full_name
stringlengths
3
121
state
stringlengths
7
9.32k
tactic
stringlengths
3
5.35k
target_state
stringlengths
7
19k
url
stringclasses
1 value
commit
stringclasses
1 value
file_path
stringlengths
21
79
Ordinal.bsup_eq_blsub_iff_succ
α : Type u_1 β : Type u_2 γ : Type u_3 r : α → α → Prop s : β → β → Prop t : γ → γ → Prop o : Ordinal.{u} f : (a : Ordinal.{u}) → a < o → Ordinal.{max u v} ⊢ sup (o.familyOfBFamily f) = lsub (o.familyOfBFamily f) ↔ ∀ a < lsub (o.familyOfBFamily f), succ a < lsub (o.familyOfBFamily f)
apply <a>Ordinal.sup_eq_lsub_iff_succ</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/SetTheory/Ordinal/Arithmetic.lean
exists_reduced_fraction'
R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x ⊢ ∃ a n, ¬x ∣ a ∧ selfZPow x B n * (algebraMap R B) a = b
obtain ⟨⟨a₀, y⟩, H⟩ := <a>IsLocalization.surj</a> (<a>Submonoid.powers</a> x) b
case intro.mk R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) H : b * (algebraMap R B) ↑(a₀, y).2 = (algebraMap R B) (a₀, y).1 ⊢ ∃ a n, ¬x ∣ a ∧ selfZPow x B n * (algebraMap R B) a = b
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Away/Basic.lean
exists_reduced_fraction'
case intro.mk R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) H : b * (algebraMap R B) ↑(a₀, y).2 = (algebraMap R B) (a₀, y).1 ⊢ ∃ a n, ¬x ∣ a ∧ selfZPow x B n * (algebraMap R B) a = b
obtain ⟨d, hy⟩ := (<a>Submonoid.mem_powers_iff</a> y.1 x).<a>Iff.mp</a> y.2
case intro.mk.intro R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) H : b * (algebraMap R B) ↑(a₀, y).2 = (algebraMap R B) (a₀, y).1 d : ℕ hy : x ^ d = ↑y ⊢ ∃ a n, ¬x ∣ a ∧ selfZPow x B n * (algebraMap R B) a = b
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Away/Basic.lean
exists_reduced_fraction'
case intro.mk.intro R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) H : b * (algebraMap R B) ↑(a₀, y).2 = (algebraMap R B) (a₀, y).1 d : ℕ hy : x ^ d = ↑y ha₀ : a₀ ≠ 0 ⊢ ∃ a n, ¬x ∣ a ∧ selfZPow x B n * (algebraMap R B) a = b
simp only [← hy] at H
case intro.mk.intro R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) d : ℕ hy : x ^ d = ↑y ha₀ : a₀ ≠ 0 H : b * (algebraMap R B) (x ^ d) = (algebraMap R B) a₀ ⊢ ∃ a n, ¬x ∣ a ∧ selfZPow x B n * (algebraMap R B) a = b
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Away/Basic.lean
exists_reduced_fraction'
case intro.mk.intro R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) d : ℕ hy : x ^ d = ↑y ha₀ : a₀ ≠ 0 H : b * (algebraMap R B) (x ^ d) = (algebraMap R B) a₀ ⊢ ∃ a n, ¬x ∣ a ∧ selfZPow x B n * (algebraMap R B) a = b
obtain ⟨m, a, hyp1, hyp2⟩ := <a>WfDvdMonoid.max_power_factor</a> ha₀ hx
case intro.mk.intro.intro.intro.intro R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) d : ℕ hy : x ^ d = ↑y ha₀ : a₀ ≠ 0 H : b * (algebraMap R B) (x ^ d) = (algebraMap R B) a₀ m : ℕ a : R hyp1 : ¬x ∣ a hyp2 : a₀ = x ^ m * a ⊢ ∃ a n, ¬x ∣ a ∧ selfZPow x B n * (algebraMap R B) a = b
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Away/Basic.lean
exists_reduced_fraction'
case intro.mk.intro.intro.intro.intro R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) d : ℕ hy : x ^ d = ↑y ha₀ : a₀ ≠ 0 H : b * (algebraMap R B) (x ^ d) = (algebraMap R B) a₀ m : ℕ a : R hyp1 : ¬x ∣ a hyp2 : a₀ = x ^ m * a ⊢ ∃ a n, ¬x ∣ a ∧ selfZPow x B n * (algebraMap R B) a = b
refine ⟨a, m - d, ?_⟩
case intro.mk.intro.intro.intro.intro R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) d : ℕ hy : x ^ d = ↑y ha₀ : a₀ ≠ 0 H : b * (algebraMap R B) (x ^ d) = (algebraMap R B) a₀ m : ℕ a : R hyp1 : ¬x ∣ a hyp2 : a₀ = x ^ m * a ⊢ ¬x ∣ a ∧ selfZPow x B (↑m - ↑d) * (algebraMap R B) a = b
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Away/Basic.lean
exists_reduced_fraction'
case intro.mk.intro.intro.intro.intro R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) d : ℕ hy : x ^ d = ↑y ha₀ : a₀ ≠ 0 H : b * (algebraMap R B) (x ^ d) = (algebraMap R B) a₀ m : ℕ a : R hyp1 : ¬x ∣ a hyp2 : a₀ = x ^ m * a ⊢ ¬x ∣ a ∧ selfZPow x B (↑m - ↑d) * (algebraMap R B) a = b
rw [← <a>IsLocalization.mk'_one</a> (M := <a>Submonoid.powers</a> x) B, <a>selfZPow_pow_sub</a>, <a>selfZPow_natCast</a>, <a>selfZPow_natCast</a>, ← <a>map_pow</a> _ _ d, <a>mul_comm</a> _ b, H, hyp2, <a>map_mul</a>, <a>map_pow</a> _ _ m]
case intro.mk.intro.intro.intro.intro R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) d : ℕ hy : x ^ d = ↑y ha₀ : a₀ ≠ 0 H : b * (algebraMap R B) (x ^ d) = (algebraMap R B) a₀ m : ℕ a : R hyp1 : ¬x ∣ a hyp2 : a₀ = x ^ m * a ⊢ ¬x ∣ a ∧ (algebraMap R B) x ^ m * mk' B a 1 = (algebraMap R B) x ^ m * (algebraMap R B) a
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Away/Basic.lean
exists_reduced_fraction'
case intro.mk.intro.intro.intro.intro R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) d : ℕ hy : x ^ d = ↑y ha₀ : a₀ ≠ 0 H : b * (algebraMap R B) (x ^ d) = (algebraMap R B) a₀ m : ℕ a : R hyp1 : ¬x ∣ a hyp2 : a₀ = x ^ m * a ⊢ ¬x ∣ a ∧ (algebraMap R B) x ^ m * mk' B a 1 = (algebraMap R B) x ^ m * (algebraMap R B) a
exact ⟨hyp1, <a>congr_arg</a> _ (<a>IsLocalization.mk'_one</a> _ _)⟩
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Away/Basic.lean
exists_reduced_fraction'
R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) H : b * (algebraMap R B) ↑(a₀, y).2 = (algebraMap R B) (a₀, y).1 d : ℕ hy : x ^ d = ↑y ⊢ a₀ ≠ 0
haveI := @<a>IsLocalization.isDomain_of_le_nonZeroDivisors</a> B _ R _ _ _ (<a>Submonoid.powers</a> x) _ (<a>powers_le_nonZeroDivisors_of_noZeroDivisors</a> hx.ne_zero)
R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) H : b * (algebraMap R B) ↑(a₀, y).2 = (algebraMap R B) (a₀, y).1 d : ℕ hy : x ^ d = ↑y this : IsDomain B ⊢ a₀ ≠ 0
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Away/Basic.lean
exists_reduced_fraction'
R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) H : b * (algebraMap R B) ↑(a₀, y).2 = (algebraMap R B) (a₀, y).1 d : ℕ hy : x ^ d = ↑y this : IsDomain B ⊢ a₀ ≠ 0
simp only [<a>map_zero</a>, ← hy, <a>map_pow</a>] at H
R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) d : ℕ hy : x ^ d = ↑y this : IsDomain B H : b * (algebraMap R B) x ^ d = (algebraMap R B) a₀ ⊢ a₀ ≠ 0
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Away/Basic.lean
exists_reduced_fraction'
R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) d : ℕ hy : x ^ d = ↑y this : IsDomain B H : b * (algebraMap R B) x ^ d = (algebraMap R B) a₀ ⊢ a₀ ≠ 0
apply ((<a>injective_iff_map_eq_zero'</a> (<a>algebraMap</a> R B)).<a>Iff.mp</a> _ a₀).mpr.mt
R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) d : ℕ hy : x ^ d = ↑y this : IsDomain B H : b * (algebraMap R B) x ^ d = (algebraMap R B) a₀ ⊢ ¬(algebraMap R B) a₀ = 0 R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) d : ℕ hy : x ^ d = ↑y this : IsDomain B H : b * (algebraMap R B) x ^ d = (algebraMap R B) a₀ ⊢ Function.Injective ⇑(algebraMap R B)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Away/Basic.lean
exists_reduced_fraction'
R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) d : ℕ hy : x ^ d = ↑y this : IsDomain B H : b * (algebraMap R B) x ^ d = (algebraMap R B) a₀ ⊢ ¬(algebraMap R B) a₀ = 0
rw [← H]
R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) d : ℕ hy : x ^ d = ↑y this : IsDomain B H : b * (algebraMap R B) x ^ d = (algebraMap R B) a₀ ⊢ ¬b * (algebraMap R B) x ^ d = 0
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Away/Basic.lean
exists_reduced_fraction'
R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) d : ℕ hy : x ^ d = ↑y this : IsDomain B H : b * (algebraMap R B) x ^ d = (algebraMap R B) a₀ ⊢ ¬b * (algebraMap R B) x ^ d = 0
apply <a>mul_ne_zero</a> hb (<a>pow_ne_zero</a> _ _)
R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) d : ℕ hy : x ^ d = ↑y this : IsDomain B H : b * (algebraMap R B) x ^ d = (algebraMap R B) a₀ ⊢ (algebraMap R B) x ≠ 0
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Away/Basic.lean
exists_reduced_fraction'
R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) d : ℕ hy : x ^ d = ↑y this : IsDomain B H : b * (algebraMap R B) x ^ d = (algebraMap R B) a₀ ⊢ (algebraMap R B) x ≠ 0
exact <a>IsLocalization.to_map_ne_zero_of_mem_nonZeroDivisors</a> B (<a>powers_le_nonZeroDivisors_of_noZeroDivisors</a> hx.ne_zero) (mem_nonZeroDivisors_iff_ne_zero.mpr hx.ne_zero)
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Away/Basic.lean
exists_reduced_fraction'
R : Type u_1 inst✝⁵ : CommRing R x : R B : Type u_2 inst✝⁴ : CommRing B inst✝³ : Algebra R B inst✝² : IsLocalization.Away x B inst✝¹ : IsDomain R inst✝ : WfDvdMonoid R b : B hb : b ≠ 0 hx : Irreducible x a₀ : R y : ↥(Submonoid.powers x) d : ℕ hy : x ^ d = ↑y this : IsDomain B H : b * (algebraMap R B) x ^ d = (algebraMap R B) a₀ ⊢ Function.Injective ⇑(algebraMap R B)
exact <a>IsLocalization.injective</a> B (<a>powers_le_nonZeroDivisors_of_noZeroDivisors</a> hx.ne_zero)
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Away/Basic.lean
Polynomial.hasseDeriv_eq_zero_of_lt_natDegree
R : Type u_1 inst✝ : Semiring R k : ℕ f p : R[X] n : ℕ h : p.natDegree < n ⊢ (hasseDeriv n) p = 0
rw [<a>Polynomial.hasseDeriv_apply</a>, <a>Polynomial.sum_def</a>]
R : Type u_1 inst✝ : Semiring R k : ℕ f p : R[X] n : ℕ h : p.natDegree < n ⊢ ∑ n_1 ∈ p.support, (monomial (n_1 - n)) (↑(n_1.choose n) * p.coeff n_1) = 0
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/HasseDeriv.lean
Polynomial.hasseDeriv_eq_zero_of_lt_natDegree
R : Type u_1 inst✝ : Semiring R k : ℕ f p : R[X] n : ℕ h : p.natDegree < n ⊢ ∑ n_1 ∈ p.support, (monomial (n_1 - n)) (↑(n_1.choose n) * p.coeff n_1) = 0
refine <a>Finset.sum_eq_zero</a> fun x hx => ?_
R : Type u_1 inst✝ : Semiring R k : ℕ f p : R[X] n : ℕ h : p.natDegree < n x : ℕ hx : x ∈ p.support ⊢ (monomial (x - n)) (↑(x.choose n) * p.coeff x) = 0
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/HasseDeriv.lean
Polynomial.hasseDeriv_eq_zero_of_lt_natDegree
R : Type u_1 inst✝ : Semiring R k : ℕ f p : R[X] n : ℕ h : p.natDegree < n x : ℕ hx : x ∈ p.support ⊢ (monomial (x - n)) (↑(x.choose n) * p.coeff x) = 0
simp [<a>Nat.choose_eq_zero_of_lt</a> ((<a>Polynomial.le_natDegree_of_mem_supp</a> _ hx).<a>LE.le.trans_lt</a> h)]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/HasseDeriv.lean
AddSubgroup.nsmul_mem_zmultiples_iff_exists_sub_div
R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R n : ℕ hn : n ≠ 0 ⊢ n • r ∈ zmultiples p ↔ ∃ k, r - ↑k • (p / ↑n) ∈ zmultiples p
rw [← <a>natCast_zsmul</a> r, <a>AddSubgroup.zsmul_mem_zmultiples_iff_exists_sub_div</a> (Int.natCast_ne_zero.mpr hn), <a>Int.cast_natCast</a>]
R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R n : ℕ hn : n ≠ 0 ⊢ (∃ k, r - ↑k • (p / ↑n) ∈ zmultiples p) ↔ ∃ k, r - ↑k • (p / ↑n) ∈ zmultiples p
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/CharZero/Quotient.lean
AddSubgroup.nsmul_mem_zmultiples_iff_exists_sub_div
R : Type u_1 inst✝¹ : DivisionRing R inst✝ : CharZero R p r : R n : ℕ hn : n ≠ 0 ⊢ (∃ k, r - ↑k • (p / ↑n) ∈ zmultiples p) ↔ ∃ k, r - ↑k • (p / ↑n) ∈ zmultiples p
rfl
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/CharZero/Quotient.lean
IsProperMap.isClosedMap
X : Type u_1 Y : Type u_2 Z : Type u_3 W : Type u_4 ι : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace W f : X → Y g : Y → Z h : IsProperMap f ⊢ IsClosedMap f
rw [<a>isClosedMap_iff_clusterPt</a>]
X : Type u_1 Y : Type u_2 Z : Type u_3 W : Type u_4 ι : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace W f : X → Y g : Y → Z h : IsProperMap f ⊢ ∀ (s : Set X) (y : Y), MapClusterPt y (𝓟 s) f → ∃ x, f x = y ∧ ClusterPt x (𝓟 s)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/ProperMap.lean
IsProperMap.isClosedMap
