces. batch_size: int, default=32 Batch size. n_channels: int, default=3 Number of channels. phase_window: int, fixed=40 The number of samples (window) around each phaset. shuffle: bool, default=True Shuffeling the list. norm_mode: str, default=max The mode of normalization, 'max' or 'std'. label_type: str, default=gaussian Labeling type. 'gaussian', 'triangle', or 'box'. augmentation: bool, default=True If True, half of each batch will be augmented version of the other half. add_event_r: {float, None}, default=None Chance for randomly adding a second event into the waveform. add_gap_r: {float, None}, default=None Add an interval with zeros into the waveform representing filled gaps. coda_ratio: {float, 0.4}, default=0.4 % of S-P time to extend event/coda envelope past S pick. shift_event_r: {float, None}, default=0.9 Rate of augmentation for randomly shifting the event within a trace. add_noise_r: {float, None}, default=None Chance for randomly adding Gaussian noise into the waveform. drop_channe_r: {float, None}, default=None Chance for randomly dropping some of the channels. scale_amplitude_r: {float, None}, default=None Chance for randomly amplifying the waveform amplitude. pre_emphasis: bool, default=False If True, waveforms will be pre emphasized. Returns -------- Batches of two dictionaries: {'input': X}: pre-processed waveform as input {'detector': y1, 'picker_P': y2, 'picker_S': y3}: outputs including three separate numpy arrays as labels for detection, P, and S respectively. """ def __init__(self, inp_data, list_IDs, file_name, dim, batch_size=32, n_channels=3, phase_window= 40, shuffle=True, norm_mode = 'max', label_type = 'gaussian', augmentation = False, add_event_r = None, add_gap_r = None, coda_ratio = 0.4, shift_event_r = None, add_noise_r = None, drop_channe_r = None, scale_amplitude_r = None, pre_emphasis = True): 'Initialization' self.inp_data =inp_data self.dim = dim self.batch_size = batch_size self.phase_window = phase_window self.list_IDs = list_IDs self.file_name = file_name self.n_channels = n_channels self.shuffle = shuffle self.on_epoch_end() self.norm_mode = norm_mode self.label_type = label_type self.augmentation = augmentation self.add_event_r = add_event_r self.add_gap_r = add_gap_r self.coda_ratio = coda_ratio self.shift_event_r = shift_event_r self.add_noise_r = add_noise_r self.drop_channe_r = drop_channe_r self.scale_amplitude_r = scale_amplitude_r self.pre_emphasis = pre_emphasis def __len__(self): 'Denotes the number of batches per epoch' if self.augmentation: return 2*int(np.floor(len(self.list_IDs) / self.batch_size)) else: return int(np.floor(len(self.list_IDs) / self.batch_size)) def __getitem__(self, index): 'Generate one batch of data' if self.augmentation: indexes = self.indexes[index*self.batch_size//2:(index+1)*self.batch_size//2] indexes = np.append(indexes, indexes) else: indexes = self.indexes[index*self.batch_size:(index+1)*self.batch_size] list_IDs_temp = [self.list_IDs[k] for k in indexes] X, y1, y2, y3 = self.__data_generation(list_IDs_temp) cw1 = np.array(np.where(y1==1)).size/y1.size cw2 = np.array(np.where( y2>0)).size/y2.size cw3 = np.array(np.where( y3>0)).size/y3.size class_weights = [[cw1, 1-cw1],[cw2, 1-cw2],[cw3, 1-cw3]] sample_weights = np.array([y1,y2,y3].copy()) for i,y in enumerate([y1,y2,y3]): sample_weights[i][np.where(y >0)] = class_weights[i][1] sample_weights[i][np.where(y==0)] = class_weights[i][0] return (X, [y1,y2,y3],list(sample_weights)) def on_epoch_end(self): 'Updates indexes after each epoch' self.indexes = np.arange(len(self.list_IDs)) if self.shuffle == True: np.random.shuffle(self.indexes) def _normalize(self, data, mode = 'max'): 'Normalize waveforms in each batch' data -= np.mean(data, axis=0, keepdims=True) if mode == 'max': max_data = np.max(data, axis=0, keepdims=True) assert(max_data.shape[-1] == data.shape[-1]) max_data[max_data == 0] = 1 data /= max_data elif mode == 'std': std_data = np.std(data, axis=0, keepdims=True) assert(std_data.shape[-1] == data.shape[-1]) std_data[std_data == 0] = 1 data /= std_data return data def _scale_amplitude(self, data, rate): 'Scale amplitude or waveforms' tmp = np.random.uniform(0, 1) if tmp < rate: data *= np.random.uniform(1, 3) elif tmp < 2*rate: data /= np.random.uniform(1, 3) return data def _drop_channel(self, data, snr, rate): 'Randomly replace values of one or two components to zeros in earthquake data' if np.random.uniform(0, 1) < rate and all(snr >= 10): data = np.copy(data) c1 = np.random.choice([0, 1]) c2 = np.random.choice([0, 1]) c3 = np.random.choice([0, 1]) if c1 + c2 + c3 > 0: data[..., np.array([c1, c2, c3]) == 0] = 0 return data def _drop_channel_noise(self, data, rate): 'Randomly replace values of one or two components to zeros in noise data' if np.random.uniform(0, 1) < rate: data = np.copy(data) c1 = np.random.choice([0, 1]) c2 = np.random.choice([0, 1]) c3 = np.random.choice([0, 1]) if c1 + c2 + c3 > 0: data[..., np.array([c1, c2, c3]) == 0] = 0 return data def _add_gaps(self, data, rate): 'Randomly add gaps (zeros) of different sizes into waveforms' if np.random.uniform(0, 1) < rate: data = np.copy(data) gap_start = np.random.randint(0, 4000) gap_end = np.random.randint(gap_start, 5500) data[gap_start:gap_end,:] = 0 return data def _add_noise(self, data, snr, rate): 'Randomly add Gaussian noise with a random SNR into waveforms' if np.random.uniform(0, 1) < rate and all(snr >= 10.0): data_noisy = np.empty((data.shape)) data_noisy[:, 0] = data[:,0] + np.random.normal(0, np.random.uniform(0.01, 0.15)*abs(max(data[:,0])), data.shape[0]) data_noisy[:, 1] = data[:,1] + np.random.normal(0, np.random.uniform(0.01, 0.15)*abs(max(data[:,1])), data.shape[0]) data_noisy[:, 2] = data[:,2] + np.random.normal(0, np.random.uniform(0.01, 0.15)*abs(max(data[:,2])), data.shape[0]) else: data_noisy = data return data_noisy def _adjust_amplitude_for_multichannels(self, data): 'Adjust the amplitude of multichaneel data' tmp = np.max(np.abs(data), axis=0, keepdims=True) assert(tmp.shape[-1] == data.shape[-1]) if np.count_nonzero(tmp) > 0: data *= data.shape[-1] / np.count_nonzero(tmp) return data def _label(self, a=0, b=20, c=40): 'Used for triangular labeling' z = np.linspace(a, c, num = 2*(b-a)+1) y = np.zeros(z.shape) y[z <= a] = 0 y[z >= c] = 0 first_half = np.logical_and(a < z, z <= b) y[first_half] = (z[first_half]-a) / (b-a) second_half = np.logical_and(b < z, z < c) y[second_half] = (c-z[second_half]) / (c-b) return y def _add_event(self, data, addp, adds, coda_end, snr, rate): 'Add a scaled version of the event into the empty part of the trace' added = np.copy(data) additions = None spt_secondEV = None sst_secondEV = None if addp and adds: s_p = adds - addp if np.random.uniform(0, 1) < rate and all(snr >= 10.0) and (data.shape[0]-s_p-21-coda_end) > 20: secondEV_strt = np.random.randint(coda_end, data.shape[0]-s_p-21) scaleAM = 1/np.random.randint(1, 10) space = data.shape[0]-secondEV_strt added[secondEV_strt:secondEV_strt+space, 0] += data[addp:addp+space, 0]*scaleAM added[secondEV_strt:secondEV_strt+space, 1] += data[addp:addp+space, 1]*scaleAM added[secondEV_strt:secondEV_strt+space, 2] += data[addp:addp+space, 2]*scaleAM spt_secondEV = secondEV_strt if spt_secondEV + s_p + 21 <= data.shape[0]: sst_secondEV = spt_secondEV + s_p if spt_secondEV and sst_secondEV: additions = [spt_secondEV, sst_secondEV] data = added return data, additions def _shift_event(self, data, addp, adds, coda_end, snr, rate): 'Randomly rotate the array to shift the event location' org_len = len(data) data2 = np.copy(data) addp2 = adds2 = coda_end2 = None; if np.random.uniform(0, 1) < rate: nrotate = int(np.random.uniform(1, int(org_len - coda_end))) data2[:, 0] = list(data[:, 0])[-nrotate:] + list(data[:, 0])[:-nrotate] data2[:, 1] = list(data[:, 1])[-nrotate:] + list(data[:, 1])[:-nrotate] data2[:, 2] = list(data[:, 2])[-nrotate:] + list(data[:, 2])[:-nrotate] if addp+nrotate >= 0 and addp+nrotate < org_len: addp2 = addp+nrotate; else: addp2 = None; if adds+nrotate >= 0 and adds+nrotate < org_len: adds2 = adds+nrotate; else: adds2 = None; if coda_end+nrotate < org_len: coda_end2 = coda_end+nrotate else: coda_end2 = org_len if addp2 and adds2: data = data2; addp = addp2; adds = adds2; coda_end= coda_end2; return data, addp, adds, coda_end def _pre_emphasis(self, data, pre_emphasis=0.97): 'apply the pre_emphasis' for ch in range(self.n_channels): bpf = data[:, ch] data[:, ch] = np.append(bpf[0], bpf[1:] - pre_emphasis * bpf[:-1]) return data def __data_generation(self, list_IDs_temp): 'readint the waveforms' X = np.zeros((self.batch_size, self.dim, self.n_channels)) y1 = np.zeros((self.batch_size, self.dim, 1)) y2 = np.zeros((self.batch_size, self.dim, 1)) y3 = np.zeros((self.batch_size, self.dim, 1)) # Generate data for i, ID in enumerate(list_IDs_temp): additions = None dataset = self.inp_data[ID] data = np.array(dataset) if dataset.attrs['trace_category'] == 'earthquake_local': spt = int(dataset.attrs['p_arrival_sample']); sst = int(dataset.attrs['s_arrival_sample']); coda_end = int(dataset.attrs['coda_end_sample']); snr = dataset.attrs['snr_db']; if self.augmentation == True: if i <= self.batch_size//2: if self.shift_event_r and dataset.attrs['trace_category'] == 'earthquake_local': data, spt, sst, coda_end = self._shift_event(data, spt, sst, coda_end, snr, self.shift_event_r/2); if self.norm_mode: data = self._normalize(data, self.norm_mode) else: if dataset.attrs['trace_category'] == 'earthquake_local': if self.shift_event_r and spt: data, spt, sst, coda_end = self._shift_event(data, spt, sst, coda_end, snr, self.shift_event_r); if self.add_event_r and spt and sst: data, additions = self._add_event(data, spt, sst, coda_end, snr, self.add_event_r); if self.add_noise_r: data = self._add_noise(data, snr, self.add_noise_r); if self.drop_channe_r: data = self._drop_channel(data, snr, self.drop_channe_r); data = self._adjust_amplitude_for_multichannels(data) if self.scale_amplitude_r: data = self._scale_amplitude(data, self.scale_amplitude_r); if self.pre_emphasis: data = self._pre_emphasis(data) if self.norm_mode: data = self._normalize(data, self.norm_mode) elif dataset.attrs['trace_category'] == 'noise': if self.drop_channe_r: data = self._drop_channel_noise(data, self.drop_channe_r); if self.add_gap_r: data = self._add_gaps(data, self.add_gap_r) if self.norm_mode: data = self._normalize(data, self.norm_mode) elif self.augmentation == False: if self.shift_event_r and dataset.attrs['trace_category'] == 'earthquake_local': data, spt, sst, coda_end = self._shift_event(data, spt, sst, coda_end, snr, self.shift_event_r/2); if self.norm_mode: data = self._normalize(data, self.norm_mode) X[i, :, :] = data ## labeling if dataset.attrs['trace_category'] == 'earthquake_local': if self.label_type == 'gaussian': sd = None if spt and sst: sd = sst - spt if sd and sst: if sst+int(self.coda_ratio*sd) <= self.dim: y1[i, spt:int(sst+(self.coda_ratio*sd)), 0] = 1 else: y1[i, spt:self.dim, 0] = 1 if spt and (spt-20 >= 0) and (spt+20 < self.dim): y2[i, spt-20:spt+20, 0] = np.exp(-(np.arange(spt-20,spt+20)-spt)**2/(2*(10)**2))[:self.dim-(spt-20)] elif spt and (spt-20 < self.dim): y2[i, 0:spt+20, 0] = np.exp(-(np.arange(0,spt+20)-spt)**2/(2*(10)**2))[:self.dim-(spt-20)] if sst and (sst-20 >= 0) and (sst-20 < self.dim): y3[i, sst-20:sst+20, 0] = np.exp(-(np.arange(sst-20,sst+20)-sst)**2/(2*(10)**2))[:self.dim-(sst-20)] elif sst and (sst-20 < self.dim): y3[i, 0:sst+20, 0] = np.exp(-(np.arange(0,sst+20)-sst)**2/(2*(10)**2))[:self.dim-(sst-20)] if additions: add_spt = additions[0]; add_sst = additions[1]; add_sd = None if add_spt and add_sst: add_sd = add_sst - add_spt if add_sd and add_sst+int(self.coda_ratio*add_sd) <= self.dim: y1[i, add_spt:int(add_sst+(self.coda_ratio*add_sd)), 0] = 1 else: y1[i, add_spt:self.dim, 0] = 1 if add_spt and (add_spt-20 >= 0) and (add_spt+20 < self.dim): y2[i, add_spt-20:add_spt+20, 0] = np.exp(-(np.arange(add_spt-20,add_spt+20)-add_spt)**2/(2*(10)**2))[:self.dim-(add_spt-20)] elif add_spt and (add_spt+20 < self.dim): y2[i, 0:add_spt+20, 0] = np.exp(-(np.arange(0,add_spt+20)-add_spt)**2/(2*(10)**2))[:self.dim-(add_spt-20)] if add_sst and (add_sst-20 >= 0) and (add_sst+20 < self.dim): y3[i, add_sst-20:add_sst+20, 0] = np.exp(-(np.arange(add_sst-20,add_sst+20)-add_sst)**2/(2*(10)**2))[:self.dim-(add_sst-20)] elif add_sst and (add_sst+20 < self.dim): y3[i, 0:add_sst+20, 0] = np.exp(-(np.arange(0,add_sst+20)-add_sst)**2/(2*(10)**2))[:self.dim-(add_sst-20)] elif self.label_type == 'triangle': sd = None if spt and sst: sd = sst - spt if sd and sst: if sst+int(self.coda_ratio*sd) <= self.dim: y1[i, spt:int(sst+(self.coda_ratio*sd)), 0] = 1 else: y1[i, spt:self.dim, 0] = 1 if spt and (spt-20 >= 0) and (spt+21 < self.dim): y2[i, spt-20:spt+21, 0] = self._label() elif spt and (spt+21 < self.dim): y2[i, 0:spt+spt+1, 0] = self._label(a=0, b=spt, c=2*spt) elif spt and (spt-20 >= 0): pdif = self.dim - spt y2[i, spt-pdif-1:self.dim, 0] = self._label(a=spt-pdif, b=spt, c=2*pdif) if sst and (sst-20 >= 0) and (sst+21 < self.dim): y3[i, sst-20:sst+21, 0] = self._label() elif sst and (sst+21 < self.dim): y3[i, 0:sst+sst+1, 0] = self._label(a=0, b=sst, c=2*sst) elif sst and (sst-20 >= 0): sdif = self.dim - sst y3[i, sst-sdif-1:self.dim, 0] = self._label(a=sst-sdif, b=sst, c=2*sdif) if additions: add_spt = additions[0]; add_sst = additions[1]; add_sd = None if add_spt and add_sst: add_sd = add_sst - add_spt if add_sd and add_sst+int(self.coda_ratio*add_sd) <= self.dim: y1[i, add_spt:int(add_sst+(self.coda_ratio*add_sd)), 0] = 1 else: y1[i, add_spt:self.dim, 0] = 1 if add_spt and (add_spt-20 >= 0) and (add_spt+21 < self.dim): y2[i, add_spt-20:add_spt+21, 0] = self.label() elif add_spt and (add_spt+21 < self.dim): y2[i, 0:add_spt+add_spt+1, 0] = self.label(a=0, b=add_spt, c=2*add_spt) elif add_spt and (add_spt-20 >= 0): pdif = self.dim - add_spt y2[i, add_spt-pdif-1:self.dim, 0] = self.label(a=add_spt-pdif, b=add_spt, c=2*pdif) if add_sst and (add_sst-20 >= 0) and (add_sst+21 < self.dim): y3[i, add_sst-20:add_sst+21, 0] = self.label() elif add_sst and (add_sst+21 < self.dim): y3[i, 0:add_sst+add_sst+1, 0] = self.label(a=0, b=add_sst, c=2*add_sst) elif add_sst and (add_sst-20 >= 0): sdif = self.dim - add_sst y3[i, add_sst-sdif-1:self.dim, 0] = self.label(a=add_sst-sdif, b=add_sst, c=2*sdif) elif self.label_type == 'box': sd = None if sst and spt: sd = sst - spt if sd and sst+int(self.coda_ratio*sd) <= self.dim: y1[i, spt:int(sst+(self.coda_ratio*sd)), 0] = 1 else: y1[i, spt:self.dim, 0] = 1 if spt: y2[i, spt-20:spt+20, 0] = 1 if sst: y3[i, sst-20:sst+20, 0] = 1 if additions: add_sd = None add_spt = additions[0]; add_sst = additions[1]; if add_spt and add_sst: add_sd = add_sst - add_spt if add_sd and add_sst+int(self.coda_ratio*add_sd) <= self.dim: y1[i, add_spt:int(add_sst+(self.coda_ratio*add_sd)), 0] = 1 else: y1[i, add_spt:self.dim, 0] = 1 if add_spt: y2[i, add_spt-20:add_spt+20, 0] = 1 if add_sst: y3[i, add_sst-20:add_sst+20, 0] = 1 return X.astype('float32'), y1.astype('float32'), y2.astype('float32'), y3.astype('float32') def data_reader( list_IDs, file_name, dim=6000, n_channels=3, norm_mode='max', augmentation=False, add_event_r=None, add_gap_r=None, coda_ratio=0.4, shift_event_r=None, add_noise_r=None, drop_channe_r=None, scale_amplitude_r=None, pre_emphasis=True): """ For pre-processing and loading of data into memory. Parameters ---------- list_IDsx: str List of trace names. file_name: str Path to the input hdf5 datasets. dim: int, default=6000 Dimension of input traces, in sample. n_channels: int, default=3 Number of channels. norm_mode: str, default=max The mode of normalization, 'max' or 'std'. augmentation: bool, default=True If True, half of each batch will be augmented version of the other half. add_event_r: {float, None}, default=None Chance for randomly adding a second event into the waveform. add_gap_r: {float, None}, default=None Add an interval with zeros into the waveform representing filled gaps. coda_ratio: {float, 0.4}, default=0.4 % of S-P time to extend event/coda envelope past S pick. shift_event_r: {float, None}, default=0.9 Rate of augmentation for randomly shifting the event within a trace. add_noise_r: {float, None}, default=None Chance for randomly adding Gaussian noise into the waveform. drop_channe_r: {float, None}, default=None Chance for randomly dropping some of the channels. scale_amplitude_r: {float, None}, default=None Chance for randomly amplifying the waveform amplitude. pre_emphasis: bool, default=False If True, waveforms will be pre emphasized. Returns -------- Batches of two dictionaries: {'input': X}: pre-processed waveform as input {'detector': y1, 'picker_P': y2, 'picker_S': y3}: outputs including three separate numpy arrays as labels for detection, P, and S respectively. Note ----- Label type is fixed to box. """ def _normalize( data, mode = 'max'): 'Normalize waveforms in each batch' data -= np.mean(data, axis=0, keepdims=True) if mode == 'max': max_data = np.max(data, axis=0, keepdims=True) assert(max_data.shape[-1] == data.shape[-1]) max_data[max_data == 0] = 1 data /= max_data elif mode == 'std': std_data = np.std(data, axis=0, keepdims=True) assert(std_data.shape[-1] == data.shape[-1]) std_data[std_data == 0] = 1 data /= std_data return data def _scale_amplitude( data, rate): 'Scale amplitude or waveforms' tmp =
np.random.uniform(0, 1)
numpy.random.uniform
# -*- coding: utf-8 -*- import os import sys import time import numpy as np from scipy.optimize import differential_evolution, minimize from scipy.interpolate import interp1d from scipy.integrate import solve_ivp, odeint import sympy as sp # from sklearn import ensemble #, tree # Left for gitch_doctor metamodel import ProGED.mute_so as mt from _io import TextIOWrapper as stdout_type from ProGED.examples.tee_so import Tee from ProGED.model_box import ModelBox from ProGED.task import TASK_TYPES # from ProGED.optimizers import DE_fit, DE_fit_metamodel, hyperopt_fit, min_fit # glitch-doctor downloaded from github: # from ProGED.glitch_doctor.metamodel import Metamodel # import ProGED.glitch_doctor.metamodel.Metamodel # import ProGED.glitch_doctor.model.Model import warnings warnings.filterwarnings("ignore", message="divide by zero encountered in divide") warnings.filterwarnings("ignore", message="divide by zero encountered in true_divide") warnings.filterwarnings("ignore", message="invalid value encountered in power") warnings.filterwarnings("ignore", message="invalid value encountered in sqrt") warnings.filterwarnings("ignore", message="invalid value encountered in double_scalars") warnings.filterwarnings("ignore", message="overflow encountered in exp") warnings.filterwarnings("ignore", message="overflow encountered in square") warnings.filterwarnings("ignore", message="overflow encountered in double_scalars") """Methods for estimating model parameters. Currently implemented: differential evolution. Methods: fit_models: Performs parameter estimation on given models. Main interface to the module. """ def model_error (params, model, X, Y, _T=None, estimation_settings=None): """Defines mean squared error as the error metric.""" try: verbosity = estimation_settings['verbosity'] testY = model.evaluate(X, *params) res = np.mean((Y-testY)**2) if np.isnan(res) or np.isinf(res) or not np.isreal(res): if verbosity >= 3: print("isnan, isinf, isreal =", np.isnan(res), np.isinf(res), not np.isreal(res)) print(model.expr, model.params, model.sym_params, model.sym_vars) return estimation_settings['default_error'] if verbosity >= 3: print("Function model_error did not encounter any " "errors, the output *square error/loss* is legit.") return res except Exception as error: if verbosity >= 2: print("model_error: Params at error:", params, f"and {type(error)} with message:", error) if verbosity >= 1: print(f"Program is returning default_error:" f"{estimation_settings['default_error']}") return estimation_settings['default_error'] # def model_constant_error (model, params, X, Y): # """Alternative to model_error, intended to allow the discovery of physical constants. # Work in progress.""" # testY = model.evaluate(X, *params) # return np.std(testY)#/np.linalg.norm(params) def model_error_general (params, model, X, Y, T, **estimation_settings): """Calculate error of model with given parameters in general with type of error given. Input = TODO: - X are columns without features that are derived. - Y are columns of features that are derived via ode fitting. - T is column of times at which samples in X and Y happen. - estimation_settings: look description of fit_models() """ task_type = estimation_settings["task_type"] if task_type in ("algebraic", "integer-algebraic"): return model_error(params, model, X, Y, _T=None, estimation_settings=estimation_settings) elif task_type == "differential": return model_ode_error(params, model, X, Y, T, estimation_settings) else: types_string = "\", \"".join(TASK_TYPES) raise ValueError("Variable task_type has unsupported value " f"\"{task_type}\", while list of possible values: " f"\"{types_string}\".") def ode (models_list, params_matrix, T, X_data, y0, **estimation_settings): """Solve system of ODEs defined by equations in models_list. Raise error if input is incompatible. Input: models_list -- list (not dictionary) of models that e.g. generate_models() generates. params_matrix -- list of lists or ndarrays of parameters for corresponding models. y0 -- array (1-dim) of initial value of vector function y(t) i.e. y0 = y(T[0]) = [y1(T[0]), y2(T[0]), y3(T[0]),...]. X_data -- 2-dim array (matrix) i.e. X = [X[0,:], X[1,:],...]. T -- (1-dim) array, i.e. of shape (N,) max_ode_steps -- maximal number of steps inside ODE solver to determine the minimal step size inside ODE solver. Output: Solution of ODE evaluated at times T. """ if not (isinstance(models_list, list) and (isinstance(params_matrix, list) and len(params_matrix)>0 and isinstance(params_matrix[0], (list, np.ndarray))) and X_data.ndim == 2 and y0.ndim == 1): message = str(type(params_matrix[0])) + "\n" info = (isinstance(models_list, list), isinstance(params_matrix, list), len(params_matrix)>0, isinstance(params_matrix[0], (list, np.ndarray)), X_data.ndim == 2, y0.ndim == 1 ) print(message, info) print("Function ode's defined error: Input arguments are not" +" in the required form!") raise TypeError(f"Function ode's defined error: Input arguments are not" +f" in required form!" +f"\n{message, info}") elif not T.shape[0] == X_data.shape[0]: print("Number of samples in T and X does not match.") raise IndexError("Number of samples in T and X does not match.") elif not (y0.shape[0] == len(models_list) #len(equations)=len(models used) and len(models_list[0].sym_vars) == X_data.shape[1] + y0.shape[0]): print("Number of symbols in models and combination of " + "number of equations and dimensions of input data" + " does not match.") raise IndexError("Number of symbols in models and combination of " + "number of equations and dimensions of input data" + " does not match.") X = interp1d(T, X_data, axis=0, kind='cubic', fill_value="extrapolate") # N-D lamb_exprs = [ # sp.lambdify(model.sym_vars, model.full_expr(*params), "numpy") model.lambdify(*params) for model, params in zip(models_list, params_matrix) ] def dy_dt(t, y): """Represents \frac{dy}{dt}. y -- [y1,y2,y3,...] i.e. ( shape= (n,) ) """ # N-D: b = np.concatenate((y, X(t))) # =[y,X(t)] =[y,X1(t),X2(t),...] # Older version with *b.T: return np.array([lamb_expr(*b) for lamb_expr in lamb_exprs]) # Older (default RK45) method: # Yode = solve_ivp(dy_dt, (T[0], T[-1]), y0, t_eval=T, atol=0) # Set min_step via prescribing maximum number of steps: if "max_ode_steps" in estimation_settings: max_steps = estimation_settings["max_ode_steps"] else: # max_steps = 10**6 # On laptop, this would need less than 3 seconds. max_steps = T.shape[0]*10**3 # Set to |timepoints|*1000. # Convert max_steps to min_step: min_step_from_max_steps = abs(T[-1] - T[0])/max_steps # The minimal min_step to avoid min step error in LSODA: min_step_error = 10**(-15) min_step = max(min_step_from_max_steps, min_step_error) # Force them both. rtol = 10**(-4) atol = 10**(-6) # Yode = solve_ivp(dy_dt, (T[0], T[-1]), y0, t_eval=T, method="LSODA", rtol=rtol, atol=atol, min_step=min_step).y # Alternative LSODA using odeint (may be faster?): Yode = odeint(dy_dt, y0, T, rtol=rtol, atol=atol, tfirst=True, hmin=min_step).T return Yode def model_ode_error (params, model, X, Y, T, estimation_settings): """Defines mean squared error of solution to differential equation as the error metric. Input: - T is column of times at which samples in X and Y happen. - X are columns without features that are derived. - Y are columns of features that are derived via ode fitting. """ model_list = [model]; params_matrix = [params] # 12multi conversion (temporary) try: # Next few lines strongly suppress any warnning messages # produced by LSODA solver, called by ode() function. # Suppression further complicates if making log files (Tee): change_std2tee = False # Normaly no need for this mess. if isinstance(sys.stdout, Tee): # In this case the real standard output (sys.stdout) is not # saved in original location sys.stdout. We have to obtain # it inside of Tee object (look module tee_so). tee_object = sys.stdout # obtain Tee object that has sys.stdout std_output = tee_object.stdout # Obtain sys.stdout. sys.stdout = std_output # Change fake stdout to real stdout. change_std2tee = True # Remember to change it back. def run_ode(): return ode(model_list, params_matrix, T, X, y0=Y[:1], **estimation_settings) # Y[:1] if _ or Y[0] if | # Next line works only when sys.stdout is real. Thats why above. if isinstance(sys.stdout, stdout_type): with open(os.devnull, 'w') as f, mt.stdout_redirected(f): try: odeY = run_ode() except Exception as error: if estimation_settings["verbosity"] >= 1: print("Inside ode(), preventing tee/IO error. Params at error:", params, f"and {type(error)} with message:", error) else: odeY = run_ode() if change_std2tee: sys.stdout = tee_object # Change it back to fake stdout (tee). # odeY = odeY.T # solve_ivp() returns in _ oposite (DxN) shape. odeY = odeY[0] # If Y is landscape, i.e. _. if not odeY.shape == Y.shape: if estimation_settings["verbosity"] >= 3: print("The ODE solver did not found ys at all times -> returning default error.") if estimation_settings["verbosity"] >= 4: print(odeY.shape, Y.shape) return estimation_settings['default_error'] try: res = np.mean((Y-odeY)**2) if estimation_settings["verbosity"] >= 4: print("succesfully returning now inside model_ode_error") if np.isnan(res) or
np.isinf(res)
numpy.isinf
import pandas as pd import numpy as np import scipy.stats from inferelator import utils from inferelator.regression import bayes_stats from inferelator.regression import base_regression from inferelator.regression import mi from inferelator.distributed.inferelator_mp import MPControl # Default number of predictors to include in the model DEFAULT_nS = 10 # Default weight for priors & Non-priors # If prior_weight is the same as no_prior_weight: # Priors will be included in the pp matrix before the number of predictors is reduced to nS # They won't get special treatment in the model though DEFAULT_prior_weight = 1 DEFAULT_no_prior_weight = 1 # Throw away the priors which have a CLR that is 0 before the number of predictors is reduced by BIC DEFAULT_filter_priors_for_clr = False class BBSR(base_regression.BaseRegression): # Bayseian correlation measurements # Priors Data prior_mat = None # [G x K] # numeric filter_priors_for_clr = DEFAULT_filter_priors_for_clr # bool # Weights for Predictors (weights_mat is set with _calc_weight_matrix) weights_mat = None # [G x K] numeric prior_weight = DEFAULT_prior_weight # numeric no_prior_weight = DEFAULT_no_prior_weight # numeric # Predictors to include in modeling (pp is set with _build_pp_matrix) pp = None # [G x K] bool nS = DEFAULT_nS # int ols_only = False def __init__(self, X, Y, clr_mat, prior_mat, nS=DEFAULT_nS, prior_weight=DEFAULT_prior_weight, no_prior_weight=DEFAULT_no_prior_weight, ordinary_least_squares=False): """ Create a Regression object for Bayes Best Subset Regression :param X: Expression or Activity data [N x K] :type X: InferelatorData :param Y: Response expression data [N x G] :type Y: InferelatorData :param clr_mat: Calculated CLR between features of X & Y [G x K] :type clr_mat: pd.DataFrame :param prior_mat: Prior data between features of X & Y [G x K] :type prior_mat: pd.DataFrame :param nS: int Number of predictors to retain :param prior_weight: int Weight of a predictor which does have a prior :param no_prior_weight: int Weight of a predictor which doesn't have a prior """ super(BBSR, self).__init__(X, Y) self.nS = nS self.ols_only = ordinary_least_squares # Calculate the weight matrix self.prior_weight = prior_weight self.no_prior_weight = no_prior_weight weights_mat = self._calculate_weight_matrix(prior_mat, p_weight=prior_weight, no_p_weight=no_prior_weight) utils.Debug.vprint("Weight matrix {} construction complete".format(weights_mat.shape)) # Rebuild weights, priors, and the CLR matrix for the features that are in this bootstrap self.weights_mat = weights_mat.loc[self.genes, self.tfs] self.prior_mat = prior_mat.loc[self.genes, self.tfs] self.clr_mat = clr_mat.loc[self.genes, self.tfs] # Build a boolean matrix indicating which tfs should be used as predictors for regression for each gene self.pp = self._build_pp_matrix() def regress(self): """ Execute BBSR :return: pd.DataFrame [G x K], pd.DataFrame [G x K] Returns the regression betas and beta error reductions for all threads if this is the master thread (rank 0) Returns None, None if it's a subordinate thread """ if MPControl.is_dask(): from inferelator.distributed.dask_functions import bbsr_regress_dask return bbsr_regress_dask(self.X, self.Y, self.pp, self.weights_mat, self.G, self.genes, self.nS) def regression_maker(j): level = 0 if j % 100 == 0 else 2 utils.Debug.allprint(base_regression.PROGRESS_STR.format(gn=self.genes[j], i=j, total=self.G), level=level) data = bayes_stats.bbsr(self.X.values, utils.scale_vector(self.Y.get_gene_data(j, force_dense=True).flatten()), self.pp.iloc[j, :].values.flatten(), self.weights_mat.iloc[j, :].values.flatten(), self.nS, ordinary_least_squares=self.ols_only) data['ind'] = j return data return MPControl.map(regression_maker, range(self.G), tell_children=False) def _build_pp_matrix(self): """ From priors and context likelihood of relatedness, determine which predictors should be included in the model :return pp: pd.DataFrame [G x K] Boolean matrix indicating which predictor variables should be included in BBSR for each response variable """ # Create a predictor boolean array from priors pp =
np.logical_or(self.prior_mat != 0, self.weights_mat != self.no_prior_weight)
numpy.logical_or
import numpy as np import matplotlib.pyplot as plt from scipy.sparse import coo_matrix from skfem.mapping import MappingAffine from .mesh2d import Mesh2D, MeshType from typing import Optional, Tuple, Type, Dict from matplotlib.axes import Axes from numpy import ndarray class MeshTri(Mesh2D): """A mesh consisting of triangular elements. The different constructors are: - :meth:`~skfem.mesh.MeshTri.__init__` - :meth:`~skfem.mesh.MeshTri.load` (requires meshio) - :meth:`~skfem.mesh.MeshTri.init_symmetric` - :meth:`~skfem.mesh.MeshTri.init_sqsymmetric` - :meth:`~skfem.mesh.MeshTri.init_refdom` - :meth:`~skfem.mesh.MeshTri.init_tensor` - :meth:`~skfem.mesh.MeshTri.init_lshaped` Attributes ---------- facets An array containing the facet vertices (2 x Nfacets). f2t An array containing the triangles next to each facet (2 x Nfacets). Each column contains two indices to t. If the second row is zero then the facet is on the boundary. t2f An array containing the facets belonging to each triangle (3 x Nelems). Each column contains three indices to facets. Examples -------- Initialise a symmetric mesh of the unit square. >>> m = MeshTri.init_sqsymmetric() >>> m.t.shape (3, 8) Facets (edges) and mappings from triangles to facets and vice versa are automatically constructed. In the following example we have 5 facets (edges). >>> m = MeshTri() >>> m.facets array([[0, 0, 1, 1, 2], [1, 2, 2, 3, 3]]) >>> m.t2f array([[0, 2], [2, 4], [1, 3]]) >>> m.f2t array([[ 0, 0, 1, 1, 1], [-1, -1, 0, -1, -1]]) The value -1 implies that the facet (the edge) is on the boundary. Refine the triangular mesh of the unit square three times. >>> m = MeshTri() >>> m.refine(3) >>> m.p.shape (2, 81) """ refdom: str = "tri" brefdom: str = "line" meshio_type: str = "triangle" name: str = "Triangular" def __init__(self, p: Optional[ndarray] = None, t: Optional[ndarray] = None, boundaries: Optional[Dict[str, ndarray]] = None, subdomains: Optional[Dict[str, ndarray]] = None, validate: Optional[bool] = True, sort_t: Optional[bool] = True): """Initialise a triangular mesh. If no arguments are given, initialises a mesh with the following topology:: *-------------* |\ | | \ | | \ | | \ | | \ | | \ | | \| *-------------* Parameters ---------- p An array containing the points of the mesh (2 x Nvertices). t An array containing the element connectivity (3 x Nelems), i.e. indices to p. validate If true, run mesh validity checks. sort_t If true, sort the element connectivity matrix before building mappings. """ if p is None and t is None: p = np.array([[0., 1., 0., 1.], [0., 0., 1., 1.]], dtype=np.float_) t = np.array([[0, 1, 2], [1, 3, 2]], dtype=np.intp).T elif p is None or t is None: raise Exception("Must provide p AND t or neither") self.p = p self.t = t self.boundaries = boundaries self.subdomains = subdomains super(MeshTri, self).__init__() if validate: self._validate() self._build_mappings(sort_t=sort_t) @classmethod def init_tensor(cls: Type[MeshType], x: ndarray, y: ndarray) -> MeshType: """Initialise a tensor product mesh. Parameters ---------- x The nodal coordinates in dimension x. y The nodal coordinates in dimension y. """ npx = len(x) npy = len(y) X, Y = np.meshgrid(np.sort(x), np.sort(y)) p = np.vstack((X.flatten('F'), Y.flatten('F'))) ix = np.arange(npx * npy) nt = (npx - 1) * (npy - 1) t = np.zeros((3, 2*nt)) ix = ix.reshape(npy, npx, order='F').copy() t[0, :nt] = (ix[0:(npy-1), 0:(npx-1)].reshape(nt, 1, order='F') .copy() .flatten()) t[1, :nt] = (ix[1:npy, 0:(npx-1)].reshape(nt, 1, order='F') .copy() .flatten()) t[2, :nt] = (ix[1:npy, 1:npx].reshape(nt, 1, order='F') .copy() .flatten()) t[0, nt:] = (ix[0:(npy-1), 0:(npx-1)].reshape(nt, 1, order='F') .copy() .flatten()) t[1, nt:] = (ix[0:(npy-1), 1:npx].reshape(nt, 1, order='F') .copy() .flatten()) t[2, nt:] = (ix[1:npy, 1:npx].reshape(nt, 1, order='F') .copy() .flatten()) return cls(p, t.astype(np.int64)) @classmethod def init_symmetric(cls): """Initialise a symmetric mesh of the unit square. The mesh topology is as follows:: *------------* |\ /| | \ / | | \ / | | * | | / \ | | / \ | |/ \| *------------* """ p = np.array([[0, 1, 1, 0, 0.5], [0, 0, 1, 1, 0.5]], dtype=np.float_) t = np.array([[0, 1, 4], [1, 2, 4], [2, 3, 4], [0, 3, 4]], dtype=np.intp).T return cls(p, t) @classmethod def init_sqsymmetric(cls: Type[MeshType]) -> MeshType: """Initialise a symmetric mesh of the unit square. The mesh topology is as follows:: *------*------* |\ | /| | \ | / | | \ | / | *------*------* | / | \ | | / | \ | |/ | \| *------*------* """ p = np.array([[0, 0.5, 1, 0, 0.5, 1, 0, 0.5, 1], [0, 0, 0, 0.5, 0.5, 0.5, 1, 1, 1]], dtype=np.float_) t = np.array([[0, 1, 4], [1, 2, 4], [2, 4, 5], [0, 3, 4], [3, 4, 6], [4, 6, 7], [4, 7, 8], [4, 5, 8]], dtype=np.intp).T return cls(p, t) @classmethod def init_refdom(cls: Type[MeshType]) -> MeshType: """Initialise a mesh that includes only the reference triangle. The mesh topology is as follows:: * |\ | \ | \ | \ | \ | \ | \ *-------------* """ p = np.array([[0., 1., 0.], [0., 0., 1.]], dtype=np.float_) t = np.array([[0, 1, 2]], dtype=np.intp).T return cls(p, t) @classmethod def init_lshaped(cls: Type[MeshType]) -> MeshType: """Initialise a mesh for the L-shaped domain. The mesh topology is as follows:: *-------* | \ | | \ | | \ | *-------*-------* | / | \ | | / | \ | | / | \ | *-------*-------* where the origin is at the L-corner and the horizontal and vertical edges have unit length. """ p = np.array([[0., 1., 0., -1., 0., -1., -1., 1.], [0., 0., 1., 0., -1., -1., 1., -1.]], dtype=np.float_) t = np.array([[0, 1, 7], [0, 2, 6], [0, 6, 3], [0, 7, 4], [0, 4, 5], [0, 3, 5]], dtype=np.intp).T return cls(p, t) def _build_mappings(self, sort_t=True): # sort to preserve orientations etc. if sort_t: self.t = np.sort(self.t, axis=0) # define facets: in the order (0,1) (1,2) (0,2) self.facets = np.sort(np.hstack(( self.t[[0, 1], :], self.t[[1, 2], :], self.t[[0, 2], :], )), axis=0) # get unique facets and build triangle-to-facet # mapping: 3 (edges) x Ntris tmp = np.ascontiguousarray(self.facets.T) tmp, ixa, ixb = np.unique(tmp.view([('', tmp.dtype)] * tmp.shape[1]), return_index=True, return_inverse=True) self.facets = self.facets[:, ixa] self.t2f = ixb.reshape((3, self.t.shape[1])) # build facet-to-triangle mapping: 2 (triangles) x Nedges e_tmp = np.hstack((self.t2f[0, :], self.t2f[1, :], self.t2f[2, :])) t_tmp = np.tile(np.arange(self.t.shape[1]), (1, 3))[0] e_first, ix_first = np.unique(e_tmp, return_index=True) # this emulates matlab unique(e_tmp,'last') e_last, ix_last = np.unique(e_tmp[::-1], return_index=True) ix_last = e_tmp.shape[0] - ix_last - 1 self.f2t = np.zeros((2, self.facets.shape[1]), dtype=np.int64) self.f2t[0, e_first] = t_tmp[ix_first] self.f2t[1, e_last] = t_tmp[ix_last] # second row to zero if repeated (i.e., on boundary) self.f2t[1, np.nonzero(self.f2t[0, :] == self.f2t[1, :])[0]] = -1 def plot(self, z: ndarray, smooth: Optional[bool] = False, ax: Optional[Axes] = None, zlim: Optional[Tuple[float, float]] = None, edgecolors: Optional[str] = None, aspect: float = 1., colorbar: bool = False) -> Axes: """Visualise piecewise-linear or piecewise-constant function, 2D plot. Parameters ---------- z An array of nodal values (Nvertices) or elemental values (Nelems). smooth If true, use gouraud shading. ax Plot onto the given preinitialised Matplotlib axes. zlim Use the given minimum and maximum values for coloring. edgecolors A string describing the edge coloring, e.g. 'k' for black. aspect The ratio of vertical to horizontal length-scales; ignored if ax specified. colorbar If True, show colorbar. By default not shown. Returns ------- Axes The Matplotlib axes onto which the mesh was plotted. Examples -------- Mesh the unit square :math:`(0,1)^2` and visualise the function :math:`f(x)=x^2`. >>> from skfem.mesh import MeshTri >>> m = MeshTri() >>> m.refine(3) >>> ax = m.plot(m.p[0, :]**2, smooth=True) >>> m.show() """ if ax is None: fig = plt.figure() ax = fig.add_subplot(111) ax.set_aspect(aspect) ax.set_axis_off() if edgecolors is None: edgecolors = 'k' if zlim == None: if smooth: im = ax.tripcolor(self.p[0, :], self.p[1, :], self.t.T, z, shading='gouraud', edgecolors=edgecolors) else: im = ax.tripcolor(self.p[0, :], self.p[1, :], self.t.T, z, edgecolors=edgecolors) else: if smooth: im = ax.tripcolor(self.p[0, :], self.p[1, :], self.t.T, z, shading='gouraud', vmin=zlim[0], vmax=zlim[1], edgecolors=edgecolors) else: im = ax.tripcolor(self.p[0, :], self.p[1, :], self.t.T, z, vmin=zlim[0], vmax=zlim[1], edgecolors=edgecolors) if colorbar: plt.colorbar(im) return ax def plot3(self, z: ndarray, ax: Optional[Axes] = None) -> Axes: """Visualise piecewise-linear or piecewise-constant function, 3D plot. Parameters ---------- z An array of nodal values (Nvertices), elemental values (Nelems) or three elemental values (3 x Nelems, piecewise linear DG). ax Plot onto the given preinitialised Matplotlib axes. Returns ------- Axes The Matplotlib axes onto which the mesh was plotted. Examples -------- Mesh the unit square :math:`(0,1)^2` and visualise the function :math:`f(x)=x^2`. >>> from skfem.mesh import MeshTri >>> m = MeshTri() >>> m.refine(3) >>> ax = m.plot3(m.p[1, :]**2) >>> m.show() """ from mpl_toolkits.mplot3d import Axes3D if ax is None: fig = plt.figure() ax = Axes3D(fig) if len(z) == self.p.shape[1]: # use matplotlib ax.plot_trisurf(self.p[0, :], self.p[1, :], z, triangles=self.t.T, cmap=plt.cm.viridis) elif len(z) == self.t.shape[1]: # one value per element (piecewise const) nt = self.t.shape[1] newt = np.arange(3 * nt, dtype=np.int64).reshape((nt, 3)) newpx = self.p[0, self.t].flatten(order='F') newpy = self.p[1, self.t].flatten(order='F') newz = np.vstack((z, z, z)).flatten(order='F') ax.plot_trisurf(newpx, newpy, newz, triangles=newt.T, cmap=plt.cm.viridis) elif len(z) == 3 * self.t.shape[1]: # three values per element (piecewise linear) nt = self.t.shape[1] newt = np.arange(3 * nt, dtype=np.int64).reshape((nt, 3)) newpx = self.p[0, self.t].flatten(order='F') newpy = self.p[1, self.t].flatten(order='F') ax.plot_trisurf(newpx, newpy, z, triangles=newt.T, cmap=plt.cm.viridis) else: raise NotImplementedError("MeshTri.plot3: not implemented for " "the given shape of input vector!") return ax def _uniform_refine(self): """Perform a single mesh refine.""" # rename variables t = np.copy(self.t) p = np.copy(self.p) e = self.facets sz = p.shape[1] t2f = self.t2f + sz # new vertices are the midpoints of edges new_p = 0.5 * np.vstack((p[0, e[0, :]] + p[0, e[1, :]], p[1, e[0, :]] + p[1, e[1, :]])) self.p = np.hstack((p, new_p)) # build new triangle definitions self.t = np.hstack(( np.vstack((t[0, :], t2f[0, :], t2f[2, :])), np.vstack((t[1, :], t2f[0, :], t2f[1, :])), np.vstack((t[2, :], t2f[2, :], t2f[1, :])), np.vstack((t2f[0, :], t2f[1, :], t2f[2, :])), )) # mapping of indices between old and new facets new_facets = np.zeros((2, e.shape[1]), dtype=np.int64) ix0 = np.arange(t.shape[1], dtype=np.int64) ix1 = ix0 + t.shape[1] ix2 = ix0 + 2*t.shape[1] # rebuild mappings self._build_mappings() # finish mapping of indices between old and new facets new_facets[0, t2f[2, :] - sz] = self.t2f[2, ix0] new_facets[0, t2f[1, :] - sz] = self.t2f[2, ix1] new_facets[0, t2f[0, :] - sz] = self.t2f[0, ix0] new_facets[1, t2f[2, :] - sz] = self.t2f[0, ix2] new_facets[1, t2f[1, :] - sz] = self.t2f[2, ix2] new_facets[1, t2f[0, :] - sz] = self.t2f[0, ix1] self._fix_boundaries(new_facets) def _adaptive_refine(self, marked): """Refine the set of provided elements.""" def sort_mesh(p, t): """Make (0, 2) the longest edge in t.""" l01 = np.sqrt(np.sum((p[:, t[0, :]] - p[:, t[1, :]])**2, axis=0)) l12 = np.sqrt(np.sum((p[:, t[1, :]] - p[:, t[2, :]])**2, axis=0)) l02 = np.sqrt(np.sum((p[:, t[0, :]] - p[:, t[2, :]])**2, axis=0)) ix01 = (l01 > l02)*(l01 > l12) ix12 = (l12 > l01)*(l12 > l02) # row swaps tmp = t[2, ix01] t[2, ix01] = t[1, ix01] t[1, ix01] = tmp tmp = t[0, ix12] t[0, ix12] = t[1, ix12] t[1, ix12] = tmp return t def find_facets(m, marked_elems): """Find the facets to split.""" facets = np.zeros(m.facets.shape[1], dtype=np.int64) facets[m.t2f[:, marked_elems].flatten('F')] = 1 prev_nnz = -1e10 while np.count_nonzero(facets) - prev_nnz > 0: prev_nnz = np.count_nonzero(facets) t2facets = facets[m.t2f] t2facets[2, t2facets[0, :] + t2facets[1, :] > 0] = 1 facets[m.t2f[t2facets == 1]] = 1 return facets def split_elements(m, facets): """Define new elements.""" ix = (-1)*np.ones(m.facets.shape[1], dtype=np.int64) ix[facets == 1] = np.arange(np.count_nonzero(facets)) + m.p.shape[1] ix = ix[m.t2f] # (0, 1) (1, 2) (0, 2) red = (ix[0, :] >= 0) * (ix[1, :] >= 0) * (ix[2, :] >= 0) blue1 = (ix[0, :] ==-1) * (ix[1, :] >= 0) * (ix[2, :] >= 0) blue2 = (ix[0, :] >= 0) * (ix[1, :] ==-1) * (ix[2, :] >= 0) green = (ix[0, :] ==-1) * (ix[1, :] ==-1) * (ix[2, :] >= 0) rest = (ix[0, :] ==-1) * (ix[1, :] ==-1) * (ix[2, :] ==-1) # new red elements t_red = np.hstack(( np.vstack((m.t[0, red], ix[0, red], ix[2, red])), np.vstack((m.t[1, red], ix[0, red], ix[1, red])), np.vstack((m.t[2, red], ix[1, red], ix[2, red])), np.vstack(( ix[1, red], ix[2, red], ix[0, red])), )) # new blue elements t_blue1 = np.hstack(( np.vstack((m.t[1, blue1], m.t[0, blue1], ix[2, blue1])), np.vstack((m.t[1, blue1], ix[1, blue1], ix[2, blue1])), np.vstack((m.t[2, blue1], ix[2, blue1], ix[1, blue1])), )) t_blue2 = np.hstack(( np.vstack((m.t[0, blue2], ix[0, blue2], ix[2, blue2])), np.vstack(( ix[2, blue2], ix[0, blue2], m.t[1, blue2])), np.vstack((m.t[2, blue2], ix[2, blue2], m.t[1, blue2])), )) # new green elements t_green = np.hstack(( np.vstack((m.t[1, green], ix[2, green], m.t[0, green])), np.vstack((m.t[2, green], ix[2, green], m.t[1, green])), )) # new nodes p = .5 * (m.p[:, m.facets[0, facets == 1]] + m.p[:, m.facets[1, facets == 1]]) return
np.hstack((m.p, p))
numpy.hstack
# AUTO GENERATED. DO NOT CHANGE! from ctypes import * import numpy as np class MJCONTACT(Structure): _fields_ = [ ("dist", c_double), ("pos", c_double * 3), ("frame", c_double * 9), ("includemargin", c_double), ("friction", c_double * 5), ("solref", c_double * 2), ("solimp", c_double * 3), ("mu", c_double), ("coef", c_double * 5), ("zone", c_int), ("dim", c_int), ("geom1", c_int), ("geom2", c_int), ("exclude", c_int), ("efc_address", c_int), ] class MJRRECT(Structure): _fields_ = [ ("left", c_int), ("bottom", c_int), ("width", c_int), ("height", c_int), ] class MJVCAMERAPOSE(Structure): _fields_ = [ ("head_pos", c_double * 3), ("head_right", c_double * 3), ("window_pos", c_double * 3), ("window_right", c_double * 3), ("window_up", c_double * 3), ("window_normal", c_double * 3), ("window_size", c_double * 2), ("scale", c_double), ("ipd", c_double), ] class MJROPTION(Structure): _fields_ = [ ("stereo", c_ubyte), ("flags", c_ubyte * 6), ] class MJRCONTEXT(Structure): _fields_ = [ ("linewidth", c_float), ("znear", c_float), ("zfar", c_float), ("shadowclip", c_float), ("shadowscale", c_float), ("shadowsize", c_int), ("offwidth", c_uint), ("offheight", c_uint), ("offFBO", c_uint), ("offColor", c_uint), ("offDepthStencil", c_uint), ("shadowFBO", c_uint), ("shadowTex", c_uint), ("ntexture", c_uint), ("texture", c_int * 100), ("textureType", c_int * 100), ("basePlane", c_uint), ("baseMesh", c_uint), ("baseHField", c_uint), ("baseBuiltin", c_uint), ("baseFontNormal", c_uint), ("baseFontBack", c_uint), ("baseFontBig", c_uint), ("rangePlane", c_int), ("rangeMesh", c_int), ("rangeHField", c_int), ("rangeBuiltin", c_int), ("rangeFont", c_int), ("charWidth", c_int * 127), ("charWidthBig", c_int * 127), ("charHeight", c_int), ("charHeightBig", c_int), ("glewInitialized", c_int), ] class MJVCAMERA(Structure): _fields_ = [ ("fovy", c_double), ("camid", c_int), ("trackbodyid", c_int), ("lookat", c_double * 3), ("azimuth", c_double), ("elevation", c_double), ("distance", c_double), ("pose", MJVCAMERAPOSE), ("VR", c_ubyte), ] class MJVOPTION(Structure): _fields_ = [ ("label", c_int), ("frame", c_int), ("geomgroup", c_ubyte * 5), ("sitegroup", c_ubyte * 5), ("flags", c_ubyte * 18), ] class MJVGEOM(Structure): _fields_ = [ ("type", c_int), ("dataid", c_int), ("objtype", c_int), ("objid", c_int), ("category", c_int), ("texid", c_int), ("texuniform", c_int), ("texrepeat", c_float * 2), ("size", c_float * 3), ("pos", c_float * 3), ("mat", c_float * 9), ("rgba", c_float * 4), ("emission", c_float), ("specular", c_float), ("shininess", c_float), ("reflectance", c_float), ("label", c_char * 100), ("camdist", c_float), ("rbound", c_float), ("transparent", c_ubyte), ] class MJVLIGHT(Structure): _fields_ = [ ("pos", c_float * 3), ("dir", c_float * 3), ("attenuation", c_float * 3), ("cutoff", c_float), ("exponent", c_float), ("ambient", c_float * 3), ("diffuse", c_float * 3), ("specular", c_float * 3), ("headlight", c_ubyte), ("directional", c_ubyte), ("castshadow", c_ubyte), ] class MJVOBJECTS(Structure): _fields_ = [ ("nlight", c_int), ("ngeom", c_int), ("maxgeom", c_int), ("lights", MJVLIGHT * 8), ("geoms", POINTER(MJVGEOM)), ("geomorder", POINTER(c_int)), ] class MJOPTION(Structure): _fields_ = [ ("timestep", c_double), ("apirate", c_double), ("tolerance", c_double), ("impratio", c_double), ("gravity", c_double * 3), ("wind", c_double * 3), ("magnetic", c_double * 3), ("density", c_double), ("viscosity", c_double), ("o_margin", c_double), ("o_solref", c_double * 2), ("o_solimp", c_double * 3), ("mpr_tolerance", c_double), ("mpr_iterations", c_int), ("integrator", c_int), ("collision", c_int), ("impedance", c_int), ("reference", c_int), ("solver", c_int), ("iterations", c_int), ("disableflags", c_int), ("enableflags", c_int), ] class MJVISUAL(Structure): class ANON_GLOBAL(Structure): _fields_ = [ ("fovy", c_float), ("ipd", c_float), ("linewidth", c_float), ("glow", c_float), ("offwidth", c_int), ("offheight", c_int), ] class ANON_QUALITY(Structure): _fields_ = [ ("shadowsize", c_int), ("numSlices", c_int), ("numStacks", c_int), ("numArrows", c_int), ("numQuads", c_int), ] class ANON_HEADLIGHT(Structure): _fields_ = [ ("ambient", c_float * 3), ("diffuse", c_float * 3), ("specular", c_float * 3), ("active", c_int), ] class ANON_MAP(Structure): _fields_ = [ ("stiffness", c_float), ("force", c_float), ("torque", c_float), ("alpha", c_float), ("fogstart", c_float), ("fogend", c_float), ("znear", c_float), ("zfar", c_float), ("shadowclip", c_float), ("shadowscale", c_float), ] class ANON_SCALE(Structure): _fields_ = [ ("forcewidth", c_float), ("contactwidth", c_float), ("contactheight", c_float), ("connect", c_float), ("com", c_float), ("camera", c_float), ("light", c_float), ("selectpoint", c_float), ("jointlength", c_float), ("jointwidth", c_float), ("actuatorlength", c_float), ("actuatorwidth", c_float), ("framelength", c_float), ("framewidth", c_float), ("constraint", c_float), ("slidercrank", c_float), ] class ANON_RGBA(Structure): _fields_ = [ ("fog", c_float * 4), ("force", c_float * 4), ("inertia", c_float * 4), ("joint", c_float * 4), ("actuator", c_float * 4), ("com", c_float * 4), ("camera", c_float * 4), ("light", c_float * 4), ("selectpoint", c_float * 4), ("connect", c_float * 4), ("contactpoint", c_float * 4), ("contactforce", c_float * 4), ("contactfriction", c_float * 4), ("contacttorque", c_float * 4), ("constraint", c_float * 4), ("slidercrank", c_float * 4), ("crankbroken", c_float * 4), ] _fields_ = [ ("global_", ANON_GLOBAL), ("quality", ANON_QUALITY), ("headlight", ANON_HEADLIGHT), ("map_", ANON_MAP), ("scale", ANON_SCALE), ("rgba", ANON_RGBA), ] class MJSTATISTIC(Structure): _fields_ = [ ("meanmass", c_double), ("meansize", c_double), ("extent", c_double), ("center", c_double * 3), ] class MJDATA(Structure): _fields_ = [ ("nstack", c_int), ("nbuffer", c_int), ("pstack", c_int), ("maxstackuse", c_int), ("ne", c_int), ("nf", c_int), ("nefc", c_int), ("ncon", c_int), ("nwarning", c_int * 8), ("warning_info", c_int * 8), ("timer_duration", c_double * 14), ("timer_ncall", c_double * 14), ("mocaptime", c_double * 3), ("time", c_double), ("energy", c_double * 2), ("solverstat", c_double * 4), ("solvertrace", c_double * 200), ("buffer", POINTER(c_ubyte)), ("stack", POINTER(c_double)), ("qpos", POINTER(c_double)), ("qvel", POINTER(c_double)), ("act", POINTER(c_double)), ("ctrl", POINTER(c_double)), ("qfrc_applied", POINTER(c_double)), ("xfrc_applied", POINTER(c_double)), ("qacc", POINTER(c_double)), ("act_dot", POINTER(c_double)), ("mocap_pos", POINTER(c_double)), ("mocap_quat", POINTER(c_double)), ("userdata", POINTER(c_double)), ("sensordata", POINTER(c_double)), ("xpos", POINTER(c_double)), ("xquat", POINTER(c_double)), ("xmat", POINTER(c_double)), ("xipos", POINTER(c_double)), ("ximat", POINTER(c_double)), ("xanchor", POINTER(c_double)), ("xaxis", POINTER(c_double)), ("geom_xpos", POINTER(c_double)), ("geom_xmat", POINTER(c_double)), ("site_xpos", POINTER(c_double)), ("site_xmat", POINTER(c_double)), ("cam_xpos", POINTER(c_double)), ("cam_xmat", POINTER(c_double)), ("light_xpos", POINTER(c_double)), ("light_xdir", POINTER(c_double)), ("com_subtree", POINTER(c_double)), ("cdof", POINTER(c_double)), ("cinert", POINTER(c_double)), ("ten_wrapadr", POINTER(c_int)), ("ten_wrapnum", POINTER(c_int)), ("ten_length", POINTER(c_double)), ("ten_moment", POINTER(c_double)), ("wrap_obj", POINTER(c_int)), ("wrap_xpos", POINTER(c_double)), ("actuator_length", POINTER(c_double)), ("actuator_moment", POINTER(c_double)), ("crb", POINTER(c_double)), ("qM", POINTER(c_double)), ("qLD", POINTER(c_double)), ("qLDiagInv", POINTER(c_double)), ("qLDiagSqrtInv", POINTER(c_double)), ("contact", POINTER(MJCONTACT)), ("efc_type", POINTER(c_int)), ("efc_id", POINTER(c_int)), ("efc_rownnz", POINTER(c_int)), ("efc_rowadr", POINTER(c_int)), ("efc_colind", POINTER(c_int)), ("efc_rownnz_T", POINTER(c_int)), ("efc_rowadr_T", POINTER(c_int)), ("efc_colind_T", POINTER(c_int)), ("efc_solref", POINTER(c_double)), ("efc_solimp", POINTER(c_double)), ("efc_margin", POINTER(c_double)), ("efc_frictionloss", POINTER(c_double)), ("efc_pos", POINTER(c_double)), ("efc_J", POINTER(c_double)), ("efc_J_T", POINTER(c_double)), ("efc_diagApprox", POINTER(c_double)), ("efc_D", POINTER(c_double)), ("efc_R", POINTER(c_double)), ("efc_AR", POINTER(c_double)), ("e_ARchol", POINTER(c_double)), ("fc_e_rect", POINTER(c_double)), ("fc_AR", POINTER(c_double)), ("ten_velocity", POINTER(c_double)), ("actuator_velocity", POINTER(c_double)), ("cvel", POINTER(c_double)), ("cdof_dot", POINTER(c_double)), ("qfrc_bias", POINTER(c_double)), ("qfrc_passive", POINTER(c_double)), ("efc_vel", POINTER(c_double)), ("efc_aref", POINTER(c_double)), ("actuator_force", POINTER(c_double)), ("qfrc_actuator", POINTER(c_double)), ("qfrc_unc", POINTER(c_double)), ("qacc_unc", POINTER(c_double)), ("efc_b", POINTER(c_double)), ("fc_b", POINTER(c_double)), ("efc_force", POINTER(c_double)), ("qfrc_constraint", POINTER(c_double)), ("qfrc_inverse", POINTER(c_double)), ("cacc", POINTER(c_double)), ("cfrc_int", POINTER(c_double)), ("cfrc_ext", POINTER(c_double)), ] class MJMODEL(Structure): _fields_ = [ ("nq", c_int), ("nv", c_int), ("nu", c_int), ("na", c_int), ("nbody", c_int), ("njnt", c_int), ("ngeom", c_int), ("nsite", c_int), ("ncam", c_int), ("nlight", c_int), ("nmesh", c_int), ("nmeshvert", c_int), ("nmeshface", c_int), ("nmeshgraph", c_int), ("nhfield", c_int), ("nhfielddata", c_int), ("ntex", c_int), ("ntexdata", c_int), ("nmat", c_int), ("npair", c_int), ("nexclude", c_int), ("neq", c_int), ("ntendon", c_int), ("nwrap", c_int), ("nsensor", c_int), ("nnumeric", c_int), ("nnumericdata", c_int), ("ntext", c_int), ("ntextdata", c_int), ("nkey", c_int), ("nuser_body", c_int), ("nuser_jnt", c_int), ("nuser_geom", c_int), ("nuser_site", c_int), ("nuser_tendon", c_int), ("nuser_actuator", c_int), ("nuser_sensor", c_int), ("nnames", c_int), ("nM", c_int), ("nemax", c_int), ("njmax", c_int), ("nconmax", c_int), ("nstack", c_int), ("nuserdata", c_int), ("nmocap", c_int), ("nsensordata", c_int), ("nbuffer", c_int), ("opt", MJOPTION), ("vis", MJVISUAL), ("stat", MJSTATISTIC), ("buffer", POINTER(c_ubyte)), ("qpos0", POINTER(c_double)), ("qpos_spring", POINTER(c_double)), ("body_parentid", POINTER(c_int)), ("body_rootid", POINTER(c_int)), ("body_weldid", POINTER(c_int)), ("body_mocapid", POINTER(c_int)), ("body_jntnum", POINTER(c_int)), ("body_jntadr", POINTER(c_int)), ("body_dofnum", POINTER(c_int)), ("body_dofadr", POINTER(c_int)), ("body_geomnum", POINTER(c_int)), ("body_geomadr", POINTER(c_int)), ("body_pos", POINTER(c_double)), ("body_quat", POINTER(c_double)), ("body_ipos", POINTER(c_double)), ("body_iquat", POINTER(c_double)), ("body_mass", POINTER(c_double)), ("body_inertia", POINTER(c_double)), ("body_invweight0", POINTER(c_double)), ("body_user", POINTER(c_double)), ("jnt_type", POINTER(c_int)), ("jnt_qposadr", POINTER(c_int)), ("jnt_dofadr", POINTER(c_int)), ("jnt_bodyid", POINTER(c_int)), ("jnt_limited", POINTER(c_ubyte)), ("jnt_solref", POINTER(c_double)), ("jnt_solimp", POINTER(c_double)), ("jnt_pos", POINTER(c_double)), ("jnt_axis", POINTER(c_double)), ("jnt_stiffness", POINTER(c_double)), ("jnt_range", POINTER(c_double)), ("jnt_margin", POINTER(c_double)), ("jnt_user", POINTER(c_double)), ("dof_bodyid", POINTER(c_int)), ("dof_jntid", POINTER(c_int)), ("dof_parentid", POINTER(c_int)), ("dof_Madr", POINTER(c_int)), ("dof_frictional", POINTER(c_ubyte)), ("dof_solref", POINTER(c_double)), ("dof_solimp", POINTER(c_double)), ("dof_frictionloss", POINTER(c_double)), ("dof_armature", POINTER(c_double)), ("dof_damping", POINTER(c_double)), ("dof_invweight0", POINTER(c_double)), ("geom_type", POINTER(c_int)), ("geom_contype", POINTER(c_int)), ("geom_conaffinity", POINTER(c_int)), ("geom_condim", POINTER(c_int)), ("geom_bodyid", POINTER(c_int)), ("geom_dataid", POINTER(c_int)), ("geom_matid", POINTER(c_int)), ("geom_group", POINTER(c_int)), ("geom_solmix", POINTER(c_double)), ("geom_solref", POINTER(c_double)), ("geom_solimp", POINTER(c_double)), ("geom_size", POINTER(c_double)), ("geom_rbound", POINTER(c_double)), ("geom_pos", POINTER(c_double)), ("geom_quat", POINTER(c_double)), ("geom_friction", POINTER(c_double)), ("geom_margin", POINTER(c_double)), ("geom_gap", POINTER(c_double)), ("geom_user", POINTER(c_double)), ("geom_rgba", POINTER(c_float)), ("site_type", POINTER(c_int)), ("site_bodyid", POINTER(c_int)), ("site_matid", POINTER(c_int)), ("site_group", POINTER(c_int)), ("site_size", POINTER(c_double)), ("site_pos", POINTER(c_double)), ("site_quat", POINTER(c_double)), ("site_user", POINTER(c_double)), ("site_rgba", POINTER(c_float)), ("cam_mode", POINTER(c_int)), ("cam_bodyid", POINTER(c_int)), ("cam_targetbodyid", POINTER(c_int)), ("cam_pos", POINTER(c_double)), ("cam_quat", POINTER(c_double)), ("cam_poscom0", POINTER(c_double)), ("cam_pos0", POINTER(c_double)), ("cam_mat0", POINTER(c_double)), ("cam_fovy", POINTER(c_double)), ("cam_ipd", POINTER(c_double)), ("light_mode", POINTER(c_int)), ("light_bodyid", POINTER(c_int)), ("light_targetbodyid", POINTER(c_int)), ("light_directional", POINTER(c_ubyte)), ("light_castshadow", POINTER(c_ubyte)), ("light_active", POINTER(c_ubyte)), ("light_pos", POINTER(c_double)), ("light_dir", POINTER(c_double)), ("light_poscom0", POINTER(c_double)), ("light_pos0", POINTER(c_double)), ("light_dir0", POINTER(c_double)), ("light_attenuation", POINTER(c_float)), ("light_cutoff", POINTER(c_float)), ("light_exponent", POINTER(c_float)), ("light_ambient", POINTER(c_float)), ("light_diffuse", POINTER(c_float)), ("light_specular", POINTER(c_float)), ("mesh_faceadr", POINTER(c_int)), ("mesh_facenum", POINTER(c_int)), ("mesh_vertadr", POINTER(c_int)), ("mesh_vertnum", POINTER(c_int)), ("mesh_graphadr", POINTER(c_int)), ("mesh_vert", POINTER(c_float)), ("mesh_normal", POINTER(c_float)), ("mesh_face", POINTER(c_int)), ("mesh_graph", POINTER(c_int)), ("hfield_size", POINTER(c_double)), ("hfield_nrow", POINTER(c_int)), ("hfield_ncol", POINTER(c_int)), ("hfield_adr", POINTER(c_int)), ("hfield_data", POINTER(c_float)), ("tex_type", POINTER(c_int)), ("tex_height", POINTER(c_int)), ("tex_width", POINTER(c_int)), ("tex_adr", POINTER(c_int)), ("tex_rgb", POINTER(c_ubyte)), ("mat_texid", POINTER(c_int)), ("mat_texuniform", POINTER(c_ubyte)), ("mat_texrepeat", POINTER(c_float)), ("mat_emission", POINTER(c_float)), ("mat_specular", POINTER(c_float)), ("mat_shininess", POINTER(c_float)), ("mat_reflectance", POINTER(c_float)), ("mat_rgba", POINTER(c_float)), ("pair_dim", POINTER(c_int)), ("pair_geom1", POINTER(c_int)), ("pair_geom2", POINTER(c_int)), ("pair_signature", POINTER(c_int)), ("pair_solref", POINTER(c_double)), ("pair_solimp", POINTER(c_double)), ("pair_margin", POINTER(c_double)), ("pair_gap", POINTER(c_double)), ("pair_friction", POINTER(c_double)), ("exclude_signature", POINTER(c_int)), ("eq_type", POINTER(c_int)), ("eq_obj1id", POINTER(c_int)), ("eq_obj2id", POINTER(c_int)), ("eq_active", POINTER(c_ubyte)), ("eq_solref", POINTER(c_double)), ("eq_solimp", POINTER(c_double)), ("eq_data", POINTER(c_double)), ("tendon_adr", POINTER(c_int)), ("tendon_num", POINTER(c_int)), ("tendon_matid", POINTER(c_int)), ("tendon_limited", POINTER(c_ubyte)), ("tendon_frictional", POINTER(c_ubyte)), ("tendon_width", POINTER(c_double)), ("tendon_solref_lim", POINTER(c_double)), ("tendon_solimp_lim", POINTER(c_double)), ("tendon_solref_fri", POINTER(c_double)), ("tendon_solimp_fri", POINTER(c_double)), ("tendon_range", POINTER(c_double)), ("tendon_margin", POINTER(c_double)), ("tendon_stiffness", POINTER(c_double)), ("tendon_damping", POINTER(c_double)), ("tendon_frictionloss", POINTER(c_double)), ("tendon_lengthspring", POINTER(c_double)), ("tendon_length0", POINTER(c_double)), ("tendon_invweight0", POINTER(c_double)), ("tendon_user", POINTER(c_double)), ("tendon_rgba", POINTER(c_float)), ("wrap_type", POINTER(c_int)), ("wrap_objid", POINTER(c_int)), ("wrap_prm", POINTER(c_double)), ("actuator_trntype", POINTER(c_int)), ("actuator_dyntype", POINTER(c_int)), ("actuator_gaintype", POINTER(c_int)), ("actuator_biastype", POINTER(c_int)), ("actuator_trnid", POINTER(c_int)), ("actuator_ctrllimited", POINTER(c_ubyte)), ("actuator_forcelimited", POINTER(c_ubyte)), ("actuator_dynprm", POINTER(c_double)), ("actuator_gainprm", POINTER(c_double)), ("actuator_biasprm", POINTER(c_double)), ("actuator_ctrlrange", POINTER(c_double)), ("actuator_forcerange", POINTER(c_double)), ("actuator_gear", POINTER(c_double)), ("actuator_cranklength", POINTER(c_double)), ("actuator_invweight0", POINTER(c_double)), ("actuator_length0", POINTER(c_double)), ("actuator_lengthrange", POINTER(c_double)), ("actuator_user", POINTER(c_double)), ("sensor_type", POINTER(c_int)), ("sensor_objid", POINTER(c_int)), ("sensor_dim", POINTER(c_int)), ("sensor_adr", POINTER(c_int)), ("sensor_scale", POINTER(c_double)), ("sensor_user", POINTER(c_double)), ("numeric_adr", POINTER(c_int)), ("numeric_size", POINTER(c_int)), ("numeric_data", POINTER(c_double)), ("text_adr", POINTER(c_int)), ("text_data", POINTER(c_char)), ("key_time", POINTER(c_double)), ("key_qpos", POINTER(c_double)), ("key_qvel", POINTER(c_double)), ("key_act", POINTER(c_double)), ("name_bodyadr", POINTER(c_int)), ("name_jntadr", POINTER(c_int)), ("name_geomadr", POINTER(c_int)), ("name_siteadr", POINTER(c_int)), ("name_camadr", POINTER(c_int)), ("name_lightadr", POINTER(c_int)), ("name_meshadr", POINTER(c_int)), ("name_hfieldadr", POINTER(c_int)), ("name_texadr", POINTER(c_int)), ("name_matadr", POINTER(c_int)), ("name_eqadr", POINTER(c_int)), ("name_tendonadr", POINTER(c_int)), ("name_actuatoradr", POINTER(c_int)), ("name_sensoradr", POINTER(c_int)), ("name_numericadr", POINTER(c_int)), ("name_textadr", POINTER(c_int)), ("names", POINTER(c_char)), ] class MjContactWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def dist(self): return self._wrapped.contents.dist @dist.setter def dist(self, value): self._wrapped.contents.dist = value @property def pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.pos, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @pos.setter def pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.pos, val_ptr, 3 * sizeof(c_double)) @property def frame(self): arr = np.reshape(np.fromiter(self._wrapped.contents.frame, dtype=np.double, count=(9)), (9, )) arr.setflags(write=False) return arr @frame.setter def frame(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.frame, val_ptr, 9 * sizeof(c_double)) @property def includemargin(self): return self._wrapped.contents.includemargin @includemargin.setter def includemargin(self, value): self._wrapped.contents.includemargin = value @property def friction(self): arr = np.reshape(np.fromiter(self._wrapped.contents.friction, dtype=np.double, count=(5)), (5, )) arr.setflags(write=False) return arr @friction.setter def friction(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.friction, val_ptr, 5 * sizeof(c_double)) @property def solref(self): arr = np.reshape(np.fromiter(self._wrapped.contents.solref, dtype=np.double, count=(2)), (2, )) arr.setflags(write=False) return arr @solref.setter def solref(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.solref, val_ptr, 2 * sizeof(c_double)) @property def solimp(self): arr = np.reshape(np.fromiter(self._wrapped.contents.solimp, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @solimp.setter def solimp(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.solimp, val_ptr, 3 * sizeof(c_double)) @property def mu(self): return self._wrapped.contents.mu @mu.setter def mu(self, value): self._wrapped.contents.mu = value @property def coef(self): arr = np.reshape(np.fromiter(self._wrapped.contents.coef, dtype=np.double, count=(5)), (5, )) arr.setflags(write=False) return arr @coef.setter def coef(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.coef, val_ptr, 5 * sizeof(c_double)) @property def zone(self): return self._wrapped.contents.zone @zone.setter def zone(self, value): self._wrapped.contents.zone = value @property def dim(self): return self._wrapped.contents.dim @dim.setter def dim(self, value): self._wrapped.contents.dim = value @property def geom1(self): return self._wrapped.contents.geom1 @geom1.setter def geom1(self, value): self._wrapped.contents.geom1 = value @property def geom2(self): return self._wrapped.contents.geom2 @geom2.setter def geom2(self, value): self._wrapped.contents.geom2 = value @property def exclude(self): return self._wrapped.contents.exclude @exclude.setter def exclude(self, value): self._wrapped.contents.exclude = value @property def efc_address(self): return self._wrapped.contents.efc_address @efc_address.setter def efc_address(self, value): self._wrapped.contents.efc_address = value class MjrRectWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def left(self): return self._wrapped.contents.left @left.setter def left(self, value): self._wrapped.contents.left = value @property def bottom(self): return self._wrapped.contents.bottom @bottom.setter def bottom(self, value): self._wrapped.contents.bottom = value @property def width(self): return self._wrapped.contents.width @width.setter def width(self, value): self._wrapped.contents.width = value @property def height(self): return self._wrapped.contents.height @height.setter def height(self, value): self._wrapped.contents.height = value class MjvCameraPoseWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def head_pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.head_pos, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @head_pos.setter def head_pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.head_pos, val_ptr, 3 * sizeof(c_double)) @property def head_right(self): arr = np.reshape(np.fromiter(self._wrapped.contents.head_right, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @head_right.setter def head_right(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.head_right, val_ptr, 3 * sizeof(c_double)) @property def window_pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.window_pos, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @window_pos.setter def window_pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.window_pos, val_ptr, 3 * sizeof(c_double)) @property def window_right(self): arr = np.reshape(np.fromiter(self._wrapped.contents.window_right, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @window_right.setter def window_right(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.window_right, val_ptr, 3 * sizeof(c_double)) @property def window_up(self): arr = np.reshape(np.fromiter(self._wrapped.contents.window_up, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @window_up.setter def window_up(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.window_up, val_ptr, 3 * sizeof(c_double)) @property def window_normal(self): arr = np.reshape(np.fromiter(self._wrapped.contents.window_normal, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @window_normal.setter def window_normal(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.window_normal, val_ptr, 3 * sizeof(c_double)) @property def window_size(self): arr = np.reshape(np.fromiter(self._wrapped.contents.window_size, dtype=np.double, count=(2)), (2, )) arr.setflags(write=False) return arr @window_size.setter def window_size(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.window_size, val_ptr, 2 * sizeof(c_double)) @property def scale(self): return self._wrapped.contents.scale @scale.setter def scale(self, value): self._wrapped.contents.scale = value @property def ipd(self): return self._wrapped.contents.ipd @ipd.setter def ipd(self, value): self._wrapped.contents.ipd = value class MjrOptionWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def stereo(self): return self._wrapped.contents.stereo @stereo.setter def stereo(self, value): self._wrapped.contents.stereo = value @property def flags(self): arr = np.reshape(np.fromiter(self._wrapped.contents.flags, dtype=np.uint8, count=(6)), (6, )) arr.setflags(write=False) return arr @flags.setter def flags(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_ubyte)) memmove(self._wrapped.contents.flags, val_ptr, 6 * sizeof(c_ubyte)) class MjrContextWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def linewidth(self): return self._wrapped.contents.linewidth @linewidth.setter def linewidth(self, value): self._wrapped.contents.linewidth = value @property def znear(self): return self._wrapped.contents.znear @znear.setter def znear(self, value): self._wrapped.contents.znear = value @property def zfar(self): return self._wrapped.contents.zfar @zfar.setter def zfar(self, value): self._wrapped.contents.zfar = value @property def shadowclip(self): return self._wrapped.contents.shadowclip @shadowclip.setter def shadowclip(self, value): self._wrapped.contents.shadowclip = value @property def shadowscale(self): return self._wrapped.contents.shadowscale @shadowscale.setter def shadowscale(self, value): self._wrapped.contents.shadowscale = value @property def shadowsize(self): return self._wrapped.contents.shadowsize @shadowsize.setter def shadowsize(self, value): self._wrapped.contents.shadowsize = value @property def offwidth(self): return self._wrapped.contents.offwidth @offwidth.setter def offwidth(self, value): self._wrapped.contents.offwidth = value @property def offheight(self): return self._wrapped.contents.offheight @offheight.setter def offheight(self, value): self._wrapped.contents.offheight = value @property def offFBO(self): return self._wrapped.contents.offFBO @offFBO.setter def offFBO(self, value): self._wrapped.contents.offFBO = value @property def offColor(self): return self._wrapped.contents.offColor @offColor.setter def offColor(self, value): self._wrapped.contents.offColor = value @property def offDepthStencil(self): return self._wrapped.contents.offDepthStencil @offDepthStencil.setter def offDepthStencil(self, value): self._wrapped.contents.offDepthStencil = value @property def shadowFBO(self): return self._wrapped.contents.shadowFBO @shadowFBO.setter def shadowFBO(self, value): self._wrapped.contents.shadowFBO = value @property def shadowTex(self): return self._wrapped.contents.shadowTex @shadowTex.setter def shadowTex(self, value): self._wrapped.contents.shadowTex = value @property def ntexture(self): return self._wrapped.contents.ntexture @ntexture.setter def ntexture(self, value): self._wrapped.contents.ntexture = value @property def texture(self): arr = np.reshape(np.fromiter(self._wrapped.contents.texture, dtype=np.int, count=(100)), (100, )) arr.setflags(write=False) return arr @texture.setter def texture(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.texture, val_ptr, 100 * sizeof(c_int)) @property def textureType(self): arr = np.reshape(np.fromiter(self._wrapped.contents.textureType, dtype=np.int, count=(100)), (100, )) arr.setflags(write=False) return arr @textureType.setter def textureType(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.textureType, val_ptr, 100 * sizeof(c_int)) @property def basePlane(self): return self._wrapped.contents.basePlane @basePlane.setter def basePlane(self, value): self._wrapped.contents.basePlane = value @property def baseMesh(self): return self._wrapped.contents.baseMesh @baseMesh.setter def baseMesh(self, value): self._wrapped.contents.baseMesh = value @property def baseHField(self): return self._wrapped.contents.baseHField @baseHField.setter def baseHField(self, value): self._wrapped.contents.baseHField = value @property def baseBuiltin(self): return self._wrapped.contents.baseBuiltin @baseBuiltin.setter def baseBuiltin(self, value): self._wrapped.contents.baseBuiltin = value @property def baseFontNormal(self): return self._wrapped.contents.baseFontNormal @baseFontNormal.setter def baseFontNormal(self, value): self._wrapped.contents.baseFontNormal = value @property def baseFontBack(self): return self._wrapped.contents.baseFontBack @baseFontBack.setter def baseFontBack(self, value): self._wrapped.contents.baseFontBack = value @property def baseFontBig(self): return self._wrapped.contents.baseFontBig @baseFontBig.setter def baseFontBig(self, value): self._wrapped.contents.baseFontBig = value @property def rangePlane(self): return self._wrapped.contents.rangePlane @rangePlane.setter def rangePlane(self, value): self._wrapped.contents.rangePlane = value @property def rangeMesh(self): return self._wrapped.contents.rangeMesh @rangeMesh.setter def rangeMesh(self, value): self._wrapped.contents.rangeMesh = value @property def rangeHField(self): return self._wrapped.contents.rangeHField @rangeHField.setter def rangeHField(self, value): self._wrapped.contents.rangeHField = value @property def rangeBuiltin(self): return self._wrapped.contents.rangeBuiltin @rangeBuiltin.setter def rangeBuiltin(self, value): self._wrapped.contents.rangeBuiltin = value @property def rangeFont(self): return self._wrapped.contents.rangeFont @rangeFont.setter def rangeFont(self, value): self._wrapped.contents.rangeFont = value @property def charWidth(self): arr = np.reshape(np.fromiter(self._wrapped.contents.charWidth, dtype=np.int, count=(127)), (127, )) arr.setflags(write=False) return arr @charWidth.setter def charWidth(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.charWidth, val_ptr, 127 * sizeof(c_int)) @property def charWidthBig(self): arr = np.reshape(np.fromiter(self._wrapped.contents.charWidthBig, dtype=np.int, count=(127)), (127, )) arr.setflags(write=False) return arr @charWidthBig.setter def charWidthBig(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.charWidthBig, val_ptr, 127 * sizeof(c_int)) @property def charHeight(self): return self._wrapped.contents.charHeight @charHeight.setter def charHeight(self, value): self._wrapped.contents.charHeight = value @property def charHeightBig(self): return self._wrapped.contents.charHeightBig @charHeightBig.setter def charHeightBig(self, value): self._wrapped.contents.charHeightBig = value @property def glewInitialized(self): return self._wrapped.contents.glewInitialized @glewInitialized.setter def glewInitialized(self, value): self._wrapped.contents.glewInitialized = value class MjvCameraWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def fovy(self): return self._wrapped.contents.fovy @fovy.setter def fovy(self, value): self._wrapped.contents.fovy = value @property def camid(self): return self._wrapped.contents.camid @camid.setter def camid(self, value): self._wrapped.contents.camid = value @property def trackbodyid(self): return self._wrapped.contents.trackbodyid @trackbodyid.setter def trackbodyid(self, value): self._wrapped.contents.trackbodyid = value @property def lookat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.lookat, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @lookat.setter def lookat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.lookat, val_ptr, 3 * sizeof(c_double)) @property def azimuth(self): return self._wrapped.contents.azimuth @azimuth.setter def azimuth(self, value): self._wrapped.contents.azimuth = value @property def elevation(self): return self._wrapped.contents.elevation @elevation.setter def elevation(self, value): self._wrapped.contents.elevation = value @property def distance(self): return self._wrapped.contents.distance @distance.setter def distance(self, value): self._wrapped.contents.distance = value @property def pose(self): return self._wrapped.contents.pose @pose.setter def pose(self, value): self._wrapped.contents.pose = value @property def VR(self): return self._wrapped.contents.VR @VR.setter def VR(self, value): self._wrapped.contents.VR = value class MjvOptionWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def label(self): return self._wrapped.contents.label @label.setter def label(self, value): self._wrapped.contents.label = value @property def frame(self): return self._wrapped.contents.frame @frame.setter def frame(self, value): self._wrapped.contents.frame = value @property def geomgroup(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geomgroup, dtype=np.uint8, count=(5)), (5, )) arr.setflags(write=False) return arr @geomgroup.setter def geomgroup(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_ubyte)) memmove(self._wrapped.contents.geomgroup, val_ptr, 5 * sizeof(c_ubyte)) @property def sitegroup(self): arr = np.reshape(np.fromiter(self._wrapped.contents.sitegroup, dtype=np.uint8, count=(5)), (5, )) arr.setflags(write=False) return arr @sitegroup.setter def sitegroup(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_ubyte)) memmove(self._wrapped.contents.sitegroup, val_ptr, 5 * sizeof(c_ubyte)) @property def flags(self): arr = np.reshape(np.fromiter(self._wrapped.contents.flags, dtype=np.uint8, count=(18)), (18, )) arr.setflags(write=False) return arr @flags.setter def flags(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_ubyte)) memmove(self._wrapped.contents.flags, val_ptr, 18 * sizeof(c_ubyte)) class MjvGeomWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def type(self): return self._wrapped.contents.type @type.setter def type(self, value): self._wrapped.contents.type = value @property def dataid(self): return self._wrapped.contents.dataid @dataid.setter def dataid(self, value): self._wrapped.contents.dataid = value @property def objtype(self): return self._wrapped.contents.objtype @objtype.setter def objtype(self, value): self._wrapped.contents.objtype = value @property def objid(self): return self._wrapped.contents.objid @objid.setter def objid(self, value): self._wrapped.contents.objid = value @property def category(self): return self._wrapped.contents.category @category.setter def category(self, value): self._wrapped.contents.category = value @property def texid(self): return self._wrapped.contents.texid @texid.setter def texid(self, value): self._wrapped.contents.texid = value @property def texuniform(self): return self._wrapped.contents.texuniform @texuniform.setter def texuniform(self, value): self._wrapped.contents.texuniform = value @property def texrepeat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.texrepeat, dtype=np.float, count=(2)), (2, )) arr.setflags(write=False) return arr @texrepeat.setter def texrepeat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.texrepeat, val_ptr, 2 * sizeof(c_float)) @property def size(self): arr = np.reshape(np.fromiter(self._wrapped.contents.size, dtype=np.float, count=(3)), (3, )) arr.setflags(write=False) return arr @size.setter def size(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.size, val_ptr, 3 * sizeof(c_float)) @property def pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.pos, dtype=np.float, count=(3)), (3, )) arr.setflags(write=False) return arr @pos.setter def pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.pos, val_ptr, 3 * sizeof(c_float)) @property def mat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.mat, dtype=np.float, count=(9)), (9, )) arr.setflags(write=False) return arr @mat.setter def mat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.mat, val_ptr, 9 * sizeof(c_float)) @property def rgba(self): arr = np.reshape(np.fromiter(self._wrapped.contents.rgba, dtype=np.float, count=(4)), (4, )) arr.setflags(write=False) return arr @rgba.setter def rgba(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.rgba, val_ptr, 4 * sizeof(c_float)) @property def emission(self): return self._wrapped.contents.emission @emission.setter def emission(self, value): self._wrapped.contents.emission = value @property def specular(self): return self._wrapped.contents.specular @specular.setter def specular(self, value): self._wrapped.contents.specular = value @property def shininess(self): return self._wrapped.contents.shininess @shininess.setter def shininess(self, value): self._wrapped.contents.shininess = value @property def reflectance(self): return self._wrapped.contents.reflectance @reflectance.setter def reflectance(self, value): self._wrapped.contents.reflectance = value @property def label(self): return self._wrapped.contents.label @label.setter def label(self, value): self._wrapped.contents.label = value @property def camdist(self): return self._wrapped.contents.camdist @camdist.setter def camdist(self, value): self._wrapped.contents.camdist = value @property def rbound(self): return self._wrapped.contents.rbound @rbound.setter def rbound(self, value): self._wrapped.contents.rbound = value @property def transparent(self): return self._wrapped.contents.transparent @transparent.setter def transparent(self, value): self._wrapped.contents.transparent = value class MjvLightWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.pos, dtype=np.float, count=(3)), (3, )) arr.setflags(write=False) return arr @pos.setter def pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.pos, val_ptr, 3 * sizeof(c_float)) @property def dir(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dir, dtype=np.float, count=(3)), (3, )) arr.setflags(write=False) return arr @dir.setter def dir(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.dir, val_ptr, 3 * sizeof(c_float)) @property def attenuation(self): arr = np.reshape(np.fromiter(self._wrapped.contents.attenuation, dtype=np.float, count=(3)), (3, )) arr.setflags(write=False) return arr @attenuation.setter def attenuation(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.attenuation, val_ptr, 3 * sizeof(c_float)) @property def cutoff(self): return self._wrapped.contents.cutoff @cutoff.setter def cutoff(self, value): self._wrapped.contents.cutoff = value @property def exponent(self): return self._wrapped.contents.exponent @exponent.setter def exponent(self, value): self._wrapped.contents.exponent = value @property def ambient(self): arr = np.reshape(np.fromiter(self._wrapped.contents.ambient, dtype=np.float, count=(3)), (3, )) arr.setflags(write=False) return arr @ambient.setter def ambient(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.ambient, val_ptr, 3 * sizeof(c_float)) @property def diffuse(self): arr = np.reshape(np.fromiter(self._wrapped.contents.diffuse, dtype=np.float, count=(3)), (3, )) arr.setflags(write=False) return arr @diffuse.setter def diffuse(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.diffuse, val_ptr, 3 * sizeof(c_float)) @property def specular(self): arr = np.reshape(np.fromiter(self._wrapped.contents.specular, dtype=np.float, count=(3)), (3, )) arr.setflags(write=False) return arr @specular.setter def specular(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_float)) memmove(self._wrapped.contents.specular, val_ptr, 3 * sizeof(c_float)) @property def headlight(self): return self._wrapped.contents.headlight @headlight.setter def headlight(self, value): self._wrapped.contents.headlight = value @property def directional(self): return self._wrapped.contents.directional @directional.setter def directional(self, value): self._wrapped.contents.directional = value @property def castshadow(self): return self._wrapped.contents.castshadow @castshadow.setter def castshadow(self, value): self._wrapped.contents.castshadow = value class MjvObjectsWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def nlight(self): return self._wrapped.contents.nlight @nlight.setter def nlight(self, value): self._wrapped.contents.nlight = value @property def ngeom(self): return self._wrapped.contents.ngeom @ngeom.setter def ngeom(self, value): self._wrapped.contents.ngeom = value @property def maxgeom(self): return self._wrapped.contents.maxgeom @maxgeom.setter def maxgeom(self, value): self._wrapped.contents.maxgeom = value @property def lights(self): return self._wrapped.contents.lights @lights.setter def lights(self, value): self._wrapped.contents.lights = value class MjOptionWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def timestep(self): return self._wrapped.contents.timestep @timestep.setter def timestep(self, value): self._wrapped.contents.timestep = value @property def apirate(self): return self._wrapped.contents.apirate @apirate.setter def apirate(self, value): self._wrapped.contents.apirate = value @property def tolerance(self): return self._wrapped.contents.tolerance @tolerance.setter def tolerance(self, value): self._wrapped.contents.tolerance = value @property def impratio(self): return self._wrapped.contents.impratio @impratio.setter def impratio(self, value): self._wrapped.contents.impratio = value @property def gravity(self): arr = np.reshape(np.fromiter(self._wrapped.contents.gravity, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @gravity.setter def gravity(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.gravity, val_ptr, 3 * sizeof(c_double)) @property def wind(self): arr = np.reshape(np.fromiter(self._wrapped.contents.wind, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @wind.setter def wind(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.wind, val_ptr, 3 * sizeof(c_double)) @property def magnetic(self): arr = np.reshape(np.fromiter(self._wrapped.contents.magnetic, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @magnetic.setter def magnetic(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.magnetic, val_ptr, 3 * sizeof(c_double)) @property def density(self): return self._wrapped.contents.density @density.setter def density(self, value): self._wrapped.contents.density = value @property def viscosity(self): return self._wrapped.contents.viscosity @viscosity.setter def viscosity(self, value): self._wrapped.contents.viscosity = value @property def o_margin(self): return self._wrapped.contents.o_margin @o_margin.setter def o_margin(self, value): self._wrapped.contents.o_margin = value @property def o_solref(self): arr = np.reshape(np.fromiter(self._wrapped.contents.o_solref, dtype=np.double, count=(2)), (2, )) arr.setflags(write=False) return arr @o_solref.setter def o_solref(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.o_solref, val_ptr, 2 * sizeof(c_double)) @property def o_solimp(self): arr = np.reshape(np.fromiter(self._wrapped.contents.o_solimp, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @o_solimp.setter def o_solimp(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.o_solimp, val_ptr, 3 * sizeof(c_double)) @property def mpr_tolerance(self): return self._wrapped.contents.mpr_tolerance @mpr_tolerance.setter def mpr_tolerance(self, value): self._wrapped.contents.mpr_tolerance = value @property def mpr_iterations(self): return self._wrapped.contents.mpr_iterations @mpr_iterations.setter def mpr_iterations(self, value): self._wrapped.contents.mpr_iterations = value @property def integrator(self): return self._wrapped.contents.integrator @integrator.setter def integrator(self, value): self._wrapped.contents.integrator = value @property def collision(self): return self._wrapped.contents.collision @collision.setter def collision(self, value): self._wrapped.contents.collision = value @property def impedance(self): return self._wrapped.contents.impedance @impedance.setter def impedance(self, value): self._wrapped.contents.impedance = value @property def reference(self): return self._wrapped.contents.reference @reference.setter def reference(self, value): self._wrapped.contents.reference = value @property def solver(self): return self._wrapped.contents.solver @solver.setter def solver(self, value): self._wrapped.contents.solver = value @property def iterations(self): return self._wrapped.contents.iterations @iterations.setter def iterations(self, value): self._wrapped.contents.iterations = value @property def disableflags(self): return self._wrapped.contents.disableflags @disableflags.setter def disableflags(self, value): self._wrapped.contents.disableflags = value @property def enableflags(self): return self._wrapped.contents.enableflags @enableflags.setter def enableflags(self, value): self._wrapped.contents.enableflags = value class MjVisualWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def global_(self): return self._wrapped.contents.global_ @global_.setter def global_(self, value): self._wrapped.contents.global_ = value @property def quality(self): return self._wrapped.contents.quality @quality.setter def quality(self, value): self._wrapped.contents.quality = value @property def headlight(self): return self._wrapped.contents.headlight @headlight.setter def headlight(self, value): self._wrapped.contents.headlight = value @property def map_(self): return self._wrapped.contents.map_ @map_.setter def map_(self, value): self._wrapped.contents.map_ = value @property def scale(self): return self._wrapped.contents.scale @scale.setter def scale(self, value): self._wrapped.contents.scale = value @property def rgba(self): return self._wrapped.contents.rgba @rgba.setter def rgba(self, value): self._wrapped.contents.rgba = value class MjStatisticWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def meanmass(self): return self._wrapped.contents.meanmass @meanmass.setter def meanmass(self, value): self._wrapped.contents.meanmass = value @property def meansize(self): return self._wrapped.contents.meansize @meansize.setter def meansize(self, value): self._wrapped.contents.meansize = value @property def extent(self): return self._wrapped.contents.extent @extent.setter def extent(self, value): self._wrapped.contents.extent = value @property def center(self): arr = np.reshape(np.fromiter(self._wrapped.contents.center, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @center.setter def center(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.center, val_ptr, 3 * sizeof(c_double)) class MjDataWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def nstack(self): return self._wrapped.contents.nstack @nstack.setter def nstack(self, value): self._wrapped.contents.nstack = value @property def nbuffer(self): return self._wrapped.contents.nbuffer @nbuffer.setter def nbuffer(self, value): self._wrapped.contents.nbuffer = value @property def pstack(self): return self._wrapped.contents.pstack @pstack.setter def pstack(self, value): self._wrapped.contents.pstack = value @property def maxstackuse(self): return self._wrapped.contents.maxstackuse @maxstackuse.setter def maxstackuse(self, value): self._wrapped.contents.maxstackuse = value @property def ne(self): return self._wrapped.contents.ne @ne.setter def ne(self, value): self._wrapped.contents.ne = value @property def nf(self): return self._wrapped.contents.nf @nf.setter def nf(self, value): self._wrapped.contents.nf = value @property def nefc(self): return self._wrapped.contents.nefc @nefc.setter def nefc(self, value): self._wrapped.contents.nefc = value @property def ncon(self): return self._wrapped.contents.ncon @ncon.setter def ncon(self, value): self._wrapped.contents.ncon = value @property def nwarning(self): arr = np.reshape(np.fromiter(self._wrapped.contents.nwarning, dtype=np.int, count=(8)), (8, )) arr.setflags(write=False) return arr @nwarning.setter def nwarning(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.nwarning, val_ptr, 8 * sizeof(c_int)) @property def warning_info(self): arr = np.reshape(np.fromiter(self._wrapped.contents.warning_info, dtype=np.int, count=(8)), (8, )) arr.setflags(write=False) return arr @warning_info.setter def warning_info(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.warning_info, val_ptr, 8 * sizeof(c_int)) @property def timer_duration(self): arr = np.reshape(np.fromiter(self._wrapped.contents.timer_duration, dtype=np.double, count=(14)), (14, )) arr.setflags(write=False) return arr @timer_duration.setter def timer_duration(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.timer_duration, val_ptr, 14 * sizeof(c_double)) @property def timer_ncall(self): arr = np.reshape(np.fromiter(self._wrapped.contents.timer_ncall, dtype=np.double, count=(14)), (14, )) arr.setflags(write=False) return arr @timer_ncall.setter def timer_ncall(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.timer_ncall, val_ptr, 14 * sizeof(c_double)) @property def mocaptime(self): arr = np.reshape(np.fromiter(self._wrapped.contents.mocaptime, dtype=np.double, count=(3)), (3, )) arr.setflags(write=False) return arr @mocaptime.setter def mocaptime(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.mocaptime, val_ptr, 3 * sizeof(c_double)) @property def time(self): return self._wrapped.contents.time @time.setter def time(self, value): self._wrapped.contents.time = value @property def energy(self): arr = np.reshape(np.fromiter(self._wrapped.contents.energy, dtype=np.double, count=(2)), (2, )) arr.setflags(write=False) return arr @energy.setter def energy(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.energy, val_ptr, 2 * sizeof(c_double)) @property def solverstat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.solverstat, dtype=np.double, count=(4)), (4, )) arr.setflags(write=False) return arr @solverstat.setter def solverstat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.solverstat, val_ptr, 4 * sizeof(c_double)) @property def solvertrace(self): arr = np.reshape(np.fromiter(self._wrapped.contents.solvertrace, dtype=np.double, count=(200)), (200, )) arr.setflags(write=False) return arr @solvertrace.setter def solvertrace(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.solvertrace, val_ptr, 200 * sizeof(c_double)) @property def buffer(self): arr = np.reshape(np.fromiter(self._wrapped.contents.buffer, dtype=np.uint8, count=(self.nbuffer)), (self.nbuffer, )) arr.setflags(write=False) return arr @buffer.setter def buffer(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_ubyte)) memmove(self._wrapped.contents.buffer, val_ptr, self.nbuffer * sizeof(c_ubyte)) @property def stack(self): arr = np.reshape(np.fromiter(self._wrapped.contents.stack, dtype=np.double, count=(self.nstack)), (self.nstack, )) arr.setflags(write=False) return arr @stack.setter def stack(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.stack, val_ptr, self.nstack * sizeof(c_double)) @property def qpos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qpos, dtype=np.double, count=(self._size_src.nq*1)), (self._size_src.nq, 1, )) arr.setflags(write=False) return arr @qpos.setter def qpos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qpos, val_ptr, self._size_src.nq*1 * sizeof(c_double)) @property def qvel(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qvel, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qvel.setter def qvel(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qvel, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def act(self): arr = np.reshape(np.fromiter(self._wrapped.contents.act, dtype=np.double, count=(self._size_src.na*1)), (self._size_src.na, 1, )) arr.setflags(write=False) return arr @act.setter def act(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.act, val_ptr, self._size_src.na*1 * sizeof(c_double)) @property def ctrl(self): arr = np.reshape(np.fromiter(self._wrapped.contents.ctrl, dtype=np.double, count=(self._size_src.nu*1)), (self._size_src.nu, 1, )) arr.setflags(write=False) return arr @ctrl.setter def ctrl(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.ctrl, val_ptr, self._size_src.nu*1 * sizeof(c_double)) @property def qfrc_applied(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qfrc_applied, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qfrc_applied.setter def qfrc_applied(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qfrc_applied, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def xfrc_applied(self): arr = np.reshape(np.fromiter(self._wrapped.contents.xfrc_applied, dtype=np.double, count=(self._size_src.nbody*6)), (self._size_src.nbody, 6, )) arr.setflags(write=False) return arr @xfrc_applied.setter def xfrc_applied(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.xfrc_applied, val_ptr, self._size_src.nbody*6 * sizeof(c_double)) @property def qacc(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qacc, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qacc.setter def qacc(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qacc, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def act_dot(self): arr = np.reshape(np.fromiter(self._wrapped.contents.act_dot, dtype=np.double, count=(self._size_src.na*1)), (self._size_src.na, 1, )) arr.setflags(write=False) return arr @act_dot.setter def act_dot(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.act_dot, val_ptr, self._size_src.na*1 * sizeof(c_double)) @property def mocap_pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.mocap_pos, dtype=np.double, count=(self._size_src.nmocap*3)), (self._size_src.nmocap, 3, )) arr.setflags(write=False) return arr @mocap_pos.setter def mocap_pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.mocap_pos, val_ptr, self._size_src.nmocap*3 * sizeof(c_double)) @property def mocap_quat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.mocap_quat, dtype=np.double, count=(self._size_src.nmocap*4)), (self._size_src.nmocap, 4, )) arr.setflags(write=False) return arr @mocap_quat.setter def mocap_quat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.mocap_quat, val_ptr, self._size_src.nmocap*4 * sizeof(c_double)) @property def userdata(self): arr = np.reshape(np.fromiter(self._wrapped.contents.userdata, dtype=np.double, count=(self._size_src.nuserdata*1)), (self._size_src.nuserdata, 1, )) arr.setflags(write=False) return arr @userdata.setter def userdata(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.userdata, val_ptr, self._size_src.nuserdata*1 * sizeof(c_double)) @property def sensordata(self): arr = np.reshape(np.fromiter(self._wrapped.contents.sensordata, dtype=np.double, count=(self._size_src.nsensordata*1)), (self._size_src.nsensordata, 1, )) arr.setflags(write=False) return arr @sensordata.setter def sensordata(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.sensordata, val_ptr, self._size_src.nsensordata*1 * sizeof(c_double)) @property def xpos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.xpos, dtype=np.double, count=(self._size_src.nbody*3)), (self._size_src.nbody, 3, )) arr.setflags(write=False) return arr @xpos.setter def xpos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.xpos, val_ptr, self._size_src.nbody*3 * sizeof(c_double)) @property def xquat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.xquat, dtype=np.double, count=(self._size_src.nbody*4)), (self._size_src.nbody, 4, )) arr.setflags(write=False) return arr @xquat.setter def xquat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.xquat, val_ptr, self._size_src.nbody*4 * sizeof(c_double)) @property def xmat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.xmat, dtype=np.double, count=(self._size_src.nbody*9)), (self._size_src.nbody, 9, )) arr.setflags(write=False) return arr @xmat.setter def xmat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.xmat, val_ptr, self._size_src.nbody*9 * sizeof(c_double)) @property def xipos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.xipos, dtype=np.double, count=(self._size_src.nbody*3)), (self._size_src.nbody, 3, )) arr.setflags(write=False) return arr @xipos.setter def xipos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.xipos, val_ptr, self._size_src.nbody*3 * sizeof(c_double)) @property def ximat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.ximat, dtype=np.double, count=(self._size_src.nbody*9)), (self._size_src.nbody, 9, )) arr.setflags(write=False) return arr @ximat.setter def ximat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.ximat, val_ptr, self._size_src.nbody*9 * sizeof(c_double)) @property def xanchor(self): arr = np.reshape(np.fromiter(self._wrapped.contents.xanchor, dtype=np.double, count=(self._size_src.njnt*3)), (self._size_src.njnt, 3, )) arr.setflags(write=False) return arr @xanchor.setter def xanchor(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.xanchor, val_ptr, self._size_src.njnt*3 * sizeof(c_double)) @property def xaxis(self): arr = np.reshape(np.fromiter(self._wrapped.contents.xaxis, dtype=np.double, count=(self._size_src.njnt*3)), (self._size_src.njnt, 3, )) arr.setflags(write=False) return arr @xaxis.setter def xaxis(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.xaxis, val_ptr, self._size_src.njnt*3 * sizeof(c_double)) @property def geom_xpos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_xpos, dtype=np.double, count=(self._size_src.ngeom*3)), (self._size_src.ngeom, 3, )) arr.setflags(write=False) return arr @geom_xpos.setter def geom_xpos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.geom_xpos, val_ptr, self._size_src.ngeom*3 * sizeof(c_double)) @property def geom_xmat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_xmat, dtype=np.double, count=(self._size_src.ngeom*9)), (self._size_src.ngeom, 9, )) arr.setflags(write=False) return arr @geom_xmat.setter def geom_xmat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.geom_xmat, val_ptr, self._size_src.ngeom*9 * sizeof(c_double)) @property def site_xpos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.site_xpos, dtype=np.double, count=(self._size_src.nsite*3)), (self._size_src.nsite, 3, )) arr.setflags(write=False) return arr @site_xpos.setter def site_xpos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.site_xpos, val_ptr, self._size_src.nsite*3 * sizeof(c_double)) @property def site_xmat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.site_xmat, dtype=np.double, count=(self._size_src.nsite*9)), (self._size_src.nsite, 9, )) arr.setflags(write=False) return arr @site_xmat.setter def site_xmat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.site_xmat, val_ptr, self._size_src.nsite*9 * sizeof(c_double)) @property def cam_xpos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cam_xpos, dtype=np.double, count=(self._size_src.ncam*3)), (self._size_src.ncam, 3, )) arr.setflags(write=False) return arr @cam_xpos.setter def cam_xpos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cam_xpos, val_ptr, self._size_src.ncam*3 * sizeof(c_double)) @property def cam_xmat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cam_xmat, dtype=np.double, count=(self._size_src.ncam*9)), (self._size_src.ncam, 9, )) arr.setflags(write=False) return arr @cam_xmat.setter def cam_xmat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cam_xmat, val_ptr, self._size_src.ncam*9 * sizeof(c_double)) @property def light_xpos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.light_xpos, dtype=np.double, count=(self._size_src.nlight*3)), (self._size_src.nlight, 3, )) arr.setflags(write=False) return arr @light_xpos.setter def light_xpos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.light_xpos, val_ptr, self._size_src.nlight*3 * sizeof(c_double)) @property def light_xdir(self): arr = np.reshape(np.fromiter(self._wrapped.contents.light_xdir, dtype=np.double, count=(self._size_src.nlight*3)), (self._size_src.nlight, 3, )) arr.setflags(write=False) return arr @light_xdir.setter def light_xdir(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.light_xdir, val_ptr, self._size_src.nlight*3 * sizeof(c_double)) @property def com_subtree(self): arr = np.reshape(np.fromiter(self._wrapped.contents.com_subtree, dtype=np.double, count=(self._size_src.nbody*3)), (self._size_src.nbody, 3, )) arr.setflags(write=False) return arr @com_subtree.setter def com_subtree(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.com_subtree, val_ptr, self._size_src.nbody*3 * sizeof(c_double)) @property def cdof(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cdof, dtype=np.double, count=(self._size_src.nv*6)), (self._size_src.nv, 6, )) arr.setflags(write=False) return arr @cdof.setter def cdof(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cdof, val_ptr, self._size_src.nv*6 * sizeof(c_double)) @property def cinert(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cinert, dtype=np.double, count=(self._size_src.nbody*10)), (self._size_src.nbody, 10, )) arr.setflags(write=False) return arr @cinert.setter def cinert(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cinert, val_ptr, self._size_src.nbody*10 * sizeof(c_double)) @property def ten_wrapadr(self): arr = np.reshape(np.fromiter(self._wrapped.contents.ten_wrapadr, dtype=np.int, count=(self._size_src.ntendon*1)), (self._size_src.ntendon, 1, )) arr.setflags(write=False) return arr @ten_wrapadr.setter def ten_wrapadr(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.ten_wrapadr, val_ptr, self._size_src.ntendon*1 * sizeof(c_int)) @property def ten_wrapnum(self): arr = np.reshape(np.fromiter(self._wrapped.contents.ten_wrapnum, dtype=np.int, count=(self._size_src.ntendon*1)), (self._size_src.ntendon, 1, )) arr.setflags(write=False) return arr @ten_wrapnum.setter def ten_wrapnum(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.ten_wrapnum, val_ptr, self._size_src.ntendon*1 * sizeof(c_int)) @property def ten_length(self): arr = np.reshape(np.fromiter(self._wrapped.contents.ten_length, dtype=np.double, count=(self._size_src.ntendon*1)), (self._size_src.ntendon, 1, )) arr.setflags(write=False) return arr @ten_length.setter def ten_length(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.ten_length, val_ptr, self._size_src.ntendon*1 * sizeof(c_double)) @property def ten_moment(self): arr = np.reshape(np.fromiter(self._wrapped.contents.ten_moment, dtype=np.double, count=(self._size_src.ntendon*self._size_src.nv)), (self._size_src.ntendon, self._size_src.nv, )) arr.setflags(write=False) return arr @ten_moment.setter def ten_moment(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.ten_moment, val_ptr, self._size_src.ntendon*self._size_src.nv * sizeof(c_double)) @property def wrap_obj(self): arr = np.reshape(np.fromiter(self._wrapped.contents.wrap_obj, dtype=np.int, count=(self._size_src.nwrap*2)), (self._size_src.nwrap, 2, )) arr.setflags(write=False) return arr @wrap_obj.setter def wrap_obj(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.wrap_obj, val_ptr, self._size_src.nwrap*2 * sizeof(c_int)) @property def wrap_xpos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.wrap_xpos, dtype=np.double, count=(self._size_src.nwrap*6)), (self._size_src.nwrap, 6, )) arr.setflags(write=False) return arr @wrap_xpos.setter def wrap_xpos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.wrap_xpos, val_ptr, self._size_src.nwrap*6 * sizeof(c_double)) @property def actuator_length(self): arr = np.reshape(np.fromiter(self._wrapped.contents.actuator_length, dtype=np.double, count=(self._size_src.nu*1)), (self._size_src.nu, 1, )) arr.setflags(write=False) return arr @actuator_length.setter def actuator_length(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.actuator_length, val_ptr, self._size_src.nu*1 * sizeof(c_double)) @property def actuator_moment(self): arr = np.reshape(np.fromiter(self._wrapped.contents.actuator_moment, dtype=np.double, count=(self._size_src.nu*self._size_src.nv)), (self._size_src.nu, self._size_src.nv, )) arr.setflags(write=False) return arr @actuator_moment.setter def actuator_moment(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.actuator_moment, val_ptr, self._size_src.nu*self._size_src.nv * sizeof(c_double)) @property def crb(self): arr = np.reshape(np.fromiter(self._wrapped.contents.crb, dtype=np.double, count=(self._size_src.nbody*10)), (self._size_src.nbody, 10, )) arr.setflags(write=False) return arr @crb.setter def crb(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.crb, val_ptr, self._size_src.nbody*10 * sizeof(c_double)) @property def qM(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qM, dtype=np.double, count=(self._size_src.nM*1)), (self._size_src.nM, 1, )) arr.setflags(write=False) return arr @qM.setter def qM(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qM, val_ptr, self._size_src.nM*1 * sizeof(c_double)) @property def qLD(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qLD, dtype=np.double, count=(self._size_src.nM*1)), (self._size_src.nM, 1, )) arr.setflags(write=False) return arr @qLD.setter def qLD(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qLD, val_ptr, self._size_src.nM*1 * sizeof(c_double)) @property def qLDiagInv(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qLDiagInv, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qLDiagInv.setter def qLDiagInv(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qLDiagInv, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def qLDiagSqrtInv(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qLDiagSqrtInv, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qLDiagSqrtInv.setter def qLDiagSqrtInv(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qLDiagSqrtInv, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def efc_type(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_type, dtype=np.int, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_type.setter def efc_type(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.efc_type, val_ptr, self._size_src.njmax*1 * sizeof(c_int)) @property def efc_id(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_id, dtype=np.int, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_id.setter def efc_id(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.efc_id, val_ptr, self._size_src.njmax*1 * sizeof(c_int)) @property def efc_rownnz(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_rownnz, dtype=np.int, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_rownnz.setter def efc_rownnz(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.efc_rownnz, val_ptr, self._size_src.njmax*1 * sizeof(c_int)) @property def efc_rowadr(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_rowadr, dtype=np.int, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_rowadr.setter def efc_rowadr(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.efc_rowadr, val_ptr, self._size_src.njmax*1 * sizeof(c_int)) @property def efc_colind(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_colind, dtype=np.int, count=(self._size_src.njmax*self._size_src.nv)), (self._size_src.njmax, self._size_src.nv, )) arr.setflags(write=False) return arr @efc_colind.setter def efc_colind(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.efc_colind, val_ptr, self._size_src.njmax*self._size_src.nv * sizeof(c_int)) @property def efc_rownnz_T(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_rownnz_T, dtype=np.int, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @efc_rownnz_T.setter def efc_rownnz_T(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.efc_rownnz_T, val_ptr, self._size_src.nv*1 * sizeof(c_int)) @property def efc_rowadr_T(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_rowadr_T, dtype=np.int, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @efc_rowadr_T.setter def efc_rowadr_T(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.efc_rowadr_T, val_ptr, self._size_src.nv*1 * sizeof(c_int)) @property def efc_colind_T(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_colind_T, dtype=np.int, count=(self._size_src.nv*self._size_src.njmax)), (self._size_src.nv, self._size_src.njmax, )) arr.setflags(write=False) return arr @efc_colind_T.setter def efc_colind_T(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.efc_colind_T, val_ptr, self._size_src.nv*self._size_src.njmax * sizeof(c_int)) @property def efc_solref(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_solref, dtype=np.double, count=(self._size_src.njmax*2)), (self._size_src.njmax, 2, )) arr.setflags(write=False) return arr @efc_solref.setter def efc_solref(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_solref, val_ptr, self._size_src.njmax*2 * sizeof(c_double)) @property def efc_solimp(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_solimp, dtype=np.double, count=(self._size_src.njmax*3)), (self._size_src.njmax, 3, )) arr.setflags(write=False) return arr @efc_solimp.setter def efc_solimp(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_solimp, val_ptr, self._size_src.njmax*3 * sizeof(c_double)) @property def efc_margin(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_margin, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_margin.setter def efc_margin(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_margin, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def efc_frictionloss(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_frictionloss, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_frictionloss.setter def efc_frictionloss(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_frictionloss, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def efc_pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_pos, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_pos.setter def efc_pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_pos, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def efc_J(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_J, dtype=np.double, count=(self._size_src.njmax*self._size_src.nv)), (self._size_src.njmax, self._size_src.nv, )) arr.setflags(write=False) return arr @efc_J.setter def efc_J(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_J, val_ptr, self._size_src.njmax*self._size_src.nv * sizeof(c_double)) @property def efc_J_T(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_J_T, dtype=np.double, count=(self._size_src.nv*self._size_src.njmax)), (self._size_src.nv, self._size_src.njmax, )) arr.setflags(write=False) return arr @efc_J_T.setter def efc_J_T(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_J_T, val_ptr, self._size_src.nv*self._size_src.njmax * sizeof(c_double)) @property def efc_diagApprox(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_diagApprox, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_diagApprox.setter def efc_diagApprox(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_diagApprox, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def efc_D(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_D, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_D.setter def efc_D(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_D, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def efc_R(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_R, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_R.setter def efc_R(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_R, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def efc_AR(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_AR, dtype=np.double, count=(self._size_src.njmax*self._size_src.njmax)), (self._size_src.njmax, self._size_src.njmax, )) arr.setflags(write=False) return arr @efc_AR.setter def efc_AR(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_AR, val_ptr, self._size_src.njmax*self._size_src.njmax * sizeof(c_double)) @property def e_ARchol(self): arr = np.reshape(np.fromiter(self._wrapped.contents.e_ARchol, dtype=np.double, count=(self._size_src.nemax*self._size_src.nemax)), (self._size_src.nemax, self._size_src.nemax, )) arr.setflags(write=False) return arr @e_ARchol.setter def e_ARchol(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.e_ARchol, val_ptr, self._size_src.nemax*self._size_src.nemax * sizeof(c_double)) @property def fc_e_rect(self): arr = np.reshape(np.fromiter(self._wrapped.contents.fc_e_rect, dtype=np.double, count=(self._size_src.njmax*self._size_src.nemax)), (self._size_src.njmax, self._size_src.nemax, )) arr.setflags(write=False) return arr @fc_e_rect.setter def