full_name
stringlengths 3
121
| state
stringlengths 7
9.32k
| tactic
stringlengths 3
5.35k
| target_state
stringlengths 7
19k
| url
stringclasses 1
value | commit
stringclasses 1
value | file_path
stringlengths 21
79
|
---|---|---|---|---|---|---|
LieModule.weight_vector_multiplication
|
K : Type u_1
R : Type u_2
L : Type u_3
M : Type u_4
inst✝¹⁹ : CommRing R
inst✝¹⁸ : LieRing L
inst✝¹⁷ : LieAlgebra R L
inst✝¹⁶ : LieAlgebra.IsNilpotent R L
inst✝¹⁵ : AddCommGroup M
inst✝¹⁴ : Module R M
inst✝¹³ : LieRingModule L M
inst✝¹² : LieModule R L M
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R M₁
inst✝⁹ : LieRingModule L M₁
inst✝⁸ : LieModule R L M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : LieRingModule L M₂
inst✝⁴ : LieModule R L M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M₃
inst✝¹ : LieRingModule L M₃
inst✝ : LieModule R L M₃
g : M₁ ⊗[R] M₂ →ₗ⁅R,L⁆ M₃
χ₁ χ₂ : R
x : L
t : ↥𝕎(M₁, χ₁, x) ⊗[R] ↥𝕎(M₂, χ₂, x)
F : Module.End R M₃ := (toEnd R L M₃) x - (χ₁ + χ₂) • 1
m₁ : M₁
hm₁ : m₁ ∈ 𝕎(M₁, χ₁, x)
m₂ : M₂
hm₂ : m₂ ∈ 𝕎(M₂, χ₂, x)
f₁ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.rTensor M₂ ((toEnd R L M₁) x - χ₁ • 1)
f₂ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.lTensor M₁ ((toEnd R L M₂) x - χ₂ • 1)
⊢ F ∘ₗ ↑g = ↑g ∘ₗ (f₁ + f₂)
|
ext m₁ m₂
|
case a.h.h
K : Type u_1
R : Type u_2
L : Type u_3
M : Type u_4
inst✝¹⁹ : CommRing R
inst✝¹⁸ : LieRing L
inst✝¹⁷ : LieAlgebra R L
inst✝¹⁶ : LieAlgebra.IsNilpotent R L
inst✝¹⁵ : AddCommGroup M
inst✝¹⁴ : Module R M
inst✝¹³ : LieRingModule L M
inst✝¹² : LieModule R L M
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R M₁
inst✝⁹ : LieRingModule L M₁
inst✝⁸ : LieModule R L M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : LieRingModule L M₂
inst✝⁴ : LieModule R L M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M₃
inst✝¹ : LieRingModule L M₃
inst✝ : LieModule R L M₃
g : M₁ ⊗[R] M₂ →ₗ⁅R,L⁆ M₃
χ₁ χ₂ : R
x : L
t : ↥𝕎(M₁, χ₁, x) ⊗[R] ↥𝕎(M₂, χ₂, x)
F : Module.End R M₃ := (toEnd R L M₃) x - (χ₁ + χ₂) • 1
m₁✝ : M₁
hm₁ : m₁✝ ∈ 𝕎(M₁, χ₁, x)
m₂✝ : M₂
hm₂ : m₂✝ ∈ 𝕎(M₂, χ₂, x)
f₁ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.rTensor M₂ ((toEnd R L M₁) x - χ₁ • 1)
f₂ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.lTensor M₁ ((toEnd R L M₂) x - χ₂ • 1)
m₁ : M₁
m₂ : M₂
⊢ ((AlgebraTensorModule.curry (F ∘ₗ ↑g)) m₁) m₂ = ((AlgebraTensorModule.curry (↑g ∘ₗ (f₁ + f₂))) m₁) m₂
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Lie/Weights/Basic.lean
|
LieModule.weight_vector_multiplication
|
case a.h.h
K : Type u_1
R : Type u_2
L : Type u_3
M : Type u_4
inst✝¹⁹ : CommRing R
inst✝¹⁸ : LieRing L
inst✝¹⁷ : LieAlgebra R L
inst✝¹⁶ : LieAlgebra.IsNilpotent R L
inst✝¹⁵ : AddCommGroup M
inst✝¹⁴ : Module R M
inst✝¹³ : LieRingModule L M
inst✝¹² : LieModule R L M
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R M₁
inst✝⁹ : LieRingModule L M₁
inst✝⁸ : LieModule R L M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : LieRingModule L M₂
inst✝⁴ : LieModule R L M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M₃
inst✝¹ : LieRingModule L M₃
inst✝ : LieModule R L M₃
g : M₁ ⊗[R] M₂ →ₗ⁅R,L⁆ M₃
χ₁ χ₂ : R
x : L
t : ↥𝕎(M₁, χ₁, x) ⊗[R] ↥𝕎(M₂, χ₂, x)
F : Module.End R M₃ := (toEnd R L M₃) x - (χ₁ + χ₂) • 1
m₁✝ : M₁
hm₁ : m₁✝ ∈ 𝕎(M₁, χ₁, x)
m₂✝ : M₂
hm₂ : m₂✝ ∈ 𝕎(M₂, χ₂, x)
f₁ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.rTensor M₂ ((toEnd R L M₁) x - χ₁ • 1)
f₂ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.lTensor M₁ ((toEnd R L M₂) x - χ₂ • 1)
m₁ : M₁
m₂ : M₂
⊢ ((AlgebraTensorModule.curry (F ∘ₗ ↑g)) m₁) m₂ = ((AlgebraTensorModule.curry (↑g ∘ₗ (f₁ + f₂))) m₁) m₂
|
simp only [f₁, f₂, F, ← g.map_lie x (m₁ ⊗ₜ m₂), <a>add_smul</a>, <a>TensorProduct.sub_tmul</a>, <a>TensorProduct.tmul_sub</a>, <a>TensorProduct.smul_tmul</a>, <a>TensorProduct.LieModule.lie_tmul_right</a>, <a>TensorProduct.tmul_smul</a>, <a>LieModule.toEnd_apply_apply</a>, <a>LieModuleHom.map_smul</a>, <a>LinearMap.one_apply</a>, <a>LieModuleHom.coe_toLinearMap</a>, <a>LinearMap.smul_apply</a>, <a>Function.comp_apply</a>, <a>LinearMap.coe_comp</a>, <a>LinearMap.rTensor_tmul</a>, <a>LieModuleHom.map_add</a>, <a>LinearMap.add_apply</a>, <a>LieModuleHom.map_sub</a>, <a>LinearMap.sub_apply</a>, <a>LinearMap.lTensor_tmul</a>, <a>TensorProduct.AlgebraTensorModule.curry_apply</a>, <a>TensorProduct.curry_apply</a>, <a>LinearMap.toFun_eq_coe</a>, <a>LinearMap.coe_restrictScalars</a>]
|
case a.h.h
K : Type u_1
R : Type u_2
L : Type u_3
M : Type u_4
inst✝¹⁹ : CommRing R
inst✝¹⁸ : LieRing L
inst✝¹⁷ : LieAlgebra R L
inst✝¹⁶ : LieAlgebra.IsNilpotent R L
inst✝¹⁵ : AddCommGroup M
inst✝¹⁴ : Module R M
inst✝¹³ : LieRingModule L M
inst✝¹² : LieModule R L M
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R M₁
inst✝⁹ : LieRingModule L M₁
inst✝⁸ : LieModule R L M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : LieRingModule L M₂
inst✝⁴ : LieModule R L M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M₃
inst✝¹ : LieRingModule L M₃
inst✝ : LieModule R L M₃
g : M₁ ⊗[R] M₂ →ₗ⁅R,L⁆ M₃
χ₁ χ₂ : R
x : L
t : ↥𝕎(M₁, χ₁, x) ⊗[R] ↥𝕎(M₂, χ₂, x)
F : Module.End R M₃ := (toEnd R L M₃) x - (χ₁ + χ₂) • 1
m₁✝ : M₁
hm₁ : m₁✝ ∈ 𝕎(M₁, χ₁, x)
m₂✝ : M₂
hm₂ : m₂✝ ∈ 𝕎(M₂, χ₂, x)
f₁ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.rTensor M₂ ((toEnd R L M₁) x - χ₁ • 1)
f₂ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.lTensor M₁ ((toEnd R L M₂) x - χ₂ • 1)
m₁ : M₁
m₂ : M₂
⊢ g (⁅x, m₁⁆ ⊗ₜ[R] m₂) + g (m₁ ⊗ₜ[R] ⁅x, m₂⁆) - (χ₁ • g (m₁ ⊗ₜ[R] m₂) + χ₂ • g (m₁ ⊗ₜ[R] m₂)) =
g (⁅x, m₁⁆ ⊗ₜ[R] m₂) - χ₁ • g (m₁ ⊗ₜ[R] m₂) + (g (m₁ ⊗ₜ[R] ⁅x, m₂⁆) - χ₂ • g (m₁ ⊗ₜ[R] m₂))
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Lie/Weights/Basic.lean
|
LieModule.weight_vector_multiplication
|
case a.h.h
K : Type u_1
R : Type u_2
L : Type u_3
M : Type u_4
inst✝¹⁹ : CommRing R
inst✝¹⁸ : LieRing L
inst✝¹⁷ : LieAlgebra R L
inst✝¹⁶ : LieAlgebra.IsNilpotent R L
inst✝¹⁵ : AddCommGroup M
inst✝¹⁴ : Module R M
inst✝¹³ : LieRingModule L M
inst✝¹² : LieModule R L M
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R M₁
inst✝⁹ : LieRingModule L M₁
inst✝⁸ : LieModule R L M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : LieRingModule L M₂
inst✝⁴ : LieModule R L M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M₃
inst✝¹ : LieRingModule L M₃
inst✝ : LieModule R L M₃
g : M₁ ⊗[R] M₂ →ₗ⁅R,L⁆ M₃
χ₁ χ₂ : R
x : L
t : ↥𝕎(M₁, χ₁, x) ⊗[R] ↥𝕎(M₂, χ₂, x)
F : Module.End R M₃ := (toEnd R L M₃) x - (χ₁ + χ₂) • 1
m₁✝ : M₁
hm₁ : m₁✝ ∈ 𝕎(M₁, χ₁, x)
m₂✝ : M₂
hm₂ : m₂✝ ∈ 𝕎(M₂, χ₂, x)
f₁ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.rTensor M₂ ((toEnd R L M₁) x - χ₁ • 1)
f₂ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.lTensor M₁ ((toEnd R L M₂) x - χ₂ • 1)
m₁ : M₁
m₂ : M₂
⊢ g (⁅x, m₁⁆ ⊗ₜ[R] m₂) + g (m₁ ⊗ₜ[R] ⁅x, m₂⁆) - (χ₁ • g (m₁ ⊗ₜ[R] m₂) + χ₂ • g (m₁ ⊗ₜ[R] m₂)) =
g (⁅x, m₁⁆ ⊗ₜ[R] m₂) - χ₁ • g (m₁ ⊗ₜ[R] m₂) + (g (m₁ ⊗ₜ[R] ⁅x, m₂⁆) - χ₂ • g (m₁ ⊗ₜ[R] m₂))
|
abel
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Lie/Weights/Basic.lean
|
LieModule.weight_vector_multiplication
|
case refine_2.mk.mk.intro
K : Type u_1
R : Type u_2
L : Type u_3
M : Type u_4
inst✝¹⁹ : CommRing R
inst✝¹⁸ : LieRing L
inst✝¹⁷ : LieAlgebra R L
inst✝¹⁶ : LieAlgebra.IsNilpotent R L
inst✝¹⁵ : AddCommGroup M
inst✝¹⁴ : Module R M
inst✝¹³ : LieRingModule L M
inst✝¹² : LieModule R L M
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R M₁
inst✝⁹ : LieRingModule L M₁
inst✝⁸ : LieModule R L M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : LieRingModule L M₂
inst✝⁴ : LieModule R L M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M₃
inst✝¹ : LieRingModule L M₃
inst✝ : LieModule R L M₃
g : M₁ ⊗[R] M₂ →ₗ⁅R,L⁆ M₃
χ₁ χ₂ : R
x : L
t : ↥𝕎(M₁, χ₁, x) ⊗[R] ↥𝕎(M₂, χ₂, x)
F : Module.End R M₃ := (toEnd R L M₃) x - (χ₁ + χ₂) • 1
m₁ : M₁
hm₁ : m₁ ∈ 𝕎(M₁, χ₁, x)
m₂ : M₂
hm₂ : m₂ ∈ 𝕎(M₂, χ₂, x)
f₁ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.rTensor M₂ ((toEnd R L M₁) x - χ₁ • 1)
f₂ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.lTensor M₁ ((toEnd R L M₂) x - χ₂ • 1)
h_comm_square : F ∘ₗ ↑g = ↑g ∘ₗ (f₁ + f₂)
k : ℕ
hk : ((f₁ + f₂) ^ k) (m₁ ⊗ₜ[R] m₂) = 0
⊢ ∃ k, (F ^ k) (↑g (m₁ ⊗ₜ[R] m₂)) = 0
|
use k
|
case h
K : Type u_1
R : Type u_2
L : Type u_3
M : Type u_4
inst✝¹⁹ : CommRing R
inst✝¹⁸ : LieRing L
inst✝¹⁷ : LieAlgebra R L
inst✝¹⁶ : LieAlgebra.IsNilpotent R L
inst✝¹⁵ : AddCommGroup M
inst✝¹⁴ : Module R M
inst✝¹³ : LieRingModule L M
inst✝¹² : LieModule R L M
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R M₁
inst✝⁹ : LieRingModule L M₁
inst✝⁸ : LieModule R L M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : LieRingModule L M₂