X : Type u_1 Y : Type u_2 Z : Type u_3 W : Type u_4 ι : Type u_5 inst✝³ : TopologicalSpace X inst✝² : TopologicalSpace Y inst✝¹ : TopologicalSpace Z inst✝ : TopologicalSpace W f : X → Y g : Y → Z h : IsProperMap f ⊢ ∀ (s : Set X) (y : Y), MapClusterPt y (𝓟 s) f → ∃ x, f x = y ∧ ClusterPt x (𝓟 s)
exact fun s y ↦ h.clusterPt_of_mapClusterPt (ℱ := 𝓟 s) (y := y)
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/ProperMap.lean
Finset.map_subtype_embedding_Ico
α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x ⊢ map (Embedding.subtype p) (Ico a b) = Ico ↑a ↑b
rw [<a>Finset.subtype_Ico_eq</a>]
α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x ⊢ map (Embedding.subtype p) (Finset.subtype p (Ico ↑a ↑b)) = Ico ↑a ↑b
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Interval/Finset/Defs.lean
Finset.map_subtype_embedding_Ico
α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x ⊢ map (Embedding.subtype p) (Finset.subtype p (Ico ↑a ↑b)) = Ico ↑a ↑b
refine <a>Finset.subtype_map_of_mem</a> fun x hx => ?_
α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x x : α hx : x ∈ Ico ↑a ↑b ⊢ p x
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Interval/Finset/Defs.lean
Finset.map_subtype_embedding_Ico
α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x x : α hx : x ∈ Ico ↑a ↑b ⊢ p x
rw [<a>Finset.mem_Ico</a>] at hx
α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x x : α hx : ↑a ≤ x ∧ x < ↑b ⊢ p x
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Interval/Finset/Defs.lean
Finset.map_subtype_embedding_Ico
α : Type u_1 β : Type u_2 inst✝² : Preorder α p : α → Prop inst✝¹ : DecidablePred p inst✝ : LocallyFiniteOrder α a b : Subtype p hp : ∀ ⦃a b x : α⦄, a ≤ x → x ≤ b → p a → p b → p x x : α hx : ↑a ≤ x ∧ x < ↑b ⊢ p x
exact hp hx.1 hx.2.<a>LT.lt.le</a> a.prop b.prop
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Interval/Finset/Defs.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p ⊢ μ {x | g x < 1} = ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1))
letI F : Type _ := E
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E ⊢ μ {x | g x < 1} = ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E ⊢ μ {x | g x < 1} = ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1))
letI : <a>NormedAddCommGroup</a> F := { norm := g dist := fun x y => g (x - y) dist_self := by simp only [<a>sub_self</a>, h1, <a>forall_const</a>] dist_comm := fun _ _ => by dsimp [<a>Dist.dist</a>]; rw [← h2, <a>neg_sub</a>] dist_triangle := fun x y z => by convert h3 (x - y) (y - z) using 1; abel_nf edist := fun x y => .ofReal (g (x - y)) edist_dist := fun _ _ => <a>rfl</a> eq_of_dist_eq_zero := by convert fun _ _ h => <a>eq_of_sub_eq_zero</a> (h4 h) }
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ ⊢ μ {x | g x < 1} = ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ ⊢ μ {x | g x < 1} = ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1))
letI : <a>NormedSpace</a> ℝ F := { norm_smul_le := fun _ _ ↦ h5 _ _ }
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this : NormedSpace ℝ F := NormedSpace.mk ⋯ ⊢ μ {x | g x < 1} = ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this : NormedSpace ℝ F := NormedSpace.mk ⋯ ⊢ μ {x | g x < 1} = ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1))
letI : <a>TopologicalSpace</a> F := UniformSpace.toTopologicalSpace
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝¹ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝ : NormedSpace ℝ F := NormedSpace.mk ⋯ this : TopologicalSpace F := UniformSpace.toTopologicalSpace ⊢ μ {x | g x < 1} = ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝¹ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝ : NormedSpace ℝ F := NormedSpace.mk ⋯ this : TopologicalSpace F := UniformSpace.toTopologicalSpace ⊢ μ {x | g x < 1} = ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1))
letI : <a>MeasurableSpace</a> F := <a>borel</a> F
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝² : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝¹ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝ : TopologicalSpace F := UniformSpace.toTopologicalSpace this : MeasurableSpace F := borel F ⊢ μ {x | g x < 1} = ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝² : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝¹ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝ : TopologicalSpace F := UniformSpace.toTopologicalSpace this : MeasurableSpace F := borel F ⊢ μ {x | g x < 1} = ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1))
have : <a>BorelSpace</a> F := { measurable_eq := <a>rfl</a> }
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝³ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝² : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝¹ : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝ : MeasurableSpace F := borel F this : BorelSpace F ⊢ μ {x | g x < 1} = ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝³ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝² : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝¹ : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝ : MeasurableSpace F := borel F this : BorelSpace F ⊢ μ {x | g x < 1} = ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1))
let φ := @<a>LinearEquiv.toContinuousLinearEquiv</a> ℝ _ E _ _ tE _ _ F _ _ _ _ _ _ _ _ _ (<a>LinearEquiv.refl</a> ℝ E : E ≃ₗ[ℝ] F)
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝³ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝² : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝¹ : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝ : MeasurableSpace F := borel F this : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ⊢ μ {x | g x < 1} = ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝³ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝² : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝¹ : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝ : MeasurableSpace F := borel F this : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ⊢ μ {x | g x < 1} = ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1))
let ν : <a>MeasureTheory.Measure</a> F := @<a>MeasureTheory.Measure.map</a> E F _ mE φ μ
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝³ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝² : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝¹ : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝ : MeasurableSpace F := borel F this : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ ⊢ μ {x | g x < 1} = ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝³ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝² : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝¹ : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝ : MeasurableSpace F := borel F this : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ ⊢ μ {x | g x < 1} = ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1))
have : <a>MeasureTheory.Measure.IsAddHaarMeasure</a> ν := @<a>ContinuousLinearEquiv.isAddHaarMeasure_map</a> E F ℝ ℝ _ _ _ _ _ _ tE _ _ _ _ _ _ _ mE _ _ _ φ μ _
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁴ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝³ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝² : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝¹ : MeasurableSpace F := borel F this✝ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this : ν.IsAddHaarMeasure ⊢ μ {x | g x < 1} = ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁴ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝³ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝² : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝¹ : MeasurableSpace F := borel F this✝ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this : ν.IsAddHaarMeasure ⊢ μ {x | g x < 1} = ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1))
convert (<a>MeasureTheory.measure_unitBall_eq_integral_div_gamma</a> ν hp) using 1
case h.e'_2 E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁴ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝³ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝² : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝¹ : MeasurableSpace F := borel F this✝ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this : ν.IsAddHaarMeasure ⊢ μ {x | g x < 1} = ν (Metric.ball 0 1) case h.e'_3 E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁴ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝³ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝² : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝¹ : MeasurableSpace F := borel F this✝ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this : ν.IsAddHaarMeasure ⊢ ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1)) = ENNReal.ofReal ((∫ (x : F), Real.exp (-‖x‖ ^ p) ∂ν) / Real.Gamma (↑(finrank ℝ F) / p + 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E ⊢ ∀ (x : F), dist x x = 0
simp only [<a>sub_self</a>, h1, <a>forall_const</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E x✝¹ x✝ : F ⊢ dist x✝¹ x✝ = dist x✝ x✝¹
dsimp [<a>Dist.dist</a>]
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E x✝¹ x✝ : F ⊢ g (x✝¹ - x✝) = g (x✝ - x✝¹)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E x✝¹ x✝ : F ⊢ g (x✝¹ - x✝) = g (x✝ - x✝¹)
rw [← h2, <a>neg_sub</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E x y z : F ⊢ dist x z ≤ dist x y + dist y z
convert h3 (x - y) (y - z) using 1
case h.e'_3 E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E x y z : F ⊢ dist x z = g (x - y + (y - z))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
case h.e'_3 E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E x y z : F ⊢ dist x z = g (x - y + (y - z))
abel_nf
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E ⊢ ∀ {x y : F}, dist x y = 0 → x = y
convert fun _ _ h => <a>eq_of_sub_eq_zero</a> (h4 h)
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
case h.e'_2 E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁴ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝³ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝² : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝¹ : MeasurableSpace F := borel F this✝ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this : ν.IsAddHaarMeasure ⊢ μ {x | g x < 1} = ν (Metric.ball 0 1)
rw [@<a>MeasureTheory.Measure.map_apply</a> E F mE _ μ φ _ _ <a>measurableSet_ball</a>]
case h.e'_2 E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁴ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝³ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝² : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝¹ : MeasurableSpace F := borel F this✝ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this : ν.IsAddHaarMeasure ⊢ μ {x | g x < 1} = μ (⇑φ ⁻¹' Metric.ball 0 1) E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁴ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝³ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝² : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝¹ : MeasurableSpace F := borel F this✝ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this : ν.IsAddHaarMeasure ⊢ Measurable ⇑φ
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
case h.e'_2 E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁴ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝³ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝² : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝¹ : MeasurableSpace F := borel F this✝ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this : ν.IsAddHaarMeasure ⊢ μ {x | g x < 1} = μ (⇑φ ⁻¹' Metric.ball 0 1)
congr!