fc_e_rect(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.fc_e_rect, val_ptr, self._size_src.njmax*self._size_src.nemax * sizeof(c_double)) @property def fc_AR(self): arr = np.reshape(np.fromiter(self._wrapped.contents.fc_AR, dtype=np.double, count=(self._size_src.njmax*self._size_src.njmax)), (self._size_src.njmax, self._size_src.njmax, )) arr.setflags(write=False) return arr @fc_AR.setter def fc_AR(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.fc_AR, val_ptr, self._size_src.njmax*self._size_src.njmax * sizeof(c_double)) @property def ten_velocity(self): arr = np.reshape(np.fromiter(self._wrapped.contents.ten_velocity, dtype=np.double, count=(self._size_src.ntendon*1)), (self._size_src.ntendon, 1, )) arr.setflags(write=False) return arr @ten_velocity.setter def ten_velocity(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.ten_velocity, val_ptr, self._size_src.ntendon*1 * sizeof(c_double)) @property def actuator_velocity(self): arr = np.reshape(np.fromiter(self._wrapped.contents.actuator_velocity, dtype=np.double, count=(self._size_src.nu*1)), (self._size_src.nu, 1, )) arr.setflags(write=False) return arr @actuator_velocity.setter def actuator_velocity(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.actuator_velocity, val_ptr, self._size_src.nu*1 * sizeof(c_double)) @property def cvel(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cvel, dtype=np.double, count=(self._size_src.nbody*6)), (self._size_src.nbody, 6, )) arr.setflags(write=False) return arr @cvel.setter def cvel(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cvel, val_ptr, self._size_src.nbody*6 * sizeof(c_double)) @property def cdof_dot(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cdof_dot, dtype=np.double, count=(self._size_src.nv*6)), (self._size_src.nv, 6, )) arr.setflags(write=False) return arr @cdof_dot.setter def cdof_dot(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cdof_dot, val_ptr, self._size_src.nv*6 * sizeof(c_double)) @property def qfrc_bias(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qfrc_bias, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qfrc_bias.setter def qfrc_bias(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qfrc_bias, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def qfrc_passive(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qfrc_passive, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qfrc_passive.setter def qfrc_passive(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qfrc_passive, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def efc_vel(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_vel, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_vel.setter def efc_vel(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_vel, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def efc_aref(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_aref, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_aref.setter def efc_aref(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_aref, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def actuator_force(self): arr = np.reshape(np.fromiter(self._wrapped.contents.actuator_force, dtype=np.double, count=(self._size_src.nu*1)), (self._size_src.nu, 1, )) arr.setflags(write=False) return arr @actuator_force.setter def actuator_force(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.actuator_force, val_ptr, self._size_src.nu*1 * sizeof(c_double)) @property def qfrc_actuator(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qfrc_actuator, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qfrc_actuator.setter def qfrc_actuator(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qfrc_actuator, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def qfrc_unc(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qfrc_unc, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qfrc_unc.setter def qfrc_unc(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qfrc_unc, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def qacc_unc(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qacc_unc, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qacc_unc.setter def qacc_unc(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qacc_unc, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def efc_b(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_b, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_b.setter def efc_b(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_b, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def fc_b(self): arr = np.reshape(np.fromiter(self._wrapped.contents.fc_b, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @fc_b.setter def fc_b(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.fc_b, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def efc_force(self): arr = np.reshape(np.fromiter(self._wrapped.contents.efc_force, dtype=np.double, count=(self._size_src.njmax*1)), (self._size_src.njmax, 1, )) arr.setflags(write=False) return arr @efc_force.setter def efc_force(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.efc_force, val_ptr, self._size_src.njmax*1 * sizeof(c_double)) @property def qfrc_constraint(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qfrc_constraint, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qfrc_constraint.setter def qfrc_constraint(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qfrc_constraint, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def qfrc_inverse(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qfrc_inverse, dtype=np.double, count=(self._size_src.nv*1)), (self._size_src.nv, 1, )) arr.setflags(write=False) return arr @qfrc_inverse.setter def qfrc_inverse(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qfrc_inverse, val_ptr, self._size_src.nv*1 * sizeof(c_double)) @property def cacc(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cacc, dtype=np.double, count=(self._size_src.nbody*6)), (self._size_src.nbody, 6, )) arr.setflags(write=False) return arr @cacc.setter def cacc(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cacc, val_ptr, self._size_src.nbody*6 * sizeof(c_double)) @property def cfrc_int(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cfrc_int, dtype=np.double, count=(self._size_src.nbody*6)), (self._size_src.nbody, 6, )) arr.setflags(write=False) return arr @cfrc_int.setter def cfrc_int(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cfrc_int, val_ptr, self._size_src.nbody*6 * sizeof(c_double)) @property def cfrc_ext(self): arr = np.reshape(np.fromiter(self._wrapped.contents.cfrc_ext, dtype=np.double, count=(self._size_src.nbody*6)), (self._size_src.nbody, 6, )) arr.setflags(write=False) return arr @cfrc_ext.setter def cfrc_ext(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.cfrc_ext, val_ptr, self._size_src.nbody*6 * sizeof(c_double)) class MjModelWrapper(object): def __init__(self, wrapped, size_src=None): self._wrapped = wrapped self._size_src = size_src @property def ptr(self): return self._wrapped @property def obj(self): return self._wrapped.contents @property def nq(self): return self._wrapped.contents.nq @nq.setter def nq(self, value): self._wrapped.contents.nq = value @property def nv(self): return self._wrapped.contents.nv @nv.setter def nv(self, value): self._wrapped.contents.nv = value @property def nu(self): return self._wrapped.contents.nu @nu.setter def nu(self, value): self._wrapped.contents.nu = value @property def na(self): return self._wrapped.contents.na @na.setter def na(self, value): self._wrapped.contents.na = value @property def nbody(self): return self._wrapped.contents.nbody @nbody.setter def nbody(self, value): self._wrapped.contents.nbody = value @property def njnt(self): return self._wrapped.contents.njnt @njnt.setter def njnt(self, value): self._wrapped.contents.njnt = value @property def ngeom(self): return self._wrapped.contents.ngeom @ngeom.setter def ngeom(self, value): self._wrapped.contents.ngeom = value @property def nsite(self): return self._wrapped.contents.nsite @nsite.setter def nsite(self, value): self._wrapped.contents.nsite = value @property def ncam(self): return self._wrapped.contents.ncam @ncam.setter def ncam(self, value): self._wrapped.contents.ncam = value @property def nlight(self): return self._wrapped.contents.nlight @nlight.setter def nlight(self, value): self._wrapped.contents.nlight = value @property def nmesh(self): return self._wrapped.contents.nmesh @nmesh.setter def nmesh(self, value): self._wrapped.contents.nmesh = value @property def nmeshvert(self): return self._wrapped.contents.nmeshvert @nmeshvert.setter def nmeshvert(self, value): self._wrapped.contents.nmeshvert = value @property def nmeshface(self): return self._wrapped.contents.nmeshface @nmeshface.setter def nmeshface(self, value): self._wrapped.contents.nmeshface = value @property def nmeshgraph(self): return self._wrapped.contents.nmeshgraph @nmeshgraph.setter def nmeshgraph(self, value): self._wrapped.contents.nmeshgraph = value @property def nhfield(self): return self._wrapped.contents.nhfield @nhfield.setter def nhfield(self, value): self._wrapped.contents.nhfield = value @property def nhfielddata(self): return self._wrapped.contents.nhfielddata @nhfielddata.setter def nhfielddata(self, value): self._wrapped.contents.nhfielddata = value @property def ntex(self): return self._wrapped.contents.ntex @ntex.setter def ntex(self, value): self._wrapped.contents.ntex = value @property def ntexdata(self): return self._wrapped.contents.ntexdata @ntexdata.setter def ntexdata(self, value): self._wrapped.contents.ntexdata = value @property def nmat(self): return self._wrapped.contents.nmat @nmat.setter def nmat(self, value): self._wrapped.contents.nmat = value @property def npair(self): return self._wrapped.contents.npair @npair.setter def npair(self, value): self._wrapped.contents.npair = value @property def nexclude(self): return self._wrapped.contents.nexclude @nexclude.setter def nexclude(self, value): self._wrapped.contents.nexclude = value @property def neq(self): return self._wrapped.contents.neq @neq.setter def neq(self, value): self._wrapped.contents.neq = value @property def ntendon(self): return self._wrapped.contents.ntendon @ntendon.setter def ntendon(self, value): self._wrapped.contents.ntendon = value @property def nwrap(self): return self._wrapped.contents.nwrap @nwrap.setter def nwrap(self, value): self._wrapped.contents.nwrap = value @property def nsensor(self): return self._wrapped.contents.nsensor @nsensor.setter def nsensor(self, value): self._wrapped.contents.nsensor = value @property def nnumeric(self): return self._wrapped.contents.nnumeric @nnumeric.setter def nnumeric(self, value): self._wrapped.contents.nnumeric = value @property def nnumericdata(self): return self._wrapped.contents.nnumericdata @nnumericdata.setter def nnumericdata(self, value): self._wrapped.contents.nnumericdata = value @property def ntext(self): return self._wrapped.contents.ntext @ntext.setter def ntext(self, value): self._wrapped.contents.ntext = value @property def ntextdata(self): return self._wrapped.contents.ntextdata @ntextdata.setter def ntextdata(self, value): self._wrapped.contents.ntextdata = value @property def nkey(self): return self._wrapped.contents.nkey @nkey.setter def nkey(self, value): self._wrapped.contents.nkey = value @property def nuser_body(self): return self._wrapped.contents.nuser_body @nuser_body.setter def nuser_body(self, value): self._wrapped.contents.nuser_body = value @property def nuser_jnt(self): return self._wrapped.contents.nuser_jnt @nuser_jnt.setter def nuser_jnt(self, value): self._wrapped.contents.nuser_jnt = value @property def nuser_geom(self): return self._wrapped.contents.nuser_geom @nuser_geom.setter def nuser_geom(self, value): self._wrapped.contents.nuser_geom = value @property def nuser_site(self): return self._wrapped.contents.nuser_site @nuser_site.setter def nuser_site(self, value): self._wrapped.contents.nuser_site = value @property def nuser_tendon(self): return self._wrapped.contents.nuser_tendon @nuser_tendon.setter def nuser_tendon(self, value): self._wrapped.contents.nuser_tendon = value @property def nuser_actuator(self): return self._wrapped.contents.nuser_actuator @nuser_actuator.setter def nuser_actuator(self, value): self._wrapped.contents.nuser_actuator = value @property def nuser_sensor(self): return self._wrapped.contents.nuser_sensor @nuser_sensor.setter def nuser_sensor(self, value): self._wrapped.contents.nuser_sensor = value @property def nnames(self): return self._wrapped.contents.nnames @nnames.setter def nnames(self, value): self._wrapped.contents.nnames = value @property def nM(self): return self._wrapped.contents.nM @nM.setter def nM(self, value): self._wrapped.contents.nM = value @property def nemax(self): return self._wrapped.contents.nemax @nemax.setter def nemax(self, value): self._wrapped.contents.nemax = value @property def njmax(self): return self._wrapped.contents.njmax @njmax.setter def njmax(self, value): self._wrapped.contents.njmax = value @property def nconmax(self): return self._wrapped.contents.nconmax @nconmax.setter def nconmax(self, value): self._wrapped.contents.nconmax = value @property def nstack(self): return self._wrapped.contents.nstack @nstack.setter def nstack(self, value): self._wrapped.contents.nstack = value @property def nuserdata(self): return self._wrapped.contents.nuserdata @nuserdata.setter def nuserdata(self, value): self._wrapped.contents.nuserdata = value @property def nmocap(self): return self._wrapped.contents.nmocap @nmocap.setter def nmocap(self, value): self._wrapped.contents.nmocap = value @property def nsensordata(self): return self._wrapped.contents.nsensordata @nsensordata.setter def nsensordata(self, value): self._wrapped.contents.nsensordata = value @property def nbuffer(self): return self._wrapped.contents.nbuffer @nbuffer.setter def nbuffer(self, value): self._wrapped.contents.nbuffer = value @property def opt(self): return self._wrapped.contents.opt @opt.setter def opt(self, value): self._wrapped.contents.opt = value @property def vis(self): return self._wrapped.contents.vis @vis.setter def vis(self, value): self._wrapped.contents.vis = value @property def stat(self): return self._wrapped.contents.stat @stat.setter def stat(self, value): self._wrapped.contents.stat = value @property def buffer(self): arr = np.reshape(np.fromiter(self._wrapped.contents.buffer, dtype=np.uint8, count=(self.nbuffer)), (self.nbuffer, )) arr.setflags(write=False) return arr @buffer.setter def buffer(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_ubyte)) memmove(self._wrapped.contents.buffer, val_ptr, self.nbuffer * sizeof(c_ubyte)) @property def qpos0(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qpos0, dtype=np.double, count=(self.nq*1)), (self.nq, 1, )) arr.setflags(write=False) return arr @qpos0.setter def qpos0(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qpos0, val_ptr, self.nq*1 * sizeof(c_double)) @property def qpos_spring(self): arr = np.reshape(np.fromiter(self._wrapped.contents.qpos_spring, dtype=np.double, count=(self.nq*1)), (self.nq, 1, )) arr.setflags(write=False) return arr @qpos_spring.setter def qpos_spring(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.qpos_spring, val_ptr, self.nq*1 * sizeof(c_double)) @property def body_parentid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_parentid, dtype=np.int, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_parentid.setter def body_parentid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.body_parentid, val_ptr, self.nbody*1 * sizeof(c_int)) @property def body_rootid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_rootid, dtype=np.int, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_rootid.setter def body_rootid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.body_rootid, val_ptr, self.nbody*1 * sizeof(c_int)) @property def body_weldid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_weldid, dtype=np.int, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_weldid.setter def body_weldid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.body_weldid, val_ptr, self.nbody*1 * sizeof(c_int)) @property def body_mocapid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_mocapid, dtype=np.int, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_mocapid.setter def body_mocapid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.body_mocapid, val_ptr, self.nbody*1 * sizeof(c_int)) @property def body_jntnum(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_jntnum, dtype=np.int, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_jntnum.setter def body_jntnum(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.body_jntnum, val_ptr, self.nbody*1 * sizeof(c_int)) @property def body_jntadr(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_jntadr, dtype=np.int, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_jntadr.setter def body_jntadr(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.body_jntadr, val_ptr, self.nbody*1 * sizeof(c_int)) @property def body_dofnum(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_dofnum, dtype=np.int, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_dofnum.setter def body_dofnum(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.body_dofnum, val_ptr, self.nbody*1 * sizeof(c_int)) @property def body_dofadr(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_dofadr, dtype=np.int, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_dofadr.setter def body_dofadr(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.body_dofadr, val_ptr, self.nbody*1 * sizeof(c_int)) @property def body_geomnum(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_geomnum, dtype=np.int, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_geomnum.setter def body_geomnum(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.body_geomnum, val_ptr, self.nbody*1 * sizeof(c_int)) @property def body_geomadr(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_geomadr, dtype=np.int, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_geomadr.setter def body_geomadr(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.body_geomadr, val_ptr, self.nbody*1 * sizeof(c_int)) @property def body_pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_pos, dtype=np.double, count=(self.nbody*3)), (self.nbody, 3, )) arr.setflags(write=False) return arr @body_pos.setter def body_pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.body_pos, val_ptr, self.nbody*3 * sizeof(c_double)) @property def body_quat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_quat, dtype=np.double, count=(self.nbody*4)), (self.nbody, 4, )) arr.setflags(write=False) return arr @body_quat.setter def body_quat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.body_quat, val_ptr, self.nbody*4 * sizeof(c_double)) @property def body_ipos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_ipos, dtype=np.double, count=(self.nbody*3)), (self.nbody, 3, )) arr.setflags(write=False) return arr @body_ipos.setter def body_ipos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.body_ipos, val_ptr, self.nbody*3 * sizeof(c_double)) @property def body_iquat(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_iquat, dtype=np.double, count=(self.nbody*4)), (self.nbody, 4, )) arr.setflags(write=False) return arr @body_iquat.setter def body_iquat(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.body_iquat, val_ptr, self.nbody*4 * sizeof(c_double)) @property def body_mass(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_mass, dtype=np.double, count=(self.nbody*1)), (self.nbody, 1, )) arr.setflags(write=False) return arr @body_mass.setter def body_mass(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.body_mass, val_ptr, self.nbody*1 * sizeof(c_double)) @property def body_inertia(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_inertia, dtype=np.double, count=(self.nbody*3)), (self.nbody, 3, )) arr.setflags(write=False) return arr @body_inertia.setter def body_inertia(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.body_inertia, val_ptr, self.nbody*3 * sizeof(c_double)) @property def body_invweight0(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_invweight0, dtype=np.double, count=(self.nbody*2)), (self.nbody, 2, )) arr.setflags(write=False) return arr @body_invweight0.setter def body_invweight0(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.body_invweight0, val_ptr, self.nbody*2 * sizeof(c_double)) @property def body_user(self): arr = np.reshape(np.fromiter(self._wrapped.contents.body_user, dtype=np.double, count=(self.nbody*self.nuser_body)), (self.nbody, self.nuser_body, )) arr.setflags(write=False) return arr @body_user.setter def body_user(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.body_user, val_ptr, self.nbody*self.nuser_body * sizeof(c_double)) @property def jnt_type(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_type, dtype=np.int, count=(self.njnt*1)), (self.njnt, 1, )) arr.setflags(write=False) return arr @jnt_type.setter def jnt_type(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.jnt_type, val_ptr, self.njnt*1 * sizeof(c_int)) @property def jnt_qposadr(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_qposadr, dtype=np.int, count=(self.njnt*1)), (self.njnt, 1, )) arr.setflags(write=False) return arr @jnt_qposadr.setter def jnt_qposadr(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.jnt_qposadr, val_ptr, self.njnt*1 * sizeof(c_int)) @property def jnt_dofadr(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_dofadr, dtype=np.int, count=(self.njnt*1)), (self.njnt, 1, )) arr.setflags(write=False) return arr @jnt_dofadr.setter def jnt_dofadr(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.jnt_dofadr, val_ptr, self.njnt*1 * sizeof(c_int)) @property def jnt_bodyid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_bodyid, dtype=np.int, count=(self.njnt*1)), (self.njnt, 1, )) arr.setflags(write=False) return arr @jnt_bodyid.setter def jnt_bodyid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.jnt_bodyid, val_ptr, self.njnt*1 * sizeof(c_int)) @property def jnt_limited(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_limited, dtype=np.uint8, count=(self.njnt*1)), (self.njnt, 1, )) arr.setflags(write=False) return arr @jnt_limited.setter def jnt_limited(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_ubyte)) memmove(self._wrapped.contents.jnt_limited, val_ptr, self.njnt*1 * sizeof(c_ubyte)) @property def jnt_solref(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_solref, dtype=np.double, count=(self.njnt*2)), (self.njnt, 2, )) arr.setflags(write=False) return arr @jnt_solref.setter def jnt_solref(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.jnt_solref, val_ptr, self.njnt*2 * sizeof(c_double)) @property def jnt_solimp(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_solimp, dtype=np.double, count=(self.njnt*3)), (self.njnt, 3, )) arr.setflags(write=False) return arr @jnt_solimp.setter def jnt_solimp(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.jnt_solimp, val_ptr, self.njnt*3 * sizeof(c_double)) @property def jnt_pos(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_pos, dtype=np.double, count=(self.njnt*3)), (self.njnt, 3, )) arr.setflags(write=False) return arr @jnt_pos.setter def jnt_pos(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.jnt_pos, val_ptr, self.njnt*3 * sizeof(c_double)) @property def jnt_axis(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_axis, dtype=np.double, count=(self.njnt*3)), (self.njnt, 3, )) arr.setflags(write=False) return arr @jnt_axis.setter def jnt_axis(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.jnt_axis, val_ptr, self.njnt*3 * sizeof(c_double)) @property def jnt_stiffness(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_stiffness, dtype=np.double, count=(self.njnt*1)), (self.njnt, 1, )) arr.setflags(write=False) return arr @jnt_stiffness.setter def jnt_stiffness(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.jnt_stiffness, val_ptr, self.njnt*1 * sizeof(c_double)) @property def jnt_range(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_range, dtype=np.double, count=(self.njnt*2)), (self.njnt, 2, )) arr.setflags(write=False) return arr @jnt_range.setter def jnt_range(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.jnt_range, val_ptr, self.njnt*2 * sizeof(c_double)) @property def jnt_margin(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_margin, dtype=np.double, count=(self.njnt*1)), (self.njnt, 1, )) arr.setflags(write=False) return arr @jnt_margin.setter def jnt_margin(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.jnt_margin, val_ptr, self.njnt*1 * sizeof(c_double)) @property def jnt_user(self): arr = np.reshape(np.fromiter(self._wrapped.contents.jnt_user, dtype=np.double, count=(self.njnt*self.nuser_jnt)), (self.njnt, self.nuser_jnt, )) arr.setflags(write=False) return arr @jnt_user.setter def jnt_user(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.jnt_user, val_ptr, self.njnt*self.nuser_jnt * sizeof(c_double)) @property def dof_bodyid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_bodyid, dtype=np.int, count=(self.nv*1)), (self.nv, 1, )) arr.setflags(write=False) return arr @dof_bodyid.setter def dof_bodyid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.dof_bodyid, val_ptr, self.nv*1 * sizeof(c_int)) @property def dof_jntid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_jntid, dtype=np.int, count=(self.nv*1)), (self.nv, 1, )) arr.setflags(write=False) return arr @dof_jntid.setter def dof_jntid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.dof_jntid, val_ptr, self.nv*1 * sizeof(c_int)) @property def dof_parentid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_parentid, dtype=np.int, count=(self.nv*1)), (self.nv, 1, )) arr.setflags(write=False) return arr @dof_parentid.setter def dof_parentid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.dof_parentid, val_ptr, self.nv*1 * sizeof(c_int)) @property def dof_Madr(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_Madr, dtype=np.int, count=(self.nv*1)), (self.nv, 1, )) arr.setflags(write=False) return arr @dof_Madr.setter def dof_Madr(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.dof_Madr, val_ptr, self.nv*1 * sizeof(c_int)) @property def dof_frictional(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_frictional, dtype=np.uint8, count=(self.nv*1)), (self.nv, 1, )) arr.setflags(write=False) return arr @dof_frictional.setter def dof_frictional(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_ubyte)) memmove(self._wrapped.contents.dof_frictional, val_ptr, self.nv*1 * sizeof(c_ubyte)) @property def dof_solref(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_solref, dtype=np.double, count=(self.nv*2)), (self.nv, 2, )) arr.setflags(write=False) return arr @dof_solref.setter def dof_solref(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.dof_solref, val_ptr, self.nv*2 * sizeof(c_double)) @property def dof_solimp(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_solimp, dtype=np.double, count=(self.nv*3)), (self.nv, 3, )) arr.setflags(write=False) return arr @dof_solimp.setter def dof_solimp(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.dof_solimp, val_ptr, self.nv*3 * sizeof(c_double)) @property def dof_frictionloss(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_frictionloss, dtype=np.double, count=(self.nv*1)), (self.nv, 1, )) arr.setflags(write=False) return arr @dof_frictionloss.setter def dof_frictionloss(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.dof_frictionloss, val_ptr, self.nv*1 * sizeof(c_double)) @property def dof_armature(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_armature, dtype=np.double, count=(self.nv*1)), (self.nv, 1, )) arr.setflags(write=False) return arr @dof_armature.setter def dof_armature(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.dof_armature, val_ptr, self.nv*1 * sizeof(c_double)) @property def dof_damping(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_damping, dtype=np.double, count=(self.nv*1)), (self.nv, 1, )) arr.setflags(write=False) return arr @dof_damping.setter def dof_damping(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.dof_damping, val_ptr, self.nv*1 * sizeof(c_double)) @property def dof_invweight0(self): arr = np.reshape(np.fromiter(self._wrapped.contents.dof_invweight0, dtype=np.double, count=(self.nv*1)), (self.nv, 1, )) arr.setflags(write=False) return arr @dof_invweight0.setter def dof_invweight0(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_double)) memmove(self._wrapped.contents.dof_invweight0, val_ptr, self.nv*1 * sizeof(c_double)) @property def geom_type(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_type, dtype=np.int, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_type.setter def geom_type(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.geom_type, val_ptr, self.ngeom*1 * sizeof(c_int)) @property def geom_contype(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_contype, dtype=np.int, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_contype.setter def geom_contype(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.geom_contype, val_ptr, self.ngeom*1 * sizeof(c_int)) @property def geom_conaffinity(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_conaffinity, dtype=np.int, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_conaffinity.setter def geom_conaffinity(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.geom_conaffinity, val_ptr, self.ngeom*1 * sizeof(c_int)) @property def geom_condim(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_condim, dtype=np.int, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_condim.setter def geom_condim(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.geom_condim, val_ptr, self.ngeom*1 * sizeof(c_int)) @property def geom_bodyid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_bodyid, dtype=np.int, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_bodyid.setter def geom_bodyid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.geom_bodyid, val_ptr, self.ngeom*1 * sizeof(c_int)) @property def geom_dataid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_dataid, dtype=np.int, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_dataid.setter def geom_dataid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.geom_dataid, val_ptr, self.ngeom*1 * sizeof(c_int)) @property def geom_matid(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_matid, dtype=np.int, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_matid.setter def geom_matid(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.geom_matid, val_ptr, self.ngeom*1 * sizeof(c_int)) @property def geom_group(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_group, dtype=np.int, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_group.setter def geom_group(self, value): val_ptr = np.array(value, dtype=np.float64).ctypes.data_as(POINTER(c_int)) memmove(self._wrapped.contents.geom_group, val_ptr, self.ngeom*1 * sizeof(c_int)) @property def geom_solmix(self): arr = np.reshape(np.fromiter(self._wrapped.contents.geom_solmix, dtype=np.double, count=(self.ngeom*1)), (self.ngeom, 1, )) arr.setflags(write=False) return arr @geom_solmix.setter def geom_solmix(self, value): val_ptr =
np.array(value, dtype=np.float64)
numpy.array
import numpy as np class Layer: """ Contains attributes and methods for a single layer Attributes: Layer info: units, prev_units, type, activation caches: W, b, Z, A, A_prev gradients: dW, db """ # Initialize object for hidden and output layer def __init__(self, units, activation="relu", type = "hidden"): self.units = units self.activation = activation self.type = type # Getting the number of units of previous layer def add_previous(self, prev_units): self.prev_units = prev_units # Initialization to weights and biases by He initialisation def initialise_weights(self): np.random.seed(1) self.W = np.random.randn(self.units, self.prev_units) * np.sqrt(2/self.prev_units) self.b = np.zeros((self.units, 1)) # Method to propagate through the neural network # Input: A_prev # Output: A def forward_prop(self, A_prev): self.A_prev = A_prev self.Z =
np.dot(self.W, self.A_prev)
numpy.dot
import os import tensorflow as tf import numpy as np from tensorflow.contrib.tensorboard.plugins import projector import argparse def create_embeddings(sess, log_dir, embedding_file='', tensor_name='embedding'): """ Add the embeddings to input TensorFlow session and writes a metadata_file containing the words in the vocabulary :param sess: TF session :param log_dir: destination directory for the model and metadata (the one to which TensorBoard points) :param embedding_file: embedding file :param tensor_name: tensor name :return: """ embedding = None embedding_dimensions = 0 vocab_size = 0 # write labels with open(os.path.join(log_dir, tensor_name + '_' + 'metadata.tsv'), 'w') as metadata_file: with open(embedding_file, 'r') as inputfile: for i, line in enumerate(inputfile): line = line.rstrip() values = line.split() # the first line is always the header based on what we produce in the embeddings_knn.py if i == 0: vocab_size = int(values[0]) embedding_dimensions = int(values[1]) embedding =
np.empty((vocab_size, embedding_dimensions), dtype=np.float32)
numpy.empty
from utils.ontf import Online_NTF import numpy as np from sklearn.decomposition import SparseCoder import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.family'] = 'serif' plt.rcParams['font.serif'] = ['Times New Roman'] + plt.rcParams['font.serif'] import matplotlib.font_manager as font_manager import covid_dataprocess import itertools DEBUG = False class ONMF_timeseries_reconstructor(): def __init__(self, path, source, data_source, country_list=None, state_list_test=None, state_list_train=None, n_components=100, # number of dictionary elements -- rank ONMF_iterations=50, # number of iterations for the ONMF algorithm ONMF_sub_iterations=20, # number of i.i.d. subsampling for each iteration of ONTF ONMF_batch_size=20, # number of patches used in i.i.d. subsampling num_patches_perbatch=1000, # number of patches that ONTF algorithm learns from at each iteration patch_size=7, # length of sliding window patches_file='', learn_joint_dict=False, prediction_length=1, learnevery=5, learning_window_cap=None, # if not none, learn from the past "learning_window_cap" days to predict alpha=None, beta=None, subsample=False, if_covidactnow=False, if_onlynewcases=False, if_moving_avg_data=False, if_log_scale=False): ''' batch_size = number of patches used for training dictionaries per ONTF iteration sources: array of filenames to make patches out of patches_array_filename: numpy array file which contains already read-in images ''' self.path = path self.source = source self.data_source = data_source self.state_list = state_list_test self.country_list = country_list self.n_components = n_components self.ONMF_iterations = ONMF_iterations self.ONMF_sub_iterations = ONMF_sub_iterations self.num_patches_perbatch = num_patches_perbatch self.ONMF_batch_size = ONMF_batch_size self.patch_size = patch_size self.patches_file = patches_file self.learn_joint_dict = learn_joint_dict self.prediction_length = prediction_length self.code = np.zeros(shape=(n_components, num_patches_perbatch)) self.learnevery = learnevery self.alpha = alpha self.beta = beta self.subsample = subsample self.if_onlynewcases = if_onlynewcases self.if_moving_avg_data = if_moving_avg_data self.if_log_scale = if_log_scale self.input_variable_list = [] self.result_dict = {} self.state_list_train = state_list_train self.learning_window_cap = learning_window_cap input_variable_list = [] if data_source == 'COVID_ACT_NOW': print('LOADING.. COVID_ACT_NOW') self.input_variable_list = ['input_hospitalBedsRequired', 'input_ICUBedsInUse', 'input_ventilatorsInUse', 'input_Deaths', 'input_Infected'] self.df = covid_dataprocess.read_data_COVIDactnow_NYT() self.df = self.truncate_NAN_DataFrame() self.df = self.moving_avg_log_scale() self.data_test = self.extract_ndarray_from_DataFrame() self.result_dict.update({'Data source': 'COVID_ACT_NOW'}) self.result_dict.update({'Full DataFrame': self.df}) self.result_dict.update({'Data array': self.data_test}) self.result_dict.update({'List_states': self.state_list}) self.result_dict.update({'List_variables': self.input_variable_list}) elif data_source == 'COVID_TRACKING_PROJECT': print('LOADING.. COVID_TRACKING_PROJECT') self.input_variable_list = ['input_hospitalized_Currently', 'input_inICU_Currently', 'input_daily_test_positive_rate', 'input_daily_cases', 'input_daily_deaths'] # 'input_daily_cases_pct_change'] self.df = covid_dataprocess.read_data_COVIDtrackingProject() self.df = self.truncate_NAN_DataFrame() self.df = self.moving_avg_log_scale() self.extract_ndarray_from_DataFrame() self.result_dict.update({'Full DataFrame': self.df}) self.result_dict.update({'Data array': self.data_test}) self.result_dict.update({'List_states': self.state_list}) self.result_dict.update({'List_variables': self.input_variable_list}) self.result_dict.update({'Data array (train)': self.data_train}) self.result_dict.update({'List_states (train)': self.state_list_train}) else: ### JHU data print('LOADING.. JHU Data') self.data_test = self.combine_data(self.source) print('data', self.data_test) print('data.shape', self.data_test.shape) self.ntf = Online_NTF(self.data_test, self.n_components, iterations=self.ONMF_sub_iterations, learn_joint_dict=True, mode=3, ini_dict=None, ini_A=None, ini_B=None, batch_size=self.ONMF_batch_size) self.W = np.zeros(shape=(self.data_test.shape[0] * self.data_test.shape[2] * patch_size, n_components)) def moving_avg_log_scale(self): df = self.df if self.if_moving_avg_data: for state in self.state_list: df1 = df.get(state) df2 = df1[self.input_variable_list] df2 = df2.rolling(window=5, win_type=None).sum() / 5 ### moving average with backward window size 5 df2 = df2.fillna(0) df1[self.input_variable_list] = df2 df.update({state: df1}) if self.if_log_scale: for state in self.state_list: df1 = df.get(state) df2 = df1[self.input_variable_list] df2 = np.log(df2 + 1) df1[self.input_variable_list] = df2 df.update({state: df1}) return df def truncate_NAN_DataFrame(self): df = self.df.copy() ### Take the maximal sub-dataframe that does not contain NAN ### If some state has all NANs for some variable, that variable is dropped from input_list_variable start_dates = [] end_dates = [] input_variable_list_noNAN = self.input_variable_list.copy() for column in input_variable_list_noNAN: for state in self.state_list: df1 = df.get(state) if df1[column].isnull().all(): input_variable_list_noNAN.remove(column) self.input_variable_list = input_variable_list_noNAN print('!!! New input_variable_list', self.input_variable_list) state_list_combined = self.state_list state_list_combined = list(set(state_list_combined)) if self.state_list_train is not None: for state in self.state_list_train: state_list_combined.append(state) for state in state_list_combined: df1 = df.get(state) for column in self.input_variable_list: l_min = df1[column][df1[column].notnull()].index[0] l_max = df1[column][df1[column].notnull()].index[-1] start_dates.append(l_min) end_dates.append(l_max) max_min_date = max(start_dates) min_max_date = min(end_dates) for state in state_list_combined: df1 = df.get(state) df1 = df1[max_min_date:min_max_date] print('!!! If any value is NAN:', df1.isnull()) df.update({state: df1}) return df def extract_ndarray_from_DataFrame(self): ## Make numpy array of shape States x Days x variables data_combined = [] print('!!! self.state_list', self.state_list) df = self.df if self.state_list is None: self.state_list = sorted([i for i in set(df.keys())]) data_test = [] data_train = [] print('!!! self.state_list', self.state_list) for state in self.state_list: df1 = df.get(state) data_combined = df1[self.input_variable_list].values ## shape Days x variables data_test.append(data_combined) for state in self.state_list_train: df2 = df.get(state) data_combined = df2[self.input_variable_list].values ## shape Days x variables data_train.append(data_combined) data_test = np.asarray(data_test) self.data_test = np.nan_to_num(data_test, copy=True, nan=0, posinf=1, neginf=0) print('!!!! data_test.shape', data_test.shape) data_train = np.asarray(data_train) self.data_train = np.nan_to_num(data_train, copy=True, nan=0, posinf=1, neginf=0) print('!!!! data_train.shape', data_train.shape) def read_data_as_array_countrywise(self, path): ''' Read input time series as a narray ''' data_full = pd.read_csv(path, delimiter=',').T data = data_full.values[1:, :] data = np.delete(data, [1, 2], 0) # delete lattitue & altitude if self.country_list == None: country_list = [i for i in set(data[0, :])] country_list = sorted(country_list) # whole countries in alphabetical order else: country_list = self.country_list ### merge data according to country data_new = np.zeros(shape=(data.shape[0] - 1, len(country_list))) for i in np.arange(len(country_list)): idx = np.where(data[0, :] == country_list[i]) data_sub = data[1:, idx] data_sub = data_sub[:, 0, :] data_sub = np.sum(data_sub, axis=1) data_new[:, i] = data_sub data_new = data_new.astype(int) if self.country_list == None: idx = np.where(data_new[-1, :] > 1000) data_new = data_new[:, idx] data_new = data_new[:, 0, :] # data_new[:,1] = np.zeros(data_new.shape[0]) print('data_new', data_new) country_list = [country_list[idx[0][i]] for i in range(len(idx[0]))] print('country_list', country_list) if self.if_onlynewcases: data_new = np.diff(data_new, axis=0) if self.if_moving_avg_data: for i in np.arange(5, data_new.T.shape[1]): data_new.T[:, i] = (data_new.T[:, i] + data_new.T[:, i - 1] + data_new.T[:, i - 2] + data_new.T[:, i - 3] + data_new.T[ :, i - 4]) / 5 # A_recons[:, i] = (A_recons[:, i] + A_recons[:, i-1]) / 2 if self.if_log_scale: data_new = np.log(data_new + 1) return data_new.T, country_list def read_data_COVIDactnow(self, path, use_NYT_cases=False): ''' Read input time series data as a dictionary of pandas dataframe COVIDACTNOW is a SYNTHETIC data!!! That's why the cases and deaths are off from the real data, expecially for the NO_INTERVENTION case ''' data = pd.read_csv(path, delimiter=',') df = {} data_NYT = pd.read_csv("Data/NYT_us-states.csv", delimiter=',') if self.state_list == None: self.state_list = sorted([i for i in set([i for i in data['stateName']])]) ### Find earliest starting date of the data start_dates = [] for state in self.state_list: df1 = data.loc[data['stateName'] == state] start_dates.append(min(df1['date'])) max_min_date = max(start_dates) # print('!!! min_dates', max_min_date) for state in self.state_list: df1 = data.loc[data['stateName'] == state].set_index('date') lastUpdatedDate = df1['lastUpdatedDate'].iloc[0] df1 = df1[max_min_date:lastUpdatedDate] df1['input_hospitalBedsRequired'] = df1['hospitalBedsRequired'] df1['input_ICUBedsInUse'] = df1['ICUBedsInUse'] df1['input_ventilatorsInUse'] = df1['ventilatorsInUse'] if not use_NYT_cases: df1['input_Deaths'] = df1['cumulativeDeaths'] df1['input_Infected'] = df1['cumulativeInfected'] else: df_NYT1 = data_NYT.loc[data_NYT['state'] == state].set_index('date') df1['input_Deaths'] = df_NYT1['deaths'] print('!!! df_NYT1', df_NYT1['deaths']) df1['input_Infected'] = df_NYT1['cases'] print('!!! df_NYT1_cases', df_NYT1['cases']) ### Take the maximal sub-dataframe that does not contain NAN max_index = [] for column in self.input_variable_list: l = df1[column][df1[column].notnull()].index[-1] max_index.append(l) max_index = min(max_index) print('!!! max_index', max_index) df1 = df1[:max_index] print('!!! If any value is NAN:', df1.isnull()) df.update({state: df1}) if self.if_onlynewcases: for state in self.state_list: df1 = df.get(state) # df1[input_variable_list] contains 153 rows and 5 columns df1['input_Infected'] = df1['input_Infected'].diff() df1['input_Deaths'] = df1['input_Deaths'].diff() df1 = df1.fillna(0) df.update({state: df1}) if self.if_moving_avg_data: for state in self.state_list: df1 = df.get(state) df2 = df1[self.input_variable_list] df2 = df2.rolling(window=5, win_type=None).sum() / 5 ### moving average with backward window size 5 df2 = df2.fillna(0) df1[self.input_variable_list] = df2 df.update({state: df1}) if self.if_log_scale: for state in self.state_list: df1 = df.get(state) df2 = df1[self.input_variable_list] df2 = np.log(df2 + 1) df1[self.input_variable_list] = df2 df.update({state: df1}) self.df = df ## Make numpy array of shape States x Days x variables data_combined = [] for state in self.state_list: df1 = df.get(state) if state == self.state_list[0]: data_combined = df1[self.input_variable_list].values ## shape Days x variables data_combined = np.expand_dims(data_combined, axis=0) print('!!!Data_combined.shape', data_combined.shape) else: data_new = df1[self.input_variable_list].values ## shape Days x variables data_new = np.expand_dims(data_new, axis=0) print('!!! Data_new.shape', data_new.shape) data_combined = np.append(data_combined, data_new, axis=0) self.data_test = data_combined return df, data_combined def read_data_COVIDtrackingProject(self, path): ''' Read input time series data as a dictionary of pandas dataframe ''' data = pd.read_csv(path, delimiter=',').sort_values(by="date") ### Convert the format of dates from string to datetime data['date'] = pd.to_datetime(data['date'], format='%Y%m%d', utc=False) df = {} if self.state_list == None: self.state_list = sorted([i for i in set([i for i in data['state']])]) ### Find earliest starting date of the data start_dates = [] for state in self.state_list: df1 = data.loc[data['state'] == state] start_dates.append(min(df1['date']).strftime("%Y-%m-%d")) max_min_date = max(start_dates) print('!!! min_dates', max_min_date) for state in self.state_list: df1 = data.loc[data['state'] == state].set_index('date') # lastUpdatedDate = df1['lastUpdateEt'].iloc[0] df1 = df1[max_min_date:] ### making new columns to process columns of interest and preserve the original data df1['input_onVentilator_Increase'] = df1['onVentilatorCumulative'] df1['input_inICU_Increase'] = df1['inIcuCumulative'] df1['input_test_positive_rate'] = df1['positiveTestsViral'] / df1['totalTestsViral'] df1['input_case_Increase'] = df1['positiveIncrease'] df1['input_death_Increase'] = df1['deathIncrease'] df.update({state: df1}) if self.if_moving_avg_data: for state in self.state_list: df1 = df.get(state) df2 = df1[self.input_variable_list] df2 = df2.rolling(window=5, win_type=None).sum() / 5 ### moving average with backward window size 5 df2 = df2.fillna(0) df1[self.input_variable_list] = df2 df.update({state: df1}) if self.if_log_scale: for state in self.state_list: df1 = df.get(state) df2 = df1[self.input_variable_list] df2 = np.log(df2 + 1) df1[self.input_variable_list] = df2 df.update({state: df1}) self.df = df ## Make numpy array of shape States x Days x variables data_combined = [] for state in self.state_list: df1 = df.get(state) if state == self.state_list[0]: data_combined = df1[self.input_variable_list].values ## shape Days x variables data_combined = np.expand_dims(data_combined, axis=0) print('!!!Data_combined.shape', data_combined.shape) else: data_new = df1[self.input_variable_list].values ## shape Days x variables data_new = np.expand_dims(data_new, axis=0) print('!!! Data_new.shape', data_new.shape) data_combined = np.append(data_combined, data_new, axis=0) self.data_test = data_combined return df, data_combined def read_data_as_array_citywise(self, path): ''' Read input time series as an array ''' data_full = pd.read_csv(path, delimiter=',').T data = data_full.values data = np.delete(data, [2, 3], 0) # delete lattitue & altitude idx = np.where((data[1, :] == 'Korea, South') | (data[1, :] == 'Japan')) data_sub = data[:, idx] data_sub = data_sub[:, 0, :] data_new = data_sub[2:, :].astype(int) idx = np.where(data_new[-1, :] > 0) data_new = data_new[:, idx] data_new = data_new[:, 0, :] # data_new[:,1] = np.zeros(data_new.shape[0]) city_list = data_sub[0, idx][0] print('city_list', city_list) return data_new.T, city_list def combine_data(self, source): if len(source) == 1: for path in source: data, self.country_list = self.read_data_as_array_countrywise(path) data_combined = np.expand_dims(data, axis=2) else: path = source[0] data, self.country_list = self.read_data_as_array_countrywise(path) data_combined = np.empty(shape=[data.shape[0], data.shape[1], 1]) for path in source: data_new = self.read_data_as_array_countrywise(path)[0] data_new = np.expand_dims(data_new, axis=2) # print('data_new.shape', data_new.shape) min_length = np.minimum(data_combined.shape[1], data_new.shape[1]) data_combined = np.append(data_combined[:, 0:min_length, :], data_new[:, 0:min_length, :], axis=2) data_combined = data_combined[:, :, 1:] print('data_combined.shape', data_combined.shape) # data_full.replace(np.nan, 0) ### replace all NANs with 0 ### Replace all NANs in data_combined with 0 where_are_NaNs = np.isnan(data_combined) data_combined[where_are_NaNs] = 0 return data_combined def extract_random_patches(self, batch_size=None, time_interval_initial=None, A=None): ''' Extract 'num_patches_perbatch' (segments) of size 'patch_size'many random patches of given size ''' x = self.data_test.shape # shape = 2 (ask, bid) * time * country k = self.patch_size if batch_size is None: num_patches_perbatch = self.num_patches_perbatch else: num_patches_perbatch = batch_size X = np.zeros(shape=(x[0], k, x[2], 1)) # 1 * window length * country * num_patches_perbatch for i in np.arange(num_patches_perbatch): if time_interval_initial is None: a = np.random.choice(x[1] - k) # starting time of a window patch of length k else: a = time_interval_initial + i if A is None: Y = self.data_train[:, a:a + k, :] # shape 2 * k * x[2] else: Y = A[:, a:a + k, :] # shape 2 * k * x[2] Y = Y[:, :, :, np.newaxis] # print('Y.shape', Y.shape) if i == 0: X = Y else: X = np.append(X, Y, axis=3) # x is class ndarray return X # X.shape = (2, k, num_countries, num_patches_perbatch) def extract_patches_interval(self, time_interval_initial, time_interval_terminal, A=None): ''' Extract a given number of patches (segments) of size 'patch_size' during the given interval X.shape = (# states) x (# window length) x (# variables) x (num_patches_perbatch) ''' x = self.data_test.shape # shape = (# states) x (# days) x (# variables) k = self.patch_size # num of consecutive days to form a single patch = window length X = np.zeros( shape=(x[0], k, x[2], 1)) # (# states) x (# window length) x (# variables) x (num_patches_perbatch) for i in np.arange(self.num_patches_perbatch): a = np.random.choice(np.arange(time_interval_initial, time_interval_terminal - k + 1)) if A is None: Y = self.data_train[:, a:a + k, :] # shape 2 * k * x[2] else: Y = A[:, a:a + k, :] # shape 2 * k * x[2] Y = Y[:, :, :, np.newaxis] # print('Y.shape', Y.shape) if i == 0: X = Y else: X = np.append(X, Y, axis=3) # x is class ndarray return X def data_to_patches(self): ''' args: path (string): Path and filename of input time series data patch_size (int): length of sliding window we are extracting from the time series (data) returns: ''' if DEBUG: print(np.asarray(self.data_test)) patches = self.extract_random_patches() print('patches.shape=', patches.shape) return patches def display_dictionary(self, W, cases, if_show, if_save, foldername, filename=None, custom_code4ordering=None): k = self.patch_size x = self.data_test.shape rows = np.floor(np.sqrt(self.n_components)).astype(int) cols = np.ceil(np.sqrt(self.n_components)).astype(int) ''' fig, axs = plt.subplots(nrows=4, ncols=3, figsize=(4, 3.5), subplot_kw={'xticks': [], 'yticks': []}) ''' fig, axs = plt.subplots(nrows=6, ncols=4, figsize=(4, 4.5), subplot_kw={'xticks': [], 'yticks': []}) print('W.shape', W.shape) code = self.code # print('code', code) importance = np.sum(code, axis=1) / sum(sum(code)) if self.if_log_scale: W = np.exp(W) - 1 if custom_code4ordering is None: idx = np.argsort(importance) idx = np.flip(idx) else: custom_importance = np.sum(custom_code4ordering, axis=1) / sum(sum(custom_code4ordering)) idx = np.argsort(custom_importance) idx = np.flip(idx) # print('W', W) if cases == 'confirmed': c = 0 elif cases == 'death': c = 1 else: c = 2 for axs, i in zip(axs.flat, range(self.n_components)): dict = W[:, idx[i]].reshape(x[0], k, x[2]) # print('x.shape', x) for j in np.arange(dict.shape[0]): country_name = self.country_list[j] marker = '' if country_name == 'Korea, South': marker = '*' elif country_name == 'China': marker = 'x' elif country_name == 'US': marker = '^' axs.plot(np.arange(k), dict[j, :, c], marker=marker, label='' + str(country_name)) axs.set_xlabel('%1.2f' % importance[idx[i]], fontsize=13) # get the largest first axs.xaxis.set_label_coords(0.5, -0.05) # adjust location of importance appearing beneath patches handles, labels = axs.get_legend_handles_labels() fig.legend(handles, labels, loc='center right') ## bbox_to_anchor=(0,0) # plt.suptitle(cases + '-Temporal Dictionary of size %d'% k, fontsize=16) # plt.subplots_adjust(left=0.01, right=0.55, bottom=0.05, top=0.99, wspace=0.1, hspace=0.4) # for 24 atoms plt.subplots_adjust(left=0.01, right=0.62, bottom=0.1, top=0.99, wspace=0.1, hspace=0.4) # for 12 atoms # plt.tight_layout() if if_save: if filename is None: plt.savefig('Time_series_dictionary/' + str(foldername) + '/Dict-' + cases + '.png') else: plt.savefig( 'Time_series_dictionary/' + str(foldername) + '/Dict-' + cases + '_' + str(filename) + '.png') if if_show: plt.show() def display_dictionary_Hospital(self, W, state_name, if_show, if_save, foldername, filename=None, custom_code4ordering=None): k = self.patch_size x = self.data_test.shape rows = np.floor(np.sqrt(self.n_components)).astype(int) cols = np.ceil(np.sqrt(self.n_components)).astype(int) fig, axs = plt.subplots(nrows=rows, ncols=cols, figsize=(6, 6), subplot_kw={'xticks': [], 'yticks': []}) print('W.shape', W.shape) code = self.code # print('code', code) importance = np.sum(code, axis=1) / sum(sum(code)) if self.if_log_scale: W = np.exp(W) - 1 if custom_code4ordering is None: idx = np.argsort(importance) idx = np.flip(idx) else: custom_importance = np.sum(custom_code4ordering, axis=1) / sum(sum(custom_code4ordering)) idx = np.argsort(custom_importance) idx = np.flip(idx) for axs, i in zip(axs.flat, range(self.n_components)): dict = W[:, idx[i]].reshape(x[0], k, x[2]) # print('x.shape', x) j = self.state_list.index(state_name) marker_list = itertools.cycle(('*', 'x', '^', 'o', '|', '+')) for c in np.arange(dict.shape[2]): variable_name = self.input_variable_list[c] variable_name = variable_name.replace('input_', '') axs.plot(np.arange(k), dict[j, :, c], marker=next(marker_list), label=variable_name) axs.set_xlabel('%1.2f' % importance[idx[i]], fontsize=13) # get the largest first axs.xaxis.set_label_coords(0.5, -0.05) # adjust location of importance appearing beneath patches handles, labels = axs.get_legend_handles_labels() fig.legend(handles, labels, loc='center right') ## bbox_to_anchor=(0,0) plt.suptitle(str(state_name) + '-Temporal Dictionary of size %d' % k, fontsize=16) # plt.subplots_adjust(left=0.01, right=0.55, bottom=0.05, top=0.99, wspace=0.1, hspace=0.4) # for 24 atoms plt.subplots_adjust(left=0.01, right=0.62, bottom=0.1, top=0.8, wspace=0.1, hspace=0.4) # for 12 atoms # plt.tight_layout() if if_save: if filename is None: plt.savefig('Time_series_dictionary/' + str(foldername) + '/Dict-' + str(state_name) + '.png') else: plt.savefig('Time_series_dictionary/' + str(foldername) + '/Dict-' + str(state_name) + '_' + str( filename) + '.png') if if_show: plt.show() def display_dictionary_single(self, W, if_show, if_save, foldername, filename, custom_code4ordering=None): k = self.patch_size x = self.data_test.shape code = self.code # print('code', code) importance = np.sum(code, axis=1) / sum(sum(code)) if self.if_log_scale: W = np.exp(W) - 1 if custom_code4ordering is None: idx = np.argsort(importance) idx = np.flip(idx) else: custom_importance = np.sum(custom_code4ordering, axis=1) / sum(sum(custom_code4ordering)) idx = np.argsort(custom_importance) idx = np.flip(idx) # rows = np.floor(np.sqrt(self.n_components)).astype(int) # cols = np.ceil(np.sqrt(self.n_components)).astype(int) fig, axs = plt.subplots(nrows=4, ncols=3, figsize=(4, 3), subplot_kw={'xticks': [], 'yticks': []}) print('W.shape', W.shape) # print('W', W) for axs, i in zip(axs.flat, range(self.n_components)): for c in np.arange(x[2]): if c == 0: cases = 'confirmed' elif c == 1: cases = 'death' else: cases = 'recovered' dict = W[:, idx[i]].reshape(x[0], k, x[2]) ### atoms with highest importance appears first for j in np.arange(dict.shape[0]): if c == 0: marker = '*' elif c == 1: marker = 'x' else: marker = 's' axs.plot(np.arange(k), dict[j, :, c], marker=marker, label='' + str(cases)) axs.set_xlabel('%1.2f' % importance[idx[i]], fontsize=14) # get the largest first axs.xaxis.set_label_coords(0.5, -0.05) # adjust location of importance appearing beneath patches handles, labels = axs.get_legend_handles_labels() fig.legend(handles, labels, loc='lower center') ## bbox_to_anchor=(0,0) # plt.suptitle(str(self.country_list[0]) + '-Temporal Dictionary of size %d'% k, fontsize=16) plt.subplots_adjust(left=0.01, right=0.99, bottom=0.3, top=0.99, wspace=0.1, hspace=0.4) # plt.tight_layout() if if_save: plt.savefig('Time_series_dictionary/' + str(foldername) + '/Dict-' + str(self.country_list[0]) + '_' + str( filename) + '.png') if if_show: plt.show() def display_prediction_evaluation(self, prediction, if_show, if_save, foldername, filename, if_errorbar=True, if_evaluation=False, title=None): A = self.data_test k = self.patch_size A_recons = prediction print('!!!!!!!A_recons.shape', A_recons.shape) A_predict = A_recons.copy() if if_evaluation: A_predict1 = A_recons.copy() ### A_recons.shape = (# trials) x (# days) x (# states) x (Future Extrapolation Length) x (# variables) A_recons1 = np.zeros(shape=(A_predict1.shape[0], A.shape[1] + A_predict1.shape[3], A.shape[0], A.shape[2])) A_recons1 = A_predict1[:, :, :, -1, :] # for i in np.arange(0, A_predict1.shape[2]): # A_recons1[:,i + A_predict1.shape[3],:,:] = A_predict1[:,i,:, -1,:] # We are making d-days ahead prediction where d = (Future Extrapolation Length) + (prediction_length) -1 a = np.zeros(shape=(A_predict1.shape[0], A_predict1.shape[3] + self.prediction_length, A.shape[0], A.shape[2])) A_recons1 = np.append(a, A_recons1, axis=1) # Shift A_recons1 by d in time print('!!!! A.shape[1]+A_predict1.shape[3]', A.shape[1] + A_predict1.shape[3] + self.prediction_length) print('!!!! A_recons1.shape', A_recons1.shape) A_recons1 = np.swapaxes(A_recons1, axis1=1, axis2=2) # fill in first d entries of prediction by the raw data for trial in np.arange(0, A_predict1.shape[0]): for j in np.arange(0, A_predict1.shape[3] + self.prediction_length): A_recons1[trial, :, j, :] = A[:, j, :] A_recons = A_recons1 A_predict = A_recons.copy() print('!!!!!!!! A_recons', A_recons) if self.if_log_scale: A = np.exp(A) - 1 A_recons = np.exp(A_recons) - 1 if if_errorbar: # print('!!!', A_predict.shape) # trials x states x days x variables A_predict = np.sum(A_recons, axis=0) / A_recons.shape[0] ### axis-0 : trials A_std = np.std(A_recons, axis=0) print('!!! A_std', A_std) ### Make gridspec fig1 = plt.figure(figsize=(15, 10), constrained_layout=False) gs1 = fig1.add_gridspec(nrows=A_predict.shape[2], ncols=A_predict.shape[0], wspace=0.2, hspace=0.2) # font = font_manager.FontProperties(family="Times New Roman", size=11) for i in range(A_predict.shape[0]): for c in range(A_predict.shape[2]): ax = fig1.add_subplot(gs1[c, i]) variable_name = self.input_variable_list[c] variable_name = variable_name.replace('input_', '') ### get days xticks start_day = self.df.get(self.state_list[0]).index[0] x_data = pd.date_range(start_day, periods=A.shape[1], freq='D') x_data_recons = pd.date_range(start_day, periods=A_predict.shape[1] - self.patch_size, freq='D') x_data_recons += pd.DateOffset(self.patch_size) ### plot axs ax.plot(x_data, A[i, :, c], 'b-', marker='o', markevery=5, label='Original-' + str(variable_name)) if not if_errorbar: ax.plot(x_data_recons, A_predict[i, self.patch_size:A_predict.shape[1], c], 'r-', marker='x', markevery=5, label='Prediction-' + str(variable_name)) else: markers, caps, bars = ax.errorbar(x_data_recons, A_predict[i, self.patch_size:A_predict.shape[1], c], yerr=A_std[i, self.patch_size:A_predict.shape[1], c], fmt='r-', label='Prediction-' + str(variable_name), errorevery=1) [bar.set_alpha(0.5) for bar in bars] # [cap.set_alpha(0.5) for cap in caps] ax.set_ylim(0, np.maximum(np.max(A[i, :, c]), np.max(A_predict[i, :, c] + A_std[i, :, c])) * 1.1) if c == 0: if title is None: ax.set_title(str(self.state_list[i]), fontsize=15) else: ax.set_title(title, fontsize=15) ax.yaxis.set_label_position("left") # ax.yaxis.set_label_coords(0, 2) # ax.set_ylabel(str(list[j]), rotation=90) ax.set_ylabel('population', fontsize=10) # get the largest first ax.yaxis.set_label_position("left") ax.legend() fig1.autofmt_xdate() # fig.suptitle('Plot of original and 1-step prediction -- ' + 'COVID-19 : '+ str(self.country_list[0]) + # "\n seg. length = %i, # temp. dict. atoms = %i, learning exponent = %1.3f" % (self.patch_size, self.n_components, self.beta), # fontsize=12, y=0.96) # plt.tight_layout() plt.subplots_adjust(left=0.1, right=0.9, bottom=0.1, top=0.95, wspace=0.08, hspace=0.23) if if_save: plt.savefig('Time_series_dictionary/' + str(foldername) + '/Plot-' + str( filename) + '.pdf') if if_show: plt.show() def display_prediction_single(self, source, prediction, if_show, if_save, foldername, filename): A = self.combine_data(source)[0] k = self.patch_size A_predict = prediction if self.if_log_scale: A = np.exp(A) - 1 A_predict = np.exp(A_predict) - 1 fig, axs = plt.subplots(nrows=A.shape[2], ncols=1, figsize=(5, 5)) lims = [(np.datetime64('2020-01-21'), np.datetime64('2020-07-15')), (np.datetime64('2020-01-21'), np.datetime64('2020-07-15')), (np.datetime64('2020-01-21'), np.datetime64('2020-07-15'))] if A.shape[2] == 1: L = zip([axs], np.arange(A.shape[2])) else: L = zip(axs.flat, np.arange(A.shape[2])) for axs, c in L: if c == 0: cases = 'confirmed' elif c == 1: cases = 'death' else: cases = 'recovered' ### get days xticks x_data = pd.date_range('2020-01-21', periods=A.shape[1], freq='D') x_data_recons = pd.date_range('2020-01-21', periods=A_predict.shape[1] - self.patch_size, freq='D') x_data_recons += pd.DateOffset(self.patch_size) ### plot axs axs.plot(x_data, A[0, :, c], 'b-', marker='o', markevery=5, label='Original-' + str(cases)) axs.plot(x_data_recons, A_predict[0, self.patch_size:A_predict.shape[1], c], 'r-', marker='x', markevery=5, label='Prediction-' + str(cases)) axs.set_ylim(0, np.max(A_predict[0, :, c]) + 10) # ax.text(2, 0.65, str(list[j])) axs.yaxis.set_label_position("right") # ax.yaxis.set_label_coords(0, 2) # ax.set_ylabel(str(list[j]), rotation=90) axs.set_ylabel('log(population)', fontsize=10) # get the largest first axs.yaxis.set_label_position("right") axs.legend(fontsize=11) fig.suptitle('Plot of original and 1-step prediction -- ' + 'COVID-19 : ' + str(self.country_list[0]) + "\n seg. length = %i, # temp. dict. atoms = %i, learning exponent = %1.3f" % ( self.patch_size, self.n_components, self.beta), fontsize=12, y=0.96) plt.tight_layout(rect=[0, 0.03, 1, 0.9]) # plt.subplots_adjust(left=0.2, right=0.9, bottom=0.1, top=0.85, wspace=0.08, hspace=0.23) if if_save: plt.savefig('Time_series_dictionary/' + str(foldername) + '/Plot-' + str(self.country_list[0]) + '-' + str( filename) + '.png') if if_show: plt.show() def display_prediction(self, source, prediction, cases, if_show, if_save, foldername, if_errorbar=False): A = self.combine_data(source)[0] k = self.patch_size A_recons = prediction A_predict = prediction if self.if_log_scale: A = np.exp(A) - 1 A_recons = np.exp(A_recons) - 1 A_predict = np.exp(A_predict) - 1 A_std = np.zeros(shape=A_recons.shape) if if_errorbar: A_predict = np.sum(A_predict, axis=0) / A_predict.shape[0] ### axis-0 : trials A_std = np.std(A_recons, axis=0) # print('A_std', A_std) L = len(self.country_list) # number of countries rows = np.floor(np.sqrt(L)).astype(int) cols = np.ceil(np.sqrt(L)).astype(int) ### get days xticks x_data = pd.date_range('2020-01-21', periods=A.shape[1], freq='D') x_data_recons = pd.date_range('2020-01-21', periods=A_predict.shape[1] - self.patch_size, freq='D') x_data_recons += pd.DateOffset(self.patch_size) if cases == 'confirmed': c = 0 elif cases == 'death': c = 1 else: c = 2 fig, axs = plt.subplots(nrows=3, ncols=2, figsize=(8, 5)) for axs, j in zip(axs.flat, range(L)): country_name = self.country_list[j] if self.country_list[j] == 'Korea, South': country_name = 'Korea, S.' axs_empty = axs.plot([], [], ' ', label=str(country_name)) axs_original = axs.plot(x_data, A[j, :, c], 'b-', marker='o', markevery=5, label='Original') if not if_errorbar: axs_recons = axs.plot(x_data_recons, A_predict[j, self.patch_size:A_predict.shape[1], c], 'r-', marker='x', markevery=5, label='Prediction-' + str(country_name)) else: y = A_predict[j, self.patch_size:A_predict.shape[1], c] axs_recons = axs.errorbar(x_data_recons, y, yerr=A_std[j, self.patch_size:A_predict.shape[1], c], fmt='r-.', label='Prediction', errorevery=2, ) axs.set_ylim(0, np.maximum(np.max(A[j, :, c]), np.max(A_predict[j, :, c] + A_std[j, :, c])) * 1.1) # ax.text(2, 0.65, str(list[j])) axs.yaxis.set_label_position("right") # ax.yaxis.set_label_coords(0, 2) # ax.set_ylabel(str(list[j]), rotation=90) axs.legend(fontsize=9) fig.autofmt_xdate() fig.suptitle('Plot of original and 1-step prediction -- ' + 'COVID-19:' + cases + "\n segment length = %i, # temporal dictionary atoms = %i" % ( self.patch_size, self.n_components), fontsize=12, y=1) plt.tight_layout(rect=[0, 0.03, 1, 0.9]) # plt.subplots_adjust(left=0.2, right=0.9, bottom=0.1, top=0.85, wspace=0.08, hspace=0.23) if if_save: plt.savefig('Time_series_dictionary/' + str(foldername) + '/Plot-' + cases + '.png') if if_show: plt.show() def train_dict(self, mode, alpha, beta, learn_joint_dict, foldername, data_train = None, iterations=None, update_self=True, if_save=True, print_iter=False): print('training dictionaries from patches along mode %i...' % mode) ''' Trains dictionary based on patches from an i.i.d. sequence of batch of patches mode = 0, 1, 2 learn_joint_dict = True or False parameter ''' W = self.W At = [] Bt = [] code = self.code if data_train is None: data_train = self.data_train if iterations is not None: n_iter = iterations else: n_iter = self.ONMF_iterations for t in np.arange(n_iter): X = self.extract_random_patches(A=data_train) ## need to sample patches from self.data_test if t == 0: self.ntf = Online_NTF(X, self.n_components, iterations=self.ONMF_sub_iterations, learn_joint_dict=learn_joint_dict, mode=mode, alpha=alpha, beta=beta, batch_size=self.ONMF_batch_size) # max number of possible patches W, At, Bt, H = self.ntf.train_dict_single() code += H else: self.ntf = Online_NTF(X, self.n_components, iterations=self.ONMF_sub_iterations, batch_size=self.ONMF_batch_size, ini_dict=W, ini_A=At, ini_B=Bt, alpha=alpha, beta=beta, learn_joint_dict=learn_joint_dict, mode=mode, history=self.ntf.history) # out of "sample_size" columns in the data matrix, sample "batch_size" randomly and train the dictionary # for "iterations" iterations W, At, Bt, H = self.ntf.train_dict_single() code += H if print_iter: print('Current minibatch training iteration %i out of %i' % (t, self.ONMF_iterations)) if update_self: self.W = W self.code = code # print('code_right_after_training', self.code) if self.data_source != 'JHU': list = self.state_list else: list = self.country_list print('dict_shape:', W.shape) print('code_shape:', code.shape) if if_save: np.save('Time_series_dictionary/' + str(foldername) + '/dict_learned_' + str( mode) + '_' + 'pretraining' + '_' + str(list[0]), self.W) np.save('Time_series_dictionary/' + str(foldername) + '/code_learned_' + str( mode) + '_' + 'pretraining' + '_' + str(list[0]), self.code) np.save('Time_series_dictionary/' + str(foldername) + '/At_' + str(mode) + '_' + 'pretraining' + '_' + str( list[0]), At) np.save('Time_series_dictionary/' + str(foldername) + '/Bt_' + str(mode) + '_' + 'pretraining' + '_' + str( list[0]), Bt) return W, At, Bt, code def ONMF_predictor(self, mode, foldername, data_test=None, data_train=None, learn_from_future2past=False, prelearned_dict = None, # if not none, use this dictionary for prediction ini_dict=None, ini_A=None, ini_B=None, beta=1, a1=0, # regularizer for the code in partial fitting a2=0, # regularizer for the code in recursive prediction future_extrapolation_length=0, if_learn_online=True, if_save=True, # if_recons=True, # Reconstruct observed data using learned dictionary learning_window_cap = None, # if not none, learn only from the past "learning_window_cap" days minibatch_training_initialization=True, minibatch_alpha=1, minibatch_beta=1, print_iter=False, online_learning=True, num_trials=1): print('online learning and predicting from patches along mode %i...' % mode) ''' Trains dictionary along a continuously sliding window over the data stream Predict forthcoming data on the fly. This could be made to affect learning rate ''' if data_test is None: data_test = self.data_test.copy() if data_train is None: data_train = self.data_train.copy() if learning_window_cap is None: learning_window_cap = self.learning_window_cap # print('!!!!!!!!!! A.shape', A.shape) k = self.patch_size # Window length L = self.prediction_length # A_recons = np.zeros(shape=A.shape) # print('A_recons.shape',A_recons.shape) # W = self.W # print('W.shape', self.W.shape) At = [] Bt = [] H = [] # A_recons = np.zeros(shape=(A.shape[0], k+L-1, A.shape[2])) list_full_predictions = [] A_recons = data_test.copy() for trial in np.arange(num_trials): ### Initialize self parameters self.W = ini_dict # A_recons = A[:, 0:k + L - 1, :] At = [] Bt = [] if prelearned_dict is not None: self.W = prelearned_dict else: # Learn new dictionary to use for prediction if minibatch_training_initialization: # print('!!! self.W right before minibatch training', self.W) self.W, At, Bt, H = self.train_dict(mode=3, alpha=minibatch_alpha, beta=minibatch_beta, iterations=self.ONMF_iterations, learn_joint_dict=True, foldername=None, update_self=True, if_save=False) # print('data.shape', self.data_test.shape) # iter = np.floor(A.shape[1]/self.num_patches_perbatch).astype(int) if online_learning: T_start = k if learning_window_cap is not None: T_start = max(k, data_train.shape[1]-learning_window_cap) for t in np.arange(T_start, data_train.shape[1]): if not learn_from_future2past: a = np.maximum(0, t - self.num_patches_perbatch) X = self.extract_patches_interval(time_interval_initial=a, time_interval_terminal=t, A = data_train) # get patch from the past2future else: t1 = data_train.shape[1] - t a = np.minimum(data_train.shape[1], t1 + self.num_patches_perbatch) X = self.extract_patches_interval(time_interval_initial=t1, time_interval_terminal=a, A = data_train) # get patch from the future2past # print('X.shape', X.shape) # X.shape = (# states) x (# window length) x (# variables) x (num_patches_perbatch) if t == k: self.ntf = Online_NTF(X, self.n_components, iterations=self.ONMF_sub_iterations, learn_joint_dict=True, mode=mode, ini_dict=self.W, ini_A=ini_A, ini_B=ini_B, batch_size=self.ONMF_batch_size, subsample=self.subsample, beta=beta) self.W, At, Bt, H = self.ntf.train_dict_single() self.code += H """ # reconstruction step patch = A[:, t - k + L:t, :] if learn_from_future2past: patch_recons = self.predict_joint_single(patch, a1) A_recons = np.append(patch_recons, A_recons, axis=1) else: A_recons = np.append(A_recons, patch_recons, axis=1) """ else: if t % self.learnevery == 0 and if_learn_online: # do not learn from zero data (make np.sum(X)>0 for online learning) self.ntf = Online_NTF(X, self.n_components, iterations=self.ONMF_sub_iterations, batch_size=self.ONMF_batch_size, ini_dict=self.W, ini_A=At, ini_B=Bt, learn_joint_dict=True, mode=mode, history=self.ntf.history, subsample=self.subsample, beta=beta) self.W, At, Bt, H = self.ntf.train_dict_single() # print('dictionary_updated') self.code += H """ # reconstruction step patch = A[:, t - k + L:t, :] ### in the original time orientation if learn_from_future2past: patch_recons = self.predict_joint_single(patch, a1) # print('patch_recons', patch_recons) A_recons = np.append(A_recons, patch_recons, axis=1) else: patch_recons = patch[:, -1, :] patch_recons = patch_recons[:, np.newaxis, :] A_recons = np.append(patch_recons, A_recons, axis=1) """ if print_iter: print('Current (trial, day) for ONMF_predictor (%i, %i) out of (%i, %i)' % ( trial + 1, t, num_trials, data_train.shape[1] - 1)) # print('!!!!! A_recons.shape', A_recons.shape) # concatenate state-wise dictionary to predict one state # Assumes len(list_states)=1 self.W = np.concatenate(np.vsplit(self.W, len(self.state_list_train)), axis=1) #### forward recursive prediction begins for t in np.arange(data_test.shape[1], data_test.shape[1] + future_extrapolation_length): patch = A_recons[:, t - k + L:t, :] if t == data_test.shape[1]: patch = data_test[:, t - k + L:t, :] print('!!!!! patch.shape', patch.shape) patch_recons = self.predict_joint_single(patch, a2) print('!!!!! patch_recons.shape', patch_recons.shape) A_recons = np.append(A_recons, patch_recons, axis=1) print('new cases predicted final', A_recons[0, -1, 0]) ### initial regulation A_recons[:, 0:self.learnevery + L, :] = data_test[:, 0:self.learnevery + L, :] ### patch the two reconstructions # A_recons = np.append(A_recons, A_recons[:,A.shape[1]:, :], axis=1) print('!!!!! A_recons.shape', A_recons.shape) list_full_predictions.append(A_recons.copy()) A_full_predictions_trials = np.asarray( list_full_predictions) ## shape = (# trials) x (# states) x (# days + L) x (# varibles) self.result_dict.update({'Evaluation_num_trials': str(num_trials)}) self.result_dict.update({'Evaluation_A_full_predictions_trials': A_full_predictions_trials}) self.result_dict.update({'Evaluation_Dictionary': self.W}) self.result_dict.update({'Evaluation_Code': self.code}) if if_save: if self.data_source != 'JHU': list = self.state_list else: list = self.country_list np.save('Time_series_dictionary/' + str(foldername) + '/full_results_' + 'num_trials_' + str(num_trials), self.result_dict) """ np.save('Time_series_dictionary/' + str(foldername) + '/dict_learned_tensor' + '_' + str( list[0]) + '_' + 'afteronline' + str(self.beta), self.W) np.save('Time_series_dictionary/' + str(foldername) + '/code_learned_tensor' + '_' + str( list[0]) + '_' + 'afteronline' + str(self.beta), self.code) np.save('Time_series_dictionary/' + str(foldername) + '/At_' + str(list[0]) + '_' + 'afteronline' + str( self.beta), At) np.save('Time_series_dictionary/' + str(foldername) + '/Bt_' + str(list[0]) + '_' + 'afteronline' + str( self.beta), Bt) np.save('Time_series_dictionary/' + str(foldername) + '/recons', A_recons) """ return A_full_predictions_trials, self.W, At, Bt, self.code def ONMF_predictor_historic(self, mode, foldername, prelearned_dict_seq = None, # if not none, use this seq of dict for prediction learn_from_future2past=True, ini_dict=None, ini_A=None, ini_B=None, beta=1, a1=0, # regularizer for the code in partial fitting a2=0, # regularizer for the code in recursive prediction future_extrapolation_length=0, learning_window_cap = None, if_save=True, minibatch_training_initialization=False, minibatch_alpha=1, minibatch_beta=1, online_learning=True, num_trials=1): # take a number of trials to generate empirical confidence interval print('Running ONMF_timeseries_predictor_historic along mode %i...' % mode) ''' Apply online_learning_and_prediction for intervals [0,t] for every 1\le t\le T to make proper all-time predictions for evaluation ''' A = self.data_test # print('A.shape', A.shape) k = self.patch_size L = self.prediction_length FEL = future_extrapolation_length # A_recons = np.zeros(shape=A.shape) # print('A_recons.shape',A_recons.shape) # W = self.W if learning_window_cap is None: learning_window_cap = self.learning_window_cap self.W = ini_dict if ini_dict is None: d = self.data_test.shape[0]*k*self.data_test.shape[2] #(# states) x (# window length) x (# variables) self.W = np.random.rand(d, self.n_components) # print('W.shape', self.W.shape) # A_recons = np.zeros(shape=(A.shape[0], k+L-1, A.shape[2])) # A_recons = A[:, 0:k + L - 1, :] list_full_predictions = [] W_total_seq_trials = [] for trial in np.arange(num_trials): W_total_seq = [] ### A_total_prediction.shape = (# days) x (# states) x (FEL) x (# variables) ### W_total_seq.shape = (# days) x (# states * window length * # variables) x (n_components) A_total_prediction = [] ### fill in predictions for the first k days with the raw data for i in np.arange(k + 1): A_total_prediction.append(A[:, i:i + FEL, :]) W_total_seq.append(self.W.copy()) for t in np.arange(k + 1, A.shape[1]): ### Set self.data_test to the truncated one during [1,t] prelearned_dict = None if prelearned_dict_seq is not None: prelearned_dict = prelearned_dict_seq[trial,t,:,:] A_recons, W, At, Bt, code = self.ONMF_predictor(mode, foldername, data_test=self.data_test[:, :t, :], data_train=self.data_train[:, :t, :], prelearned_dict=prelearned_dict, learn_from_future2past=learn_from_future2past, ini_dict=ini_dict, ini_A=ini_A, ini_B=ini_B, beta=beta, a1=a1, # regularizer for the code in partial fitting a2=a2, # regularizer for the code in recursive prediction future_extrapolation_length=future_extrapolation_length, learning_window_cap=learning_window_cap, if_save=True, minibatch_training_initialization=minibatch_training_initialization, minibatch_alpha=minibatch_alpha, minibatch_beta=minibatch_beta, print_iter=False, online_learning=online_learning, num_trials=1) A_recons = A_recons[0, :, :, :] # print('!!!! A_recons.shape', A_recons.shape) ### A_recons.shape = (# states, t+FEL, # variables) # print('!!!!! A_recons[:, -FEL:, :].shape', A_recons[:, -FEL:, :].shape) A_total_prediction.append(A_recons[:, -FEL:, :]) W_total_seq.append(W.copy()) ### A_recons.shape = (# states, t+FEL, # variables) print('Current (trial, day) for ONMF_predictor_historic (%i, %i) out of (%i, %i)' % ( trial + 1, t - k, num_trials, A.shape[1] - k - 1)) A_total_prediction = np.asarray(A_total_prediction) W_total_seq = np.asarray(W_total_seq) print('W_total_seq.shape', W_total_seq.shape) W_total_seq_trials.append(W_total_seq) list_full_predictions.append(A_total_prediction) W_total_seq_trials = np.asarray(W_total_seq_trials) self.result_dict.update({'Evaluation_num_trials': str(num_trials)}) self.result_dict.update({'Evaluation_A_full_predictions_trials': np.asarray(list_full_predictions)}) self.result_dict.update({'Evaluation_Dictionary_seq_trials': W_total_seq_trials}) # sequence of dictionaries to be used for historic prediction : shape (trials, time, W.shape[0], W.shape[1]) A_full_predictions_trials = np.asarray(list_full_predictions) print('!!! A_full_predictions_trials.shape', A_full_predictions_trials.shape) if if_save: np.save('Time_series_dictionary/' + str(foldername) + '/full_results_' + 'num_trials_' + str( num_trials), self.result_dict) """ np.save('Time_series_dictionary/' + str(foldername) + '/dict_learned_tensor' + '_' + str( list[0]) + '_' + 'afteronline' + str(self.beta), self.W) np.save('Time_series_dictionary/' + str(foldername) + '/code_learned_tensor' + '_' + str( list[0]) + '_' + 'afteronline' + str(self.beta), self.code) np.save('Time_series_dictionary/' + str(foldername) + '/At' + str(list[0]) + '_' + 'afteronline' + str( self.beta), At) np.save('Time_series_dictionary/' + str(foldername) + '/Bt' + str(list[0]) + '_' + 'afteronline' + str( self.beta), Bt) np.save('Time_series_dictionary/' + str(foldername) + '/Full_prediction_trials_' + 'num_trials_' + str( num_trials), A_full_predictions_trials) np.save('Time_series_dictionary/' + str(foldername) + '/W_total_seq_' + 'num_trials_' + str( num_trials), W_total_seq) """ return A_full_predictions_trials, W_total_seq_trials, code def predict_joint_single(self, data, a1): k = self.patch_size L = self.prediction_length A = data # A.shape = (self.data_test.shape[0], k-L, self.data_test.shape[2]) # A_recons = np.zeros(shape=(A.shape[0], k, A.shape[2])) # W_tensor = self.W.reshape((k, A.shape[0], -1)) # print('A.shape', A.shape) W_tensor = self.W.reshape((self.data_test.shape[0], k, self.data_test.shape[2], -1)) # print('W.shape', W_tensor.shape) # for missing data, not needed for the COVID-19 data set # extract only rows of nonnegative values (disregarding missing entries) (negative = N/A) J = np.where(
np.min(A, axis=(0, 1))
numpy.min
# License: BSD 3-clause # Authors: <NAME> # LTSD routine from jfsantos (<NAME>) # Harvest, Cheaptrick, D4C, WORLD routines based on MATLAB code from <NAME> # http://ml.cs.yamanashi.ac.jp/world/english/ # MGC code based on r9y9 (Ryuichi Yamamoto) MelGeneralizedCepstrums.jl # Pieces also adapted from SPTK from __future__ import division import numpy as np import scipy as sp from numpy.lib.stride_tricks import as_strided import scipy.signal as sg from scipy.interpolate import interp1d import wave from scipy.cluster.vq import vq from scipy import linalg, fftpack from numpy.testing import assert_almost_equal from scipy.linalg import svd from scipy.io import wavfile from scipy.signal import firwin import zipfile import tarfile import os import copy import multiprocessing from multiprocessing import Pool import functools import time try: import urllib.request as urllib # for backwards compatibility except ImportError: import urllib2 as urllib def download(url, server_fname, local_fname=None, progress_update_percentage=5, bypass_certificate_check=False): """ An internet download utility modified from http://stackoverflow.com/questions/22676/ how-do-i-download-a-file-over-http-using-python/22776#22776 """ if bypass_certificate_check: import ssl ctx = ssl.create_default_context() ctx.check_hostname = False ctx.verify_mode = ssl.CERT_NONE u = urllib.urlopen(url, context=ctx) else: u = urllib.urlopen(url) if local_fname is None: local_fname = server_fname full_path = local_fname meta = u.info() with open(full_path, 'wb') as f: try: file_size = int(meta.get("Content-Length")) except TypeError: print("WARNING: Cannot get file size, displaying bytes instead!") file_size = 100 print("Downloading: %s Bytes: %s" % (server_fname, file_size)) file_size_dl = 0 block_sz = int(1E7) p = 0 while True: buffer = u.read(block_sz) if not buffer: break file_size_dl += len(buffer) f.write(buffer) if (file_size_dl * 100. / file_size) > p: status = r"%10d [%3.2f%%]" % (file_size_dl, file_size_dl * 100. / file_size) print(status) p += progress_update_percentage def fetch_sample_speech_tapestry(): url = "https://www.dropbox.com/s/qte66a7haqspq2g/tapestry.wav?dl=1" wav_path = "tapestry.wav" if not os.path.exists(wav_path): download(url, wav_path) fs, d = wavfile.read(wav_path) d = d.astype('float32') / (2 ** 15) # file is stereo? - just choose one channel return fs, d def fetch_sample_file(wav_path): if not os.path.exists(wav_path): raise ValueError("Unable to find file at path %s" % wav_path) fs, d = wavfile.read(wav_path) d = d.astype('float32') / (2 ** 15) # file is stereo - just choose one channel if len(d.shape) > 1: d = d[:, 0] return fs, d def fetch_sample_music(): url = "http://www.music.helsinki.fi/tmt/opetus/uusmedia/esim/" url += "a2002011001-e02-16kHz.wav" wav_path = "test.wav" if not os.path.exists(wav_path): download(url, wav_path) fs, d = wavfile.read(wav_path) d = d.astype('float32') / (2 ** 15) # file is stereo - just choose one channel d = d[:, 0] return fs, d def fetch_sample_speech_fruit(n_samples=None): url = 'https://dl.dropboxusercontent.com/u/15378192/audio.tar.gz' wav_path = "audio.tar.gz" if not os.path.exists(wav_path): download(url, wav_path) tf = tarfile.open(wav_path) wav_names = [fname for fname in tf.getnames() if ".wav" in fname.split(os.sep)[-1]] speech = [] print("Loading speech files...") for wav_name in wav_names[:n_samples]: f = tf.extractfile(wav_name) fs, d = wavfile.read(f) d = d.astype('float32') / (2 ** 15) speech.append(d) return fs, speech def fetch_sample_speech_eustace(n_samples=None): """ http://www.cstr.ed.ac.uk/projects/eustace/download.html """ # data url = "http://www.cstr.ed.ac.uk/projects/eustace/down/eustace_wav.zip" wav_path = "eustace_wav.zip" if not os.path.exists(wav_path): download(url, wav_path) # labels url = "http://www.cstr.ed.ac.uk/projects/eustace/down/eustace_labels.zip" labels_path = "eustace_labels.zip" if not os.path.exists(labels_path): download(url, labels_path) # Read wavfiles # 16 kHz wav zf = zipfile.ZipFile(wav_path, 'r') wav_names = [fname for fname in zf.namelist() if ".wav" in fname.split(os.sep)[-1]] fs = 16000 speech = [] print("Loading speech files...") for wav_name in wav_names[:n_samples]: wav_str = zf.read(wav_name) d = np.frombuffer(wav_str, dtype=np.int16) d = d.astype('float32') / (2 ** 15) speech.append(d) zf = zipfile.ZipFile(labels_path, 'r') label_names = [fname for fname in zf.namelist() if ".lab" in fname.split(os.sep)[-1]] labels = [] print("Loading label files...") for label_name in label_names[:n_samples]: label_file_str = zf.read(label_name) labels.append(label_file_str) return fs, speech def stft(X, fftsize=128, step="half", mean_normalize=True, real=False, compute_onesided=True): """ Compute STFT for 1D real valued input X """ if real: local_fft = fftpack.rfft cut = -1 else: local_fft = fftpack.fft cut = None if compute_onesided: cut = fftsize // 2 + 1 if mean_normalize: X -= X.mean() if step == "half": X = halfoverlap(X, fftsize) else: X = overlap(X, fftsize, step) size = fftsize win = 0.54 - .46 * np.cos(2 * np.pi * np.arange(size) / (size - 1)) X = X * win[None] X = local_fft(X)[:, :cut] return X def istft(X, fftsize=128, step="half", wsola=False, mean_normalize=True, real=False, compute_onesided=True): """ Compute ISTFT for STFT transformed X """ if real: local_ifft = fftpack.irfft X_pad = np.zeros((X.shape[0], X.shape[1] + 1)) + 0j X_pad[:, :-1] = X X = X_pad else: local_ifft = fftpack.ifft if compute_onesided: X_pad = np.zeros((X.shape[0], 2 * X.shape[1])) + 0j X_pad[:, :fftsize // 2 + 1] = X X_pad[:, fftsize // 2 + 1:] = 0 X = X_pad X = local_ifft(X).astype("float64") if step == "half": X = invert_halfoverlap(X) else: X = overlap_add(X, step, wsola=wsola) if mean_normalize: X -= np.mean(X) return X def mdct_slow(X, dctsize=128): M = dctsize N = 2 * dctsize N_0 = (M + 1) / 2 X = halfoverlap(X, N) X = sine_window(X) n, k = np.meshgrid(np.arange(N), np.arange(M)) # Use transpose due to "samples as rows" convention tf = np.cos(np.pi * (n + N_0) * (k + 0.5) / M).T return np.dot(X, tf) def imdct_slow(X, dctsize=128): M = dctsize N = 2 * dctsize N_0 = (M + 1) / 2 N_4 = N / 4 n, k = np.meshgrid(np.arange(N), np.arange(M)) # inverse *is not* transposed tf = np.cos(np.pi * (n + N_0) * (k + 0.5) / M) X_r = np.dot(X, tf) / N_4 X_r = sine_window(X_r) X = invert_halfoverlap(X_r) return X def nsgcwin(fmin, fmax, n_bins, fs, signal_len, gamma): """ Nonstationary Gabor window calculation References ---------- <NAME>., <NAME>., <NAME>., <NAME>. Constructing an invertible constant-Q transform with nonstationary Gabor frames, Proceedings of the 14th International Conference on Digital Audio Effects (DAFx 11), Paris, France, 2011 <NAME>., <NAME>., <NAME>. and <NAME>. A framework for invertible, real-time constant-Q transforms, submitted. Original matlab code copyright follows: AUTHOR(s) : <NAME>, <NAME>, <NAME>, 2010-2011 COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA http://nuhag.eu/ Permission is granted to modify and re-distribute this code in any manner as long as this notice is preserved. All standard disclaimers apply. """ # use a hanning window # no fractional shifts fftres = fs / signal_len fmin = float(fmin) fmax = float(fmax) gamma = float(gamma) nyq = fs / 2. b = np.floor(n_bins * np.log2(fmax / fmin)) fbas = fmin * 2 ** (np.arange(b + 1) / float(n_bins)) Q = 2 ** (1. / n_bins) - 2 ** (-1. / n_bins) cqtbw = Q * fbas + gamma cqtbw = cqtbw.ravel() maxidx = np.where(fbas + cqtbw / 2. > nyq)[0] if len(maxidx) > 0: # replicate bug in MATLAB version... # or is it a feature if sum(maxidx) == 0: first = len(cqtbw) - 1 else: first = maxidx[0] fbas = fbas[:first] cqtbw = cqtbw[:first] minidx = np.where(fbas - cqtbw / 2. < 0)[0] if len(minidx) > 0: fbas = fbas[minidx[-1]+1:] cqtbw = cqtbw[minidx[-1]+1:] fbas_len = len(fbas) fbas_new = np.zeros((2 * (len(fbas) + 1))) fbas_new[1:len(fbas) + 1] = fbas fbas = fbas_new fbas[fbas_len + 1] = nyq fbas[fbas_len + 2:] = fs - fbas[1:fbas_len + 1][::-1] bw = np.zeros_like(fbas) bw[0] = 2 * fmin bw[1:len(cqtbw) + 1] = cqtbw bw[len(cqtbw) + 1] = fbas[fbas_len + 2] - fbas[fbas_len] bw[-len(cqtbw):] = cqtbw[::-1] bw = bw / fftres fbas = fbas / fftres posit = np.zeros_like(fbas) posit[:fbas_len + 2] = np.floor(fbas[:fbas_len + 2]) posit[fbas_len + 2:] = np.ceil(fbas[fbas_len + 2:]) base_shift = -posit[-1] % signal_len shift = np.zeros_like(posit).astype("int32") shift[1:] = (posit[1:] - posit[:-1]).astype("int32") shift[0] = base_shift bw = np.round(bw) bwfac = 1 M = bw min_win = 4 for ii in range(len(bw)): if bw[ii] < min_win: bw[ii] = min_win M[ii] = bw[ii] def _win(numel): if numel % 2 == 0: s1 = np.arange(0, .5, 1. / numel) if len(s1) != numel // 2: # edge case with small floating point numbers... s1 = s1[:-1] s2 = np.arange(-.5, 0, 1. / numel) if len(s2) != numel // 2: # edge case with small floating point numbers... s2 = s2[:-1] x = np.concatenate((s1, s2)) else: s1 = np.arange(0, .5, 1. / numel) s2 = np.arange(-.5 + .5 / numel, 0, 1. / numel) if len(s2) != numel // 2: # assume integer truncate 27 // 2 = 13 s2 = s2[:-1] x = np.concatenate((s1, s2)) assert len(x) == numel g = .5 + .5 * np.cos(2 * np.pi * x) return g multiscale = [_win(bi) for bi in bw] bw = bwfac * np.ceil(M / bwfac) for kk in [0, fbas_len + 1]: if M[kk] > M[kk + 1]: multiscale[kk] = np.ones(M[kk]).astype(multiscale[0].dtype) i1 = np.floor(M[kk] / 2) - np.floor(M[kk + 1] / 2) i2 = np.floor(M[kk] / 2) + np.ceil(M[kk + 1] / 2) # Very rarely, gets an off by 1 error? Seems to be at the end... # for now, slice multiscale[kk][i1:i2] = _win(M[kk + 1]) multiscale[kk] = multiscale[kk] / np.sqrt(M[kk]) return multiscale, shift, M def nsgtf_real(X, multiscale, shift, window_lens): """ Nonstationary Gabor Transform for real values References ---------- <NAME>., <NAME>., <NAME>., <NAME>. Constructing an invertible constant-Q transform with nonstationary Gabor frames, Proceedings of the 14th International Conference on Digital Audio Effects (DAFx 11), Paris, France, 2011 <NAME>., <NAME>., <NAME>. and <NAME>. A framework for invertible, real-time constant-Q transforms, submitted. Original matlab code copyright follows: AUTHOR(s) : <NAME>, <NAME>, <NAME>, 2010-2011 COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA http://nuhag.eu/ Permission is granted to modify and re-distribute this code in any manner as long as this notice is preserved. All standard disclaimers apply. """ # This will break with multchannel input signal_len = len(X) N = len(shift) X_fft = np.fft.fft(X) fill = np.sum(shift) - signal_len if fill > 0: X_fft_tmp = np.zeros((signal_len + shift)) X_fft_tmp[:len(X_fft)] = X_fft X_fft = X_fft_tmp posit = np.cumsum(shift) - shift[0] scale_lens = np.array([len(m) for m in multiscale]) N = np.where(posit - np.floor(scale_lens) <= (signal_len + fill) / 2)[0][-1] c = [] # c[0] is almost exact for ii in range(N): idx_l = np.arange(np.ceil(scale_lens[ii] / 2), scale_lens[ii]) idx_r = np.arange(np.ceil(scale_lens[ii] / 2)) idx = np.concatenate((idx_l, idx_r)) idx = idx.astype("int32") subwin_range = posit[ii] + np.arange(-np.floor(scale_lens[ii] / 2), np.ceil(scale_lens[ii] / 2)) win_range = subwin_range % (signal_len + fill) win_range = win_range.astype("int32") if window_lens[ii] < scale_lens[ii]: raise ValueError("Not handling 'not enough channels' case") else: temp = np.zeros((window_lens[ii],)).astype(X_fft.dtype) temp_idx_l = np.arange(len(temp) - np.floor(scale_lens[ii] / 2), len(temp)) temp_idx_r = np.arange(np.ceil(scale_lens[ii] / 2)) temp_idx = np.concatenate((temp_idx_l, temp_idx_r)) temp_idx = temp_idx.astype("int32") temp[temp_idx] = X_fft[win_range] * multiscale[ii][idx] fs_new_bins = window_lens[ii] fk_bins = posit[ii] displace = fk_bins - np.floor(fk_bins / fs_new_bins) * fs_new_bins displace = displace.astype("int32") temp = np.roll(temp, displace) c.append(np.fft.ifft(temp)) if 0: # cell2mat concatenation c = np.concatenate(c) return c def nsdual(multiscale, shift, window_lens): """ Calculation of nonstationary inverse gabor filters References ---------- <NAME>., <NAME>., <NAME>., <NAME>. Constructing an invertible constant-Q transform with nonstationary Gabor frames, Proceedings of the 14th International Conference on Digital Audio Effects (DAFx 11), Paris, France, 2011 <NAME>., <NAME>., <NAME>. and <NAME>. A framework for invertible, real-time constant-Q transforms, submitted. Original matlab code copyright follows: AUTHOR(s) : <NAME>, <NAME>, <NAME>, 2010-2011 COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA http://nuhag.eu/ Permission is granted to modify and re-distribute this code in any manner as long as this notice is preserved. All standard disclaimers apply. """ N = len(shift) posit = np.cumsum(shift) seq_len = posit[-1] posit = posit - shift[0] diagonal = np.zeros((seq_len,)) win_range = [] for ii in range(N): filt_len = len(multiscale[ii]) idx = np.arange(-np.floor(filt_len / 2), np.ceil(filt_len / 2)) win_range.append((posit[ii] + idx) % seq_len) subdiag = window_lens[ii] * np.fft.fftshift(multiscale[ii]) ** 2 ind = win_range[ii].astype(np.int) diagonal[ind] = diagonal[ind] + subdiag dual_multiscale = multiscale for ii in range(N): ind = win_range[ii].astype(np.int) dual_multiscale[ii] = np.fft.ifftshift( np.fft.fftshift(dual_multiscale[ii]) / diagonal[ind]) return dual_multiscale def nsgitf_real(c, c_dc, c_nyq, multiscale, shift): """ Nonstationary Inverse Gabor Transform on real valued signal References ---------- <NAME>., <NAME>., <NAME>., <NAME>. Constructing an invertible constant-Q transform with nonstationary Gabor frames, Proceedings of the 14th International Conference on Digital Audio Effects (DAFx 11), Paris, France, 2011 <NAME>., <NAME>., <NAME>. and <NAME>. A framework for invertible, real-time constant-Q transforms, submitted. Original matlab code copyright follows: AUTHOR(s) : <NAME>, <NAME>, <NAME>, 2010-2011 COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA http://nuhag.eu/ Permission is granted to modify and re-distribute this code in any manner as long as this notice is preserved. All standard disclaimers apply. """ c_l = [] c_l.append(c_dc) c_l.extend([ci for ci in c]) c_l.append(c_nyq) posit = np.cumsum(shift) seq_len = posit[-1] posit -= shift[0] out = np.zeros((seq_len,)).astype(c_l[1].dtype) for ii in range(len(c_l)): filt_len = len(multiscale[ii]) win_range = posit[ii] + np.arange(-np.floor(filt_len / 2), np.ceil(filt_len / 2)) win_range = (win_range % seq_len).astype(np.int) temp = np.fft.fft(c_l[ii]) * len(c_l[ii]) fs_new_bins = len(c_l[ii]) fk_bins = posit[ii] displace = int(fk_bins - np.floor(fk_bins / fs_new_bins) * fs_new_bins) temp = np.roll(temp, -displace) l = np.arange(len(temp) - np.floor(filt_len / 2), len(temp)) r = np.arange(np.ceil(filt_len / 2)) temp_idx = (np.concatenate((l, r)) % len(temp)).astype(np.int) temp = temp[temp_idx] lf = np.arange(filt_len - np.floor(filt_len / 2), filt_len) rf = np.arange(np.ceil(filt_len / 2)) filt_idx = np.concatenate((lf, rf)).astype(np.int) m = multiscale[ii][filt_idx] out[win_range] = out[win_range] + m * temp nyq_bin = np.floor(seq_len / 2) + 1 out_idx = np.arange( nyq_bin - np.abs(1 - seq_len % 2) - 1, 0, -1).astype(np.int) out[nyq_bin:] = np.conj(out[out_idx]) t_out = np.real(np.fft.ifft(out)).astype(np.float64) return t_out def cqt(X, fs, n_bins=48, fmin=27.5, fmax="nyq", gamma=20): """ Constant Q Transform References ---------- <NAME>., <NAME>., <NAME>., <NAME>. Constructing an invertible constant-Q transform with nonstationary Gabor frames, Proceedings of the 14th International Conference on Digital Audio Effects (DAFx 11), Paris, France, 2011 <NAME>., <NAME>., <NAME>. and <NAME>. A framework for invertible, real-time constant-Q transforms, submitted. Original matlab code copyright follows: AUTHOR(s) : <NAME>, <NAME>, <NAME>, 2010-2011 COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA http://nuhag.eu/ Permission is granted to modify and re-distribute this code in any manner as long as this notice is preserved. All standard disclaimers apply. """ if fmax == "nyq": fmax = fs / 2. multiscale, shift, window_lens = nsgcwin(fmin, fmax, n_bins, fs, len(X), gamma) fbas = fs * np.cumsum(shift[1:]) / len(X) fbas = fbas[:len(window_lens) // 2 - 1] bins = window_lens.shape[0] // 2 - 1 window_lens[1:bins + 1] = window_lens[bins + 2] window_lens[bins + 2:] = window_lens[1:bins + 1][::-1] norm = 2. * window_lens[:bins + 2] / float(len(X)) norm = np.concatenate((norm, norm[1:-1][::-1])) multiscale = [norm[ii] * multiscale[ii] for ii in range(2 * (bins + 1))] c = nsgtf_real(X, multiscale, shift, window_lens) c_dc = c[0] c_nyq = c[-1] c_sub = c[1:-1] c = np.vstack(c_sub) return c, c_dc, c_nyq, multiscale, shift, window_lens def icqt(X_cq, c_dc, c_nyq, multiscale, shift, window_lens): """ Inverse constant Q Transform References ---------- <NAME>., <NAME>., <NAME>., <NAME>. Constructing an invertible constant-Q transform with nonstationary Gabor frames, Proceedings of the 14th International Conference on Digital Audio Effects (DAFx 11), Paris, France, 2011 <NAME>., <NAME>., <NAME>. and <NAME>. A framework for invertible, real-time constant-Q transforms, submitted. Original matlab code copyright follows: AUTHOR(s) : <NAME>, <NAME>, <NAME>, 2010-2011 COPYRIGHT : (c) NUHAG, Dept.Math., University of Vienna, AUSTRIA http://nuhag.eu/ Permission is granted to modify and re-distribute this code in any manner as long as this notice is preserved. All standard disclaimers apply. """ new_multiscale = nsdual(multiscale, shift, window_lens) X = nsgitf_real(X_cq, c_dc, c_nyq, new_multiscale, shift) return X def rolling_mean(X, window_size): w = 1.0 / window_size * np.ones((window_size)) return np.correlate(X, w, 'valid') def rolling_window(X, window_size): # for 1d data shape = X.shape[:-1] + (X.shape[-1] - window_size + 1, window_size) strides = X.strides + (X.strides[-1],) return np.lib.stride_tricks.as_strided(X, shape=shape, strides=strides) def voiced_unvoiced(X, window_size=256, window_step=128, copy=True): """ Voiced unvoiced detection from a raw signal Based on code from: https://www.clear.rice.edu/elec532/PROJECTS96/lpc/code.html Other references: http://www.seas.ucla.edu/spapl/code/harmfreq_MOLRT_VAD.m Parameters ---------- X : ndarray Raw input signal window_size : int, optional (default=256) The window size to use, in samples. window_step : int, optional (default=128) How far the window steps after each calculation, in samples. copy : bool, optional (default=True) Whether to make a copy of the input array or allow in place changes. """ X = np.array(X, copy=copy) if len(X.shape) < 2: X = X[None] n_points = X.shape[1] n_windows = n_points // window_step # Padding pad_sizes = [(window_size - window_step) // 2, window_size - window_step // 2] # TODO: Handling for odd window sizes / steps X = np.hstack((np.zeros((X.shape[0], pad_sizes[0])), X, np.zeros((X.shape[0], pad_sizes[1])))) clipping_factor = 0.6 b, a = sg.butter(10, np.pi * 9 / 40) voiced_unvoiced = np.zeros((n_windows, 1)) period = np.zeros((n_windows, 1)) for window in range(max(n_windows - 1, 1)): XX = X.ravel()[window * window_step + np.arange(window_size)] XX *= sg.hamming(len(XX)) XX = sg.lfilter(b, a, XX) left_max = np.max(np.abs(XX[:len(XX) // 3])) right_max = np.max(np.abs(XX[-len(XX) // 3:])) clip_value = clipping_factor * np.min([left_max, right_max]) XX_clip = np.clip(XX, clip_value, -clip_value) XX_corr = np.correlate(XX_clip, XX_clip, mode='full') center = np.argmax(XX_corr) right_XX_corr = XX_corr[center:] prev_window = max([window - 1, 0]) if voiced_unvoiced[prev_window] > 0: # Want it to be harder to turn off than turn on strength_factor = .29 else: strength_factor = .3 start = np.where(right_XX_corr < .3 * XX_corr[center])[0] # 20 is hardcoded but should depend on samplerate? try: start = np.max([20, start[0]]) except IndexError: start = 20 search_corr = right_XX_corr[start:] index = np.argmax(search_corr) second_max = search_corr[index] if (second_max > strength_factor * XX_corr[center]): voiced_unvoiced[window] = 1 period[window] = start + index - 1 else: voiced_unvoiced[window] = 0 period[window] = 0 return np.array(voiced_unvoiced), np.array(period) def lpc_analysis(X, order=8, window_step=128, window_size=2 * 128, emphasis=0.9, voiced_start_threshold=.9, voiced_stop_threshold=.6, truncate=False, copy=True): """ Extract LPC coefficients from a signal Based on code from: http://labrosa.ee.columbia.edu/matlab/sws/ _rParameters ---------- X : ndarray Signals to extract LPC coefficients from order : int, optional (default=8) Order of the LPC coefficients. For speech, use the general rule that the order is two times the expected number of formants plus 2. This can be formulated as 2 + 2 * (fs // 2000). For approx. signals with fs = 7000, this is 8 coefficients - 2 + 2 * (7000 // 2000). window_step : int, optional (default=128) The size (in samples) of the space between each window window_size : int, optional (default=2 * 128) The size of each window (in samples) to extract coefficients over emphasis : float, optional (default=0.9) The emphasis coefficient to use for filtering voiced_start_threshold : float, optional (default=0.9) Upper power threshold for estimating when speech has started voiced_stop_threshold : float, optional (default=0.6) Lower power threshold for estimating when speech has stopped truncate : bool, optional (default=False) Whether to cut the data at the last window or do zero padding. copy : bool, optional (default=True) Whether to copy the input X or modify in place Returns ------- lp_coefficients : ndarray lp coefficients to describe the frame per_frame_gain : ndarray calculated gain for each frame residual_excitation : ndarray leftover energy which is not described by lp coefficents and gain voiced_frames : ndarray array of [0, 1] values which holds voiced/unvoiced decision for each frame. References ---------- <NAME> (2004), "Sinewave Speech Analysis/Synthesis in Matlab", Web resource, available: http://www.ee.columbia.edu/ln/labrosa/matlab/sws/ """ X = np.array(X, copy=copy) if len(X.shape) < 2: X = X[None] n_points = X.shape[1] n_windows = int(n_points // window_step) if not truncate: pad_sizes = [(window_size - window_step) // 2, window_size - window_step // 2] # TODO: Handling for odd window sizes / steps X = np.hstack((np.zeros((X.shape[0], int(pad_sizes[0]))), X, np.zeros((X.shape[0], int(pad_sizes[1]))))) else: pad_sizes = [0, 0] X = X[0, :n_windows * window_step] lp_coefficients = np.zeros((n_windows, order + 1)) per_frame_gain = np.zeros((n_windows, 1)) residual_excitation = np.zeros( int(((n_windows - 1) * window_step + window_size))) # Pre-emphasis high-pass filter X = sg.lfilter([1, -emphasis], 1, X) # stride_tricks.as_strided? autocorr_X = np.zeros((n_windows, int(2 * window_size - 1))) for window in range(max(n_windows - 1, 1)): wtws = int(window * window_step) XX = X.ravel()[wtws + np.arange(window_size, dtype="int32")] WXX = XX * sg.hanning(window_size) autocorr_X[window] = np.correlate(WXX, WXX, mode='full') center = np.argmax(autocorr_X[window]) RXX = autocorr_X[window, np.arange(center, window_size + order, dtype="int32")] R = linalg.toeplitz(RXX[:-1]) solved_R = linalg.pinv(R).dot(RXX[1:]) filter_coefs = np.hstack((1, -solved_R)) residual_signal = sg.lfilter(filter_coefs, 1, WXX) gain = np.sqrt(np.mean(residual_signal ** 2)) lp_coefficients[window] = filter_coefs per_frame_gain[window] = gain assign_range = wtws + np.arange(window_size, dtype="int32") residual_excitation[assign_range] += residual_signal / gain # Throw away first part in overlap mode for proper synthesis residual_excitation = residual_excitation[int(pad_sizes[0]):] return lp_coefficients, per_frame_gain, residual_excitation def lpc_to_frequency(lp_coefficients, per_frame_gain): """ Extract resonant frequencies and magnitudes from LPC coefficients and gains. Parameters ---------- lp_coefficients : ndarray LPC coefficients, such as those calculated by ``lpc_analysis`` per_frame_gain : ndarray Gain calculated for each frame, such as those calculated by ``lpc_analysis`` Returns ------- frequencies : ndarray Resonant frequencies calculated from LPC coefficients and gain. Returned frequencies are from 0 to 2 * pi magnitudes : ndarray Magnitudes of resonant frequencies References ---------- <NAME> (2004), "Sinewave Speech Analysis/Synthesis in Matlab", Web resource, available: http://www.ee.columbia.edu/ln/labrosa/matlab/sws/ """ n_windows, order = lp_coefficients.shape frame_frequencies = np.zeros((n_windows, (order - 1) // 2)) frame_magnitudes = np.zeros_like(frame_frequencies) for window in range(n_windows): w_coefs = lp_coefficients[window] g_coefs = per_frame_gain[window] roots = np.roots(np.hstack(([1], w_coefs[1:]))) # Roots doesn't return the same thing as MATLAB... agh frequencies, index = np.unique( np.abs(np.angle(roots)), return_index=True) # Make sure 0 doesn't show up... gtz = np.where(frequencies > 0)[0] frequencies = frequencies[gtz] index = index[gtz] magnitudes = g_coefs / (1. - np.abs(roots)) sort_index = np.argsort(frequencies) frame_frequencies[window, :len(sort_index)] = frequencies[sort_index] frame_magnitudes[window, :len(sort_index)] = magnitudes[sort_index] return frame_frequencies, frame_magnitudes def lpc_to_lsf(all_lpc): if len(all_lpc.shape) < 2: all_lpc = all_lpc[None] order = all_lpc.shape[1] - 1 all_lsf = np.zeros((len(all_lpc), order)) for i in range(len(all_lpc)): lpc = all_lpc[i] lpc1 = np.append(lpc, 0) lpc2 = lpc1[::-1] sum_filt = lpc1 + lpc2 diff_filt = lpc1 - lpc2 if order % 2 != 0: deconv_diff, _ = sg.deconvolve(diff_filt, [1, 0, -1]) deconv_sum = sum_filt else: deconv_diff, _ = sg.deconvolve(diff_filt, [1, -1]) deconv_sum, _ = sg.deconvolve(sum_filt, [1, 1]) roots_diff = np.roots(deconv_diff) roots_sum = np.roots(deconv_sum) angle_diff = np.angle(roots_diff[::2]) angle_sum = np.angle(roots_sum[::2]) lsf = np.sort(np.hstack((angle_diff, angle_sum))) if len(lsf) != 0: all_lsf[i] = lsf return np.squeeze(all_lsf) def lsf_to_lpc(all_lsf): if len(all_lsf.shape) < 2: all_lsf = all_lsf[None] order = all_lsf.shape[1] all_lpc = np.zeros((len(all_lsf), order + 1)) for i in range(len(all_lsf)): lsf = all_lsf[i] zeros = np.exp(1j * lsf) sum_zeros = zeros[::2] diff_zeros = zeros[1::2] sum_zeros = np.hstack((sum_zeros,
np.conj(sum_zeros)
numpy.conj
""" Utilities for MLP object. Copyright (C) 2017, <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import abc import numpy as np import theano import theano.tensor as T def _linear(x): """Linear activation. Do nothing on the input.""" return x # Possible activation for the hidden units. ACTIVATIONS = { 'softmax': T.nnet.softmax, 'sigmoid': T.nnet.sigmoid, 'tanh': T.tanh, 'relu': T.nnet.relu, 'linear': _linear } class MLPError(Exception): """Base class for exceptions in this module.""" pass class UnkownActivationError(MLPError): """Raised when the given activation is not known.""" def __init__(self, activation): self.activation = str(activation) def __str__(self): return '"' + self.activation + '" is not one of the pre-defined " \ "activations: "' + '", "'.join(ACTIVATIONS.keys()) + '"' def _init_weights_matrix(dim_in, dim_out, activation, borrow=True): val = np.sqrt(6. / (dim_in + dim_out)) if activation == 'sigmoid': retval = 4 * np.random.uniform(low=-val, high=val, size=(dim_in, dim_out)) elif activation == 'tanh': retval = np.random.uniform(low=-val, high=val, size=(dim_in, dim_out)) elif (activation == 'relu' or activation == 'linear' or activation == 'softmax'): retval = np.random.normal(0., 0.01, size=(dim_in, dim_out)) else: raise UnkownActivationError(activation) return theano.shared(np.asarray(retval, dtype=theano.config.floatX), borrow=borrow) def init_residual_weights_matrix(dim_in, dim_out, borrow=True): """Partial isometry initialization.""" if dim_out == dim_in: weights = np.identity(dim_in) else: d = max(dim_in, dim_out) weights = np.linalg.qr(np.random.randn(d,d))[0][:dim_in,:dim_out] return theano.shared(np.asarray(weights, dtype=theano.config.floatX), borrow=borrow) def _init_bias(dim, borrow=True): return theano.shared(np.zeros(dim, dtype=theano.config.floatX) + .01, borrow=borrow) class LogisticRegressionLayer(object): def __init__(self, inputs, dim_in, dim_out, activation): self.inputs = inputs self.dim_in = dim_in self.dim_out = dim_out weights = _init_weights_matrix(dim_in, dim_out, activation) bias = _init_bias(dim_out) self.outputs = ACTIVATIONS[activation](T.dot(inputs, weights) + bias) self.params = [weights, bias] class StdLayer(object): def __init__(self, inputs, dim_in, dim_out, activation): self.inputs = inputs self.dim_in = dim_in self.dim_out = dim_out self.activation = activation weights = _init_weights_matrix(dim_in, dim_out, activation) bias = _init_bias(dim_out) self.outputs = ACTIVATIONS[activation](T.dot(inputs, weights) + bias) self.params = [weights, bias] class GaussianLayer(object): def __init__(self, inputs, dim_in, dim_out, activation): self.inputs = inputs self.dim_in = dim_in self.dim_out = dim_out self.activation = activation shared_layer = StdLayer(inputs, dim_in, 2 * dim_out, activation) self.mean, raw_logvar = \ theano.tensor.split(shared_layer.outputs, [dim_out, dim_out], 2, axis=-1) #self.var = T.log(1 + T.exp(raw_logvar)) self.var = T.exp(raw_logvar) self.params = shared_layer.params self.outputs = self.mean # Possible layer types. LAYER_TYPES = { 'standard': StdLayer, 'gaussian': GaussianLayer } class NeuralNetwork(object): def __init__(self, structure, residuals, inputs=None): if inputs is None: self.inputs = T.matrix(dtype=theano.config.floatX) else: self.inputs = inputs # Build the neural network. self.layers = [] self.params = [] current_inputs = self.inputs for layer_type, dim_in, dim_out, activation in structure: self.layers.append(LAYER_TYPES[layer_type](current_inputs, dim_in, dim_out, activation)) self.params += self.layers[-1].params current_inputs = self.layers[-1].outputs # Add the residual connections. for residual_in, residual_out in residuals: dim_in = self.layers[residual_in].dim_in dim_out = self.layers[residual_out].dim_out weights = init_residual_weights_matrix(dim_in, dim_out) self.params += [weights] self.layers[residual_out].outputs += \ T.dot(self.layers[residual_in].inputs, weights) self.outputs = self.layers[-1].outputs class MLP(NeuralNetwork): def __init__(self, structure, residuals, inputs): NeuralNetwork.__init__(self, structure, residuals, inputs) self.log_pred = T.log(self.layers[-1].outputs) # Build the functions. self.forward = theano.function( inputs=[self.inputs], outputs=[self.log_pred] ) class GaussianNeuralNetwork(NeuralNetwork): def __init__(self, structure, residuals, inputs=None): NeuralNetwork.__init__(self, structure, residuals, inputs) self.mean = self.layers[-1].outputs self.var = self.layers[-1].var # Noise variable for the reparameterization trick. if "gpu" in theano.config.device: srng = theano.sandbox.cuda.rng_curand.CURAND_RandomStreams() else: srng = T.shared_randomstreams.RandomStreams() self.eps = srng.normal(self.mean.shape) # Latent variable. self.sample = self.mean + T.sqrt(self.var) * self.eps # Build the functions. self.forward = theano.function( inputs=[self.inputs], outputs=[self.mean, self.var] ) class MLPold(metaclass=abc.ABCMeta): """Base class for MLP objects.""" @staticmethod def init_layer_params(dim_in, dim_out, scale): """Initialize a weights matrix and bias vector.""" #weights = np.random.randn(dim_in, dim_out) weights = np.random.uniform( low=-np.sqrt(6. / (dim_in + dim_out)), high=np.sqrt(6. / (dim_in + dim_out)), size=(dim_in, dim_out) ) bias = np.zeros(dim_out) return [scale * weights, bias] @staticmethod def forward(params, activation, data): """Forward an input matrix through the Gaussian residual MLP.""" inputs = data for idx in range(0, len(params), 2): weights = params[idx] bias = params[idx + 1] outputs = np.dot(inputs, weights) + bias inputs = activation(outputs) return inputs class GaussianMLP(MLP): """Static implementation of a Gaussian residual MLP.""" @staticmethod def create(dim_in, dim_out, dim_h, n_layers, scale, precision): """Create a Gaussian residual MLP.""" params = MLP.init_layer_params(dim_in, dim_h, scale) for idx in range(n_layers - 1): params += MLP.init_layer_params(dim_h, dim_h, scale) params += MLP.init_layer_params(dim_h, 2 * dim_out, scale) # Initialize the precision. params[-1][dim_out:] -= np.log(precision) return params @staticmethod def extract_params(params): """Extract the different part of the Gaussian MLP.""" return [params[-2:], params[:-2]] @staticmethod def forward(params, activation, data): """Forward an input matrix through the Gaussian residual MLP.""" linear_params, h_params = GaussianMLP.extract_params(params) inputs = MLP.forward(h_params, activation, data) outputs = np.dot(inputs, linear_params[0]) + linear_params[1] mean, logvar = np.split(outputs, 2, axis=-1) #var = np.log(1 + np.exp(logvar)) var = np.exp(logvar) return mean, var @staticmethod def natural_params(mean, var): np1 = - 1 / (2 * var) np2 = mean / var return np1, np2 @staticmethod def std_params(np1, np2): var = -1 / (2 * np1) mean = np2 * var return mean, var class GaussianResidualMLP(GaussianMLP): """Static implementation of a Gaussian residual MLP.""" @staticmethod def init_residual_params(dim_in, dim_out): """Partial isometry initialization.""" if dim_out == dim_in: return [np.identity(dim_in)] d = max(dim_in, dim_out) weights = np.linalg.qr(np.random.randn(d,d))[0][:dim_in,:dim_out] return [weights] @staticmethod def create(dim_in, dim_out, dim_h, n_layers, scale, precision): """Create a Gaussian residual MLP.""" params = GaussianMLP.create(dim_in, dim_out, dim_h, n_layers, scale, precision) #params += GaussianResidualMLP.init_residual_params(dim_in, dim_out) return params @staticmethod def forward(params, activation, data): """Forward an input matrix through the Gaussian residual MLP.""" #gauss_params, res_params = params[:-1], params[-1] gauss_params = params mean, var = GaussianMLP.forward(gauss_params, activation, data) #mean = mean + np.dot(data, res_params) mean = mean + data return mean, var @staticmethod def _kl_div(mean_post, var_post, mean_prior, var_prior): """KL divergence between the posterior and the prior.""" kl_div = (.5 * (mean_prior - mean_post)**2) / var_prior ratio = var_post / var_prior kl_div = kl_div + .5 * (ratio - 1 - np.log(ratio)) return
np.sum(kl_div, axis=1)
numpy.sum
