Datasets:

Modalities:
Text
Formats:
parquet
Languages:
code
Size:
< 1K
ArXiv:
Tags:
code
Libraries:
Datasets
pandas
License:
humanevalpack / README.md
Muennighoff's picture
Convert dataset to Parquet (#12)
9a41762 verified
---
license: mit
pretty_name: HumanEvalPack
language_creators:
- expert-generated
multilinguality:
- multilingual
language:
- code
tags:
- code
dataset_info:
- config_name: cpp
features:
- name: task_id
dtype: string
- name: prompt
dtype: string
- name: declaration
dtype: string
- name: canonical_solution
dtype: string
- name: buggy_solution
dtype: string
- name: bug_type
dtype: string
- name: failure_symptoms
dtype: string
- name: entry_point
dtype: string
- name: import
dtype: string
- name: test_setup
dtype: string
- name: test
dtype: string
- name: example_test
dtype: string
- name: signature
dtype: string
- name: docstring
dtype: string
- name: instruction
dtype: string
splits:
- name: test
num_bytes: 469111
num_examples: 164
download_size: 193981
dataset_size: 469111
- config_name: go
features:
- name: task_id
dtype: string
- name: prompt
dtype: string
- name: declaration
dtype: string
- name: canonical_solution
dtype: string
- name: buggy_solution
dtype: string
- name: bug_type
dtype: string
- name: failure_symptoms
dtype: string
- name: entry_point
dtype: string
- name: import
dtype: string
- name: test_setup
dtype: string
- name: test
dtype: string
- name: example_test
dtype: string
- name: signature
dtype: string
- name: docstring
dtype: string
- name: instruction
dtype: string
splits:
- name: test
num_bytes: 463234
num_examples: 164
download_size: 198394
dataset_size: 463234
- config_name: java
features:
- name: task_id
dtype: string
- name: prompt
dtype: string
- name: declaration
dtype: string
- name: canonical_solution
dtype: string
- name: buggy_solution
dtype: string
- name: bug_type
dtype: string
- name: failure_symptoms
dtype: string
- name: entry_point
dtype: string
- name: import
dtype: string
- name: test_setup
dtype: string
- name: test
dtype: string
- name: example_test
dtype: string
- name: signature
dtype: string
- name: docstring
dtype: string
- name: instruction
dtype: string
splits:
- name: test
num_bytes: 589440
num_examples: 164
download_size: 210440
dataset_size: 589440
- config_name: js
features:
- name: task_id
dtype: string
- name: prompt
dtype: string
- name: declaration
dtype: string
- name: canonical_solution
dtype: string
- name: buggy_solution
dtype: string
- name: bug_type
dtype: string
- name: failure_symptoms
dtype: string
- name: entry_point
dtype: string
- name: import
dtype: string
- name: test_setup
dtype: string
- name: test
dtype: string
- name: example_test
dtype: string
- name: signature
dtype: string
- name: docstring
dtype: string
- name: instruction
dtype: string
splits:
- name: test
num_bytes: 435189
num_examples: 164
download_size: 194044
dataset_size: 435189
- config_name: python
features:
- name: task_id
dtype: string
- name: prompt
dtype: string
- name: declaration
dtype: string
- name: canonical_solution
dtype: string
- name: buggy_solution
dtype: string
- name: bug_type
dtype: string
- name: failure_symptoms
dtype: string
- name: entry_point
dtype: string
- name: import
dtype: string
- name: test_setup
dtype: string
- name: test
dtype: string
- name: example_test
dtype: string
- name: signature
dtype: string
- name: docstring
dtype: string
- name: instruction
dtype: string
splits:
- name: test
num_bytes: 423013
num_examples: 164
download_size: 191279
dataset_size: 423013
- config_name: rust
features:
- name: task_id
dtype: string
- name: prompt
dtype: string
- name: declaration
dtype: string
- name: canonical_solution
dtype: string
- name: buggy_solution
dtype: string
- name: bug_type
dtype: string
- name: failure_symptoms
dtype: string
- name: entry_point
dtype: string
- name: import
dtype: string
- name: test_setup
dtype: string
- name: test
dtype: string
- name: example_test
dtype: string
- name: signature
dtype: string
- name: docstring
dtype: string
- name: instruction
dtype: string
splits:
- name: test
num_bytes: 450539
num_examples: 164
download_size: 168464
dataset_size: 450539
configs:
- config_name: cpp
data_files:
- split: test
path: cpp/test-*
- config_name: go
data_files:
- split: test
path: go/test-*
- config_name: java
data_files:
- split: test
path: java/test-*
- config_name: js
data_files:
- split: test
path: js/test-*
- config_name: python
data_files:
- split: test
path: python/test-*
default: true
- config_name: rust
data_files:
- split: test
path: rust/test-*
---
![Octopack](https://github.com/bigcode-project/octopack/blob/31f3320f098703c7910e43492c39366eeea68d83/banner.png?raw=true)
# Dataset Card for HumanEvalPack
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** https://github.com/bigcode-project/octopack
- **Paper:** [OctoPack: Instruction Tuning Code Large Language Models](https://arxiv.org/abs/2308.07124)
- **Point of Contact:** [Niklas Muennighoff](mailto:[email protected])
### Dataset Summary
> HumanEvalPack is an extension of OpenAI's HumanEval to cover 6 total languages across 3 tasks. The Python split is exactly the same as OpenAI's Python HumanEval. The other splits are translated by humans (similar to HumanEval-X but with additional cleaning, see [here](https://github.com/bigcode-project/octopack/tree/main/evaluation/create/humaneval-x#modifications-muennighoff)). Refer to the [OctoPack paper](https://arxiv.org/abs/2308.07124) for more details.