case h.e'_2.h.e'_6.h.e'_1.h.a E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁴ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝³ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝² : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝¹ : MeasurableSpace F := borel F this✝ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this : ν.IsAddHaarMeasure x✝ : E ⊢ g x✝ < 1 ↔ Metric.ball 0 1 x✝
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
case h.e'_2.h.e'_6.h.e'_1.h.a E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁴ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝³ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝² : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝¹ : MeasurableSpace F := borel F this✝ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this : ν.IsAddHaarMeasure x✝ : E ⊢ g x✝ < 1 ↔ Metric.ball 0 1 x✝
simp_rw [<a>Metric.ball</a>, <a>dist_zero_right</a>]
case h.e'_2.h.e'_6.h.e'_1.h.a E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁴ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝³ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝² : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝¹ : MeasurableSpace F := borel F this✝ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this : ν.IsAddHaarMeasure x✝ : E ⊢ g x✝ < 1 ↔ {y | ‖y‖ < 1} x✝
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
case h.e'_2.h.e'_6.h.e'_1.h.a E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁴ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝³ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝² : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝¹ : MeasurableSpace F := borel F this✝ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this : ν.IsAddHaarMeasure x✝ : E ⊢ g x✝ < 1 ↔ {y | ‖y‖ < 1} x✝
rfl
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁴ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝³ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝² : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝¹ : MeasurableSpace F := borel F this✝ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this : ν.IsAddHaarMeasure ⊢ Measurable ⇑φ
refine @<a>Continuous.measurable</a> E F tE mE _ _ _ _ φ ?_
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁴ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝³ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝² : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝¹ : MeasurableSpace F := borel F this✝ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this : ν.IsAddHaarMeasure ⊢ Continuous ⇑φ
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁴ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝³ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝² : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝¹ : MeasurableSpace F := borel F this✝ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this : ν.IsAddHaarMeasure ⊢ Continuous ⇑φ
exact @<a>ContinuousLinearEquiv.continuous</a> ℝ ℝ _ _ _ _ _ _ E tE _ F _ _ _ _ φ
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
case h.e'_3 E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁴ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝³ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝² : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝¹ : MeasurableSpace F := borel F this✝ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this : ν.IsAddHaarMeasure ⊢ ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1)) = ENNReal.ofReal ((∫ (x : F), Real.exp (-‖x‖ ^ p) ∂ν) / Real.Gamma (↑(finrank ℝ F) / p + 1))
let ψ := @<a>Homeomorph.toMeasurableEquiv</a> E F tE mE _ _ _ _ (@<a>ContinuousLinearEquiv.toHomeomorph</a> ℝ ℝ _ _ _ _ _ _ E tE _ F _ _ _ _ φ)
case h.e'_3 E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁴ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝³ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝² : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝¹ : MeasurableSpace F := borel F this✝ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this : ν.IsAddHaarMeasure ψ : E ≃ᵐ F := φ.toHomeomorph.toMeasurableEquiv ⊢ ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1)) = ENNReal.ofReal ((∫ (x : F), Real.exp (-‖x‖ ^ p) ∂ν) / Real.Gamma (↑(finrank ℝ F) / p + 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
case h.e'_3 E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁴ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝³ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝² : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝¹ : MeasurableSpace F := borel F this✝ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this : ν.IsAddHaarMeasure ψ : E ≃ᵐ F := φ.toHomeomorph.toMeasurableEquiv ⊢ ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1)) = ENNReal.ofReal ((∫ (x : F), Real.exp (-‖x‖ ^ p) ∂ν) / Real.Gamma (↑(finrank ℝ F) / p + 1))
have : @<a>MeasureTheory.MeasurePreserving</a> E F mE _ ψ μ ν := @<a>Measurable.measurePreserving</a> E F mE _ ψ (@<a>MeasurableEquiv.measurable</a> E F mE _ ψ) _
case h.e'_3 E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁵ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝⁴ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝³ : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝² : MeasurableSpace F := borel F this✝¹ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this✝ : ν.IsAddHaarMeasure ψ : E ≃ᵐ F := φ.toHomeomorph.toMeasurableEquiv this : MeasurePreserving (⇑ψ) μ ν ⊢ ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1)) = ENNReal.ofReal ((∫ (x : F), Real.exp (-‖x‖ ^ p) ∂ν) / Real.Gamma (↑(finrank ℝ F) / p + 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
case h.e'_3 E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁵ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝⁴ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝³ : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝² : MeasurableSpace F := borel F this✝¹ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this✝ : ν.IsAddHaarMeasure ψ : E ≃ᵐ F := φ.toHomeomorph.toMeasurableEquiv this : MeasurePreserving (⇑ψ) μ ν ⊢ ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1)) = ENNReal.ofReal ((∫ (x : F), Real.exp (-‖x‖ ^ p) ∂ν) / Real.Gamma (↑(finrank ℝ F) / p + 1))
erw [← this.integral_comp']
case h.e'_3 E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁵ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝⁴ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝³ : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝² : MeasurableSpace F := borel F this✝¹ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this✝ : ν.IsAddHaarMeasure ψ : E ≃ᵐ F := φ.toHomeomorph.toMeasurableEquiv this : MeasurePreserving (⇑ψ) μ ν ⊢ ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1)) = ENNReal.ofReal ((∫ (x : E), Real.exp (-‖ψ x‖ ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ F) / p + 1))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
MeasureTheory.measure_lt_one_eq_integral_div_gamma
case h.e'_3 E : Type u_1 inst✝⁷ : AddCommGroup E inst✝⁶ : Module ℝ E inst✝⁵ : FiniteDimensional ℝ E mE : MeasurableSpace E tE : TopologicalSpace E inst✝⁴ : TopologicalAddGroup E inst✝³ : BorelSpace E inst✝² : T2Space E inst✝¹ : ContinuousSMul ℝ E μ : Measure E inst✝ : μ.IsAddHaarMeasure g : E → ℝ h1 : g 0 = 0 h2 : ∀ (x : E), g (-x) = g x h3 : ∀ (x y : E), g (x + y) ≤ g x + g y h4 : ∀ {x : E}, g x = 0 → x = 0 h5 : ∀ (r : ℝ) (x : E), g (r • x) ≤ |r| * g x p : ℝ hp : 0 < p F : Type u_1 := E this✝⁵ : NormedAddCommGroup F := NormedAddCommGroup.mk ⋯ this✝⁴ : NormedSpace ℝ F := NormedSpace.mk ⋯ this✝³ : TopologicalSpace F := UniformSpace.toTopologicalSpace this✝² : MeasurableSpace F := borel F this✝¹ : BorelSpace F φ : E ≃L[ℝ] F := (LinearEquiv.refl ℝ E).toContinuousLinearEquiv ν : Measure F := map (⇑φ) μ this✝ : ν.IsAddHaarMeasure ψ : E ≃ᵐ F := φ.toHomeomorph.toMeasurableEquiv this : MeasurePreserving (⇑ψ) μ ν ⊢ ENNReal.ofReal ((∫ (x : E), Real.exp (-g x ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ E) / p + 1)) = ENNReal.ofReal ((∫ (x : E), Real.exp (-‖ψ x‖ ^ p) ∂μ) / Real.Gamma (↑(finrank ℝ F) / p + 1))
rfl
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Measure/Lebesgue/VolumeOfBalls.lean
Ordnode.dual_balanceL
α : Type u_1 l : Ordnode α x : α r : Ordnode α ⊢ (l.balanceL x r).dual = r.dual.balanceR x l.dual
unfold <a>Ordnode.balanceL</a> <a>Ordnode.balanceR</a>
α : Type u_1 l : Ordnode α x : α r : Ordnode α ⊢ (Ordnode.casesOn (motive := fun t => id r = t → Ordnode α) (id r) (fun h => Ordnode.casesOn (motive := fun t => id l = t → Ordnode α) (id l) (fun h => Ordnode.singleton x) (fun ls ll lx lr h => Ordnode.casesOn (motive := fun t => id ll = t → Ordnode α) (id ll) (fun h => Ordnode.casesOn (motive := fun t => lr = t → Ordnode α) lr (fun h => node 2 l x nil) (fun size l lrx r h => node 3 (Ordnode.singleton lx) lrx (Ordnode.singleton x)) ⋯) (fun lls l x_1 r h => Ordnode.casesOn (motive := fun t => id lr = t → Ordnode α) (id lr) (fun h => node 3 ll lx (Ordnode.singleton x)) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls + 1) ll lx (node (lrs + 1) lr x nil) else node (ls + 1) (node (lls + lrl.size + 1) ll lx lrl) lrx (node (lrr.size + 1) lrr x nil)) ⋯) ⋯) ⋯) (fun rs l_1 x_1 r_1 h => Ordnode.casesOn (motive := fun t => id l = t → Ordnode α) (id l) (fun h => node (rs + 1) nil x r) (fun ls ll lx lr h => if ls > delta * rs then Ordnode.casesOn (motive := fun t => id ll = t → Ordnode α) (id ll) (fun h => nil) (fun lls l x_2 r_2 h => Ordnode.casesOn (motive := fun t => id lr = t → Ordnode α) (id lr) (fun h => nil) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls + rs + 1) ll lx (node (rs + lrs + 1) lr x r) else node (ls + rs + 1) (node (lls + lrl.size + 1) ll lx lrl) lrx (node (lrr.size + rs + 1) lrr x r)) ⋯) ⋯ else node (ls + rs + 1) l x r) ⋯) ⋯).dual = Ordnode.casesOn (motive := fun t => id r.dual = t → Ordnode α) (id r.dual) (fun h => Ordnode.casesOn (motive := fun t => id l.dual = t → Ordnode α) (id l.dual) (fun h => Ordnode.singleton x) (fun rs rl rx rr h => Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => Ordnode.casesOn (motive := fun t => rl = t → Ordnode α) rl (fun h => node 2 nil x l.dual) (fun size l rlx r h => node 3 (Ordnode.singleton x) rlx (Ordnode.singleton rx)) ⋯) (fun rrs l x_1 r h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => node 3 (Ordnode.singleton x) rx rr) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (rs + 1) (node (rls + 1) nil x rl) rx rr else node (rs + 1) (node (rll.size + 1) nil x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯) ⋯) (fun ls l_1 x_1 r_1 h => Ordnode.casesOn (motive := fun t => id l.dual = t → Ordnode α) (id l.dual) (fun h => node (ls + 1) r.dual x nil) (fun rs rl rx rr h => if rs > delta * ls then Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => nil) (fun rrs l x_2 r_2 h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => nil) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (ls + rs + 1) (node (ls + rls + 1) r.dual x rl) rx rr else node (ls + rs + 1) (node (ls + rll.size + 1) r.dual x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯ else node (ls + rs + 1) r.dual x l.dual) ⋯) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.dual_balanceL