inst✝⁴ : LieModule R L M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M₃
inst✝¹ : LieRingModule L M₃
inst✝ : LieModule R L M₃
g : M₁ ⊗[R] M₂ →ₗ⁅R,L⁆ M₃
χ₁ χ₂ : R
x : L
t : ↥𝕎(M₁, χ₁, x) ⊗[R] ↥𝕎(M₂, χ₂, x)
F : Module.End R M₃ := (toEnd R L M₃) x - (χ₁ + χ₂) • 1
m₁ : M₁
hm₁ : m₁ ∈ 𝕎(M₁, χ₁, x)
m₂ : M₂
hm₂ : m₂ ∈ 𝕎(M₂, χ₂, x)
f₁ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.rTensor M₂ ((toEnd R L M₁) x - χ₁ • 1)
f₂ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.lTensor M₁ ((toEnd R L M₂) x - χ₂ • 1)
h_comm_square : F ∘ₗ ↑g = ↑g ∘ₗ (f₁ + f₂)
k : ℕ
hk : ((f₁ + f₂) ^ k) (m₁ ⊗ₜ[R] m₂) = 0
⊢ (F ^ k) (↑g (m₁ ⊗ₜ[R] m₂)) = 0
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Lie/Weights/Basic.lean
|
LieModule.weight_vector_multiplication
|
case h
K : Type u_1
R : Type u_2
L : Type u_3
M : Type u_4
inst✝¹⁹ : CommRing R
inst✝¹⁸ : LieRing L
inst✝¹⁷ : LieAlgebra R L
inst✝¹⁶ : LieAlgebra.IsNilpotent R L
inst✝¹⁵ : AddCommGroup M
inst✝¹⁴ : Module R M
inst✝¹³ : LieRingModule L M
inst✝¹² : LieModule R L M
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R M₁
inst✝⁹ : LieRingModule L M₁
inst✝⁸ : LieModule R L M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : LieRingModule L M₂
inst✝⁴ : LieModule R L M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M₃
inst✝¹ : LieRingModule L M₃
inst✝ : LieModule R L M₃
g : M₁ ⊗[R] M₂ →ₗ⁅R,L⁆ M₃
χ₁ χ₂ : R
x : L
t : ↥𝕎(M₁, χ₁, x) ⊗[R] ↥𝕎(M₂, χ₂, x)
F : Module.End R M₃ := (toEnd R L M₃) x - (χ₁ + χ₂) • 1
m₁ : M₁
hm₁ : m₁ ∈ 𝕎(M₁, χ₁, x)
m₂ : M₂
hm₂ : m₂ ∈ 𝕎(M₂, χ₂, x)
f₁ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.rTensor M₂ ((toEnd R L M₁) x - χ₁ • 1)
f₂ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.lTensor M₁ ((toEnd R L M₂) x - χ₂ • 1)
h_comm_square : F ∘ₗ ↑g = ↑g ∘ₗ (f₁ + f₂)
k : ℕ
hk : ((f₁ + f₂) ^ k) (m₁ ⊗ₜ[R] m₂) = 0
⊢ (F ^ k) (↑g (m₁ ⊗ₜ[R] m₂)) = 0
|
rw [← <a>LinearMap.comp_apply</a>, <a>LinearMap.commute_pow_left_of_commute</a> h_comm_square, <a>LinearMap.comp_apply</a>, hk, <a>LinearMap.map_zero</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Lie/Weights/Basic.lean
|
LieModule.weight_vector_multiplication
|
K : Type u_1
R : Type u_2
L : Type u_3
M : Type u_4
inst✝¹⁹ : CommRing R
inst✝¹⁸ : LieRing L
inst✝¹⁷ : LieAlgebra R L
inst✝¹⁶ : LieAlgebra.IsNilpotent R L
inst✝¹⁵ : AddCommGroup M
inst✝¹⁴ : Module R M
inst✝¹³ : LieRingModule L M
inst✝¹² : LieModule R L M
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R M₁
inst✝⁹ : LieRingModule L M₁
inst✝⁸ : LieModule R L M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : LieRingModule L M₂
inst✝⁴ : LieModule R L M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M₃
inst✝¹ : LieRingModule L M₃
inst✝ : LieModule R L M₃
g : M₁ ⊗[R] M₂ →ₗ⁅R,L⁆ M₃
χ₁ χ₂ : R
x : L
t : ↥𝕎(M₁, χ₁, x) ⊗[R] ↥𝕎(M₂, χ₂, x)
F : Module.End R M₃ := (toEnd R L M₃) x - (χ₁ + χ₂) • 1
m₁ : M₁
m₂ : M₂
f₁ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.rTensor M₂ ((toEnd R L M₁) x - χ₁ • 1)
f₂ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.lTensor M₁ ((toEnd R L M₂) x - χ₂ • 1)
h_comm_square : F ∘ₗ ↑g = ↑g ∘ₗ (f₁ + f₂)
k₁ : ℕ
hk₁ : (((toEnd R L M₁) x - χ₁ • 1) ^ k₁) m₁ = 0
k₂ : ℕ
hk₂ : (((toEnd R L M₂) x - χ₂ • 1) ^ k₂) m₂ = 0
⊢ (f₁ ^ k₁) (m₁ ⊗ₜ[R] m₂) = 0
|
simp only [f₁, hk₁, <a>TensorProduct.zero_tmul</a>, <a>LinearMap.rTensor_tmul</a>, <a>LinearMap.rTensor_pow</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Lie/Weights/Basic.lean
|
LieModule.weight_vector_multiplication
|
K : Type u_1
R : Type u_2
L : Type u_3
M : Type u_4
inst✝¹⁹ : CommRing R
inst✝¹⁸ : LieRing L
inst✝¹⁷ : LieAlgebra R L
inst✝¹⁶ : LieAlgebra.IsNilpotent R L
inst✝¹⁵ : AddCommGroup M
inst✝¹⁴ : Module R M
inst✝¹³ : LieRingModule L M
inst✝¹² : LieModule R L M
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R M₁
inst✝⁹ : LieRingModule L M₁
inst✝⁸ : LieModule R L M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : LieRingModule L M₂
inst✝⁴ : LieModule R L M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M₃
inst✝¹ : LieRingModule L M₃
inst✝ : LieModule R L M₃
g : M₁ ⊗[R] M₂ →ₗ⁅R,L⁆ M₃
χ₁ χ₂ : R
x : L
t : ↥𝕎(M₁, χ₁, x) ⊗[R] ↥𝕎(M₂, χ₂, x)
F : Module.End R M₃ := (toEnd R L M₃) x - (χ₁ + χ₂) • 1
m₁ : M₁
m₂ : M₂
f₁ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.rTensor M₂ ((toEnd R L M₁) x - χ₁ • 1)
f₂ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.lTensor M₁ ((toEnd R L M₂) x - χ₂ • 1)
h_comm_square : F ∘ₗ ↑g = ↑g ∘ₗ (f₁ + f₂)
k₁ : ℕ
hk₁ : (((toEnd R L M₁) x - χ₁ • 1) ^ k₁) m₁ = 0
k₂ : ℕ
hk₂ : (((toEnd R L M₂) x - χ₂ • 1) ^ k₂) m₂ = 0
hf₁ : (f₁ ^ k₁) (m₁ ⊗ₜ[R] m₂) = 0
⊢ (f₂ ^ k₂) (m₁ ⊗ₜ[R] m₂) = 0
|
simp only [f₂, hk₂, <a>TensorProduct.tmul_zero</a>, <a>LinearMap.lTensor_tmul</a>, <a>LinearMap.lTensor_pow</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Lie/Weights/Basic.lean
|
LieModule.weight_vector_multiplication
|
K : Type u_1
R : Type u_2
L : Type u_3
M : Type u_4
inst✝¹⁹ : CommRing R
inst✝¹⁸ : LieRing L
inst✝¹⁷ : LieAlgebra R L
inst✝¹⁶ : LieAlgebra.IsNilpotent R L
inst✝¹⁵ : AddCommGroup M
inst✝¹⁴ : Module R M
inst✝¹³ : LieRingModule L M
inst✝¹² : LieModule R L M
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R M₁
inst✝⁹ : LieRingModule L M₁
inst✝⁸ : LieModule R L M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : LieRingModule L M₂
inst✝⁴ : LieModule R L M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M₃
inst✝¹ : LieRingModule L M₃
inst✝ : LieModule R L M₃
g : M₁ ⊗[R] M₂ →ₗ⁅R,L⁆ M₃
χ₁ χ₂ : R
x : L
t : ↥𝕎(M₁, χ₁, x) ⊗[R] ↥𝕎(M₂, χ₂, x)
F : Module.End R M₃ := (toEnd R L M₃) x - (χ₁ + χ₂) • 1
m₁ : M₁
m₂ : M₂
f₁ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.rTensor M₂ ((toEnd R L M₁) x - χ₁ • 1)
f₂ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.lTensor M₁ ((toEnd R L M₂) x - χ₂ • 1)
h_comm_square : F ∘ₗ ↑g = ↑g ∘ₗ (f₁ + f₂)
k₁ : ℕ
hk₁ : (((toEnd R L M₁) x - χ₁ • 1) ^ k₁) m₁ = 0
k₂ : ℕ
hk₂ : (((toEnd R L M₂) x - χ₂ • 1) ^ k₂) m₂ = 0
hf₁ : (f₁ ^ k₁) (m₁ ⊗ₜ[R] m₂) = 0
hf₂ : (f₂ ^ k₂) (m₁ ⊗ₜ[R] m₂) = 0
⊢ Commute f₁ f₂
|
ext m₁ m₂
|
case a.h.h
K : Type u_1
R : Type u_2
L : Type u_3
M : Type u_4
inst✝¹⁹ : CommRing R
inst✝¹⁸ : LieRing L
inst✝¹⁷ : LieAlgebra R L
inst✝¹⁶ : LieAlgebra.IsNilpotent R L
inst✝¹⁵ : AddCommGroup M
inst✝¹⁴ : Module R M
inst✝¹³ : LieRingModule L M
inst✝¹² : LieModule R L M
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R M₁
inst✝⁹ : LieRingModule L M₁
inst✝⁸ : LieModule R L M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : LieRingModule L M₂
inst✝⁴ : LieModule R L M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M₃
inst✝¹ : LieRingModule L M₃
inst✝ : LieModule R L M₃
g : M₁ ⊗[R] M₂ →ₗ⁅R,L⁆ M₃
χ₁ χ₂ : R
x : L
t : ↥𝕎(M₁, χ₁, x) ⊗[R] ↥𝕎(M₂, χ₂, x)
F : Module.End R M₃ := (toEnd R L M₃) x - (χ₁ + χ₂) • 1
m₁✝ : M₁
m₂✝ : M₂
f₁ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.rTensor M₂ ((toEnd R L M₁) x - χ₁ • 1)
f₂ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.lTensor M₁ ((toEnd R L M₂) x - χ₂ • 1)
h_comm_square : F ∘ₗ ↑g = ↑g ∘ₗ (f₁ + f₂)
k₁ : ℕ
hk₁ : (((toEnd R L M₁) x - χ₁ • 1) ^ k₁) m₁✝ = 0
k₂ : ℕ
hk₂ : (((toEnd R L M₂) x - χ₂ • 1) ^ k₂) m₂✝ = 0
hf₁ : (f₁ ^ k₁) (m₁✝ ⊗ₜ[R] m₂✝) = 0
hf₂ : (f₂ ^ k₂) (m₁✝ ⊗ₜ[R] m₂✝) = 0
m₁ : M₁
m₂ : M₂
⊢ ((AlgebraTensorModule.curry (f₁ * f₂)) m₁) m₂ = ((AlgebraTensorModule.curry (f₂ * f₁)) m₁) m₂
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Lie/Weights/Basic.lean
|
LieModule.weight_vector_multiplication
|
case a.h.h
K : Type u_1
R : Type u_2
L : Type u_3
M : Type u_4
inst✝¹⁹ : CommRing R
inst✝¹⁸ : LieRing L
inst✝¹⁷ : LieAlgebra R L
inst✝¹⁶ : LieAlgebra.IsNilpotent R L
inst✝¹⁵ : AddCommGroup M
inst✝¹⁴ : Module R M
inst✝¹³ : LieRingModule L M
inst✝¹² : LieModule R L M
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R M₁
inst✝⁹ : LieRingModule L M₁
inst✝⁸ : LieModule R L M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : LieRingModule L M₂
inst✝⁴ : LieModule R L M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M₃
inst✝¹ : LieRingModule L M₃
inst✝ : LieModule R L M₃
g : M₁ ⊗[R] M₂ →ₗ⁅R,L⁆ M₃
χ₁ χ₂ : R
x : L
t : ↥𝕎(M₁, χ₁, x) ⊗[R] ↥𝕎(M₂, χ₂, x)
F : Module.End R M₃ := (toEnd R L M₃) x - (χ₁ + χ₂) • 1
m₁✝ : M₁
m₂✝ : M₂
f₁ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.rTensor M₂ ((toEnd R L M₁) x - χ₁ • 1)
f₂ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.lTensor M₁ ((toEnd R L M₂) x - χ₂ • 1)
h_comm_square : F ∘ₗ ↑g = ↑g ∘ₗ (f₁ + f₂)
k₁ : ℕ
hk₁ : (((toEnd R L M₁) x - χ₁ • 1) ^ k₁) m₁✝ = 0
k₂ : ℕ
hk₂ : (((toEnd R L M₂) x - χ₂ • 1) ^ k₂) m₂✝ = 0
hf₁ : (f₁ ^ k₁) (m₁✝ ⊗ₜ[R] m₂✝) = 0
hf₂ : (f₂ ^ k₂) (m₁✝ ⊗ₜ[R] m₂✝) = 0