import emcee from multiprocessing import Pool import numpy as np import astropy.units as u import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import seaborn as sns from pylcurve.lcurve import Lcurve from pylcurve.modelling import Model import pylcurve.mcmc_utils as m import pylcurve.utils as utils from pylcurve.filters import filters """ This script fits flux calibrated, multi-band primary eclipse photometry of WD-WD/WD-dM binaries using an MCMC method to run Tom Marsh's LROCHE routine. Using mass-radius relations it can determine stellar masses and effective temperatures for both components. All typical user modified variables are denoted by "ENTER" for ease. """ # ENTER filter system of observations # cam = filters('sdss') ## SDSS throughputs # cam = filters('ucam_sloan') ## ULTRACAM throughputs with standard sloan filters cam = filters('ucam') ## ULTRACAM throughputs with super filters # cam = filters('hcam') ## HiPERCAM throughputs with super filters class EclipseLC(Model): parameter_names = ('t1', 't2', 'm1', 'm2', 'incl', 't0', 'per', 'parallax') def __init__(self, model_file, lightcurves, *args, **kwargs): """ A lightcurve model for an eclipsing WD-WD/WD-dM. Parameters ---------- model_file: model containing LCURVE file with auxillary (fixed) params lightcurves: a dictionary of band: filename pairs The remaining parameters are either passed in as a list of arguments (in order) or specified as a dictionary: t1, t2 : white dwarf/M-dwarf temp in K m1, m2 : white dwarf/M-dwarf masses in solar masses incl : inclination of system t0 : mid-eclipse time of primary eclipse per : orbital period of system parallax : parallax of system """ super().__init__(*args, **kwargs) self.lightcurves = lightcurves self.model_file = model_file def get_value(self, band): """ Calculate lightcurve Parameters ---------- band : string SDSS/HiPERCAM bandpass Returns ------- ym : np.ndarray model values """ # setup LCURVE file for this band lcurve_model = Lcurve(self.model_file) lcurve_pars = dict() q = self.m2/self.m1 # ENTER chosen mass-radius relations for both stars self.r1 = utils.get_radius(self.m1, self.t1, star_type='CO') self.r2 = utils.get_radius(self.m2, self.t2, star_type='MS') log_g1 = utils.log_g(self.m1, self.r1) log_g2 = utils.log_g(self.m2, self.r2) a = utils.separation(self.m1, self.m2, self.per) # ENTER interstellar redenning/extinction ebv = 0.05 Av = 3.1 * ebv scale_factor = utils.scalefactor(a, self.parallax, cam.eff_wl[band], Av) lcurve_pars['t1'] = utils.get_Tbb(self.t1, log_g1, band, star_type='WD', source='Bergeron') lcurve_pars['t2'] = utils.get_Tbb(self.t2, log_g2, band, star_type='MS') lcurve_pars['r1'] = self.r1/a # scale to separation units lcurve_pars['r2'] = utils.Rva_to_Rl1(q, self.r2/a) # scale and correct lcurve_pars['t0'] = self.t0 lcurve_pars['period'] = self.per lcurve_pars['iangle'] = self.incl lcurve_pars['q'] = q lcurve_pars['wavelength'] = cam.eff_wl[band].to_value(u.nm) lcurve_pars['phase1'] = np.arcsin(lcurve_pars['r1'] - lcurve_pars['r2']) / (2 * np.pi) lcurve_pars['phase2'] = 0.5 - lcurve_pars['phase1'] lcurve_model.set(lcurve_pars) lcurve_model.set(utils.get_ldcs(self.t1, logg_1=log_g1, band=band, star_type_1='WD', teff_2=self.t2, logg_2=log_g2, star_type_2='MS')) if not lcurve_model.ok(): raise ValueError('invalid parameter combination') _, _, _, ym = lcurve_model(self.lightcurves[band], scale_factor) return ym def log_prior(self): """ Prior probabilities """ # first call parent class log_prior -> checks params in bounds val = super().log_prior() if np.isinf(val): return val # ENTER prior on parallax from Gaia (NN Ser) par_prior = m.Prior('gaussPos', 1.9166, 0.0980) val += par_prior.ln_prob(self.parallax) # ENTER prior on T0 prior = m.Prior('gauss', 55307.400302182999, 1.3524578e-06) val += prior.ln_prob(self.t0) # ENTER prior on period prior = m.Prior('gauss', 0.13008017141, 0.00000000017) val += prior.ln_prob(self.per) return val def plot(self, ax, band, params, style='whole', dcolor='k'): """ Plots data and model on axis style is either whole, model or residuals. 'whole' plots the raw data and the full model (mean model + GP). 'model' plots the mean model and the data after subtraction of the mean of the GP - i.e the data minus the pulsations 'residuals' plots the data minus the mean model, together with the mean and range of the GP """ self.set_parameter_vector(params) t, _, y, ye, _, _ = np.loadtxt(self.lightcurves[band]).T ym = self.get_value(band) toff = int(np.floor(
np.min(t)
numpy.min
from __future__ import print_function from numpy.core.records import array import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import copy import numpy as np import math from sparselearning.igq import get_igq_sparsities import pdb class CosineDecay(object): def __init__(self, death_rate, T_max, eta_min=0.005, last_epoch=-1): self.sgd = optim.SGD(torch.nn.ParameterList([torch.nn.Parameter(torch.zeros(1))]), lr=death_rate) self.cosine_stepper = torch.optim.lr_scheduler.CosineAnnealingLR(self.sgd, T_max, eta_min, last_epoch) def step(self): self.cosine_stepper.step() def get_dr(self, death_rate): return self.sgd.param_groups[0]['lr'] class LinearDecay(object): def __init__(self, death_rate, factor=0.99, frequency=600): self.factor = factor self.steps = 0 self.frequency = frequency def step(self): self.steps += 1 def get_dr(self, death_rate): if self.steps > 0 and self.steps % self.frequency == 0: return death_rate*self.factor else: return death_rate class Masking(object): def __init__(self, optimizer, death_rate=0.3, growth_death_ratio=1.0, death_rate_decay=None, death_mode='magnitude', growth_mode='momentum', redistribution_mode='momentum', args=None, spe_initial=None, train_loader=None): growth_modes = ['random', 'momentum', 'momentum_neuron', 'gradient'] if growth_mode not in growth_modes: print('Growth mode: {0} not supported!'.format(growth_mode)) print('Supported modes are:', str(growth_modes)) self.args = args self.loader = train_loader self.device = torch.device("cuda") self.growth_mode = growth_mode self.death_mode = death_mode self.redistribution_mode = redistribution_mode self.death_rate_decay = death_rate_decay self.spe_initial = spe_initial # initial masks made by SNIP self.snip_masks = None # masks made by SNIP during training self.masks = {} self.newly_masks = {} self.survival = {} self.pruned_number = {} self.modules = [] self.names = [] self.optimizer = optimizer # stats self.name2zeros = {} self.name2nonzeros = {} self.death_rate = death_rate self.name2death_rate = {} self.steps = 0 #dst sparse self.start_epoch_dst = 0 self.current_epoch = 0 self.prune_ratio = self.args.prune_ratio self.growth_ratio = self.args.growth_ratio self.lossinfo = [] self.train_val_diff = [] self.update_threshold = self.args.update_threshold self.prune_epochs = [] self.growth_epochs = [] self.total_fired_weights = 0 self.init_mask = None def init(self, mode='ER', density=0.05, erk_power_scale=1.0): self.sparsity = density if mode == 'uniform': index = 0 for module in self.modules: for name, weight in module.named_parameters(): name_cur = name + '_' + str(index) index += 1 if name_cur not in self.masks: continue self.masks[name_cur][:] = (torch.rand(weight.shape) < density).float().data.cuda() elif mode == 'fixed_ERK': print('initialize by fixed_ERK') total_params = 0 for name, weight in self.masks.items(): total_params += weight.numel() is_epsilon_valid = False dense_layers = set() while not is_epsilon_valid: divisor = 0 rhs = 0 raw_probabilities = {} for name, mask in self.masks.items(): n_param = np.prod(mask.shape) n_zeros = n_param * (1 - density) n_ones = n_param * density if name in dense_layers: # See `- default_sparsity * (N_3 + N_4)` part of the equation above. rhs -= n_zeros else: # Corresponds to `(1 - default_sparsity) * (N_1 + N_2)` part of the # equation above. rhs += n_ones # Erdos-Renyi probability: epsilon * (n_in + n_out / n_in * n_out). raw_probabilities[name] = ( np.sum(mask.shape) / np.prod(mask.shape) ) ** erk_power_scale # Note that raw_probabilities[mask] * n_param gives the individual # elements of the divisor. divisor += raw_probabilities[name] * n_param # By multipliying individual probabilites with epsilon, we should get the # number of parameters per layer correctly. epsilon = rhs / divisor # If epsilon * raw_probabilities[mask.name] > 1. We set the sparsities of that # mask to 0., so they become part of dense_layers sets. max_prob = np.max(list(raw_probabilities.values())) max_prob_one = max_prob * epsilon if max_prob_one > 1: is_epsilon_valid = False for mask_name, mask_raw_prob in raw_probabilities.items(): if mask_raw_prob == max_prob: print(f"Sparsity of var:{mask_name} had to be set to 0.") dense_layers.add(mask_name) else: is_epsilon_valid = True density_dict = {} total_nonzero = 0.0 # With the valid epsilon, we can set sparsities of the remaning layers. for name, mask in self.masks.items(): n_param = np.prod(mask.shape) if name in dense_layers: density_dict[name] = 1.0 else: probability_one = epsilon * raw_probabilities[name] density_dict[name] = probability_one print( f"layer: {name}, shape: {mask.shape}, density: {density_dict[name]}" ) self.masks[name][:] = (torch.rand(mask.shape) < density_dict[name]).float().data.cuda() total_nonzero += density_dict[name] * mask.numel() print(f"Overall sparsity {total_nonzero / total_params}") elif mode == 'ER': print('initialize by SET') # initialization used in sparse evolutionary training total_params = 0 index = 0 for module in self.modules: for name, weight in module.named_parameters(): name_cur = name + '_' + str(index) index += 1 if name_cur not in self.masks: continue total_params += weight.numel() target_params = total_params *density tolerance = 5 current_params = 0 new_nonzeros = 0 epsilon = 10.0 growth_factor = 0.5 # searching for the right epsilon for a specific sparsity level while not ((current_params+tolerance > target_params) and (current_params-tolerance < target_params)): new_nonzeros = 0.0 index = 0 for name, weight in module.named_parameters(): name_cur = name + '_' + str(index) index += 1 if name_cur not in self.masks: continue # original SET formulation for fully connected weights: num_weights = epsilon * (noRows + noCols) # we adapt the same formula for convolutional weights growth = epsilon*sum(weight.shape) new_nonzeros += growth current_params = new_nonzeros if current_params > target_params: epsilon *= 1.0 - growth_factor else: epsilon *= 1.0 + growth_factor growth_factor *= 0.95 index = 0 for name, weight in module.named_parameters(): name_cur = name + '_' + str(index) index += 1 if name_cur not in self.masks: continue growth = epsilon*sum(weight.shape) prob = growth/np.prod(weight.shape) self.masks[name_cur][:] = (torch.rand(weight.shape) < prob).float().data.cuda() # random igq elif mode == 'igq': model = self.modules[0] sparsities = get_igq_sparsities(model, density) print(sparsities) it = iter(sparsities) index = 0 for name, weight in model.named_parameters(): name_cur = name + '_' + str(index) index += 1 if name_cur not in self.masks: continue mask = torch.ones(weight.shape) ind = np.random.choice(range(np.prod(mask.shape)), size=int(next(it)*np.prod(mask.shape)), replace=False) mask.reshape(-1)[ind] = 0. self.masks[name_cur][:] = mask.float().data.cuda() self.apply_mask() self.fired_masks = copy.deepcopy(self.masks) # used for over-paremeters self.init_death_rate(self.death_rate) self.gather_statistics() self.print_nonzero_counts() total_size = 0 for name, weight in self.masks.items(): total_size += weight.numel() print('Total Model parameters:', total_size) sparse_size = 0 for name, weight in self.masks.items(): sparse_size += (weight != 0).sum().int().item() print('Total parameters under sparsity level of {0}: {1}'.format(density, sparse_size / total_size)) def get_info_resume(self): info = { 'lossinfo': self.lossinfo, 'train_val_diff': self.train_val_diff, 'prune_epochs': self.prune_epochs, 'growth_epochs': self.growth_epochs, 'masks': self.masks, 'name2death_rate': self.name2death_rate, 'decay': (self.death_rate_decay.sgd.state_dict(), self.death_rate_decay.cosine_stepper.state_dict()), } return info def load_info_resume(self, info): self.lossinfo = info['lossinfo'] self.train_val_diff = info['train_val_diff'] self.prune_epochs = info['prune_epochs'] self.growth_epochs = info['growth_epochs'] self.masks = info['masks'] self.name2death_rate = info['name2death_rate'] self.death_rate_decay.sgd.load_state_dict(info['decay'][0]) self.death_rate_decay.cosine_stepper.load_state_dict(info['decay'][1]) def init_death_rate(self, death_rate): for name in self.masks: self.name2death_rate[name] = death_rate def at_end_of_epoch(self): self.truncate_weights() _, total_fired_weights = self.fired_masks_update() self.total_fired_weights = total_fired_weights self.print_nonzero_counts() def step(self): self.optimizer.step() self.apply_mask() self.death_rate_decay.step() for name in self.masks: if self.args.decay_schedule == 'cosine': self.name2death_rate[name] = self.death_rate_decay.get_dr(self.name2death_rate[name]) elif self.args.decay_schedule == 'constant': self.name2death_rate[name] = self.args.death_rate self.death_rate = self.name2death_rate[name] self.steps += 1 def add_module(self, module, density, sparse_init='ER'): self.modules.append(module) index = 0 for name, tensor in module.named_parameters(): name_cur = name + '_' + str(index) index += 1 if len(tensor.size()) ==4 or len(tensor.size()) ==2: self.names.append(name_cur) self.masks[name_cur] = torch.zeros_like(tensor, dtype=torch.float32, requires_grad=False).cuda() print('Removing biases...') self.remove_weight_partial_name('bias') self.init(mode=sparse_init, density=density) def remove_weight(self, name, index): if name in self.masks: print('Removing {0} of size {1} = {2} parameters.'.format(name, self.masks[name].shape, self.masks[name].numel())) def remove_weight_partial_name(self, partial_name): removed = set() for name in list(self.masks.keys()): if partial_name in name: print('Removing {0} of size {1} with {2} parameters...'.format(name, self.masks[name].shape, np.prod(self.masks[name].shape))) removed.add(name) self.masks.pop(name) print('Removed {0} layers.'.format(len(removed))) i = 0 while i < len(self.names): name = self.names[i] if name in removed: self.names.pop(i) else: i += 1 def remove_type(self, nn_type): index = 0 for module in self.modules: for name, module in module.named_modules(): print(name) if isinstance(module, nn_type): self.remove_weight(name, index) index += 1 def apply_mask(self): index = 0 for module in self.modules: for name, weight in module.named_parameters(): name_cur = name+'_'+str(index) index += 1 if name_cur in self.masks: weight.data = weight.data*self.masks[name_cur] if 'momentum_buffer' in self.optimizer.state[weight]: self.optimizer.state[weight]['momentum_buffer'] = self.optimizer.state[weight]['momentum_buffer']*self.masks[name_cur] ##################### Flying Bird+ sparse ################ def set_dst_start_epoch(self, epoch): self.start_epoch_dst = epoch def set_dst_current_epoch(self, epoch): self.current_epoch = epoch def update_loss_info(self, loss): self.lossinfo.append(loss) def update_train_val_diff(self, train_ra, val_ra): self.train_val_diff.append(train_ra - val_ra) # self.train_val_diff.append(val_ra) def clear_dst_info(self): l0 = self.lossinfo[-1] l1 = self.train_val_diff[-1] self.lossinfo.clear() self.train_val_diff.clear() self.lossinfo.append(l0) self.train_val_diff.append(l1) def get_dst_ratio(self): r = self.args.epoch_range + 1 # growth_ratio l0 = self.lossinfo[-r:][:-1] l1 = self.lossinfo[-r:][1:] diff1 = np.array(l1) -
np.array(l0)
numpy.array
import json import os import pathlib import shutil import subprocess import numpy as np import pytest import yaml from zntrack import zn from zntrack.core.base import Node @pytest.fixture def proj_path(tmp_path): shutil.copy(__file__, tmp_path) os.chdir(tmp_path) subprocess.check_call(["git", "init"]) subprocess.check_call(["dvc", "init"]) return tmp_path class SingleNode(Node): param1 = zn.params() def __init__(self, param1=None, **kwargs): super().__init__(**kwargs) self.param1 = param1 def test_pathlib_param(proj_path): """Test serialized data as parameters""" SingleNode(param1=pathlib.Path("test_file.json")).save() assert ( yaml.safe_load(pathlib.Path("params.yaml").read_text())["SingleNode"]["param1"] == "test_file.json" ) assert json.loads(pathlib.Path("zntrack.json").read_text())["SingleNode"] == { "param1": {"_type": "pathlib.Path"} } assert SingleNode.load().param1 == pathlib.Path("test_file.json") def test_small_numpy_param(proj_path): SingleNode(param1=np.arange(4)).save() assert yaml.safe_load(pathlib.Path("params.yaml").read_text())["SingleNode"][ "param1" ] == [0, 1, 2, 3] assert json.loads(pathlib.Path("zntrack.json").read_text())["SingleNode"] == { "param1": {"_type": "np.ndarray_small"} } np.testing.assert_array_equal(SingleNode.load().param1,
np.arange(4)
numpy.arange
import numpy as np # Gotran generated code for the "grandi" model def init_state_values_single(**values): """ Initialize state values """ # Init values # m=0.003793087414436, h=0.626221949492493, j=0.624553572490432, # x_kr=0.0210022533039071, x_ks=0.00428016666258923, # x_to_s=0.000440445885642567, y_to_s=0.785115828275182, # x_to_f=0.000440438103758954, y_to_f=0.999995844038706, # d=2.92407183949469e-06, f=0.995135796703515, # f_Ca_Bj=0.0246760872105795, f_Ca_Bsl=0.0152723084239416, # Ry_Rr=0.890806040818203, Ry_Ro=7.40481128853622e-07, # Ry_Ri=9.07666168960848e-08, Na_Bj=3.4543773303328, # Na_Bsl=0.753740951477775, Tn_CL=0.00893455096919132, # Tn_CHc=0.117412025936615, Tn_CHm=0.0106160166692932, # CaM=0.000295573424135051, Myo_c=0.00192322252438022, # Myo_m=0.137560495022823, SRB=0.00217360235649355, # SLL_j=0.00740524521680039, SLL_sl=0.00990339304377132, # SLH_j=0.0735890020284214, SLH_sl=0.114583623436917, # Csqn_b=1.19723145924432, Ca_sr=0.554760499828172, # Na_j=8.40537012592918, Na_sl=8.40491910001025, Na_i=8.40513364344858, # K_i=120, Ca_j=0.000175882395147342, Ca_sl=0.000106779509977354, # Ca_i=8.72509677797499e-05, V_m=-81.4552030512661 init_values = np.array( [ 0.003793087414436, 0.626221949492493, 0.624553572490432, 0.0210022533039071, 0.00428016666258923, 0.000440445885642567, 0.785115828275182, 0.000440438103758954, 0.999995844038706, 2.92407183949469e-06, 0.995135796703515, 0.0246760872105795, 0.0152723084239416, 0.890806040818203, 7.40481128853622e-07, 9.07666168960848e-08, 3.4543773303328, 0.753740951477775, 0.00893455096919132, 0.117412025936615, 0.0106160166692932, 0.000295573424135051, 0.00192322252438022, 0.137560495022823, 0.00217360235649355, 0.00740524521680039, 0.00990339304377132, 0.0735890020284214, 0.114583623436917, 1.19723145924432, 0.554760499828172, 8.40537012592918, 8.40491910001025, 8.40513364344858, 120, 0.000175882395147342, 0.000106779509977354, 8.72509677797499e-05, -81.4552030512661, ], dtype=np.float_, ) # State indices and limit checker state_ind = dict( [ ("m", 0), ("h", 1), ("j", 2), ("x_kr", 3), ("x_ks", 4), ("x_to_s", 5), ("y_to_s", 6), ("x_to_f", 7), ("y_to_f", 8), ("d", 9), ("f", 10), ("f_Ca_Bj", 11), ("f_Ca_Bsl", 12), ("Ry_Rr", 13), ("Ry_Ro", 14), ("Ry_Ri", 15), ("Na_Bj", 16), ("Na_Bsl", 17), ("Tn_CL", 18), ("Tn_CHc", 19), ("Tn_CHm", 20), ("CaM", 21), ("Myo_c", 22), ("Myo_m", 23), ("SRB", 24), ("SLL_j", 25), ("SLL_sl", 26), ("SLH_j", 27), ("SLH_sl", 28), ("Csqn_b", 29), ("Ca_sr", 30), ("Na_j", 31), ("Na_sl", 32), ("Na_i", 33), ("K_i", 34), ("Ca_j", 35), ("Ca_sl", 36), ("Ca_i", 37), ("V_m", 38), ] ) for state_name, value in values.items(): if state_name not in state_ind: raise ValueError("{0} is not a state.".format(state_name)) ind = state_ind[state_name] # Assign value init_values[ind] = value return init_values def init_parameter_values_single(**values): """ Initialize parameter values """ # Param values # Fjunc=0.11, Fjunc_CaL=0.9, cellLength=100, cellRadius=10.25, # distJuncSL=0.5, distSLcyto=0.45, junctionLength=0.16, # junctionRadius=0.015, GNa=23, GNaB=0.000597, IbarNaK=1.8, # KmKo=1.5, KmNaip=11, Q10KmNai=1.39, Q10NaK=1.63, GKr=0.035, # GKp=0.002, GKs=0.0035, pNaK=0.01833, GK1=0.35, Gto=0.13, epi=1, # GClB=0.009, GClCa=0.0548125, KdClCa=0.1, GCaL=0.5, Q10CaL=1.8, # pCa=0.00054, pK=2.7e-07, pNa=1.5e-08, IbarNCX=4.5, Kdact=0.00015, # KmCai=0.00359, KmCao=1.3, KmNai=12.29, KmNao=87.5, Q10NCX=1.57, # ksat=0.32, nu=0.27, IbarSLCaP=0.0673, KmPCa=0.0005, # Q10SLCaP=2.35, GCaB=0.0005513, Kmf=0.000246, Kmr=1.7, MaxSR=15, # MinSR=1, Q10SRCaP=2.6, Vmax_SRCaP=0.0053114, ec50SR=0.45, # hillSRCaP=1.787, kiCa=0.5, kim=0.005, koCa=10, kom=0.06, ks=25, # Bmax_Naj=7.561, Bmax_Nasl=1.65, koff_na=0.001, kon_na=0.0001, # Bmax_CaM=0.024, Bmax_SR=0.0171, Bmax_TnChigh=0.14, # Bmax_TnClow=0.07, Bmax_myosin=0.14, koff_cam=0.238, # koff_myoca=0.00046, koff_myomg=5.7e-05, koff_sr=0.06, # koff_tnchca=3.2e-05, koff_tnchmg=0.00333, koff_tncl=0.0196, # kon_cam=34, kon_myoca=13.8, kon_myomg=0.0157, kon_sr=100, # kon_tnchca=2.37, kon_tnchmg=0.003, kon_tncl=32.7, # Bmax_SLhighj0=0.000165, Bmax_SLhighsl0=0.0134, Bmax_SLlowj0=0.00046, # Bmax_SLlowsl0=0.0374, koff_slh=0.03, koff_sll=1.3, kon_slh=100, # kon_sll=100, Bmax_Csqn0=0.14, DcaJuncSL=1.64e-06, # DcaSLcyto=1.22e-06, J_ca_juncsl=8.2413e-13, J_ca_slmyo=3.7243e-12, # koff_csqn=65, kon_csqn=100, DnaJuncSL=1.09e-05, DnaSLcyto=1.79e-05, # J_na_juncsl=1.8313e-14, J_na_slmyo=1.6386e-12, Nao=140, Ko=5.4, # Cao=1.8, Cli=15, Clo=150, Mgi=1, Cmem=1.381e-10, Frdy=96485, # R=8314, Temp=310, stim_amplitude=40.0, stim_duration=1.0, # stim_period=1000.0, stim_start=0.0 init_values = np.array( [ 0.11, 0.9, 100, 10.25, 0.5, 0.45, 0.16, 0.015, 23, 0.000597, 1.8, 1.5, 11, 1.39, 1.63, 0.035, 0.002, 0.0035, 0.01833, 0.35, 0.13, 1, 0.009, 0.0548125, 0.1, 0.5, 1.8, 0.00054, 2.7e-07, 1.5e-08, 4.5, 0.00015, 0.00359, 1.3, 12.29, 87.5, 1.57, 0.32, 0.27, 0.0673, 0.0005, 2.35, 0.0005513, 0.000246, 1.7, 15, 1, 2.6, 0.0053114, 0.45, 1.787, 0.5, 0.005, 10, 0.06, 25, 7.561, 1.65, 0.001, 0.0001, 0.024, 0.0171, 0.14, 0.07, 0.14, 0.238, 0.00046, 5.7e-05, 0.06, 3.2e-05, 0.00333, 0.0196, 34, 13.8, 0.0157, 100, 2.37, 0.003, 32.7, 0.000165, 0.0134, 0.00046, 0.0374, 0.03, 1.3, 100, 100, 0.14, 1.64e-06, 1.22e-06, 8.2413e-13, 3.7243e-12, 65, 100, 1.09e-05, 1.79e-05, 1.8313e-14, 1.6386e-12, 140, 5.4, 1.8, 15, 150, 1, 1.381e-10, 96485, 8314, 310, 40.0, 1.0, 1000.0, 0.0, ], dtype=np.float_, ) # Parameter indices and limit checker param_ind = dict( [ ("Fjunc", 0), ("Fjunc_CaL", 1), ("cellLength", 2), ("cellRadius", 3), ("distJuncSL", 4), ("distSLcyto", 5), ("junctionLength", 6), ("junctionRadius", 7), ("GNa", 8), ("GNaB", 9), ("IbarNaK", 10), ("KmKo", 11), ("KmNaip", 12), ("Q10KmNai", 13), ("Q10NaK", 14), ("GKr", 15), ("GKp", 16), ("GKs", 17), ("pNaK", 18), ("GK1", 19), ("Gto", 20), ("epi", 21), ("GClB", 22), ("GClCa", 23), ("KdClCa", 24), ("GCaL", 25), ("Q10CaL", 26), ("pCa", 27), ("pK", 28), ("pNa", 29), ("IbarNCX", 30), ("Kdact", 31), ("KmCai", 32), ("KmCao", 33), ("KmNai", 34), ("KmNao", 35), ("Q10NCX", 36), ("ksat", 37), ("nu", 38), ("IbarSLCaP", 39), ("KmPCa", 40), ("Q10SLCaP", 41), ("GCaB", 42), ("Kmf", 43), ("Kmr", 44), ("MaxSR", 45), ("MinSR", 46), ("Q10SRCaP", 47), ("Vmax_SRCaP", 48), ("ec50SR", 49), ("hillSRCaP", 50), ("kiCa", 51), ("kim", 52), ("koCa", 53), ("kom", 54), ("ks", 55), ("Bmax_Naj", 56), ("Bmax_Nasl", 57), ("koff_na", 58), ("kon_na", 59), ("Bmax_CaM", 60), ("Bmax_SR", 61), ("Bmax_TnChigh", 62), ("Bmax_TnClow", 63), ("Bmax_myosin", 64), ("koff_cam", 65), ("koff_myoca", 66), ("koff_myomg", 67), ("koff_sr", 68), ("koff_tnchca", 69), ("koff_tnchmg", 70), ("koff_tncl", 71), ("kon_cam", 72), ("kon_myoca", 73), ("kon_myomg", 74), ("kon_sr", 75), ("kon_tnchca", 76), ("kon_tnchmg", 77), ("kon_tncl", 78), ("Bmax_SLhighj0", 79), ("Bmax_SLhighsl0", 80), ("Bmax_SLlowj0", 81), ("Bmax_SLlowsl0", 82), ("koff_slh", 83), ("koff_sll", 84), ("kon_slh", 85), ("kon_sll", 86), ("Bmax_Csqn0", 87), ("DcaJuncSL", 88), ("DcaSLcyto", 89), ("J_ca_juncsl", 90), ("J_ca_slmyo", 91), ("koff_csqn", 92), ("kon_csqn", 93), ("DnaJuncSL", 94), ("DnaSLcyto", 95), ("J_na_juncsl", 96), ("J_na_slmyo", 97), ("Nao", 98), ("Ko", 99), ("Cao", 100), ("Cli", 101), ("Clo", 102), ("Mgi", 103), ("Cmem", 104), ("Frdy", 105), ("R", 106), ("Temp", 107), ("stim_amplitude", 108), ("stim_duration", 109), ("stim_period", 110), ("stim_start", 111), ] ) for param_name, value in values.items(): if param_name not in param_ind: raise ValueError("{0} is not a parameter.".format(param_name)) ind = param_ind[state_name] # Assign value init_values[ind] = value return init_values def state_indices(*states): """ State indices """ state_inds = dict( [ ("m", 0), ("h", 1), ("j", 2), ("x_kr", 3), ("x_ks", 4), ("x_to_s", 5), ("y_to_s", 6), ("x_to_f", 7), ("y_to_f", 8), ("d", 9), ("f", 10), ("f_Ca_Bj", 11), ("f_Ca_Bsl", 12), ("Ry_Rr", 13), ("Ry_Ro", 14), ("Ry_Ri", 15), ("Na_Bj", 16), ("Na_Bsl", 17), ("Tn_CL", 18), ("Tn_CHc", 19), ("Tn_CHm", 20), ("CaM", 21), ("Myo_c", 22), ("Myo_m", 23), ("SRB", 24), ("SLL_j", 25), ("SLL_sl", 26), ("SLH_j", 27), ("SLH_sl", 28), ("Csqn_b", 29), ("Ca_sr", 30), ("Na_j", 31), ("Na_sl", 32), ("Na_i", 33), ("K_i", 34), ("Ca_j", 35), ("Ca_sl", 36), ("Ca_i", 37), ("V_m", 38), ] ) indices = [] for state in states: if state not in state_inds: raise ValueError("Unknown state: '{0}'".format(state)) indices.append(state_inds[state]) if len(indices) > 1: return indices else: return indices[0] def parameter_indices(*params): """ Parameter indices """ param_inds = dict( [ ("Fjunc", 0), ("Fjunc_CaL", 1), ("cellLength", 2), ("cellRadius", 3), ("distJuncSL", 4), ("distSLcyto", 5), ("junctionLength", 6), ("junctionRadius", 7), ("GNa", 8), ("GNaB", 9), ("IbarNaK", 10), ("KmKo", 11), ("KmNaip", 12), ("Q10KmNai", 13), ("Q10NaK", 14), ("GKr", 15), ("GKp", 16), ("GKs", 17), ("pNaK", 18), ("GK1", 19), ("Gto", 20), ("epi", 21), ("GClB", 22), ("GClCa", 23), ("KdClCa", 24), ("GCaL", 25), ("Q10CaL", 26), ("pCa", 27), ("pK", 28), ("pNa", 29), ("IbarNCX", 30), ("Kdact", 31), ("KmCai", 32), ("KmCao", 33), ("KmNai", 34), ("KmNao", 35), ("Q10NCX", 36), ("ksat", 37), ("nu", 38), ("IbarSLCaP", 39), ("KmPCa", 40), ("Q10SLCaP", 41), ("GCaB", 42), ("Kmf", 43), ("Kmr", 44), ("MaxSR", 45), ("MinSR", 46), ("Q10SRCaP", 47), ("Vmax_SRCaP", 48), ("ec50SR", 49), ("hillSRCaP", 50), ("kiCa", 51), ("kim", 52), ("koCa", 53), ("kom", 54), ("ks", 55), ("Bmax_Naj", 56), ("Bmax_Nasl", 57), ("koff_na", 58), ("kon_na", 59), ("Bmax_CaM", 60), ("Bmax_SR", 61), ("Bmax_TnChigh", 62), ("Bmax_TnClow", 63), ("Bmax_myosin", 64), ("koff_cam", 65), ("koff_myoca", 66), ("koff_myomg", 67), ("koff_sr", 68), ("koff_tnchca", 69), ("koff_tnchmg", 70), ("koff_tncl", 71), ("kon_cam", 72), ("kon_myoca", 73), ("kon_myomg", 74), ("kon_sr", 75), ("kon_tnchca", 76), ("kon_tnchmg", 77), ("kon_tncl", 78), ("Bmax_SLhighj0", 79), ("Bmax_SLhighsl0", 80), ("Bmax_SLlowj0", 81), ("Bmax_SLlowsl0", 82), ("koff_slh", 83), ("koff_sll", 84), ("kon_slh", 85), ("kon_sll", 86), ("Bmax_Csqn0", 87), ("DcaJuncSL", 88), ("DcaSLcyto", 89), ("J_ca_juncsl", 90), ("J_ca_slmyo", 91), ("koff_csqn", 92), ("kon_csqn", 93), ("DnaJuncSL", 94), ("DnaSLcyto", 95), ("J_na_juncsl", 96), ("J_na_slmyo", 97), ("Nao", 98), ("Ko", 99), ("Cao", 100), ("Cli", 101), ("Clo", 102), ("Mgi", 103), ("Cmem", 104), ("Frdy", 105), ("R", 106), ("Temp", 107), ("stim_amplitude", 108), ("stim_duration", 109), ("stim_period", 110), ("stim_start", 111), ] ) indices = [] for param in params: if param not in param_inds: raise ValueError("Unknown param: '{0}'".format(param)) indices.append(param_inds[param]) if len(indices) > 1: return indices else: return indices[0] def monitor_indices(*monitored): """ Monitor indices """ monitor_inds = dict( [ ("Vcell", 0), ("Vmyo", 1), ("Vsr", 2), ("Vsl", 3), ("Vjunc", 4), ("SAjunc", 5), ("SAsl", 6), ("Fsl", 7), ("Fsl_CaL", 8), ("mss", 9), ("taum", 10), ("ah", 11), ("bh", 12), ("tauh", 13), ("hss", 14), ("aj", 15), ("bj", 16), ("tauj", 17), ("jss", 18), ("I_Na_junc", 19), ("I_Na_sl", 20), ("I_Na", 21), ("I_nabk_junc", 22), ("I_nabk_sl", 23), ("I_nabk", 24), ("sigma", 25), ("fnak", 26), ("I_nak_junc", 27), ("I_nak_sl", 28), ("I_nak", 29), ("gkr", 30), ("xrss", 31), ("tauxr", 32), ("rkr", 33), ("I_kr", 34), ("kp_kp", 35), ("I_kp_junc", 36), ("I_kp_sl", 37), ("I_kp", 38), ("eks", 39), ("gks_junc", 40), ("gks_sl", 41), ("xsss", 42), ("tauxs", 43), ("I_ks_junc", 44), ("I_ks_sl", 45), ("I_ks", 46), ("GtoSlow", 47), ("GtoFast", 48), ("xtoss", 49), ("ytoss", 50), ("tauxtos", 51), ("tauytos", 52), ("I_tos", 53), ("tauxtof", 54), ("tauytof", 55), ("I_tof", 56), ("I_to", 57), ("I_ClCa_junc", 58), ("I_ClCa_sl", 59), ("I_ClCa", 60), ("I_Clbk", 61), ("fss", 62), ("dss", 63), ("taud", 64), ("tauf", 65), ("fcaCaMSL", 66), ("fcaCaj", 67), ("ibarca_j", 68), ("ibarca_sl", 69), ("ibark", 70), ("ibarna_j", 71), ("ibarna_sl", 72), ("I_Ca_junc", 73), ("I_Ca_sl", 74), ("I_Ca", 75), ("I_CaK", 76), ("I_CaNa_junc", 77), ("I_CaNa_sl", 78), ("I_CaNa", 79), ("I_Catot", 80), ("Ka_junc", 81), ("Ka_sl", 82), ("s1_junc", 83), ("s1_sl", 84), ("s2_junc", 85), ("s3_junc", 86), ("s2_sl", 87), ("s3_sl", 88), ("I_ncx_junc", 89), ("I_ncx_sl", 90), ("I_ncx", 91), ("I_pca_junc", 92), ("I_pca_sl", 93), ("I_pca", 94), ("I_cabk_junc", 95), ("I_cabk_sl", 96), ("I_cabk", 97), ("kCaSR", 98), ("koSRCa", 99), ("kiSRCa", 100), ("RI", 101), ("J_SRCarel", 102), ("J_serca", 103), ("J_SRleak", 104), ("J_CaB_cytosol", 105), ("Bmax_SLlowsl", 106), ("Bmax_SLlowj", 107), ("Bmax_SLhighsl", 108), ("Bmax_SLhighj", 109), ("J_CaB_junction", 110), ("J_CaB_sl", 111), ("Bmax_Csqn", 112), ("I_Na_tot_junc", 113), ("I_Na_tot_sl", 114), ("I_Na_tot_sl2", 115), ("I_Na_tot_junc2", 116), ("I_K_tot", 117), ("I_Ca_tot_junc", 118), ("I_Ca_tot_sl", 119), ("i_Stim", 120), ("I_Na_tot", 121), ("I_Cl_tot", 122), ("I_Ca_tot", 123), ("I_tot", 124), ("FoRT", 125), ("ena_junc", 126), ("ena_sl", 127), ("ek", 128), ("eca_junc", 129), ("eca_sl", 130), ("ecl", 131), ("Qpow", 132), ("aki", 133), ("bki", 134), ("kiss", 135), ("I_K1", 136), ("dm_dt", 137), ("dh_dt", 138), ("dj_dt", 139), ("dx_kr_dt", 140), ("dx_ks_dt", 141), ("dx_to_s_dt", 142), ("dy_to_s_dt", 143), ("dx_to_f_dt", 144), ("dy_to_f_dt", 145), ("dd_dt", 146), ("df_dt", 147), ("df_Ca_Bj_dt", 148), ("df_Ca_Bsl_dt", 149), ("dRy_Rr_dt", 150), ("dRy_Ro_dt", 151), ("dRy_Ri_dt", 152), ("dNa_Bj_dt", 153), ("dNa_Bsl_dt", 154), ("dTn_CL_dt", 155), ("dTn_CHc_dt", 156), ("dTn_CHm_dt", 157), ("dCaM_dt", 158), ("dMyo_c_dt", 159), ("dMyo_m_dt", 160), ("dSRB_dt", 161), ("dSLL_j_dt", 162), ("dSLL_sl_dt", 163), ("dSLH_j_dt", 164), ("dSLH_sl_dt", 165), ("dCsqn_b_dt", 166), ("dCa_sr_dt", 167), ("dNa_j_dt", 168), ("dNa_sl_dt", 169), ("dNa_i_dt", 170), ("dK_i_dt", 171), ("dCa_j_dt", 172), ("dCa_sl_dt", 173), ("dCa_i_dt", 174), ("dV_m_dt", 175), ] ) indices = [] for monitor in monitored: if monitor not in monitor_inds: raise ValueError("Unknown monitored: '{0}'".format(monitor)) indices.append(monitor_inds[monitor]) if len(indices) > 1: return indices else: return indices[0] def rhs(states, t, parameters, values=None): """ Compute the right hand side of the grandi ODE """ # Assign states assert len(states) == 39 ( m, h, j, x_kr, x_ks, x_to_s, y_to_s, x_to_f, y_to_f, d, f, f_Ca_Bj, f_Ca_Bsl, Ry_Rr, Ry_Ro, Ry_Ri, Na_Bj, Na_Bsl, Tn_CL, Tn_CHc, Tn_CHm, CaM, Myo_c, Myo_m, SRB, SLL_j, SLL_sl, SLH_j, SLH_sl, Csqn_b, Ca_sr, Na_j, Na_sl, Na_i, K_i, Ca_j, Ca_sl, Ca_i, V_m, ) = states # Assign parameters assert len(parameters) == 112 Fjunc = parameters[0] Fjunc_CaL = parameters[1] cellLength = parameters[2] cellRadius = parameters[3] GNa = parameters[8] GNaB = parameters[9] IbarNaK = parameters[10] KmKo = parameters[11] KmNaip = parameters[12] GKr = parameters[15] GKp = parameters[16] GKs = parameters[17] pNaK = parameters[18] GK1 = parameters[19] Gto = parameters[20] epi = parameters[21] GClB = parameters[22] GClCa = parameters[23] KdClCa = parameters[24] GCaL = parameters[25] Q10CaL = parameters[26] pCa = parameters[27] pK = parameters[28] pNa = parameters[29] IbarNCX = parameters[30] Kdact = parameters[31] KmCai = parameters[32] KmCao = parameters[33] KmNai = parameters[34] KmNao = parameters[35] Q10NCX = parameters[36] ksat = parameters[37] nu = parameters[38] IbarSLCaP = parameters[39] KmPCa = parameters[40] Q10SLCaP = parameters[41] GCaB = parameters[42] Kmf = parameters[43] Kmr = parameters[44] MaxSR = parameters[45] MinSR = parameters[46] Q10SRCaP = parameters[47] Vmax_SRCaP = parameters[48] ec50SR = parameters[49] hillSRCaP = parameters[50] kiCa = parameters[51] kim = parameters[52] koCa = parameters[53] kom = parameters[54] ks = parameters[55] Bmax_Naj = parameters[56] Bmax_Nasl = parameters[57] koff_na = parameters[58] kon_na = parameters[59] Bmax_CaM = parameters[60] Bmax_SR = parameters[61] Bmax_TnChigh = parameters[62] Bmax_TnClow = parameters[63] Bmax_myosin = parameters[64] koff_cam = parameters[65] koff_myoca = parameters[66] koff_myomg = parameters[67] koff_sr = parameters[68] koff_tnchca = parameters[69] koff_tnchmg = parameters[70] koff_tncl = parameters[71] kon_cam = parameters[72] kon_myoca = parameters[73] kon_myomg = parameters[74] kon_sr = parameters[75] kon_tnchca = parameters[76] kon_tnchmg = parameters[77] kon_tncl = parameters[78] Bmax_SLhighj0 = parameters[79] Bmax_SLhighsl0 = parameters[80] Bmax_SLlowj0 = parameters[81] Bmax_SLlowsl0 = parameters[82] koff_slh = parameters[83] koff_sll = parameters[84] kon_slh = parameters[85] kon_sll = parameters[86] Bmax_Csqn0 = parameters[87] J_ca_juncsl = parameters[90] J_ca_slmyo = parameters[91] koff_csqn = parameters[92] kon_csqn = parameters[93] J_na_juncsl = parameters[96] J_na_slmyo = parameters[97] Nao = parameters[98] Ko = parameters[99] Cao = parameters[100] Cli = parameters[101] Clo = parameters[102] Mgi = parameters[103] Cmem = parameters[104] Frdy = parameters[105] R = parameters[106] Temp = parameters[107] stim_amplitude = parameters[108] stim_duration = parameters[109] stim_period = parameters[110] stim_start = parameters[111] # Init return args if values is None: values = np.zeros_like(states) else: assert isinstance(values, np.ndarray) and values.shape == states.shape # Expressions for the Geometry component Vcell = 1e-15 * np.pi * cellLength * (cellRadius * cellRadius) Vmyo = 0.65 * Vcell Vsr = 0.035 * Vcell Vsl = 0.02 * Vcell Vjunc = 0.0005390000000000001 * Vcell Fsl = 1 - Fjunc Fsl_CaL = 1 - Fjunc_CaL # Expressions for the Reversal potentials component FoRT = Frdy / (R * Temp) ena_junc = np.log(Nao / Na_j) / FoRT ena_sl = np.log(Nao / Na_sl) / FoRT ek = np.log(Ko / K_i) / FoRT eca_junc = np.log(Cao / Ca_j) / (2 * FoRT) eca_sl = np.log(Cao / Ca_sl) / (2 * FoRT) ecl = np.log(Cli / Clo) / FoRT Qpow = -31 + Temp / 10 # Expressions for the I_Na component mss = 1.0 / ( (1 + 0.0018422115811651339 * np.exp(-0.1107419712070875 * V_m)) * (1 + 0.0018422115811651339 * np.exp(-0.1107419712070875 * V_m)) ) taum = 0.1292 * np.exp( -( (2.9465894465894467 + 0.06435006435006435 * V_m) * (2.9465894465894467 + 0.06435006435006435 * V_m) ) ) + 0.06487 * np.exp( -( (-0.09434663536776214 + 0.019561815336463225 * V_m) * (-0.09434663536776214 + 0.019561815336463225 * V_m) ) ) ah = np.where( V_m >= -40, 0, 4.4312679295805147e-07 * np.exp(-0.14705882352941177 * V_m) ) bh = np.where( V_m >= -40, 0.77 / (0.13 + 0.049758141083938695 * np.exp(-0.0900900900900901 * V_m)), 310000.0 * np.exp(0.3485 * V_m) + 2.7 * np.exp(0.079 * V_m), ) tauh = 1.0 / (ah + bh) hss = 1.0 / ( (1 + 15212.593285654404 * np.exp(0.13458950201884254 * V_m)) * (1 + 15212.593285654404 * np.exp(0.13458950201884254 * V_m)) ) aj = np.where( V_m >= -40, 0, (37.78 + V_m) * (-25428.0 * np.exp(0.2444 * V_m) - 6.948e-06 * np.exp(-0.04391 * V_m)) / (1 + 50262745825.95399 * np.exp(0.311 * V_m)), ) bj = np.where( V_m >= -40, 0.6 * np.exp(0.057 * V_m) / (1 + 0.040762203978366204 * np.exp(-0.1 * V_m)), 0.02424 *
np.exp(-0.01052 * V_m)
numpy.exp
import numpy as np from matplotlib import pyplot as plt import keyboard size = 15 # random map generator mapa = [[list(np.random.uniform(0, 1, 3))] * size for i in range(size)] mapah = [[1] * size for i in range(size)] for i in range(size-2): for j in range(size-2): mapah[i+1][j+1] = np.random.choice([0.3, 0.4, 0.7, 1]) if np.random.uniform() > 0.33: mapa[i+1][j+1] = 0 posx, posy, posz = (1, np.random.randint(1, size -1), 0.5) rot, rot_v = (np.pi/4, 0) x, y, z = (posx, posy, posz) mapa[x][y] = 0 count = 0 while True: testx, testy = (x, y) if np.random.uniform() > 0.5: testx = testx + np.random.choice([-1, 1]) else: testy = testy + np.random.choice([-1, 1]) if testx > 0 and testx < size -1 and testy > 0 and testy < size -1: if mapa[testx][testy] == 0 or count > 5: count = 0 x, y = (testx, testy) mapa[x][y] = 0 if x == size-2: exitx, exity = (x, y) break else: count = count+1 mod = 1 # resolution modifier inc = 0.05/mod # ray increment height = int(48*mod) width = int(60*mod) while True: #main game loop pixels = [] for j in range(height): #vertical loop pixels.append([]) rot_j = np.deg2rad(24 + rot_v - j/mod) for i in range(width): #horizontal vision loop rot_i = rot + np.deg2rad(i/mod - 30) x, y, z = (posx, posy, posz) sin, cos, = (inc*np.sin(rot_i), inc*np.cos(rot_i)) sinz = inc*np.sin(rot_j) n = 0 while True: # ray loop x, y, z = (x + cos, y + sin, z + sinz) n = n+1 if mapa[int(x)][int(y)] != 0 and z <= mapah[int(x)][int(y)]: h = np.clip(1/(inc * n), 0, 1) c = np.asarray(mapa[int(x)][int(y)])*(0.3 + 0.7 * h**2) pixels[j].append(c) break elif z > 1: # ceiling h = 0.3 + 0.7*np.clip(1/(inc * n), 0, 1)**2 if int(x*5)%2 ==1: pixels[j].append(np.asarray([.8,1,.9])*h) else: pixels[j].append(np.asarray([0.5,0.5,1])*h) break elif z < 0: # floor h = 0.3 + 0.7*np.clip(1/(inc * n), 0, 1)**2 if int(x) == exitx and int(y) == exity: pixels[j].append(np.asarray([0,0,1])) elif int(x*2)%2 == int(y*2)%2: pixels[j].append(np.asarray([.3,.1,.1])*h) else: pixels[j].append(np.asarray([.8,.8,.5])*h) break plt.imshow(pixels) plt.axis('off'); plt.tight_layout() plt.draw(); plt.pause(0.0001); plt.clf() # player's movement key = keyboard.read_key() x, y = (posx, posy) if key == 'up': x, y = (x + 0.3*
np.cos(rot)
numpy.cos
from __future__ import print_function from six.moves import range import numpy as np from collections import defaultdict def state_lifetimes_counts(transition_count_matrix_l, n, nwin): """ Calculate lifetimes in each of the states (for each run/window) Parameters: ----------- transition_count_matrix_l: list of arrays List of arrays with transition count matrices. One array for each run/windows. n: int Number of (structural) states nwin: int Number of simulations runs/windows. I.e., how many umbrella winodws were run. Returns: -------- t_ar: array_like Array, n x nwin, where n is number of states, nwin is number of windows with aggregate lifetimes in the states. """ #n = len(transition_count_matrix_l[0][:,0]) #nwin = len(transition_count_matrix_l) t_ar = np.zeros((n,nwin), dtype=np.float64) for iwin, win in enumerate(transition_count_matrix_l): # sum over the column gives all counts in a state t_ar[:, iwin] = np.sum(win, axis=0) return t_ar def total_transition_counts(transition_count_matrix_l, n): """ Parameters: ----------- transition_count_matrix_l: list of arrays Returns: -------- nn_ar: array_like, total transitions j->i """ #n = len(transition_count_matrix_l[0][:,0]) nn_ar = np.zeros((n,n)) # do j=1,n # do i=1,n # nn(i,j)=0.d0 # do iwin=1,nwin # nn(i,j)=nn(i,j)+nij(i,j,iwin) # enddo # enddo for j in range(n): for i in range(n): for iwin, win in enumerate(transition_count_matrix_l): nn_ar[i,j] += win[i,j] return nn_ar def counts_in_out(transition_count_matrix_l, n, nwin): """ Parameters: ----------- transition_count_matrix_l: list of arrays List of arrays with transition count matrices. One array for each run/windows. n: int Number of (structural) states nwin: int Number of simulations runs/windows. I.e., how many umbrella winodws were run. Returns: -------- n_in: array_like Array length n. Total number of transitions into state i. n_out: array_like Array length n. Total number of transitions out of state j. """ n_in =
np.zeros(n)
numpy.zeros
""" Module that extracts product values from pyclass results. All functions assume the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1. """ import numpy as np trans_class = 9 def sort_models(class_result): """ Sorts the classification results if order is in question. Args: class_result: list of dicts return from pyclass classification Returns: sorted list """ if len(class_result) == 1: return class_result idxs = np.argsort([m['start_day'] for m in class_result]) return [class_result[i] for i in idxs] def class_primary(class_result, ordinal): """ Identify the primary cover class for the given ordinal day. The days between and around segments identified through the classification process comprise valid segments for this. They also receive differing values based on if they occur at the beginning/end or if they are between classified segments. <- .... |--seg 1--| ...... |--seg 2--| .... -> 0 val trans_val val 0 Args: class_result: ordered list of dicts return from pyclass classification ordinal: ordinal day to calculate from Returns: int """ ret = 0 if ordinal > 0: prev_end = 0 for segment in class_result: if segment['start_day'] <= ordinal <= segment['end_day']: ret = segment['class_vals'][
np.argmax(segment['class_probs'][0])
numpy.argmax
# -*- coding: utf-8 -*- # Authors: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # License: BSD (3-clause) import struct import time import datetime as dt import numpy as np import mne from mne.io import RawArray from mne import create_info def read_sef(filename): """ Reads file with format .sef, and returns a mne.io.Raw object containing the data. Parameters ---------- filename : str or file-like The Simple EEG (.sef) file to read. Returns ------- raw : mne.io.RawArray RawArray containing the EEG signals. """ f = open(filename, 'rb') # Read fixed part of the headerà version = f.read(4).decode('utf-8') if version != 'SE01': print(f'Version : {version} not supported') raise ValueError() n_channels, = struct.unpack('I', f.read(4)) num_aux_electrodes, = struct.unpack('I', f.read(4)) num_time_frames, = struct.unpack('I', f.read(4)) sfreq, = struct.unpack('f', f.read(4)) year, = struct.unpack('H', f.read(2)) month, = struct.unpack('H', f.read(2)) day, = struct.unpack('H', f.read(2)) hour, = struct.unpack('H', f.read(2)) minute, = struct.unpack('H', f.read(2)) second, = struct.unpack('H', f.read(2)) millisecond, = struct.unpack('H', f.read(2)) # Read variable part of the header ch_names = [] for _ in range(n_channels): name = [char for char in f.read(8).split(b'\x00') if char != b''][0] ch_names.append(name.decode('utf-8').strip()) # Read data buffer = np.frombuffer( f.read(n_channels * num_time_frames * 8), dtype=np.float32, count=n_channels * num_time_frames) data =
np.reshape(buffer, (num_time_frames, n_channels))
numpy.reshape
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functional tests for coefficient-wise operations. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np import tensorflow as tf from tensorflow.python.ops import gen_math_ops _ADD = lambda x, y: x + y _SUB = lambda x, y: x - y _MUL = lambda x, y: x * y _POW = lambda x, y: x ** y _TRUEDIV = lambda x, y: x / y _FLOORDIV = lambda x, y: x // y _MOD = lambda x, y: x % y _NEG = lambda x: -x _ABS = abs _LT = lambda x, y: x < y _LE = lambda x, y: x <= y _GT = lambda x, y: x > y _GE = lambda x, y: x >= y _AND = lambda x, y: x & y _OR = lambda x, y: x | y _XOR = lambda x, y: x ^ y _INV = lambda x: ~x # TODO(zongheng): it'd be great to factor out this function and various random # SparseTensor gen funcs. def _sparsify(x, thresh=0.5, index_dtype=np.int64): x[x < thresh] = 0 non_zero = np.where(x) x_indices = np.vstack(non_zero).astype(index_dtype).T x_values = x[non_zero] x_shape = x.shape return tf.SparseTensor( indices=x_indices, values=x_values, shape=x_shape), x_values class UnaryOpTest(tf.test.TestCase): def _compareCpu(self, x, np_func, tf_func): np_ans = np_func(x) with self.test_session(use_gpu=False): inx = tf.convert_to_tensor(x) if x.dtype in (np.float32, np.float64): y = 1.1 * tf_func(inx) np_ans *= 1.1 else: y = tf_func(inx) tf_cpu = y.eval() self.assertShapeEqual(np_ans, y) if x.dtype == np.float16: self.assertAllClose(np_ans, tf_cpu, rtol=1e-3, atol=1e-3) else: self.assertAllClose(np_ans, tf_cpu) if x.dtype in (np.complex64, np.complex128) and tf_func == tf.sign: return # Return early if x.dtype == np.float16: s = list(np.shape(x)) jacob_t, _ = tf.test.compute_gradient(inx, s, y, s, x_init_value=x) xf = x.astype(np.float) inxf = tf.convert_to_tensor(xf) yf = tf_func(inxf) _, jacob_n = tf.test.compute_gradient(inxf, s, yf, s, x_init_value=xf) jacob_n = jacob_n.astype(np.float16) self.assertAllClose(jacob_t, jacob_n, rtol=5e-3, atol=5e-3) elif x.dtype in (np.float32, np.complex64): s = list(np.shape(x)) jacob_t, jacob_n = tf.test.compute_gradient(inx, s, y, s, x_init_value=x) self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) elif x.dtype in (np.float64, np.complex128): s = list(np.shape(x)) jacob_t, jacob_n = tf.test.compute_gradient(inx, s, y, s, x_init_value=x) self.assertAllClose(jacob_t, jacob_n, rtol=1e-5, atol=1e-5) def _check(self, result_tensor, result_np, input_sp_t, tol): self.assertTrue(isinstance(result_tensor, tf.SparseTensor)) self.assertTrue(isinstance(input_sp_t, tf.SparseTensor)) self.assertAllEqual(input_sp_t.indices.eval(), result_tensor.indices.eval()) self.assertAllEqual(input_sp_t.shape.eval(), result_tensor.shape.eval()) if tol is None: self.assertAllClose(result_np, result_tensor.values.eval()) else: self.assertAllClose(result_np, result_tensor.values.eval(), rtol=tol, atol=tol) def _compareSparseCpu(self, x, np_func, tf_func, tol): x_sp, x_sp_vals = _sparsify(x) res_np = np_func(x_sp_vals) with self.test_session(use_gpu=False): self._check(tf_func(x_sp), res_np, x_sp, tol) def _compareGpu(self, x, np_func, tf_func): np_ans = np_func(x) with self.test_session(use_gpu=True): result = tf_func(tf.convert_to_tensor(x)) tf_gpu = result.eval() if x.dtype == np.float16: self.assertAllClose(np_ans, tf_gpu, rtol=1e-3, atol=1e-3) else: self.assertAllClose(np_ans, tf_gpu) # TODO(zhifengc/ke): make gradient checker work on GPU. def _compareSparseGpu(self, x, np_func, tf_func, tol): x_sp, x_sp_vals = _sparsify(x) res_np = np_func(x_sp_vals) with self.test_session(use_gpu=True): self._check(tf_func(x_sp), res_np, x_sp, tol) def _compareBoth(self, x, np_func, tf_func): self._compareCpu(x, np_func, tf_func) self._compareGpu(x, np_func, tf_func) def _compareBothSparse(self, x, np_func, tf_func, tol=None): self._compareSparseCpu(x, np_func, tf_func, tol) self._compareSparseGpu(x, np_func, tf_func, tol) def _inv(self, x): return 1.0 / x def _rsqrt(self, x): return self._inv(np.sqrt(x)) def _sigmoid(self, x): return 1.0 / (1.0 + np.exp(-x)) def _replace_domain_error_with_inf(self, fn): def func(x): try: return fn(x) except ValueError as e: if "domain error" in str(e): return np.inf * np.ones_like(x) else: raise e return func def testFloatBasic(self): x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float32) y = (x + .5).astype(np.float32) # no zero z = (x + 15.5).astype(np.float32) # all positive k = np.arange(-0.90, 0.90, 0.25).astype(np.float32) # between -1 and 1 self._compareBoth(x, np.abs, tf.abs) self._compareBoth(x, np.abs, _ABS) self._compareBoth(x, np.negative, tf.neg) self._compareBoth(x, np.negative, _NEG) self._compareBoth(y, self._inv, tf.inv) self._compareBoth(x, np.square, tf.square) self._compareBoth(z, np.sqrt, tf.sqrt) self._compareBoth(z, self._rsqrt, tf.rsqrt) self._compareBoth(x, np.exp, tf.exp) self._compareBoth(z, np.log, tf.log) self._compareBoth(x, np.tanh, tf.tanh) self._compareBoth(x, self._sigmoid, tf.sigmoid) self._compareBoth(y, np.sign, tf.sign) self._compareBoth(x, np.sin, tf.sin) self._compareBoth(x, np.cos, tf.cos) self._compareBoth(k, np.arcsin, tf.asin) self._compareBoth(k, np.arccos, tf.acos) self._compareBoth(x, np.arctan, tf.atan) self._compareBoth(x, np.tan, tf.tan) self._compareBoth( y, np.vectorize(self._replace_domain_error_with_inf(math.lgamma)), tf.lgamma) self._compareBoth(x, np.vectorize(math.erf), tf.erf) self._compareBoth(x, np.vectorize(math.erfc), tf.erfc) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3) self._compareBothSparse(x, np.tanh, tf.tanh) self._compareBothSparse(y, np.sign, tf.sign) self._compareBothSparse(x, np.vectorize(math.erf), tf.erf) def testFloatTanhEdge(self): x = np.arange(40, 40 + 6).reshape(6).astype(np.float32) self._compareBoth(x, np.tanh, tf.tanh) x = np.arange(-40, -40 + 6).reshape(6).astype(np.float32) self._compareBoth(x, np.tanh, tf.tanh) def testFloatEmpty(self): x = np.empty((2, 0, 5), dtype=np.float32) self._compareBoth(x, np.abs, tf.abs) self._compareBoth(x, np.abs, _ABS) self._compareBoth(x, np.negative, tf.neg) self._compareBoth(x, np.negative, _NEG) self._compareBoth(x, self._inv, tf.inv) self._compareBoth(x, np.square, tf.square) self._compareBoth(x, np.sqrt, tf.sqrt) self._compareBoth(x, self._rsqrt, tf.rsqrt) self._compareBoth(x, np.exp, tf.exp) self._compareBoth(x, np.log, tf.log) self._compareBoth(x, np.tanh, tf.tanh) self._compareBoth(x, self._sigmoid, tf.sigmoid) self._compareBoth(x, np.sign, tf.sign) self._compareBoth(x, np.sin, tf.sin) self._compareBoth(x, np.cos, tf.cos) # Can't use vectorize below, so just use some arbitrary function self._compareBoth(x, np.sign, tf.lgamma) self._compareBoth(x, np.sign, tf.erf) self._compareBoth(x, np.sign, tf.erfc) self._compareBoth(x, np.tan, tf.tan) self._compareBoth(x, np.arcsin, tf.asin) self._compareBoth(x, np.arccos, tf.acos) self._compareBoth(x, np.arctan, tf.atan) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(x, np.sqrt, tf.sqrt, tol=1e-3) self._compareBothSparse(x, np.tanh, tf.tanh) self._compareBothSparse(x, np.sign, tf.sign) self._compareBothSparse(x, np.sign, tf.erf) def testDoubleBasic(self): x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float64) y = (x + .5).astype(np.float64) # no zero z = (x + 15.5).astype(np.float64) # all positive k = np.arange(-0.90, 0.90, 0.35).reshape(1, 3, 2).astype(np.float64) # between -1 and 1 self._compareBoth(x, np.abs, tf.abs) self._compareBoth(x, np.abs, _ABS) self._compareBoth(x, np.negative, tf.neg) self._compareBoth(x, np.negative, _NEG) self._compareBoth(y, self._inv, tf.inv) self._compareBoth(x, np.square, tf.square) self._compareBoth(z, np.sqrt, tf.sqrt) self._compareBoth(z, self._rsqrt, tf.rsqrt) self._compareBoth(x, np.exp, tf.exp) self._compareBoth(z, np.log, tf.log) self._compareBoth(x, np.tanh, tf.tanh) self._compareBoth(x, self._sigmoid, tf.sigmoid) self._compareBoth(y, np.sign, tf.sign) self._compareBoth(x, np.sin, tf.sin) self._compareBoth(x, np.cos, tf.cos) self._compareBoth( y, np.vectorize(self._replace_domain_error_with_inf(math.lgamma)), tf.lgamma) self._compareBoth(x, np.vectorize(math.erf), tf.erf) self._compareBoth(x, np.vectorize(math.erfc), tf.erfc) self._compareBoth(x, np.arctan, tf.atan) self._compareBoth(k, np.arcsin, tf.asin) self._compareBoth(k, np.arccos, tf.acos) self._compareBoth(k, np.tan, tf.tan) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3) self._compareBothSparse(x, np.tanh, tf.tanh) self._compareBothSparse(y, np.sign, tf.sign) self._compareBothSparse(x, np.vectorize(math.erf), tf.erf) def testHalfBasic(self): x = np.arange(-3, 3).reshape(1, 3, 2).astype(np.float16) y = (x + .5).astype(np.float16) # no zero z = (x + 15.5).astype(np.float16) # all positive self._compareBoth(x, np.abs, tf.abs) self._compareBoth(x, np.abs, _ABS) self._compareBoth(x, np.negative, tf.neg) self._compareBoth(x, np.negative, _NEG) self._compareBoth(y, self._inv, tf.inv) self._compareBoth(x, np.square, tf.square) self._compareBoth(z, np.sqrt, tf.sqrt) self._compareBoth(z, self._rsqrt, tf.rsqrt) self._compareBoth(x, np.exp, tf.exp) self._compareBoth(z, np.log, tf.log) self._compareBoth(x, np.tanh, tf.tanh) self._compareBoth(x, self._sigmoid, tf.sigmoid) self._compareBoth(y, np.sign, tf.sign) self._compareBoth(x, np.sin, tf.sin) self._compareBoth(x, np.cos, tf.cos) self._compareBoth( y, np.vectorize(self._replace_domain_error_with_inf(math.lgamma)), tf.lgamma) self._compareBoth(x, np.vectorize(math.erf), tf.erf) self._compareBoth(x, np.vectorize(math.erfc), tf.erfc) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(z, np.sqrt, tf.sqrt, tol=1e-3) self._compareBothSparse(x, np.tanh, tf.tanh) self._compareBothSparse(y, np.sign, tf.sign) self._compareBothSparse(x, np.vectorize(math.erf), tf.erf, tol=1e-3) def testInt32Basic(self): x = np.arange(-6, 6, 2).reshape(1, 3, 2).astype(np.int32) self._compareCpu(x, np.abs, tf.abs) self._compareCpu(x, np.abs, _ABS) self._compareBoth(x, np.negative, tf.neg) self._compareBoth(x, np.negative, _NEG) self._compareBoth(x, np.square, tf.square) self._compareCpu(x, np.sign, tf.sign) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(x, np.sign, tf.sign) def testInt64Basic(self): x = np.arange( -6 << 40, 6 << 40, 2 << 40).reshape(1, 3, 2).astype(np.int64) self._compareCpu(x, np.abs, tf.abs) self._compareCpu(x, np.abs, _ABS) self._compareCpu(x, np.negative, tf.neg) self._compareCpu(x, np.negative, _NEG) self._compareCpu(x, np.square, tf.square) self._compareCpu(x, np.sign, tf.sign) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(x, np.sign, tf.sign) def testComplex64Basic(self): x = np.complex(1, 1) * np.arange(-3, 3).reshape(1, 3, 2).astype( np.complex64) y = x + 0.5 # no zeros self._compareCpu(x, np.abs, tf.complex_abs) self._compareCpu(x, np.abs, _ABS) self._compareCpu(x, np.negative, tf.neg) self._compareCpu(x, np.negative, _NEG) self._compareCpu(y, self._inv, tf.inv) self._compareCpu(x, np.square, tf.square) self._compareCpu(y, np.sqrt, tf.sqrt) self._compareCpu(y, self._rsqrt, tf.rsqrt) self._compareCpu(x, np.exp, tf.exp) self._compareCpu(y, np.log, tf.log) self._compareCpu(x, np.tanh, tf.tanh) self._compareCpu(x, self._sigmoid, tf.sigmoid) self._compareCpu(x, np.sin, tf.sin) self._compareCpu(x, np.cos, tf.cos) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(x, np.sqrt, tf.sqrt, 1e-3) self._compareBothSparse(x, np.tanh, tf.tanh) # Numpy uses an incorrect definition of sign; use the right one instead. def complex_sign(x): return x / np.abs(x) self._compareCpu(y, complex_sign, tf.sign) self._compareBothSparse(y, complex_sign, tf.sign) def testComplex128Basic(self): x = np.complex(1, 1) * np.arange(-3, 3).reshape(1, 3, 2).astype( np.complex128) y = x + 0.5 # no zeros self._compareCpu(x, np.abs, tf.abs) self._compareCpu(x, np.abs, _ABS) self._compareCpu(x, np.negative, tf.neg) self._compareCpu(x, np.negative, _NEG) self._compareCpu(y, self._inv, tf.inv) self._compareCpu(x, np.square, tf.square) self._compareCpu(y, np.sqrt, tf.sqrt) self._compareCpu(y, self._rsqrt, tf.rsqrt) self._compareCpu(x, np.exp, tf.exp) self._compareCpu(y, np.log, tf.log) self._compareCpu(x, np.tanh, tf.tanh) self._compareCpu(x, self._sigmoid, tf.sigmoid) self._compareCpu(x, np.sin, tf.sin) self._compareCpu(x, np.cos, tf.cos) self._compareBothSparse(x, np.abs, tf.abs) self._compareBothSparse(x, np.negative, tf.neg) self._compareBothSparse(x, np.square, tf.square) self._compareBothSparse(x, np.sqrt, tf.sqrt, 1e-3) self._compareBothSparse(x, np.tanh, tf.tanh) # Numpy uses an incorrect definition of sign; use the right one instead. def complex_sign(x): return x / np.abs(x) self._compareCpu(y, complex_sign, tf.sign) self._compareBothSparse(y, complex_sign, tf.sign) def testGradGrad(self): np.random.seed(7) shape = (5,) dtype_tols = [(np.float32, 1e-3), (np.float64, 1e-6), (np.complex64, 1e-3), (np.complex128, 1e-6)] op_range = [(gen_math_ops._inv_grad, [-2, 2]), (gen_math_ops._sigmoid_grad, [-2, 2]), (gen_math_ops._sqrt_grad, [1, 3]), (gen_math_ops._tanh_grad, [-2, 2]),] def rand(dtype): x = np.random.uniform( real_range[0], real_range[1], size=shape[0]).astype(dtype) if dtype in (np.complex64, np.complex128): x += 1j * np.random.uniform(-2, 2, size=shape[0]).astype(dtype) return x for op, real_range in op_range: with self.test_session(): for dtype, tol in dtype_tols: x = tf.constant(rand(dtype)) y = tf.constant(rand(dtype)) z = op(x, y) error = tf.test.compute_gradient_error( [x, y], [shape, shape], z, shape, x_init_value=[rand(dtype), rand(dtype)]) self.assertLess(error, tol) class BinaryOpTest(tf.test.TestCase): def _compareCpu(self, x, y, np_func, tf_func, also_compare_variables=False): np_ans = np_func(x, y) with self.test_session(use_gpu=False): inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) out = tf_func(inx, iny) tf_cpu = out.eval() # Test that the op takes precedence over numpy operators. np_left = tf_func(x, iny).eval() np_right = tf_func(inx, y).eval() if also_compare_variables: var_x = tf.Variable(x) var_y = tf.Variable(y) tf.initialize_all_variables().run() print(type(x), type(y), type(var_x), type(var_y)) print(type(tf_func(x, var_y)), type(tf_func(var_x, y))) np_var_left = tf_func(x, var_y).eval() np_var_right = tf_func(var_x, y).eval() if np_ans.dtype != np.object: self.assertAllClose(np_ans, tf_cpu) self.assertAllClose(np_ans, np_left) self.assertAllClose(np_ans, np_right) if also_compare_variables: self.assertAllClose(np_ans, np_var_left) self.assertAllClose(np_ans, np_var_right) self.assertShapeEqual(np_ans, out) _GRAD_TOL = {tf.float16: 1e-3, tf.float32: 1e-3, tf.complex64: 1e-2, tf.float64: 1e-5, tf.complex128: 1e-4} def _compareGradientX(self, x, y, np_func, tf_func, numeric_gradient_type=None): z = np_func(x, y) zs = list(z.shape) with self.test_session(): inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) if x.dtype in (np.float32, np.float64): out = 1.1 * tf_func(inx, iny) else: out = tf_func(inx, iny) xs = list(x.shape) jacob_t, jacob_n = tf.test.compute_gradient(inx, xs, out, zs, x_init_value=x) if numeric_gradient_type is not None: xf = x.astype(numeric_gradient_type) yf = y.astype(numeric_gradient_type) inxf = tf.convert_to_tensor(xf) inyf = tf.convert_to_tensor(yf) outf = tf_func(inxf, inyf) _, jacob_n = tf.test.compute_gradient(inxf, xs, outf, zs, x_init_value=xf, delta=1e-3) jacob_n = jacob_n.astype(x.dtype) tol = self._GRAD_TOL[tf.as_dtype(x.dtype)] self.assertAllClose(jacob_t, jacob_n, rtol=tol, atol=tol) def _compareGradientY(self, x, y, np_func, tf_func, numeric_gradient_type=None): z = np_func(x, y) zs = list(z.shape) with self.test_session(): inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) if x.dtype in (np.float32, np.float64): out = 1.1 * tf_func(inx, iny) else: out = tf_func(inx, iny) ys = list(np.shape(y)) jacob_t, jacob_n = tf.test.compute_gradient(iny, ys, out, zs, x_init_value=y) if numeric_gradient_type is not None: xf = x.astype(numeric_gradient_type) yf = y.astype(numeric_gradient_type) inxf = tf.convert_to_tensor(xf) inyf = tf.convert_to_tensor(yf) outf = tf_func(inxf, inyf) _, jacob_n = tf.test.compute_gradient(inyf, ys, outf, zs, x_init_value=yf) jacob_n = jacob_n.astype(x.dtype) tol = self._GRAD_TOL[tf.as_dtype(x.dtype)] self.assertAllClose(jacob_t, jacob_n, rtol=tol, atol=tol) def _compareGpu(self, x, y, np_func, tf_func): np_ans = np_func(x, y) with self.test_session(use_gpu=True): inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) out = tf_func(inx, iny) tf_gpu = out.eval() self.assertAllClose(np_ans, tf_gpu) self.assertShapeEqual(np_ans, out) # TODO(zhifengc/ke): make gradient checker work on GPU. def _compareBoth(self, x, y, np_func, tf_func, also_compare_variables=False): self._compareCpu(x, y, np_func, tf_func, also_compare_variables) if x.dtype in (np.float16, np.float32, np.float64): if tf_func not in (_FLOORDIV, tf.floordiv, tf.igamma, tf.igammac, tf.zeta, tf.polygamma): self._compareGradientX(x, y, np_func, tf_func) self._compareGradientY(x, y, np_func, tf_func) if tf_func in (tf.igamma, tf.igammac, tf.zeta, tf.polygamma): # These methods only support gradients in the second parameter self._compareGradientY(x, y, np_func, tf_func) self._compareGpu(x, y, np_func, tf_func) def testFloatBasic(self): x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float32) y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(x, y, np.add, tf.add, also_compare_variables=True) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y + 0.1, np.true_divide, tf.truediv) self._compareBoth(x, y + 0.1, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y + 0.1, np.true_divide, _TRUEDIV) self._compareBoth(x, y + 0.1, np.floor_divide, _FLOORDIV) try: from scipy import special # pylint: disable=g-import-not-at-top a_pos_small = np.linspace(0.1, 2, 15).reshape(1, 3, 5).astype(np.float32) x_pos_small = np.linspace(0.1, 10, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(a_pos_small, x_pos_small, special.gammainc, tf.igamma) self._compareBoth(a_pos_small, x_pos_small, special.gammaincc, tf.igammac) # Need x > 1 self._compareBoth(x_pos_small + 1, a_pos_small, special.zeta, tf.zeta) n_small = np.arange(0, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(n_small, x_pos_small, special.polygamma, tf.polygamma) except ImportError as e: tf.logging.warn("Cannot test special functions: %s" % str(e)) def testFloatDifferentShapes(self): x = np.array([1, 2, 3, 4]).reshape(2, 2).astype(np.float32) y = np.array([1, 2]).reshape(2, 1).astype(np.float32) with self.test_session() as sess: inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) s = tf.reduce_sum(inx * iny) gx, gy = sess.run(tf.gradients(s, [inx, iny])) # gx is simply the broadcasted y self.assertAllEqual(gx, np.array([1, 1, 2, 2]) .reshape(2, 2).astype(np.float32)) # gy is x's column summed up self.assertAllEqual(gy, np.array([3, 7]). reshape(2, 1).astype(np.float32)) def testFloatVariableOverload(self): x = np.array([1, 2, 3, 4]).reshape(2, 2).astype(np.int32) y = np.array([1, 2]).reshape(2, 1).astype(np.int32) var_x = tf.Variable(x) var_y = tf.Variable(y) with self.test_session() as sess: sess.run([var_x.initializer, var_y.initializer]) left_result = (var_x * y).eval() right_result = (x * var_y).eval() np_result = x * y self.assertAllEqual(np_result, left_result) self.assertAllEqual(np_result, right_result) def testDoubleBasic(self): x = np.linspace(-5, 20, 15).reshape(1, 3, 5).astype(np.float64) y = np.linspace(20, -5, 15).reshape(1, 3, 5).astype(np.float64) self._compareBoth(x, y, np.add, tf.add) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y + 0.1, np.true_divide, tf.truediv) self._compareBoth(x, y + 0.1, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y + 0.1, np.true_divide, _TRUEDIV) self._compareBoth(x, y + 0.1, np.floor_divide, _FLOORDIV) try: from scipy import special # pylint: disable=g-import-not-at-top a_pos_small = np.linspace(0.1, 2, 15).reshape(1, 3, 5).astype(np.float32) x_pos_small = np.linspace(0.1, 10, 15).reshape(1, 3, 5).astype(np.float32) self._compareBoth(a_pos_small, x_pos_small, special.gammainc, tf.igamma) self._compareBoth(a_pos_small, x_pos_small, special.gammaincc, tf.igammac) except ImportError as e: tf.logging.warn("Cannot test special functions: %s" % str(e)) def testInt8Basic(self): x = np.arange(1, 13, 2).reshape(1, 3, 2).astype(np.int8) y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.int8) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y, np.multiply, _MUL) def testInt16Basic(self): x = np.arange(1, 13, 2).reshape(1, 3, 2).astype(np.int16) y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.int16) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y, np.multiply, _MUL) def testInt32Basic(self): x = np.arange(1, 13, 2).reshape(1, 3, 2).astype(np.int32) y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.int32) self._compareBoth(x, y, np.add, tf.add) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y, np.true_divide, tf.truediv) self._compareBoth(x, y, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.mod, tf.mod) self._compareBoth(x, y, np.add, _ADD) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y, np.true_divide, _TRUEDIV) self._compareBoth(x, y, np.floor_divide, _FLOORDIV) self._compareBoth(x, y, np.mod, _MOD) # _compareBoth tests on GPU only for floating point types, so test # _MOD for int32 on GPU by calling _compareGpu self._compareGpu(x, y, np.mod, _MOD) def testInt64Basic(self): x = np.arange(1 << 40, 13 << 40, 2 << 40).reshape(1, 3, 2).astype(np.int64) y = np.arange(1, 7, 1).reshape(1, 3, 2).astype(np.int64) self._compareBoth(x, y, np.subtract, tf.sub) self._compareBoth(x, y, np.multiply, tf.mul) self._compareBoth(x, y, np.true_divide, tf.truediv) self._compareBoth(x, y, np.floor_divide, tf.floordiv) self._compareBoth(x, y, np.mod, tf.mod) self._compareBoth(x, y, np.subtract, _SUB) self._compareBoth(x, y, np.multiply, _MUL) self._compareBoth(x, y, np.true_divide, _TRUEDIV) self._compareBoth(x, y, np.floor_divide, _FLOORDIV) self._compareBoth(x, y, np.mod, _MOD) def testComplex64Basic(self): x = np.complex(1, 1) * np.linspace(-10, 10, 6).reshape(1, 3, 2).astype( np.complex64) y = np.complex(1, 1) * np.linspace(20, -20, 6).reshape(1, 3, 2).astype( np.complex64) self._compareCpu(x, y, np.add, tf.add) self._compareCpu(x, y, np.subtract, tf.sub) self._compareCpu(x, y, np.multiply, tf.mul) self._compareCpu(x, y + 0.1, np.true_divide, tf.truediv) self._compareCpu(x, y, np.add, _ADD) self._compareCpu(x, y, np.subtract, _SUB) self._compareCpu(x, y, np.multiply, _MUL) self._compareCpu(x, y + 0.1, np.true_divide, _TRUEDIV) def testComplex128Basic(self): x = np.complex(1, 1) * np.linspace(-10, 10, 6).reshape(1, 3, 2).astype( np.complex128) y = np.complex(1, 1) * np.linspace(20, -20, 6).reshape(1, 3, 2).astype( np.complex128) self._compareCpu(x, y, np.add, tf.add) self._compareCpu(x, y, np.subtract, tf.sub) self._compareCpu(x, y, np.multiply, tf.mul) self._compareCpu(x, y + 0.1, np.true_divide, tf.truediv) self._compareCpu(x, y, np.add, _ADD) self._compareCpu(x, y, np.subtract, _SUB) self._compareCpu(x, y, np.multiply, _MUL) self._compareCpu(x, y + 0.1, np.true_divide, _TRUEDIV) def testStringComparison(self): x = np.array([["abc", "bh"], ["c", ""]]) y = np.array([["abc", "bh"], ["def", "hi"]]) with self.test_session(use_gpu=False) as sess: cmp_eq = tf.equal(x, y) cmp_not_eq = tf.not_equal(x, y) values = sess.run([cmp_eq, cmp_not_eq]) self.assertAllEqual([[True, True], [False, False]], values[0]) self.assertAllEqual([[False, False], [True, True]], values[1]) def testString(self): x = np.array([["x_0_0", "x_0_1", "x_0_2"], ["x_1_0", "x_1_1", "x_1_2"], ["x_2_0", "x_2_1", "x_2_2"]], dtype=np.object) y = np.array([["y_0_0", "y_0_1", "y_0_2"], ["y_1_0", "y_1_1", "y_1_2"], ["y_2_0", "y_2_1", "y_2_2"]], dtype=np.object) z = np.array([["z_0", "z_1", "z_2"]], dtype=np.object) w = np.array("w", dtype=np.object) self._compareCpu(x, y, _ADD, _ADD) self._compareCpu(x, z, _ADD, _ADD) self._compareCpu(x, w, _ADD, _ADD) self._compareCpu(z, w, _ADD, _ADD) def _compareBCast(self, xs, ys, dtype, np_func, tf_func): if dtype in (np.complex64, np.complex128): x = (1 + np.linspace(0, 2 + 3j, np.prod(xs))).astype(dtype).reshape(xs) y = (1 + np.linspace(0, 2 - 2j, np.prod(ys))).astype(dtype).reshape(ys) else: x = (1 + np.linspace(0, 5, np.prod(xs))).astype(dtype).reshape(xs) y = (1 + np.linspace(0, 5, np.prod(ys))).astype(dtype).reshape(ys) self._compareCpu(x, y, np_func, tf_func) if x.dtype in (np.float16, np.float32, np.float64, np.complex64, np.complex128): if tf_func not in (_FLOORDIV, tf.floordiv): if x.dtype == np.float16: # Compare fp16 theoretical gradients to fp32 numerical gradients, # since fp16 numerical gradients are too imprecise unless great # care is taken with choosing the inputs and the delta. This is # a weaker check (in particular, it does not test the op itself, # only its gradient), but it's much better than nothing. self._compareGradientX(x, y, np_func, tf_func, np.float) self._compareGradientY(x, y, np_func, tf_func, np.float) else: self._compareGradientX(x, y, np_func, tf_func) self._compareGradientY(x, y, np_func, tf_func) self._compareGpu(x, y, np_func, tf_func) # TODO(josh11b,vrv): Refactor this to use parameterized tests. def _testBCastByFunc(self, funcs, xs, ys): dtypes = [ np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64, np.complex128, ] for dtype in dtypes: for (np_func, tf_func) in funcs: if (dtype in (np.complex64, np.complex128) and tf_func in (_FLOORDIV, tf.floordiv)): continue # floordiv makes no sense for complex numbers self._compareBCast(xs, ys, dtype, np_func, tf_func) self._compareBCast(ys, xs, dtype, np_func, tf_func) def _testBCastA(self, xs, ys): funcs = [ (np.add, tf.add), (np.add, _ADD), ] self._testBCastByFunc(funcs, xs, ys) def _testBCastB(self, xs, ys): funcs = [ (np.subtract, tf.sub), (np.subtract, _SUB), (np.power, tf.pow), ] self._testBCastByFunc(funcs, xs, ys) def _testBCastC(self, xs, ys): funcs = [ (np.multiply, tf.mul), (np.multiply, _MUL), ] self._testBCastByFunc(funcs, xs, ys) def _testBCastD(self, xs, ys): funcs = [ (np.true_divide, tf.truediv), (np.floor_divide, tf.floordiv), (np.true_divide, _TRUEDIV), (np.floor_divide, _FLOORDIV), ] self._testBCastByFunc(funcs, xs, ys) def testBCast_0A(self): self._testBCastA([1, 3, 2], [1]) def testBCast_0B(self): self._testBCastB([1, 3, 2], [1]) def testBCast_0C(self): self._testBCastC([1, 3, 2], [1]) def testBCast_0D(self): self._testBCastD([1, 3, 2], [1]) def testBCast_1A(self): self._testBCastA([1, 3, 2], [2]) def testBCast_1B(self): self._testBCastB([1, 3, 2], [2]) def testBCast_1C(self): self._testBCastC([1, 3, 2], [2]) def testBCast_1D(self): self._testBCastD([1, 3, 2], [2]) def testBCast_2A(self): self._testBCastA([1, 3, 2], [3, 2]) def testBCast_2B(self): self._testBCastB([1, 3, 2], [3, 2]) def testBCast_2C(self): self._testBCastC([1, 3, 2], [3, 2]) def testBCast_2D(self): self._testBCastD([1, 3, 2], [3, 2]) def testBCast_3A(self): self._testBCastA([1, 3, 2], [3, 1]) def testBCast_3B(self): self._testBCastB([1, 3, 2], [3, 1]) def testBCast_3C(self): self._testBCastC([1, 3, 2], [3, 1]) def testBCast_3D(self): self._testBCastD([1, 3, 2], [3, 1]) def testBCast_4A(self): self._testBCastA([1, 3, 2], [1, 3, 2]) def testBCast_4B(self): self._testBCastB([1, 3, 2], [1, 3, 2]) def testBCast_4C(self): self._testBCastC([1, 3, 2], [1, 3, 2]) def testBCast_4D(self): self._testBCastD([1, 3, 2], [1, 3, 2]) def testBCast_5A(self): self._testBCastA([1, 3, 2], [2, 3, 1]) def testBCast_5B(self): self._testBCastB([1, 3, 2], [2, 3, 1]) def testBCast_5C(self): self._testBCastC([1, 3, 2], [2, 3, 1]) def testBCast_5D(self): self._testBCastD([1, 3, 2], [2, 3, 1]) def testBCast_6A(self): self._testBCastA([1, 3, 2], [2, 1, 1]) def testBCast_6B(self): self._testBCastB([1, 3, 2], [2, 1, 1]) def testBCast_6C(self): self._testBCastC([1, 3, 2], [2, 1, 1]) def testBCast_6D(self): self._testBCastD([1, 3, 2], [2, 1, 1]) def testBCast_7A(self): self._testBCastA([1, 3, 2], [1, 3, 1]) def testBCast_7B(self): self._testBCastB([1, 3, 2], [1, 3, 1]) def testBCast_7C(self): self._testBCastC([1, 3, 2], [1, 3, 1]) def testBCast_7D(self): self._testBCastD([1, 3, 2], [1, 3, 1]) def testBCast_8A(self): self._testBCastA([2, 1, 5], [2, 3, 1]) def testBCast_8B(self): self._testBCastB([2, 1, 5], [2, 3, 1]) def testBCast_8C(self): self._testBCastC([2, 1, 5], [2, 3, 1]) def testBCast_8D(self): self._testBCastD([2, 1, 5], [2, 3, 1]) def testBCast_9A(self): self._testBCastA([2, 0, 5], [2, 0, 1]) def testBCast_9B(self): self._testBCastB([2, 0, 5], [2, 0, 1]) def testBCast_9C(self): self._testBCastC([2, 0, 5], [2, 0, 1]) def testBCast_9D(self): self._testBCastD([2, 0, 5], [2, 0, 1]) def testBCast_10A(self): self._testBCastA([2, 3, 0], [2, 3, 1]) def testBCast_10B(self): self._testBCastB([2, 3, 0], [2, 3, 1]) def testBCast_10C(self): self._testBCastC([2, 3, 0], [2, 3, 1]) def testBCast_10D(self): self._testBCastD([2, 3, 0], [2, 3, 1]) def testBCast_11A(self): self._testBCastA([1, 3, 2], [1, 3, 2]) def testBCast_11B(self): self._testBCastB([1, 3, 2], [1, 3, 2]) def testBCast_11C(self): self._testBCastC([1, 3, 2], [1, 3, 2]) def testBCast_11D(self): self._testBCastD([1, 3, 2], [1, 3, 2]) def testBCast_12A(self): self._testBCastA([1, 1, 1, 1, 3, 2], [1, 3, 2]) def testBCast_12B(self): self._testBCastB([1, 1, 1, 1, 3, 2], [1, 3, 2]) def testBCast_12C(self): self._testBCastC([1, 1, 1, 1, 3, 2], [1, 3, 2]) def testBCast_12D(self): self._testBCastD([1, 1, 1, 1, 3, 2], [1, 3, 2]) def testBCast_13A(self): self._testBCastA([1, 3, 2, 1, 1], [1]) def testBCast_13B(self): self._testBCastB([1, 3, 2, 1, 1], [1]) def testBCast_13C(self): self._testBCastC([1, 3, 2, 1, 1], [1]) def testBCast_13D(self): self._testBCastD([1, 3, 2, 1, 1], [1]) def testBCast_14A(self): self._testBCastA([2, 3, 1, 1, 5], [1]) def testBCast_14B(self): self._testBCastB([2, 3, 1, 1, 5], [1]) def testBCast_14C(self): self._testBCastC([2, 3, 1, 1, 5], [1]) def testBCast_14D(self): self._testBCastD([2, 3, 1, 1, 5], [1]) def testBCast_15A(self): self._testBCastA([10, 3, 1, 2], [3, 1, 2]) def testBCast_15B(self): self._testBCastB([10, 3, 1, 2], [3, 1, 2]) def testBCast_15C(self): self._testBCastC([10, 3, 1, 2], [3, 1, 2]) def testBCast_15D(self): self._testBCastD([10, 3, 1, 2], [3, 1, 2]) def testMismatchedDimensions(self): for func in [tf.add, tf.sub, tf.mul, tf.div, _ADD, _SUB, _MUL, _TRUEDIV, _FLOORDIV]: with self.assertRaisesWithPredicateMatch( ValueError, lambda e: "Dimensions must" in str(e)): func(tf.convert_to_tensor([10.0, 20.0, 30.0]), tf.convert_to_tensor([[40.0, 50.0], [60.0, 70.0]])) def testZeroPowGrad(self): with self.test_session(): for dtype in (np.float16, np.float32, np.float64, np.complex64, np.complex128): x = tf.constant(0.0, dtype=dtype) y = tf.constant(2.0, dtype=dtype) z = tf.pow(x, y) error = tf.test.compute_gradient_error(y, [], z, []) self.assertEqual(error, 0) def testComplexPowGrad(self): with self.test_session(): for dtype in np.complex64, np.complex128: for base in 2.0, -2.0: x = tf.constant(base, dtype=dtype) y = tf.constant(2.0, dtype=dtype) z = tf.pow(x, y) error = tf.test.compute_gradient_error(y, [], z, []) self.assertLess(error, 2e-4) class ComparisonOpTest(tf.test.TestCase): def _compare(self, func, x, y, dtype): with self.test_session(use_gpu=False): out = func(tf.convert_to_tensor(np.array([x]).astype(dtype)), tf.convert_to_tensor(np.array([y]).astype(dtype))) ret = out.eval() return ret[0] def testScalarCompareScalar(self): dtypes = [np.float16, np.float32, np.float64, np.int32, np.int64] data = [-1, 0, 1] for t in dtypes: for x in data: for y in data: self.assertEqual(self._compare(tf.less, x, y, t), x < y) self.assertEqual(self._compare(tf.less_equal, x, y, t), x <= y) self.assertEqual(self._compare(tf.greater, x, y, t), x > y) self.assertEqual(self._compare(tf.greater_equal, x, y, t), x >= y) self.assertEqual(self._compare(tf.equal, x, y, t), x == y) self.assertEqual(self._compare(tf.not_equal, x, y, t), x != y) data = [-1, 0, 1, -1j, 1j, 1 + 1j, 1 - 1j] for t in [np.complex64, np.complex128]: for x in data: for y in data: self.assertEqual(self._compare(tf.equal, x, y, t), x == y) self.assertEqual(self._compare(tf.not_equal, x, y, t), x != y) def _compareCpu(self, x, y, np_func, tf_func): np_ans = np_func(x, y) with self.test_session(use_gpu=False): out = tf_func(tf.convert_to_tensor(x), tf.convert_to_tensor(y)) tf_cpu = out.eval() self.assertAllEqual(np_ans, tf_cpu) def _compareGpu(self, x, y, np_func, tf_func): np_ans = np_func(x, y) with self.test_session(use_gpu=True): out = tf_func(tf.convert_to_tensor(x), tf.convert_to_tensor(y)) tf_gpu = out.eval() self.assertAllEqual(np_ans, tf_gpu) def _compareBoth(self, x, y, np_func, tf_func): self._compareCpu(x, y, np_func, tf_func) if x.dtype == np.float16 or x.dtype == np.float32 or x.dtype == np.float64: self._compareGpu(x, y, np_func, tf_func) def testTensorCompareTensor(self): x = np.linspace(-15, 15, 6).reshape(1, 3, 2) y = np.linspace(20, -10, 6).reshape(1, 3, 2) for t in [np.float16, np.float32, np.float64, np.int32, np.int64]: xt = x.astype(t) yt = y.astype(t) self._compareBoth(xt, yt, np.less, tf.less) self._compareBoth(xt, yt, np.less_equal, tf.less_equal) self._compareBoth(xt, yt, np.greater, tf.greater) self._compareBoth(xt, yt, np.greater_equal, tf.greater_equal) self._compareBoth(xt, yt, np.equal, tf.equal) self._compareBoth(xt, yt, np.not_equal, tf.not_equal) # TODO(zhifengc): complex64 doesn't work on GPU yet. for t in [np.complex64, np.complex128]: self._compareCpu(x.astype(t), y.astype(t), np.equal, tf.equal) self._compareCpu(x.astype(t), y.astype(t), np.not_equal, tf.not_equal) def _compareBCast(self, xs, ys, dtype, np_func, tf_func): x = np.linspace(-15, 15, np.prod(xs)).astype(dtype).reshape(xs) y = np.linspace(20, -10, np.prod(ys)).astype(dtype).reshape(ys) self._compareCpu(x, y, np_func, tf_func) self._compareCpu(y, x, np_func, tf_func) if x.dtype == np.float16 or x.dtype == np.float32 or x.dtype == np.float64: self._compareGpu(x, y, np_func, tf_func) self._compareGpu(y, x, np_func, tf_func) def _testBCastByFunc(self, np_func, tf_func): shapes = [ ([1, 3, 2], [1]), ([1, 3, 2], [2]), ([1, 3, 2], [3, 2]), ([1, 3, 2], [3, 1]), ([1, 3, 2], [1, 3, 2]), ([1, 3, 2], [2, 3, 1]), ([1, 3, 2], [2, 1, 1]), ([1, 3, 2], [1, 3, 1]), ([2, 1, 5], [2, 3, 1]), ([2, 0, 5], [2, 0, 1]), ([2, 3, 0], [2, 3, 1]), ] dtypes = [ np.float16, np.float32, np.float64, np.int32, np.int64, ] for (xs, ys) in shapes: for dtype in dtypes: self._compareBCast(xs, ys, dtype, np_func, tf_func) def testBCastLess(self): self._testBCastByFunc(np.less, tf.less) def testBCastLessEqual(self): self._testBCastByFunc(np.less_equal, tf.less_equal) def testBCastGreater(self): self._testBCastByFunc(np.greater, tf.greater) def testBCastGreaterEqual(self): self._testBCastByFunc(np.greater_equal, tf.greater_equal) def testBCastEqual(self): self._testBCastByFunc(np.equal, tf.equal) def testBCastNotEqual(self): self._testBCastByFunc(np.not_equal, tf.not_equal) def testShapeMismatch(self): dtypes = [np.float16, np.float32, np.float64, np.int32, np.int64] funcs = [tf.less, tf.less_equal, tf.greater, tf.greater_equal, tf.equal, tf.not_equal] x = np.arange(0, 10).reshape([2, 5]) y = np.arange(0, 10).reshape([5, 2]) for t in dtypes: for f in funcs: with self.assertRaisesWithPredicateMatch( ValueError, lambda e: "Dimensions must" in str(e)): f(x.astype(t), y.astype(t)) class LogicalOpTest(tf.test.TestCase): def _compareBinary(self, x, y, np_func, tf_func, use_gpu=False): np_ans = np_func(x, y) with self.test_session(use_gpu=use_gpu): inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) out = tf_func(inx, iny) tf_val = out.eval() self.assertEqual(out.dtype, tf.bool) self.assertAllEqual(np_ans, tf_val) self.assertShapeEqual(np_ans, out) def _not(self, x, use_gpu=False): np_ans = np.logical_not(x) with self.test_session(use_gpu=use_gpu): out = tf.logical_not(tf.convert_to_tensor(x)) tf_val = out.eval() self.assertEqual(out.dtype, tf.bool) self.assertAllEqual(np_ans, tf_val) self.assertShapeEqual(np_ans, out) def testScalar(self): data = [np.array([True]), np.array([False])] for use_gpu in [True, False]: for x in data: self._not(x, use_gpu) for x in data: for y in data: self._compareBinary( x, y, np.logical_and, tf.logical_and, use_gpu) self._compareBinary( x, y, np.logical_or, tf.logical_or, use_gpu) self._compareBinary( x, y, np.logical_xor, tf.logical_xor, use_gpu) def testTensor(self): x = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2) y = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2) for use_gpu in [True, False]: self._not(x, use_gpu) self._compareBinary(x, y, np.logical_and, tf.logical_and, use_gpu) self._compareBinary(x, y, np.logical_or, tf.logical_or, use_gpu) self._compareBinary(x, y, np.logical_xor, tf.logical_xor, use_gpu) def testBCast(self): shapes = [ ([1, 3, 2], [1]), ([1, 3, 2], [2]), ([1, 3, 2], [3, 2]), ([1, 3, 2], [3, 1]), ([1, 3, 2], [1, 3, 2]), ([1, 3, 2], [2, 3, 1]), ([1, 3, 2], [2, 1, 1]), ([1, 3, 2], [1, 3, 1]), ([2, 1, 5], [2, 3, 1]), ([2, 0, 5], [2, 0, 1]), ([2, 3, 0], [2, 3, 1]), ] for (xs, ys) in shapes: x = np.random.randint(0, 2, np.prod(xs)).astype(np.bool).reshape(xs) y = np.random.randint(0, 2, np.prod(ys)).astype(np.bool).reshape(ys) for use_gpu in [True, False]: self._compareBinary(x, y, np.logical_and, tf.logical_and, use_gpu) self._compareBinary(x, y, np.logical_or, tf.logical_or, use_gpu) self._compareBinary(x, y, np.logical_xor, tf.logical_xor, use_gpu) def testShapeMismatch(self): x = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2) y = np.random.randint(0, 2, 6).astype(np.bool).reshape(3, 2, 1) for f in [tf.logical_and, tf.logical_or, tf.logical_xor]: with self.assertRaisesWithPredicateMatch( ValueError, lambda e: "Dimensions must" in str(e)): f(x, y) def testUsingAsPythonValueFails(self): # Ensure that we raise an error when the user attempts to treat a # `Tensor` as a Python `bool`. b = tf.constant(False) with self.assertRaises(TypeError): if b: pass x = tf.constant(3) y = tf.constant(4) with self.assertRaises(TypeError): if x > y: pass z = tf.constant(7) # The chained comparison should fail because Python computes `x < # y` and short-circuits the comparison with `z` if it is `False`. with self.assertRaises(TypeError): _ = x < y < z class SelectOpTest(tf.test.TestCase): def _compare(self, c, x, y, use_gpu): np_ans = np.where(c, x, y) with self.test_session(use_gpu=use_gpu): out = tf.select(c, x, y) tf_ans = out.eval() self.assertAllEqual(np_ans, tf_ans) self.assertShapeEqual(np_ans, out) def _compareGradientX(self, c, x, y, numeric_gradient_type=None): with self.test_session(): inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) out = tf.select(c, inx, iny) s = list(np.shape(c)) jacob_t, jacob_n = tf.test.compute_gradient(inx, s, out, s, x_init_value=x) if numeric_gradient_type is not None: xf = x.astype(numeric_gradient_type) yf = y.astype(numeric_gradient_type) inxf = tf.convert_to_tensor(xf) inyf = tf.convert_to_tensor(yf) outf = tf.select(c, inxf, inyf) _, jacob_n = tf.test.compute_gradient(inxf, s, outf, s, x_init_value=xf) jacob_n = jacob_n.astype(x.dtype) if x.dtype == np.float16: self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) elif x.dtype == np.float32: self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) elif x.dtype == np.float64: self.assertAllClose(jacob_t, jacob_n, rtol=1e-5, atol=1e-5) def _compareGradientY(self, c, x, y, numeric_gradient_type=None): with self.test_session(): inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) out = tf.select(c, inx, iny) s = list(np.shape(c)) jacob_t, jacob_n = tf.test.compute_gradient(iny, s, out, s, x_init_value=y, delta=1.0) if numeric_gradient_type is not None: xf = x.astype(numeric_gradient_type) yf = y.astype(numeric_gradient_type) inxf = tf.convert_to_tensor(xf) inyf = tf.convert_to_tensor(yf) outf = tf.select(c, inxf, inyf) _, jacob_n = tf.test.compute_gradient(inyf, s, outf, s, x_init_value=yf) jacob_n = jacob_n.astype(x.dtype) if x.dtype == np.float16: self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) elif x.dtype == np.float32: self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) elif x.dtype == np.float64: self.assertAllClose(jacob_t, jacob_n, rtol=1e-5, atol=1e-5) def testBasic(self): c = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2) x = np.random.rand(1, 3, 2) * 100 y = np.random.rand(1, 3, 2) * 100 for t in [np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64, np.complex128]: xt = x.astype(t) yt = y.astype(t) self._compare(c, xt, yt, use_gpu=False) if t in [np.float16, np.float32, np.float64]: self._compare(c, xt, yt, use_gpu=True) def testGradients(self): c = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2) x = np.random.rand(1, 3, 2) * 100 y = np.random.rand(1, 3, 2) * 100 for t in [np.float16, np.float32, np.float64]: xt = x.astype(t) yt = y.astype(t) if t == np.float16: # Compare fp16 theoretical gradients to fp32 numerical gradients, # since fp16 numerical gradients are too imprecise unless great # care is taken with choosing the inputs and the delta. This is # a weaker check (in particular, it does not test the op itself, # only its gradient), but it's much better than nothing. self._compareGradientX(c, xt, yt, np.float) self._compareGradientY(c, xt, yt, np.float) else: self._compareGradientX(c, xt, yt) self._compareGradientY(c, xt, yt) def testShapeMismatch(self): c = np.random.randint(0, 2, 6).astype(np.bool).reshape(1, 3, 2) x = np.random.rand(1, 3, 2) * 100 y = np.random.rand(2, 5, 3) * 100 for t in [np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64, np.complex128]: xt = x.astype(t) yt = y.astype(t) with self.assertRaises(ValueError): tf.select(c, xt, yt) def testEmptyTensor(self): c = np.random.randint(0, 3, 0).astype(np.bool).reshape(1, 3, 0) x = np.random.rand(1, 3, 0) * 100 y = np.random.rand(1, 3, 0) * 100 z_expected = np.zeros((1, 3, 0), dtype=np.float32) with self.test_session(): xt = x.astype(np.float32) yt = y.astype(np.float32) z = tf.select(c, xt, yt).eval() self.assertAllEqual(z_expected, z) def testNan(self): """Verify that nans don't propagate where they shouldn't.""" with self.test_session(): for c in False, True: for a in 7.0, np.nan: for b in 5.0, np.nan: x = tf.select(c, a, b).eval() y = a if c else b self.assertEqual(np.isnan(x), np.isnan(y)) class BatchSelectOpTest(tf.test.TestCase): """Test broadcasting of Select when 'c' is a vec and 't' &'e' are rank2+.""" def _compare(self, c, x, y, use_gpu): np_ans = np.dstack( [x_i if c_i else y_i for c_i, x_i, y_i in zip(c, x, y)]).transpose( [2, 0, 1]) with self.test_session(use_gpu=use_gpu): out = tf.select(c, x, y) tf_ans = out.eval() self.assertAllEqual(np_ans, tf_ans) self.assertShapeEqual(np_ans, out) def _compareGradientX(self, c, x, y, numeric_gradient_type=None): with self.test_session(): inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) out = tf.select(c, inx, iny) s = list(np.shape(x)) jacob_t, jacob_n = tf.test.compute_gradient(inx, s, out, s, x_init_value=x) if numeric_gradient_type is not None: xf = x.astype(numeric_gradient_type) yf = y.astype(numeric_gradient_type) inxf = tf.convert_to_tensor(xf) inyf = tf.convert_to_tensor(yf) outf = tf.select(c, inxf, inyf) _, jacob_n = tf.test.compute_gradient(inxf, s, outf, s, x_init_value=xf) jacob_n = jacob_n.astype(x.dtype) if x.dtype == np.float16: self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) elif x.dtype == np.float32: self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) elif x.dtype == np.float64: self.assertAllClose(jacob_t, jacob_n, rtol=1e-5, atol=1e-5) def _compareGradientY(self, c, x, y, numeric_gradient_type=None): with self.test_session(): inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) out = tf.select(c, inx, iny) s = list(np.shape(x)) jacob_t, jacob_n = tf.test.compute_gradient(iny, s, out, s, x_init_value=y) if numeric_gradient_type is not None: xf = x.astype(numeric_gradient_type) yf = y.astype(numeric_gradient_type) inxf = tf.convert_to_tensor(xf) inyf = tf.convert_to_tensor(yf) outf = tf.select(c, inxf, inyf) _, jacob_n = tf.test.compute_gradient(inyf, s, outf, s, x_init_value=yf) jacob_n = jacob_n.astype(x.dtype) if x.dtype == np.float16: self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) elif x.dtype == np.float32: self.assertAllClose(jacob_t, jacob_n, rtol=1e-3, atol=1e-3) elif x.dtype == np.float64: self.assertAllClose(jacob_t, jacob_n, rtol=1e-5, atol=1e-5) def testBasic(self): c = np.random.randint(0, 2, 16).astype(np.bool) x = np.random.rand(16, 2, 8) * 100 y = np.random.rand(16, 2, 8) * 100 for t in [np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64, np.complex128]: xt = x.astype(t) yt = y.astype(t) self._compare(c, xt, yt, use_gpu=False) if t in [np.float16, np.float32, np.float64]: self._compare(c, xt, yt, use_gpu=True) def testGradients(self): c = np.random.randint(0, 2, 16).astype(np.bool) x = np.random.rand(16, 2, 8) * 100 y = np.random.rand(16, 2, 8) * 100 for t in [np.float16, np.float32, np.float64]: xt = x.astype(t) yt = y.astype(t) if t == np.float16: # Compare fp16 theoretical gradients to fp32 numerical gradients, # since fp16 numerical gradients are too imprecise unless great # care is taken with choosing the inputs and the delta. This is # a weaker check (in particular, it does not test the op itself, # only its gradient), but it's much better than nothing. self._compareGradientX(c, xt, yt, np.float) self._compareGradientY(c, xt, yt, np.float) else: self._compareGradientX(c, xt, yt) self._compareGradientY(c, xt, yt) def testShapeMismatch(self): c = np.random.randint(0, 2, 8).astype(np.bool) x = np.random.rand(16, 3, 2) * 100 y = np.random.rand(16, 3, 2) * 100 for t in [np.float16, np.float32, np.float64, np.int32, np.int64, np.complex64, np.complex128]: xt = x.astype(t) yt = y.astype(t) with self.assertRaises(ValueError): tf.select(c, xt, yt) class MinMaxOpTest(tf.test.TestCase): def _compare(self, x, y, use_gpu): np_min, np_max = np.minimum(x, y), np.maximum(x, y) with self.test_session(use_gpu=use_gpu) as sess: inx = tf.convert_to_tensor(x) iny = tf.convert_to_tensor(y) omin, omax = tf.minimum(inx, iny), tf.maximum(inx, iny) tf_min, tf_max = sess.run([omin, omax]) self.assertAllEqual(np_min, tf_min) self.assertAllEqual(np_max, tf_max) def testBasic(self): x = np.random.rand(1, 3, 2) * 100. y = np.random.rand(1, 3, 2) * 100. for t in [np.float16, np.float32, np.float64, np.int32, np.int64]: self._compare(x.astype(t), y.astype(t), use_gpu=False) self._compare(x.astype(t), y.astype(t), use_gpu=True) def testDifferentShapes(self): x = np.random.rand(1, 3, 2) * 100. y =
np.random.rand(2)
numpy.random.rand
import collections import itertools from itertools import tee from math import sqrt import os import matplotlib.pyplot as plt import numpy as np import sklearn.preprocessing import scipy from scipy.stats import spearmanr import torch import pygsp import networkx as nx import community as louvain import networkx.algorithms.community as commu from sklearn import manifold from tqdm import tqdm from .diffusion_graph import edges_from_loss_fn, cosine_loss from .loaders import get_all_pairs_datasets from .loaders import split_train_test from .loaders import get_train_test_datasets_labels from .loaders import get_dataset_from_datapath from .loaders import get_labels_stats from .classifiers import features_classification def connect_parts_labels(recorder, graph, part_a, part_b, labels, label_0, label_1): recorder.record_balance(min(len(part_a), len(part_b)) / len(graph)) a_to_0 = np.array([label_0]*len(graph)) for node_b in part_b: a_to_0[node_b] = label_1 a_to_0 = torch.LongTensor(a_to_0) ratio_errors = (a_to_0 == labels).sum().item() ratio_errors = ratio_errors / len(graph) ratio_errors = max(ratio_errors, 1. - ratio_errors) #print('\n', part_a, ' ============ ', part_b, ' ####### ', ratio_errors*100, '\n') return ratio_errors * 100. def stoer_wagner_volume(recorder, graph, labels, params): assert params.n_way == 2 try: _, (part_a, part_b) = nx.stoer_wagner(graph) except nx.exception.NetworkXError: assert params.n_shot == 1 part_a = nx.node_connected_component(graph, 0) part_b = nx.node_connected_component(graph, 1) label_0, label_1 = torch.min(labels).item(), torch.max(labels).item() assert (labels == label_0).sum().item() * 2 == len(graph) return connect_parts_labels(recorder, graph, part_a, part_b, labels, label_0, label_1) def min_cut_volume(recorder, graph, labels, params): assert params.n_shot == 1 and params.n_way == 2 cut = nx.minimum_edge_cut(graph, 0, 1) graph.remove_edges_from(cut) part_a = nx.node_connected_component(graph, 0) part_b = nx.node_connected_component(graph, 1) label_0, label_1 = labels[0].item(), labels[1].item() return connect_parts_labels(recorder, graph, part_a, part_b, labels, label_0, label_1) def kernighan(recorder, graph, labels, params): assert params.n_shot == 1 and params.n_way == 2 part_a, part_b = commu.kernighan_lin.kernighan_lin_bisection(graph, max_iter=20) label_0, label_1 = labels[0].item(), labels[1].item() return connect_parts_labels(recorder, graph, part_a, part_b, labels, label_0, label_1) def compute_pure(nodes, colors, labels): labels = labels.numpy() colors_to_labels = collections.defaultdict(set) labels_to_colors = collections.defaultdict(set) for node in nodes: colors_to_labels[colors[node]].add(int(labels[node])) labels_to_colors[int(labels[node])].add(colors[node]) num_confusion = sum([1 for labels in colors_to_labels.values() if len(labels) > 1]) num_splitted = sum([1 for colors in labels_to_colors.values() if len(colors) > 1]) num_good = len(colors_to_labels) - num_confusion ratio = num_good / (num_good + num_confusion) * 100. return ratio / 100. def get_total(bag): return sum([len(subbag) for subbag in bag.values()]) def compute_entropy(bag): total = get_total(bag) freq = [len(subbag)/total for subbag in bag.values()] freq = np.array(freq) h = -(freq * np.log2(freq)).sum() return h def print_histo(histo, edges): for histo_bin in zip(edges, edges[1:], histo.tolist()): print('[%.3f,%.3f]=%.3f'%histo_bin, end=' ') print('\n') def compute_communities_entropy(nodes, colors, labels, verbose): communities = collections.defaultdict(lambda: collections.defaultdict(list)) classes = collections.defaultdict(lambda: collections.defaultdict(list)) for node in nodes: com, label = colors[node], int(labels[node]) communities[com][label].append(node) classes[label][com].append(node) com_entropy = np.array([compute_entropy(com) for com in communities.values()]) cla_entropy = np.array([compute_entropy(cla) for cla in classes.values()]) totals = [get_total(com) for com in communities.values()] avg_cla_entropy = np.mean(cla_entropy) avg_com_entropy = np.mean(com_entropy) w_com_entropy = np.average(com_entropy, weights=totals) hist_cla_entropy = np.histogram(cla_entropy, bins=5, density=True) hist_com_entropy = np.histogram(com_entropy, bins=5, density=True) weights = [total / sum(totals) for total in totals] histo_w_com_entropy = np.histogram(com_entropy, bins=5, weights=weights, density=True) if verbose: print('') print('Communities %d\n'%len(communities)) print('Entropy per class: ', avg_cla_entropy) print_histo(*hist_cla_entropy) print('Entropy per community: ', avg_com_entropy) print_histo(*hist_com_entropy) print('Entropy per community, weighted: ', w_com_entropy) print_histo(*histo_w_com_entropy) avgs = avg_cla_entropy, avg_com_entropy, w_com_entropy histos = hist_cla_entropy, hist_com_entropy, histo_w_com_entropy return [len(communities)] + list(zip(avgs, histos)) def color(dendrogram, node, level): key = node for i in range(level+1): key = dendrogram[level][key] return key def louvain_dendrogram(recorder, graph, labels, params, print_details=False): dendrogram = louvain.generate_dendrogram(graph) colors = {node: node for node in graph} infos = [] if print_details: print('\n', 'Level', ' ', 'Mixed Communities', ' ', 'Splitted Classes', ' ', 'Good Communities', ' ', 'Ratio') for level in range(len(dendrogram)): colors = {node: dendrogram[level][color] for node, color in colors.items()} if params.communities == 'pure': info = compute_pure(graph.nodes, colors, labels) elif params.communities == 'entropy': info = compute_communities_entropy(graph.nodes, colors, labels, verbose=False) infos.append(info) return infos def build_community_graph(params, examples, labels, print_graph=False): num_neighbors, regular = params.num_neighbors, params.regular edges = edges_from_loss_fn(examples, cosine_loss, num_neighbors=num_neighbors, regular=regular, normalize_weights=True, substract_mean=True, exponent=True) if params.higher_order: num_nodes = len(set([int(edge[1][0]) for edge in edges])) adj = np.zeros(shape=(num_nodes, num_nodes)) for w, (a, b) in edges: adj[a,b] = adj adj = np.linalg.power(params.alpha * np.eyes(N=num_nodes) + adj, params.kappa) edges = [(a, b, w) for w, (a, b) in edges] graph = nx.Graph() graph.add_weighted_edges_from(edges) if print_graph: nx.draw_spring(graph) plt.show() return graph def monitore_volume(recorder, train_set, test_set, train_labels, test_labels, params): examples = torch.cat([train_set, test_set], dim=0) labels = torch.cat([train_labels, test_labels], dim=0) graph = build_community_graph(params, examples, labels) if params.intersection_measure == 'stoer_wagner': volume = stoer_wagner_volume(recorder, graph, labels, params) elif params.intersection_measure == 'minimum_cut': volume = min_cut_volume(recorder, graph, labels, params) elif params.intersection_measure == 'kernighan': volume = kernighan(recorder, graph, labels, params) elif params.intersection_measure == 'louvain_dendrogram': infos = louvain_dendrogram(recorder, graph, labels, params) return infos else: raise ValueError recorder.record_volume_error(volume) def infos_per_level(graph, labels, params, verbose=True): dendrogram = louvain.generate_dendrogram(graph) colors = {node: node for node in graph} infos = [] for level in range(len(dendrogram)): colors = {node: dendrogram[level][color] for node, color in colors.items()} info = compute_communities_entropy(graph.nodes, colors, labels, verbose=verbose) infos.append(info) return infos def get_draw_options(big_graph, bipartite): w_max = float(np.max([w[2] for w in big_graph.edges.data('weight')])) colors = [w[2]/w_max for w in big_graph.edges.data('weight')] edge_labels = {w[:2]:('%.3f'%w[2]) for w in big_graph.edges.data('weight')} if bipartite is None: node_color = '#A0CBE2' else: node_color = ['#1A4081' if node < bipartite else '#E37373' for node in big_graph] return { "node_color": node_color, "edge_color": colors, "width": 4, "edge_cmap": plt.cm.Reds, "with_labels": True, }, edge_labels def print_big_graph(params, mean_pos, edges, avg_degree=20, tsne_pos=False): bipartite = 64 if '&' in params.dataset else None edges.sort(key=lambda t: t[2], reverse=True) max_edges = int(len(mean_pos) * avg_degree) edges = edges[:max_edges] big_graph = nx.Graph() big_graph.add_weighted_edges_from(edges) options, edge_labels = get_draw_options(big_graph, bipartite) if tsne_pos: mean_pos_array = np.concatenate(list(mean_pos.values()), axis=0) tsne = manifold.TSNE() print(mean_pos_array) mean_pos_array = tsne.fit_transform(mean_pos_array) pos = dict() for i, key in enumerate(mean_pos): pos[key] = mean_pos_array[i] elif bipartite is not None: part_1 = [node for node in big_graph if node < bipartite] pos = nx.drawing.layout.bipartite_layout(big_graph, part_1, align='horizontal') else: # pos = nx.spring_layout(big_graph) pos = nx.spectral_layout(big_graph) nx.draw_networkx_nodes(big_graph, pos=pos, **options) nx.draw_networkx_labels(big_graph, pos, labels={node:str(node) for node in big_graph}) nx.draw_networkx_edge_labels(big_graph, edge_labels=edge_labels, pos=pos, font_size=8) name = params.intersection_measure + '_communities_' + str(-params.ladder) + '_' + str(params.num_neighbors) nx.drawing.nx_agraph.write_dot(big_graph, os.path.join('graphs', name+'.dot')) plt.savefig(os.path.join('graphs', name+'.pdf')) plt.clf() # plt.show() print('') def add_class(mean_pos, label, false_label, examples, labels): if label in mean_pos: return class_examples = examples[labels == false_label] mean_pos[label] = torch.mean(class_examples, dim=0, keepdim=True).numpy() def monitore_communities(data_path, params, num_repetitions=5): parts = params.parts if '&' in params.dataset else None all_pairs = get_all_pairs_datasets(data_path, params.n_way, params.crop, parts) edges = [] mean_pos = dict() total_pairs = next(all_pairs) progress = tqdm(total=total_pairs, leave=True) for (examples, labels, label_a, label_b, false_a, false_b) in all_pairs: add_class(mean_pos, label_a, false_a, examples, labels) add_class(mean_pos, label_b, false_b, examples, labels) graph = build_community_graph(params, examples, labels) h_seq = [] for _ in range(num_repetitions): infos = infos_per_level(graph, labels, params, verbose=False) ladder = max(len(infos) + params.ladder, 0) h_seq.append(infos[ladder][-1][0]) # last level h_avg = float(np.mean(h_seq)) h_max = float(np.log2(params.n_way)) r = h_avg / h_max r = min(1-1e-3, r) # crop weight = r # / (1 - r) # similarity score edges.append((label_a, label_b, weight)) desc = ' '.join([str(label_a), str(label_b), str(weight)]) progress.set_description(desc=desc) progress.update() progress.close() print_big_graph(params, mean_pos, edges) def monitore_regression(data_path, params, num_repetitions=20): all_pairs = get_all_pairs_datasets(data_path, params.n_way, params.crop, params.parts) edges = [] mean_pos = dict() for (examples, labels, label_a, label_b, false_a, false_b) in all_pairs: add_class(mean_pos, label_a, false_a, examples, labels) add_class(mean_pos, label_b, false_b, examples, labels) acc_seq = [] for _ in range(num_repetitions): train_test = split_train_test(examples, labels, params.n_shot, params.n_val) train_set, train_labels, test_set, test_labels = train_test train_acc, test_acc = features_classification(train_set, train_labels, test_set, test_labels, params.n_way, params.classifier, params.origin_normalization, params) acc = 100. - test_acc # error monitoring instead of accuracy acc_seq.append(acc) # last level acc_avg = float(np.mean(acc_seq)) acc_max = float(100.) r = acc_avg / acc_max r = min(1-1e-5, r) # crop weight = r # / (1 - r) # similarity score edges.append((label_a, label_b, weight)) print(label_a, label_b, weight, acc_avg) print_big_graph(params, mean_pos, edges) def gather_edges(graph, ways): edges = [] for str_edge in graph.edges.data('weight'): edge = int(str_edge[0]), int(str_edge[1]), float(str_edge[2]) if edge[0] in ways and edge[1] in ways: edges.append(edge) return edges def get_subgraph_weight(edges): return sum([edge[2] for edge in edges]) def get_worse_clusters(params, big_graph, data_path): _, original_labels = get_dataset_from_datapath(data_path) num_labels, n_sample_per_label = get_labels_stats(original_labels) combinations_iter = itertools.combinations(list(range(big_graph.number_of_nodes())), params.n_way) combinations = [] for i, ways in enumerate(combinations_iter): real_ways = [int(original_labels[i*n_sample_per_label]) for i in ways] combinations.append((get_subgraph_weight(gather_edges(big_graph, real_ways)), ways)) combinations.sort(key=(lambda t: t[0]), reverse=True) return combinations def write_labels(signal, nodes): for node in nodes: if nodes[node]['label'] is None: continue signal[node] = nodes[node]['label'] def create_signal(nodes, n_way): num_nodes = len(nodes) signal = np.full(shape=(num_nodes, n_way), fill_value=(1./n_way)) write_labels(signal, nodes) return signal def bhattacharyya_dist(signal, temperature): sqrt_signal = np.sqrt(signal) bhattacharyya = np.einsum('ip,jp->ij', sqrt_signal, sqrt_signal) bhattacharyya = -np.log(np.maximum(bhattacharyya, epsilon_a)) bhattacharyya = scipy.special.softmax(adj * bhattacharyya, axis=1) return bhattacharyya def kl_metric(signal, temperature): eps = 0.001 num_labels = int(signal.shape[1]) signal = np.log(np.maximum(signal, eps)) signal = scipy.special.softmax(signal * temperature, axis=1) h = np.sum(signal * np.log(num_labels * np.maximum(signal, eps)), axis=1) num_nodes = int(signal.shape[0]) h_cross = np.zeros(shape=(num_nodes, num_nodes), dtype=np.float32) for i in range(num_nodes): for j in range(num_nodes): h_cross[i,j] = float(h[j]) return h_cross def graph_mean_shift(graph, n_way, num_iterations_max=1): signal = create_signal(graph.nodes, n_way) adj = nx.adjacency_matrix(graph).toarray() adj = adj + np.eye(N=int(adj.shape[0])) adj = adj + 1.*(adj != 0.) # from [-1, 1] to [0, 2] adj_temperature = 1. adj = scipy.special.softmax(adj * adj_temperature, axis=1) epsilon = 0.001 metric_temperature = 1. for _ in range(num_iterations_max): metric = kl_metric(signal, metric_temperature) wcoeff =
np.maximum(metric, epsilon)
numpy.maximum
import numpy as np from .ndarray import ndarray from ..array import extent from .tile_operation import tile_operation from .shuffle import shuffle from .map import map2 from .base import force from .. import util from .. import rpc from .. import blob_ctx def _sample_sort_mapper(array, ex, sample_rate, local_sorted_array): ''' sample each tile of the original array with sample_rate, sort each tile and put the local sorted result into local_sorted_array. Args: array(DistArray): array to be sorted. ex(Extent): Region being processed. sample_rate(float): the sample rate of each tile. local_sorted_array(DistArray): array to store the local sorted result. ''' data = array.fetch(ex) samples = np.random.choice(data.flatten(), size=int(data.size * sample_rate), replace=False) local_sorted_array.update(ex, np.sort(data, axis=None).reshape(ex.shape)) yield None, samples def _partition_count_mapper(array, ex, partition_keys): ''' given the partition keys, calculate the index of each partition key in the local tile. Args: array(DistArray): local sorted array. ex(Extent): Region being processed. partition_keys(numpy.array): the partition keys which separate each partitions. ''' data = array.fetch(ex).flatten() idx = np.searchsorted(data, partition_keys, side='left') idx =
np.insert(idx, 0, 0)
numpy.insert
import numpy as np import pytest import pylas from pylas.point.dims import SubFieldView, ScaledArrayView def test_sub_field_view_behaves_like_array(): """ This function is used to test if the SubFieldView class works & has an API that is similar to np.ndarray """ array = np.zeros(10, np.uint8) field = SubFieldView(array, 0b0000_0010) assert len(field) == 10 assert np.all(field == 0) assert np.all(field[:] == 0) assert field.max() == 0 assert np.max(field) == 0 assert field.min() == 0 assert
np.min(field)
numpy.min
# Copyright 2017 The TensorFlow Authors All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Controller coordinates sampling and training model. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import numpy as np import pickle import random flags = tf.flags gfile = tf.gfile FLAGS = flags.FLAGS def find_best_eps_lambda(rewards, lengths): """Find the best lambda given a desired epsilon = FLAGS.max_divergence.""" # perhaps not the best way to do this desired_div = FLAGS.max_divergence * np.mean(lengths) def calc_divergence(eps_lambda): max_reward = np.max(rewards) logz = (max_reward / eps_lambda + np.log(np.mean(np.exp((rewards - max_reward) / eps_lambda)))) exprr = np.mean(np.exp(rewards / eps_lambda - logz) * rewards / eps_lambda) return exprr - logz left = 0.0 right = 1000.0 if len(rewards) <= 8: return (left + right) / 2 num_iter = max(4, 1 + int(np.log((right - left) / 0.1) /
np.log(2.0)
numpy.log
"""Provides the ImprovementEmitter.""" import numpy as np from ribs.archives import AddStatus from ribs.emitters._emitter_base import EmitterBase from ribs.emitters.opt import CMAEvolutionStrategy class ImprovementEmitter(EmitterBase): """Adapts a covariance matrix towards changes in the archive. This emitter originates in `Fontaine 2020 <https://arxiv.org/abs/1912.02400>`_. Initially, it starts at ``x0`` and uses CMA-ES to search for solutions that improve the archive, i.e. solutions that add new entries to the archive or improve existing entries. Once CMA-ES restarts (see ``restart_rule``), the emitter starts from a randomly chosen elite in the archive and continues searching for solutions that improve the archive. Args: archive (ribs.archives.ArchiveBase): An archive to use when creating and inserting solutions. For instance, this can be :class:`ribs.archives.GridArchive`. x0 (np.ndarray): Initial solution. sigma0 (float): Initial step size. selection_rule ("mu" or "filter"): Method for selecting solutions in CMA-ES. With "mu" selection, the first half of the solutions will be selected, while in "filter", any solutions that were added to the archive will be selected. restart_rule ("no_improvement" or "basic"): Method to use when checking for restart. With "basic", only the default CMA-ES convergence rules will be used, while with "no_improvement", the emitter will restart when none of the proposed solutions were added to the archive. weight_rule ("truncation" or "active"): Method for generating weights in CMA-ES. Either "truncation" (positive weights only) or "active" (include negative weights). bounds (None or array-like): Bounds of the solution space. Solutions are clipped to these bounds. Pass None to indicate there are no bounds. Alternatively, pass an array-like to specify the bounds for each dim. Each element in this array-like can be None to indicate no bound, or a tuple of ``(lower_bound, upper_bound)``, where ``lower_bound`` or ``upper_bound`` may be None to indicate no bound. batch_size (int): Number of solutions to return in :meth:`ask`. If not passed in, a batch size will automatically be calculated. seed (int): Value to seed the random number generator. Set to None to avoid a fixed seed. Raises: ValueError: If any of ``selection_rule``, ``restart_rule``, or ``weight_rule`` is invalid. """ def __init__(self, archive, x0, sigma0, selection_rule="filter", restart_rule="no_improvement", weight_rule="truncation", bounds=None, batch_size=None, seed=None): self._rng = np.random.default_rng(seed) self._batch_size = batch_size self._x0 =
np.array(x0, dtype=archive.dtype)
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- # License: 3 Clause BSD # http://scikit-criteria.org/ # ============================================================================= # DOCS # ============================================================================= """AHP""" # ============================================================================= # IMPORTS # ============================================================================= from collections.abc import namedtuple import numpy as np from skcriteria import norm, rank # ============================================================================= # CONSTANTS # ============================================================================= #: Theorical limit of number of criteria or alternatives in AHP [SATTY2003]_ #: [SATTY2008]_ #: #: References #: ---------- #: <NAME>. and <NAME>. Why the Magic Number Seven Plus or Minus Two, #: Mathematical and Computer Modelling, 2003, vol. 38, pp. 233-244 AHP_LIMIT = 16 MTX_TYPE_CRITERIA = "criteria" MTX_TYPE_ALTERNATIVES = "alternatives" SAATY_MIN, SAATY_MAX = 0, 10 #: Random indexes [CHANGSHENG2013]_ SAATY_RI = { k: np.float16(v) for k, v in { 1: 0.0, 2: 0.0, 3: 0.52, 4: 0.89, 5: 1.12, 6: 1.26, 7: 1.36, 8: 1.41, 9: 1.46, 10: 1.49, 11: 1.52, 12: 1.54, 13: 1.56, 14: 1.58, 15: 1.59 }.items() } def _resolve_saaty_intensity(): Intensity = namedtuple( "Intensity", ["value", "label", "definition", "explanation"]) saaty_direct = ( (1, "1", "Equal Importance", "Two activities contribute equally to the objective"), (2, "2", "Weak or slight", "Two activities contribute equally to the objective"), (3, "3", "Moderate importance", "Experience and judgement slightly favour one activity over another"), (4, "4", "Moderate plus", "Experience and judgement slightly favour one activity over another"), (5, "5", "Strong importance", "Experience and judgement strongly favour one activity over another"), (6, "6", "Strong plus", "Experience and judgement strongly favour one activity over another"), (7, "7", "Very strong or demonstrated importance", ( "An activity is favoured very strongly over another; its " "dominance demonstrated in practice")), (8, "8", "Very, very strong", ( "An activity is favoured very strongly over another; its " "dominance demonstrated in practice")), (9, "9", "Extreme importance", "The evidence favouring one activity over another"), ) rec_defn = ("If activity i has one of the above non-zero numbers assigned " "to it when compared with activity j, then j has the " "reciprocal value when compared with i") rec_expl = "A reasonable assumption" saaty_intensity = {} for value, label, defn, expl in saaty_direct: saaty_intensity[value] = Intensity(value, label, defn, expl) rec_value = 1/float(value) rec_label = "1/{}".format(label) saaty_intensity[rec_value] = Intensity( rec_value, rec_label, rec_defn, rec_expl) return saaty_intensity SAATY_INTENSITY = _resolve_saaty_intensity() SAATY_INTENSITY_VALUES = np.array(list(SAATY_INTENSITY.keys())) del _resolve_saaty_intensity # ============================================================================= # HELPER FUNCTIONS # ============================================================================= def validate_values(values): values = np.asarray(values) if not np.all((values > SAATY_MIN) & (values < SAATY_MAX)): msg = "All values must >= {} and <= {}" raise ValueError(msg.format(SAATY_MIN+1, SAATY_MAX-1)) def validate_ahp_matrix(rows_and_columns, mtx, mtxtype=None): type_validation = mtxtype is None or ( isinstance(mtxtype, str) and mtxtype in [MTX_TYPE_CRITERIA, MTX_TYPE_ALTERNATIVES]) if not type_validation: msg = "'mtxtype must be 'None', '{}' or '{}'. Found '{}'".format( MTX_TYPE_ALTERNATIVES, MTX_TYPE_CRITERIA, mtxtype) raise ValueError(msg) if rows_and_columns > AHP_LIMIT: if mtxtype: msg = "The max number of {} must be <= {}.".format( mtxtype, AHP_LIMIT) else: msg = "The max number of rows and columns must be <= {}.".format( AHP_LIMIT) raise ValueError(msg) mtx = np.asarray(mtx) shape = (rows_and_columns, rows_and_columns) if mtx.shape != shape: msg = "The shape of {} matrix must be '{}'. Found '{}'".format( mtxtype or "the", shape, mtx.shape) raise ValueError(msg) if not np.all(np.diagonal(mtx) == 1): msg = "All the diagonal values must be only ones (1)" raise ValueError(msg) validate_values(mtx) triu, tril = np.triu(mtx), np.tril(mtx) # tril to triu old_err_state =
np.seterr(divide='ignore')
numpy.seterr
import numpy as np from statsmodels.genmod.bayes_mixed_glm import (BinomialBayesMixedGLM, PoissonBayesMixedGLM) import pandas as pd from scipy import sparse from numpy.testing import assert_allclose, assert_equal from scipy.optimize import approx_fprime def gen_simple_logit(nc, cs, s): np.random.seed(3799) exog_vc = np.kron(np.eye(nc), np.ones((cs, 1))) exog_fe = np.random.normal(size=(nc * cs, 2)) vc = s * np.random.normal(size=nc) lp = np.dot(exog_fe, np.r_[1, -1]) + np.dot(exog_vc, vc) pr = 1 / (1 + np.exp(-lp)) y = 1 * (np.random.uniform(size=nc * cs) < pr) ident = np.zeros(nc, dtype=np.int) return y, exog_fe, exog_vc, ident def gen_simple_poisson(nc, cs, s): np.random.seed(3799) exog_vc = np.kron(np.eye(nc), np.ones((cs, 1))) exog_fe = np.random.normal(size=(nc * cs, 2)) vc = s * np.random.normal(size=nc) lp = np.dot(exog_fe, np.r_[0.1, -0.1]) + np.dot(exog_vc, vc) r = np.exp(lp) y = np.random.poisson(r) ident =
np.zeros(nc, dtype=np.int)
numpy.zeros
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Student t distribution.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np from scipy import stats import tensorflow as tf class StudentTTest(tf.test.TestCase): def testStudentPDFAndLogPDF(self): with tf.Session(): batch_size = 6 df = tf.constant([3.0] * batch_size) mu = tf.constant([7.0] * batch_size) sigma = tf.constant([8.0] * batch_size) df_v = 3.0 mu_v = 7.0 sigma_v = 8.0 t = np.array([-2.5, 2.5, 8.0, 0.0, -1.0, 2.0], dtype=np.float32) student = tf.contrib.distributions.StudentT(df, mu=mu, sigma=sigma) log_pdf = student.log_pdf(t) self.assertEquals(log_pdf.get_shape(), (6,)) log_pdf_values = log_pdf.eval() pdf = student.pdf(t) self.assertEquals(pdf.get_shape(), (6,)) pdf_values = pdf.eval() expected_log_pdf = stats.t.logpdf(t, df_v, loc=mu_v, scale=sigma_v) expected_pdf = stats.t.pdf(t, df_v, loc=mu_v, scale=sigma_v) self.assertAllClose(expected_log_pdf, log_pdf_values) self.assertAllClose(np.log(expected_pdf), log_pdf_values) self.assertAllClose(expected_pdf, pdf_values) self.assertAllClose(np.exp(expected_log_pdf), pdf_values) def testStudentLogPDFMultidimensional(self): with tf.Session(): batch_size = 6 df = tf.constant([[1.5, 7.2]] * batch_size) mu = tf.constant([[3.0, -3.0]] * batch_size) sigma = tf.constant([[math.sqrt(10.0), math.sqrt(15.0)]] * batch_size) df_v = np.array([1.5, 7.2]) mu_v = np.array([3.0, -3.0]) sigma_v = np.array([np.sqrt(10.0), np.sqrt(15.0)]) t = np.array([[-2.5, 2.5, 4.0, 0.0, -1.0, 2.0]], dtype=np.float32).T student = tf.contrib.distributions.StudentT(df, mu=mu, sigma=sigma) log_pdf = student.log_pdf(t) log_pdf_values = log_pdf.eval() self.assertEqual(log_pdf.get_shape(), (6, 2)) pdf = student.pdf(t) pdf_values = pdf.eval() self.assertEqual(pdf.get_shape(), (6, 2)) expected_log_pdf = stats.t.logpdf(t, df_v, loc=mu_v, scale=sigma_v) expected_pdf = stats.t.pdf(t, df_v, loc=mu_v, scale=sigma_v) self.assertAllClose(expected_log_pdf, log_pdf_values) self.assertAllClose(np.log(expected_pdf), log_pdf_values) self.assertAllClose(expected_pdf, pdf_values) self.assertAllClose(np.exp(expected_log_pdf), pdf_values) def testStudentEntropy(self): df_v =
np.array([[2., 3., 7.]])