α : Type u_1 l : Ordnode α x : α r : Ordnode α ⊢ (Ordnode.casesOn (motive := fun t => id r = t → Ordnode α) (id r) (fun h => Ordnode.casesOn (motive := fun t => id l = t → Ordnode α) (id l) (fun h => Ordnode.singleton x) (fun ls ll lx lr h => Ordnode.casesOn (motive := fun t => id ll = t → Ordnode α) (id ll) (fun h => Ordnode.casesOn (motive := fun t => lr = t → Ordnode α) lr (fun h => node 2 l x nil) (fun size l lrx r h => node 3 (Ordnode.singleton lx) lrx (Ordnode.singleton x)) ⋯) (fun lls l x_1 r h => Ordnode.casesOn (motive := fun t => id lr = t → Ordnode α) (id lr) (fun h => node 3 ll lx (Ordnode.singleton x)) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls + 1) ll lx (node (lrs + 1) lr x nil) else node (ls + 1) (node (lls + lrl.size + 1) ll lx lrl) lrx (node (lrr.size + 1) lrr x nil)) ⋯) ⋯) ⋯) (fun rs l_1 x_1 r_1 h => Ordnode.casesOn (motive := fun t => id l = t → Ordnode α) (id l) (fun h => node (rs + 1) nil x r) (fun ls ll lx lr h => if ls > delta * rs then Ordnode.casesOn (motive := fun t => id ll = t → Ordnode α) (id ll) (fun h => nil) (fun lls l x_2 r_2 h => Ordnode.casesOn (motive := fun t => id lr = t → Ordnode α) (id lr) (fun h => nil) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls + rs + 1) ll lx (node (rs + lrs + 1) lr x r) else node (ls + rs + 1) (node (lls + lrl.size + 1) ll lx lrl) lrx (node (lrr.size + rs + 1) lrr x r)) ⋯) ⋯ else node (ls + rs + 1) l x r) ⋯) ⋯).dual = Ordnode.casesOn (motive := fun t => id r.dual = t → Ordnode α) (id r.dual) (fun h => Ordnode.casesOn (motive := fun t => id l.dual = t → Ordnode α) (id l.dual) (fun h => Ordnode.singleton x) (fun rs rl rx rr h => Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => Ordnode.casesOn (motive := fun t => rl = t → Ordnode α) rl (fun h => node 2 nil x l.dual) (fun size l rlx r h => node 3 (Ordnode.singleton x) rlx (Ordnode.singleton rx)) ⋯) (fun rrs l x_1 r h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => node 3 (Ordnode.singleton x) rx rr) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (rs + 1) (node (rls + 1) nil x rl) rx rr else node (rs + 1) (node (rll.size + 1) nil x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯) ⋯) (fun ls l_1 x_1 r_1 h => Ordnode.casesOn (motive := fun t => id l.dual = t → Ordnode α) (id l.dual) (fun h => node (ls + 1) r.dual x nil) (fun rs rl rx rr h => if rs > delta * ls then Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => nil) (fun rrs l x_2 r_2 h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => nil) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (ls + rs + 1) (node (ls + rls + 1) r.dual x rl) rx rr else node (ls + rs + 1) (node (ls + rll.size + 1) r.dual x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯ else node (ls + rs + 1) r.dual x l.dual) ⋯) ⋯
cases' r with rs rl rx rr
case nil α : Type u_1 l : Ordnode α x : α ⊢ (Ordnode.casesOn (motive := fun t => id nil = t → Ordnode α) (id nil) (fun h => Ordnode.casesOn (motive := fun t => id l = t → Ordnode α) (id l) (fun h => Ordnode.singleton x) (fun ls ll lx lr h => Ordnode.casesOn (motive := fun t => id ll = t → Ordnode α) (id ll) (fun h => Ordnode.casesOn (motive := fun t => lr = t → Ordnode α) lr (fun h => node 2 l x nil) (fun size l lrx r h => node 3 (Ordnode.singleton lx) lrx (Ordnode.singleton x)) ⋯) (fun lls l x_1 r h => Ordnode.casesOn (motive := fun t => id lr = t → Ordnode α) (id lr) (fun h => node 3 ll lx (Ordnode.singleton x)) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls + 1) ll lx (node (lrs + 1) lr x nil) else node (ls + 1) (node (lls + lrl.size + 1) ll lx lrl) lrx (node (lrr.size + 1) lrr x nil)) ⋯) ⋯) ⋯) (fun rs l_1 x_1 r h => Ordnode.casesOn (motive := fun t => id l = t → Ordnode α) (id l) (fun h => node (rs + 1) nil x nil) (fun ls ll lx lr h => if ls > delta * rs then Ordnode.casesOn (motive := fun t => id ll = t → Ordnode α) (id ll) (fun h => nil) (fun lls l x_2 r h => Ordnode.casesOn (motive := fun t => id lr = t → Ordnode α) (id lr) (fun h => nil) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls + rs + 1) ll lx (node (rs + lrs + 1) lr x nil) else node (ls + rs + 1) (node (lls + lrl.size + 1) ll lx lrl) lrx (node (lrr.size + rs + 1) lrr x nil)) ⋯) ⋯ else node (ls + rs + 1) l x nil) ⋯) ⋯).dual = Ordnode.casesOn (motive := fun t => id nil.dual = t → Ordnode α) (id nil.dual) (fun h => Ordnode.casesOn (motive := fun t => id l.dual = t → Ordnode α) (id l.dual) (fun h => Ordnode.singleton x) (fun rs rl rx rr h => Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => Ordnode.casesOn (motive := fun t => rl = t → Ordnode α) rl (fun h => node 2 nil x l.dual) (fun size l rlx r h => node 3 (Ordnode.singleton x) rlx (Ordnode.singleton rx)) ⋯) (fun rrs l x_1 r h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => node 3 (Ordnode.singleton x) rx rr) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (rs + 1) (node (rls + 1) nil x rl) rx rr else node (rs + 1) (node (rll.size + 1) nil x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯) ⋯) (fun ls l_1 x_1 r h => Ordnode.casesOn (motive := fun t => id l.dual = t → Ordnode α) (id l.dual) (fun h => node (ls + 1) nil.dual x nil) (fun rs rl rx rr h => if rs > delta * ls then Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => nil) (fun rrs l x_2 r h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => nil) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (ls + rs + 1) (node (ls + rls + 1) nil.dual x rl) rx rr else node (ls + rs + 1) (node (ls + rll.size + 1) nil.dual x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯ else node (ls + rs + 1) nil.dual x l.dual) ⋯) ⋯ case node α : Type u_1 l : Ordnode α x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ⊢ (Ordnode.casesOn (motive := fun t => id (node rs rl rx rr) = t → Ordnode α) (id (node rs rl rx rr)) (fun h => Ordnode.casesOn (motive := fun t => id l = t → Ordnode α) (id l) (fun h => Ordnode.singleton x) (fun ls ll lx lr h => Ordnode.casesOn (motive := fun t => id ll = t → Ordnode α) (id ll) (fun h => Ordnode.casesOn (motive := fun t => lr = t → Ordnode α) lr (fun h => node 2 l x nil) (fun size l lrx r h => node 3 (Ordnode.singleton lx) lrx (Ordnode.singleton x)) ⋯) (fun lls l x_1 r h => Ordnode.casesOn (motive := fun t => id lr = t → Ordnode α) (id lr) (fun h => node 3 ll lx (Ordnode.singleton x)) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls + 1) ll lx (node (lrs + 1) lr x nil) else node (ls + 1) (node (lls + lrl.size + 1) ll lx lrl) lrx (node (lrr.size + 1) lrr x nil)) ⋯) ⋯) ⋯) (fun rs_1 l_1 x_1 r h => Ordnode.casesOn (motive := fun t => id l = t → Ordnode α) (id l) (fun h => node (rs_1 + 1) nil x (node rs rl rx rr)) (fun ls ll lx lr h => if ls > delta * rs_1 then Ordnode.casesOn (motive := fun t => id ll = t → Ordnode α) (id ll) (fun h => nil) (fun lls l x_2 r h => Ordnode.casesOn (motive := fun t => id lr = t → Ordnode α) (id lr) (fun h => nil) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls + rs_1 + 1) ll lx (node (rs_1 + lrs + 1) lr x (node rs rl rx rr)) else node (ls + rs_1 + 1) (node (lls + lrl.size + 1) ll lx lrl) lrx (node (lrr.size + rs_1 + 1) lrr x (node rs rl rx rr))) ⋯) ⋯ else node (ls + rs_1 + 1) l x (node rs rl rx rr)) ⋯) ⋯).dual = Ordnode.casesOn (motive := fun t => id (node rs rl rx rr).dual = t → Ordnode α) (id (node rs rl rx rr).dual) (fun h => Ordnode.casesOn (motive := fun t => id l.dual = t → Ordnode α) (id l.dual) (fun h => Ordnode.singleton x) (fun rs rl rx rr h => Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => Ordnode.casesOn (motive := fun t => rl = t → Ordnode α) rl (fun h => node 2 nil x l.dual) (fun size l rlx r h => node 3 (Ordnode.singleton x) rlx (Ordnode.singleton rx)) ⋯) (fun rrs l x_1 r h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => node 3 (Ordnode.singleton x) rx rr) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (rs + 1) (node (rls + 1) nil x rl) rx rr else node (rs + 1) (node (rll.size + 1) nil x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯) ⋯) (fun ls l_1 x_1 r h => Ordnode.casesOn (motive := fun t => id l.dual = t → Ordnode α) (id l.dual) (fun h => node (ls + 1) (node rs rl rx rr).dual x nil) (fun rs_1 rl_1 rx_1 rr_1 h => if rs_1 > delta * ls then Ordnode.casesOn (motive := fun t => id rr_1 = t → Ordnode α) (id rr_1) (fun h => nil) (fun rrs l x_2 r h => Ordnode.casesOn (motive := fun t => id rl_1 = t → Ordnode α) (id rl_1) (fun h => nil) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (ls + rs_1 + 1) (node (ls + rls + 1) (node rs rl rx rr).dual x rl_1) rx_1 rr_1 else node (ls + rs_1 + 1) (node (ls + rll.size + 1) (node rs rl rx rr).dual x rll) rlx (node (rlr.size + rrs + 1) rlr rx_1 rr_1)) ⋯) ⋯ else node (ls + rs_1 + 1) (node rs rl rx rr).dual x l.dual) ⋯) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.dual_balanceL
case nil α : Type u_1 l : Ordnode α x : α ⊢ (Ordnode.casesOn (motive := fun t => id nil = t → Ordnode α) (id nil) (fun h => Ordnode.casesOn (motive := fun t => id l = t → Ordnode α) (id l) (fun h => Ordnode.singleton x) (fun ls ll lx lr h => Ordnode.casesOn (motive := fun t => id ll = t → Ordnode α) (id ll) (fun h => Ordnode.casesOn (motive := fun t => lr = t → Ordnode α) lr (fun h => node 2 l x nil) (fun size l lrx r h => node 3 (Ordnode.singleton lx) lrx (Ordnode.singleton x)) ⋯) (fun lls l x_1 r h => Ordnode.casesOn (motive := fun t => id lr = t → Ordnode α) (id lr) (fun h => node 3 ll lx (Ordnode.singleton x)) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls + 1) ll lx (node (lrs + 1) lr x nil) else node (ls + 1) (node (lls + lrl.size + 1) ll lx lrl) lrx (node (lrr.size + 1) lrr x nil)) ⋯) ⋯) ⋯) (fun rs l_1 x_1 r h => Ordnode.casesOn (motive := fun t => id l = t → Ordnode α) (id l) (fun h => node (rs + 1) nil x nil) (fun ls ll lx lr h => if ls > delta * rs then Ordnode.casesOn (motive := fun t => id ll = t → Ordnode α) (id ll) (fun h => nil) (fun lls l x_2 r h => Ordnode.casesOn (motive := fun t => id lr = t → Ordnode α) (id lr) (fun h => nil) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls + rs + 1) ll lx (node (rs + lrs + 1) lr x nil) else node (ls + rs + 1) (node (lls + lrl.size + 1) ll lx lrl) lrx (node (lrr.size + rs + 1) lrr x nil)) ⋯) ⋯ else node (ls + rs + 1) l x nil) ⋯) ⋯).dual = Ordnode.casesOn (motive := fun t => id nil.dual = t → Ordnode α) (id nil.dual) (fun h => Ordnode.casesOn (motive := fun t => id l.dual = t → Ordnode α) (id l.dual) (fun h => Ordnode.singleton x) (fun rs rl rx rr h => Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => Ordnode.casesOn (motive := fun t => rl = t → Ordnode α) rl (fun h => node 2 nil x l.dual) (fun size l rlx r h => node 3 (Ordnode.singleton x) rlx (Ordnode.singleton rx)) ⋯) (fun rrs l x_1 r h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => node 3 (Ordnode.singleton x) rx rr) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (rs + 1) (node (rls + 1) nil x rl) rx rr else node (rs + 1) (node (rll.size + 1) nil x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯) ⋯) (fun ls l_1 x_1 r h => Ordnode.casesOn (motive := fun t => id l.dual = t → Ordnode α) (id l.dual) (fun h => node (ls + 1) nil.dual x nil) (fun rs rl rx rr h => if rs > delta * ls then Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => nil) (fun rrs l x_2 r h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => nil) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (ls + rs + 1) (node (ls + rls + 1) nil.dual x rl) rx rr else node (ls + rs + 1) (node (ls + rll.size + 1) nil.dual x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯ else node (ls + rs + 1) nil.dual x l.dual) ⋯) ⋯
cases' l with ls ll lx lr