m₁ : M₁
m₂ : M₂
⊢ ((AlgebraTensorModule.curry (f₁ * f₂)) m₁) m₂ = ((AlgebraTensorModule.curry (f₂ * f₁)) m₁) m₂
|
simp only [f₁, f₂, <a>LinearMap.mul_apply</a>, <a>LinearMap.rTensor_tmul</a>, <a>LinearMap.lTensor_tmul</a>, <a>TensorProduct.AlgebraTensorModule.curry_apply</a>, <a>LinearMap.toFun_eq_coe</a>, <a>LinearMap.lTensor_tmul</a>, <a>TensorProduct.curry_apply</a>, <a>LinearMap.coe_restrictScalars</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Lie/Weights/Basic.lean
|
LieModule.weight_vector_multiplication
|
K : Type u_1
R : Type u_2
L : Type u_3
M : Type u_4
inst✝¹⁹ : CommRing R
inst✝¹⁸ : LieRing L
inst✝¹⁷ : LieAlgebra R L
inst✝¹⁶ : LieAlgebra.IsNilpotent R L
inst✝¹⁵ : AddCommGroup M
inst✝¹⁴ : Module R M
inst✝¹³ : LieRingModule L M
inst✝¹² : LieModule R L M
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R M₁
inst✝⁹ : LieRingModule L M₁
inst✝⁸ : LieModule R L M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : LieRingModule L M₂
inst✝⁴ : LieModule R L M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M₃
inst✝¹ : LieRingModule L M₃
inst✝ : LieModule R L M₃
g : M₁ ⊗[R] M₂ →ₗ⁅R,L⁆ M₃
χ₁ χ₂ : R
x : L
t : ↥𝕎(M₁, χ₁, x) ⊗[R] ↥𝕎(M₂, χ₂, x)
F : Module.End R M₃ := (toEnd R L M₃) x - (χ₁ + χ₂) • 1
m₁ : M₁
m₂ : M₂
f₁ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.rTensor M₂ ((toEnd R L M₁) x - χ₁ • 1)
f₂ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.lTensor M₁ ((toEnd R L M₂) x - χ₂ • 1)
h_comm_square : F ∘ₗ ↑g = ↑g ∘ₗ (f₁ + f₂)
k₁ : ℕ
hk₁ : (((toEnd R L M₁) x - χ₁ • 1) ^ k₁) m₁ = 0
k₂ : ℕ
hk₂ : (((toEnd R L M₂) x - χ₂ • 1) ^ k₂) m₂ = 0
hf₁ : (f₁ ^ k₁) (m₁ ⊗ₜ[R] m₂) = 0
hf₂ : (f₂ ^ k₂) (m₁ ⊗ₜ[R] m₂) = 0
hf_comm : Commute f₁ f₂
i j : ℕ
hij : (i, j) ∈ Finset.antidiagonal (k₁ + k₂ - 1)
this : (f₁ ^ i * f₂ ^ j) (m₁ ⊗ₜ[R] m₂) = 0
⊢ (k₁ + k₂ - 1).choose (i, j).1 • (f₁ ^ (i, j).1 * f₂ ^ (i, j).2) (m₁ ⊗ₜ[R] m₂) = 0
|
rw [this]
|
K : Type u_1
R : Type u_2
L : Type u_3
M : Type u_4
inst✝¹⁹ : CommRing R
inst✝¹⁸ : LieRing L
inst✝¹⁷ : LieAlgebra R L
inst✝¹⁶ : LieAlgebra.IsNilpotent R L
inst✝¹⁵ : AddCommGroup M
inst✝¹⁴ : Module R M
inst✝¹³ : LieRingModule L M
inst✝¹² : LieModule R L M
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R M₁
inst✝⁹ : LieRingModule L M₁
inst✝⁸ : LieModule R L M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : LieRingModule L M₂
inst✝⁴ : LieModule R L M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M₃
inst✝¹ : LieRingModule L M₃
inst✝ : LieModule R L M₃
g : M₁ ⊗[R] M₂ →ₗ⁅R,L⁆ M₃
χ₁ χ₂ : R
x : L
t : ↥𝕎(M₁, χ₁, x) ⊗[R] ↥𝕎(M₂, χ₂, x)
F : Module.End R M₃ := (toEnd R L M₃) x - (χ₁ + χ₂) • 1
m₁ : M₁
m₂ : M₂
f₁ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.rTensor M₂ ((toEnd R L M₁) x - χ₁ • 1)
f₂ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.lTensor M₁ ((toEnd R L M₂) x - χ₂ • 1)
h_comm_square : F ∘ₗ ↑g = ↑g ∘ₗ (f₁ + f₂)
k₁ : ℕ
hk₁ : (((toEnd R L M₁) x - χ₁ • 1) ^ k₁) m₁ = 0
k₂ : ℕ
hk₂ : (((toEnd R L M₂) x - χ₂ • 1) ^ k₂) m₂ = 0
hf₁ : (f₁ ^ k₁) (m₁ ⊗ₜ[R] m₂) = 0
hf₂ : (f₂ ^ k₂) (m₁ ⊗ₜ[R] m₂) = 0
hf_comm : Commute f₁ f₂
i j : ℕ
hij : (i, j) ∈ Finset.antidiagonal (k₁ + k₂ - 1)
this : (f₁ ^ i * f₂ ^ j) (m₁ ⊗ₜ[R] m₂) = 0
⊢ (k₁ + k₂ - 1).choose (i, j).1 • 0 = 0
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Lie/Weights/Basic.lean
|
LieModule.weight_vector_multiplication
|
K : Type u_1
R : Type u_2
L : Type u_3
M : Type u_4
inst✝¹⁹ : CommRing R
inst✝¹⁸ : LieRing L
inst✝¹⁷ : LieAlgebra R L
inst✝¹⁶ : LieAlgebra.IsNilpotent R L
inst✝¹⁵ : AddCommGroup M
inst✝¹⁴ : Module R M
inst✝¹³ : LieRingModule L M
inst✝¹² : LieModule R L M
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R M₁
inst✝⁹ : LieRingModule L M₁
inst✝⁸ : LieModule R L M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : LieRingModule L M₂
inst✝⁴ : LieModule R L M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M₃
inst✝¹ : LieRingModule L M₃
inst✝ : LieModule R L M₃
g : M₁ ⊗[R] M₂ →ₗ⁅R,L⁆ M₃
χ₁ χ₂ : R
x : L
t : ↥𝕎(M₁, χ₁, x) ⊗[R] ↥𝕎(M₂, χ₂, x)
F : Module.End R M₃ := (toEnd R L M₃) x - (χ₁ + χ₂) • 1
m₁ : M₁
m₂ : M₂
f₁ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.rTensor M₂ ((toEnd R L M₁) x - χ₁ • 1)
f₂ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.lTensor M₁ ((toEnd R L M₂) x - χ₂ • 1)
h_comm_square : F ∘ₗ ↑g = ↑g ∘ₗ (f₁ + f₂)
k₁ : ℕ
hk₁ : (((toEnd R L M₁) x - χ₁ • 1) ^ k₁) m₁ = 0
k₂ : ℕ
hk₂ : (((toEnd R L M₂) x - χ₂ • 1) ^ k₂) m₂ = 0
hf₁ : (f₁ ^ k₁) (m₁ ⊗ₜ[R] m₂) = 0
hf₂ : (f₂ ^ k₂) (m₁ ⊗ₜ[R] m₂) = 0
hf_comm : Commute f₁ f₂
i j : ℕ
hij : (i, j) ∈ Finset.antidiagonal (k₁ + k₂ - 1)
this : (f₁ ^ i * f₂ ^ j) (m₁ ⊗ₜ[R] m₂) = 0
⊢ (k₁ + k₂ - 1).choose (i, j).1 • 0 = 0
|
apply <a>smul_zero</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Lie/Weights/Basic.lean
|
LieModule.weight_vector_multiplication
|
case h.h.mk.inl
K : Type u_1
R : Type u_2
L : Type u_3
M : Type u_4
inst✝¹⁹ : CommRing R
inst✝¹⁸ : LieRing L
inst✝¹⁷ : LieAlgebra R L
inst✝¹⁶ : LieAlgebra.IsNilpotent R L
inst✝¹⁵ : AddCommGroup M
inst✝¹⁴ : Module R M
inst✝¹³ : LieRingModule L M
inst✝¹² : LieModule R L M
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R M₁
inst✝⁹ : LieRingModule L M₁
inst✝⁸ : LieModule R L M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : LieRingModule L M₂
inst✝⁴ : LieModule R L M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M₃
inst✝¹ : LieRingModule L M₃
inst✝ : LieModule R L M₃
g : M₁ ⊗[R] M₂ →ₗ⁅R,L⁆ M₃
χ₁ χ₂ : R
x : L
t : ↥𝕎(M₁, χ₁, x) ⊗[R] ↥𝕎(M₂, χ₂, x)
F : Module.End R M₃ := (toEnd R L M₃) x - (χ₁ + χ₂) • 1
m₁ : M₁
m₂ : M₂
f₁ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.rTensor M₂ ((toEnd R L M₁) x - χ₁ • 1)
f₂ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.lTensor M₁ ((toEnd R L M₂) x - χ₂ • 1)
h_comm_square : F ∘ₗ ↑g = ↑g ∘ₗ (f₁ + f₂)
k₁ : ℕ
hk₁ : (((toEnd R L M₁) x - χ₁ • 1) ^ k₁) m₁ = 0
k₂ : ℕ
hk₂ : (((toEnd R L M₂) x - χ₂ • 1) ^ k₂) m₂ = 0
hf₁ : (f₁ ^ k₁) (m₁ ⊗ₜ[R] m₂) = 0
hf₂ : (f₂ ^ k₂) (m₁ ⊗ₜ[R] m₂) = 0
hf_comm : Commute f₁ f₂
i j : ℕ
hij : (i, j) ∈ Finset.antidiagonal (k₁ + k₂ - 1)
hi : k₁ ≤ (i, j).1
⊢ (f₁ ^ i * f₂ ^ j) (m₁ ⊗ₜ[R] m₂) = 0
|
rw [(hf_comm.pow_pow i j).<a>Commute.eq</a>, <a>LinearMap.mul_apply</a>, <a>LinearMap.pow_map_zero_of_le</a> hi hf₁, <a>LinearMap.map_zero</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Lie/Weights/Basic.lean
|
LieModule.weight_vector_multiplication
|
case h.h.mk.inr
K : Type u_1
R : Type u_2
L : Type u_3
M : Type u_4
inst✝¹⁹ : CommRing R
inst✝¹⁸ : LieRing L
inst✝¹⁷ : LieAlgebra R L
inst✝¹⁶ : LieAlgebra.IsNilpotent R L
inst✝¹⁵ : AddCommGroup M
inst✝¹⁴ : Module R M
inst✝¹³ : LieRingModule L M
inst✝¹² : LieModule R L M
M₁ : Type u_5
M₂ : Type u_6
M₃ : Type u_7
inst✝¹¹ : AddCommGroup M₁
inst✝¹⁰ : Module R M₁
inst✝⁹ : LieRingModule L M₁
inst✝⁸ : LieModule R L M₁
inst✝⁷ : AddCommGroup M₂
inst✝⁶ : Module R M₂
inst✝⁵ : LieRingModule L M₂
inst✝⁴ : LieModule R L M₂
inst✝³ : AddCommGroup M₃
inst✝² : Module R M₃
inst✝¹ : LieRingModule L M₃
inst✝ : LieModule R L M₃
g : M₁ ⊗[R] M₂ →ₗ⁅R,L⁆ M₃
χ₁ χ₂ : R
x : L
t : ↥𝕎(M₁, χ₁, x) ⊗[R] ↥𝕎(M₂, χ₂, x)
F : Module.End R M₃ := (toEnd R L M₃) x - (χ₁ + χ₂) • 1
m₁ : M₁
m₂ : M₂
f₁ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.rTensor M₂ ((toEnd R L M₁) x - χ₁ • 1)
f₂ : Module.End R (M₁ ⊗[R] M₂) := LinearMap.lTensor M₁ ((toEnd R L M₂) x - χ₂ • 1)
h_comm_square : F ∘ₗ ↑g = ↑g ∘ₗ (f₁ + f₂)
k₁ : ℕ
hk₁ : (((toEnd R L M₁) x - χ₁ • 1) ^ k₁) m₁ = 0
k₂ : ℕ
hk₂ : (((toEnd R L M₂) x - χ₂ • 1) ^ k₂) m₂ = 0
hf₁ : (f₁ ^ k₁) (m₁ ⊗ₜ[R] m₂) = 0
hf₂ : (f₂ ^ k₂) (m₁ ⊗ₜ[R] m₂) = 0
hf_comm : Commute f₁ f₂
i j : ℕ
hij : (i, j) ∈ Finset.antidiagonal (k₁ + k₂ - 1)
hj : k₂ ≤ (i, j).2
⊢ (f₁ ^ i * f₂ ^ j) (m₁ ⊗ₜ[R] m₂) = 0
|
rw [<a>LinearMap.mul_apply</a>, <a>LinearMap.pow_map_zero_of_le</a> hj hf₂, <a>LinearMap.map_zero</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Lie/Weights/Basic.lean
|
TopologicalSpace.IsTopologicalBasis.exists_mem_of_ne
|
X : Type u_1
Y : Type u_2
inst✝¹ : TopologicalSpace X
inst✝ : T1Space X
b : Set (Set X)
hb : IsTopologicalBasis b
x y : X
h : x ≠ y
⊢ ∃ a ∈ b, x ∈ a ∧ y ∉ a
|
rcases hb.isOpen_iff.1 <a>isOpen_ne</a> x h with ⟨a, ab, xa, ha⟩
|
case intro.intro.intro
X : Type u_1
Y : Type u_2
inst✝¹ : TopologicalSpace X
inst✝ : T1Space X
b : Set (Set X)
hb : IsTopologicalBasis b
x y : X
h : x ≠ y
a : Set X
ab : a ∈ b
xa : x ∈ a
ha : a ⊆ {y_1 | y_1 ≠ y}
⊢ ∃ a ∈ b, x ∈ a ∧ y ∉ a
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/Separation.lean
|
TopologicalSpace.IsTopologicalBasis.exists_mem_of_ne
|
case intro.intro.intro
X : Type u_1
Y : Type u_2
inst✝¹ : TopologicalSpace X
inst✝ : T1Space X
b : Set (Set X)