>
- **Languages:** Python, JavaScript, Java, Go, C++, Rust
- **OctoPack🐙🎒:**
<table>
<tr>
<th>Data</t>
<td><a href=https://huggingface.co/datasets/bigcode/commitpack>CommitPack</a></td>
<td>4TB of GitHub commits across 350 programming languages</td>
</tr>
<tr>
<th></t>
<td><a href=https://huggingface.co/datasets/bigcode/commitpackft>CommitPackFT</a></td>
<td>Filtered version of CommitPack for high-quality commit messages that resemble instructions</td>
</tr>
<tr>
<th>Model</t>
<td><a href=https://huggingface.co/bigcode/octocoder>OctoCoder</a></td>
<td>StarCoder (16B parameters) instruction tuned on CommitPackFT + OASST</td>
</tr>
<tr>
<th></t>
<td><a href=https://huggingface.co/bigcode/octogeex>OctoGeeX</a></td>
<td>CodeGeeX2 (6B parameters) instruction tuned on CommitPackFT + OASST</td>
</tr>
<tr>
<th>Evaluation</t>
<td><a href=https://huggingface.co/datasets/bigcode/humanevalpack>HumanEvalPack</a></td>
<td>Extension of OpenAI's HumanEval to cover 3 scenarios across 6 languages</td>
</tr>
</table>
## Usage
```python
# pip install -q datasets
from datasets import load_dataset
# Languages: "python", "js", "java", "go", "cpp", "rust"
ds = load_dataset("bigcode/humanevalpack", "python")["test"]
ds[0]
```
## Dataset Structure
### Data Instances
An example looks as follows:
```json
{
"task_id": "Python/0",
"prompt": "from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n \"\"\" Check if in given list of numbers, are any two numbers closer to each other than\n given threshold.\n >>> has_close_elements([1.0, 2.0, 3.0], 0.5)\n False\n >>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\n True\n \"\"\"\n",
"declaration": "from typing import List\n\n\ndef has_close_elements(numbers: List[float], threshold: float) -> bool:\n",
"canonical_solution": " for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = abs(elem - elem2)\n if distance < threshold:\n return True\n\n return False\n",
"buggy_solution": " for idx, elem in enumerate(numbers):\n for idx2, elem2 in enumerate(numbers):\n if idx != idx2:\n distance = elem - elem2\n if distance < threshold:\n return True\n\n return False\n",
"bug_type": "missing logic",
"failure_symptoms": "incorrect output",
"entry_point": "has_close_elements",
"import": ""
"test_setup": ""
"test": "\n\n\n\n\ndef check(has_close_elements):\n assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.3) == True\n assert has_close_elements([1.0, 2.0, 3.9, 4.0, 5.0, 2.2], 0.05) == False\n assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.95) == True\n assert has_close_elements([1.0, 2.0, 5.9, 4.0, 5.0], 0.8) == False\n assert has_close_elements([1.0, 2.0, 3.0, 4.0, 5.0, 2.0], 0.1) == True\n assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 1.0) == True\n assert has_close_elements([1.1, 2.2, 3.1, 4.1, 5.1], 0.5) == False\n\ncheck(has_close_elements)",
"example_test": "def check(has_close_elements):\n assert has_close_elements([1.0, 2.0, 3.0], 0.5) == False\n assert has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3) == True\ncheck(has_close_elements)\n",
"signature": "has_close_elements(numbers: List[float], threshold: float) -> bool",
"docstring": "Check if in given list of numbers, are any two numbers closer to each other than\ngiven threshold.\n>>> has_close_elements([1.0, 2.0, 3.0], 0.5)\nFalse\n>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\nTrue",
"instruction": "Write a Python function `has_close_elements(numbers: List[float], threshold: float) -> bool` to solve the following problem:\nCheck if in given list of numbers, are any two numbers closer to each other than\ngiven threshold.\n>>> has_close_elements([1.0, 2.0, 3.0], 0.5)\nFalse\n>>> has_close_elements([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)\nTrue"
}
```
### Data Fields
The data fields are the same among all splits:
- `task_id`: Indicates the language (Python/JavaScript/Java/Go/C++/Rust) and task id (from 0 to 163) of the problem
- `prompt`: the prompt for models relying on code continuation
- `declaration`: the declaration of the function (same as prompt but without the docstring)
- `canonical_solution`: the correct solution passing all unit tests for the problem
- `buggy_solution`: same as `canonical_solution` but with a subtle human-written bug causing the unit tests to fail
- `bug_type`: the type of the bug in `buggy_solution` (one of [`missing logic`, `excess logic`, `value misuse`, `operator misuse`, `variable misuse`, `function misuse`])
- `failure_symptoms`: the problem the bug causes (one of [`incorrect output`, `stackoverflow`, `infinite loop`])
- `entry_point`: the name of the function
- `import`: imports necessary for the solution (only present for Go)
- `test_setup`: imports necessary for the test execution (only present for Go)
- `test`: the unit tests for the problem
- `example_test`: additional unit tests different from `test` that could be e.g. provided to the model (these are not used in the paper)
- `signature`: the signature of the function
- `docstring`: the docstring describing the problem
- `instruction`: an instruction for HumanEvalSynthesize in the form `Write a {language_name} function {signature} to solve the following problem:\n{docstring}`
## Citation Information
```bibtex
@article{muennighoff2023octopack,
title={OctoPack: Instruction Tuning Code Large Language Models},
author={Niklas Muennighoff and Qian Liu and Armel Zebaze and Qinkai Zheng and Binyuan Hui and Terry Yue Zhuo and Swayam Singh and Xiangru Tang and Leandro von Werra and Shayne Longpre},
journal={arXiv preprint arXiv:2308.07124},
year={2023}
}
```