case nil.nil α : Type u_1 x : α ⊢ (Ordnode.casesOn (motive := fun t => id nil = t → Ordnode α) (id nil) (fun h => Ordnode.casesOn (motive := fun t => id nil = t → Ordnode α) (id nil) (fun h => Ordnode.singleton x) (fun ls ll lx lr h => Ordnode.casesOn (motive := fun t => id ll = t → Ordnode α) (id ll) (fun h => Ordnode.casesOn (motive := fun t => lr = t → Ordnode α) lr (fun h => node 2 nil x nil) (fun size l lrx r h => node 3 (Ordnode.singleton lx) lrx (Ordnode.singleton x)) ⋯) (fun lls l x_1 r h => Ordnode.casesOn (motive := fun t => id lr = t → Ordnode α) (id lr) (fun h => node 3 ll lx (Ordnode.singleton x)) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls + 1) ll lx (node (lrs + 1) lr x nil) else node (ls + 1) (node (lls + lrl.size + 1) ll lx lrl) lrx (node (lrr.size + 1) lrr x nil)) ⋯) ⋯) ⋯) (fun rs l x_1 r h => Ordnode.casesOn (motive := fun t => id nil = t → Ordnode α) (id nil) (fun h => node (rs + 1) nil x nil) (fun ls ll lx lr h => if ls > delta * rs then Ordnode.casesOn (motive := fun t => id ll = t → Ordnode α) (id ll) (fun h => nil) (fun lls l x_2 r h => Ordnode.casesOn (motive := fun t => id lr = t → Ordnode α) (id lr) (fun h => nil) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls + rs + 1) ll lx (node (rs + lrs + 1) lr x nil) else node (ls + rs + 1) (node (lls + lrl.size + 1) ll lx lrl) lrx (node (lrr.size + rs + 1) lrr x nil)) ⋯) ⋯ else node (ls + rs + 1) nil x nil) ⋯) ⋯).dual = Ordnode.casesOn (motive := fun t => id nil.dual = t → Ordnode α) (id nil.dual) (fun h => Ordnode.casesOn (motive := fun t => id nil.dual = t → Ordnode α) (id nil.dual) (fun h => Ordnode.singleton x) (fun rs rl rx rr h => Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => Ordnode.casesOn (motive := fun t => rl = t → Ordnode α) rl (fun h => node 2 nil x nil.dual) (fun size l rlx r h => node 3 (Ordnode.singleton x) rlx (Ordnode.singleton rx)) ⋯) (fun rrs l x_1 r h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => node 3 (Ordnode.singleton x) rx rr) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (rs + 1) (node (rls + 1) nil x rl) rx rr else node (rs + 1) (node (rll.size + 1) nil x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯) ⋯) (fun ls l x_1 r h => Ordnode.casesOn (motive := fun t => id nil.dual = t → Ordnode α) (id nil.dual) (fun h => node (ls + 1) nil.dual x nil) (fun rs rl rx rr h => if rs > delta * ls then Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => nil) (fun rrs l x_2 r h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => nil) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (ls + rs + 1) (node (ls + rls + 1) nil.dual x rl) rx rr else node (ls + rs + 1) (node (ls + rll.size + 1) nil.dual x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯ else node (ls + rs + 1) nil.dual x nil.dual) ⋯) ⋯ case nil.node α : Type u_1 x : α ls : ℕ ll : Ordnode α lx : α lr : Ordnode α ⊢ (Ordnode.casesOn (motive := fun t => id nil = t → Ordnode α) (id nil) (fun h => Ordnode.casesOn (motive := fun t => id (node ls ll lx lr) = t → Ordnode α) (id (node ls ll lx lr)) (fun h => Ordnode.singleton x) (fun ls_1 ll_1 lx_1 lr_1 h => Ordnode.casesOn (motive := fun t => id ll_1 = t → Ordnode α) (id ll_1) (fun h => Ordnode.casesOn (motive := fun t => lr_1 = t → Ordnode α) lr_1 (fun h => node 2 (node ls ll lx lr) x nil) (fun size l lrx r h => node 3 (Ordnode.singleton lx_1) lrx (Ordnode.singleton x)) ⋯) (fun lls l x_1 r h => Ordnode.casesOn (motive := fun t => id lr_1 = t → Ordnode α) (id lr_1) (fun h => node 3 ll_1 lx_1 (Ordnode.singleton x)) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls_1 + 1) ll_1 lx_1 (node (lrs + 1) lr_1 x nil) else node (ls_1 + 1) (node (lls + lrl.size + 1) ll_1 lx_1 lrl) lrx (node (lrr.size + 1) lrr x nil)) ⋯) ⋯) ⋯) (fun rs l x_1 r h => Ordnode.casesOn (motive := fun t => id (node ls ll lx lr) = t → Ordnode α) (id (node ls ll lx lr)) (fun h => node (rs + 1) nil x nil) (fun ls_1 ll_1 lx_1 lr_1 h => if ls_1 > delta * rs then Ordnode.casesOn (motive := fun t => id ll_1 = t → Ordnode α) (id ll_1) (fun h => nil) (fun lls l x_2 r h => Ordnode.casesOn (motive := fun t => id lr_1 = t → Ordnode α) (id lr_1) (fun h => nil) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls_1 + rs + 1) ll_1 lx_1 (node (rs + lrs + 1) lr_1 x nil) else node (ls_1 + rs + 1) (node (lls + lrl.size + 1) ll_1 lx_1 lrl) lrx (node (lrr.size + rs + 1) lrr x nil)) ⋯) ⋯ else node (ls_1 + rs + 1) (node ls ll lx lr) x nil) ⋯) ⋯).dual = Ordnode.casesOn (motive := fun t => id nil.dual = t → Ordnode α) (id nil.dual) (fun h => Ordnode.casesOn (motive := fun t => id (node ls ll lx lr).dual = t → Ordnode α) (id (node ls ll lx lr).dual) (fun h => Ordnode.singleton x) (fun rs rl rx rr h => Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => Ordnode.casesOn (motive := fun t => rl = t → Ordnode α) rl (fun h => node 2 nil x (node ls ll lx lr).dual) (fun size l rlx r h => node 3 (Ordnode.singleton x) rlx (Ordnode.singleton rx)) ⋯) (fun rrs l x_1 r h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => node 3 (Ordnode.singleton x) rx rr) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (rs + 1) (node (rls + 1) nil x rl) rx rr else node (rs + 1) (node (rll.size + 1) nil x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯) ⋯) (fun ls_1 l x_1 r h => Ordnode.casesOn (motive := fun t => id (node ls ll lx lr).dual = t → Ordnode α) (id (node ls ll lx lr).dual) (fun h => node (ls_1 + 1) nil.dual x nil) (fun rs rl rx rr h => if rs > delta * ls_1 then Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => nil) (fun rrs l x_2 r h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => nil) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (ls_1 + rs + 1) (node (ls_1 + rls + 1) nil.dual x rl) rx rr else node (ls_1 + rs + 1) (node (ls_1 + rll.size + 1) nil.dual x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯ else node (ls_1 + rs + 1) nil.dual x (node ls ll lx lr).dual) ⋯) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.dual_balanceL
case nil.node α : Type u_1 x : α ls : ℕ ll : Ordnode α lx : α lr : Ordnode α ⊢ (Ordnode.casesOn (motive := fun t => id nil = t → Ordnode α) (id nil) (fun h => Ordnode.casesOn (motive := fun t => id (node ls ll lx lr) = t → Ordnode α) (id (node ls ll lx lr)) (fun h => Ordnode.singleton x) (fun ls_1 ll_1 lx_1 lr_1 h => Ordnode.casesOn (motive := fun t => id ll_1 = t → Ordnode α) (id ll_1) (fun h => Ordnode.casesOn (motive := fun t => lr_1 = t → Ordnode α) lr_1 (fun h => node 2 (node ls ll lx lr) x nil) (fun size l lrx r h => node 3 (Ordnode.singleton lx_1) lrx (Ordnode.singleton x)) ⋯) (fun lls l x_1 r h => Ordnode.casesOn (motive := fun t => id lr_1 = t → Ordnode α) (id lr_1) (fun h => node 3 ll_1 lx_1 (Ordnode.singleton x)) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls_1 + 1) ll_1 lx_1 (node (lrs + 1) lr_1 x nil) else node (ls_1 + 1) (node (lls + lrl.size + 1) ll_1 lx_1 lrl) lrx (node (lrr.size + 1) lrr x nil)) ⋯) ⋯) ⋯) (fun rs l x_1 r h => Ordnode.casesOn (motive := fun t => id (node ls ll lx lr) = t → Ordnode α) (id (node ls ll lx lr)) (fun h => node (rs + 1) nil x nil) (fun ls_1 ll_1 lx_1 lr_1 h => if ls_1 > delta * rs then Ordnode.casesOn (motive := fun t => id ll_1 = t → Ordnode α) (id ll_1) (fun h => nil) (fun lls l x_2 r h => Ordnode.casesOn (motive := fun t => id lr_1 = t → Ordnode α) (id lr_1) (fun h => nil) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls_1 + rs + 1) ll_1 lx_1 (node (rs + lrs + 1) lr_1 x nil) else node (ls_1 + rs + 1) (node (lls + lrl.size + 1) ll_1 lx_1 lrl) lrx (node (lrr.size + rs + 1) lrr x nil)) ⋯) ⋯ else node (ls_1 + rs + 1) (node ls ll lx lr) x nil) ⋯) ⋯).dual = Ordnode.casesOn (motive := fun t => id nil.dual = t → Ordnode α) (id nil.dual) (fun h => Ordnode.casesOn (motive := fun t => id (node ls ll lx lr).dual = t → Ordnode α) (id (node ls ll lx lr).dual) (fun h => Ordnode.singleton x) (fun rs rl rx rr h => Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => Ordnode.casesOn (motive := fun t => rl = t → Ordnode α) rl (fun h => node 2 nil x (node ls ll lx lr).dual) (fun size l rlx r h => node 3 (Ordnode.singleton x) rlx (Ordnode.singleton rx)) ⋯) (fun rrs l x_1 r h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => node 3 (Ordnode.singleton x) rx rr) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (rs + 1) (node (rls + 1) nil x rl) rx rr else node (rs + 1) (node (rll.size + 1) nil x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯) ⋯) (fun ls_1 l x_1 r h => Ordnode.casesOn (motive := fun t => id (node ls ll lx lr).dual = t → Ordnode α) (id (node ls ll lx lr).dual) (fun h => node (ls_1 + 1) nil.dual x nil) (fun rs rl rx rr h => if rs > delta * ls_1 then Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => nil) (fun rrs l x_2 r h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => nil) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (ls_1 + rs + 1) (node (ls_1 + rls + 1) nil.dual x rl) rx rr else node (ls_1 + rs + 1) (node (ls_1 + rll.size + 1) nil.dual x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯ else node (ls_1 + rs + 1) nil.dual x (node ls ll lx lr).dual) ⋯) ⋯
cases' ll with lls lll llx llr <;> cases' lr with lrs lrl lrx lrr <;> dsimp only [<a>Ordnode.dual</a>, <a>id</a>] <;> try rfl
case nil.node.node.node α : Type u_1 x : α ls : ℕ lx : α lls : ℕ lll : Ordnode α llx : α llr : Ordnode α lrs : ℕ lrl : Ordnode α lrx : α lrr : Ordnode α ⊢ (if lrs < ratio * lls then node (ls + 1) (node lls lll llx llr) lx (node (lrs + 1) (node lrs lrl lrx lrr) x nil) else node (ls + 1) (node (lls + lrl.size + 1) (node lls lll llx llr) lx lrl) lrx (node (lrr.size + 1) lrr x nil)).dual = if lrs < ratio * lls then node (ls + 1) (node (lrs + 1) nil x (node lrs lrr.dual lrx lrl.dual)) lx (node lls llr.dual llx lll.dual) else node (ls + 1) (node (lrr.dual.size + 1) nil x lrr.dual) lrx (node (lrl.dual.size + lls + 1) lrl.dual lx (node lls llr.dual llx lll.dual))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.dual_balanceL
case nil.node.node.node α : Type u_1 x : α ls : ℕ lx : α lls : ℕ lll : Ordnode α llx : α llr : Ordnode α lrs : ℕ lrl : Ordnode α lrx : α lrr : Ordnode α ⊢ (if lrs < ratio * lls then node (ls + 1) (node lls lll llx llr) lx (node (lrs + 1) (node lrs lrl lrx lrr) x nil) else node (ls + 1) (node (lls + lrl.size + 1) (node lls lll llx llr) lx lrl) lrx (node (lrr.size + 1) lrr x nil)).dual = if lrs < ratio * lls then node (ls + 1) (node (lrs + 1) nil x (node lrs lrr.dual lrx lrl.dual)) lx (node lls llr.dual llx lll.dual) else node (ls + 1) (node (lrr.dual.size + 1) nil x lrr.dual) lrx (node (lrl.dual.size + lls + 1) lrl.dual lx (node lls llr.dual llx lll.dual))
split_ifs with h <;> repeat simp [h, <a>add_comm</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.dual_balanceL
case nil.nil α : Type u_1 x : α ⊢ (Ordnode.casesOn (motive := fun t => id nil = t → Ordnode α) (id nil) (fun h => Ordnode.casesOn (motive := fun t => id nil = t → Ordnode α) (id nil) (fun h => Ordnode.singleton x) (fun ls ll lx lr h => Ordnode.casesOn (motive := fun t => id ll = t → Ordnode α) (id ll) (fun h => Ordnode.casesOn (motive := fun t => lr = t → Ordnode α) lr (fun h => node 2 nil x nil) (fun size l lrx r h => node 3 (Ordnode.singleton lx) lrx (Ordnode.singleton x)) ⋯) (fun lls l x_1 r h => Ordnode.casesOn (motive := fun t => id lr = t → Ordnode α) (id lr) (fun h => node 3 ll lx (Ordnode.singleton x)) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls + 1) ll lx (node (lrs + 1) lr x nil) else node (ls + 1) (node (lls + lrl.size + 1) ll lx lrl) lrx (node (lrr.size + 1) lrr x nil)) ⋯) ⋯) ⋯) (fun rs l x_1 r h => Ordnode.casesOn (motive := fun t => id nil = t → Ordnode α) (id nil) (fun h => node (rs + 1) nil x nil) (fun ls ll lx lr h => if ls > delta * rs then Ordnode.casesOn (motive := fun t => id ll = t → Ordnode α) (id ll) (fun h => nil) (fun lls l x_2 r h => Ordnode.casesOn (motive := fun t => id lr = t → Ordnode α) (id lr) (fun h => nil) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls + rs + 1) ll lx (node (rs + lrs + 1) lr x nil) else node (ls + rs + 1) (node (lls + lrl.size + 1) ll lx lrl) lrx (node (lrr.size + rs + 1) lrr x nil)) ⋯) ⋯ else node (ls + rs + 1) nil x nil) ⋯) ⋯).dual = Ordnode.casesOn (motive := fun t => id nil.dual = t → Ordnode α) (id nil.dual) (fun h => Ordnode.casesOn (motive := fun t => id nil.dual = t → Ordnode α) (id nil.dual) (fun h => Ordnode.singleton x) (fun rs rl rx rr h => Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => Ordnode.casesOn (motive := fun t => rl = t → Ordnode α) rl (fun h => node 2 nil x nil.dual) (fun size l rlx r h => node 3 (Ordnode.singleton x) rlx (Ordnode.singleton rx)) ⋯) (fun rrs l x_1 r h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => node 3 (Ordnode.singleton x) rx rr) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (rs + 1) (node (rls + 1) nil x rl) rx rr else node (rs + 1) (node (rll.size + 1) nil x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯) ⋯) (fun ls l x_1 r h => Ordnode.casesOn (motive := fun t => id nil.dual = t → Ordnode α) (id nil.dual) (fun h => node (ls + 1) nil.dual x nil) (fun rs rl rx rr h => if rs > delta * ls then Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => nil) (fun rrs l x_2 r h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => nil) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (ls + rs + 1) (node (ls + rls + 1) nil.dual x rl) rx rr else node (ls + rs + 1) (node (ls + rll.size + 1) nil.dual x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯ else node (ls + rs + 1) nil.dual x nil.dual) ⋯) ⋯