hb : IsTopologicalBasis b
x y : X
h : x ≠ y
a : Set X
ab : a ∈ b
xa : x ∈ a
ha : a ⊆ {y_1 | y_1 ≠ y}
⊢ ∃ a ∈ b, x ∈ a ∧ y ∉ a
|
exact ⟨a, ab, xa, fun h => ha h <a>rfl</a>⟩
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/Separation.lean
|
Associates.prime_pow_le_iff_le_bcount
|
α : Type u_1
inst✝² : CancelCommMonoidWithZero α
inst✝¹ : UniqueFactorizationMonoid α
inst✝ : DecidableEq (Associates α)
m p : Associates α
h₁ : m ≠ 0
h₂ : Irreducible p
k : ℕ
⊢ p ^ k ≤ m ↔ k ≤ bcount ⟨p, h₂⟩ m.factors
|
rcases <a>Associates.exists_non_zero_rep</a> h₁ with ⟨m, hm, rfl⟩
|
case intro.intro
α : Type u_1
inst✝² : CancelCommMonoidWithZero α
inst✝¹ : UniqueFactorizationMonoid α
inst✝ : DecidableEq (Associates α)
p : Associates α
h₂ : Irreducible p
k : ℕ
m : α
hm : m ≠ 0
h₁ : Associates.mk m ≠ 0
⊢ p ^ k ≤ Associates.mk m ↔ k ≤ bcount ⟨p, h₂⟩ (Associates.mk m).factors
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/UniqueFactorizationDomain.lean
|
Associates.prime_pow_le_iff_le_bcount
|
case intro.intro
α : Type u_1
inst✝² : CancelCommMonoidWithZero α
inst✝¹ : UniqueFactorizationMonoid α
inst✝ : DecidableEq (Associates α)
p : Associates α
h₂ : Irreducible p
k : ℕ
m : α
hm : m ≠ 0
h₁ : Associates.mk m ≠ 0
⊢ p ^ k ≤ Associates.mk m ↔ k ≤ bcount ⟨p, h₂⟩ (Associates.mk m).factors
|
have := <a>nontrivial_of_ne</a> _ _ hm
|
case intro.intro
α : Type u_1
inst✝² : CancelCommMonoidWithZero α
inst✝¹ : UniqueFactorizationMonoid α
inst✝ : DecidableEq (Associates α)
p : Associates α
h₂ : Irreducible p
k : ℕ
m : α
hm : m ≠ 0
h₁ : Associates.mk m ≠ 0
this : Nontrivial α
⊢ p ^ k ≤ Associates.mk m ↔ k ≤ bcount ⟨p, h₂⟩ (Associates.mk m).factors
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/UniqueFactorizationDomain.lean
|
Associates.prime_pow_le_iff_le_bcount
|
case intro.intro
α : Type u_1
inst✝² : CancelCommMonoidWithZero α
inst✝¹ : UniqueFactorizationMonoid α
inst✝ : DecidableEq (Associates α)
p : Associates α
h₂ : Irreducible p
k : ℕ
m : α
hm : m ≠ 0
h₁ : Associates.mk m ≠ 0
this : Nontrivial α
⊢ p ^ k ≤ Associates.mk m ↔ k ≤ bcount ⟨p, h₂⟩ (Associates.mk m).factors
|
rw [<a>Associates.bcount</a>, <a>Associates.factors_mk</a>, <a>Multiset.le_count_iff_replicate_le</a>, ← <a>Associates.factors_le</a>, <a>Associates.factors_prime_pow</a>, <a>Associates.factors_mk</a>, <a>WithTop.coe_le_coe</a>] <;> assumption
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/UniqueFactorizationDomain.lean
|
dense_discrete
|
α : Type u_1
t t₁ t₂ : TopologicalSpace α
s✝ : Set α
inst✝¹ : TopologicalSpace α
inst✝ : DiscreteTopology α
β : Type u_2
s : Set α
⊢ Dense s ↔ s = univ
|
simp [<a>dense_iff_closure_eq</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Topology/Order.lean
|
Nat.gcd_sub_self_right
|
m n : ℕ
h : m ≤ n
⊢ m.gcd (n - m) = m.gcd n
|
rw [<a>Nat.gcd_comm</a>, <a>Nat.gcd_sub_self_left</a> h, <a>Nat.gcd_comm</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Nat/GCD/Basic.lean
|
intervalIntegral.norm_integral_le_integral_norm
|
ι : Type u_1
𝕜 : Type u_2
E : Type u_3
F : Type u_4
A : Type u_5
inst✝² : NormedAddCommGroup E
inst✝¹ : CompleteSpace E
inst✝ : NormedSpace ℝ E
a b : ℝ
f g : ℝ → E
μ : Measure ℝ
h : a ≤ b
⊢ ∫ (x : ℝ) in Ι a b, ‖f x‖ ∂μ = ∫ (x : ℝ) in a..b, ‖f x‖ ∂μ
|
rw [<a>Set.uIoc_of_le</a> h, <a>intervalIntegral.integral_of_le</a> h]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Integral/IntervalIntegral.lean
|
MonoidHom.ker_prodMap
|
G : Type u_1
G'✝ : Type u_2
G'' : Type u_3
inst✝⁸ : Group G
inst✝⁷ : Group G'✝
inst✝⁶ : Group G''
A : Type u_4
inst✝⁵ : AddGroup A
N : Type u_5
P : Type u_6
inst✝⁴ : Group N
inst✝³ : Group P
K : Subgroup G
M : Type u_7
inst✝² : MulOneClass M
G' : Type u_8
N' : Type u_9
inst✝¹ : Group G'
inst✝ : Group N'
f : G →* N
g : G' →* N'
⊢ (f.prodMap g).ker = f.ker.prod g.ker
|
rw [← <a>MonoidHom.comap_bot</a>, ← <a>MonoidHom.comap_bot</a>, ← <a>MonoidHom.comap_bot</a>, ← <a>MonoidHom.prodMap_comap_prod</a>, <a>Subgroup.bot_prod_bot</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/Group/Subgroup/Basic.lean
|
String.data_takeWhile
|
p : Char → Bool
s : String
⊢ (s.takeWhile p).data = List.takeWhile p s.data
|
rw [<a>String.takeWhile_eq</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
.lake/packages/batteries/Batteries/Data/String/Lemmas.lean
|
affineIndependent_iff_not_collinear_set
|
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ : P
⊢ AffineIndependent k ![p₁, p₂, p₃] ↔ ¬Collinear k {p₁, p₂, p₃}
|
rw [<a>affineIndependent_iff_not_collinear</a>]
|
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ : P
⊢ ¬Collinear k (Set.range ![p₁, p₂, p₃]) ↔ ¬Collinear k {p₁, p₂, p₃}
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/AffineSpace/FiniteDimensional.lean
|
affineIndependent_iff_not_collinear_set
|
k : Type u_1
V : Type u_2
P : Type u_3
ι : Type u_4
inst✝³ : DivisionRing k
inst✝² : AddCommGroup V
inst✝¹ : Module k V
inst✝ : AffineSpace V P
p₁ p₂ p₃ : P
⊢ ¬Collinear k (Set.range ![p₁, p₂, p₃]) ↔ ¬Collinear k {p₁, p₂, p₃}
|
simp_rw [<a>Matrix.range_cons</a>, <a>Matrix.range_empty</a>, <a>Set.singleton_union</a>, <a>LawfulSingleton.insert_emptyc_eq</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/AffineSpace/FiniteDimensional.lean
|
MeasureTheory.AEDisjoint.iUnion_left_iff
|
ι : Type u_1
α : Type u_2
m : MeasurableSpace α
μ : Measure α
s✝ t u v : Set α
inst✝ : Countable ι
s : ι → Set α
⊢ AEDisjoint μ (⋃ i, s i) t ↔ ∀ (i : ι), AEDisjoint μ (s i) t
|
simp only [<a>MeasureTheory.AEDisjoint</a>, <a>Set.iUnion_inter</a>, <a>MeasureTheory.measure_iUnion_null_iff</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/AEDisjoint.lean
|
Finset.smul_zero_subset
|
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝² : Zero β
inst✝¹ : SMulZeroClass α β
inst✝ : DecidableEq β
s✝ : Finset α
t : Finset β
a : α
s : Finset α
⊢ s • 0 ⊆ 0
|
simp [<a>Finset.subset_iff</a>, <a>Finset.mem_smul</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Finset/Pointwise.lean
|
Commute.mul_neg_geom_sum₂
|
α : Type u
inst✝ : Ring α
x y : α
h : Commute x y
n : ℕ
⊢ (y - x) * ∑ i ∈ range n, x ^ i * y ^ (n - 1 - i) = y ^ n - x ^ n
|
apply <a>MulOpposite.op_injective</a>
|
case a
α : Type u
inst✝ : Ring α
x y : α
h : Commute x y
n : ℕ
⊢ MulOpposite.op ((y - x) * ∑ i ∈ range n, x ^ i * y ^ (n - 1 - i)) = MulOpposite.op (y ^ n - x ^ n)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/GeomSum.lean
|
Commute.mul_neg_geom_sum₂
|
case a
α : Type u
inst✝ : Ring α
x y : α
h : Commute x y
n : ℕ
⊢ MulOpposite.op ((y - x) * ∑ i ∈ range n, x ^ i * y ^ (n - 1 - i)) = MulOpposite.op (y ^ n - x ^ n)
|
simp only [<a>MulOpposite.op_mul</a>, <a>MulOpposite.op_sub</a>, <a>op_geom_sum₂</a>, <a>MulOpposite.op_pow</a>]
|
case a
α : Type u
inst✝ : Ring α
x y : α
h : Commute x y
n : ℕ
⊢ MulOpposite.op (∑ i ∈ range n, x ^ i * y ^ (n - 1 - i)) * (MulOpposite.op y - MulOpposite.op x) =
MulOpposite.op y ^ n - MulOpposite.op x ^ n
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/GeomSum.lean
|
Commute.mul_neg_geom_sum₂
|
case a
α : Type u
inst✝ : Ring α
x y : α
h : Commute x y
n : ℕ
⊢ MulOpposite.op (∑ i ∈ range n, x ^ i * y ^ (n - 1 - i)) * (MulOpposite.op y - MulOpposite.op x) =
MulOpposite.op y ^ n - MulOpposite.op x ^ n
|
simp [(<a>Commute.op</a> h.symm).<a>Commute.geom_sum₂_mul</a> n]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Algebra/GeomSum.lean
|
FractionalIdeal.zero_le
|
R : Type u_1
inst✝² : CommRing R
S : Submonoid R
P : Type u_2
inst✝¹ : CommRing P
inst✝ : Algebra R P
loc : IsLocalization S P
I : FractionalIdeal S P
⊢ 0 ≤ I
|
intro x hx
|
R : Type u_1
inst✝² : CommRing R
S : Submonoid R
P : Type u_2
inst✝¹ : CommRing P
inst✝ : Algebra R P
loc : IsLocalization S P
I : FractionalIdeal S P
x : P
hx : x ∈ 0
⊢ x ∈ I
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/FractionalIdeal/Basic.lean
|
FractionalIdeal.zero_le
|
R : Type u_1
inst✝² : CommRing R
S : Submonoid R
P : Type u_2
inst✝¹ : CommRing P
inst✝ : Algebra R P
loc : IsLocalization S P
I : FractionalIdeal S P
x : P
hx : x ∈ 0
⊢ x ∈ I
|
rw [(<a>FractionalIdeal.mem_zero_iff</a> _).<a>Iff.mp</a> hx]
|
R : Type u_1
inst✝² : CommRing R
S : Submonoid R
P : Type u_2
inst✝¹ : CommRing P
inst✝ : Algebra R P
loc : IsLocalization S P
I : FractionalIdeal S P
x : P
hx : x ∈ 0
⊢ 0 ∈ I
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/FractionalIdeal/Basic.lean
|
FractionalIdeal.zero_le
|
R : Type u_1
inst✝² : CommRing R
S : Submonoid R
P : Type u_2
inst✝¹ : CommRing P
inst✝ : Algebra R P
loc : IsLocalization S P
I : FractionalIdeal S P
x : P
hx : x ∈ 0
⊢ 0 ∈ I
|
exact <a>FractionalIdeal.zero_mem</a> I