numpy.array
# Simulate Data import numpy as np import networkx as nx from kuramoto import Kuramoto # Network generation n_nodes = 50 p = 1 # p=1 -> all-to-all connectivity graph_nx = nx.erdos_renyi_graph(n=n_nodes, p=p) graph = nx.to_numpy_array(graph_nx) # Kuramoto model simulation natural_freq_mean = 20 natural_freq_var = .1 dt = .01 T = 10 K_start = 0 K_stop = 3 coupling_vals = np.linspace(K_start, K_stop, 200) runs = [] for coupling in coupling_vals: model = Kuramoto(coupling=coupling, dt=dt, T=T, n_nodes=n_nodes) model.natfreqs = np.random.normal(natural_freq_mean, natural_freq_var, size=n_nodes) # reset natural frequencies (20rad/sec 3 Hz) act_mat = model.run(adj_mat=graph) runs.append(act_mat) runs_array = np.array(runs) coherence = [] for i, coupling in enumerate(coupling_vals): coherence.append( [model.phase_coherence(vec) for vec in runs_array[i, ::].T] ) coherence_array = np.array(coherence) # Window the data and window both the zero-step and one-step-ahead label time-series from gtda.time_series import SlidingWindow window_size = 25 stride = 1 coherence_threshold = .8 onset_threshold = .5 SW = SlidingWindow(window_size, stride) # The for-loop steps through each coupling strength value for i in np.arange(len(coherence_array)): data = runs_array[i,::] data = np.sin(data.T) coherence = coherence_array[i, :] labels = coherence labels2 = np.where(coherence > coherence_threshold, 1, 0) # sync regime labels1 = np.where(coherence > onset_threshold, 1, 0) # onset regime labels = labels1 + labels2 data_sw, labels_sw = SW.fit_transform_resample(data, labels) # We want to predict the label of the next window given the current window labels_sw_one_step = np.roll(labels_sw, -1) labels_sw_one_step[-1] = labels_sw_one_step[-2] # fill last val to its previous value if i == 0: yr_one_step = labels_sw_one_step X_sw = data_sw else: yr_one_step = np.concatenate((yr_one_step, labels_sw_one_step), axis=0) X_sw= np.concatenate((X_sw, data_sw), axis=0) # Create topological feature vector from gtda.time_series import PearsonDissimilarity from gtda.homology import VietorisRipsPersistence from gtda.diagrams import Amplitude, PersistenceEntropy, NumberOfPoints PD = PearsonDissimilarity() X_pd = PD.fit_transform(X_sw) VR = VietorisRipsPersistence(metric="precomputed", homology_dimensions=[0, 1, 2]) Ampl = Amplitude() X_a = [] PerEnt = PersistenceEntropy() X_pe = [] NumPts = NumberOfPoints() X_np = [] for i in np.arange(len(X_pd)): X_vr = VR.fit_transform([X_pd[i]]) X_a.append(Ampl.fit_transform(X_vr)) X_pe.append(PerEnt.fit_transform(X_vr)) X_np.append(NumPts.fit_transform(X_vr)) X_a = np.array(X_a) X_a = np.squeeze(X_a) X_pe = np.array(X_pe) X_pe = np.squeeze(X_pe) X_np =
np.array(X_np)
numpy.array
import pandas as pd import numpy as np from functools import wraps import copy # Pass through pd.DataFrame methods for a (1,1,o,d) shaped triangle: df_passthru = ['to_clipboard', 'to_csv', 'to_pickle', 'to_excel', 'to_json', 'to_html', 'to_dict', 'unstack', 'pivot', 'drop_duplicates', 'describe', 'melt'] # Aggregate method overridden to the 4D Triangle Shape agg_funcs = ['sum', 'mean', 'median', 'max', 'min', 'prod', 'var', 'std'] agg_funcs = {item: 'nan'+item for item in agg_funcs} # def check_triangle_postcondition(f): # ''' Post-condition check to ensure the integrity of the triangle object # remains intact. (used for debugging) # ''' # @wraps(f) # def wrapper(*args, **kwargs): # X = f(*args, **kwargs) # if not hasattr(X, 'triangle'): # raise ValueError('X is missing triangle attribute') # if X.triangle.ndim != 4: # raise ValueError('X.triangle must be a 4-dimensional array') # if len(X.kdims) != X.triangle.shape[0]: # raise ValueError('X.index and X.triangle are misaligned') # if len(X.vdims) != X.triangle.shape[1]: # raise ValueError('X.columns and X.triangle are misaligned') # return X # return wrapper class TriangleBase: def __init__(self, data=None, origin=None, development=None, columns=None, index=None): # Sanitize Inputs columns = [columns] if type(columns) is str else columns origin = [origin] if type(origin) is str else origin if development is not None and type(development) is str: development = [development] key_gr = origin if not development else origin+development if not index: index = ['Total'] data_agg = data.groupby(key_gr).sum().reset_index() data_agg[index[0]] = 'Total' else: data_agg = data.groupby(key_gr+index) \ .sum().reset_index() # Convert origin/development to dates origin_date = TriangleBase.to_datetime(data_agg, origin) self.origin_grain = TriangleBase.get_grain(origin_date) # These only work with valuation periods and not lags if development: development_date = TriangleBase.to_datetime(data_agg, development, period_end=True) self.development_grain = TriangleBase.get_grain(development_date) col = 'development' else: development_date = origin_date self.development_grain = self.origin_grain col = None # Prep the data for 4D Triangle data_agg = self.get_axes(data_agg, index, columns, origin_date, development_date) data_agg = pd.pivot_table(data_agg, index=index+['origin'], columns=col, values=columns, aggfunc='sum') # Assign object properties self.kdims = np.array(data_agg.index.droplevel(-1).unique()) self.odims = np.array(data_agg.index.levels[-1].unique()) if development: self.ddims = np.array(data_agg.columns.levels[-1].unique()) self.ddims = self.ddims*({'Y': 12, 'Q': 3, 'M': 1} [self.development_grain]) self.vdims = np.array(data_agg.columns.levels[0].unique()) else: self.ddims = np.array([None]) self.vdims = np.array(data_agg.columns.unique()) self.ddims = self.ddims self.valuation_date = development_date.max() self.key_labels = index self.iloc = _Ilocation(self) self.loc = _Location(self) # Create 4D Triangle triangle = \ np.reshape(np.array(data_agg), (len(self.kdims), len(self.odims), len(self.vdims), len(self.ddims))) triangle = np.swapaxes(triangle, 1, 2) # Set all 0s to NAN for nansafe ufunc arithmetic triangle[triangle == 0] = np.nan self.triangle = triangle # Used to show NANs in lower part of triangle self.nan_override = False self.valuation = self._valuation_triangle() # ---------------------------------------------------------------- # # ----------------------- Class Properties ----------------------- # # ---------------------------------------------------------------- # def _len_check(self, x, y): if len(x) != len(y): raise ValueError(f'Length mismatch: Expected axis has ', f'{len(x)} elements, new values have', f' {len(y)} elements') @property def shape(self): return self.triangle.shape @property def index(self): return pd.DataFrame(list(self.kdims), columns=self.key_labels) @property def columns(self): return self.idx_table().columns @columns.setter def columns(self, value): self._len_check(self.columns, value) self.vdims = [value] if type(value) is str else value @property def origin(self): return pd.DatetimeIndex(self.odims, name='origin') @origin.setter def origin(self, value): self._len_check(self.origin, value) self.odims = [value] if type(value) is str else value @property def development(self): return pd.Series(list(self.ddims), name='development').to_frame() @development.setter def development(self, value): self._len_check(self.development, value) self.ddims = [value] if type(value) is str else value @property def latest_diagonal(self): return self.get_latest_diagonal() @property # @check_triangle_postcondition def link_ratio(self): obj = copy.deepcopy(self) temp = obj.triangle.copy() temp[temp == 0] = np.nan val_array = obj.valuation.values.reshape(obj.shape[-2:],order='f')[:, 1:] obj.triangle = temp[..., 1:]/temp[..., :-1] obj.ddims = np.array([f'{obj.ddims[i]}-{obj.ddims[i+1]}' for i in range(len(obj.ddims)-1)]) # Check whether we want to eliminate the last origin period if np.max(np.sum(~np.isnan(self.triangle[..., -1, :]), 2)-1) == 0: obj.triangle = obj.triangle[..., :-1, :] obj.odims = obj.odims[:-1] val_array = val_array[:-1, :] obj.valuation = pd.DatetimeIndex(pd.DataFrame(val_array).unstack().values) return obj @property def age_to_age(self): return self.link_ratio # ---------------------------------------------------------------- # # ---------------------- End User Methods ------------------------ # # ---------------------------------------------------------------- # # @check_triangle_postcondition def get_latest_diagonal(self, compress=True): ''' Method to return the latest diagonal of the triangle. Requires self.nan_overide == False. ''' obj = copy.deepcopy(self) diagonal = obj[obj.valuation == obj.valuation_date].triangle if compress: diagonal = np.expand_dims(np.nansum(diagonal, 3), 3) obj.ddims = ['Latest'] obj.valuation = pd.DatetimeIndex( [pd.to_datetime(obj.valuation_date)]*len(obj.odims)) obj.triangle = diagonal return obj # @check_triangle_postcondition def incr_to_cum(self, inplace=False): """Method to convert an incremental triangle into a cumulative triangle. Parameters ---------- inplace: bool Set to True will update the instance data attribute inplace Returns ------- Updated instance of triangle accumulated along the origin """ if inplace: np.cumsum(np.nan_to_num(self.triangle), axis=3, out=self.triangle) self.triangle = self.expand_dims(self.nan_triangle())*self.triangle self.triangle[self.triangle == 0] = np.nan return self else: new_obj = copy.deepcopy(self) return new_obj.incr_to_cum(inplace=True) # @check_triangle_postcondition def cum_to_incr(self, inplace=False): """Method to convert an cumlative triangle into a incremental triangle. Parameters ---------- inplace: bool Set to True will update the instance data attribute inplace Returns ------- Updated instance of triangle accumulated along the origin """ if inplace: temp = np.nan_to_num(self.triangle)[..., 1:] - \ np.nan_to_num(self.triangle)[..., :-1] temp = np.concatenate((self.triangle[..., 0:1], temp), axis=3) temp = temp*self.expand_dims(self.nan_triangle()) temp[temp == 0] = np.nan self.triangle = temp return self else: new_obj = copy.deepcopy(self) return new_obj.cum_to_incr(inplace=True) # @check_triangle_postcondition def grain(self, grain='', incremental=False, inplace=False): """Changes the grain of a cumulative triangle. Parameters ---------- grain : str The grain to which you want your triangle converted, specified as 'O<x>D<y>' where <x> and <y> can take on values of ``['Y', 'Q', 'M']`` For example, 'OYDY' for Origin Year/Development Year, 'OQDM' for Origin quarter, etc. incremental : bool Not implemented yet inplace : bool Whether to mutate the existing Triangle instance or return a new one. Returns ------- Triangle """ if inplace: origin_grain = grain[1:2] development_grain = grain[-1] new_tri, o = self._set_ograin(grain=grain, incremental=incremental) # Set development Grain dev_grain_dict = {'M': {'Y': 12, 'Q': 3, 'M': 1}, 'Q': {'Y': 4, 'Q': 1}, 'Y': {'Y': 1}} if self.shape[3] != 1: keeps = dev_grain_dict[self.development_grain][development_grain] keeps = np.where(np.arange(new_tri.shape[3]) % keeps == 0)[0] keeps = -(keeps + 1)[::-1] new_tri = new_tri[..., keeps] self.ddims = self.ddims[keeps] self.odims =
np.unique(o)
numpy.unique
# Copyright 2016-2018 Iowa State University Research Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from delamo.api import DelamoModeler from delamo.api import Layer from delamo.api import bond_layers from delamo.api import SimpleCoordSys from delamo.api import solid_solid_coupling from delamo import process from delamo.layer import LayerMold import os # Front matter # ------------ # Initialize the DeLaMo model DM = DelamoModeler.Initialize(globals(), pointtolerancefactor=100.0, normaltolerance=100e-4, GapWidth=0.0) # This script then generates both a CAD file and a Python script. # The Python script can be run from Abaqus. It includes the # initialization script referenced above, and also opens # the CAD file and builds the model. # The name of the script file to generate and # the name of the CAD file to write are returned # by process.output_filenames() # The first parameter to output_filenames # should always match the name of the original script # with the ".py" stripped # In manually generated scripts, always specify phase # to be "ORIGINAL" (script_to_generate, cad_file_path_from_script, layer_boundary_template) = process.output_filenames("07_SolidSolidCoupling", process="DEFECT_INSERTION", phase="ORIGINAL", apply_damage_script="07_SolidSolidCoupling_add_damage.py", ) # When writing a DeLaMo script, you start by creating a # finite element initialization script. This is a # Python script for ABAQUS that defines your various parameters # -- material properties, etc. as Python variables. # In this case they are stored in the "abqparams_CFRP.py" file DM.abaqus_init_script("abqparams_CFRP.py", globals()) # The above call automatically inserts wrapped copies of variables # defined in those scripts into the global variable space. Then you # can reference those variables in this script # (you can have as many init scripts as you like) # The Delamo model contains generates several sets of instructions # for different phases of the finite element modeling process: # DM.initinstrs (initialization) # DM.assemblyinstrs (model assembly) # DM.bcinstrs (boundary conditions) # DM.meshinstrs (meshing) # All methods called from those variables will go generally be executed # in the assemblyinstrs pool unless otherwise overridden. You can # use e.g. DM.meshinstrs.rewrapobj() to get a reference to # one of these variables that will execute in an alternate context. # # For example, LaminateAssemblyMeshing = DM.meshinstrs.rewrapobj(LaminateAssembly) # Creates a reference to the LaminateAssembly, for which method calls # execute in the meshing context # Basic parameters # Set layer thickness for lamina # *** MUST BE KEPT IN SYNC WITH 07_SolidSolidCoupling_add_damage.py *** numLayers = 8 # If updated must also update loop limit, below thickness1 = 2.194565 / numLayers thickness2 = (4.57197 - 2.194565)/ numLayers (OrigMold, SolidSolidCoupling) = solid_solid_coupling.from_solid_and_tool(DM, os.path.join("..", "data", "NASAShellOverwrap.STEP"), os.path.join("..", "data", "CuttingTool2.STEP"), OrigDirPoint=np.array((-200.0, 50.0, 0.0)), OrigDirNormal=np.array((0.0, 0.0, 1.0))) MoldEdgePoints = OrigMold.GetPointsOnOuterEdges() # Define a coordinate system # This example defines +x direction along 0 deg. fibers, # +y direction across 0 deg fibers, equivalent to # the default (when coordsys is not specified) coordsys = SimpleCoordSys((1.0, 0.0, 0.0), (0.0, 1.0, 0.0)) layup = [0, 45, -45, 90, 90, -45, 45, 0, 0, 45, -45, 90, 90, -45, 45, 0, 0, 45, -45, 90, 90, -45, 45, 0, 0, 45, -45, 90, 90, -45, 45, 0 ] # assumed layup # define properties for solid solidmeshsize=15.0 # mm # Define ABAQUS section for surrounding solid model.. Should really make principal axes function of position for stiffener portion... ## Unfortunately ABAQUS can't use a solid section for a complicated geometry ## that needs to be Tet meshed. But if it weren't so complicated and it ## could be meshed, here's how you would do it: #sectionlayers = [ section.SectionLayer(material='CFRPLaminaMat', thickness=0.125, orientAngle = layupangle, numIntPts=1,plyName='') for layupangle in layup ] #SolidSection=FEModel.CompositeSolidSection(name='SolidSection',layupName='SolidSectionLayup',symmetric=False, layup = sectionlayers ) # Instead we model the solid as just a general solid with a single orientation # For the moment, model the solid as uniaxial... Should probably build a hybrid stiffness model based on laminate theory SolidSection=FEModel.HomogeneousSolidSection(name='LaminaSection',material=CFRPLaminaMat.name,thickness=None) SolidSolidCoupling.solidpart.MeshSimple(MeshElemTypes, solidmeshsize, ElemShape=abqC.TET, ElemTechnique=abqC.FREE,refined_edges = MoldEdgePoints,pointtolerance=DM.abqpointtolerance,refinedmeshsize=meshsize) SolidSolidCoupling.solidpart.AssignSection(SolidSection) SolidSolidCoupling.solidpart.ApplyLayup(coordsys,0.0) # orientation of 0 means that 0 degrees as defined in the SolidSection layers lines up with the first axis (fiber direction) of the coordsys. # Create and add point marker for fixed faced boundary condition # This point identifies it FixedPoint = [0, +107.95, 1.] ForcePoint = [0, -107.95, 1.] Mold = OrigMold previouslayer = None layers = [] # Create the flat region for layernum in range(16): # Iteration limit should match numLayers*2 but must be a constant so that loop unwrapping can work # Set the thickness for the 2 zones if (layernum < numLayers): thickness = thickness1 pass if layernum >= numLayers: # Avoid using else clause because that triggers a redbaron bug thickness = thickness2 pass layer = Layer.CreateFromMold(DM, Mold, "OFFSET", thickness, "Layer_%d" % (layernum + 1), LaminaSection, layup[layernum], coordsys=coordsys) # If it is the 9th layer, then cut the layer if (layernum == numLayers): layer.Split(os.path.join("..", "data", "SplitLineNASA.csv"), DM.abqpointtolerance) layer.gk_layer.RemoveLayerBodyByPointInFace(
np.array((-200.0, 60.0, 2.19456))
numpy.array
from construct import PaddedString, Struct, Int32un import numpy as np from oct_converter.image_types import OCTVolumeWithMetaData, FundusImageWithMetaData from pylibjpeg import decode from pathlib import Path class FDA(object): """ Class for extracting data from Topcon's .fda file format. Notes: Mostly based on description of .fda file format here: https://bitbucket.org/uocte/uocte/wiki/Topcon%20File%20Format Attributes: filepath (str): Path to .img file for reading. header (obj:Struct): Defines structure of volume's header. oct_header (obj:Struct): Defines structure of OCT header. fundus_header (obj:Struct): Defines structure of fundus header. chunk_dict (dict): Name of data chunks present in the file, and their start locations. """ def __init__(self, filepath): self.filepath = Path(filepath) if not self.filepath.exists(): raise FileNotFoundError(self.filepath) self.header = Struct( 'FOCT' / PaddedString(4, 'ascii'), 'FDA' / PaddedString(3, 'ascii'), 'version_info_1' / Int32un, 'version_info_2' / Int32un ) self.oct_header = Struct( 'type' / PaddedString(1, 'ascii'), 'unknown1' / Int32un, 'unknown2' / Int32un, 'width' / Int32un, 'height' / Int32un, 'number_slices' / Int32un, 'unknown3' / Int32un, ) self.oct_header_2 = Struct( 'unknown' / PaddedString(1, 'ascii'), 'width' / Int32un, 'height' / Int32un, 'bits_per_pixel' / Int32un, 'number_slices' / Int32un, 'unknown' / PaddedString(1, 'ascii'), 'size' / Int32un, ) self.fundus_header = Struct( 'width' / Int32un, 'height' / Int32un, 'bits_per_pixel' / Int32un, 'number_slices' / Int32un, 'unknown' / PaddedString(4, 'ascii'), 'size' / Int32un, # 'img' / Int8un, ) self.chunk_dict = self.get_list_of_file_chunks() def get_list_of_file_chunks(self): """Find all data chunks present in the file. Returns: dict """ chunk_dict = {} with open(self.filepath, 'rb') as f: # skip header raw = f.read(15) header = self.header.parse(raw) eof = False while not eof: chunk_name_size = np.fromstring(f.read(1), dtype=np.uint8)[0] if chunk_name_size == 0: eof = True else: chunk_name = f.read(chunk_name_size) chunk_size = np.fromstring(f.read(4), dtype=np.uint32)[0] chunk_location = f.tell() f.seek(chunk_size, 1) chunk_dict[chunk_name] = [chunk_location, chunk_size] print('File {} contains the following chunks:'.format(self.filepath)) for key in chunk_dict.keys(): print(key) return chunk_dict def read_oct_volume(self): """ Reads OCT data. Returns: obj:OCTVolumeWithMetaData """ if b'@IMG_JPEG' not in self.chunk_dict: raise ValueError('Could not find OCT header @IMG_JPEG in chunk list') with open(self.filepath, 'rb') as f: chunk_location, chunk_size = self.chunk_dict[b'@IMG_JPEG'] f.seek(chunk_location) # Set the chunk’s current position. raw = f.read(25) oct_header = self.oct_header.parse(raw) volume = np.zeros((oct_header.height, oct_header.width, oct_header.number_slices)) for i in range(oct_header.number_slices): size = np.fromstring(f.read(4), dtype=np.int32)[0] raw_slice= f.read(size) slice = decode(raw_slice) volume[:,:,i] = slice oct_volume = OCTVolumeWithMetaData([volume[:, :, i] for i in range(volume.shape[2])]) return oct_volume def read_oct_volume_2(self): """ Reads OCT data. Returns: obj:OCTVolumeWithMetaData """ if b'@IMG_MOT_COMP_03' not in self.chunk_dict: raise ValueError('Could not find OCT header @IMG_MOT_COMP_03 in chunk list') with open(self.filepath, 'rb') as f: chunk_location, chunk_size = self.chunk_dict[b'@IMG_MOT_COMP_03'] f.seek(chunk_location) # Set the chunk’s current position. raw = f.read(22) oct_header = self.oct_header_2.parse(raw) number_pixels = oct_header.width * oct_header.height * oct_header.number_slices raw_volume = np.fromstring(f.read(number_pixels * 2), dtype=np.uint16) volume =
np.array(raw_volume)
numpy.array
# Online KDE - Recursive max likelihood for parameters estimation (h_t) # Functions to be imported into the main script # 2/2/2021 # Author : <NAME> # Libraries import numpy as np from scipy.stats import uniform, norm import matplotlib.pyplot as plt import pickle from sklearn.metrics import mean_squared_error import seaborn as sns import datetime from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm # defining plot style def plot_style_LaTex(): plt.style.use('seaborn-ticks') plt.rcParams["font.family"] = "Times New Roman" plt.rcParams.update({'font.size': 20}) # plt.rcParams.update({'font.size': 12}) plt.rcParams["axes.grid"] = False plt.rcParams["legend.loc"] = 'best' return # Initial uniform distribution to start the forecast algorithm based on the dataset values def initial_distribution(ini, fmax, samples): # create uniform distribution associated to that vector y = np.linspace(ini, fmax, samples) pdf_uni = uniform.pdf(y, loc=ini, scale=fmax) return y, pdf_uni # function to obtain a small dataset - for testing purposes def smaller_df(df, until_month): return df[df.index.month <= until_month] # function to calculate the histogram based on Fredis-Dicomanis approach and keeping the function in memory def hist_calculation(df): hist, bins =
np.histogram(df['flex_load_kWh'].values, bins='fd', density=True)
numpy.histogram
#! /usr/bin/env python """ Generate eyediagram and save it to eye.eps """ import argparse import numpy as np from scipy.interpolate import interp1d import matplotlib.pylab as plt from matplotlib.colors import Normalize def resample(data, time): xs = data[:,0] ys = data[:,1] f = interp1d(xs,ys) y = f(time) return y def rollover(sample, time, period, time_offset): x = [] y = [] for idx,t in enumerate(time): x.append((t + time_offset) % period) y.append(sample[idx]) return y,x def run(filename, imgname, period, time_offset, nbin): data = np.loadtxt(filename) x = data[:,0] t_start = x[0] t_stop = x[-1] t_step = period/nbin time =
np.arange(t_start, t_stop, t_step)
numpy.arange
import numpy as np from ... import utils from ..base import BaseAlg class ModelS(BaseAlg): """ The receiver learns a model of the sender and uses it to predict the state given the message """ def __init__( self, n_state, n_mess, n_act, n_runs, alpha0=0.1, eps0=0.1, eps0_decay=0, mode=0, act_variant="exact", train_variant="exact", sample_variant="sample", **kwargs ): """ Args: n_state (int): Number of states n_mess (int): Number of messages n_act (int): Number of actions n_runs (int): Number of runs alpha0 (float): Step size eps0 (float): Initial exploration rate eps0_decay (float): Decay of exploration rate per step mode (int): 0 for communication, 1 for fixed messages, 2 for fixed actions act_variant (str): 'exact' for exact model of q0, common seed; 'q0_imperfect' for imperfect model of q0, common seed; 'seed_imperfect' for exact model of q0, different seed; 'imperfect' for imperfect model of q0, different seed (default: 'exact') train_variant (str): 'exact' for using true state to train q 'imperfect' for using sampled state to train q (default: 'exact') sample_variant (str): 'sample' for sampling the state 'expectation' for taking expected Q values of all possible states (default: 'sample') """ self.n_state = n_state self.n_mess = n_mess self.n_act = n_act self.n_runs = n_runs self.alpha = alpha0 self.eps = eps0 self.eps_decay = eps0_decay self.mode = mode self.act_variant = act_variant self.train_variant = train_variant self.sample_variant = sample_variant self.q0 = np.zeros((n_runs, n_state, n_mess)) self.q1 = np.zeros((n_runs, n_mess, n_act)) self.q = np.zeros((n_runs, n_state, n_act)) self.q0_expected = np.zeros((n_runs, n_state, n_mess)) self.s0 = None self.s1 = None self.m0 = None self.a1 = None self.s0_sampled = None self.p_s0_possible = None def act(self, state, test=False): """ Args: state (np.ndarray): Current state (size=n_runs) test (bool): True if testing (no exploration) Returns: Current message, action (size=n_runs) """ if test: # Temporarily set eps to 0 to stop exploration true_eps = self.eps self.eps = 0 self.s0 = state if self.mode == 1: a0_expected = np.zeros((self.n_runs, self.n_state), dtype=np.int) a0_expected[:] = np.arange(self.n_state) self.m0 = self.s0 else: a0_expected = np.zeros((self.n_runs, self.n_state), dtype=np.int) exp_mask = np.random.random(self.n_runs) < self.eps a0_expected[exp_mask] = np.random.randint( self.n_mess, size=(self.n_runs, self.n_state) )[exp_mask] not_exp_mask = np.logical_not(exp_mask) if self.act_variant == "exact": a0_expected[not_exp_mask] = utils.rand_argmax(self.q0, axis=-1)[ not_exp_mask ] self.m0 = a0_expected[np.arange(self.n_runs), self.s0] elif self.act_variant == "q0_imperfect": a0_expected[not_exp_mask] = utils.rand_argmax(self.q0_expected, axis=-1)[ not_exp_mask ] self.m0 = np.zeros(self.n_runs, dtype=np.int) self.m0[exp_mask] = a0_expected[np.arange(self.n_runs), self.s0][exp_mask] q = self.q0[np.arange(self.n_runs), state] self.m0[not_exp_mask] = utils.rand_argmax(q)[not_exp_mask] elif self.act_variant == "seed_imperfect": a0_expected[not_exp_mask] = utils.rand_argmax(self.q0, axis=-1)[ not_exp_mask ] self.m0 = np.zeros(self.n_runs, dtype=np.int) exp_mask = np.random.random(self.n_runs) < self.eps self.m0[exp_mask] =
np.random.randint(self.n_mess, size=self.n_runs)
numpy.random.randint
"""Genetic evaluation of individuals.""" import os import sys # import time from collections import Counter from itertools import compress from numba import njit import pkg_resources import numpy as np import pandas as pd import scipy.linalg import scipy.stats def example_data(): """Provide data to the package.""" cwd = os.getcwd() stream = pkg_resources.resource_stream(__name__, 'data/chr.txt') chrmosomedata = pd.read_table(stream, sep=" ") stream = pkg_resources.resource_stream(__name__, 'data/group.txt') groupdata = pd.read_table(stream, sep=" ") stream = pkg_resources.resource_stream(__name__, 'data/effects.txt') markereffdata = pd.read_table(stream, sep=" ") stream = pkg_resources.resource_stream(__name__, 'data/phase.txt') genodata = pd.read_table(stream, header=None, sep=" ") stream = pkg_resources.resource_stream(__name__, 'data/ped.txt') ped = pd.read_table(stream, header=None, sep=" ") os.chdir(cwd) return chrmosomedata, markereffdata, genodata, groupdata, ped if __name__ == "__main__": example_data() @njit def fnrep2(gen, aaxx, aaxx1): """Code phased genotypes into 1, 2, 3 and 4.""" qqq = np.empty((int(gen.shape[0]/2), gen.shape[1]), np.int_) for i in range(qqq.shape[0]): for j in range(qqq.shape[1]): if gen[2*i, j] == aaxx and gen[2*i+1, j] == aaxx: qqq[i, j] = 1 elif gen[2*i, j] == aaxx1 and gen[2*i+1, j] == aaxx1: qqq[i, j] = 2 elif gen[2*i, j] == aaxx and gen[2*i+1, j] == aaxx1: qqq[i, j] = 3 else: qqq[i, j] = 4 return qqq def haptogen(gen, progress=False): """Convert haplotypes to coded genotypes.""" if progress: print("Converting phased haplotypes to genotypes") if gen.shape[1] == 2: gen = np.array(gen.iloc[:, 1]) # del col containing ID # convert string to 2D array of integers gen = [list(gen[i].rstrip()) for i in range(gen.shape[0])] gen = np.array(gen, int) # derives the frequency of alleles to determine the major allele allele = np.asarray(np.unique(gen, return_counts=True)).T.astype(int) if len(allele[:, 0]) != 2: sys.exit("method only supports biallelic markers") aaxx = allele[:, 0][np.argmax(allele[:, 1])] # major allele aaasns = np.isin(allele[:, 0], aaxx, invert=True) aaxx1 = int(allele[:, 0][aaasns]) # minor allele gen = np.array(gen, int) gen = fnrep2(gen, aaxx, aaxx1) elif gen.shape[1] > 2: gen = gen.iloc[:, 1:gen.shape[1]] # del col containing ID # derives the frequency of alleles to determine the major allele allele = np.asarray(np.unique(gen, return_counts=True)).T.astype(int) if len(allele[:, 0]) != 2: sys.exit("method only supports biallelic markers") aaxx = allele[:, 0][np.argmax(allele[:, 1])] # major allele aaasns = np.isin(allele[:, 0], aaxx, invert=True) aaxx1 = int(allele[:, 0][aaasns]) # minor allele gen = np.array(gen, int) gen = fnrep2(gen, aaxx, aaxx1) return gen class Datacheck: """Check the input data for errors and store relevant info as an object.""" def __init__(self, gmap, meff, gmat, group, indwt, progress=False): """ Check input data for errors and store relevant info as class object. Parameters ---------- gmap : pandas.DataFrame Index: RangeIndex Columns: Name: CHR, dtype: int64; chromosome number Name: SNPName, dtype: object; marker name Name: Position: dtype: int64; marker position in bp Name: group: dtype: float64; marker distance (cM) or reco rates meff : pandas.DataFrame Index: RangeIndex Columns: Name: trait names: float64; no. of columns = no of traits gmat : pandas.DataFrame Index: RangeIndex Columns: Name: ID, dtype: int64 or str; identification of individuals Name: haplotypes, dtype: object; must be biallelic group : pandas.DataFrame Index: RangeIndex Columns: Name: group, dtype: object; group code of individuals, e.g., M, F Name: ID, dtype: int64 or str; identification of individuals indwt : list of index weights for each trait progress : bool, optional; print progress of the function if True Returns stored input files ------- """ # check: ensures number of traits match size of index weights indwt = np.array(indwt) if (meff.shape[1]-1) != indwt.size: sys.exit('no. of index weights do not match marker effects cols') # check: ensure individuals' genotypes match group and ID info id_indgrp = pd.Series(group.iloc[:, 1]).astype(str) # no of inds if not pd.Series( pd.unique(gmat.iloc[:, 0])).astype(str).equals(id_indgrp): sys.exit("ID of individuals in group & genotypic data don't match") # check: ensure marker names in marker map and effects match if not (gmap.iloc[:, 1].astype(str)).equals(meff.iloc[:, 0].astype(str)): print("Discrepancies between marker names") sys.exit("Check genetic map and marker effects") # check: ensure marker or allele sub effect are all numeric meff = meff.iloc[:, 1:meff.shape[1]] test = meff.apply( lambda s: pd.to_numeric(s, errors='coerce').notnull().all()) if not test.all(): sys.exit("Marker or allele sub effects contain non-numeric values") # check: ensure unique maps match no of groups if map more than 1 grpg = pd.unique(group.iloc[:, 0]) # groups of individuals grp_chrom = gmap.shape[1]-3 # no of unique maps gmat = haptogen(gmat, progress) if grp_chrom > 1 and grp_chrom != grpg.size: sys.exit("no. of unique maps does not match no. of groups") # check no of markers in genotype and map and marker effects match no_markers = gmap.shape[0] # no of markers if no_markers != gmat.shape[1] or no_markers != meff.shape[0]: sys.exit("markers nos in gen, chrm or marker effects don't match") # check: ordered marker distance or recombination rates for grn in range(grp_chrom): for chrm in pd.unique(gmap.iloc[:, 0]): mpx = np.array(gmap.iloc[:, 3+grn][gmap.iloc[:, 0] == chrm]) if not (mpx == np.sort(sorted(mpx))).any(): sys.exit( f"Faulty marker map on chr {chrm} for grp {grpg[grn]}") if progress: print('Data passed the test!') print("Number of individuals: ", len(id_indgrp)) print("Number of groups: ", len(grpg), ": ", grpg) print("Number of specific maps:", grp_chrom) print("Number of chromosomes: ", len(pd.unique(gmap.iloc[:, 0]))) print("Total no. markers: ", no_markers) print("Number of trait(s): ", meff.columns.size) print("Trait name(s) and Index weight(s)") if meff.columns.size == 1: print(meff.columns[0], ": ", indwt[0]) elif meff.columns.size > 1: for i in range(meff.columns.size): print(meff.columns[i], ": ", indwt[i]) self.gmap = gmap self.meff = meff self.gmat = gmat self.group = group self.indwt = indwt def elem_cor(mylist, mprc, ngp, mposunit, method, chrm): """Derive pop cov matrix.""" if method == 1: # Bonk et al's approach if mposunit in ("cM", "cm", "CM", "Cm"): tmp = np.exp(-2*(np.abs(mprc - mprc[:, None])/100))/4 elif mposunit in ("reco", "RECO"): if mprc[0] != 0: sys.exit(f"First value for reco rate on chr {chrm} isn't zero") aaa = (1-(2*mprc))/4 ida = np.arange(aaa.size) tmp = aaa[np.abs(ida - ida[:, None])] elif method == 2: # Santos et al's approach if mposunit in ("cM", "cm", "CM", "Cm"): tmp = (-1*(np.abs(mprc - mprc[:, None])/200))+0.25 cutoff = (-1*(50/200))+0.25 tmp = np.where(tmp < cutoff, 0, tmp) elif mposunit in ("reco", "RECO"): if mprc[0] != 0: sys.exit(f"First value for reco rate on chr {chrm} isn't zero") aaa = (-1*(mprc/2))+0.25 ida = np.arange(aaa.size) tmp = aaa[np.abs(ida - ida[:, None])] cutoff = (-1*(0.5/2))+0.25 tmp = np.where(tmp < cutoff, 0, tmp) # append chromosome-specific covariance matrix to list mylist[int(ngp)].append(tmp) return mylist def popcovmat(info, mposunit, method): """ Derive population-specific covariance matrices. Parameters ---------- info : class object A class object created using the function "datacheck" mposunit : string A sting with containing "cM" or "reco". method : int An integer with a value of 1 for Bonk et al.'s approach or 2 for Santos et al's approach' Returns ------- mylist : list A list containing group-specific pop covariance matrices for each chr. """ if mposunit not in ("cM", "cm", "CM", "Cm", "reco", "RECO"): sys.exit("marker unit should be either cM or reco") # unique group name for naming the list if map is more than 1 probn = pd.unique(info.group.iloc[:, 0].astype(str)).tolist() chromos = pd.unique(info.gmap.iloc[:, 0]) # chromosomes no_grp = info.gmap.shape[1]-3 # no of maps mylist = [] # list stores chromosome-wise covariance matrix for ngp in range(no_grp): mylist.append([]) # marker position in cM or recombination rates grouprecodist = info.gmap.iloc[:, 3+ngp] for chrm in chromos: mpo = np.array(grouprecodist[info.gmap.iloc[:, 0] == (chrm)]) elem_cor(mylist, mpo, ngp, mposunit, method, chrm) if no_grp > 1: # if map is more than one, name list using group names mylist = dict(zip(probn, mylist)) return mylist @njit def makemems(gmat, meff): """Set up family-specific marker effects (Mendelian sampling).""" qqq = np.zeros((gmat.shape)) for i in range(gmat.shape[0]): for j in range(gmat.shape[1]): if gmat[i, j] == 4: qqq[i, j] = meff[j]*-1 elif gmat[i, j] == 3: qqq[i, j] = meff[j] else: qqq[i, j] = 0 return qqq @njit def makemebv(gmat, meff): """Set up family-specific marker effects (GEBV).""" qqq = np.zeros((gmat.shape)) for i in range(gmat.shape[0]): for j in range(gmat.shape[1]): if gmat[i, j] == 2: qqq[i, j] = meff[j]*-1 elif gmat[i, j] == 1: qqq[i, j] = meff[j] else: qqq[i, j] = 0 return qqq def traitspecmatrices(gmat, meff): """Store trait-specific matrices in a list.""" notr = meff.shape[1] # number of traits slist = [] # list stores trait-specific matrices slist.append([]) for i in range(notr): # specify data type for numba mefff = np.array(meff.iloc[:, i], float) matrix_ms = makemems(gmat, mefff) slist[0].append(matrix_ms) return slist def namesdf(notr, trait_names): """Create names of dataframe columns for Mendelian co(var).""" tnn = np.zeros((notr, notr), 'U20') tnn = np.chararray(tnn.shape, itemsize=30) for i in range(notr): for trt in range(notr): if i == trt: tnn[i, trt] = str(trait_names[i]) elif i != trt: tnn[i, trt] = "{}_{}".format(trait_names[i], trait_names[trt]) colnam = tnn[np.tril_indices(notr)] return colnam def mrmmult(temp, covmat): """Matrix multiplication (MRM' or m'Rm).""" return temp @ covmat @ temp.T def dgmrm(temp, covmat): """Matrix multiplication (MRM') for bigger matrices.""" temp1111 = scipy.linalg.blas.dgemm(alpha=1.0, a=temp, b=covmat) return scipy.linalg.blas.dgemm(alpha=1.0, a=temp1111, b=temp.T) def progr(itern, total): """Print progress of a task.""" fill, printend, prefix, suffix = '█', "\r", 'Progress:', 'Complete' deci, length = 0, 50 percent = ("{0:." + str(deci) + "f}").format(100 * (itern / float(total))) filledlen = int(length * itern // total) bars = fill * filledlen + '-' * (length - filledlen) print(f'\r{prefix} |{bars}| {percent}% {suffix}', end=printend) if itern == total: print() def subindcheck(info, sub_id): """Check if inds provided in pd.DataFrame (sub_id) are in group data.""" sub_id = pd.DataFrame(sub_id).reset_index(drop=True) if sub_id.shape[1] != 1: sys.exit("Individuals' IDs (sub_id) should be provided in one column") numbers = info.group.iloc[:, 1].astype(str).tolist() sub_id = sub_id.squeeze().astype(str).tolist() aaa = [numbers.index(x) if x in numbers else None for x in sub_id] aaa = np.array(aaa) if len(aaa) != len(sub_id): sys.exit("Some individual ID could not be found in group data") return aaa def msvarcov_g_st(info, covmat, sub_id, progress=False): """Derive Mendelian sampling co(variance) for single trait.""" if sub_id is not None: aaa = subindcheck(info, sub_id) idn = info.group.iloc[aaa, 1].reset_index(drop=True).astype(str) # ID groupsex = info.group.iloc[aaa, 0].reset_index(drop=True).astype(str) matsub = info.gmat[aaa, :] else: idn = info.group.iloc[:, 1].reset_index(drop=True).astype(str) # ID groupsex = info.group.iloc[:, 0].reset_index(drop=True).astype(str) matsub = info.gmat if (info.gmap.shape[1]-3 == 1 and len(pd.unique(groupsex)) > 1): print("The same map will be used for all groups") if progress: progr(0, matsub.shape[0]) # print progress bar snpindexxx = np.arange(start=0, stop=info.gmap.shape[0], step=1) notr = info.meff.columns.size slist = traitspecmatrices(matsub, info.meff) # dataframe to save Mendelian sampling (co)variance and aggregate breeding msvmsc = np.empty((matsub.shape[0], 1)) for i in range(matsub.shape[0]): # loop over no of individuals mscov = np.zeros((notr, notr)) # Mendelian co(var) mat for ind i for chrm in pd.unique(info.gmap.iloc[:, 0]): # snp index for chromosome chrm s_ind = np.array(snpindexxx[info.gmap.iloc[:, 0] == (chrm)]) # family-specific marker effects for ind i temp = np.zeros((notr, len(s_ind))) for trt in range(notr): temp[trt, :] = slist[0][trt][i, s_ind] if info.gmap.shape[1]-3 == 1: mscov = mscov + mrmmult(temp, covmat[0][chrm-1]) else: mscov = mscov + mrmmult(temp, covmat[groupsex[i]][chrm-1]) msvmsc[i, 0] = mscov if progress: progr(i + 1, matsub.shape[0]) # print progress bar msvmsc = pd.DataFrame(msvmsc) msvmsc.columns = info.meff.columns msvmsc.insert(0, "ID", idn, True) msvmsc.insert(1, "Group", groupsex, True) # insert group return msvmsc def msvarcov_g_mt(info, covmat, sub_id, progress=False): """Derive Mendelian sampling co(variance) for multiple traits.""" if sub_id is not None: aaa = subindcheck(info, sub_id) idn = info.group.iloc[aaa, 1].reset_index(drop=True).astype(str) # ID groupsex = info.group.iloc[aaa, 0].reset_index(drop=True).astype(str) matsub = info.gmat[aaa, :] else: idn = info.group.iloc[:, 1].reset_index(drop=True).astype(str) # ID groupsex = info.group.iloc[:, 0].reset_index(drop=True).astype(str) matsub = info.gmat if (info.gmap.shape[1]-3 == 1 and len(pd.unique(groupsex)) > 1): print("The same map will be used for all groups") if progress: progr(0, matsub.shape[0]) # print progress bar snpindexxx = np.arange(start=0, stop=info.gmap.shape[0], step=1) notr = info.meff.columns.size slist = traitspecmatrices(matsub, info.meff) # dataframe to save Mendelian sampling (co)variance and aggregate breeding mad = len(np.zeros((notr+1, notr+1))[np.tril_indices(notr+1)]) msvmsc = np.empty((matsub.shape[0], mad)) for i in range(matsub.shape[0]): # loop over no of individuals mscov = np.zeros((notr+1, notr+1)) # Mendelian co(var) mat for ind i for chrm in pd.unique(info.gmap.iloc[:, 0]): # snp index for chromosome chrm s_ind = np.array(snpindexxx[info.gmap.iloc[:, 0] == (chrm)]) # family-specific marker effects for ind i temp = np.zeros((notr+1, len(s_ind))) for trt in range(notr): temp[trt, :] = slist[0][trt][i, s_ind] temp[notr, :] = np.matmul(info.indwt.T, temp[0:notr, :]) if info.gmap.shape[1]-3 == 1: mscov = mscov + mrmmult(temp, covmat[0][chrm-1]) else: mscov = mscov + mrmmult(temp, covmat[groupsex[i]][chrm-1]) msvmsc[i, :] = mscov[np.tril_indices(notr+1)] if progress: progr(i + 1, matsub.shape[0]) # print progress bar msvmsc = pd.DataFrame(msvmsc) tnames = np.concatenate((info.meff.columns, "AG"), axis=None) colnam = namesdf(notr+1, tnames).decode('utf-8') msvmsc.columns = colnam msvmsc.insert(0, "ID", idn, True) msvmsc.insert(1, "Group", groupsex, True) # insert group return msvmsc def msvarcov_g(info, covmat, sub_id, progress=False): """ Derive Mendelian sampling co(variance) and aggregate genotype. Parameters ---------- info : class object A class object created using the function "datacheck" covmat : A list of pop cov matrices created using "popcovmat" function sub_id : pandas.DataFrame with one column Index: RangeIndex (minimum of 2 rows) Containing ID numbers of specific individuals to be evaluated progress : bool, optional; print progress of the function if True Returns ------- msvmsc : pandas.DataFrame containing the Mendelian sampling (co)variance and aggregate genotype Note: If sub_id is None, Mendelian (co-)variance will be estimated for all individuals. Otherwise, Mendelian (co-)variance will be estimated for the individuals in sub_id """ notr = info.meff.columns.size if notr == 1: msvmsc = msvarcov_g_st(info, covmat, sub_id, progress) elif notr > 1: msvmsc = msvarcov_g_mt(info, covmat, sub_id, progress) return msvmsc def array2sym(array): """Convert array to stdized symm mat, and back to array without diags.""" dfmsize = array.size for notr in range(1, 10000): if dfmsize == len(np.zeros((notr, notr))[np.tril_indices(notr)]): break iii, jjj = np.tril_indices(notr) mat = np.empty((notr, notr), float) mat[iii, jjj], mat[jjj, iii] = array, array mat = np.array(mat) mat1 = cov2corr(mat) return np.array(mat1[np.tril_indices(notr, k=-1)]) def msvarcov_gcorr(msvmsc): """ Standardize Mendelian sampling co(variance) and aggregate genotype. Parameters ---------- msvmsc : pandas.DataFrame containing the Mendelian sampling (co)variance and aggregate genotype created using msvarcov_g function Returns ------- dfcor : pandas.DataFrame containing standardized Mendelian sampling (co)variance """ if msvmsc.columns.size == 3: sys.exit("Correlation cannot be derived for a single trait") dfm = msvmsc.iloc[:, 2:msvmsc.shape[1]] # exclude ID and group dfmsize = dfm.shape[1] # derive number of traits for notr in range(1, 10000): if dfmsize == len(np.zeros((notr, notr))[np.tril_indices(notr)]): break # standardize covariance between traits dfcor = dfm.apply(array2sym, axis=1) # extract column names listnames = dfm.columns.tolist() cnames = [x for x in listnames if "_" in x] # convert pd.series of list to data frame dfcor = pd.DataFrame.from_dict(dict(zip(dfcor.index, dfcor.values))).T dfcor.columns = cnames # insert ID and group info dfcor = [pd.DataFrame(msvmsc.iloc[:, 0:2]), dfcor] # add ID and GRP dfcor = pd.concat(dfcor, axis=1) return dfcor def calcgbv(info, sub_id): """Calculate breeding values for each trait.""" if sub_id is not None: aaa = subindcheck(info, sub_id) idn = info.group.iloc[aaa, 1].reset_index(drop=True).astype(str) # ID groupsex = info.group.iloc[aaa, 0].reset_index(drop=True).astype(str) matsub = info.gmat[aaa, :] else: idn = info.group.iloc[:, 1].reset_index(drop=True).astype(str) # ID groupsex = info.group.iloc[:, 0].reset_index(drop=True).astype(str) matsub = info.gmat no_individuals = matsub.shape[0] # Number of individuals trait_names = info.meff.columns # traits names notr = trait_names.size # number of traits if notr == 1: gbv = np.zeros((no_individuals, notr)) mefff = np.array(info.meff.iloc[:, 0], float) # type spec for numba matrix_me = makemebv(matsub, mefff) # fam-spec marker effects BV gbv[:, 0] = matrix_me.sum(axis=1) # sum all effects gbv = pd.DataFrame(gbv) gbv.columns = trait_names elif notr > 1: gbv = np.zeros((no_individuals, notr+1)) for i in range(notr): mefff = np.array(info.meff.iloc[:, i], float) # type spec 4 numba matrix_me = makemebv(matsub, mefff) # fam-spec marker effects BV gbv[:, i] = matrix_me.sum(axis=1) # sum all effects for each trait gbv[:, notr] = gbv[:, notr] + info.indwt[i]*gbv[:, i] # Agg gen gbv = pd.DataFrame(gbv) colnames = np.concatenate((trait_names, "ABV"), axis=None) gbv.columns = colnames gbv.insert(0, "ID", idn, True) # insert ID gbv.insert(1, "Group", groupsex, True) # insert group return gbv def calcprob(info, msvmsc, thresh): """Calculate the probability of breeding top individuals.""" aaa = subindcheck(info, pd.DataFrame(msvmsc.iloc[:, 0])) gbvall = calcgbv(info, None) # calc GEBV for all inds used by thresh gbv = gbvall.iloc[aaa, :].reset_index(drop=True) # GEBV matching msvmsc no_individuals = gbv.shape[0] # Number of individuals trait_names = info.meff.columns # traits names notr = trait_names.size # number of traits if notr == 1: probdf = np.zeros((no_individuals, notr)) ttt = np.quantile(gbvall.iloc[:, (0+2)], q=1-thresh) # threshold probdf[:, 0] = 1 - scipy.stats.norm.cdf( ttt, loc=gbv.iloc[:, (0+2)], scale=np.sqrt(msvmsc.iloc[:, 0+2])) probdf = pd.DataFrame(probdf) probdf.columns = trait_names elif notr > 1: colnam = np.concatenate((info.meff.columns, "AG"), axis=None) colnam = namesdf(notr+1, colnam).decode('utf-8') ttt = np.quantile(gbvall.iloc[:, (notr+2)], q=1-thresh) # threshold probdf = np.zeros((no_individuals, notr+1)) t_ind = np.arange(colnam.shape[0])[np.in1d(colnam, trait_names)] for i in range(notr): ttt = np.quantile(gbvall.iloc[:, (i+2)], q=1-thresh) # threshold probdf[:, i] = scipy.stats.norm.cdf( ttt, loc=gbv.iloc[:, (i+2)], scale=np.sqrt( msvmsc.iloc[:, (t_ind[i])+2])) probdf[:, i] = np.nan_to_num(probdf[:, i]) # convert Inf to zero probdf[:, i] = 1 - probdf[:, i] ttt = np.quantile(gbvall.iloc[:, (notr+2)], q=1-thresh) probdf[:, notr] = scipy.stats.norm.cdf( ttt, loc=gbv.iloc[:, (notr+2)], scale=np.sqrt( msvmsc["AG"])) probdf[:, notr] = np.nan_to_num(probdf[:, notr]) # Agg probdf[:, notr] = 1 - probdf[:, notr] probdf = pd.DataFrame(probdf) # convert matrix to dataframe colnames = np.concatenate((trait_names, "ABV"), axis=None) probdf.columns = colnames probdf = [pd.DataFrame(gbv.iloc[:, 0:2]), probdf] # add ID and GRP probdf = pd.concat(probdf, axis=1) return probdf def calcindex(info, msvmsc, const): """Calculate the index if constant is known.""" sub_id = pd.DataFrame(msvmsc.iloc[:, 0]) gbv = calcgbv(info, sub_id) # calc GEBV no_individuals = gbv.shape[0] # Number of individuals trait_names = info.meff.columns # traits names notr = trait_names.size if notr == 1: indexdf = np.zeros((no_individuals, notr)) indexdf[:, 0] = (gbv.iloc[:, (0+2)]/2) + np.sqrt( msvmsc.iloc[:, 0+2])*const indexdf = pd.DataFrame(indexdf) indexdf.columns = trait_names elif notr > 1: colnam = np.concatenate((info.meff.columns, "AG"), axis=None) colnam = namesdf(notr+1, colnam).decode('utf-8') indexdf = np.zeros((no_individuals, notr+1)) t_ind = np.arange(colnam.shape[0])[np.in1d(colnam, trait_names)] for i in range(notr): indexdf[:, i] = (gbv.iloc[:, (i+2)]/2) + np.sqrt( msvmsc.iloc[:, (t_ind[i]+2)])*const indexdf[:, notr] = (gbv.iloc[:, (notr+2)]/2) + np.sqrt( msvmsc["AG"])*const indexdf = pd.DataFrame(indexdf) colnames = np.concatenate((trait_names, "ABV"), axis=None) indexdf.columns = colnames indexdf = [pd.DataFrame(gbv.iloc[:, 0:2]), indexdf] # add ID and GRP indexdf = pd.concat(indexdf, axis=1) return indexdf def selstrat_g(selstrat, info, sub_id, msvmsc, throrconst): """ Calc selection criteria (GEBV, PBTI, or index using gametic approach. Parameters ---------- selstrat : str A str containing any of GEBV, PBTI or index info : class object A class object created using the function "datacheck" sub_id : pandas.DataFrame with one column Index: RangeIndex (minimum of 2 rows) Containing ID numbers of specific individuals to be evaluated msvmsc : pandas.DataFrame DF created using the function "msvarcov_g" throrconst : float If selstrat is PBTI, a throrconst of value 0.05 sets threshold at top 5% of GEBV. If selstrat is index, throrconst is a constant. If selstrat is GEBV, throrconst can be any random value. Returns ------- data : pandas.DataFrame Index: RangeIndex Columns: ID, Group, trait names and Aggregate Breeding Value (ABV) Note: If selstrat is GEBV, None may be used for throrconst and msvmsc. If sub_id is None and selstrat is GEBV, GEBVs will be estimated for all individuals. However, if selstrat is not GEBV, the chosen selection criterion will be estimated for all individuals in msvmsc data frame. """ if selstrat in ("PBTI", "pbti", "index", "INDEX") and msvmsc is None: sys.exit("Provide Mendelian (co-)variance dataframe: 'msvmsc'") if selstrat in ("PBTI", "pbti", "index", "INDEX") and throrconst is None: sys.exit("Provide value for throrconst parameter") if selstrat not in ('GEBV', 'gebv', 'PBTI', 'pbti', 'index', 'INDEX'): sys.exit("selection strategy should be one of GEBV, PBTI or INDEX") if selstrat in ('GEBV', 'gebv'): data = calcgbv(info, sub_id) elif selstrat in ('PBTI', 'pbti'): if throrconst > 1 or throrconst < 0: sys.exit("value must be in the range of 0 and 1") data = calcprob(info, msvmsc, throrconst) elif selstrat in ('index', 'INDEX'): data = calcindex(info, msvmsc, throrconst) return data def cov2corr(cov): """Convert covariance to correlation matrix.""" cov = np.asanyarray(cov) std_ = np.sqrt(np.diag(cov)) with np.errstate(invalid='ignore'): corr = cov / np.outer(std_, std_) return corr def aggen(us_ind, no_markers, slst, indwt): """Set up additive effects matrix of aggregate genotype.""" mmfinal = np.empty((len(us_ind), no_markers)) xxx = 0 for iii in us_ind: tmpmt1 = np.array([slst[0][trt][iii, :] for trt in range(indwt.size)]) mmfinal[xxx, :] = np.matmul(indwt.transpose(), tmpmt1) xxx = xxx + 1 return mmfinal def chr_int(xxxxx): """Format chromomosome of interest parameter.""" if 'all' in xxxxx: xxxxx = 'all' elif 'none' in xxxxx: xxxxx = 'none' else: xxxxx = np.array([int(i) for i in xxxxx]) return xxxxx def writechr(covtmpx, chrinterest, chrm, trtnam, probx, stdsim): """Write matrices to file.""" if isinstance(chrinterest, str): if chrinterest == 'all': chrfile1 = "{}/Sim mat for {} chrm {} grp {}.npy".format( os.getcwd(), trtnam, chrm, probx) np.save(chrfile1, covtmpx) elif chrm in chrinterest: chrfile1 = "{}/Sim mat for {} chrm {} grp {}.npy".format( os.getcwd(), trtnam, chrm, probx) # output file np.save(chrfile1, covtmpx) if stdsim: if isinstance(chrinterest, str): if chrinterest == 'all': chrfilec = "{}/Stdsim mat for {} chrm {} grp {}.npy".format( os.getcwd(), trtnam, chrm, probx) # output file np.save(chrfilec, cov2corr(covtmpx)) elif chrm in chrinterest: chrfilec = "{}/Stdsim mat for {} chrm {} grp {}.npy".format( os.getcwd(), trtnam, chrm, probx) # output file np.save(chrfilec, cov2corr(covtmpx)) def writechrunspec(covtmpx, chrinterest, chrm, trtnam, stdsim): """Write matrices to file.""" if isinstance(chrinterest, str): if chrinterest == 'all': chrfile1 = "{}/Sim mat for {} chrm {}.npy".format( os.getcwd(), trtnam, chrm) np.save(chrfile1, covtmpx) elif chrm in chrinterest: chrfile1 = "{}/Sim mat for {} chrm {}.npy".format( os.getcwd(), trtnam, chrm) # output file np.save(chrfile1, covtmpx) if stdsim: if isinstance(chrinterest, str): if chrinterest == 'all': chrfilec = "{}/Stdsim mat for {} chrm {}.npy".format( os.getcwd(), trtnam, chrm) # output file np.save(chrfilec, cov2corr(covtmpx)) elif chrm in chrinterest: chrfilec = "{}/Stdsim mat for {} chrm {}.npy".format( os.getcwd(), trtnam, chrm) # output file np.save(chrfilec, cov2corr(covtmpx)) def grtonum(numnx): """Map chracters to numeric (0-no of groups).""" numnx = numnx.reset_index(drop=True) probn = pd.unique(numnx).tolist() alt_no = np.arange(0, len(probn), 1) noli = numnx.tolist() numnx = np.array(list(map(dict(zip(probn, alt_no)).get, noli, noli))) return numnx, probn def datret(info, rw_nms, pfnp, us_ind, slist, covmat, cov_indxx, stdsim, progress): """Return sim mat based on aggregate genotypes.""" snpindexxxx = np.arange(start=0, stop=info.gmap.shape[0], step=1) if info.meff.shape[1] == 1 and not stdsim: mat = cov_indxx elif info.meff.shape[1] == 1 and stdsim: mat = cov2corr(cov_indxx) elif info.meff.shape[1] > 1: if info.gmap.shape[1]-3 > 1: rw_nms = pd.DataFrame(rw_nms) rw_nms.to_csv(f"order of inds in mat grp {pfnp}.csv", index=False) if progress: print('Creating similarity matrix based on aggregate genotype') progr(0, max(pd.unique(info.gmap.iloc[:, 0]))) tmpmt1 = aggen(us_ind, info.gmap.shape[0], slist, info.indwt) # stores ABV covariance btw inds mat = np.zeros((len(us_ind), len(us_ind))) # loop over chromososomes for chrm in pd.unique(info.gmap.iloc[:, 0]): s_ind = np.array(snpindexxxx[info.gmap.iloc[:, 0] == (chrm)]) if info.gmap.shape[1]-3 == 1: covtmpx = abs(dgmrm(tmpmt1[:, s_ind], covmat[0][chrm-1])) else: covtmpx = abs(dgmrm(tmpmt1[:, s_ind], covmat[pfnp][chrm-1])) mat = mat + covtmpx if progress: progr(chrm, max(pd.unique(info.gmap.iloc[:, 0]))) if stdsim: mat = cov2corr(mat) return mat def mrmcals(info, us_ind, stdsim, slist, covmat, probn, chrinterest, save, progress): """Compute similarity matrix for each chromosome.""" if progress: progr(0, info.meff.columns.size) for i in range(info.meff.columns.size): cov_indxx = np.zeros((len(us_ind), len(us_ind))) for chrm in pd.unique(info.gmap.iloc[:, 0]): s_ind = np.array(np.arange(0, info.gmap.shape[0], 1 )[info.gmap.iloc[:, 0] == (chrm)]) if info.gmap.shape[1]-3 == 1: # map is 1 covtmpx = abs(dgmrm(slist[0][i][:, s_ind], covmat[0][chrm-1])) else: # if map is more than 1 covtmpx = abs(dgmrm(slist[0][i][us_ind[:, None], s_ind], covmat[probn][chrm-1])) cov_indxx = cov_indxx + covtmpx # sums up chrm-specific sims if len(pd.unique(info.group.iloc[:, 0].astype(str))) == 1: writechrunspec(covtmpx, chrinterest, chrm, info.meff.columns[i], stdsim) else: writechr(covtmpx, chrinterest, chrm, info.meff.columns[i], probn, stdsim) # write sim to file if stdsim: if save is True: if info.gmap.shape[1]-3 == 1: covxfile = "{}/Stdsim mat for {}.npy".format( os.getcwd(), info.meff.columns[i]) else: covxfile = "{}/Stdsim mat for {} grp {}.npy".format( os.getcwd(), info.meff.columns[i], probn) np.save(covxfile, cov2corr(cov_indxx)) # write std sim mats else: if save is True: if info.gmap.shape[1]-3 == 1: covxfile = "{}/Sim mat for {}.npy".format( os.getcwd(), info.meff.columns[i]) else: covxfile = "{}/Sim mat for {} grp {}.npy".format( os.getcwd(), info.meff.columns[i], probn) np.save(covxfile, cov_indxx) # write sim matrices if progress: progr(i + 1, info.meff.columns.size) return cov_indxx def simmat_g(info, covmat, sub_id, chrinterest, save=False, stdsim=False, progress=False): """ Compute similarity matrices using gametic approach. Parameters ---------- info : class object A class object created using the function "datacheck" covmat : A list of pop cov matrices created using "popcovmat" function sub_id : pandas.DataFrame with one column Index: RangeIndex (minimum of 2 rows) Containing ID numbers of specific individuals to be evaluated chrinterest : str or list of int list of chromosome numbers of interest or str with "all" or "none" save : bool, optional; write trait-specific sim mats to file if true stdsim : bool, optional; print write std sim mats to file if true progress : bool, optional; print progress of the task if true Returns ------- multgrpcov : list containing simimlarity matrices for each group """ if sub_id is None: inda = np.arange(0, info.gmat.shape[0], 1) sub_id = pd.DataFrame(info.group.iloc[inda, 1]) aaa = subindcheck(info, sub_id) else: aaa = subindcheck(info, sub_id) chrinterest = chr_int(chrinterest) slist = traitspecmatrices(info.gmat[aaa, :], info.meff) # trt-spec mat grp = info.gmap.shape[1]-3 if (grp == 1 and len(pd.unique(info.group.iloc[:, 0].astype(str))) > 1): print("The same map will be used for all groups") numbers, probn = grtonum(info.group.iloc[aaa, 0].astype(str)) multgrpcov = [] for gnp in range(grp): multgrpcov.append([]) if grp == 1: us_ind = np.arange(start=0, stop=info.gmat[aaa, :].shape[0], step=1) else: tng = numbers == gnp us_ind = np.array(list(compress(np.arange(0, len(tng), 1), tng))).T print("Processing group ", probn[gnp]) rw_nms = info.group.iloc[aaa, 1].reset_index(drop=True).astype( str)[us_ind] cov_indxx = mrmcals(info, us_ind, stdsim, slist, covmat, probn[gnp], chrinterest, save, progress) multgrpcov[int(gnp)].append( datret(info, rw_nms, probn[gnp], us_ind, slist, covmat, cov_indxx, stdsim, progress)) if len(probn) == 1: break if grp > 1 and len(probn): multgrpcov = dict(zip(probn, multgrpcov)) return multgrpcov def submsvmsc(msvmsc, sub_idz): """Extract index in msvmsc data frame.""" sub_idz = pd.DataFrame(sub_idz) numbs = msvmsc.iloc[:, 0].astype(str).tolist() sub_idz = sub_idz.reset_index(drop=True).squeeze() mal = sub_idz.iloc[:, 0].astype(str).tolist() fem = sub_idz.iloc[:, 1].astype(str).tolist() if sub_idz is not None: for i in mal: if i not in numbs: sys.exit("Individuals are not in msvmsc parameter") for i in fem: if i not in numbs: sys.exit("Individuals are not in msvmsc parameter") mal1 = [numbs.index(x) if x in numbs else None for x in mal] fem1 = [numbs.index(x) if x in numbs else None for x in fem] return mal1, fem1 def pot_parents(info, data, selmale, selfm): """Subset individuals of interest.""" trait_names = info.meff.columns if trait_names.size == 1: datamale = data[data.iloc[:, 1] == selmale[0]] pos = subindcheck(info, pd.DataFrame(datamale.iloc[:, 0])) datamale.insert(0, "pos", pos, True) no_sire = int(datamale.shape[0] * selmale[1]) datamale = datamale.sort_values( by=[trait_names[0]], ascending=False).iloc[0:no_sire, :] datafemale = data[data.iloc[:, 1] == selfm[0]] pos = subindcheck(info, pd.DataFrame(datafemale.iloc[:, 0])) datafemale.insert(0, "pos", pos, True) no_dam = int(datafemale.shape[0] * selfm[1]) datafemale = datafemale.sort_values( by=[trait_names[0]], ascending=False).iloc[0:no_dam, :] elif trait_names.size > 1: datamale = data[data.iloc[:, 1] == selmale[0]] pos = subindcheck(info, pd.DataFrame(datamale.iloc[:, 0])) datamale.insert(0, "pos", pos, True) no_sire = int(datamale.shape[0] * selmale[1]) datamale = datamale.sort_values( by=['ABV'], ascending=False).iloc[0:no_sire, :] datafemale = data[data.iloc[:, 1] == selfm[0]] pos = subindcheck(info, pd.DataFrame(datafemale.iloc[:, 0])) datafemale.insert(0, "pos", pos, True) no_dam = int(datafemale.shape[0] * selfm[1]) datafemale = datafemale.sort_values( by=['ABV'], ascending=False).iloc[0:no_dam, :] matlist = np.array(np.meshgrid( datamale.iloc[:, 0], datafemale.iloc[:, 0])).T.reshape(-1, 2) ids = np.array(np.meshgrid( datamale.iloc[:, 1], datafemale.iloc[:, 1])).T.reshape(-1, 2) if trait_names.size == 1: matndat = pd.DataFrame(index=range(matlist.shape[0]), columns=range( 4+trait_names.size)) else: matndat = pd.DataFrame( index=range(matlist.shape[0]), columns=range(5+trait_names.size)) matndat.iloc[:, [0, 1]] = ids matndat.iloc[:, [2, 3]] = matlist return matndat def selsgebv(notr, matndat, gbv, maxmale): """Calculate breeding values for each trait (zygote).""" mal = matndat.iloc[:, 2].tolist() fem = matndat.iloc[:, 3].tolist() if notr == 1: matndat.iloc[:, 4] = (np.array(gbv.iloc[mal, (0+2)]) + np.array( gbv.iloc[fem, (0+2)]))/2 elif notr > 1: matndat.iloc[:, 4:(5+notr)] = (np.array( gbv.iloc[mal, 2:(notr+3)]) + np.array(gbv.iloc[fem, 2:(notr+3)]))/2 idfxxx = np.unique(matndat.iloc[:, 3]) mmat = pd.DataFrame(index=range(len(idfxxx)), columns=range(matndat.shape[1])) for mmm in np.arange(0, len(idfxxx), 1): axx = matndat.loc[matndat.iloc[:, 3] == idfxxx[mmm]] tsire = np.array(axx.iloc[:, 2]) mmat.iloc[mmm, :] = axx.iloc[np.argmax( axx.iloc[:, axx.columns.size-1]), :] norepssire = Counter(mmat.iloc[:, 2]) lents = len(tsire) for nrs in range(lents): if norepssire[tsire[nrs]] <= maxmale-1: mmat.iloc[mmm, :] = np.array(axx[axx.iloc[:, 2] == tsire[nrs]]) break matndat = mmat if notr == 1: matndat.columns = np.concatenate(( ['MaleID', 'FemaleID', 'MaleIndex', 'FemaleIndex'], gbv.columns[gbv.columns.size-1]), axis=None) else: matndat.columns = np.concatenate(( ['MaleID', 'FemaleID', 'MaleIndex', 'FemaleIndex'], gbv.columns[2:gbv.columns.size].tolist()), axis=None) return matndat def selspbtizyg(notr, gbv, matndat, msvmsc, throrconst, maxmale): """Calculate prob of breeding top inds (zygote).""" mal1, fem1 = submsvmsc(msvmsc, pd.DataFrame(matndat.iloc[:, 0:2])) mal = matndat.iloc[:, 2].tolist() fem = matndat.iloc[:, 3].tolist() if notr == 1: matndat.iloc[:, 4] = (np.array(gbv.iloc[mal, (0+2)]) + np.array( gbv.iloc[fem, (0+2)]))/2 ttt = np.quantile(gbv.iloc[:, 0+2], q=1-throrconst) msvtemp = np.array(msvmsc.iloc[mal1, 0+2]) + np.array( msvmsc.iloc[fem1, 0+2]) matndat.iloc[:, 4] = 1 - scipy.stats.norm.cdf( ttt, loc=matndat.iloc[:, 4], scale=np.sqrt( msvtemp)) elif notr > 1: trait_names = gbv.columns[2:2+notr] colnam = np.concatenate((trait_names, "AG"), axis=None) colnam = namesdf(notr+1, colnam).decode('utf-8') t_ind = np.arange(colnam.shape[0])[np.in1d(colnam, trait_names)] for i in range(notr): matndat.iloc[:, 4+i] = ( np.array(gbv.iloc[mal, (i+2)]) + np.array( gbv.iloc[fem, (i+2)]))/2 ttt = np.quantile(gbv.iloc[:, 2+i], q=1-throrconst) msvtemp = np.array(msvmsc.iloc[mal1, t_ind[i]+2]) + np.array( msvmsc.iloc[fem1, t_ind[i]+2]) matndat.iloc[:, 4+i] = 1 - scipy.stats.norm.cdf( ttt, loc=matndat.iloc[:, 4+i], scale=np.sqrt(msvtemp)) matndat.iloc[:, 4+notr] = ( np.array(gbv.iloc[mal, (notr+2)]) + np.array( gbv.iloc[fem, (notr+2)]))/2 ttt = np.quantile(gbv.iloc[:, 2+notr], q=1-throrconst) msvtemp = np.array(msvmsc.loc[mal1, ["AG"]]) + np.array( msvmsc.loc[fem1, ["AG"]]) matndat.iloc[:, 4+notr] = 1 - scipy.stats.norm.cdf( ttt, loc=matndat.iloc[:, 4+notr], scale=np.sqrt(msvtemp.ravel())) idfxxx = np.unique(matndat.iloc[:, 3]) mmat = pd.DataFrame(index=range(len(idfxxx)), columns=range(matndat.shape[1])) for mmm in np.arange(0, len(idfxxx), 1): axx = matndat.loc[matndat.iloc[:, 3] == idfxxx[mmm]] tsire = np.array(axx.iloc[:, 2]) mmat.iloc[mmm, :] = axx.iloc[np.argmax( axx.iloc[:, axx.columns.size-1]), :] norepssire = Counter(mmat.iloc[:, 2]) lents = len(tsire) for nrs in range(lents): if norepssire[tsire[nrs]] <= maxmale-1: mmat.iloc[mmm, :] = np.array(axx[axx.iloc[:, 2] == tsire[nrs]]) break matndat = mmat if notr == 1: matndat.columns = np.concatenate(( ['MaleID', 'FemaleID', 'MaleIndex', 'FemaleIndex'], gbv.columns[gbv.columns.size-1]), axis=None) else: matndat.columns = np.concatenate(( ['MaleID', 'FemaleID', 'MaleIndex', 'FemaleIndex'], gbv.columns[2:gbv.columns.size].tolist()), axis=None) return matndat def selsindex(notr, gbv, matndat, msvmsc, throrconst, maxmale): """Calculate the index if constant is known (zygote).""" mal1, fem1 = submsvmsc(msvmsc, pd.DataFrame(matndat.iloc[:, 0:2])) mal = matndat.iloc[:, 2].tolist() fem = matndat.iloc[:, 3].tolist() if notr == 1: matndat.iloc[:, 4] = (np.array(gbv.iloc[mal, (0+2)]) + np.array( gbv.iloc[fem, (0+2)]))/2 msvtemp = np.array(msvmsc.iloc[mal1, 0+2]) + np.array( msvmsc.iloc[fem1, 0+2]) matndat.iloc[:, 4] = matndat.iloc[:, 4] + np.sqrt(msvtemp)*throrconst elif notr > 1: trait_names = gbv.columns[2:2+notr] colnam = np.concatenate((trait_names, "AG"), axis=None) colnam = namesdf(notr+1, colnam).decode('utf-8') t_ind = np.arange(colnam.shape[0])[np.in1d(colnam, trait_names)] for i in range(notr): matndat.iloc[:, 4+i] = ( np.array(gbv.iloc[mal, (i+2)]) + np.array( gbv.iloc[fem, (i+2)]))/2 msvtemp = np.array(msvmsc.iloc[mal1, t_ind[i]+2]) + np.array( msvmsc.iloc[fem1, t_ind[i]+2]) matndat.iloc[:, 4+i] = matndat.iloc[:, 4+i] + np.sqrt( msvtemp)*throrconst matndat.iloc[:, 4+notr] = ( np.array(gbv.iloc[mal, (notr+2)]) + np.array( gbv.iloc[fem, (notr+2)]))/2 msvtemp = np.array(msvmsc.loc[mal1, ["AG"]]) + np.array( msvmsc.loc[fem1, ["AG"]]) matndat.iloc[:, 4+notr] = matndat.iloc[:, 4+notr] + ( np.sqrt(msvtemp)*throrconst).ravel() idfxxx = np.unique(matndat.iloc[:, 3]) mmat = pd.DataFrame(index=range(len(idfxxx)), columns=range(matndat.shape[1])) for mmm in np.arange(0, len(idfxxx), 1): axx = matndat.loc[matndat.iloc[:, 3] == idfxxx[mmm]] tsire = np.array(axx.iloc[:, 2]) mmat.iloc[mmm, :] = axx.iloc[np.argmax( axx.iloc[:, axx.columns.size-1]), :] norepssire = Counter(mmat.iloc[:, 2]) lents = len(tsire) for nrs in range(lents): if norepssire[tsire[nrs]] <= maxmale-1: mmat.iloc[mmm, :] = np.array(axx[axx.iloc[:, 2] == tsire[nrs]]) break matndat = pd.DataFrame(mmat) if notr == 1: matndat.columns = np.concatenate(( ['MaleID', 'FemaleID', 'MaleIndex', 'FemaleIndex'], gbv.columns[gbv.columns.size-1]), axis=None) else: matndat.columns = np.concatenate(( ['MaleID', 'FemaleID', 'MaleIndex', 'FemaleIndex'], gbv.columns[2:gbv.columns.size].tolist()), axis=None) return matndat def subindcheckzyg(info, sub_idz): """Check sex and if matepairs provided in sub_idz are in group data.""" numbs = info.group.iloc[:, 1].astype(str).tolist() sub_idz = pd.DataFrame(sub_idz).reset_index(drop=True).squeeze() mal = sub_idz.iloc[:, 0].astype(str).tolist() fem = sub_idz.iloc[:, 1].astype(str).tolist() mal1 = [numbs.index(x) if x in numbs else None for x in mal] fem1 = [numbs.index(x) if x in numbs else None for x in fem] if len(pd.unique(info.group.iloc[mal1, 0])) != 1: sys.exit("Group class in sub_idz is not unique to ID of males") if len(pd.unique(info.group.iloc[fem1, 0])) != 1: sys.exit("Group class in sub_idz is not unique to ID of females") idn = sub_idz.reset_index(drop=True) mgp = list(set(info.group.iloc[mal1, 0])) fgp = list(set(info.group.iloc[fem1, 0])) if len(mgp) > 1 or len(fgp) > 1: sys.exit("multiple sexes detected in data") probn = [mgp[0], fgp[0]] return mal1, fem1, idn, probn def calcgbvzygsub(info, sub_idz): """Calc breeding values for matepairs.""" mal1, fem1, idn, _ = subindcheckzyg(info, sub_idz) no_individuals, trait_names = idn.shape[0], info.meff.columns notr = trait_names.size if notr == 1: gbv = np.zeros((no_individuals, notr)) mefff = np.array(info.meff.iloc[:, 0], float) matrix_me1 = makemebv(info.gmat[mal1, :], mefff) matrix_me2 = makemebv(info.gmat[fem1, :], mefff) gbv[:, 0] = (matrix_me1.sum(axis=1) + matrix_me2.sum(axis=1))/2 gbv = pd.DataFrame(gbv) gbv.columns = trait_names elif notr > 1: gbv = np.zeros((no_individuals, notr+1)) for i in range(notr): mefff = np.array(info.meff.iloc[:, i], float) matrix_me1 = makemebv(info.gmat[mal1, :], mefff) matrix_me2 = makemebv(info.gmat[fem1, :], mefff) gbv[:, i] = (matrix_me1.sum(axis=1) + matrix_me2.sum(axis=1))/2 gbv[:, notr] = gbv[:, notr] + info.indwt[i]*gbv[:, i] gbv = pd.DataFrame(gbv) colnames = np.concatenate((trait_names, "ABV"), axis=None) gbv.columns = colnames gbv.insert(0, "FemaleIndex", fem1, True) # insert ID gbv.insert(0, "MaleIndex", mal1, True) # insert ID gbv.insert(0, "FemaleID", idn.iloc[:, 1], True) # insert ID gbv.insert(0, "MaleID", idn.iloc[:, 0], True) # insert ID return gbv def calcprobzygsub(info, msvmsc, thresh, sub_idz): """Calculate the probability of breeding top individuals.""" subindcheckzyg(info, sub_idz) mal1, fem1 = submsvmsc(msvmsc, sub_idz) gbv = calcgbvzygsub(info, sub_idz) trait_names = info.meff.columns # traits names notr = trait_names.size gbvall = calcgbv(info, None) if notr == 1: probdf = np.zeros((gbv.shape[0], notr)) ttt = np.quantile(gbvall.iloc[:, (0+2)], q=1-thresh) msvmsc111 = np.array(msvmsc.iloc[mal1, (0+2)]) + np.array( msvmsc.iloc[fem1, (0+2)]) probdf[:, 0] = 1 - scipy.stats.norm.cdf( ttt, loc=gbv.iloc[:, (0+4)], scale=np.sqrt(msvmsc111)) probdf = pd.DataFrame(probdf) probdf.columns = trait_names elif notr > 1: colnam = np.concatenate((trait_names, "AG"), axis=None) colnam = namesdf(notr+1, colnam).decode('utf-8') probdf = np.zeros((gbv.shape[0], notr+1)) t_ind =
np.arange(colnam.shape[0])
numpy.arange
""" Finite difference methods module. """ from __future__ import division, print_function import warnings import numpy as np from numpy import linalg from scipy import special from numdifftools.extrapolation import convolve from numdifftools.multicomplex import Bicomplex _SQRT_J = (1j + 1.0) / np.sqrt(2.0) # = 1j**0.5 # step_ratio, parity, nterms FD_RULES = {} # (2.0, 1, 1): array([[1.]]), # (2.0, 1, 2): array([[-0.333333333333333333333, 2.666666666666666666666666666], # [8., -16.]]), # (2.0, 1, 3): array([[2.22222222222222222e-02, -8.8888888888889e-01, 5.6888888888888889e+00], # [-2.666666666666667e+00, 9.0666666666666667e+01, -1.7066666666666667e+02], # [1.7066666666666667e+02, -1.7066666666666667e+03, 2.7306666666666667e+03]]), # (2.0, 0, 2): array([[-1., 4.], # [4., -8.]]), # (2.0, 0, 4): array([[-4.76190476e-02, 1.33333333e+00, -1.06666667e+01, 2.43809524e+01], # [1.33333333e+00, -3.46666667e+01, 2.34666667e+02, -3.41333333e+02], # [-1.60000000e+01, 3.52000000e+02, -1.66400000e+03, 2.04800000e+03], # [7.31428571e+01, -1.02400000e+03, 4.09600000e+03, -4.68114286e+03]])} # @PydevIgnore def _assert(cond, msg): if not cond: raise ValueError(msg) def make_exact(h): """Make sure h is an exact representable number This is important when calculating numerical derivatives and is accomplished by adding 1.0 and then subtracting 1.0. """ return (h + 1.0) - 1.0 class DifferenceFunctions(object): """ Class defining difference functions Notes ----- The d """ # pylint: disable=unused-argument @staticmethod def _central_even(f, f_x0i, x0i, h): return (f(x0i + h) + f(x0i - h)) / 2.0 - f_x0i @staticmethod def _central(f, f_x0i, x0i, h): # @UnusedVariable return (f(x0i + h) - f(x0i - h)) / 2.0 @staticmethod def _forward(f, f_x0i, x0i, h): return f(x0i + h) - f_x0i @staticmethod def _backward(f, f_x0i, x0i, h): return f_x0i - f(x0i - h) @staticmethod def _complex(f, f_x, x, h): # @UnusedVariable return f(x + 1j * h).imag @staticmethod def _complex_odd(f, f_x, x, h): i_h = h * _SQRT_J return ((_SQRT_J / 2.) * (f(x + i_h) - f(x - i_h))).imag @staticmethod def _complex_odd_higher(f, f_x, x, h): i_h = h * _SQRT_J return ((3 * _SQRT_J) * (f(x + i_h) - f(x - i_h))).real @staticmethod def _complex_even(f, f_x, x, h): i_h = h * _SQRT_J return (f(x + i_h) + f(x - i_h)).imag @staticmethod def _complex_even_higher(f, f_x, x, h): i_h = h * _SQRT_J return 12.0 * (f(x + i_h) + f(x - i_h) - 2 * f_x).real @staticmethod def _multicomplex(f, f_x, x, h): z = Bicomplex(x + 1j * h, 0) return Bicomplex.__array_wrap__(f(z)).imag @staticmethod def _multicomplex2(f, f_x, x, h): z = Bicomplex(x + 1j * h, h) return Bicomplex.__array_wrap__(f(z)).imag12 class JacobianDifferenceFunctions(object): """Class defining Jacobian difference functions""" # pylint: disable=unused-argument @staticmethod def increments(n, h): """Returns Jacobian steps""" e_i = np.zeros(np.shape(h), float) for k in range(n): e_i[k] = h[k] yield e_i e_i[k] = 0 @staticmethod def _central(f, f_x, x, h): n = len(x) steps = JacobianDifferenceFunctions.increments(n, h) return np.array([(f(x + hi) - f(x - hi)) / 2.0 for hi in steps]) @staticmethod def _central_even(f, f_x, x, h): n = len(x) steps = JacobianDifferenceFunctions.increments(n, h) return np.array([(f(x + hi) + f(x - hi)) / 2.0 - f_x for hi in steps]) @staticmethod def _backward(f, f_x, x, h): n = len(x) steps = JacobianDifferenceFunctions.increments(n, h) return np.array([f_x - f(x - hi) for hi in steps]) @staticmethod def _forward(f, f_x, x, h): n = len(x) steps = JacobianDifferenceFunctions.increments(n, h) return np.array([f(x + hi) - f_x for hi in steps]) @staticmethod def _complex(f, f_x, x, h): n = len(x) steps = JacobianDifferenceFunctions.increments(n, h) return np.array([f(x + 1j * ih).imag for ih in steps]) @staticmethod def _complex_even(f, f_x, x, h): n = len(x) j_1 = _SQRT_J steps = JacobianDifferenceFunctions.increments(n, h) return np.array([(f(x + j_1*ih) + f(x - j_1*ih)).imag for ih in steps]) @staticmethod def _complex_odd(f, f_x, x, h): n = len(x) j_1 = _SQRT_J steps = JacobianDifferenceFunctions.increments(n, h) return np.array([((j_1 / 2.) * (f(x + j_1 * ih) - f(x - j_1 * ih))).imag for ih in steps]) @staticmethod def _multicomplex(f, f_x, x, h): n = len(x) steps = JacobianDifferenceFunctions.increments(n, h) cmplx_wrap = Bicomplex.__array_wrap__ partials = [cmplx_wrap(f(Bicomplex(x + 1j * hi, 0))).imag for hi in steps] return np.array(partials) class HessdiagDifferenceFunctions(object): """Class defining Hessdiag difference functions References ---------- <NAME>. (2009) Statistical applications of the complex-step method of numerical differentiation. The American Statistician, 63, 66-74 """ # pylint: disable=unused-argument @staticmethod def _central2(f, f_x, x, h): """Eq. 8 in Ridout (2009).""" n = len(x) increments = np.identity(n) * h partials = [(f(x + 2 * hi) + f(x - 2 * hi) + 2 * f_x - 2 * f(x + hi) - 2 * f(x - hi)) / 4.0 for hi in increments] return np.array(partials) @staticmethod def _central_even(f, f_x, x, h): """Eq. 9 in Ridout (2009).""" n = len(x) increments = np.identity(n) * h partials = [(f(x + hi) + f(x - hi)) / 2.0 - f_x for hi in increments] return np.array(partials) @staticmethod def _backward(f, f_x, x, h): n = len(x) increments = np.identity(n) * h partials = [f_x - f(x - hi) for hi in increments] return np.array(partials) @staticmethod def _forward(f, f_x, x, h): n = len(x) increments = np.identity(n) * h partials = [f(x + hi) - f_x for hi in increments] return np.array(partials) @staticmethod def _multicomplex2(f, f_x, x, h): n = len(x) increments = np.identity(n) * h cmplx_wrap = Bicomplex.__array_wrap__ partials = [cmplx_wrap(f(Bicomplex(x + 1j * hi, hi))).imag12 for hi in increments] return np.array(partials) @staticmethod def _complex_even(f, f_x, x, h): n = len(x) increments = np.identity(n) * h * (1j + 1) / np.sqrt(2) partials = [(f(x + hi) + f(x - hi)).imag for hi in increments] return np.array(partials) class HessianDifferenceFunctions(object): """Class defining Hessian difference functions References ---------- <NAME>. (2009) "Statistical applications of the complex-step method of numerical differentiation", The American Statistician, 63, 66-74 """ # pylint: disable=unused-argument @staticmethod def _complex_even(f, f_x, x, h): """ Calculate Hessian with complex-step derivative approximation The stepsize is the same for the complex and the finite difference part Eq 10 in Ridout (2009). """ n = len(x) eee = np.diag(h) hess = 2. * np.outer(h, h) for i in range(n): for j in range(i, n): hess[i, j] = (f(x + 1j * eee[i] + eee[j]) - f(x + 1j * eee[i] - eee[j])).imag / hess[j, i] hess[j, i] = hess[i, j] return hess @staticmethod def _multicomplex2(f, f_x, x, h): """Calculate Hessian with Bicomplex-step derivative approximation""" n = len(x) eee = np.diag(h) hess = np.outer(h, h) cmplx_wrap = Bicomplex.__array_wrap__ for i in range(n): for j in range(i, n): zph = Bicomplex(x + 1j * eee[i, :], eee[j, :]) hess[i, j] = cmplx_wrap(f(zph)).imag12 / hess[j, i] hess[j, i] = hess[i, j] return hess @staticmethod def _central_even(f, f_x, x, h): """Eq 9 in Ridout (2009).""" n = len(x) eee = np.diag(h) dtype = np.result_type(f_x, float) # make sure it is at least float64 hess = np.empty((n, n), dtype=dtype) np.outer(h, h, out=hess) for i in range(n): e_i = eee[i, :] hess[i, i] = (f(x + 2 * e_i) - 2 * f_x + f(x - 2 * e_i)) / (4. * hess[i, i]) for j in range(i + 1, n): e_j = eee[j, :] hess[i, j] = (f(x + e_i + e_j) - f(x + e_i - e_j) - f(x - e_i + e_j) + f(x - e_i - e_j)) / (4. * hess[j, i]) hess[j, i] = hess[i, j] return hess @staticmethod def _central2(f, f_x, x, h): """Eq. 8 in Ridout (2009)""" n = len(x) eee = np.diag(h) dtype = np.result_type(f_x, float) f_xpe = np.empty(n, dtype=dtype) f_xme = np.empty(n, dtype=dtype) for i in range(n): f_xpe[i] = f(x + eee[i]) f_xme[i] = f(x - eee[i]) hess = np.empty((n, n), dtype=dtype) np.outer(h, h, out=hess) for i in range(n): for j in range(i, n): hess[i, j] = (f(x + eee[i, :] + eee[j, :]) + f(x - eee[i, :] - eee[j, :]) - f_xpe[i] - f_xpe[j] + f_x - f_xme[i] - f_xme[j] + f_x) / (2 * hess[j, i]) hess[j, i] = hess[i, j] return hess @staticmethod def _forward(f, f_x, x, h): """Eq. 7 in Ridout (2009)""" n = len(x) eee = np.diag(h) dtype = np.result_type(f_x, float) g = np.empty(n, dtype=dtype) for i in range(n): g[i] = f(x + eee[i, :]) hess = np.empty((n, n), dtype=dtype) np.outer(h, h, out=hess) for i in range(n): for j in range(i, n): hess[i, j] = (f(x + eee[i, :] + eee[j, :]) - g[i] - g[j] + f_x) / hess[j, i] hess[j, i] = hess[i, j] return hess @staticmethod def _backward(f, f_x, x, h): return HessianDifferenceFunctions._forward(f, f_x, x, -h) class LogRule(object): """Log spaced finite difference rule class Parameters ---------- n : int, optional Order of the derivative. method : {'central', 'complex', 'multicomplex', 'forward', 'backward'} defines the method used in the approximation order : int, optional defines the order of the error term in the Taylor approximation used. For 'central' and 'complex' methods, it must be an even number. Examples -------- >>> from numdifftools.finite_difference import LogRule >>> np.allclose(LogRule(n=1, method='central', order=2).rule(step_ratio=2.0), 1) True >>> np.allclose(LogRule(n=1, method='central', order=4).rule(step_ratio=2.), ... [-0.33333333, 2.66666667]) True >>> np.allclose(LogRule(n=1, method='central', order=6).rule(step_ratio=2.), ... [ 0.02222222, -0.88888889, 5.68888889]) True >>> np.allclose(LogRule(n=1, method='forward', order=2).rule(step_ratio=2.), [-1., 4.]) True >>> np.allclose(LogRule(n=1, method='forward', order=4).rule(step_ratio=2.), ... [ -0.04761905, 1.33333333, -10.66666667, 24.38095238]) True >>> np.allclose(LogRule(n=1, method='forward', order=6).rule(step_ratio=2.), ... [ -1.02406554e-04, 1.26984127e-02, -5.07936508e-01, ... 8.12698413e+00, -5.20126984e+01, 1.07381055e+02]) True >>> step_ratio=2.0 >>> fd_rule = LogRule(n=2, method='forward', order=4) >>> h = 0.002*(1./step_ratio)**np.arange(6) >>> x0 = 1. >>> f = np.exp >>> f_x0 = f(x0) >>> f_del = f(x0+h) - f_x0 # forward difference >>> f_del = fd_rule.diff(f, f_x0, x0, h) # or alternatively >>> fder, h, shape = fd_rule.apply(f_del, h, step_ratio) >>> np.allclose(fder, f(x0)) True """ _difference_functions = DifferenceFunctions() def __init__(self, n=1, method='central', order=2): self.n = n self.method = method self.order = order # --- properties --- @property def _odd_derivative(self): return self.n % 2 == 1 @property def _even_derivative(self): return self.n % 2 == 0 @property def _derivative_mod_four_is_three(self): return self.n % 4 == 3 @property def _derivative_mod_four_is_zero(self): return self.n % 4 == 0 @property def eval_first_condition(self): """True if f(x0) needs to be evaluated given the differentiation method.""" even_derivative = self._even_derivative return ((even_derivative and self.method in ('central', 'central2')) or self.method in ['forward', 'backward'] or self.method == 'complex' and self._derivative_mod_four_is_zero) @property def _complex_high_order(self): return self.method == 'complex' and (self.n > 1 or self.order >= 4) @property def richardson_step(self): """The step between exponents in the error polynomial of the Richardson extrapolation.""" complex_step = 4 if self._complex_high_order else 2 return dict(central=2, central2=2, complex=complex_step, multicomplex=2).get(self.method, 1) @property def method_order(self): """The leading order of the truncation error of the Richardson extrapolation.""" step = self.richardson_step # Make sure it is even and at least 2 or 4 order = max((self.order // step) * step, step) return order def _parity_complex(self, order, method_order): if self.n == 1 and method_order < 4: return (order % 2) + 1 return (3 + 2 * int(self._odd_derivative) + int(self._derivative_mod_four_is_three) + int(self._derivative_mod_four_is_zero)) def _parity(self, method, order, method_order): if method.startswith('central'): return (order % 2) + 1 if method == 'complex': return self._parity_complex(order, method_order) return 0 @staticmethod def _fd_matrix(step_ratio, parity, nterms): """ Return matrix for finite difference and complex step derivation. Parameters ---------- step_ratio : real scalar ratio between steps in unequally spaced difference rule. parity : scalar, integer 0 (one sided, all terms included but zeroth order) 1 (only odd terms included) 2 (only even terms included) 3 (only every 4'th order terms included starting from order 2) 4 (only every 4'th order terms included starting from order 4) 5 (only every 4'th order terms included starting from order 1) 6 (only every 4'th order terms included starting from order 3) nterms : scalar, integer number of terms """ _assert(0 <= parity <= 6, 'Parity must be 0, 1, 2, 3, 4, 5 or 6! ({0:d})'.format(parity)) step = [1, 2, 2, 4, 4, 4, 4][parity] inv_sr = 1.0 / step_ratio offset = [1, 1, 2, 2, 4, 1, 3][parity] c_0 = [1.0, 1.0, 1.0, 2.0, 24.0, 1.0, 6.0][parity] c = c_0 / special.factorial(np.arange(offset, step * nterms + offset, step)) [i, j] = np.ogrid[0:nterms, 0:nterms] return np.atleast_2d(c[j] * inv_sr ** (i * (step * j + offset))) @property def _flip_fd_rule(self): return ((self._even_derivative and (self.method == 'backward')) or (self.method == 'complex' and (self.n % 8 in [3, 4, 5, 6]))) @property def _multicomplex_middle_name(self): if self.method == 'multicomplex' and self.n > 1: _assert(self.n <= 2, 'Multicomplex method only support first ' 'and second order derivatives.') return '2' return '' def _get_middle_name(self): if self._even_derivative and self.method in ('central', 'complex'): return '_even' if self._complex_high_order and self._odd_derivative: return '_odd' return self._multicomplex_middle_name def _get_last_name(self): last = '' if (self.method == 'complex' and self._derivative_mod_four_is_zero or self._complex_high_order and self._derivative_mod_four_is_three): last = '_higher' return last @property def diff(self): "The difference function" first = '_{0!s}'.format(self.method) middle = self._get_middle_name() last = self._get_last_name() name = first + middle + last return getattr(self._difference_functions, name) def rule(self, step_ratio=2.0): """ Return finite differencing rule. Parameters ---------- step_ratio : real scalar, optional, default 2.0 Ratio between sequential steps generated. Notes ----- The rule is for a nominal unit step size, and must be scaled later to reflect the local step size. Member method used: _fd_matrix Member variables used: n order method """ method = self.method if method in ('multicomplex',) or self.n == 0: return
np.ones((1,))
numpy.ones
import numpy as np from .utils import binary_cross_entropy, check_shapes from abc import ABC def supported_losses(): return [x.__name__ for x in LossFunc.__subclasses__()] class Loss: def __init__(self, value, delta): self.value = value self.delta = delta class LossFunc: def __init__(self, pred=None, target=None): self.pred = pred self.target = target self.eps = 1e-6 @check_shapes def apply(self, p, t): raise NotImplementedError @property def delta(self): raise NotImplementedError def __call__(self, p, t): return self.apply(p, t) class MSE(LossFunc, ABC): def __init__(self): super(MSE, self).__init__() @check_shapes def apply(self, p, t): super(MSE, self).__init__(p, t) return Loss(np.mean((p - t) ** 2, axis=0) / 2, self.delta) @property def delta(self): return self.pred - self.target class CrossEntropy(LossFunc, ABC): # https://cs231n.github.io/neural-networks-case-study/#grad def __init__(self): super(CrossEntropy, self).__init__() @check_shapes def apply(self, p, t): super(CrossEntropy, self).__init__(p, t) probs = self.soft_max(p) loss = -np.log(probs[range(p.shape[0]), np.array(t).squeeze(-1)]) return Loss(
np.mean(loss, axis=0)
numpy.mean
import numpy as np import scipy from scipy import linalg import cvxpy as cp havedoneqcqpimports = False '''READ THIS IF YOU WANT TO USE QCQP''' #Need a very specific set of libraries #pip install cvxpy==0.4.9 #pip install CVXcanon==0.1.0 #pip install qcqp #AFTER THIS: Go to the python files in your computer #For me its C:\Users\jonat\AppData\Local\Programs\Python\Python38\Lib\site-packages\cvxpy\atoms\log_sum_exp #Change from scipy.misc import logsumexp to from scipy.special import logsumexp #Also might require you to get a mosek license and install mosek #pip install Mosek #Request personal Academic License at https://www.mosek.com/products/academic-licenses/ and follow instructions '''2nd attempt''' #pip install gurobipy ''' import cvxpy as cvx #import mosek from qcqp import * #import qcqp as qcp import importlib importlib.reload(qcqp) importlib.reload(cvx)''' def cvxpy_density_matrix_feasibility_sdp_routine(D_matrix,E_matrix,R_matrices,F_matrices,gammas,sdp_tolerance_bound, verbose = True,additionalbetaconstraints=None,betainitialpoint=None):#additional beta constraints comes in list of list , [[matrix,value],[matrix,value]] numstate = len(D_matrix) D_matrix_np = np.array(D_matrix) #D_matrix_np = 0.5*(D_matrix_np + np.conjugate(np.transpose(D_matrix_np))) E_matrix_np = np.array(E_matrix) #E_matrix_np = 0.5*(E_matrix_np + np.conjugate(np.transpose(E_matrix_np))) R_matrices_np = [] F_matrices_np = [] for r in R_matrices: R_matrices_np.append(np.array(r)) for f in F_matrices: F_matrices_np.append(np.array(f)) beta = cp.Variable((numstate,numstate),complex=True) constraints = [beta >> 0] #constraints += [cp.trace(E_matrix_np @ beta) == 1] constraints += [beta.H == beta] if additionalbetaconstraints != None: for con,value in additionalbetaconstraints: constraints += [cp.trace(con@beta)==value] a = -1j*(D_matrix_np@beta@E_matrix_np-E_matrix_np@beta@D_matrix_np) #finalconstraints = [] for i in range(len(gammas)): a = a + gammas[i]*(R_matrices_np[i]@[email protected](np.conjugate(R_matrices_np[i]))-0.5*F_matrices_np[i]@beta@E_matrix_np-0.5*E_matrix_np@beta@F_matrices_np[i]) #a = -1j*(D_matrix_np@beta@E_matrix_np-E_matrix_np@beta@D_matrix_np)+gammas[0]*(R_matrices_np[0]@[email protected](np.conjugate(R_matrices_np[0]))-0.5*F_matrices_np[0]@beta@E_matrix_np-0.5*E_matrix_np@beta@F_matrices_np[0]) #constraints += [cp.trace(E_matrix_np @ beta) == 1] #constraints += [cp.trace(a@(a.H))<=sdp_tolerance_bound] #constraints += [cp.trace(a@(a.H))>=-sdp_tolerance_bound] if sdp_tolerance_bound == 0: if verbose: print('Feasibility SDP is set up with hard equality constraints') #constraints += [a == 0] constraints += [a == 0] # constraints += [cp.trace(E_matrix_np @ beta) == 1] #try not enforcing the trace condition else: print('Feasibility SDP is set up with interval constraint <'+str(sdp_tolerance_bound)+ ' & >-'+str(sdp_tolerance_bound)) raise(RuntimeError("Not implemented yet")) #constraints += [cp.abs(cp.trace(a@(a.H)))<=sdp_tolerance_bound] #constraints += [cp.abs(cp.trace(a@(a.H)))>=-sdp_tolerance_bound] # constraints += [cp.real(cp.trace(E_matrix_np @ beta)) <= 1+sdp_tolerance_bound] # constraints += [cp.real(cp.trace(E_matrix_np @ beta)) >= 1-sdp_tolerance_bound] prob = cp.Problem(cp.Minimize(0),constraints) if type(betainitialpoint)!=type(None): beta.value = betainitialpoint prob.solve(solver=cp.MOSEK,verbose=False) denmat = beta.value denmat = denmat / np.trace(E_matrix_np @ denmat) #print(denmat) if type(denmat) == type(None): return None,None else: minval = np.trace(denmat@D_matrix_np) return denmat,minval def cvxpy_density_matrix_feasibility_sdp_routine_old(D_matrix,E_matrix,R_matrices,F_matrices,gammas,sdp_tolerance_bound): numstate = len(D_matrix) D_matrix_np = np.array(D_matrix) #D_matrix_np = 0.5*(D_matrix_np + np.conjugate(np.transpose(D_matrix_np))) E_matrix_np = np.array(E_matrix) #E_matrix_np = 0.5*(E_matrix_np + np.conjugate(np.transpose(E_matrix_np))) R_matrices_np = [] F_matrices_np = [] for r in R_matrices: R_matrices_np.append(np.array(r)) for f in F_matrices: F_matrices_np.append(np.array(f)) beta = cp.Variable((numstate,numstate),complex=True) constraints = [beta >> 0] #constraints += [cp.trace(E_matrix_np @ beta) == 1] constraints += [beta.H == beta] a = -1j*(D_matrix_np@beta@E_matrix_np-E_matrix_np@beta@D_matrix_np) #finalconstraints = [] for i in range(len(gammas)): a = a + gammas[i]*(R_matrices_np[i]@[email protected](np.conjugate(R_matrices_np[i]))-0.5*F_matrices_np[i]@beta@E_matrix_np-0.5*E_matrix_np@beta@F_matrices_np[i]) #a = -1j*(D_matrix_np@beta@E_matrix_np-E_matrix_np@beta@D_matrix_np)+gammas[0]*(R_matrices_np[0]@[email protected](np.conjugate(R_matrices_np[0]))-0.5*F_matrices_np[0]@beta@E_matrix_np-0.5*E_matrix_np@beta@F_matrices_np[0]) #constraints += [cp.trace(E_matrix_np @ beta) == 1] constraints += [a == 0] #constraints += [cp.trace(a@(a.H))<=sdp_tolerance_bound] #constraints += [cp.trace(a@(a.H))>=-sdp_tolerance_bound] if sdp_tolerance_bound == 0: print('Feasibility SDP is set up with hard constraint == 1') #constraints += [a == 0] constraints += [cp.trace(E_matrix_np @ beta) == 1] else: print('Feasibility SDP is set up with interval constraint <'+str(sdp_tolerance_bound)+ ' & >-'+str(sdp_tolerance_bound)) #constraints += [cp.abs(cp.trace(a@(a.H)))<=sdp_tolerance_bound] #constraints += [cp.abs(cp.trace(a@(a.H)))>=-sdp_tolerance_bound] constraints += [cp.real(cp.trace(E_matrix_np @ beta)) <= 1+sdp_tolerance_bound] constraints += [cp.real(cp.trace(E_matrix_np @ beta)) >= 1-sdp_tolerance_bound] prob = cp.Problem(cp.Minimize(0),constraints) prob.solve(solver=cp.MOSEK,verbose=False) denmat = beta.value #print(denmat) if type(denmat) == type(None): return None,None else: minval = np.trace(denmat@D_matrix_np) return denmat,minval def cvxpy_density_matrix_routine(D_matrix,E_matrix): numstate = len(D_matrix) #print(numstate) D_matrix_np = np.array(D_matrix) D_matrix_np = 0.5*(D_matrix_np + np.conjugate(np.transpose(D_matrix_np))) E_matrix_np = np.array(E_matrix) E_matrix_np = 0.5*(E_matrix_np + np.conjugate(np.transpose(E_matrix_np))) #Realification of E #E_real = np.real(E_matrix_np) #E_imag = np.imag(E_matrix_np) #E_realified = np.bmat([[E_real,-E_imag],[E_imag,E_real]]) #Realification of D #D_real = np.real(D_matrix_np) #D_imag = np.imag(D_matrix_np) #D_realified = np.bmat([[D_real,-D_imag],[D_imag,D_real]]) beta = cp.Variable((numstate,numstate),hermitian=True) #print(np.shape(beta)) # Define and solve the CVXPY problem. constraints = [beta >> 0] #constraints += [beta == beta.H] constraints += [cp.trace(E_matrix_np @ beta) == 1] prob = cp.Problem(cp.Minimize(cp.real(cp.trace(D_matrix_np @ beta))),constraints) prob.solve(solver=cp.MOSEK,verbose=False) #Return result. #Returns an np array of the density matrix and the min eigenvalue #Needs to unrealify denmat = beta.value #denmat_real = denmat[0:numstate,0:numstate] #denmat_imag = denmat[numstate:numstate*2,0:numstate] #denmat = denmat_real+1j*denmat_imag minval = np.trace(denmat@D_matrix_np) return denmat,minval def gram_schmidt(set_of_vectors, psd_matrix): """ computes the gram schmidt decomposition of a set of vectors w.r.t a psd, Hermitian matrix E. Here, the vector space is over the complex field. """ new_set = [] E = psd_matrix for i in range(len(set_of_vectors)): new_vec = set_of_vectors[i] for j in range(len(new_set)): already_done = new_set[j] new_vec = new_vec - already_done.conj().T @ E @ new_vec * already_done new_vec_norm = np.sqrt(new_vec.conj().T @ E @ new_vec) new_vec = new_vec / new_vec_norm new_set.append(new_vec) return new_set def eig_diag_routine(D_matrix, E_matrix, inv_cond = 10**(-2), degeneracy_tol = 5): #degeneracy tol is the number of decimal places until I consider an eigenvalue non degenerate #Here, its like Toby's diag routine but I write it myself for learning purposes #Also, with some modifications (return all the eigvecs rather than just the first one) #inversion cutoff, e.g. eigenvalues smaller than this are set to zero #this value can be adjusted depending on shot noise, try to find value that fits your noise level # inv_cond=10**-12 #i use this value for statevector simulation (no shotnoise) # inv_cond=10**-2 #i use this value for shotnoise with ~10000 shots e_vals,e_vecs=scipy.linalg.eigh(E_matrix) #get e_matrix eigenvalues inverted, cutoff with inv_cond e_vals_inverted=np.array(e_vals) for k in range(len(e_vals_inverted)): #print(e_vals_inverted[k]) #print(inv_cond) if(e_vals_inverted[k]<inv_cond): e_vals_inverted[k]=0 else: e_vals_inverted[k]=1/e_vals_inverted[k] #get e_matrix eigenvalues conditioned, such that small/negative eigenvalues are set to zero e_vals_cond=np.array(e_vals) for k in range(len(e_vals_cond)): if(e_vals_cond[k]<inv_cond): e_vals_cond[k]=0 #convert generalized eigenvalue problem with a regular eigenvalue problem using paper "EIGENVALUE PROBLEMS IN STRUCTURAL MECHANICS" #we want to solve D\alpha=\lambda E\alpha #turns out this does not work well if E_matrix has near zero eigenvalues #instead, we turn this into regular eigenvalue problem which is more behaved #we diagonalize E_matrix=U*F*F*U^\dag with diagonal F #Then, define S=U*F, and S^-1=F^-1*U^\dag. Use conditioned eigenvalues F for this such that no negative eigenvalues appear, and for inverse large eigenvalues set to zero #solve S^-1*D*S^-1^\dag*a=\lambda a #convert \alpha=S^-1^\dag*a. This is the solution to original problem. #this procedure ensures that converted eigenvalue problem remains hermitian, and no other funny business happens # s_matrix = [email protected](np.sqrt(e_vals_cond)) s_matrix_inv = np.diag(np.sqrt(e_vals_inverted))@e_vecs.conj().T toeigmat = s_matrix_inv @ D_matrix @ s_matrix_inv.conj().T #S^-1*D*S^-1^\dag matrix might not be Hermitian if D is not Hermitian. SO use #eig instead of eigh #We still use the term "qae_energy" because traditionally this is where the generalised eigenvalue problem came from qae_energy,qae_vectors=scipy.linalg.eig(toeigmat) ini_alpha_vecs = qae_vectors ini_alpha_vecs = s_matrix_inv.conj().T @ ini_alpha_vecs #Note that after the above procedure, since some of the eigenvectors are in the null-space of the E_matrix (recall that we mapped those "wrong" eigenvalues to 0), #those eigenvectors are not what we want. So, we need to throw them away. #To find those eigenvectors corresponding to these wrong eigenvalues, because they are in the nullspace of E, they correspond to alphavec^\dag E alphavec = 0 #Here, we might as well normalise the alpha_vecs,too because they might be #like wrong, cause we kinda threw values away correct_eigvals = [] first_index = 0 for j in range(len(qae_energy)): jth_vector = ini_alpha_vecs[:,j] norm = np.sqrt(jth_vector.conj().T @ E_matrix @ jth_vector) if np.abs(1-norm) < inv_cond: first_index = j break first_vector = ini_alpha_vecs[:,first_index] correct_eigvals.append(qae_energy[first_index]) after_normalisation = first_vector / np.sqrt(first_vector.conj().T @ E_matrix @ first_vector) for j in range(first_index + 1, len(qae_energy)): jth_vector = ini_alpha_vecs[:,j] norm = np.sqrt(jth_vector.conj().T @ E_matrix @ jth_vector) if np.abs(1-norm) < inv_cond: jth_vector = jth_vector/norm correct_eigvals.append(qae_energy[j]) after_normalisation = np.column_stack((after_normalisation, jth_vector)) #Here, we do gram schimidt on the eigenspaces of dimension 2 and above unique_eval_indices = dict() for index in range(len(correct_eigvals)): val = correct_eigvals[index] val = round(val.real,degeneracy_tol) + 1j * round(val.imag, degeneracy_tol) if val not in unique_eval_indices.keys(): unique_eval_indices[val] = [index] else: unique_eval_indices[val].append(index) # print(unique_eval_indices) if len(unique_eval_indices.keys()) == len(correct_eigvals): #all eigenvalues are unique, don't need to do any gram schmit return (np.array(correct_eigvals), after_normalisation) else: #sadly, have to do gram schmidt.. print("Doing gram schmidt cause there are some degeneracies") for eigval in unique_eval_indices.keys(): eigenvectors = [] for index in unique_eval_indices[eigval]: eigenvectors.append(after_normalisation[:,index]) new_eigenvectors = gram_schmidt(eigenvectors, E_matrix) counter = 0 for index in unique_eval_indices[eigval]: after_normalisation[:,index] = new_eigenvectors[counter] counter += 1 return (np.array(correct_eigvals) ,after_normalisation) def diag_routine(D_matrix, E_matrix, inv_cond = 10**(-6)): #Like toby's diag routine, with some modifications (return all the eigvecs rather than just the first one) #inversion cutoff, e.g. eigenvalues smaller than this are set to zero #this value can be adjusted depending on shot noise, try to find value that fits your noise level # inv_cond=10**-12 #i use this value for statevector simulation (no shotnoise) # inv_cond=10**-2 #i use this value for shotnoise with ~10000 shots #Here, I'll use eigh directly because now I'm always solving the Hermitian version. I.e, D_matrix must be hermitian e_vals,e_vecs=scipy.linalg.eigh(E_matrix) #get e_matrix eigenvalues inverted, cutoff with inv_cond e_vals_inverted=np.array(e_vals) for k in range(len(e_vals_inverted)): if(e_vals_inverted[k]<inv_cond): e_vals_inverted[k]=0 else: e_vals_inverted[k]=1/e_vals_inverted[k] #get e_matrix eigenvalues conditioned, such that small/negative eigenvalues are set to zero e_vals_cond=np.array(e_vals) for k in range(len(e_vals_cond)): if(e_vals_cond[k]<inv_cond): e_vals_cond[k]=0 #convert generalized eigenvalue problem with a regular eigenvalue problem using paper "EIGENVALUE PROBLEMS IN STRUCTURAL MECHANICS" #we want to solve D\alpha=\lambda E\alpha #turns out this does not work well if E_matrix has near zero eigenvalues #instead, we turn this into regular eigenvalue problem which is more behaved #we diagonalize E_matrix=U*F*F*U^\dag with diagonal F #Then, define S=U*F, and S^-1=F^-1*U^\dag. Use conditioned eigenvalues F for this such that no negative eigenvalues appear, and for inverse large eigenvalues set to zero #solve S^-1*D*S^-1^\dag*a=\lambda a #convert \alpha=S^-1^\dag*a. This is the solution to original problem. #this procedure ensures that converted eigenvalue problem remains hermitian, and no other funny business happens # s_matrix = [email protected](np.sqrt(e_vals_cond)) s_matrix_inv = np.diag(np.sqrt(e_vals_inverted))@e_vecs.conj().T toeigmat = s_matrix_inv @ D_matrix @ s_matrix_inv.conj().T #S^-1*D*S^-1^\dag matrix might not be Hermitian if D is not Hermitian. SO use #eig instead of eigh #We still use the term "qae_energy" because traditionally this is where the generalised eigenvalue problem came from qae_energy,qae_vectors=scipy.linalg.eigh(toeigmat) ini_alpha_vecs = qae_vectors ini_alpha_vecs = s_matrix_inv.conj().T @ ini_alpha_vecs #Note that after the above procedure, since some of the eigenvectors are in the null-space of the E_matrix (recall that we mapped those "wrong" eigenvalues to 0), #those eigenvectors are not what we want. So, we need to throw them away. #To find those eigenvectors corresponding to these wrong eigenvalues, because they are in the nullspace of E, they correspond to alphavec^\dag E alphavec = 0 #Here, we might as well normalise the alpha_vecs,too because they might be #like wrong, cause we kinda threw values away correct_eigvals = [] first_index = 0 for j in range(len(qae_energy)): jth_vector = ini_alpha_vecs[:,j] norm = np.sqrt(jth_vector.conj().T @ E_matrix @ jth_vector) if np.abs(1-norm) < inv_cond: first_index = j break #else: # print('Thrown away 1') #print(first_index) first_vector = ini_alpha_vecs[:,first_index] correct_eigvals.append(qae_energy[first_index]) after_normalisation = first_vector / np.sqrt(first_vector.conj().T @ E_matrix @ first_vector) for j in range(first_index + 1, len(qae_energy)): jth_vector = ini_alpha_vecs[:,j] norm = np.sqrt(jth_vector.conj().T @ E_matrix @ jth_vector) if np.abs(1-norm) < inv_cond: #print('Add 1 in') jth_vector = jth_vector/norm correct_eigvals.append(qae_energy[j]) after_normalisation = np.column_stack((after_normalisation, jth_vector)) #else: # print('Thrown away 1') return (np.array(correct_eigvals), after_normalisation) def qcqp_IQAE_routine(D_matrix, E_matrix): #global havedoneqcqpimports '''if havedoneqcqpimports == False: import cvxpy as cvx import mosek #from qcqp import * import qcqp as qcp import importlib importlib.reload(qcqp) importlib.reload(cvx) havedoneqcqpimports = True''' lengthofalpha = D_matrix.shape[0] #Realification of E E_real = np.real(E_matrix) E_imag = np.imag(E_matrix) E_realified = np.bmat([[E_real,-E_imag],[E_imag,E_real]]) #realification of D D_real = np.real(D_matrix) D_imag = np.imag(D_matrix) D_realified = np.bmat([[D_real,-D_imag],[D_imag,D_real]]) #Create Variable x = cvx.Variable(2*lengthofalpha) #Define objective and constraints objective = cvx.quad_form(x,D_realified) constraints = [cvx.quad_form(x,E_realified)==1] #Solve prob = cvx.Problem(cvx.Minimize(objective), constraints) qcqp = QCQP(prob) #Here could use SDP relaxation to find a starting point for local methods #Although here, we just use a random point qcqp.suggest(SDR,solver=cvx.MOSEK) #Attempt to improve the starting point given by the suggest method f_cd, v_cd = qcqp.improve(COORD_DESCENT) result = np.array(x.value) #unrealify newalphareal = np.array(result[:lengthofalpha]) newalphaimag = np.array(result[lengthofalpha:]) newalpha = newalphareal + 1j*newalphaimag #normalpha = np.sqrt(np.abs(np.dot(np.transpose(np.conjugate(newalpha)),np.dot(E_matrix,newalpha)))) #newalpha = newalpha/normalpha return newalpha #OPTIMIZERS MUST RETURN THE UPDATED ALPHAS def eigh_method_for_TTQS(E_matrix,W_matrix,alphas,inv_cond): e_vals,e_vecs=scipy.linalg.eigh(E_matrix) e_vals_adjusted=np.array(e_vals) e_vals_inverted=np.array(e_vals) for k in range(len(e_vals_inverted)): if(e_vals_inverted[k]<inv_cond): e_vals_inverted[k]=0 else: e_vals_inverted[k]=1/e_vals_inverted[k] e_vals_cond=np.array(e_vals) for k in range(len(e_vals_cond)): if(e_vals_cond[k]<inv_cond): e_vals_cond[k]=0 W_matrix = -W_matrix #convert generalized eigenvalue problem with a regular eigenvalue problem using paper "EIGENVALUE PROBLEMS IN STRUCTURAL MECHANICS" #we want to solve W\alpha=\lambda E\alpha #turns out this does not work well if E_matrix has near zero eigenvalues #instead, we turn this into regular eigenvalue problem which is more behaved #we diagonalize E_matrix=U*F*F*U^\dag with diagonal F #Then, define S=U*F, and S^-1=F^-1*U^\dag. Use conditioned eigenvalues F for this such that no negative eigenvalues appear, and for inverse large eigenvalues set to zero #solve S^-1*W*S^-1^\dag*a=\lambda a #convert \alpha=S^-1^\dag*a. This is the solution to original problem. #this procedure ensures that converted eigenvalue problem remains hermitian, and no other funny business happens s_matrix=np.dot(e_vecs,np.diag(np.sqrt(e_vals_cond))) s_matrix_inv=np.dot(np.diag(np.sqrt(e_vals_inverted)),np.transpose(np.conjugate(e_vecs))) toeigmat=np.dot(s_matrix_inv,np.dot(W_matrix,np.transpose(np.conjugate(s_matrix_inv)))) energy,vectors=scipy.linalg.eigh(toeigmat) #energy,vectors=scipy.linalg.eig(toeigmat) #print(energy) #smallestindex = 0 #minimumev = np.real(energy[0]) #for i in range(len(energy)): # if np.real(energy[i])<minimumev: # smallestindex = i # minimumev = np.real(energy[i]) #print(smallestindex) ini_alpha_vec=vectors[:,0] ini_alpha_vec=np.dot(np.transpose(np.conjugate(s_matrix_inv)),ini_alpha_vec) norm_ini_alpha=np.sqrt(np.abs(np.dot(np.transpose(np.conjugate(ini_alpha_vec)),np.dot(E_matrix,ini_alpha_vec)))) newalpha=ini_alpha_vec/norm_ini_alpha return newalpha #havedoneqcqpimports = False def qcqp_for_TTQS(E_matrix,W_matrix,alphas,bounddiff=10**(-6)): #global havedoneqcqpimports ''' if havedoneqcqpimports == False: import cvxpy as cvx import mosek #from qcqp import * import qcqp as qcp import importlib importlib.reload(qcp) importlib.reload(cvx) havedoneqcqpimports = True''' lengthofalpha = len(alphas) #Realification of E E_real = np.real(E_matrix) E_imag = np.imag(E_matrix) E_realified = np.bmat([[E_real,-E_imag],[E_imag,E_real]]) #realification of W W_real = np.real(W_matrix) W_imag = np.imag(W_matrix) W_realified = np.bmat([[W_real,-W_imag],[W_imag,W_real]]) #Create Variable x = cvx.Variable(2*lengthofalpha) #x = cp.Variable((2*lengthofalpha,1)) #X = <EMAIL> #Define objective and constraints objective = cvx.quad_form(x,-W_realified) #constraints = [cp.trace(X@E_realified)<=1+bounddiff,1-bounddiff<=cp.trace(X@E_realified)] constraints = [cvx.quad_form(x,E_realified)==1] prob = cvx.Problem(cvx.Minimize(objective), constraints) #Solve #prob.solve(solver = cp.MOSEK, mosek_params = {mosek.dparam.optimizer_max_time: 100.0,mosek.iparam.intpnt_solve_form: mosek.solveform.dual},verbose = False) #prob.solve(verbose = True) qcqp = QCQP(prob) #Here could use SDP relaxation to find a starting point for local methods #Although here, we just use a random point #qcqp.suggest(SDR,solver=cvx.MOSEK) qcqp.suggest(SDR) #qcqp.suggest(RANDOM) #Attempt to improve the starting point given by the suggest method f_cd, v_cd = qcqp.improve(COORD_DESCENT) #print("Coordinate descent: objective %.3f, violation %.3f" % (f_cd, v_cd)) #print(x.value) #print(result) result = np.array(x.value) #unrealify newalphareal =
np.array(result[:lengthofalpha])
numpy.array
import os import nibabel as nib import numpy as np from numpy.testing import assert_array_equal, assert_raises, assert_equal, assert_almost_equal from calie.fields import queries as qr from .decorators_tools import create_and_erase_temporary_folder_with_a_dummy_nifti_image, pfo_tmp_test ''' test check_omega ''' def test_check_omega_type(): with assert_raises(IOError): qr.check_omega((10, 10, 10.2)) def test_check_omega_wrong_dimension4(): with assert_raises(IOError): qr.check_omega((10, 10, 10, 1)) def test_check_omega_wrong_dimension1(): with assert_raises(IOError): qr.check_omega((10, )) def test_check_omega_ok(): assert qr.check_omega((10, 11, 12)) == 3 assert qr.check_omega((10, 11)) == 2 ''' test check_is_vf ''' def test_check_is_vf_wrong_input(): with
assert_raises(IOError)
numpy.testing.assert_raises