rfl
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.dual_balanceL
case nil.node.node.nil α : Type u_1 x : α ls : ℕ lx : α lls : ℕ lll : Ordnode α llx : α llr : Ordnode α ⊢ node 3 (node 1 nil x nil) lx (node lls llr.dual llx lll.dual) = node 3 (Ordnode.singleton x) lx (node lls llr.dual llx lll.dual)
rfl
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.dual_balanceL
case neg α : Type u_1 x : α ls : ℕ lx : α lls : ℕ lll : Ordnode α llx : α llr : Ordnode α lrs : ℕ lrl : Ordnode α lrx : α lrr : Ordnode α h : ¬lrs < ratio * lls ⊢ (node (ls + 1) (node (lls + lrl.size + 1) (node lls lll llx llr) lx lrl) lrx (node (lrr.size + 1) lrr x nil)).dual = node (ls + 1) (node (lrr.dual.size + 1) nil x lrr.dual) lrx (node (lrl.dual.size + lls + 1) lrl.dual lx (node lls llr.dual llx lll.dual))
simp [h, <a>add_comm</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.dual_balanceL
case node α : Type u_1 l : Ordnode α x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ⊢ (Ordnode.casesOn (motive := fun t => id (node rs rl rx rr) = t → Ordnode α) (id (node rs rl rx rr)) (fun h => Ordnode.casesOn (motive := fun t => id l = t → Ordnode α) (id l) (fun h => Ordnode.singleton x) (fun ls ll lx lr h => Ordnode.casesOn (motive := fun t => id ll = t → Ordnode α) (id ll) (fun h => Ordnode.casesOn (motive := fun t => lr = t → Ordnode α) lr (fun h => node 2 l x nil) (fun size l lrx r h => node 3 (Ordnode.singleton lx) lrx (Ordnode.singleton x)) ⋯) (fun lls l x_1 r h => Ordnode.casesOn (motive := fun t => id lr = t → Ordnode α) (id lr) (fun h => node 3 ll lx (Ordnode.singleton x)) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls + 1) ll lx (node (lrs + 1) lr x nil) else node (ls + 1) (node (lls + lrl.size + 1) ll lx lrl) lrx (node (lrr.size + 1) lrr x nil)) ⋯) ⋯) ⋯) (fun rs_1 l_1 x_1 r h => Ordnode.casesOn (motive := fun t => id l = t → Ordnode α) (id l) (fun h => node (rs_1 + 1) nil x (node rs rl rx rr)) (fun ls ll lx lr h => if ls > delta * rs_1 then Ordnode.casesOn (motive := fun t => id ll = t → Ordnode α) (id ll) (fun h => nil) (fun lls l x_2 r h => Ordnode.casesOn (motive := fun t => id lr = t → Ordnode α) (id lr) (fun h => nil) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls + rs_1 + 1) ll lx (node (rs_1 + lrs + 1) lr x (node rs rl rx rr)) else node (ls + rs_1 + 1) (node (lls + lrl.size + 1) ll lx lrl) lrx (node (lrr.size + rs_1 + 1) lrr x (node rs rl rx rr))) ⋯) ⋯ else node (ls + rs_1 + 1) l x (node rs rl rx rr)) ⋯) ⋯).dual = Ordnode.casesOn (motive := fun t => id (node rs rl rx rr).dual = t → Ordnode α) (id (node rs rl rx rr).dual) (fun h => Ordnode.casesOn (motive := fun t => id l.dual = t → Ordnode α) (id l.dual) (fun h => Ordnode.singleton x) (fun rs rl rx rr h => Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => Ordnode.casesOn (motive := fun t => rl = t → Ordnode α) rl (fun h => node 2 nil x l.dual) (fun size l rlx r h => node 3 (Ordnode.singleton x) rlx (Ordnode.singleton rx)) ⋯) (fun rrs l x_1 r h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => node 3 (Ordnode.singleton x) rx rr) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (rs + 1) (node (rls + 1) nil x rl) rx rr else node (rs + 1) (node (rll.size + 1) nil x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯) ⋯) (fun ls l_1 x_1 r h => Ordnode.casesOn (motive := fun t => id l.dual = t → Ordnode α) (id l.dual) (fun h => node (ls + 1) (node rs rl rx rr).dual x nil) (fun rs_1 rl_1 rx_1 rr_1 h => if rs_1 > delta * ls then Ordnode.casesOn (motive := fun t => id rr_1 = t → Ordnode α) (id rr_1) (fun h => nil) (fun rrs l x_2 r h => Ordnode.casesOn (motive := fun t => id rl_1 = t → Ordnode α) (id rl_1) (fun h => nil) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (ls + rs_1 + 1) (node (ls + rls + 1) (node rs rl rx rr).dual x rl_1) rx_1 rr_1 else node (ls + rs_1 + 1) (node (ls + rll.size + 1) (node rs rl rx rr).dual x rll) rlx (node (rlr.size + rrs + 1) rlr rx_1 rr_1)) ⋯) ⋯ else node (ls + rs_1 + 1) (node rs rl rx rr).dual x l.dual) ⋯) ⋯
cases' l with ls ll lx lr
case node.nil α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ⊢ (Ordnode.casesOn (motive := fun t => id (node rs rl rx rr) = t → Ordnode α) (id (node rs rl rx rr)) (fun h => Ordnode.casesOn (motive := fun t => id nil = t → Ordnode α) (id nil) (fun h => Ordnode.singleton x) (fun ls ll lx lr h => Ordnode.casesOn (motive := fun t => id ll = t → Ordnode α) (id ll) (fun h => Ordnode.casesOn (motive := fun t => lr = t → Ordnode α) lr (fun h => node 2 nil x nil) (fun size l lrx r h => node 3 (Ordnode.singleton lx) lrx (Ordnode.singleton x)) ⋯) (fun lls l x_1 r h => Ordnode.casesOn (motive := fun t => id lr = t → Ordnode α) (id lr) (fun h => node 3 ll lx (Ordnode.singleton x)) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls + 1) ll lx (node (lrs + 1) lr x nil) else node (ls + 1) (node (lls + lrl.size + 1) ll lx lrl) lrx (node (lrr.size + 1) lrr x nil)) ⋯) ⋯) ⋯) (fun rs_1 l x_1 r h => Ordnode.casesOn (motive := fun t => id nil = t → Ordnode α) (id nil) (fun h => node (rs_1 + 1) nil x (node rs rl rx rr)) (fun ls ll lx lr h => if ls > delta * rs_1 then Ordnode.casesOn (motive := fun t => id ll = t → Ordnode α) (id ll) (fun h => nil) (fun lls l x_2 r h => Ordnode.casesOn (motive := fun t => id lr = t → Ordnode α) (id lr) (fun h => nil) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls + rs_1 + 1) ll lx (node (rs_1 + lrs + 1) lr x (node rs rl rx rr)) else node (ls + rs_1 + 1) (node (lls + lrl.size + 1) ll lx lrl) lrx (node (lrr.size + rs_1 + 1) lrr x (node rs rl rx rr))) ⋯) ⋯ else node (ls + rs_1 + 1) nil x (node rs rl rx rr)) ⋯) ⋯).dual = Ordnode.casesOn (motive := fun t => id (node rs rl rx rr).dual = t → Ordnode α) (id (node rs rl rx rr).dual) (fun h => Ordnode.casesOn (motive := fun t => id nil.dual = t → Ordnode α) (id nil.dual) (fun h => Ordnode.singleton x) (fun rs rl rx rr h => Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => Ordnode.casesOn (motive := fun t => rl = t → Ordnode α) rl (fun h => node 2 nil x nil.dual) (fun size l rlx r h => node 3 (Ordnode.singleton x) rlx (Ordnode.singleton rx)) ⋯) (fun rrs l x_1 r h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => node 3 (Ordnode.singleton x) rx rr) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (rs + 1) (node (rls + 1) nil x rl) rx rr else node (rs + 1) (node (rll.size + 1) nil x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯) ⋯) (fun ls l x_1 r h => Ordnode.casesOn (motive := fun t => id nil.dual = t → Ordnode α) (id nil.dual) (fun h => node (ls + 1) (node rs rl rx rr).dual x nil) (fun rs_1 rl_1 rx_1 rr_1 h => if rs_1 > delta * ls then Ordnode.casesOn (motive := fun t => id rr_1 = t → Ordnode α) (id rr_1) (fun h => nil) (fun rrs l x_2 r h => Ordnode.casesOn (motive := fun t => id rl_1 = t → Ordnode α) (id rl_1) (fun h => nil) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (ls + rs_1 + 1) (node (ls + rls + 1) (node rs rl rx rr).dual x rl_1) rx_1 rr_1 else node (ls + rs_1 + 1) (node (ls + rll.size + 1) (node rs rl rx rr).dual x rll) rlx (node (rlr.size + rrs + 1) rlr rx_1 rr_1)) ⋯) ⋯ else node (ls + rs_1 + 1) (node rs rl rx rr).dual x nil.dual) ⋯) ⋯ case node.node α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ls : ℕ ll : Ordnode α lx : α lr : Ordnode α ⊢ (Ordnode.casesOn (motive := fun t => id (node rs rl rx rr) = t → Ordnode α) (id (node rs rl rx rr)) (fun h => Ordnode.casesOn (motive := fun t => id (node ls ll lx lr) = t → Ordnode α) (id (node ls ll lx lr)) (fun h => Ordnode.singleton x) (fun ls_1 ll_1 lx_1 lr_1 h => Ordnode.casesOn (motive := fun t => id ll_1 = t → Ordnode α) (id ll_1) (fun h => Ordnode.casesOn (motive := fun t => lr_1 = t → Ordnode α) lr_1 (fun h => node 2 (node ls ll lx lr) x nil) (fun size l lrx r h => node 3 (Ordnode.singleton lx_1) lrx (Ordnode.singleton x)) ⋯) (fun lls l x_1 r h => Ordnode.casesOn (motive := fun t => id lr_1 = t → Ordnode α) (id lr_1) (fun h => node 3 ll_1 lx_1 (Ordnode.singleton x)) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls_1 + 1) ll_1 lx_1 (node (lrs + 1) lr_1 x nil) else node (ls_1 + 1) (node (lls + lrl.size + 1) ll_1 lx_1 lrl) lrx (node (lrr.size + 1) lrr x nil)) ⋯) ⋯) ⋯) (fun rs_1 l x_1 r h => Ordnode.casesOn (motive := fun t => id (node ls ll lx lr) = t → Ordnode α) (id (node ls ll lx lr)) (fun h => node (rs_1 + 1) nil x (node rs rl rx rr)) (fun ls_1 ll_1 lx_1 lr_1 h => if ls_1 > delta * rs_1 then Ordnode.casesOn (motive := fun t => id ll_1 = t → Ordnode α) (id ll_1) (fun h => nil) (fun lls l x_2 r h => Ordnode.casesOn (motive := fun t => id lr_1 = t → Ordnode α) (id lr_1) (fun h => nil) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls_1 + rs_1 + 1) ll_1 lx_1 (node (rs_1 + lrs + 1) lr_1 x (node rs rl rx rr)) else node (ls_1 + rs_1 + 1) (node (lls + lrl.size + 1) ll_1 lx_1 lrl) lrx (node (lrr.size + rs_1 + 1) lrr x (node rs rl rx rr))) ⋯) ⋯ else node (ls_1 + rs_1 + 1) (node ls ll lx lr) x (node rs rl rx rr)) ⋯) ⋯).dual = Ordnode.casesOn (motive := fun t => id (node rs rl rx rr).dual = t → Ordnode α) (id (node rs rl rx rr).dual) (fun h => Ordnode.casesOn (motive := fun t => id (node ls ll lx lr).dual = t → Ordnode α) (id (node ls ll lx lr).dual) (fun h => Ordnode.singleton x) (fun rs rl rx rr h => Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => Ordnode.casesOn (motive := fun t => rl = t → Ordnode α) rl (fun h => node 2 nil x (node ls ll lx lr).dual) (fun size l rlx r h => node 3 (Ordnode.singleton x) rlx (Ordnode.singleton rx)) ⋯) (fun rrs l x_1 r h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => node 3 (Ordnode.singleton x) rx rr) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (rs + 1) (node (rls + 1) nil x rl) rx rr else node (rs + 1) (node (rll.size + 1) nil x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯) ⋯) (fun ls_1 l x_1 r h => Ordnode.casesOn (motive := fun t => id (node ls ll lx lr).dual = t → Ordnode α) (id (node ls ll lx lr).dual) (fun h => node (ls_1 + 1) (node rs rl rx rr).dual x nil) (fun rs_1 rl_1 rx_1 rr_1 h => if rs_1 > delta * ls_1 then Ordnode.casesOn (motive := fun t => id rr_1 = t → Ordnode α) (id rr_1) (fun h => nil) (fun rrs l x_2 r h => Ordnode.casesOn (motive := fun t => id rl_1 = t → Ordnode α) (id rl_1) (fun h => nil) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (ls_1 + rs_1 + 1) (node (ls_1 + rls + 1) (node rs rl rx rr).dual x rl_1) rx_1 rr_1 else node (ls_1 + rs_1 + 1) (node (ls_1 + rll.size + 1) (node rs rl rx rr).dual x rll) rlx (node (rlr.size + rrs + 1) rlr rx_1 rr_1)) ⋯) ⋯ else node (ls_1 + rs_1 + 1) (node rs rl rx rr).dual x (node ls ll lx lr).dual) ⋯) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.dual_balanceL