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/FractionalIdeal/Basic.lean
|
ProbabilityTheory.setIntegral_preCDF_fst
|
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
⊢ ∫ (x : α) in s, (preCDF ρ r x).toReal ∂ρ.fst = ((ρ.IicSnd ↑r) s).toReal
|
rw [<a>MeasureTheory.integral_toReal</a>]
|
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
⊢ (∫⁻ (a : α) in s, preCDF ρ r a ∂ρ.fst).toReal = ((ρ.IicSnd ↑r) s).toReal
case hfm
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
⊢ AEMeasurable (preCDF ρ r) (ρ.fst.restrict s)
case hf
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
⊢ ∀ᵐ (x : α) ∂ρ.fst.restrict s, preCDF ρ r x < ⊤
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Probability/Kernel/Disintegration/CondCdf.lean
|
ProbabilityTheory.setIntegral_preCDF_fst
|
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
⊢ (∫⁻ (a : α) in s, preCDF ρ r a ∂ρ.fst).toReal = ((ρ.IicSnd ↑r) s).toReal
|
rw [<a>ProbabilityTheory.setLIntegral_preCDF_fst</a> _ _ hs]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Probability/Kernel/Disintegration/CondCdf.lean
|
ProbabilityTheory.setIntegral_preCDF_fst
|
case hfm
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
⊢ AEMeasurable (preCDF ρ r) (ρ.fst.restrict s)
|
exact measurable_preCDF.aemeasurable
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Probability/Kernel/Disintegration/CondCdf.lean
|
ProbabilityTheory.setIntegral_preCDF_fst
|
case hf
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
⊢ ∀ᵐ (x : α) ∂ρ.fst.restrict s, preCDF ρ r x < ⊤
|
refine <a>MeasureTheory.ae_restrict_of_ae</a> ?_
|
case hf
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
⊢ ∀ᵐ (x : α) ∂ρ.fst, preCDF ρ r x < ⊤
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Probability/Kernel/Disintegration/CondCdf.lean
|
ProbabilityTheory.setIntegral_preCDF_fst
|
case hf
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
⊢ ∀ᵐ (x : α) ∂ρ.fst, preCDF ρ r x < ⊤
|
filter_upwards [<a>ProbabilityTheory.preCDF_le_one</a> ρ] with a ha
|
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
a : α
ha : ∀ (r : ℚ), preCDF ρ r a ≤ 1
⊢ preCDF ρ r a < ⊤
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Probability/Kernel/Disintegration/CondCdf.lean
|
ProbabilityTheory.setIntegral_preCDF_fst
|
case h
α : Type u_1
β : Type u_2
ι : Type u_3
mα : MeasurableSpace α
ρ : Measure (α × ℝ)
r : ℚ
s : Set α
hs : MeasurableSet s
inst✝ : IsFiniteMeasure ρ
a : α
ha : ∀ (r : ℚ), preCDF ρ r a ≤ 1
⊢ preCDF ρ r a < ⊤
|
exact (ha r).<a>LE.le.trans_lt</a> <a>ENNReal.one_lt_top</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Probability/Kernel/Disintegration/CondCdf.lean
|
Nat.totient_lt
|
n : ℕ
hn : 1 < n
⊢ 0 ∈ range n ∧ ¬n.Coprime 0
|
simp [hn.ne', <a>pos_of_gt</a> hn]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Nat/Totient.lean
|
Affine.Triangle.dist_orthocenter_reflection_circumcenter_finset
|
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
t : Triangle ℝ P
i₁ i₂ : Fin 3
h : i₁ ≠ i₂
⊢ dist t.orthocenter ((EuclideanGeometry.reflection (affineSpan ℝ (t.points '' ↑{i₁, i₂}))) (circumcenter t)) =
circumradius t
|
simp only [<a>Finset.mem_singleton</a>, <a>Finset.coe_insert</a>, <a>Finset.coe_singleton</a>, <a>Set.mem_singleton_iff</a>]
|
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
t : Triangle ℝ P
i₁ i₂ : Fin 3
h : i₁ ≠ i₂
⊢ dist t.orthocenter ((EuclideanGeometry.reflection (affineSpan ℝ (t.points '' {i₁, i₂}))) (circumcenter t)) =
circumradius t
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Geometry/Euclidean/MongePoint.lean
|
Affine.Triangle.dist_orthocenter_reflection_circumcenter_finset
|
V : Type u_1
P : Type u_2
inst✝³ : NormedAddCommGroup V
inst✝² : InnerProductSpace ℝ V
inst✝¹ : MetricSpace P
inst✝ : NormedAddTorsor V P
t : Triangle ℝ P
i₁ i₂ : Fin 3
h : i₁ ≠ i₂
⊢ dist t.orthocenter ((EuclideanGeometry.reflection (affineSpan ℝ (t.points '' {i₁, i₂}))) (circumcenter t)) =
circumradius t
|
exact <a>Affine.Triangle.dist_orthocenter_reflection_circumcenter</a> _ h
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Geometry/Euclidean/MongePoint.lean
|
LinearEquiv.lTensor_zpow
|
R : Type u_1
inst✝¹⁶ : CommSemiring R
R' : Type u_2
inst✝¹⁵ : Monoid R'
R'' : Type u_3
inst✝¹⁴ : Semiring R''
M : Type u_4
N : Type u_5
P : Type u_6
Q : Type u_7
S : Type u_8
T : Type u_9
inst✝¹³ : AddCommMonoid M
inst✝¹² : AddCommMonoid N
inst✝¹¹ : AddCommMonoid P
inst✝¹⁰ : AddCommMonoid Q
inst✝⁹ : AddCommMonoid S
inst✝⁸ : AddCommMonoid T
inst✝⁷ : Module R M
inst✝⁶ : Module R N
inst✝⁵ : Module R P
inst✝⁴ : Module R Q
inst✝³ : Module R S
inst✝² : Module R T
inst✝¹ : DistribMulAction R' M
inst✝ : Module R'' M
g : P ≃ₗ[R] Q
f✝ : N ≃ₗ[R] P
m : M
n✝ : N
p : P
x : M ⊗[R] N
y : N ⊗[R] M
f : N ≃ₗ[R] N
n : ℤ
⊢ lTensor M f ^ n = lTensor M (f ^ n)
|
simpa only [<a>one_zpow</a>] using <a>TensorProduct.congr_zpow</a> (1 : M ≃ₗ[R] M) f n
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/TensorProduct/Basic.lean
|
MeasureTheory.Measure.haar.prehaar_nonneg
|
G : Type u_1
inst✝¹ : Group G
inst✝ : TopologicalSpace G
K₀ : PositiveCompacts G
U : Set G
K : Compacts G
⊢ 0 ≤ prehaar (↑K₀) U K
|
apply <a>div_nonneg</a> <;> norm_cast <;> apply <a>zero_le</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Measure/Haar/Basic.lean
|
Finset.image₂_image_left
|
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
ζ : Type u_11
ζ' : Type u_12
ν : Type u_13
inst✝⁷ : DecidableEq α'
inst✝⁶ : DecidableEq β'
inst✝⁵ : DecidableEq γ
inst✝⁴ : DecidableEq γ'
inst✝³ : DecidableEq δ
inst✝² : DecidableEq δ'
inst✝¹ : DecidableEq ε
inst✝ : DecidableEq ε'
f✝ f' : α → β → γ
g✝ g' : α → β → γ → δ
s s' : Finset α
t t' : Finset β
u u' : Finset γ
a a' : α
b b' : β
c : γ
f : γ → β → δ
g : α → γ
⊢ ↑(image₂ f (image g s) t) = ↑(image₂ (fun a b => f (g a) b) s t)
|
push_cast
|
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
ζ : Type u_11
ζ' : Type u_12
ν : Type u_13
inst✝⁷ : DecidableEq α'
inst✝⁶ : DecidableEq β'
inst✝⁵ : DecidableEq γ
inst✝⁴ : DecidableEq γ'
inst✝³ : DecidableEq δ
inst✝² : DecidableEq δ'
inst✝¹ : DecidableEq ε
inst✝ : DecidableEq ε'
f✝ f' : α → β → γ
g✝ g' : α → β → γ → δ
s s' : Finset α
t t' : Finset β
u u' : Finset γ
a a' : α
b b' : β
c : γ
f : γ → β → δ
g : α → γ
⊢ image2 f (g '' ↑s) ↑t = image2 (fun a b => f (g a) b) ↑s ↑t
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Finset/NAry.lean
|
Finset.image₂_image_left
|
α : Type u_1
α' : Type u_2
β : Type u_3
β' : Type u_4
γ : Type u_5
γ' : Type u_6
δ : Type u_7
δ' : Type u_8
ε : Type u_9
ε' : Type u_10
ζ : Type u_11
ζ' : Type u_12
ν : Type u_13
inst✝⁷ : DecidableEq α'
inst✝⁶ : DecidableEq β'
inst✝⁵ : DecidableEq γ
inst✝⁴ : DecidableEq γ'
inst✝³ : DecidableEq δ
inst✝² : DecidableEq δ'
inst✝¹ : DecidableEq ε
inst✝ : DecidableEq ε'
f✝ f' : α → β → γ
g✝ g' : α → β → γ → δ
s s' : Finset α
t t' : Finset β
u u' : Finset γ
a a' : α
b b' : β
c : γ
f : γ → β → δ
g : α → γ
⊢ image2 f (g '' ↑s) ↑t = image2 (fun a b => f (g a) b) ↑s ↑t
|
exact <a>Set.image2_image_left</a> _ _
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/Finset/NAry.lean
|
SubMulAction.orbitRel_of_subMul
|
S : Type u'
T : Type u''
R : Type u
M : Type v
inst✝¹ : Group R
inst✝ : MulAction R M
p : SubMulAction R M
⊢ MulAction.orbitRel R ↥p = Setoid.comap Subtype.val (MulAction.orbitRel R M)
|
refine <a>Setoid.ext_iff</a>.2 (fun x y ↦ ?_)
|
S : Type u'
T : Type u''
R : Type u
M : Type v
inst✝¹ : Group R
inst✝ : MulAction R M
p : SubMulAction R M
x y : ↥p
⊢ (MulAction.orbitRel R ↥p).Rel x y ↔ (Setoid.comap Subtype.val (MulAction.orbitRel R M)).Rel x y
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/GroupTheory/GroupAction/SubMulAction.lean
|
SubMulAction.orbitRel_of_subMul
|
S : Type u'
T : Type u''
R : Type u
M : Type v
inst✝¹ : Group R
inst✝ : MulAction R M
p : SubMulAction R M
x y : ↥p
⊢ (MulAction.orbitRel R ↥p).Rel x y ↔ (Setoid.comap Subtype.val (MulAction.orbitRel R M)).Rel x y
|
rw [<a>Setoid.comap_rel</a>]
|
S : Type u'
T : Type u''
R : Type u
M : Type v
inst✝¹ : Group R
inst✝ : MulAction R M
p : SubMulAction R M
x y : ↥p
⊢ (MulAction.orbitRel R ↥p).Rel x y ↔ (MulAction.orbitRel R M).Rel ↑x ↑y
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/GroupTheory/GroupAction/SubMulAction.lean
|
SubMulAction.orbitRel_of_subMul
|
S : Type u'
T : Type u''
R : Type u
M : Type v
inst✝¹ : Group R
inst✝ : MulAction R M
p : SubMulAction R M
x y : ↥p
⊢ (MulAction.orbitRel R ↥p).Rel x y ↔ (MulAction.orbitRel R M).Rel ↑x ↑y
|
exact <a>SubMulAction.mem_orbit_subMul_iff</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/GroupTheory/GroupAction/SubMulAction.lean