# coding=utf-8 """ Plot a CMA diagram. In a typical CMA diagram, the horizontal axis, corresponds to X=(omega_pe/omega_0)^2, where omega_pe is the electron plasma frequency and omega_0 the angular wave frequency, thus it corresponds to the electron plasma density n_e. The vertical axis corresponds to Y=(omega_ce/omega_0), where omega_ce is the electron cyclotron frequency, thus it corresponds to the absolute value of the background magnetic field B_0. Simply run this script to produce a png plot: $ python CMA_diagram.py """ __author__ = '<NAME>' __email__ = '<EMAIL>' __copyright__ = 'University of Stuttgart' __license__ = 'MIT' # import standard modules import numpy as np import matplotlib.pyplot as plt import matplotlib.ticker # credit string to include at top of plot, to ensure people know they can use the plot # (someone once told me, every plot appearing somewhere in the internet # should contain information on how to use it, otherwise it is useless) # note that the license refers only to that specific plot # the license for the code is mentioned in the LICENSE file (and above) credit_str = f'{__author__}, CC BY-SA 4.0' plt.rcParams.update({'font.size':12}) # force ticks to point inwards plt.rcParams['xtick.direction'] = 'in' plt.rcParams['ytick.direction'] = 'in' plt.rcParams['xtick.top'] = True plt.rcParams['ytick.right'] = True def make_plot( fname_plot='' ): #;{{{ ''' Output a plot, either to X-window (default) or into file. Parameters ---------- fname_plot: str possible values are 'Bosch', 'my_dset', 'EUROfusion' Returns ------- ''' if len(fname_plot) > 0: plt.savefig( fname_plot, dpi=600, bbox_inches='tight' ) print( 'written plot into file {0}'.format(fname_plot) ) else: plt.show() #;}}} def oplot_Ocut( ax, y_range=[], linestyle='solid', linewidth=3, color='black' ): #;{{{ """ Overplot the O-mode cut-off in a CMA diagram. In a typical CMA diagram, the horizontal axis corresponds to X=(omega_pe/omega_0)^2, where omega_pe is the electron plasma frequency and omega_0 the angular wave frequency; the vertical axis corresponds to Y=(omega_ce/omega_0), where omega_ce is the electron cyclotron frequency. The O-mode cut-off is thus located at X=1. Parameters ---------- ax: Axes object y_range: list or np.array 2-element list or array specifying the start and end point for the line indicating the O-mode cut-off. If not provided, the range of the y-axis is used. linestyle: str linewidth: int color: str Returns ------- """ if len(y_range) == 0: y0, y1 = ax.get_ylim() else: y0 = y_range[0] y1 = y_range[1] # plot the cut-off position ax.plot( [1,1], [y0,y1], marker='None', linestyle=linestyle, linewidth=linewidth, color=color, ) # write text to the cut-off (annotate it) txt_y = y1 - .3*(y1-y0) #1.4 ax.annotate( 'O cut-off', xy=(1.,txt_y), xytext=(1.,txt_y), rotation=90, horizontalalignment='right', verticalalignment='bottom', ) #;}}} def oplot_XRcut( ax, linestyle='solid', linewidth=3, color='black' ): #;{{{ """ Overplot the X-mode R cut-off in a CMA diagram. In a typical CMA diagram, the horizontal axis corresponds to X=(omega_pe/omega_0)^2, where omega_pe is the electron plasma frequency and omega_0 the angular wave frequency; the vertical axis corresponds to Y=(omega_ce/omega_0), where omega_ce is the electron cyclotron frequency. The right-hand cut-off reads w_Rcut = 0.5*( sqrt(w_ce^2+4*w_pe^2) + w_ce ) <=> w_Rcut - 0.5*w_ce = 0.5 * sqrt(w_ce^2+4*w_pe^2) Normalizing to w_0 yields 2 - Y = sqrt(Y^2 + 4*X) <=> 4 - 4Y + Y^2 = Y^2 + 4*X <=> 4*(1-Y) = 4*X <=> 1-Y = X <=> Y = 1 - X Parameters ---------- ax: Axes object linestyle: str linewidth: int color: str Returns ------ """ x0, x1 = ax.get_ylim() x_range = np.array( [x0, x1] ) arr_x = np.linspace( np.min(x_range), np.max(x_range), 200 ) # calculate right-hand cut-off arr_y = 1. - arr_x ax.plot( arr_x, arr_y, linestyle=linestyle, marker='None', linewidth=linewidth, color=color, ) ax.annotate( 'XR cut-off', xy=(.2,.2), xytext=(.2,.2), rotation=-47, horizontalalignment='left', verticalalignment='bottom', ) #;}}} def oplot_XLcut( ax, x_range=[], linestyle='solid', linewidth=3, color='black' ): #;{{{ """ Overplot the X-mode L cut-off in a CMA diagram. In a typical CMA diagram, the horizontal axis corresponds to X=(omega_pe/omega_0)^2, where omega_pe is the electron plasma frequency and omega_0 the angular wave frequency; the vertical axis corresponds to Y=(omega_ce/omega_0), where omega_ce is the electron cyclotron frequency. The left-hand cut-off reads w_Lcut = 0.5*( sqrt(w_ce^2+4*w_pe^2) - w_ce ) <=> w_Rcut + 0.5*w_ce = 0.5 * sqrt(w_ce^2+4*w_pe^2) Normalizing to w_0 yields 2 + Y = sqrt(Y^2 + 4*X) <=> 4 + 4Y + Y^2 = Y^2 + 4*X <=> 4*(1+Y) = 4*X <=> 1+Y = X <=> Y = X - 1 Parameters ---------- ax: Axes object x_range: list or np.array 2-element list or array specifying the start and end point for the line indicating the X-mode L cut-off. If not provided, the range of the x-axis is used. linestyle: str linewidth: int color: str Returns ------ """ if len(x_range) == 0: x0, x1 = ax.get_xlim() x_range = np.array( [x0, x1] ) arr_x = np.linspace( 1., np.max(x_range), 200 ) arr_y = -1. + arr_x ax.plot( arr_x, arr_y, marker='None', linestyle=linestyle, linewidth=linewidth, color=color, ) ax.annotate( 'XL cut-off', xy=(1.2,.33), xytext=(1.2,.33), rotation=47, horizontalalignment='left', verticalalignment='bottom', ) #;}}} def oplot_Xres( ax, theta=np.array([90.]), annotation_x=np.array([.5]), linestyle='dashed', linewidth=3, color='black' ): #;{{{ """ Overplot the X-mode upper-hybrid resonance in a CMA diagram. In a typical CMA diagram, the horizontal axis corresponds to X=(omega_pe/omega_0)^2, where omega_pe is the electron plasma frequency and omega_0 the angular wave frequency; the vertical axis corresponds to Y=(omega_ce/omega_0), where omega_ce is the electron cyclotron frequency. Parameters ---------- ax: Axes object theta: np.array Angle of microwave propagation with respect to the background magnetic field B_0, units are degrees. annotation_x: np.array X-coordinates for the labels (which are the theta-values) to be written into the plot. linestyle: str linewidth: int color: str Returns ------ """ for ii in range( len(theta) ): arr_x = np.linspace( 0., 1., 200 ) arr_y = +1.*np.sqrt( (1.-arr_x)/(1.-arr_x*np.cos(theta[ii]/180.*np.pi)) ) # remove NaN-values in arr_y arr_x = arr_x[ np.isfinite(arr_y) ] arr_y = arr_y[ np.isfinite(arr_y) ] # string for legend (only for one theta value) if theta[ii] == theta[0]: label_str = 'X-resonance' else: label_str = None ax.plot( arr_x, arr_y, marker='None', linestyle=linestyle, linewidth=linewidth, color=color, label=label_str ) # annotate with theta-value annot_x_id = np.argmin( np.abs(arr_x-annotation_x[ii]) ) annot_x = arr_x[annot_x_id] annot_y = arr_y[annot_x_id] annot_txt = r'${0:2.0f}\degree$'.format( theta[ii] ) ax.annotate( annot_txt, xy=(annot_x,annot_y), xytext=(annot_x,annot_y-.05), horizontalalignment='left', verticalalignment='top', ) #;}}} def oplot_Ores( ax, theta=np.array([30.]), annotation_x=np.array([1.5]), x_range=[], linestyle='dotted', linewidth=3, color='black' ): #;{{{ """ Overplot the O-mode O resonance in a CMA diagram. In a typical CMA diagram, the horizontal axis corresponds to X=(omega_pe/omega_0)^2, where omega_pe is the electron plasma frequency and omega_0 the angular wave frequency; the vertical axis corresponds to Y=(omega_ce/omega_0), where omega_ce is the electron cyclotron frequency. Parameters ---------- ax: Axes object theta: np.array Angle of microwave propagation with respect to the background magnetic field B_0, units are degrees. annotation_x: np.array X-coordinates for the labels (which are the theta-values) to be written into the plot. x_range: list or np.array 2-element list or array, where currently only the second element is used to specify the end point for the line indicating the O-resonance. If not provided, the range of the x-axis is used. linestyle: str linewidth: int color: str Returns """ if len(x_range) == 0: x0, x1 = ax.get_xlim() x_range = np.array( [x0, x1] ) arr_x = np.linspace( (1.+1e-6), np.max(x_range), 200) for ii in range( len(theta) ): arr_y = +1.*np.sqrt( (1.-arr_x)/(1.-arr_x*np.cos(theta[ii]/180.*np.pi)) ) # string for legend (only for one theta value) if theta[ii] == theta[0]: label_str = 'O-resonance' else: label_str = None ax.plot( arr_x, arr_y, marker='None', linestyle=linestyle, linewidth=linewidth, color=color, label=label_str ) # annotate with theta-value annot_x_id = np.argmin( np.abs(arr_x-annotation_x[ii]) ) annot_x = arr_x[annot_x_id] annot_y = arr_y[annot_x_id] annot_txt = r'${0:2.0f}\degree$'.format( theta[ii] ) ax.annotate( annot_txt, xy=(annot_x,annot_y), xytext=(annot_x,annot_y+.01), horizontalalignment='left', verticalalignment='bottom', ) #;}}} def oplot_ECR( ax, x_range=[], linestyle='solid', linewidth=3, color='black' ): #;{{{ """ Overplot the electron cyclotron resonance in a CMA diagram. In a typical CMA diagram, the horizontal axis corresponds to X=(omega_pe/omega_0)^2, where omega_pe is the electron plasma frequency and omega_0 the angular wave frequency; the vertical axis corresponds to Y=(omega_ce/omega_0), where omega_ce is the Parameters ---------- ax: Axes object x_range: list or np.array 2-element list or array specifying the start and end point for the line indicating the electron cyclotron resonance. If not provided, the range of the x-axis is used. linestyle: str linewidth: int color: str Returns ------ """ if len(x_range) == 0: x0, x1 = ax.get_xlim() x_range = np.array( [x0, x1] ) arr_x = x_range arr_y = np.array( [1.,1.] ) ax.plot( arr_x, arr_y, marker='None', linestyle=linestyle, linewidth=linewidth, color=color, ) label_str_Rres = 'ECR' ax.annotate( label_str_Rres, xy=(.1,1), xytext=(.1,1.02), horizontalalignment='left', verticalalignment='bottom', ) #;}}} def main(): #;{{{ # plot configuration fname_plot = 'CMA_diagram.png' # linewidth for O- and X-mode lw_O = 3 lw_X = 3 # color for O- and X-mode color_O = 'black' color_X = 'black' #'red' # linestyle for cut-offs and resonances ls_Ocut = 'solid' ls_Xcut = 'solid' ls_Xres = 'dashed' ls_Ores = 'dotted' # (width, height) in inches fig = plt.figure( figsize=(8,6) ) ax1 = fig.add_subplot( 1,1,1 ) x_range = np.array( [0,3] ) y_range = np.array( [0,2] ) # oplot O cut-off oplot_Ocut( ax1, y_range=y_range, linestyle=ls_Ocut, linewidth=lw_O, color=color_O ) # oplot XR cut-off oplot_XRcut( ax1, linestyle=ls_Xcut, linewidth=lw_X, color=color_X ) # oplot XL cut-off oplot_XLcut( ax1, x_range=x_range, linestyle=ls_Xcut, linewidth=lw_X, color=color_X ) # oplot resonances for different thetas thetas = np.array( [90., 30., 10.] ) annotations_x = np.array( [.5, .65, .8] ) # X resonance oplot_Xres( ax1, theta=thetas, annotation_x=annotations_x, linestyle=ls_Xres, linewidth=lw_X, color=color_X ) # O resonance thetas =
np.array( [30., 10.] )
numpy.array
#!/usr/bin/env python from osgeo import gdal from osgeo import osr import numpy as np import os, sys from netCDF4 import Dataset osr.UseExceptions() def rgb_geotiff(file, outfile, red, green, blue, lat, lon): with Dataset(file, "r", format="NETCDF4") as nc: red = np.array(nc.variables[red][:]) green = np.array(nc.variables[green][:]) blue = np.array(nc.variables[blue][:]) lat = np.array(nc.variables[lat][:]) lon = np.array(nc.variables[lon][:]) image_size = red.shape if np.isnan(red).all() or np.isnan(green).all() or np.isnan(blue).all(): return False r_pixels = np.around((( red - np.nanmin(red) ) / ( np.nanmax(red) - np.nanmin(red) )) * 255) g_pixels = np.around((( green - np.nanmin(green) ) / ( np.nanmax(green) - np.nanmin(green) )) * 255) b_pixels = np.around((( blue - np.nanmin(blue) ) / ( np.nanmax(blue) - np.nanmin(blue) )) * 255) # set geotransform nx = image_size[0] ny = image_size[1] xmin, ymin, xmax, ymax = [min(lon), min(lat), max(lon), max(lat)] xres = (xmax - xmin) / float(ny) yres = (ymax - ymin) / float(nx) geotransform = (xmin, xres, 0, ymax, 0, -yres) # create the 3-band raster file dst_ds = gdal.GetDriverByName('GTiff').Create(outfile, ny, nx, 3, gdal.GDT_Byte) dst_ds.SetGeoTransform(geotransform) # specify coords srs = osr.SpatialReference() # establish encoding srs.ImportFromEPSG(4326) # WGS84 lat/long dst_ds.SetProjection(srs.ExportToWkt()) # export coords to file dst_ds.GetRasterBand(1).WriteArray(r_pixels) # write r-band to the raster dst_ds.GetRasterBand(2).WriteArray(g_pixels) # write g-band to the raster dst_ds.GetRasterBand(3).WriteArray(b_pixels) # write b-band to the raster dst_ds.FlushCache() # write to disk dst_ds = None def singleband_geotiff(file, outfile, band, lat, lon): with Dataset(file, "r", format="NETCDF4") as nc: band = np.array(nc.variables[band][:]) lat = np.array(nc.variables[lat][:]) lon = np.array(nc.variables[lon][:]) image_size = band.shape if
np.isnan(band)
numpy.isnan
import os import tensorflow as tf import tensorflow_datasets as tfds import numpy as np from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.preprocessing.sequence import pad_sequences # Select GPU os.environ["CUDA_VISIBLE_DEVICES"] = "0, 1, 3" # Load imdb dataset imdb, info = tfds.load("imdb_reviews", with_info=True, as_supervised=True) train_data, test_data = imdb['train'], imdb['test'] # Prepare the dataset training_sentences = [] training_labels = [] testing_sentences = [] testing_labels = [] # str(s.tonumpy()) is needed in Python3 instead of just s.numpy() for s, l in train_data: training_sentences.append(s.numpy().decode('utf8')) training_labels.append(l.numpy()) for s, l in test_data: testing_sentences.append(s.numpy().decode('utf8')) testing_labels.append(l.numpy()) training_labels_final =
np.array(training_labels)
numpy.array
import io import numpy as np import pytest import pylas from pylas import PointFormat from pylastests.test_common import write_then_read_again, simple_las, test1_4_las @pytest.fixture() def file1_4(): return pylas.read(test1_4_las) @pytest.fixture() def file(): return pylas.read(simple_las) def test_xyz(): las = pylas.create() shape = (150,) las.X = np.zeros(shape, dtype=np.int32) las.Y = np.ones(shape, dtype=np.int32) las.Z = np.zeros(shape, dtype=np.int32) las.Z[:] = -152 las = write_then_read_again(las) assert np.alltrue(las.X == 0) assert np.alltrue(las.Y == 1) assert np.alltrue(las.Z == -152) def test_wrong_version(): for i in range(6, 8): with pytest.raises(pylas.errors.PylasError): _ = pylas.create(point_format=i, file_version="1.2") def test_good_version_is_used(): for i in range(6, 8): las = pylas.create(point_format=i) assert las.header.version.major == 1 assert las.header.version.minor == 4 def test_create_fmt_0(): new = pylas.create(point_format=0) with pytest.raises(ValueError): new.red = np.zeros(len(new.points), np.uint16) with pytest.raises(ValueError): new.red = np.zeros(len(new.points), np.uint16) with pytest.raises(ValueError): new.red = np.zeros(len(new.points), np.uint16) with pytest.raises(ValueError): new.gps_time = np.zeros(len(new.points), np.float64) def test_create_fmt_1(): new = pylas.create(point_format=1) with pytest.raises(ValueError): new.red = np.zeros(len(new.points), np.uint16) with pytest.raises(ValueError): new.red = np.zeros(len(new.points), np.uint16) with pytest.raises(ValueError): new.red = np.zeros(len(new.points), np.uint16) gps_time = np.random.uniform(0, 25641, len(new.points)) new.gps_time = gps_time assert np.allclose(new.gps_time, gps_time) new = write_then_read_again(new) assert np.allclose(new.gps_time, gps_time) def test_create_fmt_2(file): new = pylas.create(point_format=2) with pytest.raises(ValueError): new.gps_time = file.gps_time new.red = file.red new.green = file.green new.blue = file.blue assert np.allclose(new.red, file.red) assert np.allclose(new.green, file.green) assert np.allclose(new.blue, file.blue) new = write_then_read_again(new) assert np.allclose(new.red, file.red) assert np.allclose(new.green, file.green) assert
np.allclose(new.blue, file.blue)
numpy.allclose
# coding = utf-8 import numpy as np from read_sphere_wav import read_sphere_wav from matplotlib import pyplot import matplotlib.pyplot as plt from scipy.io import wavfile def hz2mel(f): return 2595. * np.log10(1. + f / 700.) def mel2hz(z): return 700. * (np.power(10., z / 2595.) - 1.) def get_dct_coeff(in_channel, out_channel): dct_coef = np.zeros((out_channel, in_channel), dtype=np.float32) for i in range(out_channel): n = np.linspace(0, in_channel - 1, in_channel) dct_coef[i, :] = np.cos((2 * n + 1) * i * np.pi / (2 * in_channel)) return dct_coef def get_fft_mel_mat(nfft, sr=8000, nfilts=None, width=1.0, minfrq=20, maxfrq=None, constamp=0): if nfilts is None: nfilts = nfft if maxfrq is None: maxfrq = sr // 2 wts = np.zeros((nfilts, nfft//2+1)) fftfrqs = np.arange(0, nfft//2+1) / (1. * nfft) * (sr) minmel = hz2mel(minfrq) maxmel = hz2mel(maxfrq) binfrqs = mel2hz(minmel + np.arange(0, nfilts+2) / (nfilts+1.) * (maxmel - minmel)) # binbin = np.round(binfrqs / maxfrq * nfft) for i in range(nfilts): fs = binfrqs[[i+0, i+1, i+2]] fs = fs[1] + width * (fs - fs[1]) loslope = (fftfrqs - fs[0]) / (fs[1] - fs[0]) hislope = (fs[2] - fftfrqs) / (fs[2] - fs[1]) wts[i, :] = np.maximum(0, np.minimum(loslope, hislope)) return wts def mfcc_extractor(xx, sr, win_len, shift_len, mel_channel, dct_channel, win_type, include_delta): my_melbank = get_fft_mel_mat(win_len, sr, mel_channel) pre_emphasis_weight = 0.9375 # x = xx * (1-pre_emphasis_weight) x = np.append(xx[0], xx[1:] - pre_emphasis_weight * xx[:-1]) dctcoef = np.zeros((dct_channel, mel_channel), dtype=np.float32) for i in range(dct_channel): n = np.linspace(0, mel_channel-1, mel_channel) dctcoef[i, :] = np.cos((2 * n + 1) * i * np.pi / (2 * mel_channel)) w = 1 + 6 * np.sin(np.pi * np.linspace(0, dct_channel-1, dct_channel) / (dct_channel-1)) w /= w.max() w = np.reshape(w, newshape=(dct_channel, 1)) samples = x.shape[0] frames = (samples - win_len) // shift_len stft = np.zeros((win_len, frames), dtype=np.complex64) spectrum = np.zeros((win_len // 2 + 1, frames), dtype=np.float32) mfcc = np.zeros((dct_channel, frames), dtype=np.float32) if win_type == 'hanning': window =
np.hanning(win_len)
numpy.hanning
# nonlinear mixed effects model import numpy as np import ipopt from copy import deepcopy from limetr import utils class LimeTr: def __init__(self, n, k_beta, k_gamma, Y, F, JF, Z, S=None, share_obs_std=False, C=None, JC=None, c=None, H=None, JH=None, h=None, uprior=None, gprior=None, lprior=None, inlier_percentage=1.0): """ Create LimeTr object, for general mixed effects model Parameters ---------- n : ndarray study sizes, n[i] is the number of observation for ith study. k_beta : int dimension of beta k_gamma : int dimension of gamma Y : ndarray study observations F : function return the predict observations given beta JF : function return the jacobian function of F Z : ndarray covariates matrix for the random effect S : optional, ndarray observation standard deviation """ # pass in the dimension self.n = np.array(n) self.m = len(n) self.N = sum(n) self.k_beta = k_beta self.k_gamma = k_gamma # if include measurement error also as variable if S is not None: self.std_flag = 0 self.k_delta = 0 elif share_obs_std: self.std_flag = 1 self.k_delta = 1 else: self.std_flag = 2 self.k_delta = self.m self.k = self.k_beta + self.k_gamma + self.k_delta self.k_total = self.k self.idx_beta = slice(0, self.k_beta) self.idx_gamma = slice(self.k_beta, self.k_beta + self.k_gamma) self.idx_delta = slice(self.k_beta + self.k_gamma, self.k) self.idx_split = np.cumsum(np.insert(n, 0, 0))[:-1] # pass in the data self.Y = Y self.F = F self.JF = JF self.Z = Z self.S = S if self.std_flag == 0: self.V = S**2 # pass in the priors self.use_constraints = (C is not None) self.use_regularizer = (H is not None) self.use_uprior = (uprior is not None) self.use_gprior = (gprior is not None) self.use_lprior = (lprior is not None) self.C = C self.JC = JC self.c = c if self.use_constraints: self.constraints = C self.jacobian = JC self.num_constraints = C(np.zeros(self.k)).size self.cl = c[0] self.cu = c[1] else: self.num_constraints = 0 self.cl = [] self.cu = [] self.H = H self.JH = JH self.h = h if self.use_regularizer: self.num_regularizer = H(np.zeros(self.k)).size self.hm = self.h[0] self.hw = 1.0/self.h[1]**2 else: self.num_regularizer = 0 if self.use_uprior: self.uprior = uprior else: self.uprior = np.array([ [-np.inf]*self.k_beta + [0.0]*self.k_gamma +\ [1e-7]*self.k_delta, [np.inf]*self.k ]) self.use_uprior = True self.lb = self.uprior[0] self.ub = self.uprior[1] if self.use_gprior: self.gprior = gprior self.gm = gprior[0] self.gw = 1.0/gprior[1]**2 if self.use_lprior: self.lprior = lprior self.lm = lprior[0] self.lw = np.sqrt(2.0)/lprior[1] # double dimension pass into ipopt self.k_total += self.k # extend the constraints matrix if self.use_constraints: def constraints(x): v = x[:self.k] v_abs = x[self.k:] vec1 = C(v) vec2 = np.hstack((v_abs - (v - self.lm), v_abs + (v - self.lm))) return np.hstack((vec1, vec2)) def jacobian(x): v = x[:self.k] v_abs = x[self.k:] Id = np.eye(self.k) mat1 = JC(v) mat2 = np.block([[-Id, Id], [Id, Id]]) return np.vstack((mat1, mat2)) else: def constraints(x): v = x[:self.k] v_abs = x[self.k:] vec = np.hstack((v_abs - v, v_abs + v)) return vec def jacobian(x): v = x[:self.k] v_abs = x[self.k:] Id = np.eye(self.k) mat = np.block([[-Id, Id], [Id, Id]]) return mat self.num_constraints += 2*self.k self.constraints = constraints self.jacobian = jacobian self.cl = np.hstack((self.cl, np.zeros(2*self.k))) self.cu = np.hstack((self.cu, np.repeat(np.inf, 2*self.k))) # extend the regularizer matrix if self.use_regularizer: def H_new(x): v = x[:self.k] return H(v) def JH_new(x): v = x[:self.k] return np.hstack((JH(v), np.zeros((self.num_regularizer, self.k)))) self.H = H_new self.JH = JH_new # extend Gaussian and Uniform priors if self.use_gprior: gprior_abs = np.array([[0.0]*self.k, [np.inf]*self.k]) self.gprior = np.hstack((self.gprior, gprior_abs)) self.gm = self.gprior[0] self.gw = 1.0/self.gprior[1]**2 if self.use_uprior: uprior_abs = np.array([[0.0]*self.k, [np.inf]*self.k]) self.uprior = np.hstack((self.uprior, uprior_abs)) self.lb = self.uprior[0] self.ub = self.uprior[1] # trimming option self.use_trimming = (0.0 < inlier_percentage < 1.0) self.inlier_percentage = inlier_percentage self.num_inliers = np.floor(inlier_percentage*self.N) self.num_outliers = self.N - self.num_inliers self.w = np.repeat(self.num_inliers/self.N, self.N) # specify solution to be None self.soln = None self.info = None self.beta = np.zeros(self.k_beta) self.gamma = np.repeat(0.01, self.k_gamma) self.delta = np.repeat(0.01, self.k_delta) # check the input self.check() def check(self): assert self.Y.shape == (self.N,) assert self.Z.shape == (self.N, self.k_gamma) if self.S is not None: assert self.S.shape == (self.N,) assert np.all(self.S > 0.0) if self.use_constraints: assert self.c.shape == (2, self.num_constraints) assert np.all(self.cl <= self.cu) if self.use_regularizer: assert self.h.shape == (2, self.num_regularizer) assert np.all(self.h[1] > 0.0) if self.use_uprior: assert np.all(self.lb <= self.ub) if self.use_gprior: assert self.gprior.shape == (2, self.k) assert
np.all(self.gprior[1] > 0.0)
numpy.all
#!/usr/bin/python # # Project Saturn # _____________________________________________________________________________ # # _.oo. # August 2019 _.u[[/;:,. .odMMMMMM' # .o888UU[[[/;:-. .o@P^ MMM^ # preprocessor.py oN88888UU[[[/;::-. dP^ # preprocess files and dNMMNN888UU[[[/;:--. .o@P^ # normalize according to input stats ,MMMMMMN888UU[[/;::-. o@^ # NNMMMNN888UU[[[/~.o@P^ # <NAME> 888888888UU[[[/o@^-.. # oI8888UU[[[/o@P^:--.. # .@^ YUU[[[/o@^;::---.. # oMP ^/o@P^;:::---.. # .dMMM .o@^ ^;::---... # dMMMMMMM@^` `^^^^ # YMMMUP^ # ^^ # _____________________________________________________________________________ # # # Copyright 2019 <NAME> # # THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE.# # _____________________________________________________________________________ # ---------------- # import libraries # ---------------- # standard libraries # ----- # import tensorflow as tf import tensorflow.compat.v1 as tf tf.disable_eager_execution() import numpy as np # custom functions # ----- import utilities.networks.buildingblocks as bb class PreprocessorNetwork(bb.ComposedModule): """ PreprocessorNetwork inherits from ComposedModule. It is a input network that preprocesses the network input. It can crop parts of the image and applies normalization before the image is handed to the neural network. """ def initialize_stats(self): # input statistics for normalization self.stats = {} self.update_stats = {} self.reset_stats = {} # not initialized to zero for graceful error handling self.stats['N'] = tf.Variable(1., trainable=False) self.stats['Sx'] = tf.Variable( tf.zeros([1, self.image_height, self.image_width, self.image_channels]), trainable=False) self.stats['Sxx'] = tf.Variable( tf.ones([1, self.image_height, self.image_width, self.image_channels]), trainable=False) self.update_stats['N'] = tf.assign_add(self.stats['N'], self.batchsize) self.update_stats['Sx'] = tf.assign_add( self.stats['Sx'], tf.expand_dims( tf.reduce_sum( tf.cast(self.input_module.outputs[0], tf.float32), axis=0), 0)) self.update_stats['Sxx'] = tf.assign_add( self.stats['Sxx'], tf.expand_dims( tf.reduce_sum(tf.square( tf.cast(self.input_module.outputs[0], tf.float32)), axis=0), 0)) self.reset_stats['N'] = tf.assign(self.stats['N'], 0) self.reset_stats['Sx'] = tf.assign( self.stats['Sx'], tf.zeros([1, self.image_height, self.image_width, self.image_channels])) self.reset_stats['Sxx'] = tf.assign( self.stats['Sxx'], tf.zeros([1, self.image_height, self.image_width, self.image_channels])) pass def gather_statistics(self, session, iterator, flnames, filenames_placeholder, is_training, show_image=False): self.initialize_stats() session.run(iterator.initializer, feed_dict={filenames_placeholder: flnames}) print(" " * 80 + "\r" + "[Statistics]\tstarted", end="\r") session.run([self.reset_stats['N'], self.reset_stats['Sx'], self.reset_stats['Sxx']]) while True: try: N, Sx, Sxx = session.run( [self.update_stats['N'], self.update_stats['Sx'], self.update_stats['Sxx']], feed_dict={is_training.placeholder: False}) except (tf.errors.OutOfRangeError): session.run([tf.assign( self.layers['inp_norm'].n, self.stats['N']), tf.assign(self.layers['inp_norm'].sx, self.stats['Sx']), tf.assign(self.layers['inp_norm'].sxx, self.stats['Sxx'])]) if show_image: import matplotlib.pyplot as plt session.run(iterator.initializer, feed_dict={ filenames_placeholder: flnames}) im = session.run(self.layers['inp_norm'].outputs[0], feed_dict={ is_training.placeholder: False}) for i in range(10): print('max:', np.max(im[i, :, :, 0]), 'min:', np.min(im[i, :, :, 0]), 'std:',
np.std(im[i, :, :, 0])
numpy.std
""" Chain outlier tests. """ __all__ = ["identify_outliers"] import os from numpy import mean, std, sqrt, where, argmin, arange, array from numpy import sort from scipy.stats import t as student_t from scipy.stats import scoreatpercentile from .mahal import mahalanobis from .acr import ACR tinv = student_t.ppf # Hack to adjust the aggressiveness of the interquartile range test. # TODO: Document/remove BUMPS_INTERQUARTILES or replace with command option. BUMPS_INTERQUARTILES = float(os.environ.get("BUMPS_INTERQUARTILES", "2.0")) # CRUFT: scoreatpercentile not accepting array arguments in older scipy def prctile(v, Q): v =
sort(v)
numpy.sort
# pylint: disable=missing-module-docstring (C0114) # pylint: disable=missing-function-docstring (C0116) # pylint: disable=protected-access (W0212) import inspect from typing import Callable, Tuple from unittest.mock import MagicMock, Mock, patch import numpy as np import pytest from matching import ChannelsType from matching.operations import \ FeatureDistributionMatching as FeatureDistMatching from tests import (CHANNEL_RANGES_DEFAULT, CHANNELS_DEFAULT, MUNICH_1_PATH, MUNICH_2_PATH) from utils.cs_conversion import ChannelRange from utils.image_io import read_image ImageGenType = Callable[[Tuple[int, int, int], int], np.ndarray] TEST_IMAGE_423 = np.array([[[0.09634835, 0.67985358, 0.71879272], [0.2746647, 0.55942712, 0.17269985]], [[0.60345517, 0.70931529, 0.14624073], [0.23241476, 0., 0.91803395]], # 0. entry [[0.58758528, 0.66624122, 0.55438404], [1., 0.26015386, 0.28256821]], # 1. entry [[0.87368081, 0.85794979, 0.11262025], [0.70622847, 0.9368422, 0.39187311]]]) TEST_IMAGE_421 = TEST_IMAGE_423[:, :, 0:1] TEST_IMAGE_243 = np.array([[[0.96883339, 0.6280047, 0.55266079], [0.64656832, 0.96452021, 0.01043656], [1., 0.75418668, 0.77878355], # 1. entry [0.80548047, 0.73128374, 0.72436705]], [[0.81233289, 0.67804285, 0.10213132], [0.3819547, 0.67940864, 0.8103251], [0.30974552, 0.49638342, 0.], # 0. entry [0.11005092, 0.48727506, 0.31166669]]]) TEST_IMAGE_241 = TEST_IMAGE_243[:, :, 0:1] def test_channel_ranges() -> None: with pytest.raises(TypeError): FeatureDistMatching(CHANNELS_DEFAULT, check_input=True, channel_ranges=[1, 2, 3]) # type: ignore with pytest.raises(TypeError): FeatureDistMatching(CHANNELS_DEFAULT, check_input=True, channel_ranges=( ChannelRange(0.1, 1.7), 1, # type: ignore ChannelRange(0.1, 1.7))) @pytest.mark.parametrize('test_image, des_shape', [(TEST_IMAGE_423, (8, 3)), (TEST_IMAGE_421, (8, 1)) ]) def test_get_feature_matrix(test_image: np.array, des_shape: Tuple[int, int]) -> None: result = FeatureDistMatching._get_feature_matrix(test_image) np.testing.assert_array_equal(result, test_image.reshape(des_shape)) def test_center_image() -> None: test_image = TEST_IMAGE_423 test_image_mat = FeatureDistMatching._get_feature_matrix(test_image) test_image_mean = np.mean(test_image_mat, axis=0) result_image_mat, result_mean = FeatureDistMatching._center_image( test_image_mat) np.testing.assert_array_equal(result_mean, test_image_mean) np.testing.assert_almost_equal(np.mean(result_image_mat, axis=0), np.zeros(3)) def test_whitening() -> None: test_image = TEST_IMAGE_423 test_image_mat = FeatureDistMatching._get_feature_matrix(test_image) FeatureDistMatching._center_image(test_image_mat) result = FeatureDistMatching._whitening(test_image_mat) np.testing.assert_almost_equal(np.cov(result, rowvar=False), np.identity(3)) def test_whitening_2d() -> None: test_image = TEST_IMAGE_421 test_image_mat = FeatureDistMatching._get_feature_matrix(test_image) FeatureDistMatching._center_image(test_image_mat) result = FeatureDistMatching._whitening(test_image_mat) np.testing.assert_almost_equal(np.var(result), 1.) def test_covariance_transformation() -> None: test_image = TEST_IMAGE_423 test_image_mat = FeatureDistMatching._get_feature_matrix(test_image) FeatureDistMatching._center_image(test_image_mat) test_image_white = FeatureDistMatching._whitening(test_image_mat) feature_mat_ref = FeatureDistMatching._get_feature_matrix(TEST_IMAGE_243) result = FeatureDistMatching._covariance_transformation(test_image_white, feature_mat_ref) np.testing.assert_almost_equal(np.cov(result, rowvar=False), np.cov(feature_mat_ref, rowvar=False)) def test_covariance_transformation_2d() -> None: test_image = TEST_IMAGE_421 test_image_mat = FeatureDistMatching._get_feature_matrix(test_image) FeatureDistMatching._center_image(test_image_mat) test_image_white = FeatureDistMatching._whitening(test_image_mat) feature_mat_ref = FeatureDistMatching._get_feature_matrix( TEST_IMAGE_243[:, :, 0]) result = FeatureDistMatching._covariance_transformation(test_image_white, feature_mat_ref) np.testing.assert_almost_equal(np.var(result), np.var(feature_mat_ref)) @pytest.fixture(name='feature_dist_matching') def fixture_feature_dist_matching() -> FeatureDistMatching: return FeatureDistMatching(CHANNELS_DEFAULT, CHANNEL_RANGES_DEFAULT, check_input=True) def test_design() -> None: assert inspect.isabstract(FeatureDistMatching) is False assert len(FeatureDistMatching.__mro__) == 4 @pytest.mark.parametrize('channel_range_max', [1.0, 255.]) def test_matching(channel_range_max: float) -> None: source = TEST_IMAGE_423 reference = TEST_IMAGE_243 source[:, :, 1] *= channel_range_max reference[:, :, 1] *= channel_range_max result = FeatureDistMatching._matching(source, reference) feature_mat_result = FeatureDistMatching._get_feature_matrix(result) feature_mat_ref = FeatureDistMatching._get_feature_matrix(reference) result_mean = np.mean(feature_mat_result, axis=0) reference_mean = np.mean(feature_mat_ref, axis=0) np.testing.assert_almost_equal(result_mean, reference_mean) feature_mat_result -= result_mean feature_mat_ref -= reference_mean np.testing.assert_almost_equal(np.cov(feature_mat_result, rowvar=False), np.cov(feature_mat_ref, rowvar=False)) @pytest.mark.parametrize('channel_range_max', [1.0, 255.]) def test_matching_2d(channel_range_max: float) -> None: source = TEST_IMAGE_421 * channel_range_max reference = TEST_IMAGE_421 * channel_range_max result = FeatureDistMatching._matching(source, reference) feature_mat_result = FeatureDistMatching._get_feature_matrix(result) feature_mat_ref = FeatureDistMatching._get_feature_matrix(reference) result_mean = np.mean(feature_mat_result, axis=0) reference_mean = np.mean(feature_mat_ref, axis=0) np.testing.assert_almost_equal(result_mean, reference_mean) feature_mat_result -= result_mean feature_mat_ref -= reference_mean np.testing.assert_almost_equal(np.var(feature_mat_result), np.var(feature_mat_ref)) @pytest.mark.parametrize('source, reference', [(TEST_IMAGE_423, TEST_IMAGE_243), (TEST_IMAGE_421, TEST_IMAGE_241)]) def test_apply(feature_dist_matching: FeatureDistMatching, source: np.array, reference: np.array) -> None: feature_dist_matching.channels = CHANNELS_DEFAULT[0:source.shape[-1]] feature_dist_matching.channel_ranges = CHANNEL_RANGES_DEFAULT[ 0:source.shape[-1]] source_copy = np.copy(source) reference_copy = np.copy(reference) result = feature_dist_matching._apply(source, reference) # Check modification of input: np.testing.assert_array_equal(source, source_copy) np.testing.assert_array_equal(reference, reference_copy) # Check result: assert result.shape == source.shape assert np.max(result) <= 1. assert 0.1 < np.mean(result) < 0.9 assert np.min(result) >= 0. assert result.dtype == np.float32 @pytest.mark.parametrize('channels', [(0,), (1,), (2,), (0, 1), (0, 2), (1, 2), (0, 1, 2)]) def test_apply_channels(channels: ChannelsType, feature_dist_matching: FeatureDistMatching) -> None: source = TEST_IMAGE_423.astype(np.float32) reference = TEST_IMAGE_243.astype(np.float32) feature_dist_matching.channels = channels result = feature_dist_matching._apply(source, reference) for untouched_channel in {0, 1, 2} - set(channels): np.testing.assert_array_equal(source[:, :, untouched_channel], result[:, :, untouched_channel]) def test_apply_channel_range( feature_dist_matching: FeatureDistMatching) -> None: source = TEST_IMAGE_423 reference = TEST_IMAGE_243 source[:, :, 1] *= 255. source[:, :, 2] *= 254. source[:, :, 2] -= 127. reference[:, :, 1] *= 255. reference[:, :, 2] *= 254. reference[:, :, 2] -= 127. feature_dist_matching.channel_ranges = tuple([ChannelRange(0., 1.), ChannelRange(0., 255.), ChannelRange(-127.0, 127.0)]) result = feature_dist_matching._apply(source, reference) np.testing.assert_array_equal(source, TEST_IMAGE_423) np.testing.assert_array_equal(reference, TEST_IMAGE_243) assert result.shape == source.shape assert result.dtype == np.float32 assert np.max(result[:, :, 0]) <= 1. assert 0.1 < np.mean(result[:, :, 0]) < 0.9 assert np.max(result[:, :, 0]) >= 0. assert np.max(result[:, :, 1]) <= 255. assert 5. < np.mean(result[:, :, 1]) < 250. assert np.min(result[:, :, 1]) >= 0. assert np.max(result[:, :, 2]) <= 127. assert -120. < np.mean(result[:, :, 2]) < 120. assert np.min(result[:, :, 2]) >= -127. @patch.object(FeatureDistMatching, FeatureDistMatching._get_feature_matrix.__name__) @patch.object(FeatureDistMatching, FeatureDistMatching._center_image.__name__, return_value=(
np.ones((2, 3))
numpy.ones
import unittest from hera_sim import noise import numpy as np import aipy np.random.seed(0) class TestNoise(unittest.TestCase): def test_white_noise(self): n1 = noise.white_noise(100) self.assertEqual(n1.size, 100) self.assertEqual(n1.shape, (100,)) n2 = noise.white_noise((100, 100)) self.assertEqual(n2.shape, (100, 100)) n3 = noise.white_noise(100000) self.assertAlmostEqual(np.average(n3), 0, 1) self.assertAlmostEqual(np.std(n3), 1, 2) def test_resample_Tsky(self): fqs = np.linspace(0.1, 0.2, 100) lsts = np.linspace(0, 2 * np.pi, 200) tsky = noise.resample_Tsky(fqs, lsts) self.assertEqual(tsky.shape, (200, 100)) self.assertTrue(np.all(tsky[0] == tsky[1])) self.assertFalse(np.all(tsky[:, 0] == tsky[:, 1])) tsky = noise.resample_Tsky(fqs, lsts, Tsky_mdl=noise.HERA_Tsky_mdl["xx"]) self.assertEqual(tsky.shape, (200, 100)) self.assertFalse(
np.all(tsky[0] == tsky[1])
numpy.all
""" inertia.py ------------- Functions for dealing with inertia tensors. Results validated against known geometries and checked for internal consistency. """ import numpy as np from trimesh import util # a matrix where all non- diagonal terms are -1.0 # and all diagonal terms are 1.0 negate_nondiagonal = (np.eye(3, dtype=np.float64) * 2) - 1 def cylinder_inertia(mass, radius, height, transform=None): """ Return the inertia tensor of a cylinder. Parameters ------------ mass : float Mass of cylinder radius : float Radius of cylinder height : float Height of cylinder transform : (4, 4) float Transformation of cylinder Returns ------------ inertia : (3, 3) float Inertia tensor """ h2, r2 = height ** 2, radius ** 2 diagonal = np.array([((mass * h2) / 12) + ((mass * r2) / 4), ((mass * h2) / 12) + ((mass * r2) / 4), (mass * r2) / 2]) inertia = diagonal * np.eye(3) if transform is not None: inertia = transform_inertia(transform, inertia) return inertia def sphere_inertia(mass, radius): """ Return the inertia tensor of a sphere. Parameters ------------ mass : float Mass of sphere radius : float Radius of sphere Returns ------------ inertia : (3, 3) float Inertia tensor """ inertia = (2.0 / 5.0) * (radius ** 2) * mass * np.eye(3) return inertia def principal_axis(inertia): """ Find the principal components and principal axis of inertia from the inertia tensor. Parameters ------------ inertia : (3, 3) float Inertia tensor Returns ------------ components : (3,) float Principal components of inertia vectors : (3, 3) float Row vectors pointing along the principal axes of inertia """ inertia = np.asanyarray(inertia, dtype=np.float64) if inertia.shape != (3, 3): raise ValueError('inertia tensor must be (3, 3)!') # you could any of the following to calculate this: # np.linalg.svd, np.linalg.eig, np.linalg.eigh # moment of inertia is square symmetric matrix # eigh has the best numeric precision in tests components, vectors = np.linalg.eigh(inertia * negate_nondiagonal) # eigh returns them as column vectors, change them to row vectors vectors = vectors.T return components, vectors def transform_inertia(transform, inertia_tensor): """ Transform an inertia tensor to a new frame. More details in OCW PDF: MIT16_07F09_Lec26.pdf Parameters ------------ transform : (3, 3) or (4, 4) float Transformation matrix inertia_tensor : (3, 3) float Inertia tensor Returns ------------ transformed : (3, 3) float Inertia tensor in new frame """ # check inputs and extract rotation transform = np.asanyarray(transform, dtype=np.float64) if transform.shape == (4, 4): rotation = transform[:3, :3] elif transform.shape == (3, 3): rotation = transform else: raise ValueError('transform must be (3, 3) or (4, 4)!') inertia_tensor = np.asanyarray(inertia_tensor, dtype=np.float64) if inertia_tensor.shape != (3, 3): raise ValueError('inertia_tensor must be (3, 3)!') transformed = util.multi_dot([rotation, inertia_tensor * negate_nondiagonal, rotation.T]) transformed *= negate_nondiagonal return transformed def radial_symmetry(mesh): """ Check whether a mesh has radial symmetry. Returns ----------- symmetry : None or str None No rotational symmetry 'radial' Symmetric around an axis 'spherical' Symmetric around a point axis : None or (3,) float Rotation axis or point section : None or (3, 2) float If radial symmetry provide vectors to get cross section """ # shortcuts to avoid typing and hitting cache scalar = mesh.principal_inertia_components vector = mesh.principal_inertia_vectors # the sorted order of the principal components order = scalar.argsort() # we are checking if a geometry has radial symmetry # if 2 of the PCI are equal, it is a revolved 2D profile # if 3 of the PCI (all of them) are equal it is a sphere # thus we take the diff of the sorted PCI, scale it as a ratio # of the largest PCI, and then scale to the tolerance we care about # if tol is 1e-3, that means that 2 components are identical if they # are within .1% of the maximum PCI. diff = np.abs(
np.diff(scalar[order])
numpy.diff
import argparse import os from time import time as t import matplotlib.pyplot as plt import numpy as np import torch from torchvision import transforms from tqdm import tqdm from sklearn.preprocessing import normalize from scipy.stats import entropy from bindsnet import ROOT_DIR from bindsnet.analysis.plotting import ( plot_assignments, plot_input, plot_performance, plot_spikes, plot_voltages, plot_weights, ) from bindsnet.datasets import MNIST, DataLoader from bindsnet.encoding import PoissonEncoder from bindsnet.evaluation import all_activity, assign_labels, proportion_weighting from bindsnet.models import DiehlAndCook2015 from bindsnet.network.monitors import Monitor from bindsnet.utils import get_square_assignments, get_square_weights parser = argparse.ArgumentParser() parser.add_argument("--seed", type=int, default=0) parser.add_argument("--n_neurons", type=int, default=100) parser.add_argument("--batch_size", type=int, default=32) parser.add_argument("--n_epochs", type=int, default=1) parser.add_argument("--n_test", type=int, default=10000) parser.add_argument("--n_train", type=int, default=60000) parser.add_argument("--n_workers", type=int, default=-1) parser.add_argument("--update_steps", type=int, default=256) parser.add_argument("--exc", type=float, default=22.5) parser.add_argument("--inh", type=float, default=120) parser.add_argument("--theta_plus", type=float, default=0.05) parser.add_argument("--time", type=int, default=100) parser.add_argument("--dt", type=int, default=1.0) parser.add_argument("--intensity", type=float, default=128) parser.add_argument("--progress_interval", type=int, default=10) parser.add_argument("--train", dest="train", action="store_true") parser.add_argument("--test", dest="train", action="store_false") parser.add_argument("--plot", dest="plot", action="store_true") parser.add_argument("--gpu", dest="gpu", action="store_false") parser.set_defaults(plot=True, gpu=True) args = parser.parse_args() seed = args.seed n_neurons = args.n_neurons batch_size = args.batch_size n_epochs = args.n_epochs n_test = args.n_test n_train = args.n_train n_workers = args.n_workers update_steps = args.update_steps exc = args.exc inh = args.inh theta_plus = args.theta_plus time = args.time dt = args.dt intensity = args.intensity progress_interval = args.progress_interval train = args.train plot = args.plot gpu = args.gpu plot = True update_interval = update_steps * batch_size device = "cpu" torch.manual_seed(seed) torch.set_num_threads(os.cpu_count() - 1) print("Running on Device = ", device) # Determines number of workers to use if n_workers == -1: n_workers = 0 # gpu * 1 * torch.cuda.device_count() n_sqrt = int(np.ceil(np.sqrt(n_neurons))) start_intensity = intensity # Build network. network = DiehlAndCook2015( n_inpt=784, n_neurons=n_neurons, exc=exc, inh=inh, dt=dt, norm=78.4, nu=(1e-4, 1e-2), theta_plus=theta_plus, inpt_shape=(1, 28, 28), ) # Directs network to GPU if gpu: network.to("cuda") # Load MNIST data. dataset = MNIST( PoissonEncoder(time=time, dt=dt), None, "../../data/MNIST", download=True, transform=transforms.Compose( [transforms.ToTensor(), transforms.Lambda(lambda x: x * intensity)] ), ) # Selecting classes 1,2,3,5,6,8 # idx = (dataset.targets==1) | (dataset.targets==2) | (dataset.targets==3) | (dataset.targets==5) | (dataset.targets==6) | (dataset.targets==8) # dataset.targets = dataset.targets[idx] # dataset.data = dataset.data[idx] # Neuron assignments and spike proportions. n_classes = 10 assignments = -torch.ones(n_neurons, device=device) proportions = torch.zeros((n_neurons, n_classes), device=device) rates = torch.zeros((n_neurons, n_classes), device=device) # Sequence of accuracy estimates. accuracy = {"all": [], "proportion": []} # Voltage recording for excitatory and inhibitory layers. exc_voltage_monitor = Monitor( network.layers["Ae"], ["v"], time=int(time / dt), device=device ) inh_voltage_monitor = Monitor( network.layers["Ai"], ["v"], time=int(time / dt), device=device ) network.add_monitor(exc_voltage_monitor, name="exc_voltage") network.add_monitor(inh_voltage_monitor, name="inh_voltage") # Set up monitors for spikes and voltages spikes = {} for layer in set(network.layers): spikes[layer] = Monitor( network.layers[layer], state_vars=["s"], time=int(time / dt), device=device ) network.add_monitor(spikes[layer], name="%s_spikes" % layer) voltages = {} for layer in set(network.layers) - {"X"}: voltages[layer] = Monitor( network.layers[layer], state_vars=["v"], time=int(time / dt), device=device ) network.add_monitor(voltages[layer], name="%s_voltages" % layer) inpt_ims, inpt_axes = None, None spike_ims, spike_axes = None, None weights_im = None assigns_im = None perf_ax = None voltage_axes, voltage_ims = None, None spike_record = torch.zeros((update_interval, int(time / dt), n_neurons), device=device) # Train the network. print("\nBegin training.\n") start = t() model_to_save = None running_perf = 0 confusion_matrix = np.zeros((10,10)) mae_from_uniform = [] for epoch in range(n_epochs): labels = [] if epoch % progress_interval == 0: print("\n Progress: %d / %d (%.4f seconds)" % (epoch, n_epochs, t() - start)) start = t() # Create a dataloader to iterate and batch data train_dataloader = DataLoader( dataset, batch_size=batch_size, shuffle=True, num_workers=n_workers, pin_memory=gpu, ) pbar_training = tqdm(total=n_train) for step, batch in enumerate(train_dataloader): if step > n_train: break # Get next input sample. inputs = {"X": batch["encoded_image"]} if gpu: inputs = {k: v.cuda() for k, v in inputs.items()} if step % update_steps == 0 and step > 0: # Convert the array of labels into a tensor label_tensor = torch.tensor(labels, device=device) # Get network predictions. all_activity_pred = all_activity( spikes=spike_record, assignments=assignments, n_labels=n_classes ) proportion_pred = proportion_weighting( spikes=spike_record, assignments=assignments, proportions=proportions, n_labels=n_classes, ) # Compute network accuracy according to available classification strategies. # new_running_perf = 100 * torch.sum(label_tensor.long() == all_activity_pred).item() / len(label_tensor) # if (step > 50 and new_running_perf / running_perf > 1.8): # question = "before: "+str(running_perf)+"after: "+str(new_running_perf)+"step: "+str(step) + " -- would you like to save (Y/N)?" # save = input(question) # if save == "Y": # torch.save(network, "../saved models/"+str(n_neurons)+"_"+str(step*batch_size)+"_after") # quit() # torch.save(network, "../saved models/"+str(n_neurons)+"_before") # running_perf = new_running_perf accuracy["all"].append( 100 * torch.sum(label_tensor.long() == all_activity_pred).item() / len(label_tensor) ) confusion_matrix = np.zeros((10,10)) # Keep track of the confusion matrix for i,label_ in enumerate(label_tensor): real = label_tensor[i] pred = all_activity_pred[i] confusion_matrix[real][pred] += 1 accuracy["proportion"].append( 100 * torch.sum(label_tensor.long() == proportion_pred).item() / len(label_tensor) ) print( "\nAll activity accuracy: %.2f (last), %.2f (average), %.2f (best)" % ( accuracy["all"][-1], np.mean(accuracy["all"]), np.max(accuracy["all"]), ) ) print( "Proportion weighting accuracy: %.2f (last), %.2f (average), %.2f" " (best)\n" % ( accuracy["proportion"][-1], np.mean(accuracy["proportion"]), np.max(accuracy["proportion"]), ) ) # Assign labels to excitatory layer neurons. assignments, proportions, rates = assign_labels( spikes=spike_record, labels=label_tensor, n_labels=n_classes, rates=rates, ) labels = [] labels.extend(batch["label"].tolist()) input_exc_weights = network.connections[("X", "Ae")].w # Getting the weights before changing them for the sake of seeing the weight changes pre_weights = get_square_weights( input_exc_weights.view(784, n_neurons), n_sqrt, 28 ) # Run the network on the input. network.run(inputs=inputs, time=time, input_time_dim=1) input_exc_weights = network.connections[("X", "Ae")].w # Getting the weights after changing them for the sake of seeing the weight changes post_weights = get_square_weights( input_exc_weights.view(784, n_neurons), n_sqrt, 28 ) # The change of the weights from one batch weight_changes = post_weights - pre_weights weight_change_count = np.count_nonzero(weight_changes) # weight_change_count = np.count_nonzero(weight_changes) # change_arr.append(weight_change_count) # Add to spikes recording. s = spikes["Ae"].get("s").permute((1, 0, 2)) spike_record[ (step * batch_size) % update_interval : (step * batch_size % update_interval) + s.size(0) ] = s # Get voltage recording. exc_voltages = exc_voltage_monitor.get("v") inh_voltages = inh_voltage_monitor.get("v") # Optionally plot various simulation information. if step % update_steps == 0 and step > 0: if plot: image = batch["image"][:, 0].view(28, 28) inpt = inputs["X"][:, 0].view(time, 784).sum(0).view(28, 28) lable = batch["label"][0] input_exc_weights = network.connections[("X", "Ae")].w square_weights = get_square_weights( input_exc_weights.view(784, n_neurons), n_sqrt, 28 ) # weights_im = plot_weights(square_weights, im=weights_im, save="../weights/"+str(step)+".png") # perf_ax = plot_performance( # accuracy, x_scale=update_steps * batch_size, ax=perf_ax # ) # weight_changes = torch.from_numpy(normalize(weight_changes)) # weight_changes = get_square_weights(weight_changes.view(784, n_neurons), n_sqrt, 28) # save_loc = "../weight_changes/"+str(step)+".png" # weights_im = plot_weights(weight_changes, im=weights_im, save=save_loc) fig, ax = plt.subplots() im = ax.imshow(confusion_matrix) # Rotate the tick labels and set their alignment. plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") # Loop over data dimensions and create text annotations. for i in range(10): for j in range(10): text = ax.text(j, i, confusion_matrix[i, j], ha="center", va="center", color="w") ax.set_title("Confusion matrix of MNIST w/ SNN at " + str(step * batch_size)) ax.set_xlabel("predicted label") ax.set_ylabel("true label") fig.tight_layout() plt.savefig("../confusion_matrices/"+str(step)+".png") plt.close(fig) fig, ax = plt.subplots() prediction_freq = np.sum(confusion_matrix, axis=0) ax.bar(
np.arange(10)
numpy.arange
import numpy as np import matplotlib.pyplot as plt from transforms3d.euler import mat2euler from scipy.linalg import expm def load_data(file_name): ''' function to read visual features, IMU measurements and calibration parameters Input: file_name: the input data file. Should look like "XXX_sync_KLT.npz" Output: t: time stamp with shape 1 * N_t features: visual feature point coordinates in stereo images, with shape 4 * M * N_t, where M is number of features linear_velocity: IMU measurements in IMU frame with shape 3 * N_t rotational_velocity: IMU measurements in IMU frame with shape 3 * N_t K: (left)camera intrinsic matrix [fx 0 cx 0 fy cy 0 0 1] with shape 3*3 b: stereo camera baseline with shape 1 cam_T_imu: extrinsic matrix from IMU to (left)camera, in SE(3). close to [ 0 -1 0 t1 0 0 -1 t2 1 0 0 t3 0 0 0 1] with shape 4*4 ''' with np.load(file_name) as data: t = data["time_stamps"] # time_stamps features = data["features"] # 4 x num_features : pixel coordinates of features linear_velocity = data["linear_velocity"] # linear velocity measured in the body frame rotational_velocity = data["rotational_velocity"] # rotational velocity measured in the body frame K = data["K"] # intrinsic calibration matrix b = data["b"] # baseline cam_T_imu = data["cam_T_imu"] # Transformation from imu to camera frame return t, features, linear_velocity, rotational_velocity, K, b, cam_T_imu def visualize_trajectory_2d(pose, landmarks, better_pose, better_landmarks, timestamp, path_name="Unknown", show_ori=False, show_grid=False, savefig=False): ''' function to visualize the trajectory in 2D Input: pose: 4*4*N matrix representing the camera pose, where N is the number of pose, and each 4*4 matrix is in SE(3) ''' fig,ax = plt.subplots(figsize=(5, 5)) n_pose = pose.shape[2] ax.plot(landmarks[0, :], landmarks[1, :], 'g.', markersize=1.5, label='landmarks') ax.plot(better_landmarks[0, :], better_landmarks[1, :], 'c.', markersize=1.5, label='landmarks_VI') ax.plot(pose[0, 3, :], pose[1, 3, :], 'r-', markersize=6, label=path_name) ax.plot(better_pose[0, 3, :], better_pose[1, 3, :], 'b-', markersize=6, label=path_name + "_VI") ax.scatter(pose[0, 3, 0], pose[1, 3, 0], marker='s', label="start") ax.scatter(pose[0, 3, -1], pose[1, 3, -1], marker='o', label="end") if show_ori: select_ori_index = list(range(0, n_pose, max(int(n_pose / 50), 1))) yaw_list = [] for i in select_ori_index: _, _, yaw = mat2euler(pose[:3, :3, i]) yaw_list.append(yaw) dx = np.cos(yaw_list) dy = np.sin(yaw_list) dx,dy = [dx, dy] / np.sqrt(dx**2 + dy**2) ax.quiver(pose[0, 3, select_ori_index], pose[1, 3, select_ori_index], dx, dy,\ color="b", units="xy", width=1) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_title('timestamp ' + timestamp) ax.axis('equal') ax.grid(show_grid) ax.legend() if savefig: fig.savefig("d" + path_name + "t" + timestamp, dpi = 300) plt.show(block=True) return fig, ax # form the skew-symmetric matrix from a given vector x def hat_map_3(x): hat_map = np.array([[ 0, -x[2], x[1]], [x[2], 0, -x[0]], [-x[1], x[0], 0]]) return hat_map def hat_map_6(u): theta = u[3:, np.newaxis] p = u[:3, np.newaxis] hat_map = np.block([[hat_map_3(theta), -p], [np.zeros((1, 4))]]) return hat_map def projection(q): return q / q[2] def projection_derivative(q): derivative = np.array([[1, 0, -q[0]/q[2], 0], [0, 1, -q[1]/q[2], 0], [0, 0, 0, 0], [0, 0, -q[3]/q[2], 1]]) return derivative / q[2] # K is the calibration matrix, b is the baseline def stereo_camera_model(K, b): M = np.array([[K[0, 0], 0, K[0, 2], 0], [ 0, K[1, 1], K[1, 2], 0], [K[0, 0], 0, K[0, 2], -K[0, 0] * b], [ 0, K[1, 1], K[1, 2], 0]]) return M # Converts car's current inverse pose (U) to world-frame def world_T_imu(mean_pose): R_T = np.transpose(mean_pose[:3, :3]) p = mean_pose[:3, 3].reshape(3, 1) U_inv = np.vstack((np.hstack((R_T, -np.dot(R_T, p))), np.array([0, 0, 0, 1]))) return U_inv def EKF_inertial_prediction(Car, v, omega, tau, weight_v = 0.00001, weight_omega = 0.0001): # covariance for movement noise W = np.block([[weight_v * np.eye(3), np.zeros((3,3))], [ np.zeros((3, 3)), weight_omega * np.eye(3)]]) tau = -(tau) u_hat = np.vstack((np.hstack((hat_map_3(omega), v.reshape(3, 1))),
np.zeros((1, 4))
numpy.zeros
# -*- coding: utf-8 -*- import os os.chdir('D:/Python/TAR/system') import numpy as np from load_data import load_data, get_nn_predict_values #from nn_values import get_nn_predict_values from sklearn.metrics import f1_score, precision_score, recall_score from keras.models import Sequential, load_model from keras.layers import Dense, Dropout from keras import regularizers def concatenate(m1, m2): # expects train/test_S as m1 and freq_train/test type as m2 matrix = [] for i in range(m1.shape[0]): # rows row = [] for j in range(m1.shape[1]): row.append(m1[i][j]) row.append(m2[0][i]) matrix.append(np.array(row)) return np.array(matrix) def concatenate2(m1, m2): matrix = [] for i in range(m1.shape[0]): row = [] for j in range(m1.shape[1]): row.append(m1[i][j]) for j in range(m2.shape[1]): row.append(m2[i][j]) matrix.append(np.array(row)) return np.array(matrix) def prep_data(train_S, test_S, freq_train, freq_test, chi2_train, chi2_test, tfidf_train, tfidf_test): nn1_train = concatenate(train_S, freq_train) nn2_train = concatenate(train_S, chi2_train) nn3_train = concatenate(train_S, tfidf_train) nn1_test = concatenate(test_S, freq_test) nn2_test = concatenate(test_S, chi2_test) nn3_test = concatenate(test_S, tfidf_test) return nn1_train, nn2_train, nn3_train, nn1_test, nn2_test, nn3_test def shuffle_data(X, y): rng_state = np.random.get_state() np.random.shuffle(X) np.random.set_state(rng_state) np.random.shuffle(y) return X, y def run_model(filename, train_X, train_y, test_X, test_y): train_X, train_y = shuffle_data(train_X, train_y) from sklearn import preprocessing #train_X = preprocessing.scale(train_X) #test_X = preprocessing.scale(test_X) scaler = preprocessing.StandardScaler().fit(train_X) scaler.fit(train_X) scaler.transform(train_X) scaler.transform(test_X) from sklearn import svm model = svm.SVC() y =
np.argmax(train_y, axis=1)
numpy.argmax
#!/usr/bin/python # Wflow is Free software, see below: # # Copyright (c) <NAME>/Deltares 2005-2014 # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ Run the wflow_sbm hydrological model.. usage :: wflow_sbm [-h][-v level][-F runinfofile][-L logfile][-C casename][-R runId] [-c configfile][-T last_step][-S first_step][-s seconds][-W][-E][-N][-U discharge] [-P parameter multiplication][-X][-f][-I][-i tbl_dir][-x subcatchId][-u updatecols] [-p inputparameter multiplication][-l loglevel] -X: save state at the end of the run over the initial conditions at the start -f: Force overwrite of existing results -T: Set end time of the run: yyyy-mm-dd hh:mm:ss -S: Set start time of the run: yyyy-mm-dd hh:mm:ss -s: Set the model timesteps in seconds -I: re-initialize the initial model conditions with default -i: Set input table directory (default is intbl) -x: Apply multipliers (-P/-p ) for subcatchment only (e.g. -x 1) -C: set the name of the case (directory) to run -R: set the name runId within the current case -L: set the logfile -E: Switch on reinfiltration of overland flow -c: name of wflow the configuration file (default: Casename/wflow_sbm.ini). -h: print usage information -W: If set, this flag indicates that an ldd is created for the water level for each timestep. If not the water is assumed to flow according to the DEM. Wflow will run a lot slower with this option. Most of the time (shallow soil, steep topography) you do not need this option. Also, if you need it you migth actually need another model. -U: The argument to this option should be a .tss file with measured discharge in [m^3/s] which the progam will use to update the internal state to match the measured flow. The number of columns in this file should match the number of gauges in the wflow_gauges.map file. -u: list of gauges/columns to use in update. Format: -u [1 , 4 ,13] The above example uses column 1, 4 and 13 -P: set parameter change string (e.g: -P "self.FC = self.FC * 1.6") for non-dynamic variables -p: set parameter change string (e.g: -P "self.Precipitation = self.Precipitation * 1.11") for dynamic variables -l: loglevel (most be one of DEBUG, WARNING, ERROR) """ import os.path import numpy as np import pcraster.framework from wflow.wf_DynamicFramework import * from wflow.wflow_adapt import * from wflow.wflow_funcs import * import pcraster as pcr import pdb import math from numba import jit wflow = "wflow_sbm: " updateCols = [] def usage(*args): sys.stdout = sys.stderr """Way""" for msg in args: print(msg) print(__doc__) sys.exit(0) def estimate_iterations_kin_wave(Q, Beta, alpha, timestepsecs, dx, mv): celerity = pcr.ifthen(Q > 0.0, 1.0 / (alpha * Beta * Q**(Beta-1))) courant = (timestepsecs / dx) * celerity np_courant = pcr.pcr2numpy(courant, mv) np_courant[np_courant==mv] = np.nan try: it_kin = int(np.ceil(1.25*(np.nanpercentile(np_courant,95)))) except: it_kin = 1 return it_kin @jit(nopython=True) def _sCurve(X, a=0.0, b=1.0, c=1.0): """ sCurve function: Input: - X input map - C determines the steepness or "stepwiseness" of the curve. The higher C the sharper the function. A negative C reverses the function. - b determines the amplitude of the curve - a determines the centre level (default = 0) Output: - result """ s = 1.0 / (b + np.exp(-c * (X - a))) return s @jit(nopython=True) def actEvap_unsat_SBM( RootingDepth, UStoreDepth, UStoreLayerThickness, sumLayer, RestPotEvap, sumActEvapUStore, c, L, thetaS, thetaR, ust=0, ): """ Actual evaporation function: - first try to get demand from the saturated zone, using the rootingdepth as a limiting factor - secondly try to get the remaining water from the unsaturated store - it uses an S-Curve the make sure roots het wet/dry gradually (basically) representing a root-depth distribution if ust is True, all ustore is deems to be avaiable fro the roots a Input: - RootingDepth, UStoreDepth, FirstZoneDepth, PotTrans, smoothpar Output: - ActEvap, FirstZoneDepth, UStoreDepth ActEvapUStore """ # AvailCap is fraction of unsat zone containing roots if ust >= 1: AvailCap = UStoreDepth * 0.99 else: if L > 0: AvailCap = min(1.0, max(0.0, (RootingDepth - sumLayer) / L)) else: AvailCap = 0.0 MaxExtr = AvailCap * UStoreDepth # Calculate the reduction of RestPotEvap due to differences in rooting density in the soil column # The used model is based on Vrugt et al. (2001) and uses as input parameters for z* and Pz the # values of Hoffman and van Genuchten (z* = 0.20 and Pz = 1.00) # Next step is to make use of the Feddes curve in order to decrease ActEvapUstore when soil moisture values # occur above or below ideal plant growing conditions (see also Feddes et al., 1978). h1-h4 values are # actually negative, but all values are made positive for simplicity. hb = 1 # cm (pF 1 for atmospheric pressure) h1 = 1 # cm h2 = 100 # cm (pF 2 for field capacity) h3 = 400 # cm (pF 3, critical pF value) h4 = 15849 # cm (pF 4.2, wilting point) # According to Brooks-Corey par_lambda = 2 / (c - 3) if L > 0.0: vwc = UStoreDepth / L else: vwc = 0.0 vwc = max(vwc, 0.0000001) head = hb / ( ((vwc) / (thetaS - thetaR)) ** (1 / par_lambda) ) # Note that in the original formula, thetaR is extracted from vwc, but thetaR is not part of the numerical vwc calculation head = max(head,hb) # Transform h to a reduction coefficient value according to Feddes et al. (1978). if(head <= h1): alpha = 0 elif(head >= h4): alpha = 0 elif((head < h2) & (head > h1)): alpha = (head - h1) / (h2 - h1) elif((head > h3) & (head < h4)): alpha = 1 - (head - h3) / (h4 - h3) else: alpha = 1 ActEvapUStore = (min(MaxExtr, RestPotEvap, UStoreDepth)) * alpha UStoreDepth = UStoreDepth - ActEvapUStore RestPotEvap = RestPotEvap - ActEvapUStore sumActEvapUStore = ActEvapUStore + sumActEvapUStore return UStoreDepth, sumActEvapUStore, RestPotEvap @jit(nopython=True) def infiltration(AvailableForInfiltration, PathFrac, cf_soil, TSoil,InfiltCapSoil,InfiltCapPath, UStoreCapacity, modelSnow, soilInfReduction): SoilInf = AvailableForInfiltration * (1 - PathFrac) PathInf = AvailableForInfiltration * PathFrac if modelSnow & soilInfReduction: bb = 1.0 / (1.0 - cf_soil) soilInfRedu = _sCurve(TSoil, a=0.0, b=bb, c=8.0) else: soilInfRedu = 1.0 MaxInfiltSoil = min(InfiltCapSoil * soilInfRedu, SoilInf) MaxInfiltPath = min(InfiltCapPath * soilInfRedu, PathInf) InfiltSoilPath = min(MaxInfiltPath + MaxInfiltSoil, max(0.0, UStoreCapacity)) return InfiltSoilPath @jit(nopython=True) def unsatzone_flow(UStoreLayerDepth, InfiltSoilPath, L, z, KsatVerFrac, c, KsatVer, f, thetaS, thetaR, SoilWaterCapacity, SWDold, shape_layer, TransferMethod): m = 0 UStoreLayerDepth[m] = UStoreLayerDepth[m] + InfiltSoilPath if L[m] > 0.0: #sbm option for vertical transfer (only for 1 layer) if (TransferMethod == 1 and shape_layer == 1): Sd = SoilWaterCapacity - SWDold if Sd <= 0.00001: st = 0.0 else: st = KsatVerFrac[m] * KsatVer * (min(UStoreLayerDepth[m],L[m]*(thetaS-thetaR))/Sd) else: st = KsatVerFrac[m] * KsatVer * np.exp(-f * z[m]) * min((UStoreLayerDepth[m]/(L[m] * (thetaS-thetaR)))**c[m],1.0) ast = min(st,UStoreLayerDepth[m]) UStoreLayerDepth[m] = UStoreLayerDepth[m] - ast else: ast = 0.0 for m in range(1,len(L)): UStoreLayerDepth[m] = UStoreLayerDepth[m] + ast if L[m] > 0.0: st = KsatVerFrac[m] * KsatVer * np.exp(-f* z[m]) * min((UStoreLayerDepth[m]/(L[m] * (thetaS-thetaR)))**c[m],1.0) ast = min(st,UStoreLayerDepth[m]) else: ast = 0.0 UStoreLayerDepth[m] = UStoreLayerDepth[m] - ast return ast, UStoreLayerDepth @jit(nopython=True) def sbm_cell(nodes, nodes_up, ldd, layer, static, dyn, modelSnow, soilInfReduction, timestepsecs, basetimestep, deltaT, nrpaddyirri, shape, TransferMethod, it_kinL=1, ust=0): shape_layer = layer['UStoreLayerThickness'].shape # flat new state ssf_new = np.zeros(dyn['ssf'].size, dtype=dyn['ssf'].dtype) qo_new = np.zeros(dyn['LandRunoff'].size, dtype=dyn['LandRunoff'].dtype) qo_new = np.concatenate((qo_new, np.array([0], dtype=dyn['LandRunoff'].dtype))) # append zero to end to deal with nodata (-1) in indices ssf_new = np.concatenate((ssf_new, np.array([0], dtype=dyn['ssf'].dtype))) ldd_ = np.concatenate((ldd, np.array([0], dtype=ldd.dtype))) slope_ = np.concatenate((static['slope'], np.array([0], dtype=static['slope'].dtype))) SWDold = np.zeros(dyn['ssf'].size, dtype=dyn['ssf'].dtype) sumUSold = np.zeros(dyn['ssf'].size, dtype=dyn['ssf'].dtype) for i in range(len(nodes)): for j in range(len(nodes[i])): idx = nodes[i][j] nbs = nodes_up[i][j] sumlayer = np.unique(layer['UStoreLayerThickness'][:,idx].cumsum()) sumlayer_0 = np.concatenate((np.array([0.0]), sumlayer)) SWDold[idx] = dyn['SatWaterDepth'][idx] sumUSold[idx] = layer['UStoreLayerDepth'][:,idx].sum() n = np.where(dyn['zi'][idx] > sumlayer_0)[0] if len(n) > 1: L = np.concatenate((layer['UStoreLayerThickness'][n[0:-1],idx], np.array([dyn['zi'][idx] - sumlayer_0[n[-1]]]))).astype(np.float64) else: L = np.array([dyn['zi'][idx]]).astype(np.float64) z = L.cumsum() dyn['ActEvapUStore'][idx] = 0.0 if static['River'][idx]: ind = np.where(ldd_[nbs] != ldd_[idx]) chanperc = np.zeros(ldd_[nbs].size) chanperc[ind] = slope_[nbs][ind]/(slope_[idx]+slope_[nbs][ind]) ssf_in = np.sum((1-chanperc)*ssf_new[nbs]) dyn['ssf_toriver'][idx] = np.sum((chanperc)*ssf_new[nbs])/(1000*1000*1000)/timestepsecs else: ssf_in = np.sum(ssf_new[nbs]) dyn['CellInFlow'][idx] = ssf_in UStoreCapacity = static['SoilWaterCapacity'][idx] - dyn['SatWaterDepth'][idx] - layer['UStoreLayerDepth'][n,idx].sum() InfiltSoilPath = infiltration(dyn['AvailableForInfiltration'][idx], static['PathFrac'][idx], static['cf_soil'][idx], dyn['TSoil'][idx],static['InfiltCapSoil'][idx],static['InfiltCapPath'][idx],UStoreCapacity, modelSnow, soilInfReduction) dyn['InfiltSoilPath'][idx] = InfiltSoilPath # unsat fluxes first ast, layer['UStoreLayerDepth'][:,idx] = unsatzone_flow(layer['UStoreLayerDepth'][:,idx], InfiltSoilPath, L, z, layer['KsatVerFrac'][:,idx], layer['c'][:,idx], static['KsatVer'][idx], static['f'][idx], static['thetaS'][idx], static['thetaR'][idx], static['SoilWaterCapacity'][idx], SWDold[idx], shape_layer[0], TransferMethod) dyn['Transfer'][idx] = ast # then evaporation from layers for k in range(len(L)): if k==0: SaturationDeficit = static['SoilWaterCapacity'][idx] - dyn['SatWaterDepth'][idx] if shape_layer[0] == 1: soilevapunsat = dyn['restEvap'][idx] * min(1.0, SaturationDeficit / static['SoilWaterCapacity'][idx]) else: if len(L) == 1: if dyn['zi'][idx] > 0: soilevapunsat = dyn['restEvap'][idx] * min(1.0, layer['UStoreLayerDepth'][k,idx]/dyn['zi'][idx]) else: soilevapunsat = 0.0 else: soilevapunsat = dyn['restEvap'][idx] * min(1.0, layer['UStoreLayerDepth'][k,idx]/(layer['UStoreLayerThickness'][k,idx]*(static['thetaS'][idx]-static['thetaR'][idx]))) soilevapunsat = min(soilevapunsat, layer['UStoreLayerDepth'][k,idx]) dyn['restEvap'][idx] = dyn['restEvap'][idx] - soilevapunsat layer['UStoreLayerDepth'][k,idx] = layer['UStoreLayerDepth'][k,idx] - soilevapunsat if shape_layer[0] == 1: soilevapsat = 0.0 else: if len(L) == 1: soilevapsat = dyn['restEvap'][idx] * min(1.0, (layer['UStoreLayerThickness'][k,idx] - dyn['zi'][idx])/ layer['UStoreLayerThickness'][k,idx]) soilevapsat = min(soilevapsat, (layer['UStoreLayerThickness'][k,idx] - dyn['zi'][idx]) * (static['thetaS'][idx] - static['thetaR'][idx])) else: soilevapsat = 0.0 dyn['soilevap'][idx] = soilevapunsat + soilevapsat dyn['SatWaterDepth'][idx] = dyn['SatWaterDepth'][idx] - soilevapsat # evaporation available for transpiration PotTrans = dyn['PotTransSoil'][idx] - dyn['soilevap'][idx] - dyn['ActEvapOpenWaterLand'][idx] # evaporation from saturated store wetroots = _sCurve(dyn['zi'][idx], a=static['ActRootingDepth'][idx], c=static['rootdistpar'][idx]) dyn['ActEvapSat'][idx] = min(PotTrans * wetroots, dyn['SatWaterDepth'][idx]) dyn['SatWaterDepth'][idx] = dyn['SatWaterDepth'][idx] - dyn['ActEvapSat'][idx] RestPotEvap = PotTrans - dyn['ActEvapSat'][idx] # actual evaporation from UStore layer['UStoreLayerDepth'][k,idx], dyn['ActEvapUStore'][idx], RestPotEvap = actEvap_unsat_SBM(static['ActRootingDepth'][idx], layer['UStoreLayerDepth'][k,idx], layer['UStoreLayerThickness'][k,idx], sumlayer[k], RestPotEvap, dyn['ActEvapUStore'][idx], layer['c'][k,idx], L[k], static['thetaS'][idx], static['thetaR'][idx], ust) else: # actual evaporation from UStore layer['UStoreLayerDepth'][k,idx], dyn['ActEvapUStore'][idx], RestPotEvap = actEvap_unsat_SBM(static['ActRootingDepth'][idx], layer['UStoreLayerDepth'][k,idx], layer['UStoreLayerThickness'][k,idx], sumlayer[k], RestPotEvap, dyn['ActEvapUStore'][idx], layer['c'][k,idx], L[k], static['thetaS'][idx], static['thetaR'][idx], ust) #check soil moisture balance per layer du = 0.0 for k in range(L.size-1,-1,-1): du = max(0,layer['UStoreLayerDepth'][k,idx] - L[k]*(static['thetaS'][idx]-static['thetaR'][idx])) layer['UStoreLayerDepth'][k,idx] = layer['UStoreLayerDepth'][k,idx] - du if k > 0: layer['UStoreLayerDepth'][k-1,idx] = layer['UStoreLayerDepth'][k-1,idx] + du Ksat = layer['KsatVerFrac'][len(L)-1,idx] * static['KsatVer'][idx] *
np.exp(-static['f'][idx] * dyn['zi'][idx])
numpy.exp
import numpy as np from r_support import matrix, logger def get_num_batches(n, batch_size): return int(np.ceil(n * 1.0 / batch_size)) def get_sgd_batch(x, y, i, batch_size, shuffled_idxs=None): s = i * batch_size e = min(x.shape[0], (i + 1) * batch_size) if shuffled_idxs is None: idxs = np.arange(s, e) else: idxs = shuffled_idxs[np.arange(s, e)] return matrix(x[idxs, :], ncol=x.shape[1]), y[idxs] def avg_loss_check(losses, epoch, n=20, eps=1e-6): if epoch < n + 1: return False avg1 = np.mean(losses[(epoch-1-n):(epoch-1)]) avg2 = np.mean(losses[(epoch-n):(epoch)]) if np.abs(avg1 - avg2) < eps: return True return False def debug_log_sgd_losses(sgd_type, losses, epoch, n=20): if False: # disable logging -- should be used in PRODUCTION return elif True: # minimal info logger.debug("[%s] epochs: %d; avg last %d losses:%f" % (sgd_type, epoch, n, np.mean(losses[(epoch-min(n, epoch)):(epoch)]))) else: # maximum info logger.debug("[%s] epochs: %d; avg last %d losses:%f\n%s\n%s" % (sgd_type, epoch, n, np.mean(losses[(epoch-min(n, epoch)):(epoch)]), str(list(losses[0:min(n, epoch)])), str(list(losses[(epoch-min(n, epoch)):(epoch)])))) def sgd(w0, x, y, f, grad, learning_rate=0.01, batch_size=100, max_epochs=1000, eps=1e-6, shuffle=False, rng=None): n = x.shape[0] n_batches = get_num_batches(n, batch_size) w = np.copy(w0) epoch_losses = np.zeros(max_epochs, dtype=float) epoch = 0 w_best = np.copy(w0) loss_best = np.inf if n <= batch_size: shuffle = False # no need to shuffle since all instances will be used up in one batch if shuffle: shuffled_idxs = np.arange(n) if rng is None: np.random.shuffle(shuffled_idxs) else: rng.shuffle(shuffled_idxs) else: shuffled_idxs = None while epoch < max_epochs: losses = np.zeros(n_batches, dtype=float) for i in range(n_batches): xi, yi = get_sgd_batch(x, y, i, batch_size, shuffled_idxs=shuffled_idxs) if xi.shape[0] == 0: raise ValueError("Batch size of 0") g = grad(w, xi, yi) w -= learning_rate * g losses[i] = f(w, xi, yi) if False: g_norm = g.dot(g) if np.isnan(g_norm) or np.isinf(g_norm): logger.debug("|grad|=%f, i=%d/%d, epoch:%d" % (g.dot(g), i+1, n_batches, epoch)) logger.debug("|w0|=%f" % w0.dot(w0)) raise ArithmeticError("grad is nan/inf in sgd") loss = np.mean(losses) if np.isnan(loss): logger.debug("loss is nan") logger.debug("|w|=%f" % w.dot(w)) raise ArithmeticError("loss is nan in sgd") epoch_losses[epoch] = loss if loss < loss_best: # pocket algorithm np.copyto(w_best, w) loss_best = loss epoch += 1 if loss < eps: break debug_log_sgd_losses("sgd", epoch_losses, epoch, n=20) # logger.debug("epochs: %d" % epoch) # logger.debug("net losses:") # logger.debug("epoch losses:\n%s" % str(epoch_losses[0:epoch])) # logger.debug("best loss: %f" % loss_best) return w_best def sgdRMSProp(w0, x, y, f, grad, learning_rate=0.01, batch_size=100, max_epochs=1000, delta=1e-6, ro=0.9, eps=1e-6, shuffle=False, rng=None): n = x.shape[0] n_batches = get_num_batches(n, batch_size) w = np.copy(w0) r = np.zeros(len(w0), dtype=w0.dtype) # gradient accumulation variable epoch_losses = np.zeros(max_epochs, dtype=float) epoch = 0 w_best = np.copy(w0) loss_best = np.inf if n <= batch_size: # no need to shuffle since all instances will be used up in one batch shuffle = False if shuffle: shuffled_idxs = np.arange(n) if rng is None: np.random.shuffle(shuffled_idxs) else: rng.shuffle(shuffled_idxs) else: shuffled_idxs = None prev_loss = np.inf while epoch < max_epochs: losses = np.zeros(n_batches, dtype=float) for i in range(n_batches): xi, yi = get_sgd_batch(x, y, i, batch_size, shuffled_idxs=shuffled_idxs) g = grad(w, xi, yi) r[:] = ro * r + (1 - ro) * np.multiply(g, g) dw_scale = (learning_rate / (np.sqrt(delta + r))) dw = np.multiply(dw_scale, g) w[:] = w - dw losses[i] = f(w, xi, yi) loss = np.mean(losses) if np.isnan(loss): logger.debug("loss is nan") logger.debug("|w|=%f" % w.dot(w)) raise ArithmeticError("loss is nan in sgd") epoch_losses[epoch] = loss if loss < loss_best: # pocket algorithm np.copyto(w_best, w) loss_best = loss epoch += 1 if (loss < eps or np.abs(loss - prev_loss) < eps or avg_loss_check(epoch_losses, epoch, n=20, eps=eps)): break prev_loss = loss debug_log_sgd_losses("sgdRMSProp", epoch_losses, epoch, n=20) # logger.debug("epochs: %d" % epoch) # logger.debug("net losses:") # logger.debug("epoch losses:\n%s" % str(epoch_losses[0:epoch])) # logger.debug("best loss: %f" % loss_best) return w_best def sgdMomentum(w0, x, y, f, grad, learning_rate=0.01, batch_size=100, max_epochs=1000, alpha=0.9, eps=1e-6, shuffle=False, rng=None): n = x.shape[0] n_batches = get_num_batches(n, batch_size) w = np.copy(w0) v = np.zeros(len(w0), dtype=w0.dtype) # velocity epoch_losses = np.zeros(max_epochs, dtype=float) epoch = 0 w_best = np.copy(w0) loss_best = np.inf if n <= batch_size: # no need to shuffle since all instances will be used up in one batch shuffle = False if shuffle: shuffled_idxs = np.arange(n) if rng is None: np.random.shuffle(shuffled_idxs) else: rng.shuffle(shuffled_idxs) else: shuffled_idxs = None prev_loss = np.inf while epoch < max_epochs: losses = np.zeros(n_batches, dtype=float) for i in range(n_batches): xi, yi = get_sgd_batch(x, y, i, batch_size, shuffled_idxs=shuffled_idxs) g = grad(w, xi, yi) v[:] = alpha * v - learning_rate * g w[:] = w + v losses[i] = f(w, xi, yi) loss = np.mean(losses) if np.isnan(loss): logger.debug("loss is nan") logger.debug("|w|=%f" % w.dot(w)) raise ArithmeticError("loss is nan in sgd") epoch_losses[epoch] = loss if loss < loss_best: # pocket algorithm np.copyto(w_best, w) loss_best = loss epoch += 1 if (loss < eps or np.abs(loss - prev_loss) < eps or avg_loss_check(epoch_losses, epoch, n=20, eps=eps)): break prev_loss = loss debug_log_sgd_losses("sgdMomentum", epoch_losses, epoch, n=20) # logger.debug("epochs: %d" % epoch) # logger.debug("net losses:") # logger.debug("epoch losses:\n%s" % str(epoch_losses[0:epoch])) # logger.debug("best loss: %f" % loss_best) return w_best def sgdRMSPropNestorov(w0, x, y, f, grad, learning_rate=0.01, batch_size=100, max_epochs=1000, alpha=0.9, delta=1e-6, ro=0.9, eps=1e-6, shuffle=False, rng=None): n = x.shape[0] n_batches = get_num_batches(n, batch_size) w = np.copy(w0) v = np.zeros(len(w0), dtype=w0.dtype) # velocity r = np.zeros(len(w0), dtype=w0.dtype) # gradient accumulation variable epoch_losses = np.zeros(max_epochs, dtype=float) epoch = 0 w_best = np.copy(w0) loss_best = np.inf if n <= batch_size: # no need to shuffle since all instances will be used up in one batch shuffle = False if shuffle: shuffled_idxs = np.arange(n) if rng is None: np.random.shuffle(shuffled_idxs) else: rng.shuffle(shuffled_idxs) else: shuffled_idxs = None prev_loss = np.inf while epoch < max_epochs: losses = np.zeros(n_batches, dtype=float) for i in range(n_batches): xi, yi = get_sgd_batch(x, y, i, batch_size, shuffled_idxs=shuffled_idxs) tw = w + alpha * v g = grad(tw, xi, yi) r[:] = ro * r + (1 - ro) * np.multiply(g, g) dw_scale = (learning_rate / (np.sqrt(delta + r))) v = alpha * v - np.multiply(dw_scale, g) w[:] = w + v losses[i] = f(w, xi, yi) loss = np.mean(losses) if np.isnan(loss): logger.debug("loss is nan") logger.debug("|w|=%f" % w.dot(w)) raise ArithmeticError("loss is nan in sgd") epoch_losses[epoch] = loss if loss < loss_best: # pocket algorithm np.copyto(w_best, w) loss_best = loss epoch += 1 if (loss < eps or np.abs(loss - prev_loss) < eps or avg_loss_check(epoch_losses, epoch, n=20, eps=eps)): break prev_loss = loss debug_log_sgd_losses("sgdRMSPropNestorov", epoch_losses, epoch, n=20) # logger.debug("epochs: %d" % epoch) # logger.debug("net losses:") # logger.debug("epoch losses:\n%s" % str(epoch_losses[0:epoch])) # logger.debug("best loss: %f" % loss_best) return w_best def sgdAdam(w0, x, y, f, grad, learning_rate=0.01, batch_size=100, max_epochs=1000, delta=1e-8, ro1=0.9, ro2=0.999, eps=1e-6, shuffle=False, rng=None): n = x.shape[0] n_batches = get_num_batches(n, batch_size) w = np.copy(w0) s = np.zeros(len(w0), dtype=w0.dtype) # first moment variable s_hat = np.zeros(len(w0), dtype=w0.dtype) # first moment corrected for bias r = np.zeros(len(w0), dtype=w0.dtype) # second moment variable r_hat = np.zeros(len(w0), dtype=w0.dtype) # second moment corrected for bias t = 0 # time step epoch_losses = np.zeros(max_epochs, dtype=float) epoch = 0 w_best = np.copy(w0) loss_best = np.inf if n <= batch_size: # no need to shuffle since all instances will be used up in one batch shuffle = False if shuffle: shuffled_idxs = np.arange(n) if rng is None: np.random.shuffle(shuffled_idxs) else: rng.shuffle(shuffled_idxs) else: shuffled_idxs = None prev_loss = np.inf while epoch < max_epochs: losses = np.zeros(n_batches, dtype=float) for i in range(n_batches): xi, yi = get_sgd_batch(x, y, i, batch_size, shuffled_idxs=shuffled_idxs) g = grad(w, xi, yi) t += 1 s[:] = ro1 * s + (1 - ro1) * g r[:] = ro2 * r + (1 - ro2) * np.multiply(g, g) # correct bias in first moment s_hat[:] = (1./(1 - ro1 ** t)) * s # correct bias in second moment r_hat[:] = (1./(1 - ro2 ** t)) * r dw_scale = (learning_rate / (np.sqrt(delta + r_hat))) dw = np.multiply(dw_scale, s_hat) w[:] = w - dw losses[i] = f(w, xi, yi) loss = np.mean(losses) if np.isnan(loss): logger.debug("loss is nan") logger.debug("|w|=%f" % w.dot(w)) raise ArithmeticError("loss is nan in sgd") epoch_losses[epoch] = loss if loss < loss_best: # pocket algorithm
np.copyto(w_best, w)
numpy.copyto
# Test script for Uncertainty Calibration in presence of common corruptions # Evaluate calibration on clean and corrupted data # # Last updated: Dec 30 2021 import sys import numpy as np import torch from torchvision import datasets, transforms from DataLoad import * from DiGN import DiGN args = sys.argv[1:] dataset = args[0] architecture = args[1] batch_size = int(args[2]) ensemble_eval = (args[3]=="True") train_alg = args[4] eval_noise = (args[5]=="True") print('Dataset: %s | Architecture: %s | Batch size: %d' % (dataset, architecture, batch_size)) print('Ensemble_eval: %s | Train alg: %s' % (ensemble_eval, train_alg)) print('Evaluate noise only: %s' % (eval_noise)) if dataset in ['cifar10','cifar100']: ensemble_stddev = 0.1 # CIFAR10/100 else: ensemble_stddev = 0.3 # Tiny-ImageNet if dataset=='cifar10': data_path = './cifar10' n_classes = 10 get_loaders = get_loaders_cifar10 corrupt_path = './CIFAR-10-C/' elif dataset=='cifar100': data_path = './cifar100' n_classes = 100 get_loaders = get_loaders_cifar100 corrupt_path = './CIFAR-100-C/' elif dataset=='tinyimagenet': data_path = './tiny-imagenet-200' n_classes = 200 get_loaders = get_loaders_tinyimagenet corrupt_path = './Tiny-ImageNet-C/' else: raise ValueError('dataset not supported.') if architecture=='resnet18': arch = 'RN18' elif architecture=='resnet18wide': arch = 'WRN18' elif architecture=='resnet18_64': arch = 'RN18_64' elif architecture=='resnet18wide_64': arch = 'RN18W_64' elif architecture=='densenet121': arch = 'DN121' elif architecture=='inceptionv3': arch = 'IncV3' else: raise ValueError('architecture not supported.') # data loader for training, eval train_loader, val_loader = get_loaders(data_path=data_path, batch_size_train=batch_size, batch_size_val=batch_size, num_workers=4) print('# train batches = ', len(train_loader), ', # val batches = ', len(val_loader)) # architecture dign = DiGN(architecture, n_classes=n_classes, dataset=dataset) # number of runs M = 3 # ======== Auxiliary Functions =========== def get_corrupt_loader_cifar(corruption_path_base): labels = np.load(corruption_path_base+'labels.npy') if eval_noise: corruption_list=['speckle_noise','impulse_noise','shot_noise'] else: corruption_list=['saturate','spatter','gaussian_blur','speckle_noise','jpeg_compression','pixelate','elastic_transform','contrast','brightness','fog','frost','snow','zoom_blur','motion_blur','glass_blur','defocus_blur','impulse_noise','shot_noise'] #,'gaussian_noise'] corruption_list.sort() x_all = np.zeros((50000*len(corruption_list),3,32,32)) labels_all = np.zeros((50000*len(corruption_list))) start = 0 for i in range(len(corruption_list)): x_corruption_i = np.load(corruption_path_base+corruption_list[i]+'.npy') x_corruption_i =
np.moveaxis(x_corruption_i, 3, 1)
numpy.moveaxis
# Copyright 2020 Princeton University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Event segmentation using a Hidden Markov Model Given an ROI timeseries, this class uses an annealed fitting procedure to segment the timeseries into events with stable activity patterns. After learning the signature activity pattern of each event, the model can then be applied to other datasets to identify a corresponding sequence of events. Full details are available in: <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> Discovering event structure in continuous narrative perception and memory Neuron, Volume 95, Issue 3, 709 - 721.e5 https://doi.org/10.1016/j.neuron.2017.06.041 This class also extends the model described in the Neuron paper: 1) It allows transition matrices that are composed of multiple separate chains of events rather than a single linear path. This allows a model to contain patterns for multiple event sequences (e.g. narratives), and fit probabilities along each of these chains on a new, unlabeled timeseries. To use this option, pass in an event_chain vector labeling which events belong to each chain, define event patterns using set_event_patterns(), then fit to a new dataset with find_events. 2) To obtain better fits when the underlying event structure contains events that vary substantially in length, the split_merge option allows the fit() function to re-distribute events during fitting. The number of merge/split proposals is controlled by split_merge_proposals, which controls how thorough versus fast the fitting process is. """ # Authors: <NAME> and <NAME> (Princeton University) import numpy as np from scipy import stats import logging import copy from sklearn.base import BaseEstimator from sklearn.utils.validation import check_is_fitted, check_array from sklearn.exceptions import NotFittedError import itertools from . import _utils as utils # type: ignore logger = logging.getLogger(__name__) __all__ = [ "EventSegment", ] class EventSegment(BaseEstimator): """Class for event segmentation of continuous fMRI data Parameters ---------- n_events: int Number of segments to learn step_var: Callable[[int], float] : default 4 * (0.98 ** (step - 1)) The Gaussian variance to use during fitting, as a function of the number of steps. Should decrease slowly over time. n_iter: int, default: 500 Maximum number of steps to run during fitting event_chains: ndarray with length = n_events Array with unique value for each separate chain of events, each linked in the order they appear in the array split_merge: bool, default: False Determines whether merge/split proposals are used during fitting with fit(). This can improve fitting performance when events are highly uneven in size, but requires additional time split_merge_proposals: int, default: 1 Number of merges and splits to consider at each step. Computation time scales as O(proposals^2) so this should usually be a small value Attributes ---------- p_start, p_end: length n_events+1 ndarray initial and final prior distributions over events P: n_events+1 by n_events+1 ndarray HMM transition matrix ll_ : ndarray with length = number of training datasets Log-likelihood for training datasets over the course of training segments_: list of (time by event) ndarrays Learned (soft) segmentation for training datasets event_var_ : float Gaussian variance at the end of learning event_pat_ : voxel by event ndarray Learned mean patterns for each event """ def _default_var_schedule(step): return 4 * (0.98 ** (step - 1)) def __init__(self, n_events=2, step_var=_default_var_schedule, n_iter=500, event_chains=None, split_merge=False, split_merge_proposals=1): self.n_events = n_events self.step_var = step_var self.n_iter = n_iter self.split_merge = split_merge self.split_merge_proposals = split_merge_proposals if event_chains is None: self.event_chains = np.zeros(n_events) else: self.event_chains = event_chains def _fit_validate(self, X): """Validate input to fit() Validate data passed to fit(). Includes a transpose operation to change the row/column order of X and z-scoring in time. Parameters ---------- X: time by voxel ndarray, or a list of such ndarrays fMRI data to be segmented Returns ------- X: list of voxel by time ndarrays """ if len(np.unique(self.event_chains)) > 1: raise RuntimeError("Cannot fit chains, use set_event_patterns") # Copy X into a list and transpose X = copy.deepcopy(X) if type(X) is not list: X = [X] for i in range(len(X)): X[i] = check_array(X[i]) X[i] = X[i].T # Check that number of voxels is consistent across datasets n_dim = X[0].shape[0] for i in range(len(X)): assert (X[i].shape[0] == n_dim) # Double-check that data is z-scored in time for i in range(len(X)): X[i] = stats.zscore(X[i], axis=1, ddof=1) return X def fit(self, X, y=None): """Learn a segmentation on training data Fits event patterns and a segmentation to training data. After running this function, the learned event patterns can be used to segment other datasets using find_events Parameters ---------- X: time by voxel ndarray, or a list of such ndarrays fMRI data to be segmented. If a list is given, then all datasets are segmented simultaneously with the same event patterns y: not used (added to comply with BaseEstimator definition) Returns ------- self: the EventSegment object """ X = self._fit_validate(X) n_train = len(X) n_dim = X[0].shape[0] self.classes_ = np.arange(self.n_events) # Initialize variables for fitting log_gamma = [] for i in range(n_train): log_gamma.append(np.zeros((X[i].shape[1], self.n_events))) step = 1 best_ll = float("-inf") self.ll_ = np.empty((0, n_train)) while step <= self.n_iter: iteration_var = self.step_var(step) # Based on the current segmentation, compute the mean pattern # for each event seg_prob = [np.exp(lg) / np.sum(np.exp(lg), axis=0) for lg in log_gamma] mean_pat = np.empty((n_train, n_dim, self.n_events)) for i in range(n_train): mean_pat[i, :, :] = X[i].dot(seg_prob[i]) mean_pat = np.mean(mean_pat, axis=0) # Based on the current mean patterns, compute the event # segmentation self.ll_ = np.append(self.ll_, np.empty((1, n_train)), axis=0) for i in range(n_train): logprob = self._logprob_obs(X[i], mean_pat, iteration_var) log_gamma[i], self.ll_[-1, i] = self._forward_backward(logprob) if step > 1 and self.split_merge: curr_ll = np.mean(self.ll_[-1, :]) self.ll_[-1, :], log_gamma, mean_pat = \ self._split_merge(X, log_gamma, iteration_var, curr_ll) # If log-likelihood has started decreasing, undo last step and stop if np.mean(self.ll_[-1, :]) < best_ll: self.ll_ = self.ll_[:-1, :] break self.segments_ = [np.exp(lg) for lg in log_gamma] self.event_var_ = iteration_var self.event_pat_ = mean_pat best_ll = np.mean(self.ll_[-1, :]) logger.debug("Fitting step %d, LL=%f", step, best_ll) step += 1 return self def _logprob_obs(self, data, mean_pat, var): """Log probability of observing each timepoint under each event model Computes the log probability of each observed timepoint being generated by the Gaussian distribution for each event pattern Parameters ---------- data: voxel by time ndarray fMRI data on which to compute log probabilities mean_pat: voxel by event ndarray Centers of the Gaussians for each event var: float or 1D array of length equal to the number of events Variance of the event Gaussians. If scalar, all events are assumed to have the same variance Returns ------- logprob : time by event ndarray Log probability of each timepoint under each event Gaussian """ n_vox = data.shape[0] t = data.shape[1] # z-score both data and mean patterns in space, so that Gaussians # are measuring Pearson correlations and are insensitive to overall # activity changes data_z = stats.zscore(data, axis=0, ddof=1) mean_pat_z = stats.zscore(mean_pat, axis=0, ddof=1) logprob = np.empty((t, self.n_events)) if type(var) is not np.ndarray: var = var * np.ones(self.n_events) for k in range(self.n_events): logprob[:, k] = -0.5 * n_vox * np.log( 2 * np.pi * var[k]) - 0.5 * np.sum( (data_z.T - mean_pat_z[:, k]).T ** 2, axis=0) / var[k] logprob /= n_vox return logprob def _forward_backward(self, logprob): """Runs forward-backward algorithm on observation log probs Given the log probability of each timepoint being generated by each event, run the HMM forward-backward algorithm to find the probability that each timepoint belongs to each event (based on the transition priors in p_start, p_end, and P) See https://en.wikipedia.org/wiki/Forward-backward_algorithm for mathematical details Parameters ---------- logprob : time by event ndarray Log probability of each timepoint under each event Gaussian Returns ------- log_gamma : time by event ndarray Log probability of each timepoint belonging to each event ll : float Log-likelihood of fit """ logprob = copy.copy(logprob) t = logprob.shape[0] logprob = np.hstack((logprob, float("-inf") * np.ones((t, 1)))) # Initialize variables log_scale = np.zeros(t) log_alpha = np.zeros((t, self.n_events + 1)) log_beta = np.zeros((t, self.n_events + 1)) # Set up transition matrix, with final sink state self.p_start = np.zeros(self.n_events + 1) self.p_end = np.zeros(self.n_events + 1) self.P = np.zeros((self.n_events + 1, self.n_events + 1)) label_ind = np.unique(self.event_chains, return_inverse=True)[1] n_chains = np.max(label_ind) + 1 # For each chain of events, link them together and then to sink state for c in range(n_chains): chain_ind = np.nonzero(label_ind == c)[0] self.p_start[chain_ind[0]] = 1 / n_chains self.p_end[chain_ind[-1]] = 1 / n_chains p_trans = (len(chain_ind) - 1) / t if p_trans >= 1: raise ValueError('Too few timepoints') for i in range(len(chain_ind)): self.P[chain_ind[i], chain_ind[i]] = 1 - p_trans if i < len(chain_ind) - 1: self.P[chain_ind[i], chain_ind[i+1]] = p_trans else: self.P[chain_ind[i], -1] = p_trans self.P[-1, -1] = 1 # Forward pass for i in range(t): if i == 0: log_alpha[0, :] = self._log(self.p_start) + logprob[0, :] else: log_alpha[i, :] = self._log(np.exp(log_alpha[i - 1, :]) .dot(self.P)) + logprob[i, :] log_scale[i] = np.logaddexp.reduce(log_alpha[i, :]) log_alpha[i] -= log_scale[i] # Backward pass log_beta[-1, :] = self._log(self.p_end) - log_scale[-1] for i in reversed(range(t - 1)): obs_weighted = log_beta[i + 1, :] + logprob[i + 1, :] offset = np.max(obs_weighted) log_beta[i, :] = offset + self._log( np.exp(obs_weighted - offset).dot(self.P.T)) - log_scale[i] # Combine and normalize log_gamma = log_alpha + log_beta log_gamma -= np.logaddexp.reduce(log_gamma, axis=1, keepdims=True) ll = np.sum(log_scale[:(t - 1)]) + np.logaddexp.reduce( log_alpha[-1, :] + log_scale[-1] + self._log(self.p_end)) log_gamma = log_gamma[:, :-1] return log_gamma, ll def _log(self, x): """Modified version of np.log that manually sets values <=0 to -inf Parameters ---------- x: ndarray of floats Input to the log function Returns ------- log_ma: ndarray of floats log of x, with x<=0 values replaced with -inf """ xshape = x.shape _x = x.flatten() y = utils.masked_log(_x) return y.reshape(xshape) def set_event_patterns(self, event_pat): """Set HMM event patterns manually Rather than fitting the event patterns automatically using fit(), this function allows them to be set explicitly. They can then be used to find corresponding events in a new dataset, using find_events(). Parameters ---------- event_pat: voxel by event ndarray """ if event_pat.shape[1] != self.n_events: raise ValueError(("Number of columns of event_pat must match " "number of events")) self.event_pat_ = event_pat.copy() def find_events(self, testing_data, var=None, scramble=False): """Applies learned event segmentation to new testing dataset After fitting an event segmentation using fit() or setting event patterns directly using set_event_patterns(), this function finds the same sequence of event patterns in a new testing dataset. Parameters ---------- testing_data: timepoint by voxel ndarray fMRI data to segment based on previously-learned event patterns var: float or 1D ndarray of length equal to the number of events default: uses variance that maximized training log-likelihood Variance of the event Gaussians. If scalar, all events are assumed to have the same variance. If fit() has not previously been run, this must be specifed (cannot be None). scramble: bool : default False If true, the order of the learned events are shuffled before fitting, to give a null distribution Returns ------- segments : time by event ndarray The resulting soft segmentation. segments[t,e] = probability that timepoint t is in event e test_ll : float Log-likelihood of model fit """ if var is None: if not hasattr(self, 'event_var_'): raise NotFittedError(("Event variance must be provided, if " "not previously set by fit()")) else: var = self.event_var_ if not hasattr(self, 'event_pat_'): raise NotFittedError(("The event patterns must first be set " "by fit() or set_event_patterns()")) if scramble: mean_pat = self.event_pat_[:, np.random.permutation(self.n_events)] else: mean_pat = self.event_pat_ logprob = self._logprob_obs(testing_data.T, mean_pat, var) lg, test_ll = self._forward_backward(logprob) segments = np.exp(lg) return segments, test_ll def predict(self, X): """Applies learned event segmentation to new testing dataset Alternative function for segmenting a new dataset after using fit() to learn a sequence of events, to comply with the sklearn Classifier interface Parameters ---------- X: timepoint by voxel ndarray fMRI data to segment based on previously-learned event patterns Returns ------- Event label for each timepoint """ check_is_fitted(self, ["event_pat_", "event_var_"]) X = check_array(X) segments, test_ll = self.find_events(X) return np.argmax(segments, axis=1) def calc_weighted_event_var(self, D, weights, event_pat): """Computes normalized weighted variance around event pattern Utility function for computing variance in a training set of weighted event examples. For each event, the sum of squared differences for all timepoints from the event pattern is computed, and then the weights specify how much each of these differences contributes to the variance (normalized by the number of voxels). Parameters ---------- D : timepoint by voxel ndarray fMRI data for which to compute event variances weights : timepoint by event ndarray specifies relative weights of timepoints for each event event_pat : voxel by event ndarray mean event patterns to compute variance around Returns ------- ev_var : ndarray of variances for each event """ Dz = stats.zscore(D, axis=1, ddof=1) ev_var = np.empty(event_pat.shape[1]) for e in range(event_pat.shape[1]): # Only compute variances for weights > 0.1% of max weight nz = weights[:, e] > np.max(weights[:, e])/1000 sumsq = np.dot(weights[nz, e], np.sum(np.square(Dz[nz, :] - event_pat[:, e]), axis=1)) ev_var[e] = sumsq/(np.sum(weights[nz, e]) - np.sum(np.square(weights[nz, e])) / np.sum(weights[nz, e])) ev_var = ev_var / D.shape[1] return ev_var def model_prior(self, t): """Returns the prior probability of the HMM Runs forward-backward without any data, showing the prior distribution of the model (for comparison with a posterior). Parameters ---------- t: int Number of timepoints Returns ------- segments : time by event ndarray segments[t,e] = prior probability that timepoint t is in event e test_ll : float Log-likelihood of model (data-independent term)""" lg, test_ll = self._forward_backward(
np.zeros((t, self.n_events))
numpy.zeros
import pytest import pyCGM_Single.pycgmStatic as pycgmStatic import numpy as np from mock import patch rounding_precision = 8 class TestPycgmStaticAxis(): """ This class tests the axis functions in pycgmStatic.py: staticCalculationHead pelvisJointCenter hipJointCenter hipAxisCenter kneeJointCenter ankleJointCenter footJointCenter headJC uncorrect_footaxis rotaxis_footflat rotaxis_nonfootflat findJointC """ nan_3d = [np.nan, np.nan, np.nan] rand_coor = [np.random.randint(0, 10), np.random.randint(0, 10), np.random.randint(0, 10)] @pytest.mark.parametrize(["head", "expected"], [ # Test from running sample data ([[[244.87227957886893, 326.0240255639856, 1730.4189843948805], [243.89575702706503, 325.0366593474616, 1730.1515677531293], [244.89086730509763, 324.80072493605866, 1731.1283433097797]], [244.89547729492188, 325.0578918457031, 1730.1619873046875]], 0.25992807335420975), # Test with zeros for all params ([[[0, 0, 0], [0, 0, 0], [0, 0, 0]], [0, 0, 0]], np.nan), # Testing when values are added to head[0][0] ([[[-1, 8, 9], [0, 0, 0], [0, 0, 0]], [0, 0, 0]], 1.5707963267948966), # Testing when values are added to head[0][1] ([[[0, 0, 0], [7, 5, 7], [0, 0, 0]], [0, 0, 0]], np.nan), # Testing when values are added to head[0][2] ([[[0, 0, 0], [0, 0, 0], [3, -6, -2]], [0, 0, 0]], 0.0), # Testing when values are added to head[0] ([[[-1, 8, 9], [7, 5, 7], [3, -6, -2]], [0, 0, 0]], -1.3521273809209546), # Testing when values are added to head[1] ([[[0, 0, 0], [0, 0, 0], [0, 0, 0]], [-4, 7, 8]], 0.7853981633974483), # Testing when values are added to head ([[[-1, 8, 9], [7, 5, 7], [3, -6, -2]], [-4, 7, 8]], -0.09966865249116204), # Testing that when head is composed of lists of ints ([[[-1, 8, 9], [7, 5, 7], [3, -6, -2]], [-4, 7, 8]], -0.09966865249116204), # Testing that when head is composed of numpy arrays of ints ([np.array([[-1, 8, 9], [7, 5, 7], [3, -6, -2]], dtype='int'), np.array([-4, 7, 8], dtype='int')], -0.09966865249116204), # Testing that when head is composed of lists of floats ([[[-1.0, 8.0, 9.0], [7.0, 5.0, 7.0], [3.0, -6.0, -2.0]], [-4.0, 7.0, 8.0]], -0.09966865249116204), # Testing that when head is composed of numpy arrays of floats ([np.array([[-1.0, 8.0, 9.0], [7.0, 5.0, 7.0], [3.0, -6.0, -2.0]], dtype='float'), np.array([-4.0, 7.0, 8.0], dtype='float')], -0.09966865249116204)]) def test_staticCalculationHead(self, head, expected): """ This test provides coverage of the staticCalculationHead function in pycgmStatic.py, defined as staticCalculationHead(frame, head) This test takes 2 parameters: head: array containing the head axis and head origin expected: the expected result from calling staticCalculationHead on head This function first calculates the x, y, z axes of the head by subtracting the given head axes by the head origin. It then calls headoffCalc on this head axis and a global axis to find the head offset angles. This test ensures that: - the head axis and the head origin both have an effect on the final offset angle - the resulting output is correct when head is composed of lists of ints, numpy arrays of ints, lists of floats, and numpy arrays of floats. """ result = pycgmStatic.staticCalculationHead(None, head) np.testing.assert_almost_equal(result, expected, rounding_precision) @pytest.mark.parametrize(["frame", "expected"], [ # Test from running sample data ({'RASI': np.array([357.90066528, 377.69210815, 1034.97253418]), 'LASI': np.array([145.31594849, 405.79052734, 1030.81445312]), 'RPSI': np.array([274.00466919, 205.64402771, 1051.76452637]), 'LPSI': np.array([189.15231323, 214.86122131, 1052.73486328])}, [np.array([251.60830688, 391.74131775, 1032.89349365]), np.array([[251.74063624, 392.72694721, 1032.78850073], [250.61711554, 391.87232862, 1032.8741063], [251.60295336, 391.84795134, 1033.88777762]]), np.array([231.57849121, 210.25262451, 1052.24969482])]), # Test with zeros for all params ({'SACR': np.array([0, 0, 0]), 'RASI': np.array([0, 0, 0]), 'LASI': np.array([0, 0, 0]), 'RPSI': np.array([0, 0, 0]), 'LPSI': np.array([0, 0, 0])}, [
np.array([0, 0, 0])
numpy.array
import concurrent.futures import os import pathlib from typing import List import cv2 import numpy as np import pandas as pd import torch import torchvision def compute_stats(fpath): img = cv2.imread(str(fpath)) img = img.reshape(-1, 3).astype(np.float32) / 255.0 sum_ = np.sum(img, axis=0) sum_sq = np.sum(img**2, axis=0) n_pixels = img.shape[0] return sum_, sum_sq, n_pixels def dataset_stats(image_dir: pathlib.Path, labels_fpath: pathlib.Path): """ Compute mean and stdev of each channel of an image dataset. https://kozodoi.me/python/deep%20learning/pytorch/tutorial/2021/03/08/image-mean-std.html """ df = pd.read_parquet(labels_fpath) fnames = df["id"].unique() sum_ =
np.zeros((3,))
numpy.zeros
import numpy as np from .creplace import point_op from .utils import rcosFn from .image_stats import var def ramp(size, direction=0, slope=1, intercept=0, origin=None): '''make a ramp matrix Compute a matrix containing samples of a ramp function in a given direction. Arguments --------- size : `int` or `tuple` if an int, we assume the ramp should be of dimensions `(size, size)`. if a tuple, must be a 2-tuple of ints specifying the dimensions direction : `float` the direction of the ramp's gradient direction, in radians, clockwise from the X-axis slope : `float` the slope of the ramp (per pixel) intercept : `intercept` the value of the ramp at the origin origin : `int`, `tuple`, or None the origin of the matrix. if an int, we assume the origin is at `(origin, origin)`. if a tuple, must be a 2-tuple of ints specifying the origin (where `(0, 0)` is the upper left). if None, we assume the origin lies at the center of the matrix, `(size-1)/2`. Returns ------- res : `np.array` the ramp matrix ''' if not hasattr(size, '__iter__'): size = (size, size) if origin is None: # TODO understand why minus one (not plus) origin = ((size[0] - 1)/2., (size[1] - 1)/2.) # origin = ( (size[0] + 1)/2., (size[1] + 1)/2. ) elif not hasattr(origin, '__iter__'): origin = (origin, origin) xinc = slope * np.cos(direction) yinc = slope *
np.sin(direction)
numpy.sin
import numpy as np import os import random from classifiers.Images import load_transform, get_shuffled_images class OMNIGLOTGenerator(object): """Docstring for OmniglotGenerator""" def __init__(self, data_folder, letter_swap=1, batch_size=1, classes=5, samples_per_class=10, max_rotation=0., max_shift=0., img_size=(20,20), number_of_classes=30, max_iter=None, only_labels_and_images=False): super(OMNIGLOTGenerator, self).__init__() self.data_folder = data_folder self.letter_swap = letter_swap self.batch_size = batch_size self.number_of_classes = number_of_classes self.classes = classes self.samples_per_class = samples_per_class self.max_rotation = max_rotation self.max_shift = max_shift self.img_size = img_size self.max_iter = max_iter self.num_iter = 0 self.only_labels_and_images = only_labels_and_images self.character_folders = [os.path.join(self.data_folder, family, character) \ for family in os.listdir(self.data_folder) \ if os.path.isdir(os.path.join(self.data_folder, family)) \ for character in os.listdir(os.path.join(self.data_folder, family))] print(self.character_folders) self.working_characters = random.sample(self.character_folders, self.classes) self.working_labels =
np.random.choice(self.number_of_classes, self.classes, replace=False)
numpy.random.choice
import unittest import numpy from cqcpy import test_utils from cqcpy import spin_utils from kelvin import ft_cc_equations from kelvin import quadrature class FTamplEquationsTest(unittest.TestCase): def setUp(self): self.thresh = 1e-12 self.n = 5 self.ng = 4 self.beta = 2.0 def test_ccsd_stanton(self): ng = self.ng n = self.n T1old, T2old = test_utils.make_random_ft_T(ng, n) L1old, L2old = test_utils.make_random_ft_T(ng, n) F, I = test_utils.make_random_integrals(n, n) D1, D2 = test_utils.make_random_ft_D(n) ti, g, G = quadrature.simpsons(ng, self.beta) T1sim, T2sim = ft_cc_equations.ccsd_simple( F, I, T1old, T2old, D1, D2, ti, ng, G) T1stn, T2stn = ft_cc_equations.ccsd_stanton( F, I, T1old, T2old, D1, D2, ti, ng, G) diff1 = numpy.linalg.norm(T1stn - T1sim) diff2 = numpy.linalg.norm(T2stn - T2sim) s1 = diff1 < self.thresh*numpy.sqrt(T1sim.size) s2 = diff2 < self.thresh*numpy.sqrt(T2sim.size) e1 = "Error in Stanton FT T1: {}".format(diff1) e2 = "Error in Stanton FT T2: {}".format(diff2) self.assertTrue(s1, e1) self.assertTrue(s2, e2) def test_uccsd(self): ng = self.ng na = self.n nb = self.n n = na + nb # unrestricted integrals Fa = test_utils.make_random_F(na, na) Fb = test_utils.make_random_F(nb, nb) Ia = test_utils.make_random_I_anti(na, na) Ib = test_utils.make_random_I_anti(nb, nb) Iabab = test_utils.make_random_Ifull_gen( na, na, nb, nb, na, na, nb, nb) # Full antisymmetric spin-orbital tensor I = spin_utils.int_to_spin2(Ia, Ib, Iabab, na, na, nb, nb) F = spin_utils.F_to_spin(Fa, Fb, na, na, nb, nb) T1a = numpy.zeros((ng, na, na)) T1b = numpy.zeros((ng, nb, nb)) for i in range(ng): T1at, T1bt = test_utils.make_random_T1_spatial(na, na, nb, nb) T1a[i] = T1at T1b[i] = T1bt T2aa = numpy.zeros((ng, na, na, na, na)) T2ab = numpy.zeros((ng, na, nb, na, nb)) T2bb =
numpy.zeros((ng, nb, nb, nb, nb))
numpy.zeros