case node.node α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ls : ℕ ll : Ordnode α lx : α lr : Ordnode α ⊢ (Ordnode.casesOn (motive := fun t => id (node rs rl rx rr) = t → Ordnode α) (id (node rs rl rx rr)) (fun h => Ordnode.casesOn (motive := fun t => id (node ls ll lx lr) = t → Ordnode α) (id (node ls ll lx lr)) (fun h => Ordnode.singleton x) (fun ls_1 ll_1 lx_1 lr_1 h => Ordnode.casesOn (motive := fun t => id ll_1 = t → Ordnode α) (id ll_1) (fun h => Ordnode.casesOn (motive := fun t => lr_1 = t → Ordnode α) lr_1 (fun h => node 2 (node ls ll lx lr) x nil) (fun size l lrx r h => node 3 (Ordnode.singleton lx_1) lrx (Ordnode.singleton x)) ⋯) (fun lls l x_1 r h => Ordnode.casesOn (motive := fun t => id lr_1 = t → Ordnode α) (id lr_1) (fun h => node 3 ll_1 lx_1 (Ordnode.singleton x)) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls_1 + 1) ll_1 lx_1 (node (lrs + 1) lr_1 x nil) else node (ls_1 + 1) (node (lls + lrl.size + 1) ll_1 lx_1 lrl) lrx (node (lrr.size + 1) lrr x nil)) ⋯) ⋯) ⋯) (fun rs_1 l x_1 r h => Ordnode.casesOn (motive := fun t => id (node ls ll lx lr) = t → Ordnode α) (id (node ls ll lx lr)) (fun h => node (rs_1 + 1) nil x (node rs rl rx rr)) (fun ls_1 ll_1 lx_1 lr_1 h => if ls_1 > delta * rs_1 then Ordnode.casesOn (motive := fun t => id ll_1 = t → Ordnode α) (id ll_1) (fun h => nil) (fun lls l x_2 r h => Ordnode.casesOn (motive := fun t => id lr_1 = t → Ordnode α) (id lr_1) (fun h => nil) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls_1 + rs_1 + 1) ll_1 lx_1 (node (rs_1 + lrs + 1) lr_1 x (node rs rl rx rr)) else node (ls_1 + rs_1 + 1) (node (lls + lrl.size + 1) ll_1 lx_1 lrl) lrx (node (lrr.size + rs_1 + 1) lrr x (node rs rl rx rr))) ⋯) ⋯ else node (ls_1 + rs_1 + 1) (node ls ll lx lr) x (node rs rl rx rr)) ⋯) ⋯).dual = Ordnode.casesOn (motive := fun t => id (node rs rl rx rr).dual = t → Ordnode α) (id (node rs rl rx rr).dual) (fun h => Ordnode.casesOn (motive := fun t => id (node ls ll lx lr).dual = t → Ordnode α) (id (node ls ll lx lr).dual) (fun h => Ordnode.singleton x) (fun rs rl rx rr h => Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => Ordnode.casesOn (motive := fun t => rl = t → Ordnode α) rl (fun h => node 2 nil x (node ls ll lx lr).dual) (fun size l rlx r h => node 3 (Ordnode.singleton x) rlx (Ordnode.singleton rx)) ⋯) (fun rrs l x_1 r h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => node 3 (Ordnode.singleton x) rx rr) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (rs + 1) (node (rls + 1) nil x rl) rx rr else node (rs + 1) (node (rll.size + 1) nil x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯) ⋯) (fun ls_1 l x_1 r h => Ordnode.casesOn (motive := fun t => id (node ls ll lx lr).dual = t → Ordnode α) (id (node ls ll lx lr).dual) (fun h => node (ls_1 + 1) (node rs rl rx rr).dual x nil) (fun rs_1 rl_1 rx_1 rr_1 h => if rs_1 > delta * ls_1 then Ordnode.casesOn (motive := fun t => id rr_1 = t → Ordnode α) (id rr_1) (fun h => nil) (fun rrs l x_2 r h => Ordnode.casesOn (motive := fun t => id rl_1 = t → Ordnode α) (id rl_1) (fun h => nil) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (ls_1 + rs_1 + 1) (node (ls_1 + rls + 1) (node rs rl rx rr).dual x rl_1) rx_1 rr_1 else node (ls_1 + rs_1 + 1) (node (ls_1 + rll.size + 1) (node rs rl rx rr).dual x rll) rlx (node (rlr.size + rrs + 1) rlr rx_1 rr_1)) ⋯) ⋯ else node (ls_1 + rs_1 + 1) (node rs rl rx rr).dual x (node ls ll lx lr).dual) ⋯) ⋯
dsimp only [<a>Ordnode.dual</a>, <a>id</a>]
case node.node α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ls : ℕ ll : Ordnode α lx : α lr : Ordnode α ⊢ (if ls > delta * rs then rec (motive := fun t => ll = t → Ordnode α) (fun h => nil) (fun size l x_1 r l_ih r_ih h => rec (motive := fun t => lr = t → Ordnode α) (fun h => nil) (fun size_1 l x_2 r l_ih r_ih h => if size_1 < ratio * size then node (ls + rs + 1) ll lx (node (rs + size_1 + 1) lr x (node rs rl rx rr)) else node (ls + rs + 1) (node (size + l.size + 1) ll lx l) x_2 (node (r.size + rs + 1) r x (node rs rl rx rr))) lr ⋯) ll ⋯ else node (ls + rs + 1) (node ls ll lx lr) x (node rs rl rx rr)).dual = if ls > delta * rs then rec (motive := fun t => ll.dual = t → Ordnode α) (fun h => nil) (fun size l x_1 r l_ih r_ih h => rec (motive := fun t => lr.dual = t → Ordnode α) (fun h => nil) (fun size_1 l x_2 r l_ih r_ih h => if size_1 < ratio * size then node (rs + ls + 1) (node (rs + size_1 + 1) (node rs rr.dual rx rl.dual) x lr.dual) lx ll.dual else node (rs + ls + 1) (node (rs + l.size + 1) (node rs rr.dual rx rl.dual) x l) x_2 (node (r.size + size + 1) r lx ll.dual)) lr.dual ⋯) ll.dual ⋯ else node (rs + ls + 1) (node rs rr.dual rx rl.dual) x (node ls lr.dual lx ll.dual)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.dual_balanceL
case node.node α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ls : ℕ ll : Ordnode α lx : α lr : Ordnode α ⊢ (if ls > delta * rs then rec (motive := fun t => ll = t → Ordnode α) (fun h => nil) (fun size l x_1 r l_ih r_ih h => rec (motive := fun t => lr = t → Ordnode α) (fun h => nil) (fun size_1 l x_2 r l_ih r_ih h => if size_1 < ratio * size then node (ls + rs + 1) ll lx (node (rs + size_1 + 1) lr x (node rs rl rx rr)) else node (ls + rs + 1) (node (size + l.size + 1) ll lx l) x_2 (node (r.size + rs + 1) r x (node rs rl rx rr))) lr ⋯) ll ⋯ else node (ls + rs + 1) (node ls ll lx lr) x (node rs rl rx rr)).dual = if ls > delta * rs then rec (motive := fun t => ll.dual = t → Ordnode α) (fun h => nil) (fun size l x_1 r l_ih r_ih h => rec (motive := fun t => lr.dual = t → Ordnode α) (fun h => nil) (fun size_1 l x_2 r l_ih r_ih h => if size_1 < ratio * size then node (rs + ls + 1) (node (rs + size_1 + 1) (node rs rr.dual rx rl.dual) x lr.dual) lx ll.dual else node (rs + ls + 1) (node (rs + l.size + 1) (node rs rr.dual rx rl.dual) x l) x_2 (node (r.size + size + 1) r lx ll.dual)) lr.dual ⋯) ll.dual ⋯ else node (rs + ls + 1) (node rs rr.dual rx rl.dual) x (node ls lr.dual lx ll.dual)
split_ifs
case pos α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ls : ℕ ll : Ordnode α lx : α lr : Ordnode α h✝ : ls > delta * rs ⊢ (rec (motive := fun t => ll = t → Ordnode α) (fun h => nil) (fun size l x_1 r l_ih r_ih h => rec (motive := fun t => lr = t → Ordnode α) (fun h => nil) (fun size_1 l x_2 r l_ih r_ih h => if size_1 < ratio * size then node (ls + rs + 1) ll lx (node (rs + size_1 + 1) lr x (node rs rl rx rr)) else node (ls + rs + 1) (node (size + l.size + 1) ll lx l) x_2 (node (r.size + rs + 1) r x (node rs rl rx rr))) lr ⋯) ll ⋯).dual = rec (motive := fun t => ll.dual = t → Ordnode α) (fun h => nil) (fun size l x_1 r l_ih r_ih h => rec (motive := fun t => lr.dual = t → Ordnode α) (fun h => nil) (fun size_1 l x_2 r l_ih r_ih h => if size_1 < ratio * size then node (rs + ls + 1) (node (rs + size_1 + 1) (node rs rr.dual rx rl.dual) x lr.dual) lx ll.dual else node (rs + ls + 1) (node (rs + l.size + 1) (node rs rr.dual rx rl.dual) x l) x_2 (node (r.size + size + 1) r lx ll.dual)) lr.dual ⋯) ll.dual ⋯ case neg α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ls : ℕ ll : Ordnode α lx : α lr : Ordnode α h✝ : ¬ls > delta * rs ⊢ (node (ls + rs + 1) (node ls ll lx lr) x (node rs rl rx rr)).dual = node (rs + ls + 1) (node rs rr.dual rx rl.dual) x (node ls lr.dual lx ll.dual)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.dual_balanceL
case pos α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ls : ℕ ll : Ordnode α lx : α lr : Ordnode α h✝ : ls > delta * rs ⊢ (rec (motive := fun t => ll = t → Ordnode α) (fun h => nil) (fun size l x_1 r l_ih r_ih h => rec (motive := fun t => lr = t → Ordnode α) (fun h => nil) (fun size_1 l x_2 r l_ih r_ih h => if size_1 < ratio * size then node (ls + rs + 1) ll lx (node (rs + size_1 + 1) lr x (node rs rl rx rr)) else node (ls + rs + 1) (node (size + l.size + 1) ll lx l) x_2 (node (r.size + rs + 1) r x (node rs rl rx rr))) lr ⋯) ll ⋯).dual = rec (motive := fun t => ll.dual = t → Ordnode α) (fun h => nil) (fun size l x_1 r l_ih r_ih h => rec (motive := fun t => lr.dual = t → Ordnode α) (fun h => nil) (fun size_1 l x_2 r l_ih r_ih h => if size_1 < ratio * size then node (rs + ls + 1) (node (rs + size_1 + 1) (node rs rr.dual rx rl.dual) x lr.dual) lx ll.dual else node (rs + ls + 1) (node (rs + l.size + 1) (node rs rr.dual rx rl.dual) x l) x_2 (node (r.size + size + 1) r lx ll.dual)) lr.dual ⋯) ll.dual ⋯ case neg α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ls : ℕ ll : Ordnode α lx : α lr : Ordnode α h✝ : ¬ls > delta * rs ⊢ (node (ls + rs + 1) (node ls ll lx lr) x (node rs rl rx rr)).dual = node (rs + ls + 1) (node rs rr.dual rx rl.dual) x (node ls lr.dual lx ll.dual)
swap
case neg α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ls : ℕ ll : Ordnode α lx : α lr : Ordnode α h✝ : ¬ls > delta * rs ⊢ (node (ls + rs + 1) (node ls ll lx lr) x (node rs rl rx rr)).dual = node (rs + ls + 1) (node rs rr.dual rx rl.dual) x (node ls lr.dual lx ll.dual) case pos α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ls : ℕ ll : Ordnode α lx : α lr : Ordnode α h✝ : ls > delta * rs ⊢ (rec (motive := fun t => ll = t → Ordnode α) (fun h => nil) (fun size l x_1 r l_ih r_ih h => rec (motive := fun t => lr = t → Ordnode α) (fun h => nil) (fun size_1 l x_2 r l_ih r_ih h => if size_1 < ratio * size then node (ls + rs + 1) ll lx (node (rs + size_1 + 1) lr x (node rs rl rx rr)) else node (ls + rs + 1) (node (size + l.size + 1) ll lx l) x_2 (node (r.size + rs + 1) r x (node rs rl rx rr))) lr ⋯) ll ⋯).dual = rec (motive := fun t => ll.dual = t → Ordnode α) (fun h => nil) (fun size l x_1 r l_ih r_ih h => rec (motive := fun t => lr.dual = t → Ordnode α) (fun h => nil) (fun size_1 l x_2 r l_ih r_ih h => if size_1 < ratio * size then node (rs + ls + 1) (node (rs + size_1 + 1) (node rs rr.dual rx rl.dual) x lr.dual) lx ll.dual else node (rs + ls + 1) (node (rs + l.size + 1) (node rs rr.dual rx rl.dual) x l) x_2 (node (r.size + size + 1) r lx ll.dual)) lr.dual ⋯) ll.dual ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.dual_balanceL
case pos α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ls : ℕ ll : Ordnode α lx : α lr : Ordnode α h✝ : ls > delta * rs ⊢ (rec (motive := fun t => ll = t → Ordnode α) (fun h => nil) (fun size l x_1 r l_ih r_ih h => rec (motive := fun t => lr = t → Ordnode α) (fun h => nil) (fun size_1 l x_2 r l_ih r_ih h => if size_1 < ratio * size then node (ls + rs + 1) ll lx (node (rs + size_1 + 1) lr x (node rs rl rx rr)) else node (ls + rs + 1) (node (size + l.size + 1) ll lx l) x_2 (node (r.size + rs + 1) r x (node rs rl rx rr))) lr ⋯) ll ⋯).dual = rec (motive := fun t => ll.dual = t → Ordnode α) (fun h => nil) (fun size l x_1 r l_ih r_ih h => rec (motive := fun t => lr.dual = t → Ordnode α) (fun h => nil) (fun size_1 l x_2 r l_ih r_ih h => if size_1 < ratio * size then node (rs + ls + 1) (node (rs + size_1 + 1) (node rs rr.dual rx rl.dual) x lr.dual) lx ll.dual else node (rs + ls + 1) (node (rs + l.size + 1) (node rs rr.dual rx rl.dual) x l) x_2 (node (r.size + size + 1) r lx ll.dual)) lr.dual ⋯) ll.dual ⋯
cases' ll with lls lll llx llr <;> cases' lr with lrs lrl lrx lrr <;> try rfl
case pos.node.node α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ls : ℕ lx : α h✝ : ls > delta * rs lls : ℕ lll : Ordnode α llx : α llr : Ordnode α lrs : ℕ lrl : Ordnode α lrx : α lrr : Ordnode α ⊢ (rec (motive := fun t => node lls lll llx llr = t → Ordnode α) (fun h => nil) (fun size l x_1 r l_ih r_ih h => rec (motive := fun t => node lrs lrl lrx lrr = t → Ordnode α) (fun h => nil) (fun size_1 l x_2 r l_ih r_ih h => if size_1 < ratio * size then node (ls + rs + 1) (node lls lll llx llr) lx (node (rs + size_1 + 1) (node lrs lrl lrx lrr) x (node rs rl rx rr)) else node (ls + rs + 1) (node (size + l.size + 1) (node lls lll llx llr) lx l) x_2 (node (r.size + rs + 1) r x (node rs rl rx rr))) (node lrs lrl lrx lrr) ⋯) (node lls lll llx llr) ⋯).dual = rec (motive := fun t => (node lls lll llx llr).dual = t → Ordnode α) (fun h => nil) (fun size l x_1 r l_ih r_ih h => rec (motive := fun t => (node lrs lrl lrx lrr).dual = t → Ordnode α) (fun h => nil) (fun size_1 l x_2 r l_ih r_ih h => if size_1 < ratio * size then node (rs + ls + 1) (node (rs + size_1 + 1) (node rs rr.dual rx rl.dual) x (node lrs lrl lrx lrr).dual) lx (node lls lll llx llr).dual else node (rs + ls + 1) (node (rs + l.size + 1) (node rs rr.dual rx rl.dual) x l) x_2 (node (r.size + size + 1) r lx (node lls lll llx llr).dual)) (node lrs lrl lrx lrr).dual ⋯) (node lls lll llx llr).dual ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.dual_balanceL