|
ZFSet.toSet_sUnion
|
x : ZFSet
⊢ (⋃₀ x).toSet = ⋃₀ (toSet '' x.toSet)
|
ext
|
case h
x x✝ : ZFSet
⊢ x✝ ∈ (⋃₀ x).toSet ↔ x✝ ∈ ⋃₀ (toSet '' x.toSet)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/SetTheory/ZFC/Basic.lean
|
ZFSet.toSet_sUnion
|
case h
x x✝ : ZFSet
⊢ x✝ ∈ (⋃₀ x).toSet ↔ x✝ ∈ ⋃₀ (toSet '' x.toSet)
|
simp
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/SetTheory/ZFC/Basic.lean
|
LocalRing.CotangentSpace.map_eq_top_iff
|
R : Type u_1
inst✝² : CommRing R
inst✝¹ : LocalRing R
inst✝ : IsNoetherianRing R
M : Submodule R ↥(maximalIdeal R)
⊢ Submodule.map (maximalIdeal R).toCotangent M = ⊤ ↔ M = ⊤
|
refine ⟨fun H ↦ eq_top_iff.mpr ?_, by rintro rfl; simp [<a>Ideal.toCotangent_range</a>]⟩
|
R : Type u_1
inst✝² : CommRing R
inst✝¹ : LocalRing R
inst✝ : IsNoetherianRing R
M : Submodule R ↥(maximalIdeal R)
H : Submodule.map (maximalIdeal R).toCotangent M = ⊤
⊢ ⊤ ≤ M
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Ideal/Cotangent.lean
|
LocalRing.CotangentSpace.map_eq_top_iff
|
R : Type u_1
inst✝² : CommRing R
inst✝¹ : LocalRing R
inst✝ : IsNoetherianRing R
M : Submodule R ↥(maximalIdeal R)
H : Submodule.map (maximalIdeal R).toCotangent M = ⊤
⊢ ⊤ ≤ M
|
refine (<a>Submodule.map_le_map_iff_of_injective</a> (<a>Submodule.injective_subtype</a> _) _ _).<a>Iff.mp</a> ?_
|
R : Type u_1
inst✝² : CommRing R
inst✝¹ : LocalRing R
inst✝ : IsNoetherianRing R
M : Submodule R ↥(maximalIdeal R)
H : Submodule.map (maximalIdeal R).toCotangent M = ⊤
⊢ Submodule.map (Submodule.subtype (maximalIdeal R)) ⊤ ≤ Submodule.map (Submodule.subtype (maximalIdeal R)) M
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Ideal/Cotangent.lean
|
LocalRing.CotangentSpace.map_eq_top_iff
|
R : Type u_1
inst✝² : CommRing R
inst✝¹ : LocalRing R
inst✝ : IsNoetherianRing R
M : Submodule R ↥(maximalIdeal R)
H : Submodule.map (maximalIdeal R).toCotangent M = ⊤
⊢ Submodule.map (Submodule.subtype (maximalIdeal R)) ⊤ ≤ Submodule.map (Submodule.subtype (maximalIdeal R)) M
|
rw [<a>Submodule.map_top</a>, <a>Submodule.range_subtype</a>]
|
R : Type u_1
inst✝² : CommRing R
inst✝¹ : LocalRing R
inst✝ : IsNoetherianRing R
M : Submodule R ↥(maximalIdeal R)
H : Submodule.map (maximalIdeal R).toCotangent M = ⊤
⊢ maximalIdeal R ≤ Submodule.map (Submodule.subtype (maximalIdeal R)) M
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Ideal/Cotangent.lean
|
LocalRing.CotangentSpace.map_eq_top_iff
|
R : Type u_1
inst✝² : CommRing R
inst✝¹ : LocalRing R
inst✝ : IsNoetherianRing R
M : Submodule R ↥(maximalIdeal R)
H : Submodule.map (maximalIdeal R).toCotangent M = ⊤
⊢ maximalIdeal R ≤ Submodule.map (Submodule.subtype (maximalIdeal R)) M
|
apply <a>Submodule.le_of_le_smul_of_le_jacobson_bot</a> (<a>IsNoetherian.noetherian</a> _) (<a>LocalRing.jacobson_eq_maximalIdeal</a> _ <a>bot_ne_top</a>).<a>Eq.ge</a>
|
R : Type u_1
inst✝² : CommRing R
inst✝¹ : LocalRing R
inst✝ : IsNoetherianRing R
M : Submodule R ↥(maximalIdeal R)
H : Submodule.map (maximalIdeal R).toCotangent M = ⊤
⊢ maximalIdeal R ≤ Submodule.map (Submodule.subtype (maximalIdeal R)) M ⊔ maximalIdeal R • maximalIdeal R
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Ideal/Cotangent.lean
|
LocalRing.CotangentSpace.map_eq_top_iff
|
R : Type u_1
inst✝² : CommRing R
inst✝¹ : LocalRing R
inst✝ : IsNoetherianRing R
M : Submodule R ↥(maximalIdeal R)
H : Submodule.map (maximalIdeal R).toCotangent M = ⊤
⊢ maximalIdeal R ≤ Submodule.map (Submodule.subtype (maximalIdeal R)) M ⊔ maximalIdeal R • maximalIdeal R
|
rw [<a>smul_eq_mul</a>, ← <a>pow_two</a>, ← <a>Ideal.map_toCotangent_ker</a>, ← <a>Submodule.map_sup</a>, ← <a>Submodule.comap_map_eq</a>, H, <a>Submodule.comap_top</a>, <a>Submodule.map_top</a>, <a>Submodule.range_subtype</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Ideal/Cotangent.lean
|
LocalRing.CotangentSpace.map_eq_top_iff
|
R : Type u_1
inst✝² : CommRing R
inst✝¹ : LocalRing R
inst✝ : IsNoetherianRing R
M : Submodule R ↥(maximalIdeal R)
⊢ M = ⊤ → Submodule.map (maximalIdeal R).toCotangent M = ⊤
|
rintro rfl
|
R : Type u_1
inst✝² : CommRing R
inst✝¹ : LocalRing R
inst✝ : IsNoetherianRing R
⊢ Submodule.map (maximalIdeal R).toCotangent ⊤ = ⊤
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Ideal/Cotangent.lean
|
LocalRing.CotangentSpace.map_eq_top_iff
|
R : Type u_1
inst✝² : CommRing R
inst✝¹ : LocalRing R
inst✝ : IsNoetherianRing R
⊢ Submodule.map (maximalIdeal R).toCotangent ⊤ = ⊤
|
simp [<a>Ideal.toCotangent_range</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Ideal/Cotangent.lean
|
Measurable.piecewise
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
δ' : Type u_5
ι : Sort uι
s t u : Set α
f g : α → β
m : MeasurableSpace α
mβ : MeasurableSpace β
x✝ : DecidablePred fun x => x ∈ s
hs : MeasurableSet s
hf : Measurable f
hg : Measurable g
⊢ Measurable (s.piecewise f g)
|
intro t ht
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
δ' : Type u_5
ι : Sort uι
s t✝ u : Set α
f g : α → β
m : MeasurableSpace α
mβ : MeasurableSpace β
x✝ : DecidablePred fun x => x ∈ s
hs : MeasurableSet s
hf : Measurable f
hg : Measurable g
t : Set β
ht : MeasurableSet t
⊢ MeasurableSet (s.piecewise f g ⁻¹' t)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/MeasurableSpace/Basic.lean
|
Measurable.piecewise
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
δ' : Type u_5
ι : Sort uι
s t✝ u : Set α
f g : α → β
m : MeasurableSpace α
mβ : MeasurableSpace β
x✝ : DecidablePred fun x => x ∈ s
hs : MeasurableSet s
hf : Measurable f
hg : Measurable g
t : Set β
ht : MeasurableSet t
⊢ MeasurableSet (s.piecewise f g ⁻¹' t)
|
rw [<a>Set.piecewise_preimage</a>]
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
δ' : Type u_5
ι : Sort uι
s t✝ u : Set α
f g : α → β
m : MeasurableSpace α
mβ : MeasurableSpace β
x✝ : DecidablePred fun x => x ∈ s
hs : MeasurableSet s
hf : Measurable f
hg : Measurable g
t : Set β
ht : MeasurableSet t
⊢ MeasurableSet (s.ite (f ⁻¹' t) (g ⁻¹' t))
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/MeasurableSpace/Basic.lean
|
Measurable.piecewise
|
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
δ' : Type u_5
ι : Sort uι
s t✝ u : Set α
f g : α → β
m : MeasurableSpace α
mβ : MeasurableSpace β
x✝ : DecidablePred fun x => x ∈ s
hs : MeasurableSet s
hf : Measurable f
hg : Measurable g
t : Set β
ht : MeasurableSet t
⊢ MeasurableSet (s.ite (f ⁻¹' t) (g ⁻¹' t))
|
exact hs.ite (hf ht) (hg ht)
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/MeasurableSpace/Basic.lean
|
MeasureTheory.condexp_restrict_ae_eq_restrict
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
⊢ μ.restrict s[f|m] =ᶠ[ae (μ.restrict s)] μ[f|m]
|
have : <a>MeasureTheory.SigmaFinite</a> ((μ.restrict s).<a>MeasureTheory.Measure.trim</a> hm) := by rw [← <a>MeasureTheory.restrict_trim</a> hm _ hs_m]; infer_instance
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
⊢ μ.restrict s[f|m] =ᶠ[ae (μ.restrict s)] μ[f|m]
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_restrict_ae_eq_restrict
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
⊢ μ.restrict s[f|m] =ᶠ[ae (μ.restrict s)] μ[f|m]
|
rw [<a>ae_eq_restrict_iff_indicator_ae_eq</a> (hm _ hs_m)]
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
⊢ s.indicator (μ.restrict s[f|m]) =ᶠ[ae μ] s.indicator (μ[f|m])
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_restrict_ae_eq_restrict
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
⊢ s.indicator (μ.restrict s[f|m]) =ᶠ[ae μ] s.indicator (μ[f|m])
|
refine <a>Filter.EventuallyEq.trans</a> ?_ (<a>MeasureTheory.condexp_indicator</a> hf_int hs_m)
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
⊢ s.indicator (μ.restrict s[f|m]) =ᶠ[ae μ] μ[s.indicator f|m]
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_restrict_ae_eq_restrict
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
⊢ s.indicator (μ.restrict s[f|m]) =ᶠ[ae μ] μ[s.indicator f|m]
|
refine <a>MeasureTheory.ae_eq_condexp_of_forall_setIntegral_eq</a> hm (hf_int.indicator (hm _ hs_m)) ?_ ?_ ?_
|
case refine_1
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
⊢ ∀ (s_1 : Set α), MeasurableSet s_1 → μ s_1 < ⊤ → IntegrableOn (s.indicator (μ.restrict s[f|m])) s_1 μ
case refine_2
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
⊢ ∀ (s_1 : Set α),
MeasurableSet s_1 →
μ s_1 < ⊤ → ∫ (x : α) in s_1, s.indicator (μ.restrict s[f|m]) x ∂μ = ∫ (x : α) in s_1, s.indicator f x ∂μ
case refine_3
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
⊢ AEStronglyMeasurable' m (s.indicator (μ.restrict s[f|m])) μ
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_restrict_ae_eq_restrict