from flask import Flask, render_template, jsonify, request from flask_pymongo import PyMongo from flask_cors import CORS, cross_origin import json import copy import warnings import re import pandas as pd pd.set_option('use_inf_as_na', True) import numpy as np from joblib import Memory from xgboost import XGBClassifier from sklearn import model_selection from bayes_opt import BayesianOptimization from sklearn.model_selection import cross_validate from sklearn.model_selection import cross_val_predict from sklearn.preprocessing import OneHotEncoder from sklearn.metrics import classification_report from sklearn.feature_selection import mutual_info_classif from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import f_classif from sklearn.feature_selection import RFECV from sklearn.linear_model import LogisticRegression from eli5.sklearn import PermutationImportance from joblib import Parallel, delayed import multiprocessing from statsmodels.stats.outliers_influence import variance_inflation_factor from statsmodels.tools.tools import add_constant # this block of code is for the connection between the server, the database, and the client (plus routing) # access MongoDB app = Flask(__name__) app.config["MONGO_URI"] = "mongodb://localhost:27017/mydb" mongo = PyMongo(app) cors = CORS(app, resources={r"/data/*": {"origins": "*"}}) @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/Reset', methods=["GET", "POST"]) def reset(): global DataRawLength global DataResultsRaw global previousState previousState = []\ global StanceTest StanceTest = False global filterActionFinal filterActionFinal = '' global keySpecInternal keySpecInternal = 1 global RANDOM_SEED RANDOM_SEED = 42 global keyData keyData = 0 global keepOriginalFeatures keepOriginalFeatures = [] global XData XData = [] global yData yData = [] global XDataNoRemoval XDataNoRemoval = [] global XDataNoRemovalOrig XDataNoRemovalOrig = [] global XDataStored XDataStored = [] global yDataStored yDataStored = [] global finalResultsData finalResultsData = [] global detailsParams detailsParams = [] global algorithmList algorithmList = [] global ClassifierIDsList ClassifierIDsList = '' global RetrieveModelsList RetrieveModelsList = [] global allParametersPerfCrossMutr allParametersPerfCrossMutr = [] global all_classifiers all_classifiers = [] global crossValidation crossValidation = 8 #crossValidation = 5 #crossValidation = 3 global resultsMetrics resultsMetrics = [] global parametersSelData parametersSelData = [] global target_names target_names = [] global keyFirstTime keyFirstTime = True global target_namesLoc target_namesLoc = [] global featureCompareData featureCompareData = [] global columnsKeep columnsKeep = [] global columnsNewGen columnsNewGen = [] global columnsNames columnsNames = [] global fileName fileName = [] global listofTransformations listofTransformations = ["r","b","zs","mms","l2","l1p","l10","e2","em1","p2","p3","p4"] return 'The reset was done!' # retrieve data from client and select the correct data set @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/ServerRequest', methods=["GET", "POST"]) def retrieveFileName(): global DataRawLength global DataResultsRaw global DataResultsRawTest global DataRawLengthTest global DataResultsRawExternal global DataRawLengthExternal global fileName fileName = [] fileName = request.get_data().decode('utf8').replace("'", '"') global keySpecInternal keySpecInternal = 1 global filterActionFinal filterActionFinal = '' global dataSpacePointsIDs dataSpacePointsIDs = [] global RANDOM_SEED RANDOM_SEED = 42 global keyData keyData = 0 global keepOriginalFeatures keepOriginalFeatures = [] global XData XData = [] global XDataNoRemoval XDataNoRemoval = [] global XDataNoRemovalOrig XDataNoRemovalOrig = [] global previousState previousState = [] global yData yData = [] global XDataStored XDataStored = [] global yDataStored yDataStored = [] global finalResultsData finalResultsData = [] global ClassifierIDsList ClassifierIDsList = '' global algorithmList algorithmList = [] global detailsParams detailsParams = [] # Initializing models global RetrieveModelsList RetrieveModelsList = [] global resultsList resultsList = [] global allParametersPerfCrossMutr allParametersPerfCrossMutr = [] global HistoryPreservation HistoryPreservation = [] global all_classifiers all_classifiers = [] global crossValidation crossValidation = 8 #crossValidation = 5 #crossValidation = 3 global parametersSelData parametersSelData = [] global StanceTest StanceTest = False global target_names target_names = [] global keyFirstTime keyFirstTime = True global target_namesLoc target_namesLoc = [] global featureCompareData featureCompareData = [] global columnsKeep columnsKeep = [] global columnsNewGen columnsNewGen = [] global columnsNames columnsNames = [] global listofTransformations listofTransformations = ["r","b","zs","mms","l2","l1p","l10","e2","em1","p2","p3","p4"] DataRawLength = -1 DataRawLengthTest = -1 data = json.loads(fileName) if data['fileName'] == 'HeartC': CollectionDB = mongo.db.HeartC.find() target_names.append('Healthy') target_names.append('Diseased') elif data['fileName'] == 'biodegC': StanceTest = True CollectionDB = mongo.db.biodegC.find() CollectionDBTest = mongo.db.biodegCTest.find() CollectionDBExternal = mongo.db.biodegCExt.find() target_names.append('Non-biodegr.') target_names.append('Biodegr.') elif data['fileName'] == 'BreastC': CollectionDB = mongo.db.breastC.find() elif data['fileName'] == 'DiabetesC': CollectionDB = mongo.db.diabetesC.find() target_names.append('Negative') target_names.append('Positive') elif data['fileName'] == 'MaterialC': CollectionDB = mongo.db.MaterialC.find() target_names.append('Cylinder') target_names.append('Disk') target_names.append('Flatellipsold') target_names.append('Longellipsold') target_names.append('Sphere') elif data['fileName'] == 'ContraceptiveC': CollectionDB = mongo.db.ContraceptiveC.find() target_names.append('No-use') target_names.append('Long-term') target_names.append('Short-term') elif data['fileName'] == 'VehicleC': CollectionDB = mongo.db.VehicleC.find() target_names.append('Van') target_names.append('Car') target_names.append('Bus') elif data['fileName'] == 'WineC': CollectionDB = mongo.db.WineC.find() target_names.append('Fine') target_names.append('Superior') target_names.append('Inferior') else: CollectionDB = mongo.db.IrisC.find() DataResultsRaw = [] for index, item in enumerate(CollectionDB): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRaw.append(item) DataRawLength = len(DataResultsRaw) DataResultsRawTest = [] DataResultsRawExternal = [] if (StanceTest): for index, item in enumerate(CollectionDBTest): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRawTest.append(item) DataRawLengthTest = len(DataResultsRawTest) for index, item in enumerate(CollectionDBExternal): item['_id'] = str(item['_id']) item['InstanceID'] = index DataResultsRawExternal.append(item) DataRawLengthExternal = len(DataResultsRawExternal) dataSetSelection() return 'Everything is okay' # Retrieve data set from client @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/SendtoSeverDataSet', methods=["GET", "POST"]) def sendToServerData(): uploadedData = request.get_data().decode('utf8').replace("'", '"') uploadedDataParsed = json.loads(uploadedData) DataResultsRaw = uploadedDataParsed['uploadedData'] DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary[target] global AllTargets global target_names global target_namesLoc AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] global fileName data = json.loads(fileName) previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value if (data['fileName'] == 'IrisC' or data['fileName'] == 'BreastC'): target_names.append(value) else: pass if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 if (data['fileName'] == 'IrisC' or data['fileName'] == 'BreastC'): target_names.append(value) else: pass AllTargetsFloatValues.append(Class) previous = value ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues global XDataStored, yDataStored XDataStored = XData.copy() yDataStored = yData.copy() global XDataStoredOriginal XDataStoredOriginal = XData.copy() global finalResultsData finalResultsData = XData.copy() global XDataNoRemoval XDataNoRemoval = XData.copy() global XDataNoRemovalOrig XDataNoRemovalOrig = XData.copy() return 'Processed uploaded data set' def dataSetSelection(): global XDataTest, yDataTest XDataTest = pd.DataFrame() global XDataExternal, yDataExternal XDataExternal = pd.DataFrame() global StanceTest global AllTargets global target_names target_namesLoc = [] if (StanceTest): DataResultsTest = copy.deepcopy(DataResultsRawTest) for dictionary in DataResultsRawTest: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRawTest.sort(key=lambda x: x[target], reverse=True) DataResultsTest.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResultsTest: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargetsTest = [o[target] for o in DataResultsRawTest] AllTargetsFloatValuesTest = [] previous = None Class = 0 for i, value in enumerate(AllTargetsTest): if (i == 0): previous = value target_namesLoc.append(value) if (value == previous): AllTargetsFloatValuesTest.append(Class) else: Class = Class + 1 target_namesLoc.append(value) AllTargetsFloatValuesTest.append(Class) previous = value ArrayDataResultsTest = pd.DataFrame.from_dict(DataResultsTest) XDataTest, yDataTest = ArrayDataResultsTest, AllTargetsFloatValuesTest DataResultsExternal = copy.deepcopy(DataResultsRawExternal) for dictionary in DataResultsRawExternal: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRawExternal.sort(key=lambda x: x[target], reverse=True) DataResultsExternal.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResultsExternal: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargetsExternal = [o[target] for o in DataResultsRawExternal] AllTargetsFloatValuesExternal = [] previous = None Class = 0 for i, value in enumerate(AllTargetsExternal): if (i == 0): previous = value target_namesLoc.append(value) if (value == previous): AllTargetsFloatValuesExternal.append(Class) else: Class = Class + 1 target_namesLoc.append(value) AllTargetsFloatValuesExternal.append(Class) previous = value ArrayDataResultsExternal = pd.DataFrame.from_dict(DataResultsExternal) XDataExternal, yDataExternal = ArrayDataResultsExternal, AllTargetsFloatValuesExternal DataResults = copy.deepcopy(DataResultsRaw) for dictionary in DataResultsRaw: for key in dictionary.keys(): if (key.find('*') != -1): target = key continue continue DataResultsRaw.sort(key=lambda x: x[target], reverse=True) DataResults.sort(key=lambda x: x[target], reverse=True) for dictionary in DataResults: del dictionary['_id'] del dictionary['InstanceID'] del dictionary[target] AllTargets = [o[target] for o in DataResultsRaw] AllTargetsFloatValues = [] global fileName data = json.loads(fileName) previous = None Class = 0 for i, value in enumerate(AllTargets): if (i == 0): previous = value if (data['fileName'] == 'IrisC' or data['fileName'] == 'BreastC'): target_names.append(value) else: pass if (value == previous): AllTargetsFloatValues.append(Class) else: Class = Class + 1 if (data['fileName'] == 'IrisC' or data['fileName'] == 'BreastC'): target_names.append(value) else: pass AllTargetsFloatValues.append(Class) previous = value dfRaw = pd.DataFrame.from_dict(DataResultsRaw) # OneTimeTemp = copy.deepcopy(dfRaw) # OneTimeTemp.drop(columns=['_id', 'InstanceID']) # column_names = ['volAc', 'chlorides', 'density', 'fixAc' , 'totalSuDi' , 'citAc', 'resSu' , 'pH' , 'sulphates', 'freeSulDi' ,'alcohol', 'quality*'] # OneTimeTemp = OneTimeTemp.reindex(columns=column_names) # OneTimeTemp.to_csv('dataExport.csv', index=False) ArrayDataResults = pd.DataFrame.from_dict(DataResults) global XData, yData, RANDOM_SEED XData, yData = ArrayDataResults, AllTargetsFloatValues global keepOriginalFeatures global OrignList if (data['fileName'] == 'biodegC'): keepOriginalFeatures = XData.copy() storeNewColumns = [] for col in keepOriginalFeatures.columns: newCol = col.replace("-", "_") storeNewColumns.append(newCol.replace("_","")) keepOriginalFeatures.columns = [str(col) + ' F'+str(idx+1)+'' for idx, col in enumerate(storeNewColumns)] columnsNewGen = keepOriginalFeatures.columns.values.tolist() OrignList = keepOriginalFeatures.columns.values.tolist() else: keepOriginalFeatures = XData.copy() keepOriginalFeatures.columns = [str(col) + ' F'+str(idx+1)+'' for idx, col in enumerate(keepOriginalFeatures.columns)] columnsNewGen = keepOriginalFeatures.columns.values.tolist() OrignList = keepOriginalFeatures.columns.values.tolist() XData.columns = ['F'+str(idx+1) for idx, col in enumerate(XData.columns)] XDataTest.columns = ['F'+str(idx+1) for idx, col in enumerate(XDataTest.columns)] XDataExternal.columns = ['F'+str(idx+1) for idx, col in enumerate(XDataExternal.columns)] global XDataStored, yDataStored XDataStored = XData.copy() yDataStored = yData.copy() global XDataStoredOriginal XDataStoredOriginal = XData.copy() global finalResultsData finalResultsData = XData.copy() global XDataNoRemoval XDataNoRemoval = XData.copy() global XDataNoRemovalOrig XDataNoRemovalOrig = XData.copy() warnings.simplefilter('ignore') executeModel([], 0, '') return 'Everything is okay' def create_global_function(): global estimator location = './cachedir' memory = Memory(location, verbose=0) # calculating for all algorithms and models the performance and other results @memory.cache def estimator(n_estimators, eta, max_depth, subsample, colsample_bytree): # initialize model print('loopModels') n_estimators = int(n_estimators) max_depth = int(max_depth) model = XGBClassifier(n_estimators=n_estimators, eta=eta, max_depth=max_depth, subsample=subsample, colsample_bytree=colsample_bytree, n_jobs=-1, random_state=RANDOM_SEED, silent=True, verbosity = 0, use_label_encoder=False) # set in cross-validation result = cross_validate(model, XData, yData, cv=crossValidation, scoring='accuracy') # result is mean of test_score return np.mean(result['test_score']) # check this issue later because we are not getting the same results def executeModel(exeCall, flagEx, nodeTransfName): global XDataTest, yDataTest global XDataExternal, yDataExternal global keyFirstTime global estimator global yPredictProb global scores global featureImportanceData global XData global XDataStored global previousState global columnsNewGen global columnsNames global listofTransformations global XDataStoredOriginal global finalResultsData global OrignList global tracker global XDataNoRemoval global XDataNoRemovalOrig columnsNames = [] scores = [] if (len(exeCall) == 0): if (flagEx == 3): XDataStored = XData.copy() XDataNoRemovalOrig = XDataNoRemoval.copy() OrignList = columnsNewGen elif (flagEx == 2): XData = XDataStored.copy() XDataStoredOriginal = XDataStored.copy() XDataNoRemoval = XDataNoRemovalOrig.copy() columnsNewGen = OrignList else: XData = XDataStored.copy() XDataNoRemoval = XDataNoRemovalOrig.copy() XDataStoredOriginal = XDataStored.copy() else: if (flagEx == 4): XDataStored = XData.copy() XDataNoRemovalOrig = XDataNoRemoval.copy() #XDataStoredOriginal = XDataStored.copy() elif (flagEx == 2): XData = XDataStored.copy() XDataStoredOriginal = XDataStored.copy() XDataNoRemoval = XDataNoRemovalOrig.copy() columnsNewGen = OrignList else: XData = XDataStored.copy() #XDataNoRemoval = XDataNoRemovalOrig.copy() XDataStoredOriginal = XDataStored.copy() # Bayesian Optimization CHANGE INIT_POINTS! if (keyFirstTime): create_global_function() params = {"n_estimators": (5, 200), "eta": (0.05, 0.3), "max_depth": (6,12), "subsample": (0.8,1), "colsample_bytree": (0.8,1)} bayesopt = BayesianOptimization(estimator, params, random_state=RANDOM_SEED) bayesopt.maximize(init_points=20, n_iter=5, acq='ucb') # 20 and 5 bestParams = bayesopt.max['params'] estimator = XGBClassifier(n_estimators=int(bestParams.get('n_estimators')), eta=bestParams.get('eta'), max_depth=int(bestParams.get('max_depth')), subsample=bestParams.get('subsample'), colsample_bytree=bestParams.get('colsample_bytree'), probability=True, random_state=RANDOM_SEED, silent=True, verbosity = 0, use_label_encoder=False) columnsNewGen = OrignList if (len(exeCall) != 0): if (flagEx == 1): currentColumnsDeleted = [] for uniqueValue in exeCall: currentColumnsDeleted.append(tracker[uniqueValue]) for column in XData.columns: if (column in currentColumnsDeleted): XData = XData.drop(column, axis=1) XDataStoredOriginal = XDataStoredOriginal.drop(column, axis=1) elif (flagEx == 2): columnsKeepNew = [] columns = XDataGen.columns.values.tolist() for indx, col in enumerate(columns): if indx in exeCall: columnsKeepNew.append(col) columnsNewGen.append(col) XDataTemp = XDataGen[columnsKeepNew] XData[columnsKeepNew] = XDataTemp.values XDataStoredOriginal[columnsKeepNew] = XDataTemp.values XDataNoRemoval[columnsKeepNew] = XDataTemp.values elif (flagEx == 4): splittedCol = nodeTransfName.split('_') for col in XDataNoRemoval.columns: splitCol = col.split('_') if ((splittedCol[0] in splitCol[0])): newSplitted = re.sub("[^0-9]", "", splittedCol[0]) newCol = re.sub("[^0-9]", "", splitCol[0]) if (newSplitted == newCol): storeRenamedColumn = col XData.rename(columns={ storeRenamedColumn: nodeTransfName }, inplace = True) XDataNoRemoval.rename(columns={ storeRenamedColumn: nodeTransfName }, inplace = True) currentColumn = columnsNewGen[exeCall[0]] subString = currentColumn[currentColumn.find("(")+1:currentColumn.find(")")] replacement = currentColumn.replace(subString, nodeTransfName) for ind, column in enumerate(columnsNewGen): splitCol = column.split('_') if ((splittedCol[0] in splitCol[0])): newSplitted = re.sub("[^0-9]", "", splittedCol[0]) newCol = re.sub("[^0-9]", "", splitCol[0]) if (newSplitted == newCol): columnsNewGen[ind] = columnsNewGen[ind].replace(storeRenamedColumn, nodeTransfName) if (len(splittedCol) == 1): XData[nodeTransfName] = XDataStoredOriginal[nodeTransfName] XDataNoRemoval[nodeTransfName] = XDataStoredOriginal[nodeTransfName] else: if (splittedCol[1] == 'r'): XData[nodeTransfName] = XData[nodeTransfName].round() elif (splittedCol[1] == 'b'): number_of_bins = np.histogram_bin_edges(XData[nodeTransfName], bins='auto') emptyLabels = [] for index, number in enumerate(number_of_bins): if (index == 0): pass else: emptyLabels.append(index) XData[nodeTransfName] = pd.cut(XData[nodeTransfName], bins=number_of_bins, labels=emptyLabels, include_lowest=True, right=True) XData[nodeTransfName] = pd.to_numeric(XData[nodeTransfName], downcast='signed') elif (splittedCol[1] == 'zs'): XData[nodeTransfName] = (XData[nodeTransfName]-XData[nodeTransfName].mean())/XData[nodeTransfName].std() elif (splittedCol[1] == 'mms'): XData[nodeTransfName] = (XData[nodeTransfName]-XData[nodeTransfName].min())/(XData[nodeTransfName].max()-XData[nodeTransfName].min()) elif (splittedCol[1] == 'l2'): dfTemp = [] dfTemp = np.log2(XData[nodeTransfName]) dfTemp = dfTemp.replace([np.inf, -np.inf], np.nan) dfTemp = dfTemp.fillna(0) XData[nodeTransfName] = dfTemp elif (splittedCol[1] == 'l1p'): dfTemp = [] dfTemp = np.log1p(XData[nodeTransfName]) dfTemp = dfTemp.replace([np.inf, -np.inf], np.nan) dfTemp = dfTemp.fillna(0) XData[nodeTransfName] = dfTemp elif (splittedCol[1] == 'l10'): dfTemp = [] dfTemp = np.log10(XData[nodeTransfName]) dfTemp = dfTemp.replace([np.inf, -np.inf], np.nan) dfTemp = dfTemp.fillna(0) XData[nodeTransfName] = dfTemp elif (splittedCol[1] == 'e2'): dfTemp = [] dfTemp = np.exp2(XData[nodeTransfName]) dfTemp = dfTemp.replace([np.inf, -np.inf], np.nan) dfTemp = dfTemp.fillna(0) XData[nodeTransfName] = dfTemp elif (splittedCol[1] == 'em1'): dfTemp = [] dfTemp = np.expm1(XData[nodeTransfName]) dfTemp = dfTemp.replace([np.inf, -np.inf], np.nan) dfTemp = dfTemp.fillna(0) XData[nodeTransfName] = dfTemp elif (splittedCol[1] == 'p2'): XData[nodeTransfName] = np.power(XData[nodeTransfName], 2) elif (splittedCol[1] == 'p3'): XData[nodeTransfName] = np.power(XData[nodeTransfName], 3) else: XData[nodeTransfName] = np.power(XData[nodeTransfName], 4) XDataNoRemoval[nodeTransfName] = XData[nodeTransfName] XDataStored = XData.copy() XDataNoRemovalOrig = XDataNoRemoval.copy() columnsNamesLoc = XData.columns.values.tolist() for col in columnsNamesLoc: splittedCol = col.split('_') if (len(splittedCol) == 1): for tran in listofTransformations: columnsNames.append(splittedCol[0]+'_'+tran) else: for tran in listofTransformations: if (splittedCol[1] == tran): columnsNames.append(splittedCol[0]) else: columnsNames.append(splittedCol[0]+'_'+tran) featureImportanceData = estimatorFeatureSelection(XDataNoRemoval, estimator) tracker = [] for value in columnsNewGen: value = value.split(' ') if (len(value) > 1): tracker.append(value[1]) else: tracker.append(value[0]) estimator.fit(XData, yData) yPredict = estimator.predict(XData) yPredictProb = cross_val_predict(estimator, XData, yData, cv=crossValidation, method='predict_proba') num_cores = multiprocessing.cpu_count() inputsSc = ['accuracy','precision_weighted','recall_weighted'] flat_results = Parallel(n_jobs=num_cores)(delayed(solve)(estimator,XData,yData,crossValidation,item,index) for index, item in enumerate(inputsSc)) scoresAct = [item for sublist in flat_results for item in sublist] #print(scoresAct) # if (StanceTest): # y_pred = estimator.predict(XDataTest) # print('Test data set') # print(classification_report(yDataTest, y_pred)) # y_pred = estimator.predict(XDataExternal) # print('External data set') # print(classification_report(yDataExternal, y_pred)) howMany = 0 if (keyFirstTime): previousState = scoresAct keyFirstTime = False howMany = 3 if (((scoresAct[0]-scoresAct[1]) + (scoresAct[2]-scoresAct[3]) + (scoresAct[4]-scoresAct[5])) >= ((previousState[0]-previousState[1]) + (previousState[2]-previousState[3]) + (previousState[4]-previousState[5]))): finalResultsData = XData.copy() if (keyFirstTime == False): if (((scoresAct[0]-scoresAct[1]) + (scoresAct[2]-scoresAct[3]) + (scoresAct[4]-scoresAct[5])) >= ((previousState[0]-previousState[1]) + (previousState[2]-previousState[3]) + (previousState[4]-previousState[5]))): previousState[0] = scoresAct[0] previousState[1] = scoresAct[1] howMany = 3 #elif ((scoresAct[2]-scoresAct[3]) > (previousState[2]-previousState[3])): previousState[2] = scoresAct[2] previousState[3] = scoresAct[3] #howMany = howMany + 1 #elif ((scoresAct[4]-scoresAct[5]) > (previousState[4]-previousState[5])): previousState[4] = scoresAct[4] previousState[5] = scoresAct[5] #howMany = howMany + 1 #else: #pass scores = scoresAct + previousState if (howMany == 3): scores.append(1) else: scores.append(0) return 'Everything Okay' @app.route('/data/RequestBestFeatures', methods=["GET", "POST"]) def BestFeat(): global finalResultsData finalResultsDataJSON = finalResultsData.to_json() response = { 'finalResultsData': finalResultsDataJSON } return jsonify(response) def featFun (clfLocalPar,DataLocalPar,yDataLocalPar): PerFeatureAccuracyLocalPar = [] scores = model_selection.cross_val_score(clfLocalPar, DataLocalPar, yDataLocalPar, cv=None, n_jobs=-1) PerFeatureAccuracyLocalPar.append(scores.mean()) return PerFeatureAccuracyLocalPar location = './cachedir' memory = Memory(location, verbose=0) # calculating for all algorithms and models the performance and other results @memory.cache def estimatorFeatureSelection(Data, clf): resultsFS = [] permList = [] PerFeatureAccuracy = [] PerFeatureAccuracyAll = [] ImpurityFS = [] RankingFS = [] estim = clf.fit(Data, yData) importances = clf.feature_importances_ # std = np.std([tree.feature_importances_ for tree in estim.feature_importances_], # axis=0) maxList = max(importances) minList = min(importances) for f in range(Data.shape[1]): ImpurityFS.append((importances[f] - minList) / (maxList - minList)) estim = LogisticRegression(n_jobs = -1, random_state=RANDOM_SEED) selector = RFECV(estimator=estim, n_jobs = -1, step=1, cv=crossValidation) selector = selector.fit(Data, yData) RFEImp = selector.ranking_ for f in range(Data.shape[1]): if (RFEImp[f] == 1): RankingFS.append(0.95) elif (RFEImp[f] == 2): RankingFS.append(0.85) elif (RFEImp[f] == 3): RankingFS.append(0.75) elif (RFEImp[f] == 4): RankingFS.append(0.65) elif (RFEImp[f] == 5): RankingFS.append(0.55) elif (RFEImp[f] == 6): RankingFS.append(0.45) elif (RFEImp[f] == 7): RankingFS.append(0.35) elif (RFEImp[f] == 8): RankingFS.append(0.25) elif (RFEImp[f] == 9): RankingFS.append(0.15) else: RankingFS.append(0.05) perm = PermutationImportance(clf, cv=None, refit = True, n_iter = 25).fit(Data, yData) permList.append(perm.feature_importances_) n_feats = Data.shape[1] num_cores = multiprocessing.cpu_count() print("Parallelization Initilization") flat_results = Parallel(n_jobs=num_cores)(delayed(featFun)(clf,Data.values[:, i].reshape(-1, 1),yData) for i in range(n_feats)) PerFeatureAccuracy = [item for sublist in flat_results for item in sublist] # for i in range(n_feats): # scoresHere = model_selection.cross_val_score(clf, Data.values[:, i].reshape(-1, 1), yData, cv=None, n_jobs=-1) # PerFeatureAccuracy.append(scoresHere.mean()) PerFeatureAccuracyAll.append(PerFeatureAccuracy) clf.fit(Data, yData) yPredict = clf.predict(Data) yPredict = np.nan_to_num(yPredict) RankingFSDF = pd.DataFrame(RankingFS) RankingFSDF = RankingFSDF.to_json() ImpurityFSDF = pd.DataFrame(ImpurityFS) ImpurityFSDF = ImpurityFSDF.to_json() perm_imp_eli5PD = pd.DataFrame(permList) if (perm_imp_eli5PD.empty): for col in Data.columns: perm_imp_eli5PD.append({0:0}) perm_imp_eli5PD = perm_imp_eli5PD.to_json() PerFeatureAccuracyPandas = pd.DataFrame(PerFeatureAccuracyAll) PerFeatureAccuracyPandas = PerFeatureAccuracyPandas.to_json() bestfeatures = SelectKBest(score_func=f_classif, k='all') fit = bestfeatures.fit(Data,yData) dfscores = pd.DataFrame(fit.scores_) dfcolumns = pd.DataFrame(Data.columns) featureScores = pd.concat([dfcolumns,dfscores],axis=1) featureScores.columns = ['Specs','Score'] #naming the dataframe columns featureScores = featureScores.to_json() resultsFS.append(featureScores) resultsFS.append(ImpurityFSDF) resultsFS.append(perm_imp_eli5PD) resultsFS.append(PerFeatureAccuracyPandas) resultsFS.append(RankingFSDF) return resultsFS @app.route('/data/sendFeatImp', methods=["GET", "POST"]) def sendFeatureImportance(): global featureImportanceData response = { 'Importance': featureImportanceData } return jsonify(response) @app.route('/data/sendFeatImpComp', methods=["GET", "POST"]) def sendFeatureImportanceComp(): global featureCompareData global columnsKeep response = { 'ImportanceCompare': featureCompareData, 'FeatureNames': columnsKeep } return jsonify(response) def solve(sclf,XData,yData,crossValidation,scoringIn,loop): scoresLoc = [] temp = model_selection.cross_val_score(sclf, XData, yData, cv=crossValidation, scoring=scoringIn, n_jobs=-1) scoresLoc.append(temp.mean()) scoresLoc.append(temp.std()) return scoresLoc @app.route('/data/sendResults', methods=["GET", "POST"]) def sendFinalResults(): global scores response = { 'ValidResults': scores } return jsonify(response) def Transformation(quadrant1, quadrant2, quadrant3, quadrant4, quadrant5): # XDataNumericColumn = XData.select_dtypes(include='number') XDataNumeric = XDataStoredOriginal.select_dtypes(include='number') columns = list(XDataNumeric) global packCorrTransformed packCorrTransformed = [] for count, i in enumerate(columns): dicTransf = {} splittedCol = columnsNames[(count)*len(listofTransformations)+0].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf1"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() XDataNumericCopy[i] = XDataNumericCopy[i].round() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf1"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+1].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf2"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() number_of_bins = np.histogram_bin_edges(XDataNumericCopy[i], bins='auto') emptyLabels = [] for index, number in enumerate(number_of_bins): if (index == 0): pass else: emptyLabels.append(index) XDataNumericCopy[i] = pd.cut(XDataNumericCopy[i], bins=number_of_bins, labels=emptyLabels, include_lowest=True, right=True) XDataNumericCopy[i] = pd.to_numeric(XDataNumericCopy[i], downcast='signed') for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf2"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+2].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf3"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() XDataNumericCopy[i] = (XDataNumericCopy[i]-XDataNumericCopy[i].mean())/XDataNumericCopy[i].std() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf3"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+3].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf4"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() XDataNumericCopy[i] = (XDataNumericCopy[i]-XDataNumericCopy[i].min())/(XDataNumericCopy[i].max()-XDataNumericCopy[i].min()) for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf4"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+4].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf5"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() dfTemp = [] dfTemp = np.log2(XDataNumericCopy[i]) dfTemp = dfTemp.replace([np.inf, -np.inf], np.nan) dfTemp = dfTemp.fillna(0) XDataNumericCopy[i] = dfTemp for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf5"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+5].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf6"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() dfTemp = [] dfTemp = np.log1p(XDataNumericCopy[i]) dfTemp = dfTemp.replace([np.inf, -np.inf], np.nan) dfTemp = dfTemp.fillna(0) XDataNumericCopy[i] = dfTemp for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf6"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+6].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf7"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() dfTemp = [] dfTemp = np.log10(XDataNumericCopy[i]) dfTemp = dfTemp.replace([np.inf, -np.inf], np.nan) dfTemp = dfTemp.fillna(0) XDataNumericCopy[i] = dfTemp for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf7"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+7].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf8"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() dfTemp = [] dfTemp = np.exp2(XDataNumericCopy[i]) dfTemp = dfTemp.replace([np.inf, -np.inf], np.nan) dfTemp = dfTemp.fillna(0) XDataNumericCopy[i] = dfTemp if (np.isinf(dfTemp.var())): flagInf = True for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf8"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+8].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf9"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() dfTemp = [] dfTemp = np.expm1(XDataNumericCopy[i]) dfTemp = dfTemp.replace([np.inf, -np.inf], np.nan) dfTemp = dfTemp.fillna(0) XDataNumericCopy[i] = dfTemp if (np.isinf(dfTemp.var())): flagInf = True for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf9"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+9].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf10"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() XDataNumericCopy[i] = np.power(XDataNumericCopy[i], 2) for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf10"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+10].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf11"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() XDataNumericCopy[i] = np.power(XDataNumericCopy[i], 3) for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf11"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) splittedCol = columnsNames[(count)*len(listofTransformations)+11].split('_') if(len(splittedCol) == 1): d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf12"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) else: d={} flagInf = False XDataNumericCopy = XDataNumeric.copy() XDataNumericCopy[i] = np.power(XDataNumericCopy[i], 4) for number in range(1,6): quadrantVariable = str('quadrant%s' % number) illusion = locals()[quadrantVariable] d["DataRows{0}".format(number)] = XDataNumericCopy.iloc[illusion, :] dicTransf["transf12"] = NewComputationTransf(d['DataRows1'], d['DataRows2'], d['DataRows3'], d['DataRows4'], d['DataRows5'], quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, i, count, flagInf) packCorrTransformed.append(dicTransf) return 'Everything Okay' def NewComputationTransf(DataRows1, DataRows2, DataRows3, DataRows4, DataRows5, quadrant1, quadrant2, quadrant3, quadrant4, quadrant5, feature, count, flagInf): corrMatrix1 = DataRows1.corr() corrMatrix1 = corrMatrix1.abs() corrMatrix2 = DataRows2.corr() corrMatrix2 = corrMatrix2.abs() corrMatrix3 = DataRows3.corr() corrMatrix3 = corrMatrix3.abs() corrMatrix4 = DataRows4.corr() corrMatrix4 = corrMatrix4.abs() corrMatrix5 = DataRows5.corr() corrMatrix5 = corrMatrix5.abs() corrMatrix1 = corrMatrix1.loc[[feature]] corrMatrix2 = corrMatrix2.loc[[feature]] corrMatrix3 = corrMatrix3.loc[[feature]] corrMatrix4 = corrMatrix4.loc[[feature]] corrMatrix5 = corrMatrix5.loc[[feature]] DataRows1 = DataRows1.reset_index(drop=True) DataRows2 = DataRows2.reset_index(drop=True) DataRows3 = DataRows3.reset_index(drop=True) DataRows4 = DataRows4.reset_index(drop=True) DataRows5 = DataRows5.reset_index(drop=True) targetRows1 = [yData[i] for i in quadrant1] targetRows2 = [yData[i] for i in quadrant2] targetRows3 = [yData[i] for i in quadrant3] targetRows4 = [yData[i] for i in quadrant4] targetRows5 = [yData[i] for i in quadrant5] targetRows1Arr = np.array(targetRows1) targetRows2Arr = np.array(targetRows2) targetRows3Arr = np.array(targetRows3) targetRows4Arr = np.array(targetRows4) targetRows5Arr = np.array(targetRows5) uniqueTarget1 = unique(targetRows1) uniqueTarget2 = unique(targetRows2) uniqueTarget3 = unique(targetRows3) uniqueTarget4 = unique(targetRows4) uniqueTarget5 = unique(targetRows5) if (len(targetRows1Arr) > 0): onehotEncoder1 = OneHotEncoder(sparse=False) targetRows1Arr = targetRows1Arr.reshape(len(targetRows1Arr), 1) onehotEncoder1 = onehotEncoder1.fit_transform(targetRows1Arr) hotEncoderDF1 = pd.DataFrame(onehotEncoder1) concatDF1 = pd.concat([DataRows1, hotEncoderDF1], axis=1) corrMatrixComb1 = concatDF1.corr() corrMatrixComb1 = corrMatrixComb1.abs() corrMatrixComb1 = corrMatrixComb1.iloc[:,-len(uniqueTarget1):] DataRows1 = DataRows1.replace([np.inf, -np.inf], np.nan) DataRows1 = DataRows1.fillna(0) X1 = add_constant(DataRows1) X1 = X1.replace([np.inf, -np.inf], np.nan) X1 = X1.fillna(0) VIF1 = pd.Series([variance_inflation_factor(X1.values, i) for i in range(X1.shape[1])], index=X1.columns) if (flagInf == False): VIF1 = VIF1.replace([np.inf, -np.inf], np.nan) VIF1 = VIF1.fillna(0) VIF1 = VIF1.loc[[feature]] else: VIF1 = pd.Series() if ((len(targetRows1Arr) > 2) and (flagInf == False)): MI1 = mutual_info_classif(DataRows1, targetRows1Arr, n_neighbors=3, random_state=RANDOM_SEED) MI1List = MI1.tolist() MI1List = MI1List[count] else: MI1List = [] else: corrMatrixComb1 = pd.DataFrame() VIF1 = pd.Series() MI1List = [] if (len(targetRows2Arr) > 0): onehotEncoder2 = OneHotEncoder(sparse=False) targetRows2Arr = targetRows2Arr.reshape(len(targetRows2Arr), 1) onehotEncoder2 = onehotEncoder2.fit_transform(targetRows2Arr) hotEncoderDF2 = pd.DataFrame(onehotEncoder2) concatDF2 = pd.concat([DataRows2, hotEncoderDF2], axis=1) corrMatrixComb2 = concatDF2.corr() corrMatrixComb2 = corrMatrixComb2.abs() corrMatrixComb2 = corrMatrixComb2.iloc[:,-len(uniqueTarget2):] DataRows2 = DataRows2.replace([np.inf, -np.inf], np.nan) DataRows2 = DataRows2.fillna(0) X2 = add_constant(DataRows2) X2 = X2.replace([np.inf, -np.inf], np.nan) X2 = X2.fillna(0) VIF2 = pd.Series([variance_inflation_factor(X2.values, i) for i in range(X2.shape[1])], index=X2.columns) if (flagInf == False): VIF2 = VIF2.replace([np.inf, -np.inf], np.nan) VIF2 = VIF2.fillna(0) VIF2 = VIF2.loc[[feature]] else: VIF2 = pd.Series() if ((len(targetRows2Arr) > 2) and (flagInf == False)): MI2 = mutual_info_classif(DataRows2, targetRows2Arr, n_neighbors=3, random_state=RANDOM_SEED) MI2List = MI2.tolist() MI2List = MI2List[count] else: MI2List = [] else: corrMatrixComb2 = pd.DataFrame() VIF2 = pd.Series() MI2List = [] if (len(targetRows3Arr) > 0): onehotEncoder3 = OneHotEncoder(sparse=False) targetRows3Arr = targetRows3Arr.reshape(len(targetRows3Arr), 1) onehotEncoder3 = onehotEncoder3.fit_transform(targetRows3Arr) hotEncoderDF3 = pd.DataFrame(onehotEncoder3) concatDF3 = pd.concat([DataRows3, hotEncoderDF3], axis=1) corrMatrixComb3 = concatDF3.corr() corrMatrixComb3 = corrMatrixComb3.abs() corrMatrixComb3 = corrMatrixComb3.iloc[:,-len(uniqueTarget3):] DataRows3 = DataRows3.replace([np.inf, -np.inf], np.nan) DataRows3 = DataRows3.fillna(0) X3 = add_constant(DataRows3) X3 = X3.replace([np.inf, -np.inf], np.nan) X3 = X3.fillna(0) if (flagInf == False): VIF3 = pd.Series([variance_inflation_factor(X3.values, i) for i in range(X3.shape[1])], index=X3.columns) VIF3 = VIF3.replace([np.inf, -np.inf], np.nan) VIF3 = VIF3.fillna(0) VIF3 = VIF3.loc[[feature]] else: VIF3 = pd.Series() if ((len(targetRows3Arr) > 2) and (flagInf == False)): MI3 = mutual_info_classif(DataRows3, targetRows3Arr, n_neighbors=3, random_state=RANDOM_SEED) MI3List = MI3.tolist() MI3List = MI3List[count] else: MI3List = [] else: corrMatrixComb3 = pd.DataFrame() VIF3 = pd.Series() MI3List = [] if (len(targetRows4Arr) > 0): onehotEncoder4 = OneHotEncoder(sparse=False) targetRows4Arr = targetRows4Arr.reshape(len(targetRows4Arr), 1) onehotEncoder4 = onehotEncoder4.fit_transform(targetRows4Arr) hotEncoderDF4 = pd.DataFrame(onehotEncoder4) concatDF4 = pd.concat([DataRows4, hotEncoderDF4], axis=1) corrMatrixComb4 = concatDF4.corr() corrMatrixComb4 = corrMatrixComb4.abs() corrMatrixComb4 = corrMatrixComb4.iloc[:,-len(uniqueTarget4):] DataRows4 = DataRows4.replace([np.inf, -np.inf], np.nan) DataRows4 = DataRows4.fillna(0) X4 = add_constant(DataRows4) X4 = X4.replace([np.inf, -np.inf], np.nan) X4 = X4.fillna(0) if (flagInf == False): VIF4 = pd.Series([variance_inflation_factor(X4.values, i) for i in range(X4.shape[1])], index=X4.columns) VIF4 = VIF4.replace([np.inf, -np.inf], np.nan) VIF4 = VIF4.fillna(0) VIF4 = VIF4.loc[[feature]] else: VIF4 = pd.Series() if ((len(targetRows4Arr) > 2) and (flagInf == False)): MI4 = mutual_info_classif(DataRows4, targetRows4Arr, n_neighbors=3, random_state=RANDOM_SEED) MI4List = MI4.tolist() MI4List = MI4List[count] else: MI4List = [] else: corrMatrixComb4 = pd.DataFrame() VIF4 = pd.Series() MI4List = [] if (len(targetRows5Arr) > 0): onehotEncoder5 = OneHotEncoder(sparse=False) targetRows5Arr = targetRows5Arr.reshape(len(targetRows5Arr), 1) onehotEncoder5 = onehotEncoder5.fit_transform(targetRows5Arr) hotEncoderDF5 = pd.DataFrame(onehotEncoder5) concatDF5 = pd.concat([DataRows5, hotEncoderDF5], axis=1) corrMatrixComb5 = concatDF5.corr() corrMatrixComb5 = corrMatrixComb5.abs() corrMatrixComb5 = corrMatrixComb5.iloc[:,-len(uniqueTarget5):] DataRows5 = DataRows5.replace([np.inf, -np.inf], np.nan) DataRows5 = DataRows5.fillna(0) X5 = add_constant(DataRows5) X5 = X5.replace([np.inf, -np.inf], np.nan) X5 = X5.fillna(0) if (flagInf == False): VIF5 = pd.Series([variance_inflation_factor(X5.values, i) for i in range(X5.shape[1])], index=X5.columns) VIF5 = VIF5.replace([np.inf, -np.inf], np.nan) VIF5 = VIF5.fillna(0) VIF5 = VIF5.loc[[feature]] else: VIF5 = pd.Series() if ((len(targetRows5Arr) > 2) and (flagInf == False)): MI5 = mutual_info_classif(DataRows5, targetRows5Arr, n_neighbors=3, random_state=RANDOM_SEED) MI5List = MI5.tolist() MI5List = MI5List[count] else: MI5List = [] else: corrMatrixComb5 = pd.DataFrame() VIF5 = pd.Series() MI5List = [] if(corrMatrixComb1.empty): corrMatrixComb1 = pd.DataFrame() else: corrMatrixComb1 = corrMatrixComb1.loc[[feature]] if(corrMatrixComb2.empty): corrMatrixComb2 = pd.DataFrame() else: corrMatrixComb2 = corrMatrixComb2.loc[[feature]] if(corrMatrixComb3.empty): corrMatrixComb3 = pd.DataFrame() else: corrMatrixComb3 = corrMatrixComb3.loc[[feature]] if(corrMatrixComb4.empty): corrMatrixComb4 = pd.DataFrame() else: corrMatrixComb4 = corrMatrixComb4.loc[[feature]] if(corrMatrixComb5.empty): corrMatrixComb5 = pd.DataFrame() else: corrMatrixComb5 = corrMatrixComb5.loc[[feature]] targetRows1ArrDF = pd.DataFrame(targetRows1Arr) targetRows2ArrDF = pd.DataFrame(targetRows2Arr) targetRows3ArrDF = pd.DataFrame(targetRows3Arr) targetRows4ArrDF = pd.DataFrame(targetRows4Arr) targetRows5ArrDF = pd.DataFrame(targetRows5Arr) concatAllDF1 = pd.concat([DataRows1, targetRows1ArrDF], axis=1) concatAllDF2 = pd.concat([DataRows2, targetRows2ArrDF], axis=1) concatAllDF3 = pd.concat([DataRows3, targetRows3ArrDF], axis=1) concatAllDF4 = pd.concat([DataRows4, targetRows4ArrDF], axis=1) concatAllDF5 = pd.concat([DataRows5, targetRows5ArrDF], axis=1) corrMatrixCombTotal1 = concatAllDF1.corr() corrMatrixCombTotal1 = corrMatrixCombTotal1.abs() corrMatrixCombTotal2 = concatAllDF2.corr() corrMatrixCombTotal2 = corrMatrixCombTotal2.abs() corrMatrixCombTotal3 = concatAllDF3.corr() corrMatrixCombTotal3 = corrMatrixCombTotal3.abs() corrMatrixCombTotal4 = concatAllDF4.corr() corrMatrixCombTotal4 = corrMatrixCombTotal4.abs() corrMatrixCombTotal5 = concatAllDF5.corr() corrMatrixCombTotal5 = corrMatrixCombTotal5.abs() corrMatrixCombTotal1 = corrMatrixCombTotal1.loc[[feature]] corrMatrixCombTotal1 = corrMatrixCombTotal1.iloc[:,-1] corrMatrixCombTotal2 = corrMatrixCombTotal2.loc[[feature]] corrMatrixCombTotal2 = corrMatrixCombTotal2.iloc[:,-1] corrMatrixCombTotal3 = corrMatrixCombTotal3.loc[[feature]] corrMatrixCombTotal3 = corrMatrixCombTotal3.iloc[:,-1] corrMatrixCombTotal4 = corrMatrixCombTotal4.loc[[feature]] corrMatrixCombTotal4 = corrMatrixCombTotal4.iloc[:,-1] corrMatrixCombTotal5 = corrMatrixCombTotal5.loc[[feature]] corrMatrixCombTotal5 = corrMatrixCombTotal5.iloc[:,-1] corrMatrixCombTotal1 = pd.concat([corrMatrixCombTotal1.tail(1)]) corrMatrixCombTotal2 = pd.concat([corrMatrixCombTotal2.tail(1)]) corrMatrixCombTotal3 = pd.concat([corrMatrixCombTotal3.tail(1)]) corrMatrixCombTotal4 = pd.concat([corrMatrixCombTotal4.tail(1)]) corrMatrixCombTotal5 = pd.concat([corrMatrixCombTotal5.tail(1)]) packCorrLoc = [] packCorrLoc.append(corrMatrix1.to_json()) packCorrLoc.append(corrMatrix2.to_json()) packCorrLoc.append(corrMatrix3.to_json()) packCorrLoc.append(corrMatrix4.to_json()) packCorrLoc.append(corrMatrix5.to_json()) packCorrLoc.append(corrMatrixComb1.to_json()) packCorrLoc.append(corrMatrixComb2.to_json()) packCorrLoc.append(corrMatrixComb3.to_json()) packCorrLoc.append(corrMatrixComb4.to_json()) packCorrLoc.append(corrMatrixComb5.to_json()) packCorrLoc.append(corrMatrixCombTotal1.to_json()) packCorrLoc.append(corrMatrixCombTotal2.to_json()) packCorrLoc.append(corrMatrixCombTotal3.to_json()) packCorrLoc.append(corrMatrixCombTotal4.to_json()) packCorrLoc.append(corrMatrixCombTotal5.to_json()) packCorrLoc.append(VIF1.to_json()) packCorrLoc.append(VIF2.to_json()) packCorrLoc.append(VIF3.to_json()) packCorrLoc.append(VIF4.to_json()) packCorrLoc.append(VIF5.to_json()) packCorrLoc.append(json.dumps(MI1List)) packCorrLoc.append(json.dumps(MI2List)) packCorrLoc.append(json.dumps(MI3List)) packCorrLoc.append(json.dumps(MI4List)) packCorrLoc.append(json.dumps(MI5List)) return packCorrLoc @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/thresholdDataSpace', methods=["GET", "POST"]) def Seperation(): thresholds = request.get_data().decode('utf8').replace("'", '"') thresholds = json.loads(thresholds) thresholdsPos = thresholds['PositiveValue'] thresholdsNeg = thresholds['NegativeValue'] getCorrectPrediction = [] for index, value in enumerate(yPredictProb): getCorrectPrediction.append(value[yData[index]]*100) quadrant1 = [] quadrant2 = [] quadrant3 = [] quadrant4 = [] quadrant5 = [] probabilityPredictions = [] for index, value in enumerate(getCorrectPrediction): if (value > 50 and value > thresholdsPos): quadrant1.append(index) elif (value > 50 and value <= thresholdsPos): quadrant2.append(index) elif (value <= 50 and value > thresholdsNeg): quadrant3.append(index) else: quadrant4.append(index) quadrant5.append(index) probabilityPredictions.append(value) # Main Features DataRows1 = XData.iloc[quadrant1, :] DataRows2 = XData.iloc[quadrant2, :] DataRows3 = XData.iloc[quadrant3, :] DataRows4 = XData.iloc[quadrant4, :] DataRows5 = XData.iloc[quadrant5, :] Transformation(quadrant1, quadrant2, quadrant3, quadrant4, quadrant5) corrMatrix1 = DataRows1.corr() corrMatrix1 = corrMatrix1.abs() corrMatrix2 = DataRows2.corr() corrMatrix2 = corrMatrix2.abs() corrMatrix3 = DataRows3.corr() corrMatrix3 = corrMatrix3.abs() corrMatrix4 = DataRows4.corr() corrMatrix4 = corrMatrix4.abs() corrMatrix5 = DataRows5.corr() corrMatrix5 = corrMatrix5.abs() DataRows1 = DataRows1.reset_index(drop=True) DataRows2 = DataRows2.reset_index(drop=True) DataRows3 = DataRows3.reset_index(drop=True) DataRows4 = DataRows4.reset_index(drop=True) DataRows5 = DataRows5.reset_index(drop=True) targetRows1 = [yData[i] for i in quadrant1] targetRows2 = [yData[i] for i in quadrant2] targetRows3 = [yData[i] for i in quadrant3] targetRows4 = [yData[i] for i in quadrant4] targetRows5 = [yData[i] for i in quadrant5] targetRows1Arr = np.array(targetRows1) targetRows2Arr = np.array(targetRows2) targetRows3Arr = np.array(targetRows3) targetRows4Arr = np.array(targetRows4) targetRows5Arr = np.array(targetRows5) uniqueTarget1 = unique(targetRows1) uniqueTarget2 = unique(targetRows2) uniqueTarget3 = unique(targetRows3) uniqueTarget4 = unique(targetRows4) uniqueTarget5 = unique(targetRows5) if (len(targetRows1Arr) > 0): onehotEncoder1 = OneHotEncoder(sparse=False) targetRows1Arr = targetRows1Arr.reshape(len(targetRows1Arr), 1) onehotEncoder1 = onehotEncoder1.fit_transform(targetRows1Arr) hotEncoderDF1 = pd.DataFrame(onehotEncoder1) concatDF1 = pd.concat([DataRows1, hotEncoderDF1], axis=1) corrMatrixComb1 = concatDF1.corr() corrMatrixComb1 = corrMatrixComb1.abs() corrMatrixComb1 = corrMatrixComb1.iloc[:,-len(uniqueTarget1):] DataRows1 = DataRows1.replace([np.inf, -np.inf], np.nan) DataRows1 = DataRows1.fillna(0) X1 = add_constant(DataRows1) X1 = X1.replace([np.inf, -np.inf], np.nan) X1 = X1.fillna(0) VIF1 = pd.Series([variance_inflation_factor(X1.values, i) for i in range(X1.shape[1])], index=X1.columns) VIF1 = VIF1.replace([np.inf, -np.inf], np.nan) VIF1 = VIF1.fillna(0) if (len(targetRows1Arr) > 2): MI1 = mutual_info_classif(DataRows1, targetRows1Arr, n_neighbors=3, random_state=RANDOM_SEED) MI1List = MI1.tolist() else: MI1List = [] else: corrMatrixComb1 = pd.DataFrame() VIF1 = pd.Series() MI1List = [] if (len(targetRows2Arr) > 0): onehotEncoder2 = OneHotEncoder(sparse=False) targetRows2Arr = targetRows2Arr.reshape(len(targetRows2Arr), 1) onehotEncoder2 = onehotEncoder2.fit_transform(targetRows2Arr) hotEncoderDF2 = pd.DataFrame(onehotEncoder2) concatDF2 = pd.concat([DataRows2, hotEncoderDF2], axis=1) corrMatrixComb2 = concatDF2.corr() corrMatrixComb2 = corrMatrixComb2.abs() corrMatrixComb2 = corrMatrixComb2.iloc[:,-len(uniqueTarget2):] DataRows2 = DataRows2.replace([np.inf, -np.inf], np.nan) DataRows2 = DataRows2.fillna(0) X2 = add_constant(DataRows2) X2 = X2.replace([np.inf, -np.inf], np.nan) X2 = X2.fillna(0) VIF2 = pd.Series([variance_inflation_factor(X2.values, i) for i in range(X2.shape[1])], index=X2.columns) VIF2 = VIF2.replace([np.inf, -np.inf], np.nan) VIF2 = VIF2.fillna(0) if (len(targetRows2Arr) > 2): MI2 = mutual_info_classif(DataRows2, targetRows2Arr, n_neighbors=3, random_state=RANDOM_SEED) MI2List = MI2.tolist() else: MI2List = [] else: corrMatrixComb2 = pd.DataFrame() VIF2 = pd.Series() MI2List = [] if (len(targetRows3Arr) > 0): onehotEncoder3 = OneHotEncoder(sparse=False) targetRows3Arr = targetRows3Arr.reshape(len(targetRows3Arr), 1) onehotEncoder3 = onehotEncoder3.fit_transform(targetRows3Arr) hotEncoderDF3 = pd.DataFrame(onehotEncoder3) concatDF3 = pd.concat([DataRows3, hotEncoderDF3], axis=1) corrMatrixComb3 = concatDF3.corr() corrMatrixComb3 = corrMatrixComb3.abs() corrMatrixComb3 = corrMatrixComb3.iloc[:,-len(uniqueTarget3):] DataRows3 = DataRows3.replace([np.inf, -np.inf], np.nan) DataRows3 = DataRows3.fillna(0) X3 = add_constant(DataRows3) X3 = X3.replace([np.inf, -np.inf], np.nan) X3 = X3.fillna(0) VIF3 = pd.Series([variance_inflation_factor(X3.values, i) for i in range(X3.shape[1])], index=X3.columns) VIF3 = VIF3.replace([np.inf, -np.inf], np.nan) VIF3 = VIF3.fillna(0) if (len(targetRows3Arr) > 2): MI3 = mutual_info_classif(DataRows3, targetRows3Arr, n_neighbors=3, random_state=RANDOM_SEED) MI3List = MI3.tolist() else: MI3List = [] else: corrMatrixComb3 = pd.DataFrame() VIF3 = pd.Series() MI3List = [] if (len(targetRows4Arr) > 0): onehotEncoder4 = OneHotEncoder(sparse=False) targetRows4Arr = targetRows4Arr.reshape(len(targetRows4Arr), 1) onehotEncoder4 = onehotEncoder4.fit_transform(targetRows4Arr) hotEncoderDF4 = pd.DataFrame(onehotEncoder4) concatDF4 = pd.concat([DataRows4, hotEncoderDF4], axis=1) corrMatrixComb4 = concatDF4.corr() corrMatrixComb4 = corrMatrixComb4.abs() corrMatrixComb4 = corrMatrixComb4.iloc[:,-len(uniqueTarget4):] DataRows4 = DataRows4.replace([np.inf, -np.inf], np.nan) DataRows4 = DataRows4.fillna(0) X4 = add_constant(DataRows4) X4 = X4.replace([np.inf, -np.inf], np.nan) X4 = X4.fillna(0) VIF4 = pd.Series([variance_inflation_factor(X4.values, i) for i in range(X4.shape[1])], index=X4.columns) VIF4 = VIF4.replace([np.inf, -np.inf], np.nan) VIF4 = VIF4.fillna(0) if (len(targetRows4Arr) > 2): MI4 = mutual_info_classif(DataRows4, targetRows4Arr, n_neighbors=3, random_state=RANDOM_SEED) MI4List = MI4.tolist() else: MI4List = [] else: corrMatrixComb4 = pd.DataFrame() VIF4 = pd.Series() MI4List = [] if (len(targetRows5Arr) > 0): onehotEncoder5 = OneHotEncoder(sparse=False) targetRows5Arr = targetRows5Arr.reshape(len(targetRows5Arr), 1) onehotEncoder5 = onehotEncoder5.fit_transform(targetRows5Arr) hotEncoderDF5 = pd.DataFrame(onehotEncoder5) concatDF5 = pd.concat([DataRows5, hotEncoderDF5], axis=1) corrMatrixComb5 = concatDF5.corr() corrMatrixComb5 = corrMatrixComb5.abs() corrMatrixComb5 = corrMatrixComb5.iloc[:,-len(uniqueTarget5):] DataRows5 = DataRows5.replace([np.inf, -np.inf], np.nan) DataRows5 = DataRows5.fillna(0) X5 = add_constant(DataRows5) X5 = X5.replace([np.inf, -np.inf], np.nan) X5 = X5.fillna(0) VIF5 = pd.Series([variance_inflation_factor(X5.values, i) for i in range(X5.shape[1])], index=X5.columns) VIF5 = VIF5.replace([np.inf, -np.inf], np.nan) VIF5 = VIF5.fillna(0) if (len(targetRows5Arr) > 2): MI5 = mutual_info_classif(DataRows5, targetRows5Arr, n_neighbors=3, random_state=RANDOM_SEED) MI5List = MI5.tolist() else: MI5List = [] else: corrMatrixComb5 = pd.DataFrame() VIF5 = pd.Series() MI5List = [] targetRows1ArrDF = pd.DataFrame(targetRows1Arr) targetRows2ArrDF = pd.DataFrame(targetRows2Arr) targetRows3ArrDF = pd.DataFrame(targetRows3Arr) targetRows4ArrDF = pd.DataFrame(targetRows4Arr) targetRows5ArrDF = pd.DataFrame(targetRows5Arr) concatAllDF1 = pd.concat([DataRows1, targetRows1ArrDF], axis=1) concatAllDF2 = pd.concat([DataRows2, targetRows2ArrDF], axis=1) concatAllDF3 = pd.concat([DataRows3, targetRows3ArrDF], axis=1) concatAllDF4 = pd.concat([DataRows4, targetRows4ArrDF], axis=1) concatAllDF5 = pd.concat([DataRows5, targetRows5ArrDF], axis=1) corrMatrixCombTotal1 = concatAllDF1.corr() corrMatrixCombTotal1 = corrMatrixCombTotal1.abs() corrMatrixCombTotal2 = concatAllDF2.corr() corrMatrixCombTotal2 = corrMatrixCombTotal2.abs() corrMatrixCombTotal3 = concatAllDF3.corr() corrMatrixCombTotal3 = corrMatrixCombTotal3.abs() corrMatrixCombTotal4 = concatAllDF4.corr() corrMatrixCombTotal4 = corrMatrixCombTotal4.abs() corrMatrixCombTotal5 = concatAllDF5.corr() corrMatrixCombTotal5 = corrMatrixCombTotal5.abs() corrMatrixCombTotal1 = pd.concat([corrMatrixCombTotal1.tail(1)]) corrMatrixCombTotal2 = pd.concat([corrMatrixCombTotal2.tail(1)]) corrMatrixCombTotal3 = pd.concat([corrMatrixCombTotal3.tail(1)]) corrMatrixCombTotal4 = pd.concat([corrMatrixCombTotal4.tail(1)]) corrMatrixCombTotal5 = pd.concat([corrMatrixCombTotal5.tail(1)]) global packCorr packCorr = [] packCorr.append(json.dumps(columnsNewGen)) packCorr.append(json.dumps(target_names)) packCorr.append(json.dumps(probabilityPredictions)) packCorr.append(corrMatrix1.to_json()) packCorr.append(corrMatrix2.to_json()) packCorr.append(corrMatrix3.to_json()) packCorr.append(corrMatrix4.to_json()) packCorr.append(corrMatrix5.to_json()) packCorr.append(corrMatrixComb1.to_json()) packCorr.append(corrMatrixComb2.to_json()) packCorr.append(corrMatrixComb3.to_json()) packCorr.append(corrMatrixComb4.to_json()) packCorr.append(corrMatrixComb5.to_json()) packCorr.append(corrMatrixCombTotal1.to_json()) packCorr.append(corrMatrixCombTotal2.to_json()) packCorr.append(corrMatrixCombTotal3.to_json()) packCorr.append(corrMatrixCombTotal4.to_json()) packCorr.append(corrMatrixCombTotal5.to_json()) packCorr.append(json.dumps(uniqueTarget1)) packCorr.append(json.dumps(uniqueTarget2)) packCorr.append(json.dumps(uniqueTarget3)) packCorr.append(json.dumps(uniqueTarget4)) packCorr.append(json.dumps(uniqueTarget5)) packCorr.append(VIF1.to_json()) packCorr.append(VIF2.to_json()) packCorr.append(VIF3.to_json()) packCorr.append(VIF4.to_json()) packCorr.append(VIF5.to_json()) packCorr.append(json.dumps(MI1List)) packCorr.append(json.dumps(MI2List)) packCorr.append(json.dumps(MI3List)) packCorr.append(json.dumps(MI4List)) packCorr.append(json.dumps(MI5List)) packCorr.append(list(tracker)) packCorr.append(list(XData.columns.values.tolist())) packCorr.append(json.dumps(columnsNames)) return 'Everything Okay' @app.route('/data/returnCorrelationsTransformed', methods=["GET", "POST"]) def SendCorrelTransformed(): global packCorrTransformed response = { 'correlResulTranformed': packCorrTransformed } return jsonify(response) @app.route('/data/returnCorrelations', methods=["GET", "POST"]) def SendCorrel(): global packCorr response = { 'correlResul': packCorr } return jsonify(response) def unique(list1): # intilize a null list unique_list = [] # traverse for all elements for x in list1: # check if exists in unique_list or not if x not in unique_list: unique_list.append(x) return unique_list @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/AddRemFun', methods=["GET", "POST"]) def ManipulFeat(): featureProcess = request.get_data().decode('utf8').replace("'", '"') featureProcess = json.loads(featureProcess) featureProcessExtract = featureProcess['featureAddRem'] executeModel(featureProcessExtract, 1, '') return 'Okay' @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/AddRemGenFun', methods=["GET", "POST"]) def ManipulFeatGen(): featureProcess = request.get_data().decode('utf8').replace("'", '"') featureProcess = json.loads(featureProcess) featureProcessExtract = featureProcess['featureAddRemGen'] executeModel(featureProcessExtract, 2, '') return 'Okay' @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/compareFun', methods=["GET", "POST"]) def CompareFunPy(): global featureCompareData global columnsKeep global XDataGen global IDsToCompare global columnsNewGen retrieveComparison = request.get_data().decode('utf8').replace("'", '"') retrieveComparison = json.loads(retrieveComparison) compareMode = retrieveComparison['compareNumber'] IDsToCompare = retrieveComparison['getIDs'] XDataGen = XDataStored.copy() columns = XData.columns.values.tolist() #columnsOriganl = XDataNoRemoval.columns.values.tolist() columnsKeep = [] columnsKeepNonOrig = [] columnsKeepID = [] for indx, col in enumerate(columns): if indx in IDsToCompare: columnsKeepNonOrig.append(col) columnExtracted = re.findall('\d+', col) columnsKeep.append(columnsNewGen[int(columnExtracted[0]) - 1]) columnsKeepID.append(str(col)) if (compareMode == 1): XDataGen = XData[columnsKeepNonOrig] feat1 = XDataGen.iloc[:,0] feat2 = XDataGen.iloc[:,1] XDataGen[columnsKeepID[0]+'+'+columnsKeepID[1]] = feat1 + feat2 XDataGen['|'+columnsKeepID[0]+'-'+columnsKeepID[1]+'|'] = abs(feat1 - feat2) XDataGen[columnsKeepID[0]+'x'+columnsKeepID[1]] = feat1 * feat2 XDataGen[columnsKeepID[0]+'/'+columnsKeepID[1]] = feat1 / feat2 XDataGen[columnsKeepID[1]+'/'+columnsKeepID[0]] = feat2 / feat1 columnsKeep.append(columnsKeepID[0]+'+'+columnsKeepID[1]) columnsKeep.append('|'+columnsKeepID[0]+'-'+columnsKeepID[1]+'|') columnsKeep.append(columnsKeepID[0]+'x'+columnsKeepID[1]) columnsKeep.append(columnsKeepID[0]+'/'+columnsKeepID[1]) columnsKeep.append(columnsKeepID[1]+'/'+columnsKeepID[0]) elif (compareMode == 2): XDataGen = XData[columnsKeepNonOrig] feat1 = XDataGen.iloc[:,0] feat2 = XDataGen.iloc[:,1] feat3 = XDataGen.iloc[:,2] XDataGen[columnsKeepID[0]+'+'+columnsKeepID[1]] = feat1 + feat2 XDataGen[columnsKeepID[1]+'+'+columnsKeepID[2]] = feat2 + feat3 XDataGen[columnsKeepID[0]+'+'+columnsKeepID[2]] = feat1 + feat3 XDataGen[columnsKeepID[0]+'+'+columnsKeepID[1]+'+'+columnsKeepID[2]] = feat1 + feat2 + feat3 XDataGen['|'+columnsKeepID[0]+'-'+columnsKeepID[1]+'|'] = abs(feat1 - feat2) XDataGen['|'+columnsKeepID[1]+'-'+columnsKeepID[2]+'|'] = abs(feat2 - feat3) XDataGen['|'+columnsKeepID[0]+'-'+columnsKeepID[2]+'|'] = abs(feat1 - feat3) XDataGen['|'+columnsKeepID[0]+'-'+columnsKeepID[1]+'-'+columnsKeepID[2]+'|'] = abs(feat1 - feat2 - feat3) XDataGen[columnsKeepID[0]+'x'+columnsKeepID[1]] = feat1 * feat2 XDataGen[columnsKeepID[1]+'x'+columnsKeepID[2]] = feat2 * feat3 XDataGen[columnsKeepID[0]+'x'+columnsKeepID[2]] = feat1 * feat3 XDataGen[columnsKeepID[0]+'x'+columnsKeepID[1]+'x'+columnsKeepID[2]] = feat1 * feat2 * feat3 XDataGen[columnsKeepID[0]+'/'+columnsKeepID[1]] = feat1 / feat2 XDataGen[columnsKeepID[1]+'/'+columnsKeepID[0]] = feat2 / feat1 XDataGen[columnsKeepID[1]+'/'+columnsKeepID[2]] = feat2 / feat3 XDataGen[columnsKeepID[2]+'/'+columnsKeepID[1]] = feat3 / feat2 XDataGen[columnsKeepID[0]+'/'+columnsKeepID[2]] = feat1 / feat3 XDataGen[columnsKeepID[2]+'/'+columnsKeepID[0]] = feat3 / feat1 XDataGen[columnsKeepID[0]+'/'+columnsKeepID[1]+'/'+columnsKeepID[2]] = feat1 / feat2 / feat3 XDataGen[columnsKeepID[0]+'/'+columnsKeepID[2]+'/'+columnsKeepID[1]] = feat1 / feat3 / feat2 XDataGen[columnsKeepID[1]+'/'+columnsKeepID[2]+'/'+columnsKeepID[0]] = feat2 / feat3 / feat1 XDataGen[columnsKeepID[1]+'/'+columnsKeepID[0]+'/'+columnsKeepID[2]] = feat2 / feat1 / feat3 XDataGen[columnsKeepID[2]+'/'+columnsKeepID[0]+'/'+columnsKeepID[1]] = feat3 / feat1 / feat2 XDataGen[columnsKeepID[2]+'/'+columnsKeepID[1]+'/'+columnsKeepID[0]] = feat3 / feat2 / feat1 columnsKeep.append(columnsKeepID[0]+'+'+columnsKeepID[1]) columnsKeep.append(columnsKeepID[1]+'+'+columnsKeepID[2]) columnsKeep.append(columnsKeepID[0]+'+'+columnsKeepID[2]) columnsKeep.append(columnsKeepID[0]+'+'+columnsKeepID[1]+'+'+columnsKeepID[2]) columnsKeep.append('|'+columnsKeepID[0]+'-'+columnsKeepID[1]+'|') columnsKeep.append('|'+columnsKeepID[1]+'-'+columnsKeepID[2]+'|') columnsKeep.append('|'+columnsKeepID[0]+'-'+columnsKeepID[2]+'|') columnsKeep.append('|'+columnsKeepID[0]+'-'+columnsKeepID[1]+'-'+columnsKeepID[2]+'|') columnsKeep.append(columnsKeepID[0]+'x'+columnsKeepID[1]) columnsKeep.append(columnsKeepID[1]+'x'+columnsKeepID[2]) columnsKeep.append(columnsKeepID[0]+'x'+columnsKeepID[2]) columnsKeep.append(columnsKeepID[0]+'x'+columnsKeepID[1]+'x'+columnsKeepID[2]) columnsKeep.append(columnsKeepID[0]+'/'+columnsKeepID[1]) columnsKeep.append(columnsKeepID[1]+'/'+columnsKeepID[0]) columnsKeep.append(columnsKeepID[1]+'/'+columnsKeepID[2]) columnsKeep.append(columnsKeepID[2]+'/'+columnsKeepID[1]) columnsKeep.append(columnsKeepID[0]+'/'+columnsKeepID[2]) columnsKeep.append(columnsKeepID[2]+'/'+columnsKeepID[0]) columnsKeep.append(columnsKeepID[0]+'/'+columnsKeepID[1]+'/'+columnsKeepID[2]) columnsKeep.append(columnsKeepID[0]+'/'+columnsKeepID[2]+'/'+columnsKeepID[1]) columnsKeep.append(columnsKeepID[1]+'/'+columnsKeepID[2]+'/'+columnsKeepID[0]) columnsKeep.append(columnsKeepID[1]+'/'+columnsKeepID[0]+'/'+columnsKeepID[2]) columnsKeep.append(columnsKeepID[2]+'/'+columnsKeepID[0]+'/'+columnsKeepID[1]) columnsKeep.append(columnsKeepID[2]+'/'+columnsKeepID[1]+'/'+columnsKeepID[0]) else: pass #print(XDataGen) XDataGen = XDataGen.replace([np.inf, -np.inf], np.nan) XDataGen = XDataGen.fillna(0) featureCompareData = estimatorFeatureSelection(XDataGen, estimator) return 'Okay' @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/storeGeneratedFeatures', methods=["GET", "POST"]) def storeGeneratedFeat(): print('Generate') executeModel([], 3, '') return 'Okay' @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/transformation', methods=["GET", "POST"]) def transformFeatures(): print('Transform') retrieveTransform = request.get_data().decode('utf8').replace("'", '"') retrieveTransform = json.loads(retrieveTransform) clickedNodeName = retrieveTransform['nameClicked'] removeNodeID = retrieveTransform['removeNode'] executeModel([removeNodeID[1]], 4, clickedNodeName[0]) return 'Okay' @cross_origin(origin='localhost',headers=['Content-Type','Authorization']) @app.route('/data/testResults', methods=["GET", "POST"]) def requestTestFun(): global StanceTest global estimator global XData global XDataTest global XDataExternal # Feature Selection XData = XData.drop(['F35','F41','F33','F11','F18','F27','F40','F31','F9','F30','F38','F17','F15','F36','F25','F22', 'F23'], axis=1) XDataTest = XDataTest.drop(['F35','F41','F33','F11','F18','F27','F40','F31','F9','F30','F38','F17','F15','F36','F25','F22', 'F23'], axis=1) XDataExternal = XDataExternal.drop(['F35','F41','F33','F11','F18','F27','F40','F31','F9','F30','F38','F17','F15','F36','F25','F22', 'F23'], axis=1) # Transformation XData['F26'] = np.power(XData['F26'], 4) XDataTest['F26'] = np.power(XDataTest['F26'], 4) XDataExternal['F26'] =
np.power(XDataExternal['F26'], 4)
numpy.power
import cv2 import math import time import numpy as np from . import util import tensorflow as tf from .config_reader import config_reader from scipy.ndimage.filters import gaussian_filter from tensorflow.keras.models import load_model import code import copy import scipy.ndimage as sn from PIL import Image from tqdm import tqdm from .model_simulated_RGB101 import get_testing_model_resnet101 from .human_seg.human_seg_gt import human_seg_combine_argmax right_part_idx = [2, 3, 4, 8, 9, 10, 14, 16] left_part_idx = [5, 6, 7, 11, 12, 13, 15, 17] human_part = [0,1,2,4,3,6,5,8,7,10,9,12,11,14,13] human_ori_part = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14] seg_num = 15 # current model supports 15 parts only def recover_flipping_output(oriImg, heatmap_ori_size, paf_ori_size, part_ori_size): heatmap_ori_size = heatmap_ori_size[:, ::-1, :] heatmap_flip_size = np.zeros((oriImg.shape[0], oriImg.shape[1], 19)) heatmap_flip_size[:,:,left_part_idx] = heatmap_ori_size[:,:,right_part_idx] heatmap_flip_size[:,:,right_part_idx] = heatmap_ori_size[:,:,left_part_idx] heatmap_flip_size[:,:,0:2] = heatmap_ori_size[:,:,0:2] paf_ori_size = paf_ori_size[:, ::-1, :] paf_flip_size = np.zeros((oriImg.shape[0], oriImg.shape[1], 38)) paf_flip_size[:,:,ori_paf_idx] = paf_ori_size[:,:,flip_paf_idx] paf_flip_size[:,:,x_paf_idx] = paf_flip_size[:,:,x_paf_idx]*-1 part_ori_size = part_ori_size[:, ::-1, :] part_flip_size = np.zeros((oriImg.shape[0], oriImg.shape[1], 15)) part_flip_size[:,:,human_ori_part] = part_ori_size[:,:,human_part] return heatmap_flip_size, paf_flip_size, part_flip_size def recover_flipping_output2(oriImg, part_ori_size): part_ori_size = part_ori_size[:, ::-1, :] part_flip_size = np.zeros((oriImg.shape[0], oriImg.shape[1], 15)) part_flip_size[:,:,human_ori_part] = part_ori_size[:,:,human_part] return part_flip_size def part_thresholding(seg_argmax): background = 0.6 head = 0.5 torso = 0.8 rightfoot = 0.55 leftfoot = 0.55 leftthigh = 0.55 rightthigh = 0.55 leftshank = 0.55 rightshank = 0.55 rightupperarm = 0.55 leftupperarm = 0.55 rightforearm = 0.55 leftforearm = 0.55 lefthand = 0.55 righthand = 0.55 part_th = [background, head, torso, leftupperarm ,rightupperarm, leftforearm, rightforearm, lefthand, righthand, leftthigh, rightthigh, leftshank, rightshank, leftfoot, rightfoot] th_mask = np.zeros(seg_argmax.shape) for indx in range(15): part_prediction = (seg_argmax==indx) part_prediction = part_prediction*part_th[indx] th_mask += part_prediction return th_mask def process (oriImg, flipImg, params, model_params, model): input_scale = 1.0 multiplier = [x * model_params['boxsize'] / oriImg.shape[0] for x in params['scale_search']] seg_avg = np.zeros((oriImg.shape[0], oriImg.shape[1], 15)) segmap_scale1 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num)) segmap_scale2 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num)) segmap_scale3 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num)) segmap_scale4 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num)) segmap_scale5 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num)) segmap_scale6 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num)) segmap_scale7 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num)) segmap_scale8 = np.zeros((oriImg.shape[0], oriImg.shape[1], seg_num)) for m in range(len(multiplier)): scale = multiplier[m]*input_scale imageToTest = cv2.resize(oriImg, (0, 0), fx=scale, fy=scale, interpolation=cv2.INTER_CUBIC) pad = [ 0, 0, (imageToTest.shape[0] - model_params['stride']) % model_params['stride'], (imageToTest.shape[1] - model_params['stride']) % model_params['stride'] ] imageToTest_padded = np.pad(imageToTest, ((0, pad[2]), (0, pad[3]), (0, 0)), mode='constant', constant_values=((0, 0), (0, 0), (0, 0))) input_img = imageToTest_padded[np.newaxis, ...] # print( "\tActual size fed into NN: ", input_img.shape) output_blobs = model.predict(input_img) seg =
np.squeeze(output_blobs[2])
numpy.squeeze
#!/usr/bin/env python # coding: utf-8 import numpy as onp import jax.numpy as np from jax import vmap from functools import partial import time from jax import jit from jax import grad import os from jax.config import config import dplex import iminuit import matplotlib.pyplot as plt config.update("jax_enable_x64", True) os.environ["CUDA_VISIBLE_DEVICES"] = "0" def invm_plus(Pb,Pc): Pbc = Pb + Pc _Pbc = Pbc * np.array([-1,-1,-1,1]) return np.sum(Pbc * _Pbc,axis=1) def invm(Pbc): _Pbc = Pbc * np.array([-1,-1,-1,1]) return np.sum(Pbc * _Pbc,axis=1) def mcnpz(begin,end): amp = onp.load("data/mctruth.npz") # phif223 = amp['phif223'][begin:end,0:2] # phif222 = amp['phif222'][begin:end,0:2] # phif221 = amp['phif221'][begin:end,0:2] # phif201 = amp['phif201'][begin:end,0:2] # data_phif2 = np.asarray([phif201,phif221,phif222,phif223]) phif001 = amp['phif001'][begin:end,0:2] phif021 = amp['phif021'][begin:end,0:2] data_phif0 = np.asarray([phif001,phif021]) mom = onp.load("data/mcmom.npz") Kp = mom['Kp'][begin:end,:] Km = mom['Km'][begin:end,:] Pip = mom['Pip'][begin:end,:] Pim = mom['Pim'][begin:end,:] data_f = Pip + Pim data_phi = Kp + Km data_phi = invm(data_phi) data_f = invm(data_f) return data_phif0,data_phi,data_f def _BW(m_,w_,Sbc): gamma=np.sqrt(m_*m_*(m_*m_+w_*w_)) k = np.sqrt(2*np.sqrt(2)*m_*np.abs(w_)*gamma/np.pi/np.sqrt(m_*m_+gamma)) l = Sbc.shape[0] temp = dplex.dconstruct(m_*m_ - Sbc, -m_*w_*np.ones(l)) return dplex.ddivide(k, temp) def _phase(_theta, _rho): return dplex.dconstruct(_rho * np.cos(_theta), _rho * np.sin(_theta)) def BW(phim,phiw,fm,fw,phi,f): a = np.moveaxis(vmap(partial(_BW,Sbc=phi))(phim,phiw),1,0) b = np.moveaxis(vmap(partial(_BW,Sbc=f))(fm,fw),1,0) result = dplex.deinsum('ij,ij->ij',a,b) return result def phase(_theta,_rho): result = vmap(_phase)(_theta,_rho) return result def MOD(phim,phiw,fm,fw,const,theta,rho,phif,phi,f): ph = np.moveaxis(phase(theta,rho), 1, 0) bw = BW(phim,phiw,fm,fw,phi,f) _phif = dplex.dtomine(np.einsum('ijk,il->ljk',phif,const)) _phif = dplex.deinsum('ijk,i->ijk',_phif,ph) _phif = dplex.deinsum('ijk,ij->jk',_phif,bw) return _phif def alladd(*mods): l = (mods[0].shape)[1] sum = onp.zeros(l*2*2).reshape(2,l,2) for num in mods: sum += num # print(sum.shape) return np.sum(dplex.dabs(sum),axis=1) def weight(_phim,_phiw,_f0m,_f0w,_const1,_theta,_rho): const = np.asarray([[_const1],[1.]]) rho = np.asarray([_rho]) theta = np.asarray([_theta]) phim = np.asarray([_phim]) phiw = np.asarray([_phiw]) f0m = np.asarray([_f0m]) f0w = np.asarray([_f0w]) d_phif0 = MOD(phim,phiw,f0m,f0w,const,theta,rho,data_phif0,data_phi,data_f) m_phif0 = MOD(phim,phiw,f0m,f0w,const,theta,rho,mc_phif0,mc_phi,mc_f) d_tmp = alladd(d_phif0) m_tmp = np.average(alladd(m_phif0)) print("weight") return d_tmp/m_tmp def likelihood(_phim,_phiw,_f0m,_f0w,_const1,_theta,_rho): const = np.asarray([[_const1],[1.]]) rho = np.asarray([_rho]) theta = np.asarray([_theta]) phim = np.asarray([_phim]) phiw = np.asarray([_phiw]) f0m = np.asarray([_f0m]) f0w = np.asarray([_f0w]) d_phif0 = MOD(phim,phiw,f0m,f0w,const,theta,rho,data_phif0,data_phi,data_f) m_phif0 = MOD(phim,phiw,f0m,f0w,const,theta,rho,mc_phif0,mc_phi,mc_f) d_tmp = alladd(d_phif0) m_tmp = np.average(alladd(m_phif0)) return -np.sum(wt*(np.log(d_tmp) - np.log(m_tmp))) phim = 1.02 phiw = 0.01 f0m = 0.5 f0w = 0.4 f2m = 1. f2w = 1. const1 = 5.5 # 该参数拟合的好 const2 = 1 rho = 1. theta = 0.5 vf0m = [] vf0w = [] vconst = [] ef0m = [] ef0w = [] econst = [] vvalue = [] # offset = onp.random.sample(1000) ranm =
onp.random.randint(10,100,size=500)
numpy.random.randint
# %% [markdown] # # Radial velocity fitting # In this example, we will show how to fit radial velocity data using the _orbits_ Python API. # # This example replicates [the case study](https://gallery.exoplanet.codes/tutorials/rv/) # from _[exoplanet](https://docs.exoplanet.codes/en/latest/)_ (which this package is built upon). # The _exoplanet_ case study follows [a tutorial](https://radvel.readthedocs.io/en/latest/tutorials/K2-24_Fitting+MCMC.html) # from [RadVel](https://radvel.readthedocs.io/en/latest/index.html). # A lot of the nomenclature and some design ideas in _orbits_ are borrowed from RadVel. # %% import matplotlib.pyplot as plt import numpy as np import orbits.utils as ut import pandas as pd from orbits.model import RVModel # %% [markdown] # First, we can download the data from RadVel and plot it. We also make a finer # grid that will be used to plot the model. # %% # Download and unpack the data url = "https://raw.githubusercontent.com/California-Planet-Search/radvel/master/example_data/epic203771098.csv" data = pd.read_csv(url, index_col=0) t = np.array(data.t) vrad = np.array(data.vel) svrad = np.array(data.errvel) # Reference time for RV trends later x_ref = 0.5 * (t.min() + t.max()) # Fine grid for model plots t_pred = np.linspace(t.min() - 5, t.max() + 5, 1000) # Plot the data plt.errorbar(data.t, data.vel, data.errvel, fmt="k.", capsize=2) plt.xlabel("Time [days]") plt.ylabel("RV [m/s]") plt.show() # %% [markdown] # Next, we use literature values for the periods and transit times. # Then we can use _exoplanet_ to estimate the RV semi-amplitude. # %% import exoplanet as xo periods = [20.8851, 42.3633] period_errs = [0.0003, 0.0006] tc = [2072.7948, 2082.6251] tc_errs = [0.0007, 0.0004] k = xo.estimate_semi_amplitude(periods, t, vrad, svrad, t0s=tc) print("Semi-amplitude estimate:", k, "m/s") # %% [markdown] # _exoplanet_ (and _orbits_) uses the PyMC3 modelling framework. PyMC3 models # are a bit different than the Python models/functions we are used to. However, # it has several useful features, including Hamiltonian-Monte Carlo as well as # several pre-defined distributions that can be used as priors. # The _exoplanet_ documentation has [a nice introduction to PyMC3](https://docs.exoplanet.codes/en/latest/tutorials/intro-to-pymc3/). # The [PyMC3 documentation](https://docs.pymc.io/) is also a good resource to # learn more about PyMC3 and probabilistic programming. The main thing to note # is that parameters are defined directly as prior distributions. # # To define models in PyMC3, we need to be in a model context (using something # like `with Model():`). However, if we do this, we need to setup relations # between fitted parameters and parameters of interest manually. The same # goes for a GP model, the RV signal, and everything that the model contains. # This is where _orbits_ comes in. With pre-defined model such as `RVModel`, # we can simply pass fitted parameters to the model and everything else # (reparametrizations, GP kernels, orbit solver) is set up automatically. # # Because _orbits_ was first designed only to be a CLI tool that uses a YAML # config file, parameters can currently only be passed at initialization # inside a dictionary. An example dictionary is given below (a YAML version of # this dictionary is available in `k224.yml`. # %% import pymc3_ext as pmx params = { # This entry is the first planet with its orbital parameters. "b": { "logper": { "dist": "Normal", "kwargs": {"mu": np.log(20.8851), "sd": 0.0003 / 20.8851}, }, "tc": { "dist": "Normal", "kwargs": {"mu": 2072.7948, "sd": 0.0007}, }, "logk": { "dist": "Normal", "kwargs": { "mu": np.log(k[0]), "sd": 2.0, "testval": np.log(k[0]), }, }, # This parameter is a list with the sqrt(e)*cos(w) and sqrt(e)*sin(w) # exoplanet defines the UnitDisk prior which can bring performance # improvement and forces the eccentricity to be < 1. "secsw": { "dist": "UnitDisk", "kwargs": {"shape": 2, "testval": 0.01 * np.ones(2)}, }, }, # This entry is the second planet with its orbital parameters. "c": { "logper": { "dist": "Normal", "kwargs": {"mu": np.log(42.3633), "sd": 0.0006 / 42.3633}, }, "tc": { "dist": "Normal", "kwargs": {"mu": 2082.6251, "sd": 0.0004}, }, "logk": { "dist": "Normal", "kwargs": { "mu": np.log(k[1]), "sd": 2.0, "testval": np.log(k[1]), }, }, "secsw": { "dist": "UnitDisk", "kwargs": {"shape": 2, "testval": 0.01 * np.ones(2)}, }, }, # Some parameters affect the whole rv dataset, not just one planet. "rv": { "logwn": { "dist": "DataNormal", "kwargs": {"data_used": "svrad", "sd": 5.0, "apply": "log"}, }, "gamma": { "dist": "Normal", "kwargs": {"mu": 0.0, "sd": 1.0}, }, "dvdt": { "dist": "Normal", "kwargs": {"mu": 0.0, "sd": 0.1}, }, "curv": { "dist": "Normal", "kwargs": {"mu": 0.0, "sd": 0.01}, }, }, } # %% [markdown] # Now that our parameters are defined, we can create a PyMC3 model. # Note that we can stil modify the model in the model context, as shown below # with an additional eccentricity prior and an RV predicitive curve. # %% with RVModel(t, vrad, svrad, 2, params=params) as model: xo.eccentricity.vaneylen19( "ecc_prior", multi=True, shape=2, fixed=True, observed=model.synth_dict["e"], ) rv_model_pred = model.calc_rv_model(t_pred, name="pred") print(model.named_vars) # %% [markdown] # However, forcing users to define a big nested dictionary in a notebook or # script is not great for readability. It also breaks the original PyMC3 # workflow of defining parameters inside the model context. For this reason, # `orbits` models also support defining parameters in the model conetxt, **with # a few (IMPORTANT) limitation**: # 1. Submodels (e.g. planets) are defined at initialization with no parameters. # To define their parameters, you need to use their context (see below). # 2. The chi2 or GP likelihood for the data is never called explicitely, # it is only included in the total posterior if defined. I have not found a # good way to ensure it is created before sampling or optimization, so for # now, users must call `add_likelihood` after creating the model manually # (this is not required when passing a full parameter dictionary: the model # is then able to create it by itself at initialization). # There is a warning when this no likelihood is added # %% import pymc3 as pm import pymc3_ext as pmx from orbits.prior import data_normal_prior with RVModel(t, vrad, svrad, 2) as model: print(model.named_vars) data_normal_prior("logwn", data_used="svrad", sd=5.0, apply="log") pm.Normal("gamma", mu=0.0, sd=1.0) pm.Normal("dvdt", mu=0.0, sd=0.1) pm.Normal("curv", mu=0.0, sd=0.01) # To add planet parameters, must be in their automatically created submodel with model.planets["b"]: pm.Normal("logper", mu=np.log(20.8851), sd=0.0003 / 20.8851) pm.Normal("tc", mu=2072.7948, sd=0.0007) pm.Normal("logk", mu=np.log(k[0]), sd=2.0, testval=np.log(k[0])) pmx.UnitDisk("secsw", shape=2, testval=0.01 * np.ones(2)) with model.planets["c"]: pm.Normal("logper", mu=np.log(42.3633), sd=0.0006 / 42.3633) pm.Normal("tc", mu=2082.6251, sd=0.0004) pm.Normal("logk", mu=np.log(k[1]), sd=2.0, testval=np.log(k[1])) pmx.UnitDisk("secsw", shape=2, testval=0.01 * np.ones(2)) xo.eccentricity.vaneylen19( "ecc_prior", multi=True, shape=2, fixed=True, observed=model.synth_dict["e"], ) rv_model_pred = model.calc_rv_model(t_pred, name="pred") model.add_likelihood() # %% [markdown] # Now that we have a model, we can plot its prediction. But we only defined # priors, so how do we evaluate the model ? PyMC3 priors have a `testval` that # can be used to plot the model. The _pymc3-ext_ package, from the _exoplanet_ # developers, has a built-in `eval_in_model` function to do just this. # %% plt.errorbar(t, vrad, yerr=svrad, fmt=".k") with model: plt.plot(t_pred, pmx.eval_in_model(model.rv_orbits_pred), "--k", alpha=0.5) plt.plot(t_pred, pmx.eval_in_model(model.bkg_pred), ":k", alpha=0.5) plt.plot(t_pred, pmx.eval_in_model(model.rv_model_pred), label="model") plt.legend(fontsize=10) plt.xlim(t_pred.min(), t_pred.max()) plt.xlabel("time [days]") plt.ylabel("radial velocity [m/s]") plt.title("initial model") plt.show() # %% [markdown] # Our initial test values don't look too good, so we will find the # maximum a posteriori (MAP) solution using `pymc3`/`pymc3-ext`. # Sometimes it can help to optimize parameters sequentially, as we do below. # %% with model: # Optimize the offset and trend parameters only map_soln = pmx.optimize( start=model.test_point, vars=[model.gamma, model.dvdt, model.curv] ) opt2_list = [model.gamma, model.dvdt, model.curv, model.logwn] # Now optimize some planet parameters as well, using previous solution as # starting point. for prefix in model.planets: opt2_list.extend( [ model[f"{prefix}_logk"], model[f"{prefix}_tc"], model[f"{prefix}_logper"], ] ) map_soln = pmx.optimize(start=map_soln, vars=opt2_list) # Optimize eccentricity parameters map_soln = pmx.optimize( start=map_soln, vars=[model[f"{prefix}_secsw"] for prefix in model.planets], ) # Optimize everything map_soln = pmx.optimize(start=map_soln) # %% [markdown] # Let's now plot the MAP solution. # %% from orbits import plots plots.rvplot(t, vrad, svrad, t_soln=t_pred, soln=map_soln, soln_name="pred") plt.show() # %% [markdown] # We can now sample our model posterior to get a better estimate of our # parameters and their uncertainty. We use _pymc3-ext_ as it wraps the PyMC3 # sampler with more appropriate defaults and tuning strategies (this is taken # directly from the _exoplanet_ RV tutorial). # %%
np.random.seed(42)
numpy.random.seed
################################################################################ # # # This file is part of the Morphomatics library # # see https://github.com/morphomatics/morphomatics # # # # Copyright (C) 2021 Zuse Institute Berlin # # # # Morphomatics is distributed under the terms of the ZIB Academic License. # # see $MORPHOMATICS/LICENSE # # # ################################################################################ import numpy as np from ..geom import BezierSpline from ..geom.BezierSpline import decasteljau from . import ExponentialBarycenter from ..manifold import Manifold from ..manifold.ManoptWrap import ManoptWrap from pymanopt import Problem from pymanopt.manifolds import Product from pymanopt.manifolds.product import _ProductTangentVector from pymanopt.solvers import SteepestDescent, ConjugateGradient class RiemannianRegression(object): """ Higher-order regression for estimation of relationship between single explanatory and manifold-valued dependent variable. The relationship is modeled via intrinsic Bezier splines (morphomatics.manifold.BezierSpline). See: <NAME>, <NAME>, <NAME>, <NAME>: Nonlinear Regression on Manifolds for Shape Analysis using Intrinsic Bézier Splines. Proc. Medical Image Computing and Computer Assisted Intervention (MICCAI), 2020. """ def __init__(self, M: Manifold, Y, param, degrees, iscycle=False, P_init=None, verbosity=2, maxtime=100000, maxiter=100, mingradnorm=1e-6, minstepsize=1e-10, maxcostevals=5000): """Compute regression with Bézier splines for data in a manifold M using pymanopt. :param M: manifold :param Y: array containing M-valued data. :param param: vector with scalars between 0 and the number of intended segments corresponding to the data points in Y. The integer part determines the segment to which the data point belongs. :param degrees: vector of length L; the l-th entry is the degree of the l-th segment of the spline. All entries must be positive. For a closed spline, L > 1, degrees[0] > 2 and degrees[-1] > 2 must hold. :param iscycle: boolean that determines whether a closed curve C1 spline shall be modeled. :param P_init: initial guess :param verbosity: 0 is silent to gives the most information, see pymanopt's problem class :param maxtime: maximum time for steepest descent :param maxiter: maximum number of iterations in steepest descent :param mingradnorm: stop iteration when the norm of the gradient is lower than mingradnorm :param minstepsize: stop iteration when step the stepsize is smaller than minstepsize :param maxcostevals: maximum number of allowed cost evaluations :return P: list of control points of the optimal Bézier spline """ degrees = np.atleast_1d(degrees) self._M = M self._Y = Y self._param = param pymanoptM = ManoptWrap(M) # Cost def cost(P): P = np.stack(P) control_points = self.full_set(M, P, degrees, iscycle) return self.sumOfSquared(BezierSpline(M, control_points, iscycle=iscycle), Y, param) #MMM = Product([M for i in range(degrees[0])]) # for conjugated gradient # Gradient def grad(P): P = np.stack(P) control_points = self.full_set(M, P, degrees, iscycle) grad_E = self.gradSumOfSquared(BezierSpline(M, control_points, iscycle=iscycle), Y, param) grad_E = self.indep_set(grad_E, iscycle) # return _ProductTangentVector([grad_E[0][i] for i in range(len(grad_E[0]))]) # for conjugated gradient return np.concatenate(grad_E) # Solve optimization problem with pymanopt by optimizing over independent control points if iscycle: N = Product([pymanoptM] * np.sum(degrees - 1)) else: N = Product([pymanoptM] * (np.sum(degrees - 1) + 2)) problem = Problem(manifold=N, cost=cost, grad=grad, verbosity=verbosity) # solver = ConjugateGradient(maxtime=maxtime, maxiter=maxiter, mingradnorm=mingradnorm, # minstepsize=minstepsize, maxcostevals=maxcostevals, logverbosity=2) solver = SteepestDescent(maxtime=maxtime, maxiter=maxiter, mingradnorm=mingradnorm, minstepsize=minstepsize, maxcostevals=maxcostevals, logverbosity=2) if P_init is None: P_init = self.initControlPoints(M, Y, param, degrees, iscycle) P_init = self.indep_set(P_init, iscycle) P_opt, opt_log = solver.solve(problem, list(np.concatenate(P_init))) P_opt = self.full_set(M, np.stack(P_opt, axis=0), degrees, iscycle) self._spline = BezierSpline(M, P_opt, iscycle=iscycle) self._unexplained_variance = opt_log['final_values']["f(x)"] / len(Y) @property def trend(self): """ :return: Estimated trajectory encoding relationship between explanatory and manifold-valued dependent variable. """ return self._spline def unexplained_variance(self): """Variance in the data set that is not explained by the regressed Bézier spline. """ return self._unexplained_variance @property def R2statistic(self): """ Computes Fletcher's generalized R2 statistic for Bézier spline regression. For the definition see Fletcher, Geodesic Regression on Riemannian Manifolds (2011), Eq. 7. :return: generalized R^2 statistic (in [0, 1]) """ # total variance total_var = ExponentialBarycenter.total_variance(self._M, list(self._Y)) return 1 - self.unexplained_variance() / total_var @staticmethod def initControlPoints(M: Manifold, Y, param, degrees, iscycle=False): """Computes an initial choice of control points for the gradient descent steps in non-cyclic Bézier spline regression. The control points are initialized "along geodesics" near the data points such that the differentiability conditions hold. :param M: manifold :param Y: array containing M-valued data. :param param: vector with scalars between 0 and the number of intended segments corresponding to the data points in Y. The integer part determines the segment to which the data point belongs. :param degrees: vector of length L; the l-th entry is the degree of the l-th segment of the spline. All entries must be positive. For a closed spline, L > 1, degrees[0] > 2 and degrees[-1] > 2 must hold. :param iscylce: boolean that determines whether a closed curve C1 spline shall be modeled. :return P: list of length L containing arrays of control points. The l-th entry is an array with degrees(l)+1 elements of M, that are ordered along the first dimension. """ assert M.metric and M.connec degrees = np.atleast_1d(degrees) assert all(degrees >= 1) if iscycle: # check for minimum number of control points assert degrees.size > 1 and degrees[0] >= 3 and degrees[-1] >= 3 # sort data ind = np.argsort(param) param[:] = param[ind] Y[:] = Y[ind] data, t = RiemannianRegression.segments_from_data(Y, param) assert len(data) == degrees.size P = [] for l, d in enumerate(degrees): siz = np.array(data[l].shape) siz[0] = d + 1 Pl = np.zeros(siz) # first segment if l == 0: for i in range(0, d + 1): Pl[i] = M.connec.geopoint(data[0][0], data[0][-1], i / d) # initial values for the control points of the remaining segments else: # C^1 condition Pl[0] = P[l - 1][-1] Pl[1] = M.connec.geopoint(P[l - 1][-2], P[l - 1][-1], 2) # If there are remaining control points, they are free; we initialize them along a geodesic. if d > 1: if l != degrees.size - 1 or not iscycle: for i in range(2, d + 1): Pl[i] = M.connec.geopoint(Pl[1], data[l][-1], i / d) # last segment of closed spline else: # C^1 condition Pl[-1] = P[0][0] Pl[-2] = M.connec.geopoint(P[0][1], P[0][0], 2) # d-3 free control points for i in range(2, d - 1): # on geodesic between neighbours Pl[i] = M.connec.geopoint(Pl[1], Pl[-2], (i - 1) / (d - 2)) P.append(Pl) return P @staticmethod def sumOfSquared(B: BezierSpline, Y, param): """Computes sum of squared distances between the spline defined by P and data Y. :param B: Bézier spline :param Y: array with data points along first axis :param param: vector with corresponding parameter values :return: non-negative scalar """ s = 0 for i, t in enumerate(param): s += B._M.metric.dist(B.eval(t), Y[i]) ** 2 return s @staticmethod def gradSumOfSquared(B: BezierSpline, Y, param): """Compute the gradient of the sum of squared distances from a manifold-valued Bézier spline to time labeled data points. :param B: Bézier spline with K segments :param Y: array that contains data in the manifold where B is defined (along first axis). :param param: vector with the sorted parameter values that correspond to the data in Y. All values must be in [0, B.nsegments]. :return: gradients at the control points of B """ assert all(0 <= param) and all(param <= B.nsegments) assert Y.shape[0] == param.shape[0] M = B._M P = B.control_points L = B.nsegments # sort data (maybe not necessary) ind = np.argsort(param) param[:] = param[ind] Y[:] = Y[ind] # Initiate gradients grad_E = [] for l in range(L): grad_E.append(np.zeros_like(P[l])) # Distinct parameters in param with multiplicity u = np.unique(param) for t in u: # First, we sum up all gradients of tau_j(p) = d(p,y_j)^2 that live in the same tangent space; the value t # appears count[i] times. grad_dist = np.zeros_like(Y[0]) # would be cleaner with M.zerovec(decasteljau(M, P[ind], t_seg)) ind, t_seg = B.segmentize(t) for jj in np.nonzero(param == t)[0]: grad_dist += -2 * M.connec.log(decasteljau(M, P[ind], t_seg), Y[jj]) # add up adjointly transported contributions grad_E[ind] += B.adjDpB(t, grad_dist) # Taking care of C1 conditions for l in range(1, L): X_plus = grad_E[l][1] # gradient w.r.t. p_l^+ X_l = M.connec.adjDxgeo(P[l][0], P[l][1], 1, X_plus) X_minus = M.connec.adjDxgeo(P[l - 1][-2], P[l][1], 1, X_plus) # Final gradients at p_l and p_l^- grad_E[l - 1][-1] += grad_E[l][0] + X_l grad_E[l - 1][-2] += X_minus # Everything that is not needed anymore is set to 0 s.t. it cannot cause # bugs (here the gradient at p_l^+ and at p_l for the lower segment). grad_E[l][0] *= 0 grad_E[l][1] *= 0 # Taking care for additional C1 conditions in the case of a closed curve. if B.iscycle: X_plus = grad_E[0][1] # gradient w.r.t. p_0^+ X_l = M.connec.adjDxgeo(P[0][0], P[0][1], 1, X_plus) X_minus = M.connec.adjDxgeo(P[-1][-2], P[0][1], 1, X_plus) # Final gradients at p_l and p_l^- grad_E[-1][-1] += grad_E[0][0] + X_l grad_E[-1][-2] += X_minus # Everything that is not needed anymore is set to 0 s.t. it cannot cause bugs (here the gradient at p_0 and at # p_0^+ w.r.t the lower segment). grad_E[0][0] *= 0 grad_E[0][1] *= 0 return grad_E @staticmethod def segments_from_data(Y, param): """Divide data according to segments :param Y: array of values :param param: vector with corresponding nonnegative values sorted in ascending order :return: List of data arrays. The l-th entry contains data belonging to the l-th segment; list with corresponding parameter values. Data at a knot is assigned to the lower segment. """ assert np.all(np.diff(param) >= 0) and np.all(param >= 0) assert Y.shape[0] == param.size # get the segments the data belongs to def segment(t): """Choose the correct segment and value for the parameter t :param t: scalar :return: index of segment, that is, i for t in (i,i+1] (0 if t=0) """ # choose correct segment if t == 0: ind = 0 elif t == np.round(t): ind = t - 1 ind = ind.astype(int) else: ind = np.floor(t).astype(int) return ind # get indices where the new segment begins s = np.zeros_like(param, int) for i, t in enumerate(param): s[i] = segment(t) _, ind, count = np.unique(s, return_index=True, return_counts=True) data = [] t = [] for i, d in enumerate(ind): data.append(Y[d:d + count[i]]) t.append(param[d:d + count[i]]) return data, t @staticmethod def full_set(M: Manifold, P, degrees, iscycle): """Compute all control points of a C^1 Bézier spline from the independent ones.""" control_points = [] start = 0 siz = np.array(P.shape) for i, d in enumerate(degrees): deg = degrees[i] if i == 0: if not iscycle: # all control points of the first segment are independent control_points.append(np.stack(P[:deg + 1])) start += deg + 1 else: # add first two control points siz[0] = deg + 1 C =
np.zeros(siz)
numpy.zeros
# Created by <NAME>. import sys import numpy as np sys.path.append('../') from envs import KArmedBandit import matplotlib.pyplot as plt ''' Solution to the K-armed bandit problem. A simple bandit algorithm has been used to solve the problem. Algoithm available on page 24 of "Reinforcement Learning: An Introduction." Book reference: <NAME>. and <NAME>., 2014. Reinforcement Learning: An Introduction. 1st ed. London: The MIT Press. ''' n_episodes = 1000 K = 4 epsilon = 0.1 bandit = KArmedBandit(K) # Store data for plots. selections = [] # Initialization. Q =
np.zeros(K)
numpy.zeros
from __future__ import print_function, division import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import astropy.units as u import astropy.coordinates as coord from astropy.constants import G import interact def atlas_freespace(th=90, seed=51835): """""" # impact parameters M = 1e5*u.Msun B = 100*u.pc V = 100*u.km/u.s phi = coord.Angle(180*u.deg) theta=coord.Angle(th*u.deg) Tenc = 1*u.Gyr T = 1*u.Gyr dt = 0.1*u.Myr rs = 0*u.pc # setup tube Nstar = 500 wx = 5*u.kpc wy = 0*u.pc wz = 0*u.pc sx = 0*u.km/u.s np.random.seed(seed) x = (np.random.rand(Nstar) - 0.5) * wx y = (np.random.randn(Nstar) - 0.5) * wy z = (np.random.randn(Nstar) - 0.5) * wz vx = (np.random.randn(Nstar) - 0.5) * sx vy = (np.random.randn(Nstar) - 0.5) * sx vz = (np.random.randn(Nstar) - 0.5) * sx x1, x2, x3, v1, v2, v3 = interact.interact(M.si.value, B.si.value, phi.rad, V.si.value, theta.rad, Tenc.si.value, T.si.value, dt.si.value, x.si.value, y.si.value, z.si.value, vx.si.value, vy.si.value, vz.si.value) stream = {} stream['x'] = (np.array([x1, x2, x3])*u.m).to(u.pc) stream['v'] = (np.array([v1, v2, v3])*u.m/u.s).to(u.km/u.s) ms = 8 alpha = 0.3 plt.close() fig, ax = plt.subplots(2,1,figsize=(8,8), sharex=True) plt.sca(ax[0]) plt.plot(stream['x'][0], stream['x'][1], 'o', ms=ms, alpha=alpha) plt.ylabel('y (pc)') plt.xlim(-3000,3000) plt.ylim(-1100,20) plt.title('$\\theta$ = {:3.0f}$^\circ$'.format(th), fontsize='medium') # circle phi_ = np.linspace(0,2*np.pi,100) r = 0.05 x0 = 0.3 y0 = 0.65 x = r*np.cos(phi_) + x0 y = r*np.sin(phi_) + y0 xp = r*np.cos(2*np.pi-theta.rad) + x0 yp = r*np.sin(2*np.pi-theta.rad) + y0 Ns = 9 xs = np.linspace(-1.5*r, 1.5*r, Ns) + x0 ys = np.zeros(Ns) + y0 plt.plot(x, y, '-', color='0.3', alpha=0.5, lw=2, transform=fig.transFigure) plt.plot(xp, yp, 'o', color='0.3', ms=10, transform=fig.transFigure) plt.plot(xs, ys, 'o', color='tab:blue', ms=5, alpha=0.5, transform=fig.transFigure) plt.sca(ax[1]) plt.plot(stream['x'][0], stream['x'][2], 'o', ms=ms, alpha=alpha) plt.ylabel('z (pc)') plt.xlabel('x (pc)') plt.xlim(-3000,3000) plt.ylim(-30,30) plt.tight_layout() plt.savefig('../plots/animations/angles/angles_{:03.0f}.png'.format(th/5)) def phases(seed=8264): """""" # impact parameters M = 1e5*u.Msun B = 100*u.pc V = 100*u.km/u.s phi = coord.Angle(180*u.deg) #theta = coord.Angle(th*u.deg) Tenc = 1*u.Gyr T = 1*u.Gyr dt = 0.1*u.Myr rs = 0*u.pc # setup tube Nstar = 500 wx = 5*u.kpc wy = 2*u.pc wz = 2*u.pc sx = 0*u.km/u.s np.random.seed(seed) x = (np.random.rand(Nstar) - 0.5) * wx y = (np.random.randn(Nstar) - 0.5) * wy z = (np.random.randn(Nstar) - 0.5) * wz vx = (np.random.randn(Nstar) - 0.5) * sx vy = (np.random.randn(Nstar) - 0.5) * sx vz = (np.random.randn(Nstar) - 0.5) * sx angles = [5, 18, 90] times = [0.01] for th in angles: theta = coord.Angle(th*u.deg) T = B**2*V*np.abs(np.sin(theta.rad))/(2*G*M) times += [T.to(u.Gyr).value] times += [4] times = np.array(times) * u.Gyr cmap_navy = mpl.colors.LinearSegmentedColormap.from_list('cmap_navy', [(0,'#78aadd'), (1,'#00187f')], N=256) plt.close() fig, ax = plt.subplots(5, 3, figsize=(10,10), sharex=True) for et, T in enumerate(times): for ea, th in enumerate(angles): theta = coord.Angle(th*u.deg) p = (G*M*T/(B**2*V*np.abs(np.sin(theta.rad)))).decompose() print(et, T, p) x1, x2, x3, v1, v2, v3 = interact.interact(M.si.value, B.si.value, phi.rad, V.si.value, theta.rad, Tenc.si.value, T.si.value, dt.si.value, x.si.value, y.si.value, z.si.value, vx.si.value, vy.si.value, vz.si.value) stream = {} stream['x'] = (np.array([x1, x2, x3])*u.m).to(u.pc) stream['v'] = (np.array([v1, v2, v3])*u.m/u.s).to(u.km/u.s) plt.sca(ax[et][ea]) clog = np.log10(p.value) cmin = np.log10(5e-2) cmax = np.log10(20) if clog<cmin: clog = cmin if clog>cmax: clog = cmax cindex = (clog - cmin)/(cmax - cmin) plt.plot(stream['x'][0], stream['x'][1], 'o', color=cmap_navy(cindex), ms=1.5, alpha=0.6) #plt.plot(stream['x'][0], stream['x'][1], 'o', color=cmap_navy(min(1.,p.value/7)), ms=1.5, alpha=0.6) txt = plt.text(0.9, 0.15, '$\psi$={:.2f}'.format(p), ha='right', va='center', transform=plt.gca().transAxes, fontsize='small') txt.set_bbox(dict(facecolor='w', alpha=0.7, ec='none')) if et==0: plt.title('$\\theta$ = {:.0f}$^\circ$'.format(th), fontsize='medium') if et==np.size(times)-1: plt.xlabel('x [pc]') if ea==0: plt.ylabel('y [pc]') if ea==np.size(angles)-1: plt.ylabel('T = {:.2f}'.format(T), labelpad=20, fontsize='small', rotation=270) plt.gca().yaxis.set_label_position('right') plt.tight_layout(h_pad=0.1, w_pad=0.15) plt.savefig('../plots/freespace_phases.png') plt.savefig('../plots/freespace_phases.pdf') def change_b(seed=7356, th=90, case=0): """""" # impact parameters M = 5e6*u.Msun B = 100*u.pc V = 100*u.km/u.s phi = coord.Angle(180*u.deg) theta = coord.Angle(th*u.deg) Tenc = 1*u.Gyr T = 1*u.Gyr dt = 0.05*u.Myr rs = 0*u.pc # setup tube Nstar = 1000 wx = 20*u.kpc wy = 2*u.pc wz = 2*u.pc sx = 0*u.km/u.s np.random.seed(seed) x = (np.random.rand(Nstar) - 0.5) * wx y = (np.random.randn(Nstar) - 0.5) * wy z = (np.random.randn(Nstar) - 0.5) * wz vx = (np.random.randn(Nstar) - 0.5) * sx vy = (np.random.randn(Nstar) - 0.5) * sx vz = (np.random.randn(Nstar) - 0.5) * sx f_array = np.array([0.5,1,2]) p_array = np.array([0.1,0.3,0.5,1.,2.]) cmap_borange = mpl.colors.LinearSegmentedColormap.from_list('cmap_borange', [(0,'#ff9e00'), (1,'#e63f25')], N=256) title_main = ['B$_0$, M$_0$', 'B$_0$, V$_0$', 'M$_0$, V$_0$', 'M$_0$, T$_0$'] title_less = ['$\sqrt{0.5}$ B$_0$, 0.5 M$_0$', '$\sqrt{0.5}$ B$_0$, V$_0$ / 0.5', '0.5 M$_0$, 0.5 V$_0$', '0.5 M$_0$, T$_0$ / 0.5'] title_more = ['$\sqrt{2}$ B$_0$, 2 M$_0$', '$\sqrt{2}$ B$_0$, V$_0$ / 2', '2 M$_0$, 2 V$_0$', '2 M$_0$, T$_0$ / 2'] titles = [title_less, title_main, title_more] plt.close() fig, ax = plt.subplots(5,3,figsize=(10,6), sharex=True, sharey='row') for ep, p in enumerate(p_array): #p = (G*M*T/(B**2*V*np.abs(np.sin(theta.rad)))).decompose() B_ = np.sqrt(G*M*T/(p*V*np.abs(np.sin(theta.rad)))).to(u.pc) print(ep, B_) clog = np.log10(p) cmin = np.log10(0.1) cmax = np.log10(5) if clog<cmin: clog = cmin if clog>cmax: clog = cmax cindex = (clog - cmin)/(cmax - cmin) color = cmap_borange(cindex) for ef, f in enumerate(f_array[:]): fsq = np.sqrt(f) finv = 1/f #fsqinv = np.sqrt(finv) if case==0: x1, x2, x3, v1, v2, v3 = interact.interact(f*M.si.value, fsq*B_.si.value, phi.rad, V.si.value, theta.rad, Tenc.si.value, T.si.value, dt.si.value, (x*0.5/np.sqrt(p)).si.value, y.si.value, z.si.value, vx.si.value, vy.si.value, vz.si.value) elif case==1: x1, x2, x3, v1, v2, v3 = interact.interact(M.si.value, fsq*B_.si.value, phi.rad, finv*V.si.value, theta.rad, Tenc.si.value, T.si.value, dt.si.value, x.si.value, y.si.value, z.si.value, vx.si.value, vy.si.value, vz.si.value) elif case==2: x1, x2, x3, v1, v2, v3 = interact.interact(f*M.si.value, B_.si.value, phi.rad, f*V.si.value, theta.rad, Tenc.si.value, T.si.value, dt.si.value, x.si.value, y.si.value, z.si.value, vx.si.value, vy.si.value, vz.si.value) elif case==3: x1, x2, x3, v1, v2, v3 = interact.interact(f*M.si.value, B_.si.value, phi.rad, V.si.value, theta.rad, finv*Tenc.si.value, finv*T.si.value, dt.si.value, x.si.value, y.si.value, z.si.value, vx.si.value, vy.si.value, vz.si.value) stream = {} stream['x'] = (np.array([x1, x2, x3])*u.m).to(u.pc) stream['v'] = (np.array([v1, v2, v3])*u.m/u.s).to(u.km/u.s) plt.sca(ax[ep][ef]) plt.plot(stream['x'][0]/(fsq*B_), stream['x'][1]/(fsq*B_), '.', color=color, ms=3, alpha=0.02) plt.gca().set_aspect('equal') if ep==0: plt.title(titles[ef][case], fontsize='medium') if ep==np.size(p_array)-1: plt.xlabel('x / B') if ef==0: plt.ylabel('y / B') if ef==np.size(f_array)-1: plt.ylabel('$\psi$ = {:.1f}'.format(p), labelpad=20, fontsize='small', rotation=270) plt.gca().yaxis.set_label_position('right') if f==1: txt = plt.text(0.1, 0.15, '$B_0$={:.0f}'.format(B_.to(u.pc)), ha='left', va='center', transform=plt.gca().transAxes, fontsize='small') txt.set_bbox(dict(facecolor='w', alpha=0.7, ec='none')) plt.tight_layout(h_pad=0.1, w_pad=0.15) plt.savefig('../plots/change_bscaled_{}.png'.format(case)) #plt.savefig('../plots/change_b.pdf') def scaling(seed=98, f=2): """""" # impact parameters M = 1e5*u.Msun B = 100*u.pc V = 100*u.km/u.s phi = coord.Angle(180*u.deg) theta=coord.Angle(45*u.deg) Tenc = 1*u.Gyr T = 10*u.Gyr dt = 0.1*u.Myr rs = 0*u.pc # setup tube Nstar = 500 wx = 5*u.kpc wy = 2*u.pc wz = 0*u.pc sx = 0*u.km/u.s np.random.seed(seed) x = (np.random.rand(Nstar) - 0.5) * wx y = (np.random.randn(Nstar) - 0.5) * wy z = (np.random.randn(Nstar) - 0.5) * wz vx = np.zeros(Nstar)*u.km/u.s vy = np.zeros(Nstar)*u.km/u.s vz = np.zeros(Nstar)*u.km/u.s # limits print('dense:{:.2g} << 1'.format(rs/B)) print('fast: {:.2g} << 1'.format((G*M/(V**2*B)).decompose()) ) print('thin: {:.2g} << 1'.format((np.sqrt(wy**2 + wz**2)/B).decompose()) ) print('long: {:.2g} >> 1'.format((wx/B).decompose()) ) print('cold: {:.2g} << 1'.format((sx/V).decompose()) ) x1, x2, x3, v1, v2, v3 = interact.interact(M.si.value, B.si.value, phi.rad, V.si.value, theta.rad, Tenc.si.value, T.si.value, dt.si.value, x.si.value, y.si.value, z.si.value, vx.si.value, vy.si.value, vz.si.value) stream1 = {} stream1['x'] = (np.array([x1, x2, x3])*u.m).to(u.pc) stream1['v'] = (np.array([v1, v2, v3])*u.m/u.s).to(u.km/u.s) finv = 1/f fsq = np.sqrt(f) x1, x2, x3, v1, v2, v3 = interact.interact(f*M.si.value, B.si.value, phi.rad, V.si.value, theta.rad, finv*Tenc.si.value, finv*T.si.value, dt.si.value, x.si.value, y.si.value, z.si.value, vx.si.value, vy.si.value, vz.si.value) stream2 = {} stream2['x'] = (np.array([x1, x2, x3])*u.m).to(u.pc) stream2['v'] = (np.array([v1, v2, v3])*u.m/u.s).to(u.km/u.s) x1, x2, x3, v1, v2, v3 = interact.interact(f*M.si.value, B.si.value, phi.rad, f*V.si.value, theta.rad, Tenc.si.value, T.si.value, dt.si.value, x.si.value, y.si.value, z.si.value, vx.si.value, vy.si.value, vz.si.value) stream3 = {} stream3['x'] = (np.array([x1, x2, x3])*u.m).to(u.pc) stream3['v'] = (np.array([v1, v2, v3])*u.m/u.s).to(u.km/u.s) x1, x2, x3, v1, v2, v3 = interact.interact(M.si.value, B.si.value, phi.rad, f*V.si.value, theta.rad, f*Tenc.si.value, f*T.si.value, dt.si.value, x.si.value, y.si.value, z.si.value, vx.si.value, vy.si.value, vz.si.value) stream4 = {} stream4['x'] = (np.array([x1, x2, x3])*u.m).to(u.pc) stream4['v'] = (np.array([v1, v2, v3])*u.m/u.s).to(u.km/u.s) #x1, x2, x3, v1, v2, v3 = interact.interact(f*M.si.value, f*B.si.value, phi.rad, V.si.value, theta.rad, Tenc.si.value, T.si.value, dt.si.value, x.si.value, y.si.value, z.si.value, vx.si.value, vy.si.value, vz.si.value) #stream5 = {} #stream5['x'] = (np.array([x1, x2, x3])*u.m).to(u.pc) #stream5['v'] = (np.array([v1, v2, v3])*u.m/u.s).to(u.km/u.s) dblue = mpl.cm.Blues(0.8) lblue = mpl.cm.Blues(0.5) ms = 2 streams = [stream1, stream2, stream3, stream4] labels = ['M,T,V', '{0:.1f}M,T/{0:.1f},V'.format(f), '{0:.1f}M,T,{0:.1f}V'.format(f),'M,{0:.1f}T,{0:.1f}V'.format(f), '{0:.1f}M,sqrt{0:.1f}B'.format(f)] plt.close() fig, ax = plt.subplots(1,2,figsize=(10,5)) for e, stream in enumerate(streams): color = mpl.cm.Blues(e/5+0.1) ms = 14 - 2*e plt.sca(ax[0]) plt.plot(stream['x'][0], stream['x'][1], 'o', color=color, ms=ms) plt.sca(ax[1]) plt.plot(stream['x'][0], stream['x'][2], 'o', color=color, ms=ms, label=labels[e]) plt.sca(ax[0]) plt.xlabel('x (pc)') plt.ylabel('y (pc)') plt.sca(ax[1]) plt.xlabel('x (pc)') plt.ylabel('z (pc)') plt.legend(fontsize='small', loc=1) plt.tight_layout() plt.savefig('../plots/scaling_{:.1f}.png'.format(f)) def scaling_norm(seed=473): """""" # impact parameters M = 1e5*u.Msun B = 100*u.pc V = 100*u.km/u.s phi = coord.Angle(180*u.deg) theta=coord.Angle(45*u.deg) Tenc = 1*u.Gyr T = 1*u.Gyr dt = 0.05*u.Myr rs = 0*u.pc # setup tube Nstar = 500 wx = 5*u.kpc wy = 2*u.pc wz = 0*u.pc sx = 0*u.km/u.s np.random.seed(seed) x = (
np.random.rand(Nstar)
numpy.random.rand
""" Create extinguished grid more segmented dealing with large grids with enough memory All functions are now transformed into generators. As a result, any function allows computation of a grid in an arbitrary number of chunks. This offers the possibility to generate grids that cannot fit in memory. .. note:: * dependencies have also been updated accordingly. * likelihood computations need to be updated to allow computations even if the full grid does not fit in memory """ import numpy as np import copy from astropy import units from tqdm import tqdm from beast.physicsmodel.stars import stellib from beast.physicsmodel.grid import SpectralGrid, SEDGrid from beast.physicsmodel.prior_weights_dust import PriorWeightsDust # from beast.external.eztables import Table from astropy.table import Table from beast.tools.helpers import generator from beast.tools import helpers from beast.observationmodel.noisemodel import absflux_covmat __all__ = [ "gen_spectral_grid_from_stellib_given_points", "make_extinguished_grid", "add_spectral_properties", "calc_absflux_cov_matrices", ] @generator def gen_spectral_grid_from_stellib_given_points( osl, pts, bounds=dict(dlogT=0.1, dlogg=0.3), chunksize=0 ): """ Generator that reinterpolates a given stellar spectral library on to an Isochrone grid It will iterate over a list of `pts` points and generate `chunksize` models until all the list of points is processed Parameters ---------- osl: stellib.stellib a stellar library pts: dict like structure of points dictionary like or named data structure of points to interpolate at must contain logg, logT, logL, and Z bounds: dict, optional (default={dlogT:0.1, dlogg:0.3}) sensitivity to extrapolation (see grid.get_stellib_boundaries) chunksize: int, optional (default=0) number of models to generate at each cycle. If default <= 0, all models will be returned at once. Returns ------- g: SpectralGrid Spectral grid (in memory) containing the requested list of stars and associated spectra """ helpers.type_checker("osl", osl, stellib.Stellib) if chunksize <= 0: yield osl.gen_spectral_grid_from_given_points(pts, bounds=bounds) else: try: # Yield successive n-sized chunks from l, assuming we can take # slices of the iterator for chunk_slice in helpers.chunks(list(range(len(pts))), chunksize): chunk_pts = pts[chunk_slice] yield osl.gen_spectral_grid_from_given_points(chunk_pts, bounds=bounds) except Exception as e: # chunks may not work on this as pts is most likely a Table print(e) for chunk_pts in helpers.chunks(pts, chunksize): yield osl.gen_spectral_grid_from_given_points(chunk_pts, bounds=bounds) def _make_dust_fA_valid_points_generator(it, min_Rv, max_Rv): """ compute the allowed points based on the R(V) versus f_A plane duplicates effort for all A(V) values, but it is quick compared to other steps .. note:: on 2.74: SMC extinction implies f_A = 0. and Rv = 2.74 Parameters ---------- it: an iterable an initial sequence of points that will be trimmed to only valid ones min_Rv: float lower Rv limit max_Rv: float upper Rv limit Returns ------- npts: int the actual number of valid points pts: generator a generator that only produce valid points """ itn = copy.copy(it) npts = 0 def is_valid(ak, rk, fk): return ( fk / max_Rv + (1.0 - fk) / 2.74 <= 1.0 / rk <= fk * 1.0 / min_Rv + (1.0 - fk) / 2.74 ) # explore the full list once # not very time consuming for ak, rk, fk in itn: if is_valid(ak, rk, fk): npts += 1 # make the iterator pts = ( (float(ak), float(rk), float(fk)) for ak, rk, fk in it if is_valid(ak, rk, fk) ) return npts, pts def apply_distance_grid(specgrid, distances, redshift=0): """ Distances are applied to the spectral grid by copying the grid and applying a scaling factor. Parameters ---------- project: str project name specgrid: grid.SpectralGrid object spectral grid to transform distances: list of float Distances at which models should be shifted 0 means absolute magnitude. Expecting pc units redshift: float Redshift to which wavelengths should be shifted Default is 0 (rest frame) """ g0 = specgrid # Current length of the grid N0 = len(g0.grid) N = N0 * len(distances) # Make singleton list if a single distance is given if not hasattr(distances, "__iter__"): _distances = [distances] else: _distances = distances # Add distance column if multiple distances are specified cols = {} cols["distance"] = np.empty(N, dtype=float) # Existing columns keys0 = list(g0.keys()) for key in keys0: cols[key] = np.empty(N, dtype=float) n_sed_points = g0.seds.shape[1] new_seds =
np.empty((N, n_sed_points), dtype=float)
numpy.empty
import sys, os import numpy as np import pandas as pd from matplotlib import pyplot as plt from scipy.stats import bayes_mvs as bayesest import time sys.path.insert(0, '../../PyEcoLib') import simulator as Sz mean_size = 1 # femto liter doubling_time = 18 #min tmax = 180 #min sample_time = 2 #min div_steps = 10 ncells = 5000 gr = np.log(2)/doubling_time if not os.path.exists('./data'): os.makedirs('./data') #data path if not os.path.exists('./figures'): os.makedirs('./figures') #Figures path start = time.time() sim = Sz.Simulator(ncells=ncells, gr = gr, sb=mean_size, steps = div_steps) sim.divstrat(tmax = tmax, sample_time = 0.1*doubling_time, nameDSM = "./data/dataDSMadder.csv") print('It took', np.int(time.time()-start), 'seconds.') start = time.time() sim = Sz.Simulator(ncells=ncells, gr = gr, sb=mean_size, steps = div_steps,lamb = 2) sim.divstrat(tmax = tmax, sample_time = 0.1*doubling_time, nameDSM = "./data/dataDSMsizer.csv") print('It took', np.int(time.time()-start), 'seconds.') start = time.time() sim = Sz.Simulator(ncells=ncells, gr = gr, sb=mean_size, steps = div_steps,lamb = 0.5) sim.divstrat(tmax = tmax, sample_time = 0.1*doubling_time, nameDSM = "./data/dataDSMtimer.csv") print('It took', np.int(time.time()-start), 'seconds.') start = time.time() sim = Sz.Simulator(ncells=ncells, gr = gr, sb=mean_size, steps = div_steps) sim.szdyn(tmax = tmax, sample_time= 0.1*doubling_time, nameCRM = "./data/dataCRM1.csv") print('It took', np.int(time.time()-start), 'seconds.') CV2sz = 0.02 v0 = mean_size*np.random.gamma(shape=1/CV2sz,scale=CV2sz,size=ncells) start = time.time() sim = Sz.Simulator(ncells=ncells, gr = gr, sb=mean_size, steps = div_steps,V0array=v0) sim.szdyn(tmax = tmax, sample_time= 0.1*doubling_time, nameCRM = "./data/dataCRM2.csv") print('It took', np.int(time.time()-start), 'seconds.') CV2div = 0.002 CV2gr = 0.02 start = time.time() sim = Sz.Simulator(ncells=ncells, gr = gr, sb=mean_size, steps = div_steps, CV2div = CV2div, CV2gr = CV2gr) sim.szdyn(tmax = tmax, sample_time= 0.1*doubling_time, nameCRM = "./data/dataCRM3.csv") print('It took', np.int(time.time()-start), 'seconds.') data1=pd.read_csv("./data/dataCRM1.csv") timearray1=data1.time.unique() mnszarray1=[] cvszarray1=[] errcv2szarray1=[] errmnszarray1=[] df=data1 del df['time'] for m in range(len(df)): szs=df.loc[m, :].values.tolist() mean_cntr, var_cntr, std_cntr = bayesest(szs,alpha=0.95) mnszarray1.append(np.mean(szs)) errmnszarray1.append(mean_cntr[1][1]-mean_cntr[0]) cvszarray1.append(np.var(szs)/np.mean(szs)**2) errv=(var_cntr[1][1]-var_cntr[0])/mean_cntr[0]**2+2*(mean_cntr[1][1]-mean_cntr[0])*var_cntr[0]/mean_cntr[0]**3 errcv2szarray1.append(errv) data1=pd.read_csv("./data/dataCRM2.csv") timearray2=data1.time.unique() mnszarray2=[] cvszarray2=[] errcv2szarray2=[] errmnszarray2=[] df=data1 del df['time'] for m in range(len(df)): szs=df.loc[m, :].values.tolist() mean_cntr, var_cntr, std_cntr = bayesest(szs,alpha=0.95) mnszarray2.append(np.mean(szs)) errmnszarray2.append(mean_cntr[1][1]-mean_cntr[0]) cvszarray2.append(np.var(szs)/np.mean(szs)**2) errv=(var_cntr[1][1]-var_cntr[0])/mean_cntr[0]**2+2*(mean_cntr[1][1]-mean_cntr[0])*var_cntr[0]/mean_cntr[0]**3 errcv2szarray2.append(errv) data1=pd.read_csv("./data/dataCRM3.csv") timearray3=data1.time.unique() mnszarray3=[] cvszarray3=[] errcv2szarray3=[] errmnszarray3=[] df=data1 del df['time'] for m in range(len(df)): szs=df.loc[m, :].values.tolist() mean_cntr, var_cntr, std_cntr = bayesest(szs,alpha=0.95) mnszarray3.append(np.mean(szs)) errmnszarray3.append(mean_cntr[1][1]-mean_cntr[0]) cvszarray3.append(np.var(szs)/np.mean(szs)**2) errv=(var_cntr[1][1]-var_cntr[0])/mean_cntr[0]**2+2*(mean_cntr[1][1]-mean_cntr[0])*var_cntr[0]/mean_cntr[0]**3 errcv2szarray3.append(errv) start = time.time() sim = Sz.Simulator(ncells=1, gr = gr, sb=mean_size, steps = div_steps) sim.szdynFSP(tmax = tmax, nameFSP = "./data/dataFSP0.csv") print('It took', np.int(time.time()-start), 'seconds.') start = time.time() CV2sz = 0.02 sim = Sz.Simulator(ncells=1, gr = gr, sb=mean_size, steps = div_steps) sim.szdynFSP(tmax = tmax, nameFSP = "./data/dataFSP.csv",CV2sz=CV2sz) print('It took', np.int(time.time()-start), 'seconds.') fig, ax = plt.subplots(2,3, figsize=(16,6),sharex=True) data=pd.read_csv("./data/dataCRM1.csv") tt=data.time del data['time'] mmar=data.columns for column in df.columns[0:10]: ax[0,0].plot(tt/doubling_time,data[column],c="#B9B9B9",label='_nolegend_') data=pd.read_csv("./data/dataCRM2.csv") tt=data.time del data['time'] mmar=data.columns for column in df.columns[0:10]: ax[0,1].plot(tt/doubling_time,data[column],c="#B9B9B9",label='_nolegend_') data=pd.read_csv("./data/dataCRM3.csv") tt=data.time del data['time'] mmar=data.columns for column in df.columns[0:10]: ax[0,2].plot(tt/doubling_time,data[column],c="#B9B9B9") ax[0,0].plot(np.array(timearray1)/doubling_time,mnszarray1,lw=2) ax[0,0].fill_between(np.array(timearray1)/doubling_time,np.array(mnszarray1)-np.array(errmnszarray1),np.array(mnszarray1) +np.array(errmnszarray1),alpha=1, edgecolor='#4db8ff', facecolor='#4db8ff',linewidth=0,label="SSA") ax[1,0].plot(np.array(timearray1)/doubling_time,cvszarray1,lw=2) ax[1,0].fill_between(np.array(timearray1)/doubling_time,np.array(cvszarray1)-np.array(errcv2szarray1),np.array(cvszarray1) +np.array(errcv2szarray1),alpha=1, edgecolor='#4db8ff', facecolor='#4db8ff',linewidth=0) ax[0,1].plot(np.array(timearray2)/doubling_time,mnszarray2,lw=2) ax[0,1].fill_between(np.array(timearray2)/doubling_time,np.array(mnszarray2)-np.array(errmnszarray2),np.array(mnszarray2) +np.array(errmnszarray2),alpha=1, edgecolor='#4db8ff', facecolor='#4db8ff',linewidth=0,label="SSA") ax[1,1].plot(np.array(timearray2)/doubling_time,cvszarray2,lw=2) ax[1,1].fill_between(np.array(timearray2)/doubling_time,np.array(cvszarray2)-np.array(errcv2szarray2),np.array(cvszarray2) +np.array(errcv2szarray2),alpha=1, edgecolor='#4db8ff', facecolor='#4db8ff',linewidth=0) ax[0,2].plot(np.array(timearray3)/doubling_time,mnszarray3,lw=2) ax[0,2].fill_between(np.array(timearray3)/doubling_time,np.array(mnszarray3)-np.array(errmnszarray3),np.array(mnszarray3) +np.array(errmnszarray3),alpha=1, edgecolor='#4db8ff', facecolor='#4db8ff',linewidth=0,label="SSA") ax[1,2].plot(np.array(timearray3)/doubling_time,cvszarray3,lw=2) ax[1,2].fill_between(np.array(timearray3)/doubling_time,np.array(cvszarray3)-np.array(errcv2szarray3),np.array(cvszarray3) +np.array(errcv2szarray3),alpha=1, edgecolor='#4db8ff', facecolor='#4db8ff',linewidth=0) #ax[0].set_ylim([1,1.7]) #ax[1].set_ylim([0,0.15]) ax[0,0].set_title("Stochastic division",fontsize=15) ax[0,1].set_title("Finite Initial Distribution",fontsize=15) ax[0,2].set_title("Noisy Splitting",fontsize=15) data=pd.read_csv("./data/dataFSP.csv") ax[0,1].plot(data.time/doubling_time,data.Meansize,ls='--',c='g',label="Numeric") ax[1,1].plot(data.time/doubling_time,data.VarSize/data.Meansize**2,ls='--',c='g') data=pd.read_csv("./data/dataFSP0.csv") ax[0,0].plot(data.time/doubling_time,data.Meansize,ls='--',c='g',label="Numeric") ax[1,0].plot(data.time/doubling_time,data.VarSize/data.Meansize**2,ls='--',c='g') ax[0,0].legend(fontsize=15) ax[0,1].legend(fontsize=15) ax[0,0].set_ylabel(r"$\langle s\rangle$ $(\mu m)$",size=15) ax[1,0].set_ylabel("$C_V^2(s)$",size=15) ax[1,0].set_xlabel(r"$t/\tau$",size=15) ax[1,1].set_xlabel(r"$t/\tau$",size=15) ax[1,2].set_xlabel(r"$t/\tau$",size=15) for l in [0,1]: for m in [0,1,2]: ax[l,m].set_xlim([0,6]) taqui=np.arange(0,7,step=1) ax[l,m].set_xticks(np.array(taqui)) ax[l,m].grid() ax[l,m].tick_params(axis='x', labelsize=12) ax[l,m].tick_params(axis='y', labelsize=12) for axis in ['bottom','left']: ax[l,m].spines[axis].set_linewidth(2) ax[l,m].tick_params(axis='both', width=2,length=6) for axis in ['top','right']: ax[l,m].spines[axis].set_linewidth(0) ax[l,m].tick_params(axis='both', width=0,length=6) taqui=np.arange(0,0.13,step=0.02) ax[1,m].set_yticks(np.array(taqui)) taqui=np.arange(0.5,3,step=.5) ax[0,m].set_yticks(np.array(taqui)) ax[1,m].set_ylim([0,0.13]) ax[0,m].set_ylim([0.5,3]) plt.subplots_adjust(hspace=0.15,wspace=0.2) #ax[1].plot(time4,np.array(allvarsz4),c='r') #ax[0].plot(time4,mean_size*np.array(allmeansz4),c='r',label="Numeric") plt.savefig('./figures/size_statistics_comp1.eps',bbox_inches='tight') plt.savefig('./figures/size_statistics_comp1.svg',bbox_inches='tight') plt.savefig('./figures/size_statistics_comp1.png',bbox_inches='tight') data2=pd.read_csv("./data/dataDSMadder.csv") data2=data2[data2.time>5*doubling_time] quantnumber=5 pvadd2=data2 CV2darr1=[] deltarr1=[] sbarr1=[] errcv2darr1=[] errdeltarr1=[] errsbarr1=[] for i in range(quantnumber): lperv0=np.percentile(pvadd2.S_b,i*100/quantnumber) hperv0=np.percentile(pvadd2.S_b,(i+1)*100/quantnumber) quanta1=pvadd2[pvadd2.S_b>lperv0] quanta2=quanta1[quanta1.S_b<hperv0] mean_cntr, var_cntr, std_cntr = bayesest((quanta2.S_d-quanta2.S_b)/np.mean(pvadd2.S_d-pvadd2.S_b),alpha=0.95) meanv0_cntr, varv0_cntr, stdv0_cntr = bayesest(quanta2.S_b/np.mean(pvadd2.S_b),alpha=0.95) CV2darr1.append(var_cntr[0]/mean_cntr[0]**2) deltarr1.append(mean_cntr[0]) sbarr1.append(meanv0_cntr[0]) errv=(var_cntr[1][1]-var_cntr[0])/mean_cntr[0]**2+2*(mean_cntr[1][1]-mean_cntr[0])*var_cntr[0]/mean_cntr[0]**3 errcv2darr1.append(errv) errdeltarr1.append(mean_cntr[1][1]-mean_cntr[0]) errsbarr1.append(meanv0_cntr[1][1]-meanv0_cntr[0]) data3=pd.read_csv("./data/dataDSMsizer.csv") data3=data3[data3.time>5*doubling_time] quantnumber=5 pvadd2=data3 CV2darr2=[] deltarr2=[] sbarr2=[] errcv2darr2=[] errdeltarr2=[] errsbarr2=[] for i in range(quantnumber): lperv0=np.percentile(pvadd2.S_b,i*100/quantnumber) hperv0=np.percentile(pvadd2.S_b,(i+1)*100/quantnumber) quanta1=pvadd2[pvadd2.S_b>lperv0] quanta2=quanta1[quanta1.S_b<hperv0] mean_cntr, var_cntr, std_cntr = bayesest((quanta2.S_d-quanta2.S_b)/np.mean(pvadd2.S_d-pvadd2.S_b),alpha=0.95) meanv0_cntr, varv0_cntr, stdv0_cntr = bayesest(quanta2.S_b/np.mean(pvadd2.S_b),alpha=0.95) CV2darr2.append(var_cntr[0]/mean_cntr[0]**2) deltarr2.append(mean_cntr[0]) sbarr2.append(meanv0_cntr[0]) errv=(var_cntr[1][1]-var_cntr[0])/mean_cntr[0]**2+2*(mean_cntr[1][1]-mean_cntr[0])*var_cntr[0]/mean_cntr[0]**3 errcv2darr2.append(errv) errdeltarr2.append(mean_cntr[1][1]-mean_cntr[0]) errsbarr2.append(meanv0_cntr[1][1]-meanv0_cntr[0]) data4=pd.read_csv("./data/dataDSMtimer.csv") data4=data4[data4.time>5*doubling_time] quantnumber=5 pvadd2=data4 CV2darr3=[] deltarr3=[] sbarr3=[] errcv2darr3=[] errdeltarr3=[] errsbarr3=[] for i in range(quantnumber): lperv0=np.percentile(pvadd2.S_b,i*100/quantnumber) hperv0=np.percentile(pvadd2.S_b,(i+1)*100/quantnumber) quanta1=pvadd2[pvadd2.S_b>lperv0] quanta2=quanta1[quanta1.S_b<hperv0] mean_cntr, var_cntr, std_cntr = bayesest((quanta2.S_d-quanta2.S_b)/np.mean(pvadd2.S_d-pvadd2.S_b),alpha=0.95) meanv0_cntr, varv0_cntr, stdv0_cntr = bayesest(quanta2.S_b/np.mean(pvadd2.S_b),alpha=0.95) CV2darr3.append(var_cntr[0]/mean_cntr[0]**2) deltarr3.append(mean_cntr[0]) sbarr3.append(meanv0_cntr[0]) errv=(var_cntr[1][1]-var_cntr[0])/mean_cntr[0]**2+2*(mean_cntr[1][1]-mean_cntr[0])*var_cntr[0]/mean_cntr[0]**3 errcv2darr3.append(errv) errdeltarr3.append(mean_cntr[1][1]-mean_cntr[0]) errsbarr3.append(meanv0_cntr[1][1]-meanv0_cntr[0]) print(np.mean(pvadd2.S_b)) print(np.mean(pvadd2.S_d-pvadd2.S_b)) sim = Sz.Simulator(ncells=1, gr = gr, sb=mean_size, steps = div_steps,lamb=0.5) sbar=np.linspace(0.5,1.5,100)*mean_size cv2tim=[] delttim=[] for i in sbar: sd,cv2=sim.SdStat(i) cv2tim.append(cv2) delttim.append(sd-i) sim = Sz.Simulator(ncells=1, gr = gr, sb=mean_size, steps = div_steps) sbar=np.linspace(0.5,1.5,100)*mean_size cv2ad=[] deltad=[] for i in sbar: sd,cv2=sim.SdStat(i) cv2ad.append(cv2) deltad.append(sd-i) sim = Sz.Simulator(ncells=1, gr = gr, sb=mean_size, steps = div_steps,lamb=2) sbar=np.linspace(0.5,1.5,100)*mean_size cv2sz=[] deltsz=[] for i in sbar: sd,cv2=sim.SdStat(i) cv2sz.append(cv2) deltsz.append(sd-i) fig, ax = plt.subplots(1,2, figsize=(12,4)) #ax[0].scatter(data2.S_b/np.mean(data2.S_b),(data2.S_d-data2.S_b)/np.mean(data2.S_b),s=2) #ax[0].scatter(data3.S_b/np.mean(data3.S_b),(data2.S_d-data3.S_b)/np.mean(data3.S_b),s=2) #ax[0].scatter(data4.S_b/np.mean(data4.S_b),(data4.S_d-data2.S_b)/np.mean(data4.S_b),s=2) ax[0].errorbar(np.array(sbarr1),np.array(deltarr1),xerr=errsbarr1,yerr=errdeltarr1, fmt='o',mec='k',capsize=5,markersize='8',elinewidth=3,c='k') ax[1].errorbar(np.array(sbarr1),CV2darr1,xerr=errsbarr1,yerr=errcv2darr1, fmt='o',mec='k',capsize=5,markersize='8',elinewidth=3,c='k') ax[0].errorbar(np.array(sbarr2),np.array(deltarr2),xerr=errsbarr2,yerr=errdeltarr2, fmt='o',mec='k',capsize=5,markersize='8',elinewidth=3,c='r') ax[1].errorbar(np.array(sbarr2),CV2darr2,xerr=errsbarr2,yerr=errcv2darr2, fmt='o',mec='k',capsize=5,markersize='8',elinewidth=3,c='r') ax[0].errorbar(np.array(sbarr3),np.array(deltarr3),xerr=errsbarr3,yerr=errdeltarr3, fmt='o',mec='k',capsize=5,markersize='8',elinewidth=3,c='g') ax[1].errorbar(np.array(sbarr3),CV2darr3,xerr=errsbarr3,yerr=errcv2darr3, fmt='o',mec='k',capsize=5,markersize='8',elinewidth=3,c='g') ax[1].set_ylim([0,0.3]) ax[0].set_xlabel("$s_b/\overline{s_b}$",size=20) ax[1].set_xlabel("$s_b/\overline{s_b}$",size=20) ax[0].set_ylabel("$\Delta/\overline{s_b}$",size=15) ax[1].set_ylabel("$C_V^2(\Delta)$",size=15) #ax[0].set_xlim([0.5,1.5]) for l in [0,1]: #ax[l].set_xlim([0.2,2]) ax[l].grid() ax[l].tick_params(axis='x', labelsize=15) ax[l].tick_params(axis='y', labelsize=15) for axis in ['bottom','left']: ax[l].spines[axis].set_linewidth(2) ax[l].tick_params(axis='both', width=2,length=6) for axis in ['top','right']: ax[l].spines[axis].set_linewidth(0) ax[l].tick_params(axis='both', width=0,length=6) ax[0].plot(np.array(sbar)/mean_size, np.array(delttim)/mean_size, lw=2,c='g',label="$\lambda=0.5$") ax[1].plot(np.array(sbar)/mean_size, cv2tim, lw=2,c='g') ax[0].plot(np.array(sbar)/mean_size, np.array(deltad)/mean_size, lw=2,c='k',label="$\lambda=1$") ax[1].plot(np.array(sbar)/mean_size, cv2ad, lw=2,c='k') ax[0].plot(np.array(sbar)/mean_size, np.array(deltsz)/mean_size, lw=2,c='r',label="$\lambda=2$") ax[1].plot(np.array(sbar)/mean_size, cv2sz, lw=2,c='r') ax[0].set_ylim(0.75,1.35) ax[1].set_ylim(0.03,0.17) ax[0].text(0.55,1.27,"$\lambda = 2$",rotation=-35,fontsize=10) ax[0].text(0.55,1.01,"$\lambda = 1$",fontsize=10) ax[0].text(0.55,0.87,"$\lambda = 0.5$",rotation=35,fontsize=10) ax[1].text(0.5,0.05,"$\lambda = 2$",rotation=15,fontsize=10) ax[1].text(0.5,0.11,"$\lambda = 1$",fontsize=10) ax[1].text(0.5,0.155,"$\lambda = 0.5$",rotation=-10,fontsize=10) #ax[0].set_ylim([0.7,1.5]) plt.savefig('./figures/full_div_strategy.eps',bbox_inches='tight') plt.savefig('./figures/full_div_strategy.svg',bbox_inches='tight') plt.savefig('./figures/full_div_strategy.png',bbox_inches='tight') fig, ax = plt.subplots(2,4, figsize=(16,5)) data=pd.read_csv("./data/dataCRM1.csv") tt=data.time del data['time'] for column in data.columns[0:10]: ax[0,0].plot(tt/doubling_time,data[column],c="#B9B9B9",label='_nolegend_') data=pd.read_csv("./data/dataCRM2.csv") tt=data.time del data['time'] for column in data.columns[0:10]: ax[0,1].plot(tt/doubling_time,data[column],c="#B9B9B9",label='_nolegend_') data=pd.read_csv("./data/dataCRM3.csv") tt=data.time del data['time'] for column in data.columns[0:10]: ax[0,2].plot(tt/doubling_time,data[column],c="#B9B9B9",label='_nolegend_') ax[0,0].plot(np.array(timearray1)/doubling_time,mnszarray1,lw=2) ax[0,0].fill_between(np.array(timearray1)/doubling_time,np.array(mnszarray1)-np.array(errmnszarray1),np.array(mnszarray1) +np.array(errmnszarray1),alpha=1, edgecolor='#4db8ff', facecolor='#4db8ff',linewidth=0,label="SSA") ax[1,0].plot(np.array(timearray1)/doubling_time,cvszarray1,lw=2) ax[1,0].fill_between(np.array(timearray1)/doubling_time,np.array(cvszarray1)-np.array(errcv2szarray1),np.array(cvszarray1) +np.array(errcv2szarray1),alpha=1, edgecolor='#4db8ff', facecolor='#4db8ff',linewidth=0) ax[0,1].plot(np.array(timearray2)/doubling_time,mnszarray2,lw=2) ax[0,1].fill_between(np.array(timearray2)/doubling_time,np.array(mnszarray2)-np.array(errmnszarray2),np.array(mnszarray2) +np.array(errmnszarray2),alpha=1, edgecolor='#4db8ff', facecolor='#4db8ff',linewidth=0,label="SSA") ax[1,1].plot(np.array(timearray2)/doubling_time,cvszarray2,lw=2) ax[1,1].fill_between(np.array(timearray2)/doubling_time,np.array(cvszarray2)-np.array(errcv2szarray2),np.array(cvszarray2) +np.array(errcv2szarray2),alpha=1, edgecolor='#4db8ff', facecolor='#4db8ff',linewidth=0) ax[0,2].plot(np.array(timearray3)/doubling_time,mnszarray3,lw=2) ax[0,2].fill_between(np.array(timearray3)/doubling_time,np.array(mnszarray3)-np.array(errmnszarray3),np.array(mnszarray3) +np.array(errmnszarray3),alpha=1, edgecolor='#4db8ff', facecolor='#4db8ff',linewidth=0,label="SSA") ax[1,2].plot(np.array(timearray3)/doubling_time,cvszarray3,lw=2) ax[1,2].fill_between(np.array(timearray3)/doubling_time,np.array(cvszarray3)-np.array(errcv2szarray3),np.array(cvszarray3) +np.array(errcv2szarray3),alpha=1, edgecolor='#4db8ff', facecolor='#4db8ff',linewidth=0) #ax[0].set_ylim([1,1.7]) #ax[1].set_ylim([0,0.15]) ax[0,0].set_title("Stochastic division",fontsize=15) ax[0,1].set_title("Finite Initial Distribution",fontsize=15) ax[0,2].set_title("Noisy Splitting",fontsize=15) data=pd.read_csv("./data/dataFSP.csv") ax[0,1].plot(data.time/doubling_time,data.Meansize,ls='--',c='g',label="Numeric") ax[1,1].plot(data.time/doubling_time,data.VarSize/data.Meansize**2,ls='--',c='g') data=pd.read_csv("./data/dataFSP0.csv") ax[0,0].plot(data.time/doubling_time,data.Meansize,ls='--',c='g',label="Numeric") ax[1,0].plot(data.time/doubling_time,data.VarSize/data.Meansize**2,ls='--',c='g') ax[0,0].legend(fontsize=10) ax[0,1].legend(fontsize=10) ax[0,2].legend(fontsize=10) #ax[0,1].legend(fontsize=10) ax[0,3].errorbar(np.array(sbarr1),np.array(deltarr1),xerr=errsbarr1,yerr=errdeltarr1, fmt='o',mec='k',capsize=3,markersize='6',elinewidth=3,c='k') ax[1,3].errorbar(np.array(sbarr1),CV2darr1,xerr=errsbarr1,yerr=errcv2darr1, fmt='o',mec='k',capsize=3,markersize='6',elinewidth=3,c='k') ax[0,3].errorbar(np.array(sbarr2),np.array(deltarr2),xerr=errsbarr2,yerr=errdeltarr2, fmt='o',mec='k',capsize=3,markersize='6',elinewidth=3,c='r') ax[1,3].errorbar(np.array(sbarr2),CV2darr2,xerr=errsbarr2,yerr=errcv2darr2, fmt='o',mec='k',capsize=3,markersize='6',elinewidth=3,c='r') ax[0,3].errorbar(np.array(sbarr3),np.array(deltarr3),xerr=errsbarr3,yerr=errdeltarr3, fmt='o',mec='k',capsize=3,markersize='6',elinewidth=3,c='g') ax[1,3].errorbar(np.array(sbarr3),CV2darr3,xerr=errsbarr3,yerr=errcv2darr3, fmt='o',mec='k',capsize=3,markersize='6',elinewidth=3,c='g') ax[0,3].plot(np.array(sbar)/mean_size, np.array(delttim)/mean_size, lw=2,c='g',label="$\lambda=0.5$") ax[1,3].plot(np.array(sbar)/mean_size, cv2tim, lw=2,c='g') ax[0,3].plot(np.array(sbar)/mean_size, np.array(deltad)/mean_size, lw=2,c='k',label="$\lambda=1$") ax[1,3].plot(np.array(sbar)/mean_size, cv2ad, lw=2,c='k') ax[0,3].plot(np.array(sbar)/mean_size,
np.array(deltsz)
numpy.array
from netCDF4 import Dataset import numpy as np from math import sin, cos, pi, radians #------------------------------------------------------------- def velocities_strains_stress_divergences(x, y): A = 2.56#np.random.uniform(2,4) B = 2.56#np.random.uniform(2,4) C = 2.56#np.random.uniform(2,4) D = 2.56#np.random.uniform(2,4) Lx = 1.0 Ly = 1.0 u = sin((2.0 * pi * x * A) / Lx) * sin((2.0 * pi * y * B) / Ly) v = sin((2.0 * pi * x * C) / Lx) * sin((2.0 * pi * y * D) / Ly) dudx = ((2.0 * pi * A) / Lx) * cos((2.0 * pi * x * A) / Lx) * sin((2.0 * pi * y * B) / Ly) dudy = ((2.0 * pi * B) / Ly) * sin((2.0 * pi * x * A) / Lx) * cos((2.0 * pi * y * B) / Ly) dvdx = ((2.0 * pi * C) / Lx) * cos((2.0 * pi * x * C) / Lx) * sin((2.0 * pi * y * D) / Ly) dvdy = ((2.0 * pi * D) / Ly) * sin((2.0 * pi * x * C) / Lx) * cos((2.0 * pi * y * D) / Ly) d2udx2 = -((2.0 * pi * A) / Lx)*((2.0 * pi * A) / Lx) * sin((2.0 * pi * x * A) / Lx) * sin((2.0 * pi * y * B) / Ly) d2udy2 = -((2.0 * pi * B) / Ly)*((2.0 * pi * B) / Ly) * sin((2.0 * pi * x * A) / Lx) * sin((2.0 * pi * y * B) / Ly) d2udxdy = ((2.0 * pi * A) / Lx)*((2.0 * pi * B) / Ly) * cos((2.0 * pi * x * A) / Lx) * cos((2.0 * pi * y * B) / Ly) d2vdx2 = -((2.0 * pi * C) / Lx)*((2.0 * pi * C) / Lx) * sin((2.0 * pi * x * C) / Lx) * sin((2.0 * pi * y * D) / Ly) d2vdy2 = -((2.0 * pi * D) / Ly)*((2.0 * pi * D) / Ly) * sin((2.0 * pi * x * C) / Lx) * sin((2.0 * pi * y * D) / Ly) d2vdxdy = ((2.0 * pi * C) / Lx)*((2.0 * pi * D) / Ly) * cos((2.0 * pi * x * C) / Lx) * cos((2.0 * pi * y * D) / Ly) e11 = dudx e22 = dvdy e12 = 0.5 * (dudy + dvdx) de11dx = d2udx2 de12dy = 0.5 * (d2udy2 + d2vdxdy) de12dx = 0.5 * (d2udxdy + d2vdx2) de22dy = d2vdy2 divu = de11dx + de12dy divv = de12dx + de22dy return u, v, e11, e22, e12, divu, divv #------------------------------------------------------------- def create_ic(gridfile, icfile): # load grid file grid = Dataset(gridfile, "r") nCells = len(grid.dimensions["nCells"]) nVertices = len(grid.dimensions["nVertices"]) maxEdges = len(grid.dimensions["maxEdges"]) vertexDegree = len(grid.dimensions["vertexDegree"]) nEdgesOnCell = grid.variables["nEdgesOnCell"][:] verticesOnCell = grid.variables["verticesOnCell"][:] verticesOnCell[:] = verticesOnCell[:] - 1 cellsOnVertex = grid.variables["cellsOnVertex"][:] cellsOnVertex[:] = cellsOnVertex[:] - 1 xCell = grid.variables["xCell"][:] yCell = grid.variables["yCell"][:] xVertex = grid.variables["xVertex"][:] yVertex = grid.variables["yVertex"][:] grid.close() xMin = np.amin(xVertex) xMax = np.amax(xVertex) yMin = np.amin(yVertex) yMax = np.amax(yVertex) # calculate output variables uVelocity = np.empty(nVertices) vVelocity = np.empty(nVertices) stressDivergenceU = np.empty(nVertices) stressDivergenceV =
np.empty(nVertices)
numpy.empty
# -*- coding: utf-8 -*- """ Created on Wed Feb 3 14:33:25 2016 @author: hjalmar """ from ht_helper import get_input, FrameStepper, CountdownPrinter import matplotlib.pyplot as plt from datetime import datetime from scipy.misc import imresize from time import sleep from glob import glob import numpy as np import warnings import tensorflow as tf warnings.simplefilter("ignore") class LabelFrames: """ """ def __init__(self, video_fname, log_fname=None): """ """ # Supress the plt.ginput warning. warnings.warn("deprecated", DeprecationWarning) plt.ion() self.start_t = datetime.now() self.video_fname = video_fname if log_fname is None: self.log_fname = ('%s.txt' % video_fname.split('/')[-1].split('.')[-2]) else: self.log_fname = log_fname # Open output log file. self.f = open(self.log_fname, 'w') self.figsize = [8.125, 6.125] self.fst = FrameStepper(self.video_fname) self.available_nf = self.fst.tot_n self.frame = self.fst.frame self.frame_num = self.fst.n self.frame_time = self.fst.t self.fig = plt.figure(figsize=self.figsize) self.ax = self.fig.add_axes([0.01, 0.01, 0.97, 0.97]) self.num_labelled = 0 self.imwdt = self.frame.shape[1] self.imhgt = self.frame.shape[0] self.head_data = {'center_x': 0.0, 'center_y': 0.0, 'angle': 0.0, 'angle_visible': 0, 'box_width': 0.0, 'box_height': 0.0, 'forehead_pos_x': 0.0, 'forehead_pos_y': 0.0, 'tuft_pos_left_x': 0.0, 'tuft_pos_left_y': 0.0, 'tuft_pos_right_x': 0.0, 'tuft_pos_right_y': 0.0} self._head_len_wdt_ratio = 1.0 # head a bit wider than long self._head_backwrd_shift = 0.6 self._head_scaling = 3 # multiplied with inter_tuft_distance to get # width of head including tufts # Write the header to the log file. self._write_log(write_header=True) def run_spacedbatch(self, t0=0.2, batch_size=1000): """ """ self.batch_size = batch_size n_skip = self.fst.tot_n // batch_size frame_num = int(t0 / self.fst.dt) while frame_num <= self.fst.tot_n: self.fst.read_frame(frame_num) self.frame = self.fst.frame self.frame_num = self.fst.n self.frame_time = self.fst.t self._annote(1, batch_type='spaced') if self.head_position_ok: self._write_log(write_header=False) self.num_labelled += 1 frame_num =
np.random.randint(3, 2*n_skip-1)
numpy.random.randint
"""Functions to generate QQ-plots as well as Manhattan-plots from FaST-LMM. Source: FaST-LMM Python package from Microsoft Corporation Minor modifications - adapted Python syntax to 3.7 (xrange to range and print statements) - set universal usage of matplotlib.pylab to plt - other minor modifications highlighted by comments in code (find by: "<NAME>") """ import matplotlib.pylab as plt import numpy as np import scipy as sp import scipy.stats as st # Source: line 68 fastlmm fastlmm.util.stats.plotp def _qqplot_bar(M=1000000, alphalevel = 0.05,distr = 'log10'): ''' calculate error bars for a QQ-plot -------------------------------------------------------------------- Input: ------------- ---------------------------------------------------- M number of points to compute error bars alphalevel significance level for the error bars (default 0.05) distr space in which the error bars are implemented Note only log10 is implemented (default 'log10') -------------------------------------------------------------------- Returns: ------------- ---------------------------------------------------- betaUp upper error bars betaDown lower error bars theoreticalPvals theoretical P-values under uniform -------------------------------------------------------------------- ''' #assumes 'log10' mRange=10**(np.arange(np.emath.log10(0.5),np.emath.log10(M-0.5)+0.1,0.1));#should be exp or 10**? numPts=len(mRange); betaalphaLevel=np.zeros(numPts);#down in the plot betaOneMinusalphaLevel=np.zeros(numPts);#up in the plot betaInvHalf=np.zeros(numPts); for n in range(numPts): m=mRange[n]; #numplessThanThresh=m; betaInvHalf[n]=st.beta.ppf(0.5,m,M-m); betaalphaLevel[n]=st.beta.ppf(alphalevel,m,M-m); betaOneMinusalphaLevel[n]=st.beta.ppf(1-alphalevel,m,M-m); pass betaDown=betaInvHalf-betaalphaLevel; betaUp=betaOneMinusalphaLevel-betaInvHalf; theoreticalPvals=mRange/M; return betaUp, betaDown, theoreticalPvals # Source: line 593 fastlmm fastlmm.util.stats.plotp def addqqplotinfo(qnull,M,xl='-log10(P) observed',yl='-log10(P) expected',xlim=None,ylim=None,alphalevel=0.05,legendlist=None,fixaxes=False): distr='log10' plt.plot([0, qnull.max()], [0, qnull.max()], 'k') plt.ylabel(xl) plt.xlabel(yl) if xlim is not None: plt.xlim(xlim) if ylim is not None: plt.ylim(ylim) if alphalevel is not None: if distr == 'log10': betaUp, betaDown, theoreticalPvals = _qqplot_bar(M=M,alphalevel=alphalevel,distr=distr) lower = -np.emath.log10(theoreticalPvals-betaDown) upper = -np.emath.log10(theoreticalPvals+betaUp) plt.fill_between(-np.emath.log10(theoreticalPvals), lower, upper, color="grey", alpha=0.5) #plt.plot(-np.emath.log10(theoreticalPvals),lower,'g-.') #plt.plot(-np.emath.log10(theoreticalPvals),upper,'g-.') if legendlist is not None: leg = plt.legend(legendlist, loc=4, numpoints=1) # set the markersize for the legend for lo in leg.legendHandles: lo.set_markersize(10) if fixaxes: fix_axes() # Source: line 620 fastlmm fastlmm.util.stats.plotp def qqplot(pvals, fileout=None, alphalevel=0.05, legend=None, xlim=None, ylim=None, fixaxes=True, addlambda=True, minpval=1e-20, title=None, h1=None, figsize=[5, 5], grid=True): ''' performs a P-value QQ-plot in -log10(P-value) space ----------------------------------------------------------------------- Args: pvals P-values, for multiple methods this should be a list (each element will be flattened) fileout if specified, the plot will be saved to the file (optional) alphalevel significance level for the error bars (default 0.05) if None: no error bars are plotted legend legend string. For multiple methods this should be a list xlim X-axis limits for the QQ-plot (unit: -log10) ylim Y-axis limits for the QQ-plot (unit: -log10) fixaxes Makes xlim=0, and ylim=max of the two ylimits, so that plot is square addlambda Compute and add genomic control to the plot, bool title plot title, string (default: empty) h1 figure handle (default None) figsize size of the figure. (default: [5,5]) grid boolean: use a grid? (default: True) Returns: fighandle, qnull, qemp ----------------------------------------------------------------------- ''' distr = 'log10' if type(pvals) == list: pvallist = pvals else: pvallist = [pvals] if type(legend) == list: legendlist = legend else: legendlist = [legend] if h1 is None: h1 = plt.figure(figsize=figsize) plt.grid(b=grid, alpha=0.5) maxval = 0 for i in range(len(pvallist)): pval = pvallist[i].flatten() M = pval.shape[0] pnull = (0.5 + np.arange(M)) / M # pnull = np.sort(np.random.uniform(size = tests)) pval[pval < minpval] = minpval pval[pval >= 1] = 1 if distr == 'chi2': qnull = st.chi2.isf(pnull, 1) qemp = (st.chi2.isf(np.sort(pval), 1)) xl = 'LOD scores' yl = '$\chi^2$ quantiles' if distr == 'log10': qnull = -np.emath.log10(pnull) qemp = -np.emath.log10(np.sort(pval)) # sorts the object, returns nothing xl = '-log10(P) observed' yl = '-log10(P) expected' if not (sp.isreal(qemp)).all(): raise Exception("imaginary qemp found") # <NAME>: changed qnull.max to qnull.max(), otherwise a function is returned with numpy versions, # no value, which is required here if qnull.max() > maxval: maxval = qnull.max() plt.plot(qnull, qemp, '.', markersize=2) # plt.plot([0,qemp.max()], [0,qemp.max()],'r') if addlambda: lambda_gc = estimate_lambda(pval) print("lambda=%1.4f" % lambda_gc) # plt.legend(["gc="+ '%1.3f' % lambda_gc],loc=2) # if there's only one method, just print the lambda if len(pvallist) == 1: legendlist = ["$\lambda_{GC}=$%1.4f" % lambda_gc] # otherwise add it at the end of the name else: legendlist[i] = legendlist[i] + " ($\lambda_{GC}=$%1.4f)" % lambda_gc addqqplotinfo(qnull, M, xl, yl, xlim, ylim, alphalevel, legendlist, fixaxes) if title is not None: plt.title(title) if fileout is not None: plt.savefig(fileout) return h1, qnull, qemp, # Source: line 705 fastlmm fastlmm.util.stats.plotp def fix_axes(buffer=0.1): ''' Makes x and y max the same, and the lower limits 0. ''' maxlim=max(plt.xlim()[1], plt.ylim()[1]) plt.xlim([0 - buffer, maxlim + buffer]) plt.ylim([0 - buffer, maxlim + buffer]) # Source: line 713 fastlmm fastlmm.util.stats.plotp def estimate_lambda(pv): ''' estimate the lambda for a given array of P-values ------------------------------------------------------------------ pv numpy array containing the P-values ------------------------------------------------------------------ L lambda value ------------------------------------------------------------------ ''' LOD2 = np.median(st.chi2.isf(pv, 1)) L = (LOD2/st.chi2(1).median()) return L # Source: line 470 fastlmm.util.util def manhattan_plot(chr_pos_pvalue_array, pvalue_line=None, plot_threshold=1.0, vline_significant=False, marker="o", chromosome_starts=None, xaxis_unit_bp=True, alpha=0.5): """ Function to create a Manhattan plot. See http://en.wikipedia.org/wiki/Manhattan_plot. Args: chr_pos_pvalue_array: an n x 3 numpy array. The three columns are the chrom number (as a number), the position, and pvalue. :type chr_pos_pvalue_array: numpy array pvalue_line: (Default: None). If given, draws a line at that PValue. :type pvalue_line: a 'pheno dictionary' or a string plot_threshold: plot only SNPs that achieve a P-value smaller than pvalue_threshold to speed up plotting vline_significant: boolean. Draw a vertical line at each significant Pvalue? :rtype: none, but changes the global current figure. marker: marker for the scatter plot. default: "o" chromosome_starts: [Nchrom x 3] ndarray: chromosome, cumulative start position, cumulative stop position cumulative chromosome starts, for plotting. If None (default), this is estimated from data xaxis_unit_bp: plot cumulative position in basepair units on x axis? If False, only use rank of SNP positions. (default: True) alpha: alpha (opaquness) for P-value markers in scatterplot (default 0.5) Returns: chromosome_starts [Nchrom x 3] ndarray: chromosome, cumulative start position, cumulative stop position cumulative chromosome starts used in plotting. :Example: """ import matplotlib matplotlib.use('Agg', warn=False) # This lets it work even on machines without graphics displays # create a copy of the data and sort it by chrom and then position # <NAME>: Cast array to float (if not already numeric beforehand) try: array = np.array(chr_pos_pvalue_array).astype(float) except TypeError: print('Chromosome identifier need to be numeric for plotting of Manhattan plot.') if plot_threshold: array = array[array[:, 2] <= plot_threshold] else: plot_threshold = 1.0 array = array[
np.argsort(array[:, 1])
numpy.argsort
import math import os from pathlib import Path from typing import Dict, Optional, Tuple, Union import librosa import matplotlib.pyplot as plt import numpy as np import pandas as pd # import pandas as pd import pytorch_lightning as pl import segmentation_models_pytorch as smp import torch import torch.nn.functional as F import torchvision import yaml from omegaconf import DictConfig, OmegaConf from src.dataset.datamodule import IMG_MEAN, IMG_STD, get_input_size_wo_pad, show_stft from src.dataset.dataset import WaveformDataset from src.postprocess.visualize import plot_rec class LitModel(pl.LightningModule): def __init__( self, conf: DictConfig, dataset_len: int = 72899, logger_name="tensorboard" ) -> None: super().__init__() self.save_hyperparameters() # type: ignore # self.hparams = conf # type: ignore[misc] self.conf = conf self.dataset_len = dataset_len self.logger_name = logger_name print("\t >>do segmentation") self.num_inchannels = len(self.conf.stft_targets) * 3 self.classes_num = self.num_inchannels smp_params = OmegaConf.to_container(conf.model.smp_params) smp_params["classes"] = self.classes_num smp_arch = smp_params.pop("arch_name") if smp_arch == "unet": smp_func = smp.Unet elif smp_arch == "unetpp": smp_func = smp.UnetPlusPlus elif smp_arch == "manet": smp_func = smp.MAnet elif smp_arch == "deeplabv3": smp_func = smp.DeepLabV3 elif smp_arch == "deeplabv3p": smp_func = smp.DeepLabV3Plus self.model = smp_func(**smp_params) # self.model = nn.Sequential(smp_func(**smp_params),) if self.num_inchannels != 3: patch_first_conv(self.model, in_channels=self.num_inchannels) if self.conf.model.channels_last: # Need to be done once, after model initialization (or load) self.model = self.model.to(memory_format=torch.channels_last) if self.conf.model.loss == "mse": self.criterion = torch.nn.MSELoss(reduction="none") else: raise NotImplementedError self.loss_ch = ( len(self.conf.stft_targets) * 1 if self.conf.train_energy_only else len(self.conf.stft_targets) * 3 ) if self.conf.model.metrics == "mse": self.metrics = pl.metrics.MeanSquaredError() else: raise NotImplementedError if self.conf.model.last_act == "sigmoid": self.activation = torch.nn.Sigmoid() elif self.conf.model.last_act == "tanh": self.activation = torch.nn.Tanh() elif self.conf.model.last_act == "identity": self.activation = torch.nn.Identity() else: raise NotImplementedError self.val_sync_dist = self.conf.trainer.gpus > 1 self.is_debug = self.conf.is_debug self.h_, self.w_ = get_input_size_wo_pad( n_fft=self.conf.stft_params.n_fft, input_width=self.conf.input_width ) def on_fit_start(self): self._set_image_normalization() def on_test_start(self): self._set_image_normalization() def forward(self, x): x = self.model(x) return x def _remove_pad( self, inputs: torch.Tensor, pred: torch.Tensor, targets: torch.Tensor ) -> Tuple[torch.Tensor, ...]: return ( inputs[:, :, : self.h_, : self.w_], pred[:, :, : self.h_, : self.w_], targets[:, :, : self.h_, : self.w_], ) def training_step(self, batch, batch_idx): inputs = batch["image"] if self.conf.model.channels_last: # Need to be done for every input inputs = inputs.to(memory_format=torch.channels_last) targets = batch["target_image"] outputs = self.model(inputs) pred = self.activation(outputs) # if self.conf.model.last_act == "tanh": # pred = pred * 2.0 inputs, pred, targets = self._remove_pad( inputs=inputs, pred=pred, targets=targets ) if self.conf.gt_as_mask: loss = self.criterion( pred, targets - (inputs * self._img_std + self._img_mean) )[:, : self.loss_ch].mean() else: loss = self.criterion(pred, targets - inputs)[:, : self.loss_ch].mean() if self.logger_name == "tensorboard": self.log("train_loss", loss) elif self.logger_name == "neptune": self.logger.experiment["loss/train"].log(loss) return loss def validation_step(self, batch, batch_idx): inputs = batch["image"] if self.conf.model.channels_last: # Need to be done for every input inputs = inputs.to(memory_format=torch.channels_last) targets = batch["target_image"] outputs = self.model(inputs) pred = self.activation(outputs) # if self.conf.model.last_act == "tanh": # pred = pred * 2.0 inputs, pred, targets = self._remove_pad( inputs=inputs, pred=pred, targets=targets ) if self.conf.gt_as_mask: loss = self.criterion( pred, targets - (inputs * self._img_std + self._img_mean) )[:, : self.loss_ch].mean() pred = pred + (inputs * self._img_std + self._img_mean) else: loss = self.criterion(pred, targets - inputs)[:, : self.loss_ch].mean() pred = pred + inputs # only for checkpoint call back self.log("val_loss", loss) sequence_results = self.convert_img_pred_to_sequence(pred=pred, batch=batch) abs_error = sequence_results.pop("abs_error") metrics = np.mean(abs_error) if batch_idx in [0, 2]: pred = torch.clamp(pred, 0.0, 1.0) epoch = ( self.trainer.global_step * self.conf.batch_size ) // self.dataset_len num_ = 3 ba_ind = 0 imgs = { "inputs": inputs[:num_].cpu().numpy().transpose((0, 2, 3, 1)), "pred": pred[:num_].detach().cpu().numpy().transpose((0, 2, 3, 1)), "targets": targets[:num_] .detach() .cpu() .numpy() .transpose((0, 2, 3, 1)), } # === PLOT === nrows = 3 ncols = 3 ch_ = 0 fig, axes = plt.subplots( nrows=nrows, ncols=ncols, figsize=(12, 6), sharey=True, sharex=True, ) fig.suptitle( "_".join( [ str(batch["phone"][ba_ind]), str(batch["millisSinceGpsEpoch"][ba_ind].cpu().numpy()), str(batch["phone_time"][ba_ind].cpu().numpy()), "epoch", str(epoch), ] ) ) D_mats = {} for j, (key, img) in enumerate(imgs.items()): gt_as_mask = (key in ["pred", "targets"]) and self.conf.gt_as_mask abs_, cos_, sin_ = WaveformDataset.handle_stft_normalize( img=img.copy(), cnum=len(self.conf.stft_targets), is_encode=False, img_std=self._img_std.cpu().numpy().transpose((0, 2, 3, 1)), img_mean=self._img_mean.cpu().numpy().transpose((0, 2, 3, 1)), gt_as_mask=gt_as_mask, ) show_stft( conf=self.conf, D_abs=abs_[ba_ind][..., ch_], D_cos=cos_[ba_ind][..., ch_], D_sin=sin_[ba_ind][..., ch_], ax=axes, stft_ind=j, stft_name=key, ) D_mats[key] = { "D_abs": abs_[ba_ind][..., ch_], "D_theta": np.arctan2( sin_[ba_ind][..., ch_], cos_[ba_ind][..., ch_] ), } if self.logger_name == "tensorboard": self.logger.experiment.add_figure( "prediction_fig", fig, global_step=self.trainer.global_step, ) elif self.logger_name == "neptune": self.logger.experiment[f"val/pred_{batch_idx}_{ba_ind}"].log(fig) plt.close() x_gts = batch[self.conf.stft_targets[0].replace("_diff", "_gt_diff")] x = batch[self.conf.stft_targets[0]] plot_rec( x=x[ba_ind].cpu().numpy(), x_gt=x_gts[ba_ind].cpu().numpy(), D_abs=D_mats["pred"]["D_abs"], D_theta=D_mats["pred"]["D_theta"], D_abs_gt=D_mats["targets"]["D_abs"], D_theta_gt=D_mats["targets"]["D_theta"], length=x_gts[ba_ind].shape[0], is_db=self.conf.stft_params.is_db, hop_length=self.conf.stft_params.hop_length, win_length=self.conf.stft_params.win_length, logger=self.logger, logger_name=self.logger_name, global_step=self.trainer.global_step, log_name=f"val/pred_{batch_idx}_{ba_ind}_line", target_name=self.conf.stft_targets[0], ) return {"loss": loss, "metrics": metrics, "sequence_results": sequence_results} def validation_epoch_end(self, validation_step_outputs): keys = list(validation_step_outputs[0].keys()) met_dict = {key: [] for key in keys} for pred in validation_step_outputs: for key in keys: met_dict[key].append(pred[key]) sequence_results = {key: [] for key in met_dict["sequence_results"][0].keys()} for key in keys: if key == "sequence_results": for seq_res in met_dict[key]: for seq_key, values in seq_res.items(): if not isinstance(values, np.ndarray): values = np.array(values) sequence_results[seq_key].append(values) elif isinstance(met_dict[key][0], torch.Tensor): met_dict[key] = torch.mean(torch.stack(met_dict[key])).cpu().numpy() else: met_dict[key] = np.mean(
np.stack(met_dict[key])
numpy.stack
#!/usr/bin/env python """ faps -- Frontend for Automated Adsorption Analysis of Porous Solids. aka shpes -- Sorption analysis with a High throughput Python frontend to Examine binding in Structures Strucutre adsorption property analysis for high throughput processing. Run as a script, faps will automatically run complete analysis on a structure. Sensible defaults are implemented, but calculations can be easily customised. Faps also provides classes and methods for adapting the simulation or only doing select parts. """ # Turn on keyword expansion to get revision numbers in version strings # in .hg/hgrc put # [extensions] # keyword = # # [keyword] # faps.py = # # [keywordmaps] # Revision = {rev} try: __version_info__ = (1, 5, 0, int("$Revision$".strip("$Revision: "))) except ValueError: __version_info__ = (1, 5, 0, 0) __version__ = "%i.%i.%i.%i" % __version_info__ import bz2 import code try: import configparser except ImportError: import ConfigParser as configparser import gzip import mmap import os import pickle import re import shlex import shutil import subprocess import sys import tarfile import textwrap import time from copy import copy from glob import glob from itertools import count from logging import warning, debug, error, info, critical from math import ceil, log from os import path import numpy as np from numpy import pi, cos, sin, sqrt, arccos, arctan2 from numpy import array, identity, dot, cross from numpy.linalg import norm from binding_sites.absl import calculate_binding_sites from config import Options from elements import WEIGHT, ATOMIC_NUMBER, UFF, VASP_PSEUDO_PREF from elements import CCDC_BOND_ORDERS, GULP_BOND_ORDERS, OB_BOND_ORDERS, METALS from elements import COVALENT_RADII, UFF_FULL, QEQ_PARAMS from eos import peng_robinson from job_handler import JobHandler from logo import LOGO # Global constants DEG2RAD = pi / 180.0 BOHR2ANG = 0.52917720859 EV2KCAL = 23.060542301389 NAVOGADRO = 6.02214129E23 INFINITY = float('inf') KCAL_TO_KJ = 4.1868 # Steam tables from openbabel FASTMC_DEFAULT_GRID_SPACING = 0.1 # ID values for system state NOT_RUN = 0 RUNNING = 1 FINISHED = 2 UPDATED = 3 SKIPPED = -1 NOT_SUBMITTED = -2 # Possible folder names; need these so that similar_ones_with_underscores are # not globbed FOLDER_SUFFIXES = ['gulp', 'gulp_opt', 'gulp_fit', 'siesta', 'vasp', 'egulp', 'repeat', 'fastmc', 'properties', 'absl', 'gromacs'] class PyNiss(object): """ PyNiss -- Negotiation of Intermediate System States A single property calculation for one structure. Instance with a set of options, then run the job_dispatcher() to begin the calculation. The calculation will pickle itself, or can be pickled at any time, by calling dump_state(). """ def __init__(self, options): """ Instance an empty structure in the calculation; The dispatcher should be called to fill it up with data, as needed. """ self.options = options self.structure = Structure(options.get('job_name')) self.state = {'init': (NOT_RUN, False), 'ff_opt': (NOT_RUN, False), 'dft': (NOT_RUN, False), 'esp': (NOT_RUN, False), 'charges': (NOT_RUN, False), 'properties': (NOT_RUN, False), 'absl': {}, 'gcmc': {}} self.job_handler = JobHandler(options) def dump_state(self): """Write the .niss file holding the current system state.""" job_name = self.options.get('job_name') info("Writing state file, %s.niss." % job_name) os.chdir(self.options.get('job_dir')) # Don't save the job handler in case it changes save_handler = self.job_handler self.job_handler = None my_niss = open(job_name + ".niss", "wb") pickle.dump(self, my_niss) my_niss.close() # put the job handler back and continue self.job_handler = save_handler def re_init(self, new_options): """Re initialize simulation (with updated options).""" if new_options.getbool('update_opts'): info("Using new options.") self.options = new_options self.structure.name = new_options.get('job_name') else: # Just update command line stuff info("Using old options with new command line arguments.") self.options.args = new_options.args self.options.options = new_options.options self.options.cmdopts = new_options.cmdopts self.structure.name = new_options.get('job_name') self.status(initial=True) def job_dispatcher(self): """ Run parts explicity specified on the command line or do the next step in an automated run. Drop to interactive mode, if requested. """ # In case options have changed, re-intitialize self.job_handler = JobHandler(self.options) if 'status' in self.options.args: self.status(initial=True) if self.options.getbool('interactive'): code_locals = locals() code_locals.update(globals()) console = code.InteractiveConsole(code_locals) console.push('import rlcompleter, readline') console.push('readline.parse_and_bind("tab: complete")') banner = ("((-----------------------------------------------))\n" "(( Interactive faps mode ))\n" "(( ===================== ))\n" "(( ))\n" "(( WARNING: mode is designed for devs and ))\n" "(( experts only! ))\n" "(( Current simulation is accessed as 'self' and ))\n" "(( associated methods. Type 'dir()' to see the ))\n" "(( methods in the local namespace and 'help(x)' ))\n" "(( for help on any object. ))\n" "(( Use 'self.dump_state()' to save any changes. ))\n" "((-----------------------------------------------))") console.interact(banner=banner) if self.options.getbool('import'): info("Importing results from a previous simulation") self.import_old() self.dump_state() if self.state['init'][0] == NOT_RUN: info("Reading in structure") # No structure, should get one self.structure.from_file( self.options.get('job_name'), self.options.get('initial_structure_format'), self.options) if self.options.getbool('order_atom_types'): info("Forcing atom re-ordering by types") self.structure.order_by_types() self.state['init'] = (UPDATED, False) self.dump_state() self.step_force_field() self.step_dft() self.step_charges() if self.options.getbool('qeq_fit'): if not 'qeq_fit' in self.state and self.state['charges'][0] == UPDATED: info("QEq parameter fit requested") self.run_qeq_gulp(fitting=True) self.dump_state() self.step_properties() self.step_gcmc() self.step_absl() self.send_to_database() self.post_summary() def status(self, initial=False): """Print the current status to the terminal.""" valid_states = {NOT_RUN: 'Not run', RUNNING: 'Running', FINISHED: 'Finished', UPDATED: 'Processed', SKIPPED: 'Skipped', NOT_SUBMITTED: 'Not submitted'} if initial: info("Previous system state reported from .niss file " "(running jobs may have already finished):") else: info("Current system status:") for step, state in self.state.items(): if step == 'gcmc': if not state: info(" * State of GCMC: Not run") else: for point, job in state.items(): if job[0] is RUNNING: info(" * GCMC %s: Running, jobid: %s" % (point, job[1])) else: info(" * GCMC %s: %s" % (point, valid_states[job[0]])) elif step == 'absl': if not state: info(" * State of ABSL: Not run") else: # ABSL used to be multiple jobs, still treat jobid as list for point, jobs in state.items(): if jobs[0] is RUNNING: info(" * ABSL %s: Running, jobids: %s" % (point, ",".join('%s' % x for x in jobs[1]))) else: info(" * ABSL %s: %s" % (point, valid_states[jobs[0]])) elif state[0] is RUNNING: info(" * State of %s: Running, jobid: %s" % (step, state[1])) else: info(" * State of %s: %s" % (step, valid_states[state[0]])) def send_to_database(self): """If using a database, store the results""" # we can skip if not using a database if not 'sql' in self.options.get('initial_structure_format'): return # extract the database and structure names db_params = self.options.get('job_name').split('.') # import this here so sqlalchemy is not required generally from backend.sql import AlchemyBackend database = AlchemyBackend(db_params[0]) info("Storing results in database") database.store_results(db_params[1], int(db_params[2]), self.structure) debug("Database finished") def post_summary(self): """Summarise any results for GCMC, properties...""" # Also includes excess calculation if void volume calculated # N = pV/RT all_csvs = {} R_GAS = 8.3144621E25 / NAVOGADRO # A^3 bar K-1 molecule job_name = self.options.get('job_name') info("Summary of GCMC results") info("======= ======= ======= ======= =======") nguests = len(self.structure.guests) for idx, guest in enumerate(self.structure.guests): # Determine whether we can calculate the excess for # any different probes void_volume = self.structure.sub_property('void_volume') he_excess, guest_excess = "", "" if 1.0 in void_volume: he_excess = 'He-xs-molc/uc,He-xs-mmol/g,He-xs-v/v,He-xs-wt%,' if hasattr(guest, 'probe_radius'): if guest.probe_radius != 1.0 and guest.probe_radius in void_volume: guest_excess = 'xs-molc/uc,xs-mmol/g,xs-v/v,xs-wt%,' if hasattr(guest, 'c_v') and guest.c_v: #TODO(tdaff): Make standard in 2.0 # makes sure that c_v is there and not empty cv_header = "C_v,stdev," else: cv_header = "" if hasattr(guest, 'fugacities') and guest.fugacities: fuga_header = "f/bar," else: fuga_header = "" # Generate headers separately csv = ["#T/K,p/bar,molc/uc,mmol/g,stdev,", "v/v,stdev,wt%,stdev,hoa/kcal/mol,stdev,", guest_excess, he_excess, cv_header, fuga_header, ",".join("p(g%i)" % gidx for gidx in range(nguests)), "\n"] info(guest.name) info("---------------------------------------") info("molc/uc mmol/g vstp/v hoa T_P") info("======= ======= ======= ======= =======") for tp_point in sorted(guest.uptake): # <N>, sd, supercell uptake = guest.uptake[tp_point] uptake = [uptake[0]/uptake[2], uptake[1]/uptake[2]] hoa = guest.hoa[tp_point] # uptake in mmol/g muptake = 1000*uptake[0]/self.structure.weight muptake_stdev = 1000*uptake[1]/self.structure.weight # volumetric uptake vuptake = (guest.molar_volume*uptake[0]/ (6.023E-4*self.structure.volume)) vuptake_stdev = (guest.molar_volume*uptake[1]/ (6.023E-4*self.structure.volume)) # weight percent uptake wtpc = 100*(1 - self.structure.weight/ (self.structure.weight + uptake[0]*guest.weight)) wtpc_stdev = 100*(1 - self.structure.weight/ (self.structure.weight + uptake[1]*guest.weight)) info("%7.2f %7.2f %7.2f %7.2f %s" % ( uptake[0], muptake, vuptake, hoa[0], ("T=%s" % tp_point[0] + ''.join(['P=%s' % x for x in tp_point[1]])))) csv.append("%f,%f,%f,%f,%f,%f,%f,%f,%f,%f,%f," % ( tp_point[0], tp_point[1][idx], uptake[0], muptake, muptake_stdev, vuptake, vuptake_stdev, wtpc, wtpc_stdev, hoa[0], hoa[1])) if guest_excess: guest_void = void_volume[guest.probe_radius] n_bulk = (tp_point[1][idx]*guest_void)/(tp_point[0]*R_GAS) xs_uptake = uptake[0]-n_bulk # uptake in mmol/g muptake = 1000*xs_uptake/self.structure.weight # volumetric uptake vuptake = (guest.molar_volume*xs_uptake/ (6.023E-4*self.structure.volume)) # weight percent uptake wtpc = 100*(1 - self.structure.weight/ (self.structure.weight + xs_uptake*guest.weight)) csv.append("%f,%f,%f,%f," % ( xs_uptake, muptake, vuptake, wtpc,)) if he_excess: guest_void = void_volume[1.0] n_bulk = (tp_point[1][idx]*guest_void)/(tp_point[0]*R_GAS) xs_uptake = uptake[0]-n_bulk # uptake in mmol/g muptake = 1000*xs_uptake/self.structure.weight # volumetric uptake vuptake = (guest.molar_volume*xs_uptake/ (6.023E-4*self.structure.volume)) # weight percent uptake wtpc = 100*(1 - self.structure.weight/ (self.structure.weight + xs_uptake*guest.weight)) csv.append("%f,%f,%f,%f," % ( xs_uptake, muptake, vuptake, wtpc,)) if cv_header: csv.append("%f,%f," % (guest.c_v[tp_point])) if fuga_header: try: csv.append("%f," % (guest.fugacities[tp_point])) except KeyError: # Assume it was done without fugacity correction csv.append("%f," % tp_point[1][idx]) # list all the other guest pressures and start a new line csv.append(",".join("%f" % x for x in tp_point[1]) + "\n") csv_filename = '%s-%s.csv' % (job_name, guest.ident) csv_file = open(csv_filename, 'w') csv_file.writelines(csv) csv_file.close() all_csvs[csv_filename] = "".join(csv) info("======= ======= ======= ======= =======") info("Structure properties") # Internally calculated surface area surf_area_results = self.structure.surface_area() if surf_area_results: info("Summary of faps surface areas") info("========= ========= ========= =========") info(" radius/A total/A^2 m^2/cm^3 m^2/g") info("========= ========= ========= =========") for probe, area in surf_area_results.items(): vol_area = 1E4*area/self.structure.volume specific_area = NAVOGADRO*area/(1E20*self.structure.weight) info("%9.3f %9.2f %9.2f %9.2f" % (probe, area, vol_area, specific_area)) info("========= ========= ========= =========") # Messy, but check individual properties that might not be there # and dump them to the screen info("weight (u): %f" % self.structure.weight) if hasattr(self.structure, 'pore_diameter'): info("pores (A): %f %f %f" % self.structure.pore_diameter) channel_results = self.structure.sub_property('dimensionality') if channel_results: for probe, channels in channel_results.items(): info(("channels %.2f probe: " % probe) + " ".join("%i" % x for x in channels)) # The table is copied from above as it does some calculating surf_area_results = self.structure.sub_property('zeo_surface_area') if surf_area_results: info("Summary of zeo++ surface areas") info("========= ========= ========= =========") info(" radius/A total/A^2 m^2/cm^3 m^2/g") info("========= ========= ========= =========") for probe, area in surf_area_results.items(): vol_area = 1E4*area/self.structure.volume specific_area = NAVOGADRO*area/(1E20*self.structure.weight) info("%9.3f %9.2f %9.2f %9.2f" % (probe, area, vol_area, specific_area)) info("========= ========= ========= =========") info("volume (A^3): %f" % self.structure.volume) void_volume_results = self.structure.sub_property('void_volume') if surf_area_results: info("Summary of zeo++ void volumes") info("========= ========= ========= =========") info(" radius/A total/A^3 fraction cm^3/g") info("========= ========= ========= =========") for probe, void in void_volume_results.items(): void_fraction = void/self.structure.volume specific_area = NAVOGADRO*void/(1E24*self.structure.weight) info("%9.3f %9.2f %9.5f %9.4f" % (probe, void, void_fraction, specific_area)) info("========= ========= ========= =========") pxrd = self.structure.sub_property('pxrd') if pxrd: info("Summary of PXRD; see properties for cpi file") for probe, pattern in pxrd.items(): info("%s Powder XRD:" % probe) plot = [['|']*21] # 1000 points makes this 75 columns wide averaged = [sum(pattern[x:x+20])/20.0 for x in range(0, 1000, 20)] # make peaks horizontal first peak = max(averaged) for point in averaged: height = int(round(15*point/peak)) plot.append([' ']*(15-height) + ['|']*height + ['-']) # transpose for printing plot = zip(*plot) for line in plot: info(''.join(line)) # Email at the end so everything is in the .flog self.email(all_csvs) def email(self, csvs=None): """Send an email, if one has not already been sent.""" job_name = self.options.get('job_name') email_addresses = self.options.gettuple('email') if email_addresses: info("Emailing results to %s" % ", ".join(email_addresses)) else: # nobody to email to, why bother? return import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText # Construct an email, thanks documentation! sender = '<NAME> <<EMAIL>>' outer = MIMEMultipart() outer['Subject'] = 'Results for faps job on %s' % job_name outer['To'] = ', '.join(email_addresses) outer['From'] = sender outer.preamble = 'This is a MIME multipart message\n' # Just attach all the csv files if csvs is not None: for csv in csvs: msg = MIMEText(csvs[csv], _subtype='csv') msg.add_header('Content-Disposition', 'attachment', filename=csv) outer.attach(msg) # Include a cif file msg_cif = MIMEText("".join(self.structure.to_cif())) msg_cif.add_header('Content-Disposition', 'attachment', filename="%s.faps.cif" % job_name) outer.attach(msg_cif) # And the flog file try: flog = open("%s.flog" % job_name) msg_flog = MIMEText(flog.read()) flog.close() msg_flog.add_header('Content-Disposition', 'attachment', filename="%s.flog" % job_name) outer.attach(msg_flog) except IOError: # Error reading the file, don't care pass # Send via local SMTP server s = smtplib.SMTP('localhost') s.sendmail(sender, email_addresses, outer.as_string()) s.quit() def step_force_field(self): """Check the force field step of the calculation.""" end_after = False if 'ff_opt' not in self.state: self.state['ff_opt'] = (NOT_RUN, False) if self.state['ff_opt'][0] not in [UPDATED, SKIPPED]: if self.options.getbool('no_force_field_opt'): info("Skipping force field optimisation") self.state['ff_opt'] = (SKIPPED, False) elif self.state['ff_opt'][0] == RUNNING: job_state = self.job_handler.jobcheck(self.state['ff_opt'][1]) if not job_state: info("Queue reports force field optimisation has finished") self.state['ff_opt'] = (FINISHED, False) else: # Still running info("Force field optimisation still in progress") end_after = True if self.state['ff_opt'][0] == NOT_RUN or 'ff_opt' in self.options.args: jobid = self.run_ff_opt() sys_argv_strip('ff_opt') end_after = self.postrun(jobid) self.dump_state() if self.state['ff_opt'][0] == FINISHED: self.structure.update_pos(self.options.get('ff_opt_code'), options=self.options) self.state['ff_opt'] = (UPDATED, False) self.dump_state() # If postrun is submitted then this script is done! if end_after: terminate(0) def step_dft(self): """Check the DFT step of the calculation.""" end_after = False if self.state['dft'][0] not in [UPDATED, SKIPPED]: if self.options.getbool('no_dft'): info("Skipping DFT step completely") info("Job might fail later if you need the ESP") self.state['dft'] = (SKIPPED, False) elif self.state['dft'][0] == RUNNING: job_state = self.job_handler.jobcheck(self.state['dft'][1]) if not job_state: info("Queue reports DFT step has finished") self.state['dft'] = (FINISHED, False) else: # Still running info("DFT still in progress") end_after = True if self.state['dft'][0] == NOT_RUN or 'dft' in self.options.args: jobid = self.run_dft() sys_argv_strip('dft') end_after = self.postrun(jobid) self.dump_state() if self.state['dft'][0] == FINISHED: self.structure.update_pos(self.options.get('dft_code')) self.state['dft'] = (UPDATED, False) self.dump_state() # If postrun is submitted then this script is done! if end_after: terminate(0) def step_charges(self): """Check the charge step of the calculation.""" end_after = False if self.state['charges'][0] not in [UPDATED, SKIPPED]: if self.options.getbool('no_charges'): info("Skipping charge calculation") self.state['charges'] = (SKIPPED, False) elif self.state['charges'][0] == RUNNING: job_state = self.job_handler.jobcheck(self.state['charges'][1]) if not job_state: info("Queue reports charge calculation has finished") self.state['charges'] = (FINISHED, False) else: info("Charge calculation still running") end_after = True if self.state['charges'][0] == NOT_RUN or 'charges' in self.options.args: jobid = self.run_charges() sys_argv_strip('charges') end_after = self.postrun(jobid) self.dump_state() if self.state['charges'][0] == FINISHED: self.structure.update_charges(self.options.get('charge_method'), self.options) self.state['charges'] = (UPDATED, False) self.dump_state() # If postrun is submitted then this script is done! if end_after: terminate(0) def step_gcmc(self): """Check the GCMC step of the calculation.""" end_after = False jobids = {} postrun_ids = [] if self.options.getbool('no_gcmc'): info("Skipping GCMC simulation") return elif not self.state['gcmc'] or 'gcmc' in self.options.args: # The dictionary is empty before any runs info("Starting gcmc step") jobids = self.run_fastmc() sys_argv_strip('gcmc') self.dump_state() for tp_point, jobid in jobids.items(): if jobid is True: self.state['gcmc'][tp_point] = (FINISHED, False) elif jobid is False: self.state['gcmc'][tp_point] = (SKIPPED, False) else: info("FastMC job in queue. Jobid: %s" % jobid) self.state['gcmc'][tp_point] = (RUNNING, jobid) postrun_ids.append(jobid) # unfinished GCMCs end_after = True else: # when the loop completes write out the state self.dump_state() for tp_point in self.state['gcmc']: tp_state = self.state['gcmc'][tp_point] if tp_state[0] == RUNNING: new_state = self.job_handler.jobcheck(tp_state[1]) if not new_state: info("Queue reports GCMC %s finished" % (tp_point,)) # need to know we have finished to update below tp_state = (FINISHED, False) self.state['gcmc'][tp_point] = tp_state self.dump_state() else: info("GCMC %s still running" % (tp_point,)) # unfinished GCMC so exit later end_after = True # any states that need to be updated should have been done by now if tp_state[0] == FINISHED: startdir = os.getcwd() # wooki seems slow to copy output files back # so we give them a few chances to appear max_attempts = 6 for attempt_count in range(max_attempts): time.sleep(attempt_count) try: self.structure.update_gcmc(tp_point, self.options) self.state['gcmc'][tp_point] = (UPDATED, False) self.dump_state() break except IOError: os.chdir(startdir) else: error('OUTPUT file never appeared') if postrun_ids: self.postrun(postrun_ids) if end_after: info("GCMC run has not finished completely") terminate(0) def step_properties(self): """Run the properties calculations if required.""" if self.state['properties'][0] not in [UPDATED, SKIPPED]: if self.options.getbool('no_properties'): info("Skipping all properties calculations") self.state['properties'] = (SKIPPED, False) if self.state['properties'][0] == NOT_RUN or 'properties' in self.options.args: self.calculate_properties() self.state['properties'] = (UPDATED, False) self.dump_state() def step_absl(self): """Check the binding site step of the calculation.""" end_after = False jobids = {} postrun_ids = [] # check for old simulations with no absl state # TODO(tdaff): remove eventually if 'absl' not in self.state: self.state['absl'] = {} if self.options.getbool('no_absl'): info("Skipping ABSL calculation") return elif self.options.getbool('no_gcmc'): info("no_gcmc requested, can't do ABSL, skipping") return elif not self.options.getbool('mc_probability_plot'): info("No probability plot; Skipping ABSL calculation") return elif not self.options.getbool('find_maxima'): info("No TABASCO maxima; Skipping ABSL calculation") return elif not self.state['absl'] or 'absl' in self.options.args: # The dictionary is empty before any runs info("Starting absl step") jobids = self.run_absl() sys_argv_strip('absl') self.dump_state() for tp_point, jobid in jobids.items(): if set(jobid) == set([True]): self.state['absl'][tp_point] = (FINISHED, False) elif set(jobid) == set([False]): self.state['absl'][tp_point] = (SKIPPED, False) else: info("ABSL job in queue. Jobid: %s" % jobid) self.state['absl'][tp_point] = (RUNNING, jobid) postrun_ids.extend(jobid) # unfinished ABSL calculations end_after = True else: # when the loop completes write out the state self.dump_state() for tp_point in self.state['absl']: tp_state = self.state['absl'][tp_point] if tp_state[0] == RUNNING: new_state = set([self.job_handler.jobcheck(job) for job in tp_state[1]]) if new_state == set([False]): info("Queue reports ABSL %s finished" % (tp_point,)) # need to know we have finished to update below tp_state = (FINISHED, False) self.state['absl'][tp_point] = tp_state self.dump_state() else: info("ABSL %s still running" % (tp_point,)) # unfinished ABSL so exit later end_after = True # any states that need to be updated should have been done by now if tp_state[0] == FINISHED: startdir = os.getcwd() # wooki seems slow to copy output files back # so we give them a few chances to appear max_attempts = 6 for attempt_count in range(max_attempts): time.sleep(attempt_count) try: self.structure.update_absl(tp_point, self.options) self.state['absl'][tp_point] = (UPDATED, False) self.dump_state() break except IOError: os.chdir(startdir) else: #TODO(tdaff): does this matter here? error('ABSL output never appeared') if postrun_ids: self.postrun(postrun_ids) if end_after: info("ABSL run has not finished completely") terminate(0) def import_old(self): """Try and import any data from previous stopped simulation.""" job_name = self.options.get('job_name') job_dir = self.options.get('job_dir') try: self.structure.from_file( job_name, self.options.get('initial_structure_format'), self.options) warning("Ensure that order_atom_types is on for pre-1.4 data") if self.options.getbool('order_atom_types'): info("Forcing atom re-ordering by types") self.structure.order_by_types() self.state['init'] = (UPDATED, False) except IOError: info("No initial structure found to import") try: self.structure.update_pos(self.options.get('ff_opt_code')) self.state['ff_opt'] = (UPDATED, False) except IOError: info("No force field optimised structure found to import") try: self.structure.update_pos(self.options.get('dft_code')) self.state['dft'] = (UPDATED, False) except IOError: info("No optimized structure found to import") try: self.structure.update_charges(self.options.get('charge_method'), self.options) self.state['charges'] = (UPDATED, False) except IOError: info("No charges found to import") # Need to generate supercell here on import so that it is set, and # is based on the cell from dft, if changed self.structure.gen_supercell(self.options) guests = [Guest(x) for x in self.options.gettuple('guests')] if not same_guests(self.structure.guests, guests): info("Replacing old guests with %s" % " ".join(guest.ident for guest in guests)) self.structure.guests = guests else: # use existing guests that may have data debug("Retaining previous guests") guests = self.structure.guests temps = self.options.gettuple('mc_temperature', float) presses = self.options.gettuple('mc_pressure', float) indivs = self.options.gettuple('mc_state_points', float) for tp_point in state_points(temps, presses, indivs, len(guests)): try: self.structure.update_gcmc(tp_point, self.options) self.state['gcmc'][tp_point] = (UPDATED, False) except (IOError, OSError): info("GCMC point %s not found" % str(tp_point)) # Reset directory at end os.chdir(job_dir) def postrun(self, jobid): """Determine if we need the job handler to post submit itself.""" # update the job tracker if jobid is not False and jobid is not True: if self.options.getbool('run_all'): debug('Submitting postrun script') os.chdir(self.options.get('job_dir')) self.job_handler.postrun(jobid) return True else: debug('Postrun script not submitted') return False else: return False def run_ff_opt(self): """Prepare the system and run the selected force field optimisation.""" ff_opt_code = self.options.get('ff_opt_code') info("Checking connectivity/types") if self.structure.check_connectivity(): if self.options.getbool('infer_types_from_bonds'): self.structure.gen_types_from_bonds() else: warning("No types; try with infer_types_from_bonds") else: info("Bonds and types, provided") info("Running a %s calculation" % ff_opt_code) if ff_opt_code == 'gromacs': jobid = self.run_optimise_gromacs() elif ff_opt_code == 'gulp': jobid = self.run_optimise_gulp() else: critical("Unknown force field method: %s" % ff_opt_code) terminate(91) if jobid is True: # job run and finished self.state['ff_opt'] = (FINISHED, False) else: info("Running %s job in queue. Jobid: %s" % (ff_opt_code, jobid)) self.state['ff_opt'] = (RUNNING, jobid) return jobid def run_dft(self): """Select correct method for running the dft/optim.""" dft_code = self.options.get('dft_code') info("Running a %s calculation" % dft_code) if dft_code == 'vasp': jobid = self.run_vasp() elif dft_code == 'siesta': jobid = self.run_siesta() else: critical("Unknown dft method: %s" % dft_code) terminate(92) # update the job tracker #if jobid is False: # self.state['dft'] = (NOT_SUBMITTED, False) # submission skipped if jobid is True: # job run and finished self.state['dft'] = (FINISHED, False) else: info("Running %s job in queue. Jobid: %s" % (dft_code, jobid)) self.state['dft'] = (RUNNING, jobid) return jobid def run_charges(self): """Select correct charge processing methods.""" chg_method = self.options.get('charge_method') info("Calculating charges with %s" % chg_method) if chg_method == 'repeat': # Get ESP self.esp_to_cube() jobid = self.run_repeat() elif chg_method == 'gulp': jobid = self.run_qeq_gulp() elif chg_method == 'egulp': jobid = self.run_qeq_egulp() else: critical("Unknown charge calculation method: %s" % chg_method) terminate(93) # update the job tracker if jobid is True: # job run and finished self.state['charges'] = (FINISHED, False) else: info("Running %s job in queue. Jobid: %s" % (chg_method, jobid)) self.state['charges'] = (RUNNING, jobid) return jobid ## Methods for specific codes start here def run_optimise_gromacs(self): """Run GROMACS to do a UFF optimisation.""" job_name = self.options.get('job_name') optim_code = self.options.get('ff_opt_code') g_verbose = self.options.getbool('gromacs_verbose') # Run in a subdirectory optim_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s' % (job_name, optim_code)) mkdirs(optim_dir) os.chdir(optim_dir) debug("Running in %s" % optim_dir) metal_geom = self.options.get('gromacs_metal_geometry') gro_file, top_file, itp_file = self.structure.to_gromacs(metal_geom) # We use default names so we don't have to specify # anything extra on the command line filetemp = open('conf.gro', 'w') filetemp.writelines(gro_file) filetemp.close() filetemp = open('topol.top', 'w') filetemp.writelines(top_file) filetemp.close() filetemp = open('topol.itp', 'w') filetemp.writelines(itp_file) filetemp.close() filetemp = open('grompp.mdp', 'w') filetemp.writelines(mk_gromacs_mdp(self.structure.cell, mode='bfgs', verbose=g_verbose)) filetemp.close() filetemp = open('pcoupl.mdp', 'w') filetemp.writelines(mk_gromacs_mdp(self.structure.cell, mode='pcoupl', verbose=g_verbose)) filetemp.close() # prepare for simulation! # Codes we need; comment out the trjconv if being quiet grompp = self.options.get('grompp_exe') mdrun = self.options.get('mdrun_exe') if g_verbose: trjconv = "echo 0 | %s" % self.options.get('trjconv_exe') else: trjconv = "#echo 0 | %s" % self.options.get('trjconv_exe') # everything runs in a script -- to many steps otherwise # only make the g96 file at the end so we can tell if it breaks gromacs_faps = open('gromacs_faps', 'w') gromacs_faps.writelines([ "#!/bin/bash\n\n", "export OMP_NUM_THREADS=1\n\n", "# preprocess first bfgs\n", "%s -maxwarn 2 &>> g.log\n\n" % grompp, "# bfgs step\n", "%s -nt 1 &>> g.log\n\n" % mdrun, "%s -o traject1.gro -f traj.trr &>> g.log\n" % trjconv, "# overwrite with pcoupl step\n", "%s -maxwarn 2 -t traj.trr -f pcoupl.mdp &>> g.log\n\n" % grompp, "# pcoupl step\n", "%s -nt 1 &>> g.log\n\n" % mdrun, "%s -o traject2.gro -f traj.trr &>> g.log\n" % trjconv, "# overwrite with final bfgs\n", "%s -maxwarn 2 -t traj.trr &>> g.log\n\n" % grompp, "# generate final structure\n", "%s -nt 1 -c confout.g96 &>> g.log\n" % mdrun, "%s -o traject3.gro -f traj.trr &>> g.log\n" % trjconv]) gromacs_faps.close() os.chmod('gromacs_faps', 0o755) # Leave the run to the shell info("Generated gromcas inputs and run script") if self.options.getbool('no_submit'): info("GROMACS input files generated; skipping job submission") jobid = False else: jobid = self.job_handler.submit(optim_code, self.options) # Tidy up at the end os.chdir(self.options.get('job_dir')) return jobid def run_optimise_gulp(self): """Run GULP to do a UFF optimisation.""" job_name = self.options.get('job_name') optim_code = 'gulp' terse = self.options.getbool('gulp_terse') # put an opt in path to distinguish from the charge calculation optim_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s_opt' % (job_name, optim_code)) mkdirs(optim_dir) os.chdir(optim_dir) debug("Running in %s" % optim_dir) filetemp = open('%s.gin' % job_name, 'w') filetemp.writelines(self.structure.to_gulp(optimise=True, terse=terse)) filetemp.close() if 'GULP_LIB' not in os.environ: warning("gulp library directory not set; optimisation might fail") if self.options.getbool('no_submit'): info("GULP input files generated; skipping job submission") jobid = False else: jobid = self.job_handler.submit(optim_code, self.options, input_file='%s.gin' % job_name) # Tidy up at the end os.chdir(self.options.get('job_dir')) return jobid def run_vasp(self): """Make inputs and run vasp job.""" job_name = self.options.get('job_name') nproc = self.options.getint('vasp_ncpu') # Keep things tidy in a subdirectory dft_code = self.options.get('dft_code') vasp_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s' % (job_name, dft_code)) mkdirs(vasp_dir) os.chdir(vasp_dir) debug("Running in %s" % vasp_dir) info("Running on %i nodes" % nproc) filetemp = open("POSCAR", "w") filetemp.writelines(self.structure.to_vasp(self.options)) filetemp.close() esp_grid = self.esp_grid #TODO(jlo): self.structure.types gives you each type # e.g ['C', 'C', 'O'... ] # self.options.get('...') to get charge or something set a default # in default.ini # calcualte nelect filetemp = open("INCAR", "w") if self.esp_reduced: # Let VASP do the grid if we don't need to filetemp.writelines(mk_incar(self.options, esp_grid=esp_grid)) else: filetemp.writelines(mk_incar(self.options)) filetemp.close() filetemp = open("KPOINTS", "w") filetemp.writelines(mk_kpoints(self.options.gettuple('kpoints', int))) filetemp.close() potcar_types = unique(self.structure.types) filetemp = open("POTCAR", "w") potcar_dir = self.options.get('potcar_dir') previous_type = "" for at_type in self.structure.types: if at_type == previous_type: continue # Try and get the preferred POTCARS debug("Using %s pseudopotential for %s" % (VASP_PSEUDO_PREF.get(at_type, at_type), at_type)) potcar_src = path.join(potcar_dir, VASP_PSEUDO_PREF.get(at_type, at_type), "POTCAR") shutil.copyfileobj(open(potcar_src), filetemp) previous_type = at_type filetemp.close() if self.options.getbool('no_submit'): info("Vasp input files generated; skipping job submission") # act as if job completed jobid = False else: self.job_handler.env(dft_code, options=self.options) jobid = self.job_handler.submit(dft_code, self.options) # Tidy up at the end and pass on job id os.chdir(self.options.get('job_dir')) return jobid def run_siesta(self): """Make siesta input and run job.""" job_name = self.options.get('job_name') nproc = self.options.getint('siesta_ncpu') # Keep things tidy in a subdirectory dft_code = self.options.get('dft_code') siesta_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s' % (job_name, dft_code)) mkdirs(siesta_dir) os.chdir(siesta_dir) debug("Running in %s" % siesta_dir) info("Running on %i nodes" % nproc) filetemp = open('%s.fdf' % job_name, 'w') filetemp.writelines(self.structure.to_siesta(self.options)) filetemp.close() psf_types = unique(self.structure.types) psf_dir = self.options.get('psf_dir') for at_type in psf_types: psf_atm = '%s.psf' % at_type psf_src = path.join(psf_dir, psf_atm) psf_dest = path.join(siesta_dir, psf_atm) try: if not path.exists(psf_atm): os.symlink(psf_src, psf_dest) # symlinks not available pre 3.2 on windows except AttributeError: shutil.copy(psf_src, siesta_dir) filetemp.close() if self.options.getbool('no_submit'): info("Siesta input files generated; skipping job submission") jobid = False else: # sharcnet does weird things for siesta self.job_handler.env(dft_code, options=self.options) jobid = self.job_handler.submit(dft_code, self.options, input_file='%s.fdf' % job_name) # Tidy up at the end os.chdir(self.options.get('job_dir')) return jobid def run_qeq_gulp(self, fitting=False): """Run GULP to calculate charge equilibration charges.""" job_name = self.options.get('job_name') qeq_code = 'gulp' if fitting: qeq_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s_fit' % (job_name, qeq_code)) else: qeq_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s' % (job_name, qeq_code)) mkdirs(qeq_dir) os.chdir(qeq_dir) debug("Running in %s" % qeq_dir) qeq_dict = parse_qeq_params(self.options.gettuple('qeq_parameters')) filetemp = open('%s.gin' % job_name, 'w') filetemp.writelines(self.structure.to_gulp(qeq_fit=fitting, qeq_dict=qeq_dict)) filetemp.close() if self.options.getbool('no_submit'): info("GULP input files generated; skipping job submission") jobid = False elif fitting: jobid = self.job_handler.submit(qeq_code, self.options, input_file='%s.gin' % job_name) info("Running GULP fitting job in queue. Jobid: %s" % jobid) self.state['qeq_fit'] = (RUNNING, jobid) else: jobid = self.job_handler.submit(qeq_code, self.options, input_file='%s.gin' % job_name) # Tidy up at the end os.chdir(self.options.get('job_dir')) return jobid def run_qeq_egulp(self): """Run EGULP to calculate charge equilibration charges.""" job_name = self.options.get('job_name') qeq_code = 'egulp' qeq_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s' % (job_name, qeq_code)) typed_atoms = self.options.getbool('egulp_typed_atoms') mkdirs(qeq_dir) os.chdir(qeq_dir) debug("Running in %s" % qeq_dir) filetemp = open('%s.geo' % job_name, 'w') filetemp.writelines(self.structure.to_egulp(typed_atoms)) filetemp.close() # EGULP defaults to GULP parameters if not specified egulp_parameters = self.options.gettuple('qeq_parameters') if 'mepo' in egulp_parameters: from parameters import mepo_qeq info("Using MEPO-QEq base parameters") egulp_parameters = [x for x in egulp_parameters if x != 'mepo'] for element, parameters in mepo_qeq.items(): # Put MEPO parameters at the beginning so they can be # overridden plist = [element, parameters[0], parameters[1]] egulp_parameters = plist + egulp_parameters if not egulp_parameters: # parameters are mandatory in new egulp egulp_parameters = ('H', QEQ_PARAMS['H'][0], QEQ_PARAMS['H'][1]) else: info("Custom EGULP parameters selected") filetemp = open('%s.param' % job_name, 'w') filetemp.writelines(mk_egulp_params(egulp_parameters)) filetemp.close() filetemp = open('%s.ini' % job_name, 'w') filetemp.writelines(mk_egulp_ini(self.options)) filetemp.close() egulp_args = ['%s.geo' % job_name, '%s.param' % job_name, '%s.ini' % job_name] if self.options.getbool('no_submit'): info("EGULP input files generated; skipping job submission") jobid = False else: jobid = self.job_handler.submit(qeq_code, self.options, input_args=egulp_args) # Tidy up at the end os.chdir(self.options.get('job_dir')) return jobid def esp_to_cube(self): """Make the cube for repeat input.""" job_name = self.options.get('job_name') # No case where the esp source will be different from the dft code esp_src = self.options.get('dft_code') repeat_dir = path.join(self.options.get('job_dir'), 'faps_%s_repeat' % job_name) mkdirs(repeat_dir) src_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s' % (job_name, esp_src)) os.chdir(src_dir) if esp_src == 'vasp': esp_to_cube_args = shlex.split(self.options.get('vasp_to_cube')) info("Converting vasp esp to cube, this might take a minute...") try: fix_vasp_wrapped_types('LOCPOT') except IOError: error("Couldn't find the LOCPOT file; did VASP fail?") submit = subprocess.Popen(esp_to_cube_args) submit.wait() # Cube should have job_name, but can get truncated; # therefore we try to look for it first cube_file = glob('*.cube') if len(cube_file) == 1: cube_file = cube_file[0] elif len(cube_file) > 1: cube_file = cube_file[0] warning("More or than one .cube found; using %s" % cube_file) else: error("No cube files found; check vasp_to_cube output") # Move it to the repeat directory and give a proper name move_and_overwrite(cube_file, path.join(repeat_dir, job_name + '.cube')) unneeded_files = self.options.gettuple('vasp_delete_files') remove_files(unneeded_files) keep_files = self.options.gettuple('vasp_compress_files') compress_files(keep_files) elif esp_src == 'siesta': esp_to_cube_args = shlex.split(self.options.get('siesta_to_cube')) esp_grid = self.esp_grid info("Generating ESP grid of %ix%ix%i" % esp_grid) siesta_to_cube_input = [ "%s\n" % job_name, "%f %f %f\n" % (0.0, 0.0, 0.0), "%i %i %i\n" % esp_grid] info("Converting siesta esp to cube, this might take a minute...") submit = subprocess.Popen(esp_to_cube_args, stdin=subprocess.PIPE) submit.communicate(input=''.join(siesta_to_cube_input)) move_and_overwrite(job_name + '.cube', repeat_dir) unneeded_files = self.options.gettuple('siesta_delete_files') remove_files(unneeded_files) keep_files = self.options.gettuple('siesta_compress_files') compress_files(keep_files) os.chdir(self.options.get('job_dir')) def run_repeat(self): """Submit the repeat calc to the queue.""" job_name = self.options.get('job_name') charge_code = self.options.get('charge_method') repeat_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s' % (job_name, charge_code)) mkdirs(repeat_dir) os.chdir(repeat_dir) if self.options.getbool('symmetry'): mk_repeat(cube_name=job_name + '.cube', symmetry=True) mk_connectivity_ff(self.structure.symmetry_tree) else: mk_repeat(cube_name=job_name + '.cube', symmetry=False) if self.options.getbool('no_submit'): info("REPEAT input files generated; skipping job submission") jobid = False else: jobid = self.job_handler.submit(charge_code, self.options) os.chdir(self.options.get('job_dir')) return jobid def run_fastmc(self): """Submit a fastmc job to the queue.""" job_name = self.options.get('job_name') mc_code = self.options.get('mc_code') # Set the guests before generating the files # Load here as options may change in each run # and before changing directory, or it will not find guests.lib guests = [Guest(x) for x in self.options.gettuple('guests')] if not same_guests(self.structure.guests, guests): info("Replacing old guests with %s" % " ".join(guest.ident for guest in guests)) self.structure.guests = guests else: # use existing guests that may have data debug("Retaining previous guests") guests = self.structure.guests gcmc_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s' % (job_name, mc_code)) mkdirs(gcmc_dir) os.chdir(gcmc_dir) config, field = self.structure.to_config_field(self.options, fastmc=True) filetemp = open("CONFIG", "w") filetemp.writelines(config) filetemp.close() filetemp = open("FIELD", "w") filetemp.writelines(field) filetemp.close() temps = self.options.gettuple('mc_temperature', float) presses = self.options.gettuple('mc_pressure', float) indivs = self.options.gettuple('mc_state_points', float) jobids = {} for tp_point in state_points(temps, presses, indivs, len(guests)): temp = tp_point[0] press = tp_point[1] info("Running GCMC: T=%.1f " % temp + " ".join(["P=%.2f" % x for x in press])) tp_path = format_tp_path(tp_point) mkdirs(tp_path) os.chdir(tp_path) try_symlink(path.join('..', 'CONFIG'), 'CONFIG') try_symlink(path.join('..', 'FIELD'), 'FIELD') filetemp = open("CONTROL", "w") # Calculate fugacities for the input if required if self.options.get('equation_of_state').lower() == 'peng-robinson': info("Using Peng-Robinson EOS gas fugacities") ideal = {} for guest, pressure in zip(guests, press): if not hasattr(guest, 'species'): try: guest.species = Guest(guest.ident).species except AttributeError: error("Unable to use equation of state with guest" "%s. Failure imminent." % guest.name) if not hasattr(guest, 'fugacities'): guest.fugacities = {} ideal[guest.species] = pressure # Apply the correction fugacities = peng_robinson(ideal, temp) fuga = [] for guest, pressure in zip(guests, press): info("Fugacity correction for %s: %f bar -> %f bar" % (guest.ident, pressure, fugacities[guest.species])) fuga.append(fugacities[guest.species]) guest.fugacities[tp_point] = fugacities[guest.species] # Expects single guest not in a list if len(guests) == 1: fuga = fuga[0] else: info("Using ideal gas fugacities") for guest, pressure in zip(guests, press): guest.fugacities[tp_point] = pressure fuga = press # make control with fugacities filetemp.writelines(mk_gcmc_control(temp, fuga, self.options, guests, self.structure.gcmc_supercell)) filetemp.close() if self.options.getbool('no_submit'): info("FastMC input files generated; " "skipping job submission") jobids[(temp, press)] = False else: jobid = self.job_handler.submit(mc_code, self.options) jobids[(temp, press)] = jobid os.chdir('..') os.chdir(self.options.get('job_dir')) return jobids def run_absl(self): """Submit absl jobs to the queue.""" job_name = self.options.get('job_name') guests = self.structure.guests # fun in the gcmc directories absl_dir = path.join(self.options.get('job_dir'), 'faps_%s_%s' % (job_name, 'absl')) mkdirs(absl_dir) os.chdir(absl_dir) temps = self.options.gettuple('mc_temperature', float) presses = self.options.gettuple('mc_pressure', float) indivs = self.options.gettuple('mc_state_points', float) jobids = {} for tp_point in state_points(temps, presses, indivs, len(guests)): temp = tp_point[0] press = tp_point[1] info("Running ABSL: T=%.1f " % temp + " ".join(["P=%.2f" % x for x in press])) tp_path = format_tp_path(tp_point) mkdirs(tp_path) os.chdir(tp_path) # make the dummy; dummy_guest = self.structure.guests[0] dummy_include = {dummy_guest.ident: [[[x, 0.0, 0.0] for x in range(dummy_guest.natoms)]]} with open("CONFIG", "w") as config: with open("FIELD", "w") as field: dlp_files = self.structure.to_config_field( self.options, include_guests=dummy_include, dummy=True) config.writelines(dlp_files[0]) field.writelines(dlp_files[1]) with open("CONTROL", "w") as control: control.writelines(mk_dl_poly_control(self.options, dummy=True)) # Keep track of directories so that we can run jobs at once individual_directories = ['.'] # calculate binding sites here and submit for guest in self.structure.guests: binding_sites = calculate_binding_sites(guest, tp_point, self.structure.cell) if hasattr(guest, 'binding_sites'): guest.binding_sites[tp_point] = binding_sites else: guest.binding_sites = {tp_point: binding_sites} for bs_idx, binding_site in enumerate(binding_sites): bs_directory = "%s_bs_%04d" % (guest.ident, bs_idx) mkdirs(bs_directory) os.chdir(bs_directory) include_guests = {guest.ident: [guest.aligned_to(*binding_site)]} dlp_files = self.structure.to_config_field( self.options, include_guests=include_guests) with open("CONFIG", "w") as config: config.writelines(dlp_files[0]) if bs_idx > 0: # symlink on FIELD to save space zero_directory = "%s_bs_%04d" % (guest.ident, 0) try_symlink(path.join('..', zero_directory, 'FIELD'), 'FIELD') try_symlink(path.join('..', zero_directory, 'CONTROL'), 'CONTROL') else: # Always put the FIELD and CONTORL in zero to symlink to with open("FIELD", "w") as field: field.writelines(dlp_files[1]) with open("CONTROL", "w") as control: control.writelines(mk_dl_poly_control(self.options)) individual_directories.append(bs_directory) os.chdir('..') # Make the script to run all the jobs now, using the individual # directories dl_poly_exe = self.options.get('dl_poly_exe') # Try and delete REVIVE files while running the DL_POLY jobs # we need to keep a few for processing, like OUTPUT, REVCON, CONFIG # STATIS and FIELD and CONTROL will hopefully be symlinks, so we # can't delete them, but REVIVE is never needed absl_delete_files = self.options.get('absl_delete_files') if 'REVIVE' in absl_delete_files or '*_bs_*' in absl_delete_files: rm_line = 'rm REVIVE\n' else: rm_line = '' absl_script = ["#!/bin/bash\n\n", "export FORT_BUFFERED=true\n\n", "export OMP_NUM_THREADS=1\n\n"] for directory in individual_directories: absl_script.extend(["pushd %s > /dev/null\n" % directory, "%s\n" % dl_poly_exe, rm_line, "popd > /dev/null\n"]) absl_faps = open('absl_faps', 'w') absl_faps.writelines(absl_script) absl_faps.close() os.chmod('absl_faps', 0o755) # Submit this script if self.options.getbool('no_submit'): info("ABSL input files generated; skipping job submission") jobids[(temp, press)] = [False] else: jobid = self.job_handler.submit('absl', self.options) jobids[(temp, press)] = [jobid] os.chdir('..') os.chdir(self.options.get('job_dir')) return jobids def calculate_properties(self): """Calculate general structural properties.""" job_name = self.options.get('job_name') job_dir = self.options.get('job_dir') props_dir = path.join(job_dir, 'faps_%s_properties' % job_name) mkdirs(props_dir) os.chdir(props_dir) # Neighbour list is only used by surface area, uncomment if needed # for anything else #self.structure.gen_neighbour_list() # Since this runs before fastmc, and can run without it, check if the # guests are initialised here guests = [Guest(x) for x in self.options.gettuple('guests')] if not same_guests(self.structure.guests, guests): info("Replacing old guests with %s" % " ".join(guest.ident for guest in guests)) self.structure.guests = guests ## # Surface area calculations ## surf_probes = self.options.gettuple('surface_area_probe', dtype=float) for probe in surf_probes: if self.structure.surface_area(probe) is None: self.structure.surface_area(probe, value=self.calc_surface_area(probe)) # Neighbour list makes .niss too big; remove them for atom in self.structure.atoms: atom.neighbours = None del atom.neighbours # Zeoplusplus gives fast access to many properties if self.options.getbool('zeo++'): try: self.calculate_zeo_properties() except (OSError, IOError): error("Error running zeo++; skipping") # PLATON can calculate the PXRD pattern if self.options.getbool('platon_pxrd'): try: self.calculate_pxrd() except (OSError, IOError): error("Error running platon; skipping") os.chdir(job_dir) def calculate_zeo_properties(self): """Run the zeo++ and update properties with no error trapping.""" job_name = self.options.get('job_name') zeofiles = self.structure.to_zeoplusplus() filetemp = open("%s.cssr" % job_name, 'w') filetemp.writelines(zeofiles[0]) filetemp.close() filetemp = open("%s.rad" % job_name, 'w') filetemp.writelines(zeofiles[1]) filetemp.close() filetemp = open("%s.mass" % job_name, 'w') filetemp.writelines(zeofiles[2]) filetemp.close() probes = set([1.0]) # Always have a helium probe for guest in self.structure.guests: if hasattr(guest, 'probe_radius'): probes.add(guest.probe_radius) zeo_exe = shlex.split(self.options.get('zeo++_exe')) zeo_exe += ['-mass', '%s.mass' % job_name, '-r', '%s.rad' % job_name] cssr_file = ['%s.cssr' % job_name] # incuded sphere, free sphere, included sphere along free path zeo_command = zeo_exe + ['-res'] + cssr_file info("Running zeo++ pore diameters") debug("Running command: '" + " ".join(zeo_command) + "'") zeo_process = subprocess.Popen(zeo_command, stdout=subprocess.PIPE, stderr=subprocess.PIPE) zeo_process.wait() zeo_stderr = " ".join(x.strip() for x in zeo_process.stderr.readlines()) debug(zeo_stderr) if "Voronoi volume check failed" in zeo_stderr: warning("Structure is likely bad; zeo++ is unable to complete") warning(zeo_stderr) self.structure.bad_structure = True res_file = open('%s.res' % job_name).read().split() self.structure.pore_diameter = tuple(float(x) for x in res_file[1:]) atom_samples = '%i' % 2000 volume_samples = '%i' % (20*self.structure.cell.volume) for probe in probes: zeo_command = zeo_exe + [ '-chan', '%f' % probe, '-sa', '%f' % probe, '%f' % probe, atom_samples, '-vol', '%f' % probe, '%f' % probe, volume_samples] + cssr_file debug("Running command: '" + " ".join(zeo_command) + "'") zeo_process = subprocess.Popen(zeo_command, stdout=subprocess.PIPE) zeo_process.wait() # channel dimensionality channels = [int(x) for x in open('%s.chan' % job_name).read().split()[5:]] self.structure.sub_property('dimensionality', probe, channels) # surface area for line in open('%s.sa' % job_name): if 'A^2' in line: self.structure.sub_property('zeo_surface_area', probe, value=float(line.split()[-1])) # accessible volume for line in open('%s.vol' % job_name): if 'A^3' in line: self.structure.sub_property('void_volume', probe, value=float(line.split()[-1])) def calculate_pxrd(self): """Run platon PXRD and update properties with no error trapping.""" job_name = self.options.get('job_name') out_cif = self.structure.to_cif() filetemp = open("%s.faps.cif" % job_name, 'w') filetemp.writelines(out_cif) filetemp.close() platon_exe = self.options.get('platon_exe') platon_cmd = [platon_exe, '-Q', '-o', '%s.faps.cif' % job_name] info("Running PLATON PXRD") debug("Running command: '" + " ".join(platon_cmd) + "'") platon_process = subprocess.Popen(platon_cmd, stdout=subprocess.PIPE) platon_process.wait() cpi_file = open('%s.faps.cpi' % job_name).readlines() probe = cpi_file[4].strip() # source metal, e.g. Cu, Mo try: xrd = [int(x) for x in cpi_file[10:]] self.structure.sub_property('pxrd', probe=probe, value=xrd) except ValueError: warning("PXRD gave weird result, check structure") # These are big and useless? remove_files(['%s.faps.lis' % job_name, '%s.faps.eld' % job_name, '%s.faps.ps' % job_name]) @property def esp_grid(self): """Estimate the esp grid based on resolution and memory.""" # If repeat is unsing double precision, use 4 for single repeat_prec = 8 # User defined resolution, try to use this resolution = self.options.getfloat('esp_resolution') repeat_ncpu = self.options.getint('repeat_ncpu') if repeat_ncpu == 1: vmem = self.options.getfloat('serial_memory') else: vmem = self.options.getfloat('threaded_memory') # Nice even grids might scale better in parallel repeat esp_grid = tuple([int(4*np.ceil(x/(4*resolution))) for x in self.structure.cell.params[:3]]) memory_guess = prod(esp_grid)*self.structure.natoms*repeat_prec/1e9 self._esp_reduced = False if memory_guess > vmem: warning("ESP at this resolution might need up to %.1f GB of " "memory but calculation will only request %.1f" % (memory_guess, vmem)) resolution = resolution/pow(vmem/memory_guess, 1.0/3) esp_grid = tuple([int(4*np.ceil(x/(4*resolution))) for x in self.structure.cell.params[:3]]) warning("Reduced grid to %.2f A resolution to fit" % resolution) self._esp_reduced = True elif resolution != 0.1: # VASP defaults to grids of around 0.1, so check if user has # requested a reduced grid info("User requested esp resolution %f" % resolution) self._esp_reduced = True self._esp_grid = esp_grid return esp_grid @property def esp_reduced(self): """Has the esp been reduced to fit the memory requirements?""" if not hasattr(self, '_esp_reduced'): # generate the esp and check memory requirements self.esp_grid return self._esp_reduced def calc_surface_area(self, rprobe=0.0): """Accessible surface area by uniform or Monte Carlo sampling.""" self.structure.gen_neighbour_list() xyz = [] resolution = self.options.getfloat('surface_area_resolution') uniform = self.options.getbool('surface_area_uniform_sample') info("Calculating surface area: %.3f probe, %s points, %.3f res" % (rprobe, ("random","uniform")[uniform], resolution)) total_area = 0.0 hydrophilic_area = 0.0 # gromacs default of 0.2 seems very constrained hydrophilic_threshold = 0.3 cell = self.structure.cell.cell inv_cell = np.linalg.inv(cell.T) # Pre-calculate and organise the in-cell atoms atoms = [(atom.ipos(cell, inv_cell).tolist(), atom.ifpos(inv_cell), atom.vdw_radius+rprobe, atom.neighbours, atom) for atom in self.structure.atoms] # sigma is the vdw_radius plus distance to center of probe, which # gives accessible surface area; all_samples = [] for a1_pos, a1_fpos, a1_sigma, neighbours, atom in atoms: surface_area = 4*pi*(a1_sigma**2) nsamples = int(surface_area/resolution) if not nsamples in all_samples: debug("Atom type with %i samples" % nsamples) all_samples.append(nsamples) ncount = 0 if uniform: # uniform spiral sample of surface z_vals = np.linspace(1, -1, nsamples, endpoint=True) r_vals = sqrt(1-z_vals**2) t_vals = np.linspace(0, pi*(3-(5**0.5))*nsamples, nsamples, endpoint=False) points = array([r_vals*cos(t_vals), r_vals*sin(t_vals), z_vals]).transpose()*a1_sigma + a1_pos else: # random MC sampling phi = 2*np.random.random(nsamples)*pi costheta = np.random.random(nsamples)*2 - 1 theta = arccos(costheta) points = array([sin(theta)*cos(phi), sin(theta)*sin(phi), cos(theta)]).transpose()*a1_sigma + a1_pos # All points are brought into the cell points = [dot(inv_cell, x) for x in points] fpoints = np.mod(points, 1.0) points = [list(dot(x, cell)) for x in fpoints] for point, fpoint in zip(points, fpoints): # Check for overlap for a2_dist, a2_idx in neighbours: a2_pos = atoms[a2_idx][0] a2_fpos = atoms[a2_idx][1] a2_sigma = atoms[a2_idx][2] if a2_dist > a1_sigma + a2_sigma: # No more atoms within the radius, point valid ncount += 1 xyz.append((atom.type, point, atom.charge)) break elif vecdist3(point, a2_pos) < a2_sigma: # Point collision break elif min_dist(point, fpoint, a2_pos, a2_fpos, cell) < a2_sigma: # Periodic collision break else: # Loop over all atoms finished; point valid ncount += 1 xyz.append((atom.type, point, atom.charge)) # Fraction of the accessible surface area for sphere to real area if abs(atom.charge) > hydrophilic_threshold: hydrophilic_area += (surface_area*ncount)/nsamples total_area += (surface_area*ncount)/nsamples if self.options.getbool('surface_area_save'): job_name = self.options.get('job_name') xyz_out = open('%s-surf-%.2f.xyz' % (job_name, rprobe), 'w') xyz_out.write('%i\nResolution: %f Area: %f\n' % (len(xyz), resolution, total_area)) for ppt in xyz: xyz_out.write(('%-6s' % ppt[0]) + ('%10.6f %10.6f %10.6f' % tuple(ppt[1])) + ('%10.6f\n' % ppt[2])) try: hydrophilic_fraction = hydrophilic_area/total_area except ZeroDivisionError: hydrophilic_fraction = 0.0 info("Hydrophilic area (A^2) and fraction (probe: %f): %f, %f" % (rprobe, hydrophilic_area, hydrophilic_fraction)) return total_area class Structure(object): """ The current state of the structure; update as the calculations proceed. Structure provides methods to produce input files for and take output from various computational chemistry packages but needs to be told what to do. Internal energy units are kcal/mol. Methods are grouped: * Initial structure parsers * Output file parsers to update structure * Input file generation * Internal manipulation methods """ # TODO: dft energy? def __init__(self, name): """Just instance an empty structure initially.""" self.name = name self.cell = Cell() self.atoms = [] self.esp = None self.dft_energy = 0.0 self.uff_energy = 0.0 self.guests = [] self.properties = {} self.space_group = None self.net_charge = None def from_file(self, basename, filetype, defaults): """Select the correct file parser.""" if filetype in ['sql', 'sqlite']: # Makeshift selection method to select a mof # jobname is dbname.type.structure_id from backend.sql import AlchemyBackend # [db_name, sym or free, identity] db_params = self.name.split('.') reader = AlchemyBackend(db_params[0]) cif_string = reader.start_cif(db_params[1], int(db_params[2])) self.from_cif(string=cif_string) elif filetype.lower() in ['pdb']: self.from_pdb(basename + '.' + filetype) elif filetype.lower() in ['pqr']: # Look for a pqr or just a pdb wih charges listdir = os.listdir('.') if (basename + '.pqr') in listdir: self.from_pdb(basename + '.pqr', charges=True) else: self.from_pdb(basename + '.pdb', charges=True) elif filetype.lower() in ['vasp', 'poscar', 'contcar']: listdir = os.listdir('.') test_files = [ basename + '.contcar', basename + '.CONTCAR', 'CONTCAR', basename + '.poscar', basename + '.POSCAR', 'POSCAR'] for filename in test_files: if filename in listdir: self.from_vasp(filename) break elif filetype.lower() in ['cif']: self.from_cif(basename + '.' + filetype) elif filetype.lower() in ['xyz']: cell = defaults.gettuple('default_cell', float) self.from_xyz(basename + '.' + filetype, cell=cell) else: error("Unknown filetype %s" % filetype) def update_pos(self, opt_code, options=None): """Select the method for updating atomic positions.""" opt_path = path.join('faps_%s_%s' % (self.name, opt_code)) info("Updating positions from %s" % opt_code) if opt_code == 'vasp': self.from_vasp(path.join(opt_path, 'CONTCAR'), update=True) elif opt_code == 'siesta': self.from_siesta(path.join(opt_path, '%s.STRUCT_OUT' % self.name)) elif opt_code == 'gromacs': self.from_gromacs(path.join(opt_path, 'confout.g96')) unneeded_files = options.gettuple('gromacs_delete_files') remove_files(unneeded_files, opt_path) keep_files = options.gettuple('gromacs_compress_files') compress_files(keep_files, opt_path) elif opt_code == 'gulp': opt_path = "%s_opt" % opt_path self.optimisation_output = validate_gulp_output( path.join(opt_path, 'faps-%s.out' % self.name)) self.from_gulp_output(path.join(opt_path, '%s.grs' % self.name)) else: error("Unknown positions to import %s" % opt_code) def update_charges(self, charge_method, options=None): """Select the method for updating charges.""" charge_path = path.join('faps_%s_%s' % (self.name, charge_method)) if charge_method == 'repeat': info("Updating charges from repeat") self.charges_from_repeat( path.join(charge_path, 'faps-%s.out' % self.name), options.getbool('symmetry')) # Cleanup of REPEAT files unneeded_files = options.gettuple('repeat_delete_files') remove_files(unneeded_files, charge_path) keep_files = options.gettuple('repeat_compress_files') compress_files(keep_files, charge_path) elif charge_method == 'gulp': info("Updating charges from GULP QEq") self.charges_from_gulp( path.join(charge_path, 'faps-%s.out' % self.name)) elif charge_method == 'egulp': info("Updating charges from EGULP QEq") self.charges_from_egulp(path.join(charge_path, 'charges.dat')) else: error("Unknown charge method to import %s" % charge_method) def update_gcmc(self, tp_point, options): """Select the source for GCMC results and import.""" gcmc_code = options.get('mc_code') gcmc_path = path.join('faps_%s_%s' % (self.name, gcmc_code)) # Runs in subdirectories tp_path = path.join(gcmc_path, format_tp_path(tp_point)) if gcmc_code == 'fastmc': info("Importing results from FastGCMC") self.fastmc_postproc(tp_path, tp_point, options) else: error("Unknown gcmc method to import %s" % gcmc_code) def update_absl(self, tp_point, options): """Select the source for ABSL results and import.""" absl_path = path.join('faps_%s_%s' % (self.name, 'absl')) # Runs in subdirectories tp_path = path.join(absl_path, format_tp_path(tp_point)) info("Importing results from ABSL") self.absl_postproc(tp_path, tp_point, options) def from_pdb(self, filename, charges=False): """Read an initial structure from a pdb file.""" info("Reading positions from pdb file: %s" % filename) filetemp = open(filename) pdb_file = filetemp.readlines() filetemp.close() # Build a local list before setting attribute newatoms = [] for line in pdb_file: lline = line.lower() if lline.startswith('cryst1'): self.cell.from_pdb(line) self.space_group = line[55:56] elif lline.startswith('atom') or lline.startswith('hetatm'): newatom = Atom() newatom.from_pdb(line, charges=charges) newatoms.append(newatom) self.atoms = newatoms def from_cif(self, filename=None, string=None): """Genereate structure from a .cif file.""" if filename is not None: info("Reading positions from cif file: %s" % filename) filetemp = open(filename) cif_file = filetemp.readlines() filetemp.close() elif string is not None: info("Positions from cif string") cif_file = string.splitlines() else: error("No source for cif file") cif_file = strip_blanks(cif_file) params = [None, None, None, None, None, None] atoms = [] cif_bonds = {} symmetry = [] loops = [] idx = 0 while idx < len(cif_file): # line text needs to be manageable; cif guidelines can be # permissive # Can no longer just check for _underscores in lines # as UFF types can have them and mess up parsing line = cif_file[idx].lower().strip() if '_cell_length_a' in line: params[0] = ufloat(line.split()[1]) elif '_cell_length_b' in line: params[1] = ufloat(line.split()[1]) elif '_cell_length_c' in line: params[2] = ufloat(line.split()[1]) elif '_cell_angle_alpha' in line: params[3] = ufloat(line.split()[1]) elif '_cell_angle_beta' in line: params[4] = ufloat(line.split()[1]) elif '_cell_angle_gamma' in line: params[5] = ufloat(line.split()[1]) elif '_symmetry_space_group_name_h-m' in line: self.space_group = line.split()[1] elif '_chemical_properties_physical' in line: physical = list(shlex.shlex(line, posix=False))[1].strip("'").lower() if physical.startswith('net charge is'): self.net_charge = float(physical.split()[3]) elif 'loop_' in line: # loops for _atom_site, _symmetry and _geom heads = [] body = [] while line.startswith('_') or 'loop_' in line: # must keep the loop_ line as this can still contain headers heads.extend(line.split()) idx += 1 # don't lower these to keep atomic symbols line = cif_file[idx].strip() while idx < len(cif_file) and not line.startswith('_') and not 'loop_' in line: # shlex keeps 'quoted items' as one # Some cifs seem to have primed atom symbols # posix=False should help # using .shlex instead of .split works with '#' comments too split_line = shlex.shlex(line, posix=False) split_line.whitespace_split = True split_line = list(split_line) body.extend([x.strip("'").strip('"') for x in split_line]) idx += 1 try: line = cif_file[idx] except IndexError: line = '' if 'loop_' in heads: heads.remove('loop_') loops.append((heads, body)) continue idx += 1 # cell first if np.all(params): self.cell.params = params else: error("No cell or incomplete cell found in cif file") # parse loop contents for heads, body in loops: if '_atom_site_fract_x' in heads: while body: atoms.append(dict(zip(heads, body))) body = body[len(heads):] if '_symmetry_equiv_pos_as_xyz' in heads: while body: sym_dict = dict(zip(heads, body)) symmetry.append( Symmetry(sym_dict['_symmetry_equiv_pos_as_xyz'])) body = body[len(heads):] if '_ccdc_geom_bond_type' in heads: while body: bond_dict = dict(zip(heads, body)) # bond is sorted so there are no duplicates # and tuple so it can be hashed bond = (bond_dict['_geom_bond_atom_site_label_1'], bond_dict['_geom_bond_atom_site_label_2']) bond = tuple(sorted(bond)) # bond distance and type defualts to None if not specified distance = bond_dict.get('_geom_bond_distance') if distance is not None: distance = float(distance) bond_type = bond_dict.get('_ccdc_geom_bond_type') cif_bonds[bond] = (distance, bond_type) body = body[len(heads):] if not symmetry: debug('No symmetry found; assuming identity only') symmetry = [Symmetry('x,y,z')] newatoms = [] for site_idx, atom in enumerate(atoms): for sym_op in symmetry: newatom = Atom(parent=self) newatom.from_cif(atom, self.cell.cell, sym_op, site_idx) newatoms.append(newatom) self.atoms = newatoms if len(symmetry) > 1: # can skip if just identity operation as it's slow for big systems # Some of pete's symmetrised mofs need a higher tolerence duplicate_tolerance = 0.2 # Angstroms self.remove_duplicates(duplicate_tolerance) bonds = {} # TODO(tdaff): this works for the one tested MOF; 0.1 was not enough # only check for bonds that are too long, not too short. bond_tolerence = 0.25 # Assign bonds by index for bond, bond_data in cif_bonds.items(): for first_index, first_atom in enumerate(self.atoms): if first_atom.site == bond[0]: for second_index, second_atom in enumerate(self.atoms): if second_atom is first_atom: continue elif second_atom.site == bond[1]: # TODO(tdaff): symmetry implementation for cif bonding distance = min_distance(first_atom, second_atom) bond_dist = bond_data[0] if bond_dist is None: bond_dist = first_atom.covalent_radius + second_atom.covalent_radius if distance < (bond_dist + bond_tolerence): # use the sorted index as bonds between the # same type are doubly specified bond_id = tuple(sorted((first_index, second_index))) bonds[bond_id] = CCDC_BOND_ORDERS[bond_data[1]] if first_atom.is_metal or second_atom.is_metal: first_atom.is_fixed = True second_atom.is_fixed = True self.bonds = bonds self.symmetry = symmetry def from_vasp(self, filename='CONTCAR', update=False): """Read a structure from a vasp [POS,CONT]CAR file.""" info("Reading positions from vasp file: %s" % filename) fix_vasp_wrapped_types(filename) filetemp = open(filename) contcar = filetemp.readlines() filetemp.close() atom_list = [] atom_types = [] scale = float(contcar[1]) self.cell.from_lines(contcar[2:5], scale) if contcar[5].split()[0].isalpha(): # vasp 5 with atom names atom_types = contcar[5].split() del contcar[5] poscar_counts = [int(x) for x in contcar[5].split()] natoms = sum(poscar_counts) if contcar[6].strip()[0].lower() in "s": # 's'elective dynamics line; we don't care del contcar[6] # mcell converts frac -> cart if necessary and scales if contcar[6].strip()[0].lower() in "ck": mcell = identity(3) * scale else: mcell = self.cell.cell # parsing positions if update: for atom, at_line in zip(self.atoms, contcar[7:7+natoms]): atom.from_vasp(at_line, cell=mcell) elif not atom_types: critical("Will not extract structure from older vasp files") else: line_idx = 6 for at_type, at_count in zip(atom_types, poscar_counts): for _atom_idx in range(at_count): line_idx += 1 this_atom = Atom() this_atom.from_vasp(contcar[line_idx], at_type, mcell) atom_list.append(this_atom) self.atoms = atom_list def from_siesta(self, filename): """Update the structure from the siesta output.""" info("Updating positions from file: %s" % filename) filetemp = open(filename) struct_out = filetemp.readlines() filetemp.close() self.cell.from_lines(struct_out[:3]) for atom, line in zip(self.atoms, struct_out[4:]): atom.from_siesta(line, self.cell.cell) def from_gromacs(self, filename): """Update the structure from a gromacs optimisation G96 format file.""" info("Updating positions from file: %s" % filename) g96 = open(filename).readlines() # Atom positions, just regular for line, atom in zip(g96[4:], self.atoms): atom.pos = [10.0*float(x) for x in line[25:].split()] # nm to A del atom.fractional # New cell too, possibly, check ordering. box = [10*float(x) for x in g96[-2].split()] # Only reports three values for cubic cell if len(box) == 3: new_cell = [box[0], 0.0, 0.0, 0.0, box[1], 0.0, 0.0, 0.0, box[2]] else: new_cell = [box[0], box[3], box[4], box[5], box[1], box[6], box[7], box[8], box[2]] self.cell.cell = new_cell # looking for energy too md_log = open(path.join(path.dirname(filename), 'md.log')) for line in md_log: if line.startswith('Potential Energy'): self.uff_energy = float(line.split()[-1]) info("UFF energy: %f kJ/mol" % self.uff_energy) elif line.startswith('Maximum force'): maximum_force = float(line.split()[3]) info("Maximum Force: %f kJ/mol/nm" % maximum_force) if maximum_force > 10: error("Calculation is not converged!! Check output!") # Make sure everything is good from here if self.check_close_contacts(covalent=1.0): warning("Structure may have atom overlap, check gromacs output!") self.bad_structure = True if self.bond_length_check(): warning("Structure may have strained bonds, check gromacs output!") self.bad_structure = True def from_gulp_output(self, filename): """Update the structure from the gulp optimisation output.""" info("Updating positions from file: %s" % filename) grs_out = open(filename) for line in grs_out: if line.strip() == 'cell': params = tuple(float(x) for x in grs_out.next().split()[:6]) self.cell.params = params elif line.strip() == 'fractional': cell = self.cell.cell for atom, atom_line in zip(self.atoms, grs_out): atom.pos = dot([gfloat(x) for x in atom_line.split()[2:5]], cell) # FIXME(tdaff) fractionals need to change automatically # when the position gets updated (or the cell!) del atom.fractional # Make sure everything is good from here if self.check_close_contacts(covalent=1.0): warning("Structure might have atom overlap, check gulp output!") self.bad_structure = True if self.bond_length_check(): warning("Structure might have strained bonds, check gulp output!") self.bad_structure = True def from_xyz(self, filename, update=False, cell=None): """Read a structure from an file.""" info("Reading positions from xyz file: %s" % filename) filetemp = open(filename) xyz_file = filetemp.readlines() filetemp.close() # Setting the cell if len(cell) == 6: self.cell.params = cell elif len(cell) == 9: self.cell.cell = array(cell).reshape((3, 3)) elif cell is not None: error("Invalid cell specification %s" % str(cell)) # Build a local list before setting attribute newatoms = [] natoms = int(xyz_file[0]) self.properties['header'] = xyz_file[1].strip() for line in xyz_file[2:2+natoms]: newatom = Atom() newatom.from_xyz(line) newatoms.append(newatom) if update: if natoms != self.natoms: critical("Incorrect number of atoms to update") terminate(96) for atom, newatom in zip(self.atoms, newatoms): if atom.type != newatom.type: error("Atom order may have changed") atom.pos = newatom.pos else: self.atoms = newatoms def charges_from_repeat(self, filename, symmetry=False): """Parse charges and update structure.""" info("Getting charges from file: %s" % filename) charges = [] filetemp = open(filename) for line in filetemp: # Stripping line means it can read Fortran or C++ REPEAT output if line.strip().startswith("Charge"): line = line.split() # index, type, charge charges.append((int(line[1]), int(line[4]), float(line[6]))) if "Error" in line: if float(line.split()[-1]) > 0.6: warning("Error in repeat charges is very high - check cube!") filetemp.close() if symmetry: tree = self.symmetry_tree if len(charges) != len(tree): error("Incorrect number of charge sets; check REPEAT output") terminate(97) for symm, charge in zip(sorted(tree.items()), charges): for at_idx in symm[1]: self.atoms[at_idx].charge = charge[2] else: if len(charges) != len(self.atoms): error("Incorrect number of charges; check REPEAT output") terminate(90) for atom, charge in zip(self.atoms, charges): atom.charge = charge[2] def charges_from_gulp(self, filename): """Parse QEq charges from GULP output.""" info("Getting charges from file: %s" % filename) filetemp = open(filename) gout = filetemp.readlines() filetemp.close() start_line = None failures = 0 for line_num, line in enumerate(gout): if ' Final charges from QEq :' in line: # Take the last set of charges start_line = line_num + 7 elif 'Failed to converge' in line: # This will occur twice in the output for complete failure failures += 1 if start_line is None: error("Final charges not found in gulp output") terminate(184) elif failures > 1: warning("Gulp charges may not be converged") for atom, chg_line in zip(self.atoms, gout[start_line:]): atom.charge = float(chg_line.split()[2]) def charges_from_egulp(self, filename): """Parse QEq charges from EGULP output.""" info("Getting charges from file: %s" % filename) filetemp = open(filename) gout = filetemp.readlines() filetemp.close() # charges.dat file only has list of charges in it for atom, chg_line in zip(self.atoms, gout): atom.charge = float(chg_line.split()[2]) if atom.charge != atom.charge: # These are 'nan'; should not continue or fastmc will mess up error("Egulp charges did not converge, check structure") terminate(107) elif abs(atom.charge) == INFINITY: error("Egulp gave infinite charges, check structure") terminate(108) elif abs(atom.charge) > 10: warning("Very high charge from egulp: %s %f" % (atom.site, atom.charge)) def to_vasp(self, options): """Return a vasp5 poscar as a list of lines.""" optim_h = options.getbool('optim_h') optim_all = options.getbool('optim_all') poscar = ["%s\n" % self.name[:80], " 1.0\n"] # Vasp does 16 dp but we get rounding errors (eg cubic) use 14 poscar.extend(self.cell.to_vector_strings(fmt="%23.14f")) # Bunch up types as much as possible. types, counts = count_ordered_types(self.atoms) # Non consecutive similar types are not the same species anymore sspecies = "".join(" %s" % x for x in types) + "\n" scounts = "".join(" %i" % x for x in counts) + "\n" if len(sspecies) > 254 or len(scounts) > 254: warning("Faps has detected that you have too many atoms for vasp" "to use in an orderd list and has attempted to re-order" "them. This might break your calculation and it might be" "better to run with oreder_atom_types turned on") self.order_by_types() types, counts = count_ordered_types(self.atoms) # Regenerate these strings for new ordering sspecies = "".join(" %s" % x for x in types) + "\n" scounts = "".join(" %i" % x for x in counts) + "\n" poscar.append(sspecies) poscar.append(scounts) # We always have the T or F so turn on selective dynamics for # fixed pos variable cell poscar.extend(["Selective dynamics\n", "Cartesian\n"]) if optim_all: info("Optimizing all atom positions") fix_h = 'T' fix_all = 'T' elif optim_h: info("Optimizing hydrogen positions") fix_h = 'T' fix_all = 'F' else: info("All atom positions fixed") fix_h = 'F' fix_all = 'F' # assume atoms are ordered # Atom lines differ from vasp to ensure spaces between numbers # with <-10 values for atom in self.atoms: if atom.type == "H": poscar.append("%20.15f %19.15f %19.15f" % tuple(atom.pos) + "%4s%4s%4s\n" % (fix_h, fix_h, fix_h)) else: poscar.append("%20.15f %19.15f %19.15f" % tuple(atom.pos) + "%4s%4s%4s\n" % (fix_all, fix_all, fix_all)) return poscar def to_siesta(self, options): """Return a siesta input file as a list of lines.""" job_name = options.get('job_name') siesta_accuracy = options.get("siesta_accuracy").lower() if siesta_accuracy in ['high']: info("Using 'high' accuracy siesta settings") basis = ('DZP', 100, 200) elif siesta_accuracy in ['low']: info("Using 'low' accuracy siesta settings") basis = ('SZ', 200, 100) else: info("Using default siesta accuracy settings") basis = ('DZ', 150, 150) u_atoms = unique(self.atoms, key=lambda x: x.type) u_types = unique(self.types) fdf = ([ "SystemName %s\n" % job_name, "SystemLabel %s\n" % job_name, "\n", "NumberOfAtoms %i\n" % len(self.atoms), "NumberOfSpecies %i\n" % len(u_atoms), "\n", "SaveElectrostaticPotential .true.