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
⊢ SigmaFinite ((μ.restrict s).trim hm)
|
rw [← <a>MeasureTheory.restrict_trim</a> hm _ hs_m]
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
⊢ SigmaFinite ((μ.trim hm).restrict s)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_restrict_ae_eq_restrict
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
⊢ SigmaFinite ((μ.trim hm).restrict s)
|
infer_instance
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_restrict_ae_eq_restrict
|
case refine_1
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
⊢ ∀ (s_1 : Set α), MeasurableSet s_1 → μ s_1 < ⊤ → IntegrableOn (s.indicator (μ.restrict s[f|m])) s_1 μ
|
intro t ht _
|
case refine_1
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
t : Set α
ht : MeasurableSet t
a✝ : μ t < ⊤
⊢ IntegrableOn (s.indicator (μ.restrict s[f|m])) t μ
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_restrict_ae_eq_restrict
|
case refine_1
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
t : Set α
ht : MeasurableSet t
a✝ : μ t < ⊤
⊢ IntegrableOn (s.indicator (μ.restrict s[f|m])) t μ
|
rw [← <a>MeasureTheory.integrable_indicator_iff</a> (hm _ ht), <a>Set.indicator_indicator</a>, <a>Set.inter_comm</a>, ← <a>Set.indicator_indicator</a>]
|
case refine_1
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
t : Set α
ht : MeasurableSet t
a✝ : μ t < ⊤
⊢ Integrable (s.indicator (t.indicator (μ.restrict s[f|m]))) μ
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_restrict_ae_eq_restrict
|
case refine_1
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
t : Set α
ht : MeasurableSet t
a✝ : μ t < ⊤
⊢ Integrable (s.indicator (t.indicator (μ.restrict s[f|m]))) μ
|
suffices h_int_restrict : <a>MeasureTheory.Integrable</a> (t.indicator ((μ.restrict s)[f|m])) (μ.restrict s) by rw [<a>MeasureTheory.integrable_indicator_iff</a> (hm _ hs_m), <a>MeasureTheory.IntegrableOn</a>] rw [<a>MeasureTheory.integrable_indicator_iff</a> (hm _ ht), <a>MeasureTheory.IntegrableOn</a>] at h_int_restrict ⊢ exact h_int_restrict
|
case refine_1
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
t : Set α
ht : MeasurableSet t
a✝ : μ t < ⊤
⊢ Integrable (t.indicator (μ.restrict s[f|m])) (μ.restrict s)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_restrict_ae_eq_restrict
|
case refine_1
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
t : Set α
ht : MeasurableSet t
a✝ : μ t < ⊤
⊢ Integrable (t.indicator (μ.restrict s[f|m])) (μ.restrict s)
|
exact integrable_condexp.indicator (hm _ ht)
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_restrict_ae_eq_restrict
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
t : Set α
ht : MeasurableSet t
a✝ : μ t < ⊤
h_int_restrict : Integrable (t.indicator (μ.restrict s[f|m])) (μ.restrict s)
⊢ Integrable (s.indicator (t.indicator (μ.restrict s[f|m]))) μ
|
rw [<a>MeasureTheory.integrable_indicator_iff</a> (hm _ hs_m), <a>MeasureTheory.IntegrableOn</a>]
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
t : Set α
ht : MeasurableSet t
a✝ : μ t < ⊤
h_int_restrict : Integrable (t.indicator (μ.restrict s[f|m])) (μ.restrict s)
⊢ Integrable (t.indicator (μ.restrict s[f|m])) (μ.restrict s)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_restrict_ae_eq_restrict
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
t : Set α
ht : MeasurableSet t
a✝ : μ t < ⊤
h_int_restrict : Integrable (t.indicator (μ.restrict s[f|m])) (μ.restrict s)
⊢ Integrable (t.indicator (μ.restrict s[f|m])) (μ.restrict s)
|
rw [<a>MeasureTheory.integrable_indicator_iff</a> (hm _ ht), <a>MeasureTheory.IntegrableOn</a>] at h_int_restrict ⊢
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
t : Set α
ht : MeasurableSet t
a✝ : μ t < ⊤
h_int_restrict : Integrable (μ.restrict s[f|m]) ((μ.restrict s).restrict t)
⊢ Integrable (μ.restrict s[f|m]) ((μ.restrict s).restrict t)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_restrict_ae_eq_restrict
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
t : Set α
ht : MeasurableSet t
a✝ : μ t < ⊤
h_int_restrict : Integrable (μ.restrict s[f|m]) ((μ.restrict s).restrict t)
⊢ Integrable (μ.restrict s[f|m]) ((μ.restrict s).restrict t)
|
exact h_int_restrict
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_restrict_ae_eq_restrict
|
case refine_2
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
⊢ ∀ (s_1 : Set α),
MeasurableSet s_1 →
μ s_1 < ⊤ → ∫ (x : α) in s_1, s.indicator (μ.restrict s[f|m]) x ∂μ = ∫ (x : α) in s_1, s.indicator f x ∂μ
|
intro t ht _
|
case refine_2
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
t : Set α
ht : MeasurableSet t
a✝ : μ t < ⊤
⊢ ∫ (x : α) in t, s.indicator (μ.restrict s[f|m]) x ∂μ = ∫ (x : α) in t, s.indicator f x ∂μ
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_restrict_ae_eq_restrict
|
case refine_2
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
t : Set α
ht : MeasurableSet t
a✝ : μ t < ⊤
⊢ ∫ (x : α) in t, s.indicator (μ.restrict s[f|m]) x ∂μ = ∫ (x : α) in t, s.indicator f x ∂μ
|
calc ∫ x in t, s.indicator ((μ.restrict s)[f|m]) x ∂μ = ∫ x in t, ((μ.restrict s)[f|m]) x ∂μ.restrict s := by rw [<a>MeasureTheory.integral_indicator</a> (hm _ hs_m), <a>MeasureTheory.Measure.restrict_restrict</a> (hm _ hs_m), <a>MeasureTheory.Measure.restrict_restrict</a> (hm _ ht), <a>Set.inter_comm</a>] _ = ∫ x in t, f x ∂μ.restrict s := <a>MeasureTheory.setIntegral_condexp</a> hm hf_int.integrableOn ht _ = ∫ x in t, s.indicator f x ∂μ := by rw [<a>MeasureTheory.integral_indicator</a> (hm _ hs_m), <a>MeasureTheory.Measure.restrict_restrict</a> (hm _ hs_m), <a>MeasureTheory.Measure.restrict_restrict</a> (hm _ ht), <a>Set.inter_comm</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_restrict_ae_eq_restrict
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
t : Set α
ht : MeasurableSet t
a✝ : μ t < ⊤
⊢ ∫ (x : α) in t, s.indicator (μ.restrict s[f|m]) x ∂μ = ∫ (x : α) in t, (μ.restrict s[f|m]) x ∂μ.restrict s
|
rw [<a>MeasureTheory.integral_indicator</a> (hm _ hs_m), <a>MeasureTheory.Measure.restrict_restrict</a> (hm _ hs_m), <a>MeasureTheory.Measure.restrict_restrict</a> (hm _ ht), <a>Set.inter_comm</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_restrict_ae_eq_restrict
|
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
t : Set α
ht : MeasurableSet t
a✝ : μ t < ⊤
⊢ ∫ (x : α) in t, f x ∂μ.restrict s = ∫ (x : α) in t, s.indicator f x ∂μ
|
rw [<a>MeasureTheory.integral_indicator</a> (hm _ hs_m), <a>MeasureTheory.Measure.restrict_restrict</a> (hm _ hs_m), <a>MeasureTheory.Measure.restrict_restrict</a> (hm _ ht), <a>Set.inter_comm</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
MeasureTheory.condexp_restrict_ae_eq_restrict
|
case refine_3
α : Type u_1
𝕜 : Type u_2
E : Type u_3
m m0 : MeasurableSpace α
inst✝³ : NormedAddCommGroup E
inst✝² : NormedSpace ℝ E
inst✝¹ : CompleteSpace E
μ : Measure α
f : α → E
s : Set α
hm : m ≤ m0
inst✝ : SigmaFinite (μ.trim hm)
hs_m : MeasurableSet s
hf_int : Integrable f μ
this : SigmaFinite ((μ.restrict s).trim hm)
⊢ AEStronglyMeasurable' m (s.indicator (μ.restrict s[f|m])) μ
|
exact (stronglyMeasurable_condexp.indicator hs_m).<a>MeasureTheory.StronglyMeasurable.aeStronglyMeasurable'</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/MeasureTheory/Function/ConditionalExpectation/Indicator.lean
|
List.subset_singleton_iff
|
ι : Type u_1
α : Type u
β : Type v
γ : Type w
l₁ l₂ : List α
a : α
L : List α
⊢ L ⊆ [a] ↔ ∃ n, L = replicate n a
|
simp only [<a>List.eq_replicate</a>, <a>List.subset_def</a>, <a>List.mem_singleton</a>, <a>exists_eq_left'</a>]
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Data/List/Basic.lean
|
Polynomial.Monic.geom_sum
|
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
n : ℕ
hn : n ≠ 0
⊢ (∑ i ∈ range n, P ^ i).Monic
|
nontriviality R
|
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
n : ℕ
hn : n ≠ 0
a✝ : Nontrivial R
⊢ (∑ i ∈ range n, P ^ i).Monic
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Polynomial/Basic.lean
|
Polynomial.Monic.geom_sum
|
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
n : ℕ
hn : n ≠ 0
a✝ : Nontrivial R
⊢ (∑ i ∈ range n, P ^ i).Monic
|
obtain ⟨n, rfl⟩ := <a>Nat.exists_eq_succ_of_ne_zero</a> hn
|
case intro
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
⊢ (∑ i ∈ range n.succ, P ^ i).Monic
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Polynomial/Basic.lean
|
Polynomial.Monic.geom_sum
|
case intro
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
⊢ (∑ i ∈ range n.succ, P ^ i).Monic
|
rw [<a>geom_sum_succ'</a>]
|
case intro
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
⊢ (P ^ n + ∑ i ∈ range n, P ^ i).Monic
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Polynomial/Basic.lean
|
Polynomial.Monic.geom_sum
|
case intro
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
⊢ (P ^ n + ∑ i ∈ range n, P ^ i).Monic
|
refine (hP.pow _).<a>Polynomial.Monic.add_of_left</a> ?_
|
case intro
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
⊢ (∑ i ∈ range n, P ^ i).degree < (P ^ n).degree
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Polynomial/Basic.lean
|
Polynomial.Monic.geom_sum
|
case intro
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
⊢ (∑ i ∈ range n, P ^ i).degree < (P ^ n).degree
|
refine <a>lt_of_le_of_lt</a> (<a>Polynomial.degree_sum_le</a> _ _) ?_
|
case intro
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
⊢ ((range n).sup fun b => (P ^ b).degree) < (P ^ n).degree
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Polynomial/Basic.lean
|
Polynomial.Monic.geom_sum
|
case intro
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
⊢ ((range n).sup fun b => (P ^ b).degree) < (P ^ n).degree
|
rw [<a>Finset.sup_lt_iff</a>]
|
case intro
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
⊢ ∀ b ∈ range n, (P ^ b).degree < (P ^ n).degree
case intro
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
⊢ ⊥ < (P ^ n).degree
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Polynomial/Basic.lean
|
Polynomial.Monic.geom_sum
|
case intro
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
⊢ ∀ b ∈ range n, (P ^ b).degree < (P ^ n).degree
|
simp only [<a>Finset.mem_range</a>, <a>Polynomial.degree_eq_natDegree</a> (hP.pow _).<a>Polynomial.Monic.ne_zero</a>]
|
case intro
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
⊢ ∀ b < n, ↑(P ^ b).natDegree < ↑(P ^ n).natDegree
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Polynomial/Basic.lean
|
Polynomial.Monic.geom_sum
|
case intro
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
⊢ ∀ b < n, ↑(P ^ b).natDegree < ↑(P ^ n).natDegree
|
simp only [<a>Nat.cast_lt</a>, hP.natDegree_pow]
|
case intro
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
⊢ ∀ b < n, b * P.natDegree < n * P.natDegree
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Polynomial/Basic.lean
|
Polynomial.Monic.geom_sum
|
case intro
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
⊢ ∀ b < n, b * P.natDegree < n * P.natDegree
|
intro k
|
case intro
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
k : ℕ
⊢ k < n → k * P.natDegree < n * P.natDegree
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Polynomial/Basic.lean
|
Polynomial.Monic.geom_sum
|
case intro
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
k : ℕ
⊢ k < n → k * P.natDegree < n * P.natDegree
|
exact <a>nsmul_lt_nsmul_left</a> hdeg
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Polynomial/Basic.lean
|
Polynomial.Monic.geom_sum
|
case intro
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
⊢ ⊥ < (P ^ n).degree
|
rw [<a>bot_lt_iff_ne_bot</a>, <a>Ne</a>, <a>Polynomial.degree_eq_bot</a>]
|
case intro
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
⊢ ¬P ^ n = 0
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Polynomial/Basic.lean
|
Polynomial.Monic.geom_sum
|
case intro
R : Type u
S : Type u_1
inst✝ : Semiring R
P : R[X]
hP : P.Monic
hdeg : 0 < P.natDegree
a✝ : Nontrivial R
n : ℕ
hn : n.succ ≠ 0
⊢ ¬P ^ n = 0
|
exact (hP.pow _).<a>Polynomial.Monic.ne_zero</a>
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/RingTheory/Polynomial/Basic.lean
|
linearIndependent_le_span'
|
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι✝ : Type w
ι' : Type w'
inst✝¹ : StrongRankCondition R
ι : Type u_1
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
⊢ #ι ≤ ↑(Fintype.card ↑w)
|
haveI : <a>Finite</a> ι := i.finite_of_le_span_finite v w s
|
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι✝ : Type w
ι' : Type w'
inst✝¹ : StrongRankCondition R
ι : Type u_1
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
this : Finite ι
⊢ #ι ≤ ↑(Fintype.card ↑w)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Dimension/StrongRankCondition.lean
|
linearIndependent_le_span'
|
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι✝ : Type w
ι' : Type w'
inst✝¹ : StrongRankCondition R
ι : Type u_1
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
this : Finite ι
⊢ #ι ≤ ↑(Fintype.card ↑w)
|
letI := <a>Fintype.ofFinite</a> ι
|
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι✝ : Type w
ι' : Type w'
inst✝¹ : StrongRankCondition R
ι : Type u_1
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
this✝ : Finite ι
this : Fintype ι := Fintype.ofFinite ι
⊢ #ι ≤ ↑(Fintype.card ↑w)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Dimension/StrongRankCondition.lean
|
linearIndependent_le_span'
|
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι✝ : Type w
ι' : Type w'
inst✝¹ : StrongRankCondition R
ι : Type u_1
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
this✝ : Finite ι
this : Fintype ι := Fintype.ofFinite ι
⊢ #ι ≤ ↑(Fintype.card ↑w)
|
rw [<a>Cardinal.mk_fintype</a>]
|
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι✝ : Type w
ι' : Type w'
inst✝¹ : StrongRankCondition R
ι : Type u_1
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
this✝ : Finite ι
this : Fintype ι := Fintype.ofFinite ι
⊢ ↑(Fintype.card ι) ≤ ↑(Fintype.card ↑w)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Dimension/StrongRankCondition.lean
|
linearIndependent_le_span'
|
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι✝ : Type w
ι' : Type w'
inst✝¹ : StrongRankCondition R
ι : Type u_1
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
this✝ : Finite ι
this : Fintype ι := Fintype.ofFinite ι
⊢ ↑(Fintype.card ι) ≤ ↑(Fintype.card ↑w)
|
simp only [<a>Cardinal.natCast_le</a>]
|
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι✝ : Type w
ι' : Type w'
inst✝¹ : StrongRankCondition R
ι : Type u_1
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
this✝ : Finite ι
this : Fintype ι := Fintype.ofFinite ι
⊢ Fintype.card ι ≤ Fintype.card ↑w
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Dimension/StrongRankCondition.lean
|
linearIndependent_le_span'
|
R : Type u
M : Type v
inst✝⁴ : Ring R
inst✝³ : AddCommGroup M
inst✝² : Module R M
ι✝ : Type w
ι' : Type w'
inst✝¹ : StrongRankCondition R
ι : Type u_1
v : ι → M
i : LinearIndependent R v
w : Set M
inst✝ : Fintype ↑w
s : range v ≤ ↑(span R w)
this✝ : Finite ι
this : Fintype ι := Fintype.ofFinite ι
⊢ Fintype.card ι ≤ Fintype.card ↑w
|
exact <a>linearIndependent_le_span_aux'</a> v i w s
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/LinearAlgebra/Dimension/StrongRankCondition.lean
|
AnalyticAt.contDiffAt
|
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type v
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s : Set E
inst✝ : CompleteSpace F
h : AnalyticAt 𝕜 f x
n : ℕ∞
⊢ ContDiffAt 𝕜 n f x
|
obtain ⟨s, hs, hf⟩ := h.exists_mem_nhds_analyticOn
|
case intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type v
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s✝ : Set E
inst✝ : CompleteSpace F
h : AnalyticAt 𝕜 f x
n : ℕ∞
s : Set E
hs : s ∈ nhds x
hf : AnalyticOn 𝕜 f s
⊢ ContDiffAt 𝕜 n f x
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Calculus/FDeriv/Analytic.lean
|
AnalyticAt.contDiffAt
|
case intro.intro
𝕜 : Type u_1
inst✝⁵ : NontriviallyNormedField 𝕜
E : Type u
inst✝⁴ : NormedAddCommGroup E
inst✝³ : NormedSpace 𝕜 E
F : Type v
inst✝² : NormedAddCommGroup F
inst✝¹ : NormedSpace 𝕜 F
p : FormalMultilinearSeries 𝕜 E F
r : ℝ≥0∞
f : E → F
x : E
s✝ : Set E
inst✝ : CompleteSpace F
h : AnalyticAt 𝕜 f x
n : ℕ∞
s : Set E
hs : s ∈ nhds x
hf : AnalyticOn 𝕜 f s
⊢ ContDiffAt 𝕜 n f x
|
exact hf.contDiffOn.contDiffAt hs
|
no goals
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/Analysis/Calculus/FDeriv/Analytic.lean
|
Ordinal.bsup_eq_blsub_iff_succ
|
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v}
⊢ o.bsup f = o.blsub f ↔ ∀ a < o.blsub f, succ a < o.blsub f
|
rw [← <a>Ordinal.sup_eq_bsup</a>, ← <a>Ordinal.lsub_eq_blsub</a>]
|
α : Type u_1
β : Type u_2
γ : Type u_3
r : α → α → Prop
s : β → β → Prop
t : γ → γ → Prop
o : Ordinal.{u}
f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v}
⊢ sup (o.familyOfBFamily f) = lsub (o.familyOfBFamily f) ↔
∀ a < lsub (o.familyOfBFamily f), succ a < lsub (o.familyOfBFamily f)
|
https://github.com/leanprover-community/mathlib4
|
29dcec074de168ac2bf835a77ef68bbe069194c5
|
Mathlib/SetTheory/Ordinal/Arithmetic.lean
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.