\n", "WriteMullikenPop 1\n" "WriteXML F\n", "\n", "# Accuracy bits\n", "\n", "PAO.BasisSize %s\n" % basis[0], "PAO.EnergyShift %i meV\n" % basis[1], "MeshCutoff %i Ry\n" % basis[2], "\n", "MaxSCFIterations 100\n", "XC.Functional GGA\n", "XC.Authors PBE\n", "SolutionMethod diagon\n", "ElectronicTemperature 25 K\n", "DM.NumberPulay 5\n", "DM.MixingWeight 0.05\n", "\n", "%block ChemicalSpeciesLabel\n"] + [ "%6i %6i %6s\n" % ((idx + 1), atom.atomic_number, atom.type) for idx, atom in enumerate(u_atoms)] + [ "%endblock ChemicalSpeciesLabel\n", "\n", "LatticeConstant 1 Ang\n" "%block LatticeVectors\n"] + self.cell.to_vector_strings() + [ "%endblock LatticeVectors\n", "\n", "AtomicCoordinatesFormat Ang\n", "\n", "%block AtomicCoordinatesAndAtomicSpecies\n"] + [ "%12.8f %12.8f %12.8f" % tuple(atom.pos) + "%6i\n" % (u_types.index(atom.type) + 1) for atom in self.atoms] + [ "%endblock AtomicCoordinatesAndAtomicSpecies\n"]) if "Br" in u_types: fdf.extend(["\n%block PS.lmax\n", " Br 2\n", "%endblock PS.lmax\n"]) if "In" in u_types: # semicore states need to be accounted for # TODO(tdaff): selective polarisation on the basis functions fdf.extend(["\n%block PAO.Basis\n", "In 3\n", " n=5 0 2\n", " 0.0 0.0\n", " n=5 1 2 P\n", " 0.0 0.0\n", " n=4 2 2\n", " 0.0 0.0\n", "%endblock PAO.Basis\n"]) optim_h = options.getbool('optim_h') optim_all = options.getbool('optim_all') optim_cell = options.getbool('optim_cell') constraint = [] if optim_all: info("Optimizing all atom positions") fdf.append("\nMD.TypeOfRun CG\n") fdf.append("MD.NumCGSteps %i\n" % 800) elif optim_h and "H" in self.types: info("Optimizing hydrogen positions") fdf.append("\nMD.TypeOfRun CG\n") fdf.append("MD.NumCGSteps %i\n" % 300) constraint = ["%i" % (idx+1) for idx, species in enumerate(self.types) if species not in ["H"]] elif optim_cell: fdf.append("\nMD.TypeOfRun CG\n") fdf.append("MD.NumCGSteps %i\n" % 300) constraint = ["%i" % (idx+1) for idx in range(self.natoms)] if optim_cell: info("Cell vectors will be optimized") fdf.append("MD.VariableCell .true.\n") if constraint: constraint = textwrap.fill(" ".join(constraint), initial_indent='position ', subsequent_indent='position ') fdf.extend(["\n%block GeometryConstraints\n", constraint, "\n", "%endblock GeometryConstraints\n"]) return fdf def to_gulp(self, qeq_fit=False, optimise=False, terse=False, qeq_dict={}): """Return a GULP file to use for the QEq charges.""" if qeq_fit: keywords = "fitting bulk_noopt qeq\n" elif optimise: return self.to_gulp_optimise(terse=terse) else: keywords = "single conp qeq\n" gin_file = [ "# \n# Keywords:\n# \n", keywords, "# \n# Options:\n# \n", "# Initial file written by faps\n" "name %s\n" % self.name, "vectors\n"] + self.cell.to_vector_strings() + [ "cartesian\n"] if qeq_fit: for atom in self.atoms: gin_file.extend(["%-5s core " % atom.type, "%14.7f %14.7f %14.7f " % tuple(atom.pos), "%14.7f\n" % atom.charge]) gin_file.append("\n# \n# Fitting variables:\n# \nobservables\n") for idx, atom in enumerate(self.atoms): gin_file.append("monopoleq\n%5s%11.6f\n" % (idx+1, atom.charge)) gin_file.append("end\nqelectronegativity\n") for at_type in unique(self.types): gin_file.extend( ["%-5s" % at_type, "%9.5f %9.5f %9.5f 1 1 0\n" % QEQ_PARAMS[at_type]]) else: for atom in self.atoms: gin_file.extend(["%-5s core " % atom.type, "%14.7f %14.7f %14.7f\n" % tuple(atom.pos)]) if qeq_dict: unique_types = unique(self.types) gin_file.append('\nqelectronegativity\n') for atom_type, params in qeq_dict.items(): if atom_type in unique_types: gin_file.append('%-4s %f %f\n' % (atom_type, params[0], params[1])) gin_file.append("\ndump every %s.grs\nprint 1\n" % self.name) return gin_file def to_gulp_optimise(self, terse=False): """Return a GULP file to optimise with UFF.""" # all atoms of the same forcefield type must have the same label # gulp fails if atoms of the same type have different labels! # this only crops up as an error in the 4.0 versions # 'decimal_only' stops fractions that cannot be parsed when reading # updated positions if terse: # Don't output the bonds keywords = "opti noautobond decimal_only conj\n" else: keywords = "opti noautobond bond decimal_only conj\n" gin_file = [ "# \n# Keywords:\n# \n", keywords, "# \n# Options:\n# \n", "# UFF optimisation by gulp\n" "name %s\n" % self.name, # using an rfo minimiser with a preconditioned hessian from the # BFGS minimiser seems to be the most efficient "switch rfo gnorm 0.3\n", "vectors\n"] + self.cell.to_vector_strings() + [ " 1 1 1\n 1 1 1\n 1 1 1\n", # constant pressure relaxation "cartesian\n"] all_ff_types = {} for at_idx, atom in enumerate(self.atoms): ff_type = atom.uff_type if not ff_type in all_ff_types: all_ff_types[ff_type] = atom.site # Sanity check in case types are not given in the input if ff_type not in UFF_FULL: error("Atom %s has unknown type %s" % (atom, ff_type)) if atom.is_fixed: fixed_flags = "0 0 0" else: fixed_flags = "1 1 1" gin_file.extend(["%-5s core " % all_ff_types[ff_type], "%14.7f %14.7f %14.7f " % tuple(atom.pos), "%f " % atom.charge, "%f " % 1.0, # occupancy fixed_flags, "\n"]) #identify all the individual uff species for the library gin_file.append("\nspecies\n") for ff_type, species in all_ff_types.items(): gin_file.append("%-6s core %-6s\n" % (species, ff_type)) gin_file.append("\n") for bond in sorted(self.bonds): bond_type = GULP_BOND_ORDERS[self.bonds[bond]] gin_file.append("connect %6i %6i %s\n" % (bond[0] + 1, bond[1] + 1, bond_type)) gin_file.append("\nlibrary uff\n") gin_file.append("\nstepmx opt 0.05\n") # Restart file is for final structure gin_file.append("\ndump every %s.grs\n" % self.name) # optimization movie useful for debugging mostly if terse: # These tell gulp to be quiet, but we also stop the massive arc # file being generated gin_file.append("\nterse inout structure\n" "terse inout potentials\n" "terse inout derivatives\n" "#output movie arc %s\n" % self.name) else: gin_file.append("\noutput movie arc %s\n" % self.name) return gin_file def to_egulp(self, typed_atoms=False): """Generate input files for Eugene's QEq code.""" # bind cell locally for speed and convenience cell = self.cell.cell inv_cell = self.cell.inverse # format exactly as Eugene original script generates it geometry_file = ['%s\n' % self.name] geometry_file.extend(self.cell.to_vector_strings(fmt=' %15.12f')) geometry_file.append('%i\n' % self.natoms) atomic_numbers = self.atomic_numbers if typed_atoms: # Include custom typing, new types must be found by hand. # 800 N=O -- removed # 801 S=O # 802 S-O-H for atom_idx, atom in enumerate(self.atoms): if atom.uff_type == 'S_3+6': for bond in self.bonds: if atom_idx in bond: other_idx = other_bond_index(bond, atom_idx) if self.atoms[other_idx].uff_type == 'O_2': atomic_numbers[other_idx] = 801 elif self.atoms[other_idx].uff_type == 'O_3': atomic_numbers[other_idx] = 802 for another_bond in self.bonds: if other_idx in another_bond: another_idx = other_bond_index(another_bond, other_idx) if self.atoms[another_idx].uff_type == 'H_': atomic_numbers[another_idx] = 1001 # TODO(tdaff): delete code in future version; removed NO2 typing # elif atom.uff_type == 'N_R': # this_bonds = [] # for bond in self.bonds: # if atom_idx in bond: # other_idx = other_bond_index(bond, atom_idx) # if self.atoms[other_idx].uff_type == 'O_R': # atomic_numbers[other_idx] = 800 # atomic numbers should have been modified with exotic types by now geometry_file.extend([ ('%6d ' % atomic_number) + ('%12.7f %12.7f %12.7f' % tuple(atom.ipos(cell, inv_cell))) + ('%12.7f\n' % atom.charge) for atom, atomic_number in zip(self.atoms, atomic_numbers) ]) return geometry_file def to_config_field(self, options, fastmc=False, include_guests=None, dummy=False): """ Return CONFIG and FIELD files in DL_POLY style Parameters ---------- fastmc : boolean When set to True, the FIELD file will contain the positions for MC guests and will give incorrect results with DL_POLY. include_guests : dict or None A dictionary with guests to be included in the config file with the framework. The guest type is the key and their positions are nested lists. dummy : boolean If dummy is set, the interaction parameters and charges for the guest are set to zero Returns ------- config : list The config file as a list of newline terminated strings field : list The field file as a list of newline terminated strings """ # CONFIG self.gen_supercell(options) supercell = self.gcmc_supercell levcfg = 0 # always imcon = self.cell.imcon natoms = len(self.atoms) * prod(supercell) # do included guests first so natoms can be corrected offset = 1 included_guests_part = [] # count if any guests are included # use get( ... , 0) to get zero for not included guest_nummols = {} if include_guests is not None: # having only one atom in DL_POLY errors with # complaints about too few degrees of freedom # if there is only one atom included, add a ghost guest_items = include_guests.items() dof_fix = (len(guest_items) == 1 # one guest type and len(guest_items[0][1]) == 1 # one guest of type and len(guest_items[0][1][0]) == 1 # one atom and not fastmc) debug("dot_fix %s" % dof_fix) for guest in self.guests: if guest.ident in include_guests: guest_nummols[guest.ident] = len(include_guests[guest.ident]) for positions in include_guests[guest.ident]: for atom, position in zip(guest.atoms, positions): included_guests_part.extend( ["%-6s%10i\n" % (atom.type, offset), "%20.12f%20.12f%20.12f\n" % tuple(position)]) if dof_fix: # Add a phantom atom; hopefully Non type # is not used elsewhere offset += 1 included_guests_part.extend( ["%-6s%10i\n" % ("Non", offset), "%20.12f%20.12f%20.12f\n" % tuple(position)]) # increment offset as it is used for the framework offset += 1 # make natoms correct natoms += offset - 1 else: # don't need to apply degrees of freedon fix dof_fix = False config = ["%s\n" % self.name[:80], "%10i%10i%10i\n" % (levcfg, imcon, natoms)] config.extend(self.cell.to_vector_strings(scale=supercell)) # included guests go first to match field config.extend(included_guests_part) # put them in for idx, atom in enumerate(self.supercell(supercell)): # idx+offset for 1 based indexes in CONFIG config.extend(["%-6s%10i\n" % (atom.type, idx + offset), "%20.12f%20.12f%20.12f\n" % tuple(atom.pos)]) # FIELD ntypes = len(self.guests) + 1 field = ["%s\n" % self.name[:80], "UNITS kcal\n", "molecular types %i\n" % ntypes] # Guests for guest in self.guests: natoms = guest.natoms if dof_fix and guest.ident in include_guests: natoms += 1 field.extend(["&guest %s: %s\n" % (guest.name, guest.source), "NUMMOLS %i\n" % guest_nummols.get(guest.ident, 0), "ATOMS %i\n" % natoms]) for atom in guest.atoms: # Can't just turn off electrostatics as we need to compare to # the empty framework so zero guest charges if dummy: charge = 0 else: charge = atom.charge field.append("%-6s %12.6f %12.6f" % tuple([atom.type, atom.mass, charge])) if fastmc: field.append("%12.6f %12.6f %12.6f\n" % tuple(atom.pos)) else: # atom positions confuse dl_poly which takes nrept or ifrz field.append(" 1 0\n") if dof_fix and guest.ident in include_guests: field.append("%-6s %12.6f %12.6f 1 0\n" % tuple(["Non", 0.0, 0.0])) field.append("rigid 1\n") field.append("%i " % guest.natoms) field.append(" ".join("%i" % (x + 1) for x in range(guest.natoms))) field.append("\nfinish\n") # Framework field.extend(["Framework\n", "NUMMOLS %i\n" % prod(supercell), "ATOMS %i\n" % len(self.atoms)]) if options.getbool('mc_zero_charges'): for atom in self.atoms: field.append("%-6s %12.6f %20.14f %6i %6i\n" % (atom.type, atom.mass, 0.0, 1, 1)) else: for atom in self.atoms: field.append("%-6s %12.6f %20.14f %6i %6i\n" % (atom.type, atom.mass, atom.charge, 1, 1)) field.append("finish\n") # VDW potentials atom_set = [atom.type for atom in self.atoms] for guest in self.guests: atom_set.extend(atom.type for atom in guest.atoms) atom_set = unique(atom_set) field.append("VDW %i\n" % ((len(atom_set) * (len(atom_set) + 1)) / 2)) # modify local ff to deal with guests force_field = copy(UFF) for guest in self.guests: force_field.update(guest.potentials) # zero everything if we just want framework if dummy: force_field = dict((element, (0.0, 0.0)) for element in force_field) for idxl in range(len(atom_set)): for idxr in range(idxl, len(atom_set)): left = atom_set[idxl] right = atom_set[idxr] try: sigma, epsilon = lorentz_berthelot(force_field[left], force_field[right]) except KeyError: # catch this if not in the UFF -> zero warning("No potential defined for %s %s; defaulting to 0" % (left, right)) sigma, epsilon = 0.0, 0.0 field.append("%-6s %-6s lj %f %f\n" % (left, right, epsilon, sigma)) # EOF field.append("close\n") return config, field def to_gromacs(self, metal_geometry='input'): """Generate GROMACS structure and topology. metal_geometry will affect topology terms with metal atoms. 'input' will use the structure to generate the topology, and 'fix' will also apply a stiffer potential. Return gro, top and itp files as lists of lines. """ # Use this to multiply the potential terms and make them rigid metal_stiffness_factor = 1 if metal_geometry.lower().startswith('fix'): keep_metal_geometry = True metal_stiffness_factor = 10 info("Metals fixed at input geometries") elif metal_geometry.lower().startswith('in'): keep_metal_geometry = True info("Using input geometry for metals") else: keep_metal_geometry = False info("Using UFF parameters for metals") ## # .gro file ## # TITLE line # number of atoms gro_file = ["%s\n" % self.name, " %i\n" % self.natoms] # Don't use the MOF name so that we can refer to this easily later residue = (1, "RESI") for idx, atom in enumerate(self.atoms): # In the specification the atom position is given as # %8.3f in nm, but we probably would like more accuracy # but make sure there are 5 figures to left of decimal point pos_nm = tuple([x/10.0 for x in atom.pos]) gro_file.append(("%5i%5s" % residue) + ("%5s%5i" % (atom.uff_type, idx + 1)) + ("%15.10f%15.10f%15.10f\n" % pos_nm)) # cell is also in nm # v1(x) v2(y) v3(z) v1(y) v1(z) v2(x) v2(z) v3(x) v3(y) box = self.cell.cell/10.0 # gromacs needs these conditions. Might need to rotate cell sometimes? if not (box[0][1] == box[0][2] == box[1][2] == 0): error("Gromacs can't handle this cell orientation") gro_file.append("%f %f %f %f %f %f %f %f %f\n" % ( box[0][0], box[1][1], box[2][2], box[0][1], box[0][2], box[1][0], box[1][2], box[2][0], box[2][1])) ## # .top file ## comb_rule = 2 # 1 = LORENTZ_BERTHELOT; 2 = GEOMETRIC # geometric is recommended in UFF # if you use Lorentz Berthelot then sigma and epsilon become C6 and C12 top_file = [ "; Topology file for %s\n" % self.name, "[ defaults ]\n", "; nbfunc comb-rule gen-pairs fudgeLJ fudgeQQ\n", "1 %i yes 1.0 1.0\n\n" % comb_rule] # define the forcefield for UFF unique_types = set() top_file.append("[ atomtypes ]\n") top_file.append("; name1 name2 mass charge " " ptype sigma epsilon\n") for atom in self.atoms: if atom.uff_type not in unique_types: uff_type = atom.uff_type # sigma = x1 * 2^(-1/6) # CONVERT TO nm !! sigma = 0.1*UFF_FULL[uff_type][2]*(2**(-1.0/6.0)) # epsilon = D1 in kcal epsilon = UFF_FULL[uff_type][3] * KCAL_TO_KJ top_file.append("%-6s %-6s %9.4f %9.4f A %12.7f " "%12.7f\n" % (uff_type, uff_type, atom.mass, 0.0, sigma, epsilon)) unique_types.add(uff_type) # for included file, use default name scheme "topol..." top_file.extend(["\n#include <topol.itp>\n\n", "[ system ]\n", "UFF optimisation of %s\n\n" % self.name, "[ molecules ]\n", "%s 1\n" % residue[1]]) ## # .itp file ## # exclude 3 neighbours itp_file = ["[ moleculetype ]\n", "; molname nrexcl\n" "%s 3\n" % residue[1], "[ atoms ]\n", "; nr type resnr residue atom " "cgnr charge mass \n"] ## # atoms ## for idx, atom in enumerate(self.atoms): uff_type = atom.uff_type # charge group is different for each atom # as gromacs has max of 32 in a group itp_file.append("%-6i %-6s %i %-6s %-6s %d %9.4f %9.4f\n" % (idx+1, uff_type, residue[0], residue[1], uff_type, idx+1, atom.charge, atom.mass)) ## # bonds ## itp_file.append("\n[ bonds ]\n") itp_file.append("; ai aj funct b0 kb\n") unique_bonds = {} bonding_table = dict([(x, {}) for x in range(self.natoms)]) #FIXME(tdaff) bonds will have length in v2 for bond, bondorder in self.bonds.items(): idx_a = bond[0] idx_b = bond[1] atom_a = self.atoms[idx_a] atom_b = self.atoms[idx_b] uff_a = atom_a.uff_type uff_b = atom_b.uff_type typed_bond = tuple(sorted([uff_a, uff_b]) + [bondorder]) bonding_table[idx_a][idx_b] = typed_bond bonding_table[idx_b][idx_a] = typed_bond # have we already calculated the parameters if not typed_bond in unique_bonds: ri = UFF_FULL[uff_a][0] rj = UFF_FULL[uff_b][0] chiI = UFF_FULL[atom_a.uff_type][8] chiJ = UFF_FULL[atom_b.uff_type][8] rbo = -0.1332*(ri+rj)*log(bondorder) ren = ri*rj*(((sqrt(chiI) - sqrt(chiJ))**2))/(chiI*ri + chiJ*rj) r0 = (ri + rj + rbo - ren) # force constant # parameters Z1 kb = (UFF_FULL[uff_a][5]*UFF_FULL[uff_b][5])/(r0**3) kb *= 0.5*KCAL_TO_KJ*664.12 unique_bonds[typed_bond] = (r0, kb) # in nm if atom_a.is_metal or atom_b.is_metal and keep_metal_geometry: params = (min_distance(atom_a, atom_b, self.cell.cell), unique_bonds[typed_bond][1]*metal_stiffness_factor) else: params = unique_bonds[typed_bond] bond_func = 1 # gromacs harmonic # add 1 to bond as 1 indexed # All these are converted to gromcas units, ugh... itp_file.append('%-5i %-5i %1i %11.4f %11.4f ; %-5s %-5s %.2f\n' % (bond[0]+1, bond[1]+1, bond_func, 0.1*params[0], 200*params[1], typed_bond[0], typed_bond[1], bondorder)) ## # angles ## itp_file.append("\n[ angles ]\n") for idx_a in sorted(bonding_table): bonded_atoms = bonding_table[idx_a] for l_idx in bonded_atoms: for r_idx in bonded_atoms: if r_idx >= l_idx: # don't include angles twice continue # FIXME(tdaff) special cases for 5 or more coord # tag central uff and two largest neighbours central_atom = self.atoms[idx_a] l_atom = self.atoms[l_idx] r_atom = self.atoms[r_idx] # FIXME(tdaff) over/under coordinated atoms? theta0 = UFF_FULL[central_atom.uff_type][1] # FIXME(tdaff) switch if coordination is not correct cosT0 = cos(theta0*DEG2RAD) sinT0 = sin(theta0*DEG2RAD) c2 = 1.0 / (4.0 * sinT0 * sinT0) c1 = -4.0 * c2 * cosT0 c0 = c2*(2.0*cosT0*cosT0 + 1.0) zi = UFF_FULL[l_atom.uff_type][5] zk = UFF_FULL[r_atom.uff_type][5] bond_ab = tuple(sorted((l_idx, idx_a))) bond_ab = tuple(sorted([l_atom.uff_type, central_atom.uff_type]) + [self.bonds[bond_ab]]) bond_bc = tuple(sorted((r_idx, idx_a))) bond_bc = tuple(sorted([r_atom.uff_type, central_atom.uff_type]) + [self.bonds[bond_bc]]) rab = unique_bonds[bond_ab][0] rbc = unique_bonds[bond_bc][0] rac = sqrt(rab*rab + rbc*rbc - 2.0 * rab*rbc*cosT0) ka = (644.12 * KCAL_TO_KJ) * (zi * zk / (rac**5.0)) ka *= (3.0*rab*rbc*(1.0 - cosT0*cosT0) - rac*rac*cosT0) # FIXME(tdaff) change uff_coordination to coordination if central_atom.uff_coordination == 1: # linear bonds (e.g. C_1 triple bonds) had 0 force # constant otherwise thetamin = 180.0 kappa = ka elif abs(c2) > 0.001: thetamin = pi - arccos(c1/(4.0*c2)) thetamin /= DEG2RAD kappa = ka * (16.0*c2*c2 - c1*c1) / (4.0*c2) elif central_atom.coordination == 2: thetamin = 120.0 kappa = 4.0*ka/3.0 elif central_atom.coordination in (4, 6): thetamin = 90.0 kappa = 2.0*ka elif central_atom.coordination == 7: alpha = 2.0*pi/5.0 c7 = sin(alpha)*(cos(alpha) - cos(2*alpha)) thetamin = 72.0 kappa = 2.0 * c7*c7 * ka * c1 else: thetamin = pi - arccos(c1/(4.0*c2)) thetamin /= DEG2RAD kappa = ka * (16.0*c2*c2 - c1*c1) / (4.0*c2) if keep_metal_geometry and (central_atom.is_metal or l_atom.is_metal or r_atom.is_metal): # harmonic potential means it will not # flip around potential = "harmonic" kappa *= metal_stiffness_factor thetamin = angle_between(l_atom, central_atom, r_atom, cell=self.cell) elif central_atom.coordination == 1: # linear bonds seemed too flexible potential = "harmonic" else: potential = "G96" # Use the harmonic approximation for linear angles as the # stiffness is undefined for the G96 form if potential == "G96" and thetamin != 180.0: kappa /= sin(thetamin*DEG2RAD)**2 potential_function = 2 else: # harmonic potential_function = 1 angle_fmt = ("%-6i %-6i %-6i %i %9.4f %9.4f ;" " %-6s %-6s %-6s\n") itp_file.append(angle_fmt % ( l_idx + 1, idx_a + 1, r_idx + 1, potential_function, thetamin, kappa, l_atom.uff_type, central_atom.uff_type, r_atom.uff_type)) ## # dihedrals ## itp_file.append("\n[ dihedrals ]\n; proper torsion terms\n") # Like OB FindTorsions # Generate all torsions first so we can find equivalents torsions = [] for idx_b in sorted(bonding_table): for idx_c in bonding_table[idx_b]: if idx_b >= idx_c: continue for idx_a in bonding_table[idx_b]: if idx_a == idx_c: continue for idx_d in bonding_table[idx_c]: if idx_d == idx_b or idx_d == idx_a: continue else: torsions.append((idx_a, idx_b, idx_c, idx_d)) overcoordinated = set() # now loop to generate force field for torsion in torsions: idx_a, idx_b, idx_c, idx_d = torsion atom_a = self.atoms[idx_a] atom_b = self.atoms[idx_b] atom_c = self.atoms[idx_c] atom_d = self.atoms[idx_d] bond_bc = bonding_table[idx_b][idx_c] torsiontype = bond_bc[2] # bond order # correct for over-coordinated things like vanadium if atom_b.is_metal and atom_b.coordination > atom_b.uff_coordination: coord_b = atom_b.coordination overcoordinated.add(atom_b) else: coord_b = atom_b.uff_coordination if atom_c.is_metal and atom_c.coordination > atom_c.uff_coordination: coord_c = atom_c.coordination overcoordinated.add(atom_c) else: coord_c = atom_c.uff_coordination coord_bc = (coord_b, coord_c) V = 0 n = 0 if coord_bc == (3, 3): # two sp3 centers phi0 = 60.0 n = 3 vi = UFF_FULL[atom_b.uff_type][6] vj = UFF_FULL[atom_c.uff_type][6] # exception for a pair of group 6 sp3 atoms if atom_b.atomic_number == 8: vi = 2.0 n = 2 phi0 = 90.0 elif atom_b.atomic_number in (16, 34, 52, 84): vi = 6.8 n = 2 phi0 = 90.0 if atom_c.atomic_number == 8: vj = 2.0 n = 2 phi0 = 90.0 elif atom_c.atomic_number in (16, 34, 52, 84): vj = 6.8 n = 2 phi0 = 90.0 V = 0.5 * KCAL_TO_KJ * (vi * vj)**0.5 elif coord_bc == (2, 2): # two sp2 centers ui = UFF_FULL[atom_b.uff_type][7] uj = UFF_FULL[atom_c.uff_type][7] phi0 = 180.0 n = 2 V = (ui*uj)**0.5 * (1.0 + 4.18*log(torsiontype)) V *= 0.5 * KCAL_TO_KJ * 5.0 elif coord_bc in [(2, 3), (3, 2)]: # one sp3, one sp2 phi0 = 0.0 n = 6 V = 0.5 * KCAL_TO_KJ * 1.0 # exception for group 6 sp3 if coord_c == 3: if atom_c.atomic_number in (8, 16, 34, 52): n = 2 phi0 = 90.0 if coord_b == 3: if atom_b.atomic_number in (8, 16, 34, 52): n = 2 phi0 = 90.0 if abs(V) < 2e-6: # don't bother calculating this torsion continue # Dividing by equivalent torsions is a GG addition equivalent_torsions = 0 for equivalent in torsions: if equivalent[1:3] == (idx_b, idx_c): equivalent_torsions += 1 V /= equivalent_torsions nphi0 = n*phi0 if abs(sin(nphi0*DEG2RAD)) > 1.0e-3: error("WARNING!!! nphi0 = %r" % nphi0) if atom_b.is_metal or atom_c.is_metal and keep_metal_geometry: V *= metal_stiffness_factor phi_s = dihedral(atom_a, atom_b, atom_c, atom_d, cell=self.cell) else: phi_s = nphi0 - 180.0 # phi_s in degrees tor_fmt = ("%-6i %-6i %-6i %-6i %i %9.4f %9.4f %i ;" " %-6s %-6s %-6s %-6s\n") tor_type = 1 # proper dihedrals in GROMACS itp_file.append(tor_fmt % ( idx_a + 1, idx_b + 1, idx_c + 1, idx_d + 1, tor_type, phi_s, V, n, atom_a.uff_type, atom_b.uff_type, atom_c.uff_type, atom_d.uff_type)) # Don't warn about overcoordination unless user cares. if overcoordinated: debug("%i overcoordinated atoms found: %s" % (len(overcoordinated), " ".join(set(x.uff_type for x in overcoordinated)))) ## # inversions / improper dihedrals ## itp_file.append("\n[ dihedrals ]\n; inversions (improper dihedrals)\n") for idx_b in sorted(bonding_table): atom_b = self.atoms[idx_b] # Only have parameters for limited elements # and only want those with 3 neighbours if not atom_b.atomic_number in (6, 7, 8, 15, 33, 51, 83): continue elif len(bonding_table[idx_b]) != 3: continue idx_a, idx_c, idx_d = bonding_table[idx_b] atom_a = self.atoms[idx_a] atom_c = self.atoms[idx_c] atom_d = self.atoms[idx_d] if atom_b.uff_type in ('N_3', 'N_2', 'N_R', 'O_2', 'O_R'): c0 = 1.0 c1 = -1.0 c2 = 0.0 koop = 6.0*KCAL_TO_KJ elif atom_b.uff_type in ('P_3+3', 'As3+3', 'Sb3+3', 'Bi3+3'): if atom_b.uff_type == 'P_3+3': phi = 84.4339 * DEG2RAD elif atom_b.uff_type == 'As3+3': phi = 86.9735 * DEG2RAD elif atom_b.uff_type == 'Sb3+3': phi = 87.7047 * DEG2RAD else: phi = 90.0 * DEG2RAD c1 = -4.0 * cos(phi) c2 = 1.0 c0 = -1.0*c1*cos(phi) + c2*cos(2.0*phi) koop = 22.0 * KCAL_TO_KJ elif atom_b.uff_type in ('C_2', 'C_R'): c0 = 1.0 c1 = -1.0 c2 = 0.0 koop = 6.0*KCAL_TO_KJ if 'O_2' in (atom_a.uff_type, atom_c.uff_type, atom_d.uff_type): koop = 50.0 * KCAL_TO_KJ else: continue # three permutations: koop /= 3 # that was easy... if abs(c2) < 1.0e-5: csi0 = 0.0 kcsi = koop else: #TODO(tdaff): check if this is multiply or divide csi0 = arccos(-c1/(4.0*c2))/DEG2RAD # csi_0 in degrees kcsi = (16.0*c2*c2-c1*c1)/(4.0*c2*c2) kcsi *= koop # kcsi in kJ/mol/rad^2 # put it thrice, middle atom first # b, a, c, d # b, d, c, a # b, a, d, c inv_fmt = ("%-6i %-6i %-6i %-6i %i %9.4f %9.4f ;" " %-6s %-6s %-6s %-6s\n") inv_type = 2 # improper dihedrals in GROMACS itp_file.append(inv_fmt % ( idx_b + 1, idx_a + 1, idx_c + 1, idx_d + 1, inv_type, csi0, kcsi, atom_b.uff_type, atom_a.uff_type, atom_c.uff_type, atom_d.uff_type)) itp_file.append(inv_fmt % ( idx_b + 1, idx_d + 1, idx_c + 1, idx_a + 1, inv_type, csi0, kcsi, atom_b.uff_type, atom_d.uff_type, atom_c.uff_type, atom_a.uff_type)) itp_file.append(inv_fmt % ( idx_b + 1, idx_a + 1, idx_d + 1, idx_c + 1, inv_type, csi0, kcsi, atom_b.uff_type, atom_a.uff_type, atom_d.uff_type, atom_c.uff_type)) # done! return gro_file, top_file, itp_file def to_cssr(self, cartesian=False, no_atom_id=False): """ Return a Cerius2 cssr file with coordinates and cell as a list of strings. Set no_atom_id to produce labels to work with Zeo++. """ space_group = (1, "P 1") opt = 1 cell = self.cell # spacers between all format strings ensures that there will always # be whitespace between components. cssr = [" "*38, "%8.3f %7.3f %7.3f\n" % cell.params[:3], " "*21, "%8.3f %7.3f %7.3f" % cell.params[3:], " "*4, "SPGR = %3i %-11s" % space_group, "OPT = %i\n" % opt, "%4i %3i %s\n" % (self.natoms, cartesian, self.name), "Structure file generated by faps\n"] for at_idx, atom in enumerate(self.atoms): # The default of TypeID does not work for Zeo++ as it # treats each label as a different type if no_atom_id: atom_name = "%s" % (atom.type) else: atom_name = "%s%i" % (atom.type, at_idx+1) # Zeo++ needs fractional coordinates if cartesian: string_pos = "%9.5f %9.5f %9.5f " % tuple(atom.pos) else: string_pos = "%9.5f %9.5f %9.5f " % tuple(atom.ifpos(cell.inverse)) cssr.append("%4i %-4s %s" % (at_idx+1, atom_name, string_pos) + " 0"*8 + " %7.3f\n" % atom.charge) return cssr def to_zeoplusplus(self): """ Return a tuple containing a cssr file, radii file and mass file. """ radii = ["%-7s %-f\n" % (atom, UFF[atom][0]/2.0) for atom in unique(self.types)] masses = ["%-7s %-f\n" % (atom, WEIGHT[atom]) for atom in unique(self.types)] return self.to_cssr(no_atom_id=True), radii, masses def to_cif(self): """Return a CIF file with bonding and atom types.""" name = self.name atoms = self.atoms cell = self.cell if hasattr(self, 'bonds'): bonds = self.bonds else: bonds = {} inv_cell = cell.inverse type_count = {} atom_part = [] for idx, atom in enumerate(atoms): if atom is None: # blanks are left in here continue if hasattr(atom, 'uff_type') and atom.uff_type is not None: uff_type = atom.uff_type else: uff_type = '?' if atom.element in type_count: type_count[atom.element] += 1 else: type_count[atom.element] = 1 atom.site = "%s%i" % (atom.element, type_count[atom.element]) atom_part.append("%-5s %-5s %-5s " % (atom.site, atom.element, uff_type)) atom_part.append("%f %f %f " % tuple(atom.ifpos(inv_cell))) atom_part.append("%f\n" % atom.charge) # Materials studio sorts bonds in the same order as the atoms # but perceives bonds wrong if bond orders are mixed. # i.e. it misreads cifs that it writes itself. bond_properties = [] for bond, order in bonds.items(): bond_type = CCDC_BOND_ORDERS[order] atom0, atom1 = atoms[bond[0]], atoms[bond[1]] distance, shift = cif_bond_dist(atom0, atom1, cell) # assume P1 for now (only one symmetry operation) so "1_???" if shift == [0, 0, 0]: site_symm = "." bond_properties.append((order, bond, (atom0.site, atom1.site, distance, site_symm, bond_type))) else: site_symm = "1_%i%i%i" % (5+shift[0], 5+shift[1], 5+shift[2]) bond_properties.append((order, bond, (atom0.site, atom1.site, distance, site_symm, bond_type))) # MS also includes the reverse bond over the boundary site_symm = "1_%i%i%i" % (5-shift[0], 5-shift[1], 5-shift[2]) rbond = (bond[1], bond[0]) bond_properties.append((order, rbond, (atom1.site, atom0.site, distance, site_symm, bond_type))) # Can just sort bond_properties as it will be bond_order, site1, site2 bond_part = ["%-5s %-5s %.3f %-5s %2s\n" % x[2] for x in sorted(bond_properties)] cif_file = [ "data_%s\n" % name.replace(' ', '_'), "%-33s %s\n" % ("_audit_creation_date", time.strftime('%Y-%m-%dT%H:%M:%S%z')), "%-33s %s\n" % ("_audit_creation_method", "'faps %s'" % __version__), "%-33s %s\n" % ("_symmetry_space_group_name_H-M", "P1"), "%-33s %s\n" % ("_symmetry_Int_Tables_number", "1"), "%-33s %s\n" % ("_space_group_crystal_system", cell.crystal_system), "loop_\n", "_symmetry_equiv_pos_as_xyz\n", " x,y,z\n", "%-33s %-.10s\n" % ("_cell_length_a", cell.a), "%-33s %-.10s\n" % ("_cell_length_b", cell.b), "%-33s %-.10s\n" % ("_cell_length_c", cell.c), "%-33s %-.10s\n" % ("_cell_angle_alpha", cell.alpha), "%-33s %-.10s\n" % ("_cell_angle_beta", cell.beta), "%-33s %-.10s\n" % ("_cell_angle_gamma", cell.gamma), "%-33s %s\n" % ("_cell_volume", cell.volume), # start of atom loops "\nloop_\n", "_atom_site_label\n", "_atom_site_type_symbol\n", "_atom_site_description\n", "_atom_site_fract_x\n", "_atom_site_fract_y\n", "_atom_site_fract_z\n", "_atom_type_partial_charge\n"] + atom_part # Don't put this if there are no bonds! if bond_part: cif_file.extend([ # bonding loop "\nloop_\n", "_geom_bond_atom_site_label_1\n", "_geom_bond_atom_site_label_2\n", "_geom_bond_distance\n", "_geom_bond_site_symmetry_2\n", "_ccdc_geom_bond_type\n"] + bond_part) return cif_file def fastmc_postproc(self, filepath, tp_point, options): """Update structure properties from gcmc OUTPUT.""" startdir = os.getcwd() os.chdir(filepath) # Since Pete changed output strip indentation and blank lines filetemp = open('OUTPUT') output = strip_blanks(filetemp.readlines()) filetemp.close() # Keep track of supercell so we can get unit cell values supercell_mult = prod(self.gcmc_supercell) # Still positional as we need multiple values simultaneously # and very old versions changed wording of heat of adsorption # and enthalpy of guest # TODO(tdaff, r2.0): deprecate reading older fastmc files # and put Cv in the guest definition for line in output[::-1]: if "+/-" in line: # This is version 1.3 of fastmc debug("NEW OUTPUT") line_offset = 5 read_cv = True # In future this should be assumed to exist for guest in self.guests: if not hasattr(guest, 'c_v'): guest.c_v = {} break else: # +/- not found, assume old style output debug("OLD OUTPUT") line_offset = 0 read_cv = False for idx, line in enumerate(output): # Assume that block will always start like this if 'final stats' in line: idx += line_offset guest_id = int(line.split()[4]) - 1 self.guests[guest_id].uptake[tp_point] = ( float(output[idx + 1].split()[-1]), float(output[idx + 2].split()[-1]), supercell_mult) # This will sometimes be NaN self.guests[guest_id].hoa[tp_point] = ( float(output[idx + 3].split()[-1]), float(output[idx + 4].split()[-1])) if read_cv: self.guests[guest_id].c_v[tp_point] = ( float(output[idx + 5].split()[-1]), float(output[idx + 6].split()[-1])) elif 'total accepted steps' in line: counted_steps = int(line.split()[-1]) if counted_steps < 10000: warning("Number of accepted GCMC steps is very low; " "only %i counted!" % counted_steps) fold = options.getbool('fold') find_maxima = options.getbool('find_maxima') prob_plot = options.getbool('mc_probability_plot') folded = False if prob_plot and (fold or find_maxima): sigma = options.getfloat('absl_sigma') radius = options.getfloat('absl_radius') cutoff = options.getfloat('absl_cutoff') write = options.getbool('absl_write_smooth_cube') folded = self.fold_and_maxima(fold, find_maxima, tp_point, sigma, radius, cutoff, write) if folded and not options.getbool('fastmc_keep_unfolded_cubes'): debug("Removing unfolded cube files") cubes = glob("prob_guest??_prob_??.cube") remove_files(cubes) unneeded_files = options.gettuple('fastmc_delete_files') remove_files(unneeded_files) keep_files = options.gettuple('fastmc_compress_files') compress_files(keep_files) os.chdir(startdir) def absl_postproc(self, filepath, tp_point, options): """Update structure properties from DL_POLY outputs.""" startdir = os.getcwd() os.chdir(filepath) # For pretty output temp = tp_point[0] press = tp_point[1] tp_string = " T=%.1f " % temp + " ".join(["P=%.2f" % x for x in press]) statis = compressed_open('STATIS').readlines() empty_esp = float(statis[3].split()[4]) for guest in self.guests: info("Postprocessing: %s at %s" % (guest.ident, tp_string)) binding_energies = [] for bs_idx, binding_site in enumerate(guest.binding_sites[tp_point]): bs_directory = "%s_bs_%04d" % (guest.ident, bs_idx) output = compressed_open(path.join(bs_directory, 'OUTPUT')).readlines() if 'error - quaternion integrator failed' in output[-1]: # bad guest placement e_vdw = float('nan') e_esp = float('nan') # put position of original as final position, nan anyway try: shutil.move(path.join(bs_directory, 'CONFIG'), path.join(bs_directory, 'REVCON')) except IOError: # CONFIG already moved, just doing update? pass # This is not a 'binding site' magnitude = 0.0 else: # energies statis = compressed_open(path.join(bs_directory, 'STATIS')).readlines() # Need to do a backwards search for the start of the last # block since block size varies with number of atoms # Timestep line will start with more spaces than data line lidx = 0 # start block of final STATIS data for ridx, line in enumerate(statis[::-1]): if line.startswith(' ') and not 'NaN' in line: lidx = ridx break else: warning('No energies in STATIS') e_vdw = float(statis[-lidx].split()[3]) e_esp = float(statis[-lidx].split()[4]) - empty_esp # can just use the peak value magnitude = binding_site[0][2] # get position position revcon = compressed_open(path.join(bs_directory, 'REVCON')).readlines() # If using MD, skip is 4 due to velocities and forces! revcon = revcon[6::2] # Fix molecule if it crosses boundaries # have to make dummy objects with fractional attribute for # the minimum_image function cell = self.cell # For now, put (atom, dummy) in here positions = [] for atom, ratom in zip(guest.atoms, revcon): try: dummy_pos = [float(x) for x in ratom.split()] except ValueError: # DL_POLY prints large numbers wrong, like # 0.3970159038+105; these are too big anyway, so nan them dummy_pos = [float('nan'), float('nan'), float('nan')] # Sometimes atoms get flung out of the cell, but have # high binding energy anyway, ignore them if any((abs(x) > 2*cell.minimum_width) for x in dummy_pos): e_vdw = float('nan') e_esp = float('nan') dummy = Atom(parent=self) # create with the fractional, so position matches dummy.fractional = [x % 1.0 for x in dot(cell.inverse, dummy_pos)] # Put dummy nearest to first atom, if it exists if positions: dummy.pos = minimum_image(positions[0][1], dummy, cell.cell) positions.append((atom, dummy)) else: # ensure anchor is within the unit cell dummy.pos = dot(dummy.fractional, cell.cell) positions.append((atom, dummy)) # Extract the information we need from the tuples positions = [(atom.type, dummy.pos) for atom, dummy in positions] info("Binding site %i: %f kcal/mol, %f occupancy" % (bs_idx, (e_vdw+e_esp), magnitude)) binding_energies.append([magnitude, e_vdw, e_esp, positions]) with open('%s_absl.xyz' % guest.ident, 'w') as absl_out: frame_number = 0 for idx, bind in enumerate(binding_energies): energy = bind[1] + bind[2] if energy > 0 or energy != energy: continue pc_elec = 100*bind[2]/energy this_point = [ "%i\n" % len(bind[3]), # number of atoms # idx, energy, %esp, e_vdw, e_esp, magnitude " BS: %i, Frame: %i, Ebind= %f, esp= %.2f%%, Evdw= %f, " "Eesp= %.2f, occ= %f\n" % (idx, frame_number, energy, pc_elec, bind[1], bind[2], bind[0])] for atom in bind[3]: this_point.append("%-5s " % atom[0]) this_point.append("%12.6f %12.6f %12.6f\n" % tuple(atom[1])) absl_out.writelines(this_point) frame_number += 1 if hasattr(guest, 'binding_energies'): guest.binding_energies[tp_point] = binding_energies else: guest.binding_energies = {tp_point: binding_energies} unneeded_files = options.gettuple('absl_delete_files') remove_files(unneeded_files) keep_files = options.gettuple('absl_compress_files') compress_files(keep_files) os.chdir(startdir) def fold_and_maxima(self, fold=True, find_maxima=True, tp_point=None, sigma=2.0, radius=0.31, cutoff=0.0, write=False): """Determine the positions of maxima and produce an xyz xyz file.""" from cube import Cube folded = False if fold: fold = self.gcmc_supercell else: fold = None for guest_idx, guest in enumerate(self.guests): guest_locations = {} for site_idx, sites in enumerate(guest.probability): guest_cube = Cube("prob_guest%02i_prob_%02i.cube" % (guest_idx+1, site_idx+1), fold=fold) if fold is not None: debug("Folded cube file: %s" % guest_cube.folded_name) guest_cube.write_cube() folded = True if find_maxima: guest_locations[sites] = guest_cube.maxima( sigma, radius, cutoff, write) if guest_locations: if tp_point: # We can keep them for later too, must create dict # since it might not exist in old calculations if not hasattr(guest, 'guest_locations'): guest.guest_locations = {tp_point: guest_locations} else: guest.guest_locations[tp_point] = guest_locations maxima = [] for sites in guest_locations: atom_name = name_from_types(sites, guest) for atom, magnitude in guest_locations[sites]: maxima.append((magnitude, "%-6s" % atom_name + "%10.6f %10.6f %10.6f " % tuple(atom) + "%10.6f\n" % magnitude)) locations = open("%s-%s.xyz" % (self.name, guest.ident), 'w') locations.write(" %i\nBinding sites at %r\n" % (len(maxima), tp_point)) locations.writelines([x[1] for x in sorted(maxima, reverse=True)]) locations.close() return folded def remove_duplicates(self, tolerance=0.02): """Find overlapping atoms and remove them.""" uniq_atoms = [] found_atoms = [] for atom in self.atoms: for uniq_atom in uniq_atoms: if atom.type != uniq_atom.type: continue elif min_distance(atom, uniq_atom) < tolerance: break # else excutes when not found here else: uniq_atoms.append(atom) debug("Found %i unique atoms in %i" % (len(uniq_atoms), self.natoms)) self.atoms = uniq_atoms def check_connectivity(self): """ Carry out pre-optimisation checks checks on the structure to determine if bonding information is included and if atom types are needed. No bonding is inferred. Return True if connectivity is bad. :return: bool """ if not self.bonds: warning("No bonding information found. " "Typing and optimisation will fail.") return True for atom in self.atoms: if not atom.uff_type or atom.uff_type == '?': debug("Untyped atom found.") return True return False def check_close_contacts(self, absolute=1.0, covalent=None): """ Check for atoms that are too close. Specify either an absolute distance in Angstrom or a scale factor for the sum of covalent radii. If a covalent factor is specified it will take priority over an absolute distance. Return True if close contacts found, else return False. """ close_contact_found = False for atom_idx, atom in enumerate(self.atoms): for other_idx, other in enumerate(self.atoms): if other_idx >= atom_idx: # short circuit half the calculations # Can we do combinations with idx in 2.7 break if covalent is not None: tolerance = covalent * (atom.covalent_radius + other.covalent_radius) else: tolerance = absolute if min_distance(atom, other) < tolerance: bond_ids = tuple(sorted([atom_idx, other_idx])) if bond_ids not in self.bonds: warning("Close atoms: %s(%i) and %s(%i)" % (atom.site, atom_idx, other.site, other_idx)) close_contact_found = True return close_contact_found def bond_length_check(self, too_long=1.25, too_short=0.7): """ Check if all bonds fall within a sensible range of scale factors of the sum of the covalent radii. Return True if bad bonds are found, otherwise False. """ bad_bonds = False for bond in self.bonds: atom = self.atoms[bond[0]] other = self.atoms[bond[1]] distance = min_distance(atom, other) bond_dist = (atom.covalent_radius + other.covalent_radius) if distance > bond_dist * too_long: warning("Long bond found: %s(%i) and %s(%i) = %.2f A" % (atom.site, bond[0], other.site, bond[1], distance)) bad_bonds = True elif distance < bond_dist * too_short: warning("Short bond found: %s(%i) and %s(%i) = %.2f A" % (atom.site, bond[0], other.site, bond[1], distance)) bad_bonds = True return bad_bonds def gen_supercell(self, options): """Cacluate the smallest satisfactory supercell and set attribute.""" config_supercell = options.gettuple('mc_supercell', int) config_cutoff = options.getfloat('mc_cutoff') if config_cutoff < 12: warning("Simulation is using a very small cutoff! I hope you " "know, what you are doing!") minimum_supercell = self.cell.minimum_supercell(config_cutoff) supercell = tuple(max(i, j) for i, j in zip(config_supercell, minimum_supercell)) if self.gcmc_supercell != supercell: info("%s supercell requested in config" % str(config_supercell)) info("%s minimum supercell for a %.1f cutoff" % (str(minimum_supercell), config_cutoff)) info("Constructing %s supercell for gcmc." % str(supercell)) self.gcmc_supercell = supercell def supercell(self, scale): """ Iterate over all the atoms of supercell where scale is an integer to scale uniformly or triplet with scale factors for each direction. """ # Beware supercells larger than 2147483647 are not supported in # python 2 if isinstance(scale, int): scale = (scale, scale, scale) for x_super in range(scale[0]): for y_super in range(scale[1]): for z_super in range(scale[2]): offset = dot((x_super, y_super, z_super), self.cell.cell) for atom in self.atoms: newatom = copy(atom) newatom.translate(offset) yield newatom def order_by_types(self): """ Sort the atoms alphabetically and group them as in old versions. Update bonds to reflect new ordering. """ # Append indexes to each and sort on type (legacy sorting) new_atoms = sorted(enumerate(self.atoms), key=lambda x: (x[1].type, x[1].site)) self.atoms = [x[1] for x in new_atoms] if hasattr(self, 'bonds'): # dict of old_index: new_index translation_table = dict((j, i) for i, j in enumerate(x[0] for x in new_atoms)) new_bonds = {} # Just translate atom indexes, bond data is the same for bond in self.bonds: new_bond = tuple(sorted([translation_table[bond[0]], translation_table[bond[1]]])) new_bonds[new_bond] = self.bonds[bond] self.bonds = new_bonds def gen_types_from_bonds(self): """ Pass the bonding information into openbabel to get the atomic types. Modifies the atoms in place to set their uff_type attribute. """ info("Generating UFF atom types from bonding information") if not self.bonds: error('No bonds, cannot generate types!') return # import these locally so we can run faps without them import openbabel as ob import pybel # Construct the molecule from atoms and bonds obmol = ob.OBMol() obmol.BeginModify() for atom in self.atoms: new_atom = obmol.NewAtom() new_atom.SetAtomicNum(atom.atomic_number) for bond, bond_order in self.bonds.items(): # Remember openbabel indexes from 1 obmol.AddBond(bond[0]+1, bond[1]+1, OB_BOND_ORDERS[bond_order]) obmol.EndModify() pybel_mol = pybel.Molecule(obmol) # need to tell the typing system to ignore all atoms in the setup # or it will silently crash with memory issues constraint = ob.OBFFConstraints() for at_idx in range(pybel_mol.OBMol.NumAtoms()): constraint.AddIgnore(at_idx) uff = ob.OBForceField_FindForceField('uff') uff.Setup(pybel_mol.OBMol, constraint) uff.GetAtomTypes(pybel_mol.OBMol) # Dative nitrogen bonds break aromaticity determination from resonant # structures, so make anything with an aromatic bond be aromatic for at_idx, atom, ob_atom in zip(count(), self.atoms, pybel_mol): uff_type = ob_atom.OBAtom.GetData("FFAtomType").GetValue() if atom.type in ['C', 'N', 'O', 'S']: for bond, bond_order in self.bonds.items(): if at_idx in bond and bond_order == 1.5: uff_type = uff_type[0] + '_R' break atom.uff_type = uff_type def gen_neighbour_list(self, force=False): """All atom pair distances.""" # This can be expensive so skip if already calcualted if not force: for atom in self.atoms: if not hasattr(atom, 'neighbours'): break else: # finished loop over all atoms debug("Neighbour list already calculated") return debug("Calculating neighbour list.") cell = self.cell.cell inv_cell = self.cell.inverse cpositions = [atom.ipos(cell, inv_cell) for atom in self.atoms] fpositions = [atom.ifpos(inv_cell) for atom in self.atoms] cell = cell.tolist() # loop over all pairs to find minimum periodic distances for atom, a_cpos, a_fpos in zip(self.atoms, cpositions, fpositions): neighbours = [] for o_idx, o_cpos, o_fpos in zip(count(), cpositions, fpositions): sep = min_dist(a_cpos, a_fpos, o_cpos, o_fpos, cell) neighbours.append((sep, o_idx)) # First one is self == 0 # save in incresaing distance order atom.neighbours = sorted(neighbours)[1:] ## Neighbourlist printed in VASP style #for idx, atom in enumerate(self.atoms): # print("%4i" % (idx+1) + # "%7.3f%7.3f%7.3f" % tuple(atom.ifpos(inv_cell)) + # "-" + # "".join("%4i%5.2f" % (y+1, x) for x, y in atom.neighbours if x<2.5)) def surface_area(self, probe=None, value=None, delete=False): """ Helper: Return all {probe:area} if no arguments given Return the area or None for a given probe Set area if value given Delete value if delete is True Areas in A^2 """ surface_areas = self.properties.get('surface_area', {}) if value is not None: surface_areas[probe] = value self.properties['surface_area'] = surface_areas elif delete: # Set it to None to avoid KeyErrors surface_areas[probe] = None del surface_areas[probe] self.properties['surface_area'] = surface_areas elif probe is not None: return surface_areas.get(probe, None) else: return surface_areas def sub_property(self, name, probe=None, value=None, delete=False): """ Helper: Return all {probe:value} if no arguments given Return the value or None for a given probe Set area if value given Delete value if delete is True Units are based on Angstrom """ property_data = self.properties.get(name, {}) if value is not None: property_data[probe] = value self.properties[name] = property_data elif delete: # Set it to None to avoid KeyErrors property_data[probe] = None del property_data[probe] self.properties[name] = property_data elif probe is not None: return property_data.get(probe, None) else: return property_data def void_volume(self): """Estimate the void volume based on VdW radii.""" initial_resolution = 0.2 params = self.cell.params cell = self.cell.cell inv_cell = np.linalg.inv(cell.T) grid_size = [int(ceil(x/initial_resolution)) for x in params[:3]] print(grid_size) grid_resolution = [params[0]/grid_size[0], params[1]/grid_size[1], params[2]/grid_size[2]] print(grid_resolution) grid = np.zeros(grid_size, dtype=bool) atoms = [(atom.ipos(cell), inv_cell.tolist(), atom.ifpos(inv_cell), atom.vdw_radius) for atom in self.atoms] for x_idx in range(grid_size[0]): print(x_idx) for y_idx in range(grid_size[1]): print(y_idx) print(grid.sum()) for z_idx in range(grid_size[2]): grid_pos = [x_idx*grid_resolution[0], y_idx*grid_resolution[1], z_idx*grid_resolution[2]] grid_fpos = [float(x_idx)/grid_size[0], float(y_idx)/grid_size[1], float(z_idx)/grid_size[2]] for pos, fpos, radius in atoms: dist = min_dist(pos, fpos, grid_pos, grid_fpos, cell) if dist < radius: grid[x_idx, y_idx, z_idx] = 1 break print(grid.sum()) @property def types(self): """Ordered list of atom types.""" return [atom.type for atom in self.atoms] @property def atomic_numbers(self): """Ordered list of atomic numbers.""" return [atom.atomic_number for atom in self.atoms] @property def weight(self): """Unit cell weight.""" return sum([atom.mass for atom in self.atoms]) @property def volume(self): """Unit cell volume.""" return self.cell.volume @property def natoms(self): """Number of atoms in the unit cell.""" return len(self.atoms) @property def symmetry_tree(self): """Tree of atoms that are symmetrically equivalent.""" tree = {} for atom_id, atom in enumerate(self.atoms): if atom.site in tree: tree[atom.site].append(atom_id) else: tree[atom.site] = [atom_id] if len(tree) == 1 and None in tree: return dict((i, [i]) for i in range(self.natoms)) else: return tree def get_gcmc_supercell(self): """Supercell used for gcmc.""" return self.properties.get('supercell', (1, 1, 1)) def set_gcmc_supercell(self, value): """Set the supercell property for the structure.""" self.properties['supercell'] = value gcmc_supercell = property(get_gcmc_supercell, set_gcmc_supercell) # TODO(tdaff): properties: density, surface area, dft_energy, absorbance class Cell(object): """ Crystollagraphic cell representations and interconversion methods. Setter methods can be defined for different file types, however .cell and .params will be self-consistent if set directly. """ def __init__(self): """Default to a 1A cubic box.""" self._cell = array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]) self._params = (1.0, 1.0, 1.0, 90.0, 90.0, 90.0) self._inverse = None def from_pdb(self, line): """Extract cell from CRYST1 line in a pdb.""" # Must use fixed widths as -ve numbers do not leave gaps to .split() self.params = (float(line[6:15]), float(line[15:24]), float(line[24:33]), float(line[33:40]), float(line[40:47]), float(line[47:54])) def from_lines(self, lines, scale=1.0): """Extract cell from a 3-line POSCAR cell representation.""" self.cell = array([[float(x) * scale for x in lines[0].split()], [float(x) * scale for x in lines[1].split()], [float(x) * scale for x in lines[2].split()]]) def to_vector_strings(self, scale=1, bohr=False, fmt="%20.12f"): """Generic [Super]cell vectors in Angstrom as a list of strings.""" out_format = 3 * fmt + "\n" # If the supercell is more than 2147483647 in any direction this # will fail in python 2, but 'long' removed for py3k forward # compatibility if isinstance(scale, int): scale = [scale, scale, scale] # else assume an iterable 3-vector if bohr: scale = [x / BOHR2ANG for x in scale] return [out_format % tuple(scale[0] * self.cell[0]), out_format % tuple(scale[1] * self.cell[1]), out_format % tuple(scale[2] * self.cell[2])] def minimum_supercell(self, cutoff): """Calculate the smallest supercell with a half-cell width cutoff.""" a_cross_b = cross(self.cell[0], self.cell[1]) b_cross_c = cross(self.cell[1], self.cell[2]) c_cross_a = cross(self.cell[2], self.cell[0]) volume = dot(self.cell[0], b_cross_c) widths = [volume / norm(b_cross_c), volume / norm(c_cross_a), volume / norm(a_cross_b)] return tuple(int(ceil(2*cutoff/x)) for x in widths) @property def minimum_width(self): """The shortest perpendicular distance within the cell.""" a_cross_b = cross(self.cell[0], self.cell[1]) b_cross_c = cross(self.cell[1], self.cell[2]) c_cross_a = cross(self.cell[2], self.cell[0]) volume = dot(self.cell[0], b_cross_c) return volume / min(norm(b_cross_c), norm(c_cross_a), norm(a_cross_b)) @property def imcon(self): """Guess cell shape and return DL_POLY imcon key.""" keys = {'none': 0, 'cubic': 1, 'orthorhombic': 2, 'parallelepiped': 3} if np.all(self.cell == 0): return keys['none'] elif np.all(self.params[3:] == 90): if self.params[0] == self.params[1] == self.params[2]: return keys['cubic'] else: return keys['orthorhombic'] else: return keys['parallelepiped'] @property def crystal_system(self): """Return the IUCr designation for the crystal system.""" #FIXME(tdaff): must be aligned with x to work if self.alpha == self.beta == self.gamma == 90: if self.a == self.b == self.c: return 'cubic' elif self.a == self.b or self.a == self.c or self.b == self.c: return 'tetragonal' else: return 'orthorhombic' elif self.alpha == self.beta == 90: if self.a == self.b and self.gamma == 120: return 'hexagonal' else: return 'monoclinic' elif self.alpha == self.gamma == 90: if self.a == self.c and self.beta == 120: return 'hexagonal' else: return 'monoclinic' elif self.beta == self.gamma == 90: if self.b == self.c and self.alpha == 120: return 'hexagonal' else: return 'monoclinic' elif self.a == self.b == self.c and self.alpha == self.beta == self.gamma: return 'trigonal' else: return 'triclinic' @property def volume(self): """Calculate cell volume a.bxc.""" b_cross_c = cross(self.cell[1], self.cell[2]) return dot(self.cell[0], b_cross_c) def get_cell(self): """Get the 3x3 vector cell representation.""" return self._cell def set_cell(self, value): """Set cell and params from the cell representation.""" # Class internally expects an array self._cell = array(value).reshape((3,3)) self.__mkparam() self._inverse = np.linalg.inv(self.cell.T) # Property so that params are updated when cell is set cell = property(get_cell, set_cell) def get_params(self): """Get the six parameter cell representation as a tuple.""" return tuple(self._params) def set_params(self, value): """Set cell and params from the cell parameters.""" self._params = value self.__mkcell() self._inverse = np.linalg.inv(self.cell.T) # Property so that cell is updated when params are set params = property(get_params, set_params) @property def inverse(self): """Inverted cell matrix for converting to fractional coordinates.""" try: if self._inverse is None: self._inverse = np.linalg.inv(self.cell.T) except AttributeError: self._inverse = np.linalg.inv(self.cell.T) return self._inverse @property def a(self): """Magnitude of cell a vector.""" return self.params[0] @property def b(self): """Magnitude of cell b vector.""" return self.params[1] @property def c(self): """Magnitude of cell c vector.""" return self.params[2] @property def alpha(self): """Cell angle alpha.""" return self.params[3] @property def beta(self): """Cell angle beta.""" return self.params[4] @property def gamma(self): """Cell angle gamma.""" return self.params[5] # Implementation details -- directly access the private _{cell|param} # attributes; please don't break. def __mkcell(self): """Update the cell representation to match the parameters.""" a_mag, b_mag, c_mag = self.params[:3] alpha, beta, gamma = [x * DEG2RAD for x in self.params[3:]] a_vec = array([a_mag, 0.0, 0.0]) b_vec = array([b_mag * cos(gamma), b_mag * sin(gamma), 0.0]) c_x = c_mag * cos(beta) c_y = c_mag * (cos(alpha) - cos(gamma) * cos(beta)) / sin(gamma) c_vec =
array([c_x, c_y, (c_mag**2 - c_x**2 - c_y**2)**0.5])
numpy.array
import numpy as np from scipy import optimize import z_l_v import logging from numerik import nr_ls from numerik import rref, ref import itertools from setup_results_log import notify_status_func, setup_log_file import timeit eps = np.finfo(float).eps np.set_printoptions(linewidth=200) setup_log_file('log_bsp_pat_ue_03_2.log', with_console=False) # Modell feststellen alpha_tr, epsilon, sigma, psi, omega = z_l_v.use_pr_eos() p = 35. # bar temp = 273.15 + 220. # K t_flash = 273.15 + 60 # K t0_ref = 298.15 # K r = 8.314 # J/(mol K) namen = ['CO', 'H2', 'CO2', 'H2O', 'CH4', 'NH3', 'AR', 'O2', 'N2'] elemente = ['C', 'O', 'N', 'H', 'AR'] atom_m = np.array([ [1, 0, 1, 0, 1, 0, 0, 0, 0], [1, 0, 2, 1, 0, 0, 0, 2, 0], [0, 0, 0, 0, 0, 1, 0, 0, 2], [0, 2, 0, 2, 4, 3, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0] ], dtype=float) mm_el = np.array([ 12.011, 15.999, 14.007, 1.008, 39.948, ]) / 1000. # kg/gmol mm_k = atom_m.T.dot(mm_el) red_atom_m = rref(ref(atom_m)[0]) rho = int(
np.linalg.matrix_rank(red_atom_m)
numpy.linalg.matrix_rank
""" Classes for hierarchical parameter inference. """ from itertools import compress import bilby import numpy as np from lintegrate import logtrapz from scipy.interpolate import splev, splrep from scipy.stats import expon, gaussian_kde, truncnorm from .utils import ellipticity_to_q22, q22_to_ellipticity #: Allowed distributions and their required hyperparameters DISTRIBUTION_REQUIREMENTS = { "exponential": ["mu"], "gaussian": ["mu", "sigma", "weight"], "deltafunction": ["peak"], "powerlaw": ["alpha", "minimum", "maximum"], "histogram": ["weight"], } class BaseDistribution(object): """ The base class for the distribution, as defined by a set of hyperparameters, that you want to fit. Parameters ---------- name: str The parameter for which this distribution is the prior. disttype: str The type of distribution, e.g., 'exponential', 'gaussian'. hyperparameters: dict A dictionary of hyperparameters for the distribution with the keys giving the parameter names, and values giving their fixed value, or a :class:`bilby.core.prior.Prior` for values that are to be inferred. low: float The lower bound of the distribution high: float The upper bound of the distribution """ def __init__(self, name, disttype, hyperparameters={}, low=-np.inf, high=np.inf): self.name = name # the parameter name self.disttype = disttype self.hyperparameters = hyperparameters self.low = low self.high = high if self.low >= self.high: raise ValueError("Lower bound is higher than upper bound!") @property def disttype(self): return self._disttype @disttype.setter def disttype(self, disttype): if disttype.lower() not in DISTRIBUTION_REQUIREMENTS.keys(): raise ValueError('Distribution name "{}" is not known'.format(disttype)) else: self._disttype = disttype.lower() @property def hyperparameters(self): return self._hyperparameters @hyperparameters.setter def hyperparameters(self, hyperparameters): if isinstance(hyperparameters, dict): # check is contains the required parameter names for key in hyperparameters.keys(): if key.lower() not in DISTRIBUTION_REQUIREMENTS[self.disttype]: raise KeyError( 'Unknown parameter "{}" for distribution ' '"{}"'.format(key, self.disttype) ) self._hyperparameters = { key.lower(): value for key, value in hyperparameters.items() } else: raise TypeError("hyperparameters must be a dictionary") # set fixed values self.fixed = self._hyperparameters @property def parameters(self): return list(self.hyperparameters.keys()) @property def values(self): return list(self.hyperparameters.values()) @property def unpacked_parameters(self): params = [] for key, value in self.hyperparameters.items(): if isinstance(value, (list, np.ndarray)): for i in range(len(value)): params.append("{0}{1:d}".format(key, i)) else: params.append(key) return params @property def unpacked_values(self): values = [] for key, value in self.hyperparameters.items(): if isinstance(value, (list, np.ndarray)): for i in range(len(value)): values.append(value[i]) else: values.append(value) return values def __getitem__(self, item): if item.lower() in self.parameters: return self.hyperparameters[item.lower()] elif item.lower() in self.unpacked_parameters: return self.unpacked_values[self.unpacked_parameters.index(item.lower())] elif item.lower() in DISTRIBUTION_REQUIREMENTS[self.disttype]: return None else: raise KeyError('"{}" is not a parameter in this distribution'.format(item)) def __setitem__(self, item, value): if item.lower() not in self.hyperparameters.keys(): if item.lower() in DISTRIBUTION_REQUIREMENTS[self.disttype]: self._hyperparameters[item.lower()] = value else: raise KeyError( '"{}" is not a parameter in this distribution'.format(item) ) else: self._hyperparameters[item.lower()] = value @property def fixed(self): """ Return a dictionary keyed to parameter names and with boolean values indicating whether the parameter is fixed (True), or to be inferred (False). """ return self._fixed @fixed.setter def fixed(self, hyperparameters): self._fixed = dict() for param, value in hyperparameters.items(): if isinstance(value, (bilby.core.prior.Prior, bilby.core.prior.PriorDict)): self._fixed[param] = False elif isinstance(value, (list, np.ndarray)): self._fixed[param] = [] for i in range(len(value)): if isinstance( value[i], (bilby.core.prior.Prior, bilby.core.prior.PriorDict) ): self._fixed[param].append(False) elif isinstance(value[i], (int, float)): self._fixed[param].append(True) else: raise TypeError("Hyperparameter type is not valid") elif isinstance(value, (int, float)): self._fixed[param] = True else: raise TypeError("Hyperparameter type is not valid") @property def unpacked_fixed(self): """ Return a flattened version of ``fixed``, with multivalued parameters indexed. """ fixed = dict() for param, value in zip(self.unpacked_parameters, self.unpacked_values): if isinstance(value, (bilby.core.prior.Prior, bilby.core.prior.PriorDict)): fixed[param] = False elif isinstance(value, (int, float)): fixed[param] = True else: raise TypeError("Hyperparameter type is not valid") return fixed @property def unknown_parameters(self): """ A list of the parameters that are to be inferred. """ return list( compress( self.unpacked_parameters, ~np.array(list(self.unpacked_fixed.values())) ) ) @property def unknown_priors(self): """ A list of the :class:`~bilby.core.prior.Prior` for the parameters that are to be inferred. """ return list( compress( self.unpacked_values, ~np.array(list(self.unpacked_fixed.values())) ) ) def log_pdf(self, value, hyperparameters): """ The natural logarithm of the distribution's probability density function at the given value. Parameters ---------- value: float The value at which to evaluate the probability. hyperparameters: dict A dictionary of the hyperparameter values that define the current state of the distribution. Returns ------- lnpdf: The natural logarithm of the probability. """ return np.nan def pdf(self, value, hyperparameters): """ The distribution's probability density function at the given value. Parameters ---------- value: float The value at which to evaluate the probability. hyperparameters: dict A dictionary of the hyperparameter values that define the current state of the distribution. Returns ------- pdf: The probability density. """ return np.exp(self.log_pdf(value, hyperparameters)) def sample(self, hyperparameters, size=1): """ Draw a sample from the distribution as defined by the given hyperparameters. Parameters ---------- hyperparameters: dict A dictionary of the hyperparameter values that define the current state of the distribution. size: int The number of samples to draw from the distribution. Returns ------- sample: A sample, or set of samples, from the distribution. """ return None class BoundedGaussianDistribution(BaseDistribution): """ A distribution to define estimating the parameters of a (potentially multi-modal) bounded Gaussian distribution. An example of using this distribution for a two component Gaussian distribution bounded at zero and with unknown mean, standard deviations and weights would be: >>> from bilby.core.prior import HalfNormal, LogUniform, DirichletPriorDict >>> # set priors for means (half-Normal distributions with mode at 0) >>> mus = [HalfNormal(10.0, name="mu0"), HalfNormal(10.0, name="mu1")] >>> # set priors for standard deviations (log uniform distributions) >>> sigmas = [LogUniform(name="sigma0", minimum=0.0001, maximum=100.0), LogUniform(name="sigma1", minimum=0.0001, maximum=100.0)] >>> # set a Dirichlet prior on the weights (i.e., they must add up to 1) >>> weights = DirichletPriorDict(n_dim=2, label="weight") >>> dist = BoundedGaussianDistribution("x", mus=mus, sigmas=sigmas, weights=weights) Note that if using a Dirichlet prior on the weights all weights must be included and none can be set as fixed. Parameters ---------- name: str See :class:`~cwinpy.hierarchical.BaseDistribution` mus: array_like A list of values of the means of each mode of the Gaussian. sigmas: array_like A list of values of the standard deviations of each mode of the Gaussian. weights: array_like A list of values of the weights (relative probabilities) of each mode. This will default to equal weights if not given. If wanting to estimate multiple weights a DirichletPriorDict should be used as in the example above. low: float The lower bound of the distribution (defaults to 0, i.e., only positive values are allowed) high: float The upper bound of the distribution (default to infinity) """ def __init__(self, name, mus=[], sigmas=[], weights=None, low=0.0, high=np.inf): gaussianparameters = {"mu": [], "sigma": [], "weight": []} if isinstance(mus, (int, float, bilby.core.prior.Prior)): mus = [mus] elif not isinstance(mus, (list, np.ndarray)): raise TypeError("Unknown type for 'mus'") if isinstance(sigmas, (int, float, bilby.core.prior.Prior)): sigmas = [sigmas] elif not isinstance(sigmas, (list, np.ndarray)): raise TypeError("Unknown type for 'sigmas'") if weights is None: weights = [1] * len(mus) elif not isinstance( weights, (list, np.ndarray, bilby.core.prior.DirichletPriorDict) ): raise TypeError("Unknown type for 'weights'") if isinstance(weights, bilby.core.prior.DirichletPriorDict): # DirichletPriorDict has length one less than the number of weights nweights = len(weights) + 1 for wv in weights.values(): gaussianparameters["weight"].append(wv) else: nweights = len(weights) # set the number of modes self.nmodes = len(mus) if len(mus) != len(sigmas) or nweights != len(mus): raise ValueError("'mus', 'sigmas' and 'weights' must be the same length") if self.nmodes < 1: raise ValueError("Gaussian must have at least one mode") for i in range(self.nmodes): gaussianparameters["mu"].append(mus[i]) gaussianparameters["sigma"].append(sigmas[i]) if isinstance(weights, (list, np.ndarray)): gaussianparameters["weight"].append(weights[i]) # initialise super().__init__( name, "gaussian", hyperparameters=gaussianparameters, low=low, high=high ) def log_pdf(self, value, hyperparameters={}): """ The natural logarithm of the pdf of a 1d (potentially multi-modal) Gaussian probability distribution. Parameters ---------- value: float The value at which the probability is to be evaluated. hyperparameters: dict A dictionary containing the current values of the hyperparameters that need to be inferred. If there are multiple modes and weights are not fixed then the hyperparameters should include ``n-1`` weights values, where ``n`` is the number of modes. Returns ------- logpdf: The natural logarithm of the probability density at the given value. """ if np.any((value < self.low) | (value > self.high)): return -np.inf mus = self["mu"] sigmas = self["sigma"] if isinstance(self.fixed["weight"], (list, np.ndarray)): if np.any(np.asarray(self.fixed["weight"]) == True): # noqa: E712 weights = self["weight"] else: # all should be False for Dirichlet priors weights = np.zeros(self.nmodes) else: weights = np.zeros(self.nmodes) # get current mus and sigmas from values for i in range(self.nmodes): if not self.fixed["mu"][i]: param = "mu{}".format(i) try: mus[i] = hyperparameters[param] except KeyError: raise KeyError( "Cannot calculate log probability when " "value '{}' is not given".format(param) ) if not self.fixed["sigma"][i]: param = "sigma{}".format(i) try: sigmas[i] = hyperparameters[param] except KeyError: raise KeyError( "Cannot calculate log probability when " "value '{}' is not given".format(param) ) if i < (self.nmodes - 1): if not self.fixed["weight"][i]: param = "weight{}".format(i) try: weights[i] = hyperparameters[param] except KeyError: raise KeyError( "Cannot calculate log probability when " "value '{}' is not given".format(param) ) if weights[self.nmodes - 1] == 0.0: # set final weight weights[self.nmodes - 1] = 1.0 - np.sum(weights[:-1]) if np.any(np.asarray(sigmas) <= 0.0): return -np.inf if np.any(np.asarray(weights) <= 0.0): return -np.inf # normalise weights lweights = np.log(np.asarray(weights) / np.sum(weights)) # get log pdf if isinstance(value, (float, int)): logpdf = -np.inf elif isinstance(value, (list, np.ndarray)): logpdf =
np.full_like(value, -np.inf)
numpy.full_like
import matplotlib.pyplot as plt import numpy as np import pywt import time import pandas as pd from sklearn.metrics import accuracy_score, log_loss, f1_score, confusion_matrix from sklearn.utils.multiclass import unique_labels def plot_sample(idx, data, lx_cols, ly_cols, rx_cols, ry_cols): """Plotting left and right eyes movements for a sample. Args: idx: Index of observation in data. data: Data to be sampled with idx lx_cols: Columns labels for left eye values on X axis ly_cols: Columns labels for left eye values on Y axis rx_cols: Columns labels for right eye values on X axis ry_cols: Columns labels for right eye values on Y axis """ # Plotting left and right eyes movements for samples fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(15,4)) ax[0].set_title('Eye coordinates on X axis - index:' + str(idx) + ' | subject:' + str(data.loc[idx,['sid']][0])) ax[0].plot(np.arange(0, len(lx_cols)), data.loc[idx, lx_cols], label='left', color='b') ax[0].plot(np.arange(0, len(rx_cols)), data.loc[idx, rx_cols], label='right', color='r') ax[0].legend(loc='lower left') ax[0].set_xlabel('Frame') ax[0].set_ylabel('Position') ax[0].set_ylim((-1500, 1500)) ax[1].set_title('Eye coordinates on Y axis - index:' + str(idx) + ' | subject:' + str(data.loc[idx,['sid']][0])) ax[1].plot(np.arange(0, len(ly_cols)), data.loc[idx, ly_cols], label='left', color='b') ax[1].plot(np.arange(0, len(ry_cols)), data.loc[idx, ry_cols], label='right', color='r') ax[1].legend(loc='lower left') ax[1].set_xlabel('Frame') ax[1].set_ylabel('Position') ax[1].set_ylim((-1500, 1500)) plt.show() def train_predict(clf, X_train, y_train, X_test, y_test, comments, logloss=True, train=True): ''' Fit and predict data, evaluating metrics. Args: clf: Classifier X_train: Features training set y_train: Income training set X_test: Features testing set y_test: Income testing set comments: Textual comments and notes logloss: Wheter to evaluate logloss metric train: If false does not train, just predict Returns: res: Dict containing results ''' res = {} # results start = time.time() if train: clf.fit(X_train, y_train) # predicted values pred_train = clf.predict(X_train) pred_test = clf.predict(X_test) # storing results res['train_acc'] = accuracy_score(y_train, pred_train) res['test_acc'] = accuracy_score(y_test, pred_test) res['train_f1'] = f1_score(y_train, pred_train, average='weighted') res['test_f1'] = f1_score(y_test, pred_test, average='weighted') # predicted prob if logloss: pred_probs_train = clf.predict_proba(X_train) pred_probs_test = clf.predict_proba(X_test) # storing results res['train_logloss'] = log_loss(y_train, pred_probs_train) res['test_logloss'] = log_loss(y_test, pred_probs_test) else: res['train_logloss'] = None res['test_logloss'] = None # storing results res['notes'] = comments res['time'] = time.time() - start # Return the results return res, pred_train, pred_test def aggPosition(x): """Aggregate position data inside a segment Args: x: Position values in a segment Returns: Aggregated position (single value) """ return x.mean() def aggVelocity(x): """Aggregate velocity inside a segment of data Args: x: Position values in a segment Returns: Aggregated velocity (single value) """ v = np.gradient(x) # Return the highest absolute peak return v[np.argmax(np.abs(v))] def aggAcceleration(x): """Aggregate acceleration inside a segment of data Args: x: Position values in a segment Returns: Aggregated velocity (single value) """ a = np.gradient(np.gradient(x)) # Return the highest absolute peak return a[np.argmax(np.abs(a))] def applyfiltering(x, wavelet='db2', mode='smooth'): """Applying low-pass filtering for the elimination of high-frequency effects using single level Discrete Wavelet Transform (DWT) Args: x: Input signal wavelet: Wavelet to use mode: Signal extension mode Returns: Filtered signal """ # Applying Discrete Wavelet Transform (DWT) cA, cD = pywt.dwt(x, wavelet, mode=mode) # # Recovering signal filtered # x_rec = pywt.idwt(cA, None, wavelet, mode=mode) return np.copy(cA) def getArrays(data, sid_col, sx_cols, sy_cols, lx_cols, ly_cols, rx_cols, ry_cols): """Applying low-pass filtering for the elimination of high-frequency effects using single level Discrete Wavelet Transform (DWT) Args: data: Dataset with samples of the experiment sid_col: Columns with subject identifier sx_cols: Columns with stimulus point placements on X axis sy_cols: Columns with stimulus point placements on Y axis lx_cols: Columns with left eye gaze points on X axis ly_cols: Columns with left eye gaze points on Y axis rx_cols: Columns with right eye gaze points on X axis ry_cols: Columns with right eye gaze points on Y axis Returns: Filtered signal """ # Converting to array type sid = np.asarray(data[sid_col]) # 'subject id' column sx = np.asarray(data[sx_cols]) # 'sx0'..'sx2047' columns sy = np.asarray(data[sy_cols]) # 'sy0'..'sy2047' columns lx = np.asarray(data[lx_cols]) # 'lx0'..'lx2047' columns ly = np.asarray(data[ly_cols]) # 'ly0'..'ly2047' columns rx = np.asarray(data[rx_cols]) # 'rx0'..'rx2047' columns ry = np.asarray(data[ry_cols]) # 'ry0'..'ry2047' columns return sid, sx, sy, lx, ly, rx, ry def doSplit(lx, ly, rx, ry, nsegments, trim=False): """" Segments each sample in a number of parts with the same lenght Arguments: lx: Left eye gaze points on X axis ly: Left eye gaze points on X axis rx: Left eye gaze points on X axis ry: Left eye gaze points on X axis nsegments: Number of segments Returns: slx: List of arrays, one array per segment sly: List of arrays, one array per segment srx: List of arrays, one array per segment sry: List of arrays, one array per segment """ assert len(lx)==len(ly)==len(rx)==len(ry), 'Arrays with different size' # Splitting and defining segments nrows = len(lx) slx = [] sly = [] srx = [] sry = [] for i in
np.arange(0,nrows)
numpy.arange
""" Experimented with simple VAE, decided to keep the code. Heavily inspired by https://github.com/FelixMohr/Deep-learning-with-Python/blob/master/VAE.ipynb """ import sys import numpy as np from matplotlib import pyplot as plt from tensorflow.examples.tutorials.mnist import input_data from snake_rl.utils import init_logger from snake_rl.utils.misc import experiment_dir, model_dir from snake_rl.utils.dnn_utils import * logger = logging.getLogger(os.path.basename(__file__)) EXPERIMENT = 'mnist_vae_experiment' N_LATENT = 20 def make_prior(): mu = tf.zeros(N_LATENT) sigma = tf.ones(N_LATENT) return tf.contrib.distributions.MultivariateNormalDiag(mu, sigma) def make_encoder(x_input): x_input = tf.reshape(x_input, shape=[-1, 28, 28, 1]) x = conv(x_input, 32, 3, 2) x = conv(x, 64, 3, 2) x = conv(x, 128, 3, 2) x = tf.contrib.layers.flatten(x) mu = dense(x, N_LATENT) sigma = dense(x, N_LATENT, activation=tf.nn.softplus) # softplus is log(exp(x) + 1) return tf.contrib.distributions.MultivariateNormalDiag(mu, sigma) def make_mlp_encoder(x_input): x = tf.layers.flatten(x_input) x = tf.layers.dense(x, 200, tf.nn.relu) x = tf.layers.dense(x, 200, tf.nn.relu) loc = tf.layers.dense(x, N_LATENT) scale = tf.layers.dense(x, N_LATENT, tf.nn.softplus) return tf.contrib.distributions.MultivariateNormalDiag(loc, scale) def make_decoder(sampled_z): x = tf.layers.dense(sampled_z, 24, tf.nn.relu) x = tf.layers.dense(x, 7 * 7 * 64, tf.nn.relu) x = tf.reshape(x, [-1, 7, 7, 64]) x = tf.layers.conv2d_transpose(x, 64, 3, 2, 'SAME', activation=tf.nn.relu) x = tf.layers.conv2d_transpose(x, 32, 3, 2, 'SAME', activation=tf.nn.relu) x = tf.layers.conv2d_transpose(x, 1, 3, 1, 'SAME') img = tf.reshape(x, [-1, 28, 28]) img_distribution = tf.contrib.distributions.Bernoulli(img) img = img_distribution.probs img_distribution = tf.contrib.distributions.Independent(img_distribution, 2) return img, img_distribution def make_mlp_decoder(sampled_z, data_shape): x = sampled_z x = tf.layers.dense(x, 200, tf.nn.relu) x = tf.layers.dense(x, 200, tf.nn.relu) logit = tf.layers.dense(x, np.prod(data_shape)) logit = tf.reshape(logit, [-1] + data_shape) img_distribution = tf.contrib.distributions.Bernoulli(logit) img = img_distribution.probs img_distribution = tf.contrib.distributions.Independent(img_distribution, 2) return img, img_distribution def main(): """Script entry point.""" init_logger() mnist = input_data.read_data_sets(os.path.join(experiment_dir(EXPERIMENT), 'MNIST_data')) tf.reset_default_graph() batch_size = 128 x_input = tf.placeholder(dtype=tf.float32, shape=[None, 28, 28], name='X') prior = make_prior() posterior = make_encoder(x_input) mu, sigma = posterior.mean(), posterior.stddev() z = posterior.sample() generated_img, output_distribution = make_decoder(z) likelihood = output_distribution.log_prob(x_input) divergence = tf.distributions.kl_divergence(posterior, prior) elbo = tf.reduce_mean(likelihood - divergence) loss = -elbo global_step = tf.train.get_or_create_global_step() optimizer = tf.train.AdamOptimizer(1e-3).minimize(loss, global_step=global_step) with tf.Session() as session: saver = tf.train.Saver(max_to_keep=3) checkpoint_dir = model_dir(EXPERIMENT) try: saver.restore(session, tf.train.latest_checkpoint(checkpoint_dir=checkpoint_dir)) except ValueError: logger.info('Didn\'t find a valid restore point, start from scratch') session.run(tf.global_variables_initializer()) batch = [np.reshape(b, [28, 28]) for b in mnist.train.next_batch(batch_size=batch_size)[0]] i = tf.train.global_step(session, tf.train.get_global_step()) for epoch in range(20): values = session.run( [generated_img, loss, likelihood, divergence, mu, sigma], feed_dict={x_input: batch}, ) # unpack the tuple img, ls, likelihood_ls, kl_ls, mu_val, sigma_val = values plt.imshow(np.reshape(batch[0], [28, 28]), cmap='gray') plt.show() plt.imshow(img[0], cmap='gray') plt.show() logger.info( 'i: %d, loss: %f, likeli: %f, kl_ls: %f, mu: %f, sigma: %f', i, ls,
np.mean(likelihood_ls)
numpy.mean
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ First created on Sun Mar 11 2018 Final version on Sun Jun 24 2018 @authors: <NAME> and <NAME> """ #TO DO: comment and clean both methods and utils try: import pylab as pb except: pass import numpy as np from operator import itemgetter # import matplotlib.pyplot as plt import gpflow import keras from keras import regularizers from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.optimizers import SGD from keras.optimizers import RMSprop from keras.utils import plot_model from keras.layers.core import Lambda from keras import backend as K from scipy.optimize import minimize from sklearn import preprocessing from scipy.misc import logsumexp from codes.utils import fct_minimise_Shubert, fct_minimise_Malherbe from codes.utils import Gauss_log_likelihood, Lip_log_likelihood #%% class LipModel: """ Class containing all relevant functionalities for Lipschitz interpolation model """ def __init__(self, X: np.array, Y: np.array, alpha=0.5, L=0.0, norm = None): """ Builds basic Lipschitz interpolation model :X: training data X :Y: training data y, needs to be passed as array of shape (n,1); :param alpha: weight of upper bound vs. lower bound :param L: Best Lipschitz constant of target function, if known :param norm: norm to be used in input space """ if np.shape(X)[0] == len(Y): assert np.shape(X)[1] >= 1 else: assert np.shape(X)[1] == len(Y) X = np.transpose(X) self.X = X assert np.shape(Y)[1] == 1 self.Y = Y self.support_idx = range(0,np.shape(X)[0]) self.diam_X = [] self.alpha = alpha self.iter = 0 if L == 0.0: print('Warning: Lipschitz constant currently 0. Please train model before inference') self.L = L self.trained_params = [0] self.norm = norm return def loss_vec(self,L, x_cond, y_cond, x_eval, y_eval): """ Calculates vector containing absolute differences between prediction and target for each point in evaluation set :L: value of hyperparameter L used to predict on evaluation set :x_cond: part of training data X used as conditioning set :y_cond: part of training data y used as conditioning set :x_eval: part of training data X used as evaluation set to be predicted on :y_eval: part of training data y used as evaluation set, i.e. true target values at x_eval """ y_eval = np.squeeze(y_eval) assert np.shape(y_eval) == (len(y_eval),) if L < 0: L = 0 pred_temp = np.squeeze(np.zeros(shape=(len(x_eval[:,0]), 1))) for ii in range(0, len(x_eval[:,0])): pred_temp[ii] = self.inference(x_eval[ii,:], L, x_cond, y_cond) loss_vector = np.absolute(y_eval - pred_temp) return loss_vector def upper_bound(self,xx,l_n,X,Y): ''' Computes upper_bound u(xx) for target function value at xx for Lipschitz constant hyperparameter l_n and sample data X and Y \mathfrak{u}_{l_n}(xx;X,Y) &:= \min_{s_i \in X} (f_i + l_n \mathfrak{d}(s_i,xx)) :xx: single test point :l_n: value of hyperparameter used for prediction :X: input of sample data X used for prediction :Y: output of sample data Y used for prediction ''' u_vec = Y + l_n * np.expand_dims(np.linalg.norm((X - xx),self.norm, axis=1),axis=1) u = np.amin(u_vec) return u def lower_bound(self,xx, l_n,X,Y): ''' Computes lower bound l(xx) for target function value at xx for Lipschitz constant hyperparameter l_n and sample data X and Y \mathfrak{l}_{l_n}(xx;X,Y) &:= \max_{s_i \in X} (f_i - l_n \mathfrak{d}(s_i,xx)) :xx: single test point :l_n: value of hyperparameter used for prediction :X: input of sample data X used for prediction :Y: output of sample data Y used for prediction ''' l_vec = Y - l_n * np.expand_dims(np.linalg.norm((X - xx),self.norm, axis=1),axis=1) l = np.amax(l_vec) return l def inference(self,xx, l_n, X, Y): ''' Computes prediction of target function value at xx for Lipschitz constant hyperparameter l_n and sample data X and Y \hat{f}_{l_n}(xx;X,Y) = \alpha \mathfrak{l}_{l_n}(xx;X,Y) + (1-\alpha)\mathfrak{u}_{l_n}(xx;X,Y) :xx: single test point :l_n: value of hyperparameter used for prediction :X: input of sample data X used for prediction :Y: output of sample data Y used for prediction ''' y = self.alpha*self.upper_bound(xx,l_n,X,Y) + (1.0-self.alpha)*self.lower_bound(xx,l_n,X,Y) return y def train(self, method='LACKI', losstype='l2', split=0.5, optimizer='Malherbe', ARD = False, maxevals = 1000, cv = 0, number = 1): """ Trains Lipschitz interpolation model by learning hyperparameter l_n from data :param method: determines which estimation is used. (sparse) LACKI or POKI :param losstype: only relevant for POKI: which loss function is used? maxi, l1 or l2 :param split: only relevant for POKI: determines split into conditioning and evaluation data :param optimizer: Choice of optimizer only relevant for POKI, Malherbe, Shubert and standard Scipy available :param ARD: if true, ARD metric is used, i.e. delta(x,x') = max_(i = 1,...,d) theta_i * |x_i - x'_i| -- not implemented yet :param maxevals: only relevant for POKI, maximum steps in optimisation in POKI :param cv: if value for cv is passed, this is how often data is reshuffled for either POKI or (sparse) LACKI, which is automatically applied in case cv is passed :number: number of optimizer initializations / restarts of Scipy, has no effect if Malherbe or Shubert optimizer are chosen """ self.trained_params = [1] if ARD: assert optimizer == 'Malherbe' print('ARD not implemented yet') pass if ARD == False: d = 1 if method == 'POKI': assert losstype is not None diam_low = 0.0 for ll in range(0,len(self.Y)): for mm in range(1,len(self.Y)-ll): candidate = np.linalg.norm(self.X[ll,:]-self.X[ll+mm,:],self.norm) if (candidate > diam_low): diam_low = candidate self.diam_X = diam_low data = np.c_[self.X, self.Y] l_new_vec = np.zeros(shape = (cv+1,number)) l_new_vec[:,:] = np.nan for ii in range(0,cv+1): np.random.shuffle(data) split_pos = int(np.floor(len(self.Y)*split)) data_cond ,data_eval = data[:split_pos, :], data[split_pos:,:] x_cond = data_cond[:,0:-1] y_cond = np.expand_dims(np.array(data_cond[:,-1]),axis=1) x_eval = data_eval[:,0:-1] y_eval = np.expand_dims(np.array(data_eval[:,-1]),axis=1) def loss_fun(L): # loss function as a function of the vector containing absolute errors for each evaluation point if losstype =='l1': loss = np.average(self.loss_vec(L, x_cond, y_cond, x_eval, y_eval)) elif losstype=='l2': loss = np.average(self.loss_vec(L, x_cond, y_cond, x_eval, y_eval)**2) elif losstype=='maxi': loss = np.amax(self.loss_vec(L, x_cond, y_cond, x_eval, y_eval)) else: print('losstype not defined, could not train model') return loss if optimizer == 'Malherbe': curr_argmin,curr_fmin,n,timer = fct_minimise_Malherbe(loss_fun,d,0.0,500.0,L=self.diam_X, maxevals=maxevals) l_new_vec[ii,0] = curr_argmin elif optimizer == 'Shubert': upper_bound = 50.0 cont = True while cont: curr_argmin,curr_fmin,n = fct_minimise_Shubert(loss_fun,0.0,upper_bound, L=self.diam_X,errthresh =0.05, maxevals=maxevals) if curr_argmin < 0.9*upper_bound: cont = False else: upper_bound = 2.0*upper_bound l_new_vec[ii,0] = curr_argmin self.iter = n elif optimizer == 'Scipy': for pp in range(0,number): res = minimize(loss_fun, np.random.uniform(0.0,100.0), method='nelder-mead', options={'xtol': 1e-8, 'disp': False}) l_new = res.x l_new_vec[ii,pp] = l_new else: print('Error: Chosen optimizer not implemented / check spelling') self.L = np.mean(l_new_vec[:,0]) temp = np.mean(l_new_vec, axis = 0) self.trained_params = temp[~np.isnan(temp)] elif method == 'LACKI': if cv < 1.0: #corresponds to LAC, exhaustive method of evaluating all combinatorically possible slopes L_low = 0.0 for ll in range(0,len(self.Y)-1): for mm in range(1,len(self.Y)-ll): if np.linalg.norm(self.X[ll,:]-self.X[ll+mm,:]) > 0.0: #ignore doublettes in input space candidate = np.absolute(self.Y[ll]-self.Y[ll+mm])/np.linalg.norm(self.X[ll,:]-self.X[ll+mm,:]) if candidate > L_low: L_low = candidate self.L=L_low else: #corresponds to SLAC, i.e. the sparse approximation of LAC L_low = 0.0 data = np.c_[self.X, self.Y] if np.shape(self.X)[1] == 1: cv = 1 for ii in range(0,cv): if np.shape(self.X)[1] == 1: data = data[data[:,0].argsort()] #for 1D we get SLAC=LAC by sorting data in X else: np.random.shuffle(data) x_cond = data[:,0:-1] y_cond = np.expand_dims(np.array(data[:,-1]),axis=1) for ll in range(0,len(self.Y)-1): if np.linalg.norm(x_cond[ll,:]-x_cond[ll+1,:]) > 0.0: #ignore doublettes in input space candidate = np.absolute(y_cond[ll]-y_cond[ll+1])/np.linalg.norm(x_cond[ll,:]-x_cond[ll+1,:]) if candidate > L_low: L_low = candidate self.L=L_low else: print("Method not defined yet, could not train model") def correct_support(self): ''' Corrects support of interpolation method for predictions from \mathcal{D}_n) to \tilde{\mathcal{D}}_n, i.e. removes those points in X that for current value of hyperparameter L yield in ill-defined areas of model ''' self.support_idx = [] for uu in range(0,np.shape(self.X)[0]): up = self.upper_bound(self.X[uu,:],self.L,self.X,self.Y) low = self.lower_bound(self.X[uu,:],self.L,self.X,self.Y) if ((self.Y[uu] >= low) and (self.Y[uu] <= up)): self.support_idx.append(uu) def predict(self,xx): ''' Predicts value of target function at test point xx and returns prediction as well as upper and lower bound at xx :xx: test point xx ''' up = self.upper_bound(xx,self.L, self.X[self.support_idx,:], self.Y[self.support_idx]) low = self.lower_bound(xx,self.L, self.X[self.support_idx,:], self.Y[self.support_idx]) dist = up-low up = low + 1.0*dist #keep bounds at 100% bounds low = low + 0.0*dist #keep bounds at 100% bounds mean = self.inference(xx, self.L, self.X[self.support_idx,:], self.Y[self.support_idx]) return mean, up, low def evaluate(self,X_test, Y_test): ''' Evaluates Lipschitz interpolation model on test set, returning RMSE, pseudo-loglikelihood, precentage of test points in bounds and average distance of bounds. If model was trained multiple times in SLAC fashion then also standard deviation of those metrics are returned :X_test: input values of test set :Y_test: output values of test set ''' if len(self.trained_params) == 1: self.trained_params[0] = self.L xx = X_test M_pred = np.zeros((3*len(self.trained_params),len(xx[:,0]))) percentage = np.zeros(len(self.trained_params)) A = np.zeros(len(self.trained_params)) ll = np.zeros(len(self.trained_params)) RMSE = np.zeros(len(self.trained_params)) for jj in range(0,len(self.trained_params)): self.L = self.trained_params[jj] for ii in range(0,len(xx[:,0])): if self.trained_params[0] == 0: M_pred[3*jj+0,ii],M_pred[3*jj+2,ii],M_pred[3*jj+1,ii] = self.predict(xx[ii,:]) #if L = 0, swaps bounds so that you can calculate what appens for u = max f_i, l = min f_i else: M_pred[3*jj+0,ii],M_pred[3*jj+1,ii],M_pred[3*jj+2,ii] = self.predict(xx[ii,:]) A[jj] += np.abs(M_pred[3*jj+2,ii] - M_pred[3*jj+1,ii]) if ((Y_test[ii] <= M_pred[3*jj+1,ii]) and (Y_test[ii] >= M_pred[3*jj+2,ii])): percentage[jj] += 1.0 percentage[jj] /= len(xx[:,0]) A[jj] /= len(xx[:,0]) v_ll = Lip_log_likelihood(Y_test, np.expand_dims(M_pred[3*jj+2,:],axis=1), np.expand_dims(M_pred[3*jj+1,:],axis=1)) ll[jj] = np.sum(v_ll) v_SE = (Y_test - np.expand_dims(M_pred[3*jj+0,:],axis=1))**2 RMSE[jj] = np.mean(v_SE)**(0.5) i =
np.argmin(RMSE)
numpy.argmin
from unittest import TestCase, mock from unittest.mock import MagicMock, call import numpy as np from source.constants import Constants from source.preprocessing.activity_count.activity_count_feature_service import ActivityCountFeatureService from source.preprocessing.activity_count.activity_count_service import ActivityCountService from source.preprocessing.epoch import Epoch from source.preprocessing.activity_count.activity_count_collection import ActivityCountCollection class TestActivityCountFeatureService(TestCase): @mock.patch('source.preprocessing.activity_count.activity_count_feature_service.pd') def test_load(self, mock_pd): mock_pd.read_csv.return_value = mock_return = MagicMock() mock_return.values = expected_return = np.array([1, 2, 3, 4, 5]) actual_returned_value = ActivityCountFeatureService.load("subjectA") self.assertListEqual(expected_return.tolist(), actual_returned_value.tolist()) mock_pd.read_csv.assert_called_once_with(str(ActivityCountFeatureService.get_path("subjectA"))) def test_get_path(self): expected_path = Constants.FEATURE_FILE_PATH.joinpath("subjectA" + '_count_feature.out') self.assertEqual(expected_path, ActivityCountFeatureService.get_path("subjectA")) @mock.patch('source.preprocessing.activity_count.activity_count_feature_service.np') def test_write(self, mock_np): feature_to_write = np.array([1, 2, 3, 4]) subject_id = "subjectA" ActivityCountFeatureService.write(subject_id, feature_to_write) mock_np.savetxt.assert_called_once_with(ActivityCountFeatureService.get_path(subject_id), feature_to_write, fmt='%f') def test_get_window(self): timestamps = np.array([-2000, 22, 32, 50, 60, 800, 1000]) epoch = Epoch(timestamp=55, index=120) expected_indices_in_range = np.array([1, 2, 3, 4]) actual_indices_in_range = ActivityCountFeatureService.get_window(timestamps, epoch) self.assertEqual(expected_indices_in_range.tolist(), actual_indices_in_range.tolist()) @mock.patch.object(ActivityCountFeatureService, 'get_feature') @mock.patch.object(ActivityCountService, 'load_cropped') def test_build_feature_array(self, mock_load_cropped, mock_get_feature): subject_id = "subjectA" data = np.array( [[1, 10], [10, 220], [20, 0], [40, 500], [70, 200], [90, 0], [100, 0], [120, 4]]) activity_count_collection = ActivityCountCollection(subject_id=subject_id, data=data) mock_load_cropped.return_value = activity_count_collection expected_features = [np.array([0.1]),
np.array([0.2])
numpy.array
from __future__ import absolute_import, division, print_function import difflib import functools import math import numbers import os import numpy as np from toolz import frequencies, concat from .core import Array from ..highlevelgraph import HighLevelGraph try: AxisError = np.AxisError except AttributeError: try: np.array([0]).sum(axis=5) except Exception as e: AxisError = type(e) def normalize_to_array(x): if 'cupy' in str(type(x)): # TODO: avoid explicit reference to cupy return x.get() else: return x def meta_from_array(x, ndim=None, dtype=None): """ Normalize an array to appropriate meta object Parameters ---------- x: array-like ndim: int dtype: dtype Returns ------- array-like """ # x._meta must be a Dask Array, some libraries (e.g. zarr) implement a # _meta attribute that are incompatible with Dask Array._meta if hasattr(x, '_meta') and isinstance(x, Array): x = x._meta if not hasattr(x, 'shape') or not hasattr(x, 'dtype'): return x if isinstance(x, list) or isinstance(x, tuple): ndims = [0 if isinstance(a, numbers.Number) else a.ndim if hasattr(a, 'ndim') else len(a) for a in x] a = [a if nd == 0 else meta_from_array(a, nd) for a, nd in zip(x, ndims)] return a if isinstance(x, list) else tuple(x) if ndim is None: ndim = x.ndim try: meta = x[tuple(slice(0, 0, None) for _ in range(x.ndim))] if meta.ndim != ndim: if ndim > x.ndim: meta = meta[(Ellipsis, ) + tuple(None for _ in range(ndim - meta.ndim))] meta = meta[tuple(slice(0, 0, None) for _ in range(meta.ndim))] elif ndim == 0: meta = meta.sum() else: meta = meta.reshape((0,) * ndim) except Exception: meta = np.empty((0,) * ndim, dtype=dtype or x.dtype) if dtype and meta.dtype != dtype: meta = meta.astype(dtype) return meta def allclose(a, b, equal_nan=False, **kwargs): a = normalize_to_array(a) b = normalize_to_array(b) if getattr(a, 'dtype', None) != 'O': return np.allclose(a, b, equal_nan=equal_nan, **kwargs) if equal_nan: return (a.shape == b.shape and all(np.isnan(b) if np.isnan(a) else a == b for (a, b) in zip(a.flat, b.flat))) return (a == b).all() def same_keys(a, b): def key(k): if isinstance(k, str): return (k, -1, -1, -1) else: return k return sorted(a.dask, key=key) == sorted(b.dask, key=key) def _not_empty(x): return x.shape and 0 not in x.shape def _check_dsk(dsk): """ Check that graph is well named and non-overlapping """ if not isinstance(dsk, HighLevelGraph): return assert all(isinstance(k, (tuple, str)) for k in dsk.layers) freqs = frequencies(concat(dsk.dicts.values())) non_one = {k: v for k, v in freqs.items() if v != 1} assert not non_one, non_one def assert_eq_shape(a, b, check_nan=True): for aa, bb in zip(a, b): if math.isnan(aa) or math.isnan(bb): if check_nan: assert math.isnan(aa) == math.isnan(bb) else: assert aa == bb def assert_eq(a, b, check_shape=True, check_graph=True, check_meta=True, **kwargs): a_original = a b_original = b if isinstance(a, Array): assert a.dtype is not None adt = a.dtype if check_graph: _check_dsk(a.dask) a_meta = getattr(a, '_meta', None) a = a.compute(scheduler='sync') a_computed = a if hasattr(a, 'todense'): a = a.todense() if not hasattr(a, 'dtype'): a = np.array(a, dtype='O') if _not_empty(a): assert a.dtype == a_original.dtype if check_shape: assert_eq_shape(a_original.shape, a.shape, check_nan=False) else: if not hasattr(a, 'dtype'): a = np.array(a, dtype='O') adt = getattr(a, 'dtype', None) if isinstance(b, Array): assert b.dtype is not None bdt = b.dtype if check_graph: _check_dsk(b.dask) b_meta = getattr(b, '_meta', None) b = b.compute(scheduler='sync') b_computed = b if not hasattr(b, 'dtype'): b = np.array(b, dtype='O') if hasattr(b, 'todense'): b = b.todense() if _not_empty(b): assert b.dtype == b_original.dtype if check_shape: assert_eq_shape(b_original.shape, b.shape, check_nan=False) else: if not hasattr(b, 'dtype'): b = np.array(b, dtype='O') bdt = getattr(b, 'dtype', None) if str(adt) != str(bdt): # Ignore check for matching length of flexible dtypes, since Array._meta # can't encode that information if adt.type == bdt.type and not (adt.type == np.bytes_ or adt.type == np.str_): diff = difflib.ndiff(str(adt).splitlines(), str(bdt).splitlines()) raise AssertionError('string repr are different' + os.linesep + os.linesep.join(diff)) try: assert a.shape == b.shape if check_meta: if hasattr(a, '_meta') and hasattr(b, '_meta'): assert_eq(a._meta, b._meta) if hasattr(a_original, '_meta'): assert a_original._meta.ndim == a.ndim if a_meta is not None: assert type(a_original._meta) == type(a_meta) if not (np.isscalar(a_meta) or np.isscalar(a_computed)): assert type(a_meta) == type(a_computed) if hasattr(b_original, '_meta'): assert b_original._meta.ndim == b.ndim if b_meta is not None: assert type(b_original._meta) == type(b_meta) if not (np.isscalar(b_meta) or np.isscalar(b_computed)): assert type(b_meta) == type(b_computed) assert allclose(a, b, **kwargs) return True except TypeError: pass c = a == b if isinstance(c, np.ndarray): assert c.all() else: assert c return True def safe_wraps(wrapped, assigned=functools.WRAPPER_ASSIGNMENTS): """Like functools.wraps, but safe to use even if wrapped is not a function. Only needed on Python 2. """ if all(hasattr(wrapped, attr) for attr in assigned): return functools.wraps(wrapped, assigned=assigned) else: return lambda x: x def empty_like_safe(a, shape, **kwargs): """ Return np.empty_like(a, shape=shape, **kwargs) if the shape argument is supported (requires NumPy >= 1.17), otherwise falls back to using the old behavior, returning np.empty(shape, **kwargs). """ try: return np.empty_like(a, shape=shape, **kwargs) except TypeError: return np.empty(shape, **kwargs) def full_like_safe(a, fill_value, shape, **kwargs): """ Return np.full_like(a, fill_value, shape=shape, **kwargs) if the shape argument is supported (requires NumPy >= 1.17), otherwise falls back to using the old behavior, returning np.full(shape, fill_value, **kwargs). """ try: return np.full_like(a, fill_value, shape=shape, **kwargs) except TypeError: return
np.full(shape, fill_value, **kwargs)
numpy.full
#!/usr/bin/python # MIT License # # Copyright (c) 2018-2020 <NAME>, <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import numpy as np import scipy as sp import multiprocessing as mp from functools import partial from scipy import spatial import timeit try: import torch except ImportError: _has_torch = False else: _has_torch = True def _from_r_alias(obj, r, lat_and_inv=None): """ Alias for instance method that allows the method to be called in a multiprocessing pool """ return obj._from_r(r, lat_and_inv=lat_and_inv) class Desc(object): def __init__(self, n_atoms, max_processes=None, use_descriptor='coulomb_matrix'): """ Generate descriptors and their Jacobians for molecular geometries, including support for periodic boundary conditions. Parameters ---------- n_atoms : int Number of atoms in the represented system. max_processes : int, optional Limit the max. number of processes. Otherwise all CPU cores are used. This parameters has no effect if `use_torch=True`. """ self.n_atoms = n_atoms self.dim_i = 3 * n_atoms self.use_descriptor = use_descriptor # Size of the resulting descriptor vector. if self.use_descriptor == 'coulomb_matrix' or self.use_descriptor == 'exp_decay_matrix': # Size of the resulting descriptor vector. self.dim = (n_atoms * (n_atoms - 1)) // 2 # Precompute indices for nonzero entries in desriptor derivatives. self.d_desc_mask = np.zeros((n_atoms, n_atoms - 1), dtype=np.int) for a in range(n_atoms): # for each partial derivative rows, cols = np.tril_indices(n_atoms, -1) self.d_desc_mask[a, :] = np.concatenate( [np.where(rows == a)[0], np.where(cols == a)[0]] ) self.M = np.arange(1, n_atoms) # indexes matrix row-wise, skipping diagonal for a in range(1, n_atoms): self.M = np.concatenate((self.M, np.delete(np.arange(n_atoms), a))) self.A = np.repeat( np.arange(n_atoms), n_atoms - 1 ) # [0, 0, ..., 1, 1, ..., 2, 2, ...] self.d_desc = np.zeros( (self.dim, n_atoms, 3) ) # template for descriptor matrix (zeros are important) # --- TODO: Add precomputable variables for new descriptor here # elif self.use_descriptor == '': # pass self.max_processes = max_processes def from_R(self, R, lat_and_inv=None, callback=None): """ Generate descriptor and its Jacobian for multiple molecular geometries in Cartesian coordinates. Parameters ---------- R : :obj:`numpy.ndarray` Array of size M x 3N containing the Cartesian coordinates of each atom. lat_and_inv : tuple of :obj:`numpy.ndarray`, optional Tuple of 3 x 3 matrix containing lattice vectors as columns and its inverse. callback : callable, optional Descriptor and descriptor Jacobian generation status. current : int Current progress (number of completed descriptors). total : int Task size (total number of descriptors to create). sec_disp_str : :obj:`str`, optional Once complete, this string contains the time it took complete this task (seconds). Returns ------- :obj:`numpy.ndarray` Array of size M x N(N-1)/2 containing the descriptor representation for each geometry. :obj:`numpy.ndarray` Array of size M x N(N-1)/2 x 3N containing all partial derivatives of the descriptor for each geometry. """ # Add singleton dimension if input is (,3N). if R.ndim == 1: R = R[None, :] M = R.shape[0] if M == 1: return self._from_r(R, lat_and_inv) R_desc =
np.empty([M, self.dim])
numpy.empty
# Copyright (c) 2015-2020 by the parties listed in the AUTHORS file. # All rights reserved. Use of this source code is governed by # a BSD-style license that can be found in the LICENSE file. from .mpi import MPITestCase import os import healpy as hp import numpy as np from .._libtoast import pointing_matrix_healpix from ..healpix import HealpixPixels from ..todmap import TODHpixSpiral, OpPointingHpix from .. import qarray as qa from ._helpers import create_outdir, create_distdata, boresight_focalplane class OpPointingHpixTest(MPITestCase): def setUp(self): fixture_name = os.path.splitext(os.path.basename(__file__))[0] self.outdir = create_outdir(self.comm, fixture_name) # Create one observation per group, and each observation will have # one detector per process and a single chunk. Data within an # observation is distributed by detector. self.data = create_distdata(self.comm, obs_per_group=1) self.ndet = self.data.comm.group_size # Create detectors with default properties ( dnames, dquat, depsilon, drate, dnet, dfmin, dfknee, dalpha, ) = boresight_focalplane(self.ndet) # A small number of samples self.totsamp = 10 # Populate the observations (one per group) tod = TODHpixSpiral( self.data.comm.comm_group, dquat, self.totsamp, detranks=self.data.comm.group_size, ) self.data.obs[0]["tod"] = tod def tearDown(self): del self.data def test_pointing_matrix_healpix2(self): nside = 64 npix = 12 * nside ** 2 hpix = HealpixPixels(64) nest = True phivec = np.radians( [-360, -270, -180, -135, -90, -45, 0, 45, 90, 135, 180, 270, 360] ) nsamp = phivec.size eps = 0.0 cal = 1.0 mode = "IQU" nnz = 3 hwpang = np.zeros(nsamp) flags = np.zeros(nsamp, dtype=np.uint8) pixels = np.zeros(nsamp, dtype=np.int64) weights = np.zeros([nsamp, nnz], dtype=np.float64) theta = np.radians(135) psi = np.radians(135) quats = [] xaxis, yaxis, zaxis = np.eye(3) for phi in phivec: phirot = qa.rotation(zaxis, phi) quats.append(qa.from_angles(theta, phi, psi)) quats = np.vstack(quats) pointing_matrix_healpix( hpix, nest, eps, cal, mode, quats.reshape(-1), hwpang, flags, pixels, weights.reshape(-1), ) failed = False bad = np.logical_or(pixels < 0, pixels > npix - 1) nbad = np.sum(bad) if nbad > 0: print( "{} pixels are outside of the map. phi = {} deg".format( nbad, np.degrees(phivec[bad]) ) ) failed = True self.assertFalse(failed) return def test_pointing_matrix_healpix(self): nside = 64 hpix = HealpixPixels(64) nest = True psivec = np.radians([-180, -135, -90, -45, 0, 45, 90, 135, 180]) # psivec = np.radians([-180, 180]) nsamp = psivec.size eps = 0.0 cal = 1.0 mode = "IQU" nnz = 3 hwpang = np.zeros(nsamp) flags = np.zeros(nsamp, dtype=np.uint8) pixels = np.zeros(nsamp, dtype=np.int64) weights =
np.zeros([nsamp, nnz], dtype=np.float64)
numpy.zeros