case pos.node.node α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ls : ℕ lx : α h✝ : ls > delta * rs lls : ℕ lll : Ordnode α llx : α llr : Ordnode α lrs : ℕ lrl : Ordnode α lrx : α lrr : Ordnode α ⊢ (rec (motive := fun t => node lls lll llx llr = t → Ordnode α) (fun h => nil) (fun size l x_1 r l_ih r_ih h => rec (motive := fun t => node lrs lrl lrx lrr = t → Ordnode α) (fun h => nil) (fun size_1 l x_2 r l_ih r_ih h => if size_1 < ratio * size then node (ls + rs + 1) (node lls lll llx llr) lx (node (rs + size_1 + 1) (node lrs lrl lrx lrr) x (node rs rl rx rr)) else node (ls + rs + 1) (node (size + l.size + 1) (node lls lll llx llr) lx l) x_2 (node (r.size + rs + 1) r x (node rs rl rx rr))) (node lrs lrl lrx lrr) ⋯) (node lls lll llx llr) ⋯).dual = rec (motive := fun t => (node lls lll llx llr).dual = t → Ordnode α) (fun h => nil) (fun size l x_1 r l_ih r_ih h => rec (motive := fun t => (node lrs lrl lrx lrr).dual = t → Ordnode α) (fun h => nil) (fun size_1 l x_2 r l_ih r_ih h => if size_1 < ratio * size then node (rs + ls + 1) (node (rs + size_1 + 1) (node rs rr.dual rx rl.dual) x (node lrs lrl lrx lrr).dual) lx (node lls lll llx llr).dual else node (rs + ls + 1) (node (rs + l.size + 1) (node rs rr.dual rx rl.dual) x l) x_2 (node (r.size + size + 1) r lx (node lls lll llx llr).dual)) (node lrs lrl lrx lrr).dual ⋯) (node lls lll llx llr).dual ⋯
dsimp only [<a>Ordnode.dual</a>, <a>id</a>]
case pos.node.node α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ls : ℕ lx : α h✝ : ls > delta * rs lls : ℕ lll : Ordnode α llx : α llr : Ordnode α lrs : ℕ lrl : Ordnode α lrx : α lrr : Ordnode α ⊢ (if lrs < ratio * lls then node (ls + rs + 1) (node lls lll llx llr) lx (node (rs + lrs + 1) (node lrs lrl lrx lrr) x (node rs rl rx rr)) else node (ls + rs + 1) (node (lls + lrl.size + 1) (node lls lll llx llr) lx lrl) lrx (node (lrr.size + rs + 1) lrr x (node rs rl rx rr))).dual = if lrs < ratio * lls then node (rs + ls + 1) (node (rs + lrs + 1) (node rs rr.dual rx rl.dual) x (node lrs lrr.dual lrx lrl.dual)) lx (node lls llr.dual llx lll.dual) else node (rs + ls + 1) (node (rs + lrr.dual.size + 1) (node rs rr.dual rx rl.dual) x lrr.dual) lrx (node (lrl.dual.size + lls + 1) lrl.dual lx (node lls llr.dual llx lll.dual))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.dual_balanceL
case pos.node.node α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ls : ℕ lx : α h✝ : ls > delta * rs lls : ℕ lll : Ordnode α llx : α llr : Ordnode α lrs : ℕ lrl : Ordnode α lrx : α lrr : Ordnode α ⊢ (if lrs < ratio * lls then node (ls + rs + 1) (node lls lll llx llr) lx (node (rs + lrs + 1) (node lrs lrl lrx lrr) x (node rs rl rx rr)) else node (ls + rs + 1) (node (lls + lrl.size + 1) (node lls lll llx llr) lx lrl) lrx (node (lrr.size + rs + 1) lrr x (node rs rl rx rr))).dual = if lrs < ratio * lls then node (rs + ls + 1) (node (rs + lrs + 1) (node rs rr.dual rx rl.dual) x (node lrs lrr.dual lrx lrl.dual)) lx (node lls llr.dual llx lll.dual) else node (rs + ls + 1) (node (rs + lrr.dual.size + 1) (node rs rr.dual rx rl.dual) x lrr.dual) lrx (node (lrl.dual.size + lls + 1) lrl.dual lx (node lls llr.dual llx lll.dual))
split_ifs with h <;> simp [h, <a>add_comm</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.dual_balanceL
case node.nil α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ⊢ (Ordnode.casesOn (motive := fun t => id (node rs rl rx rr) = t → Ordnode α) (id (node rs rl rx rr)) (fun h => Ordnode.casesOn (motive := fun t => id nil = t → Ordnode α) (id nil) (fun h => Ordnode.singleton x) (fun ls ll lx lr h => Ordnode.casesOn (motive := fun t => id ll = t → Ordnode α) (id ll) (fun h => Ordnode.casesOn (motive := fun t => lr = t → Ordnode α) lr (fun h => node 2 nil x nil) (fun size l lrx r h => node 3 (Ordnode.singleton lx) lrx (Ordnode.singleton x)) ⋯) (fun lls l x_1 r h => Ordnode.casesOn (motive := fun t => id lr = t → Ordnode α) (id lr) (fun h => node 3 ll lx (Ordnode.singleton x)) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls + 1) ll lx (node (lrs + 1) lr x nil) else node (ls + 1) (node (lls + lrl.size + 1) ll lx lrl) lrx (node (lrr.size + 1) lrr x nil)) ⋯) ⋯) ⋯) (fun rs_1 l x_1 r h => Ordnode.casesOn (motive := fun t => id nil = t → Ordnode α) (id nil) (fun h => node (rs_1 + 1) nil x (node rs rl rx rr)) (fun ls ll lx lr h => if ls > delta * rs_1 then Ordnode.casesOn (motive := fun t => id ll = t → Ordnode α) (id ll) (fun h => nil) (fun lls l x_2 r h => Ordnode.casesOn (motive := fun t => id lr = t → Ordnode α) (id lr) (fun h => nil) (fun lrs lrl lrx lrr h => if lrs < ratio * lls then node (ls + rs_1 + 1) ll lx (node (rs_1 + lrs + 1) lr x (node rs rl rx rr)) else node (ls + rs_1 + 1) (node (lls + lrl.size + 1) ll lx lrl) lrx (node (lrr.size + rs_1 + 1) lrr x (node rs rl rx rr))) ⋯) ⋯ else node (ls + rs_1 + 1) nil x (node rs rl rx rr)) ⋯) ⋯).dual = Ordnode.casesOn (motive := fun t => id (node rs rl rx rr).dual = t → Ordnode α) (id (node rs rl rx rr).dual) (fun h => Ordnode.casesOn (motive := fun t => id nil.dual = t → Ordnode α) (id nil.dual) (fun h => Ordnode.singleton x) (fun rs rl rx rr h => Ordnode.casesOn (motive := fun t => id rr = t → Ordnode α) (id rr) (fun h => Ordnode.casesOn (motive := fun t => rl = t → Ordnode α) rl (fun h => node 2 nil x nil.dual) (fun size l rlx r h => node 3 (Ordnode.singleton x) rlx (Ordnode.singleton rx)) ⋯) (fun rrs l x_1 r h => Ordnode.casesOn (motive := fun t => id rl = t → Ordnode α) (id rl) (fun h => node 3 (Ordnode.singleton x) rx rr) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (rs + 1) (node (rls + 1) nil x rl) rx rr else node (rs + 1) (node (rll.size + 1) nil x rll) rlx (node (rlr.size + rrs + 1) rlr rx rr)) ⋯) ⋯) ⋯) (fun ls l x_1 r h => Ordnode.casesOn (motive := fun t => id nil.dual = t → Ordnode α) (id nil.dual) (fun h => node (ls + 1) (node rs rl rx rr).dual x nil) (fun rs_1 rl_1 rx_1 rr_1 h => if rs_1 > delta * ls then Ordnode.casesOn (motive := fun t => id rr_1 = t → Ordnode α) (id rr_1) (fun h => nil) (fun rrs l x_2 r h => Ordnode.casesOn (motive := fun t => id rl_1 = t → Ordnode α) (id rl_1) (fun h => nil) (fun rls rll rlx rlr h => if rls < ratio * rrs then node (ls + rs_1 + 1) (node (ls + rls + 1) (node rs rl rx rr).dual x rl_1) rx_1 rr_1 else node (ls + rs_1 + 1) (node (ls + rll.size + 1) (node rs rl rx rr).dual x rll) rlx (node (rlr.size + rrs + 1) rlr rx_1 rr_1)) ⋯) ⋯ else node (ls + rs_1 + 1) (node rs rl rx rr).dual x nil.dual) ⋯) ⋯
rfl
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.dual_balanceL
case neg α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ls : ℕ ll : Ordnode α lx : α lr : Ordnode α h✝ : ¬ls > delta * rs ⊢ (node (ls + rs + 1) (node ls ll lx lr) x (node rs rl rx rr)).dual = node (rs + ls + 1) (node rs rr.dual rx rl.dual) x (node ls lr.dual lx ll.dual)
simp [<a>add_comm</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Ordmap/Ordset.lean
Ordnode.dual_balanceL
case pos.node.nil α : Type u_1 x : α rs : ℕ rl : Ordnode α rx : α rr : Ordnode α ls : ℕ lx : α h✝ : ls > delta * rs lls : ℕ lll : Ordnode α llx : α llr : Ordnode α ⊢ (rec (motive := fun t => node lls lll llx llr = t → Ordnode α) (fun h => nil) (fun size l x_1 r l_ih r_ih h => rec (motive := fun t => nil = t → Ordnode α) (fun h => nil) (fun size_1 l x_2 r l_ih r_ih h => if size_1 < ratio * size then node (ls + rs + 1) (node lls lll llx llr) lx (node (rs + size_1 + 1) nil x (node rs rl rx rr)) else node (ls + rs + 1) (node (size + l.size + 1) (node lls lll llx llr) lx l) x_2 (node (r.size + rs + 1) r x (node rs rl rx rr))) nil ⋯) (node lls lll llx llr) ⋯).dual = rec (motive := fun t => (node lls lll llx llr).dual = t → Ordnode α) (fun h => nil) (fun size l x_1 r l_ih r_ih h => rec (motive := fun t => nil.dual = t → Ordnode α) (fun h => nil) (fun size_1 l x_2 r l_ih r_ih h => if size_1 < ratio * size then node (rs + ls + 1) (node (rs + size_1 + 1) (node rs rr.dual rx rl.dual) x nil.dual) lx (node lls lll llx llr).dual else node (rs + ls + 1) (node (rs + l.size + 1) (node rs rr.dual rx rl.dual) x l) x_2 (node (r.size + size + 1) r lx (node lls lll llx llr).dual)) nil.dual ⋯) (node lls lll llx llr).dual ⋯
rfl
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Ordmap/Ordset.lean
pow_sub₀
α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a✝ b c d : G₀ m n : ℕ a : G₀ ha : a ≠ 0 h : n ≤ m ⊢ a ^ (m - n) = a ^ m * (a ^ n)⁻¹
have h1 : m - n + n = m := <a>Nat.sub_add_cancel</a> h
α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a✝ b c d : G₀ m n : ℕ a : G₀ ha : a ≠ 0 h : n ≤ m h1 : m - n + n = m ⊢ a ^ (m - n) = a ^ m * (a ^ n)⁻¹
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/GroupWithZero/Units/Basic.lean
pow_sub₀
α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a✝ b c d : G₀ m n : ℕ a : G₀ ha : a ≠ 0 h : n ≤ m h1 : m - n + n = m ⊢ a ^ (m - n) = a ^ m * (a ^ n)⁻¹
have h2 : a ^ (m - n) * a ^ n = a ^ m := by rw [← <a>pow_add</a>, h1]
α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a✝ b c d : G₀ m n : ℕ a : G₀ ha : a ≠ 0 h : n ≤ m h1 : m - n + n = m h2 : a ^ (m - n) * a ^ n = a ^ m ⊢ a ^ (m - n) = a ^ m * (a ^ n)⁻¹
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/GroupWithZero/Units/Basic.lean
pow_sub₀
α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a✝ b c d : G₀ m n : ℕ a : G₀ ha : a ≠ 0 h : n ≤ m h1 : m - n + n = m h2 : a ^ (m - n) * a ^ n = a ^ m ⊢ a ^ (m - n) = a ^ m * (a ^ n)⁻¹
simpa only [<a>div_eq_mul_inv</a>] using <a>eq_div_of_mul_eq</a> (<a>pow_ne_zero</a> _ ha) h2
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/GroupWithZero/Units/Basic.lean
pow_sub₀
α : Type u_1 M₀ : Type u_2 G₀ : Type u_3 M₀' : Type u_4 G₀' : Type u_5 F : Type u_6 F' : Type u_7 inst✝¹ : MonoidWithZero M₀ inst✝ : GroupWithZero G₀ a✝ b c d : G₀ m n : ℕ a : G₀ ha : a ≠ 0 h : n ≤ m h1 : m - n + n = m ⊢ a ^ (m - n) * a ^ n = a ^ m
rw [← <a>pow_add</a>, h1]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/GroupWithZero/Units/Basic.lean
contMDiffOn_iff_source_of_mem_maximalAtlas
𝕜 : Type u_1 inst✝³⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³⁶ : NormedAddCommGroup E inst✝³⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝³⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³³ : TopologicalSpace M inst✝³² : ChartedSpace H M inst✝³¹ : SmoothManifoldWithCorners I M E' : Type u_5 inst✝³⁰ : NormedAddCommGroup E' inst✝²⁹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝²⁸ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝²⁷ : TopologicalSpace M' inst✝²⁶ : ChartedSpace H' M' inst✝²⁵ : SmoothManifoldWithCorners I' M' E'' : Type u_8 inst✝²⁴ : NormedAddCommGroup E'' inst✝²³ : NormedSpace 𝕜 E'' H'' : Type u_9 inst✝²² : TopologicalSpace H'' I'' : ModelWithCorners 𝕜 E'' H'' M'' : Type u_10 inst✝²¹ : TopologicalSpace M'' inst✝²⁰ : ChartedSpace H'' M'' F : Type u_11 inst✝¹⁹ : NormedAddCommGroup F inst✝¹⁸ : NormedSpace 𝕜 F G : Type u_12 inst✝¹⁷ : TopologicalSpace G J : ModelWithCorners 𝕜 F G N : Type u_13 inst✝¹⁶ : TopologicalSpace N inst✝¹⁵ : ChartedSpace G N inst✝¹⁴ : SmoothManifoldWithCorners J N F' : Type u_14 inst✝¹³ : NormedAddCommGroup F' inst✝¹² : NormedSpace 𝕜 F' G' : Type u_15 inst✝¹¹ : TopologicalSpace G' J' : ModelWithCorners 𝕜 F' G' N' : Type u_16 inst✝¹⁰ : TopologicalSpace N' inst✝⁹ : ChartedSpace G' N' inst✝⁸ : SmoothManifoldWithCorners J' N' F₁ : Type u_17 inst✝⁷ : NormedAddCommGroup F₁ inst✝⁶ : NormedSpace 𝕜 F₁ F₂ : Type u_18 inst✝⁵ : NormedAddCommGroup F₂ inst✝⁴ : NormedSpace 𝕜 F₂ F₃ : Type u_19 inst✝³ : NormedAddCommGroup F₃ inst✝² : NormedSpace 𝕜 F₃ F₄ : Type u_20 inst✝¹ : NormedAddCommGroup F₄ inst✝ : NormedSpace 𝕜 F₄ e : PartialHomeomorph M H e' : PartialHomeomorph M' H' f f₁ : M → M' s s₁ t : Set M x : M m n : ℕ∞ he : e ∈ maximalAtlas I M hs : s ⊆ e.source ⊢ ContMDiffOn I I' n f s ↔ ContMDiffOn 𝓘(𝕜, E) I' n (f ∘ ↑(e.extend I).symm) (↑(e.extend I) '' s)
simp_rw [<a>ContMDiffOn</a>, <a>Set.forall_mem_image</a>]
𝕜 : Type u_1 inst✝³⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³⁶ : NormedAddCommGroup E inst✝³⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝³⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³³ : TopologicalSpace M inst✝³² : ChartedSpace H M inst✝³¹ : SmoothManifoldWithCorners I M E' : Type u_5 inst✝³⁰ : NormedAddCommGroup E' inst✝²⁹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝²⁸ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝²⁷ : TopologicalSpace M' inst✝²⁶ : ChartedSpace H' M' inst✝²⁵ : SmoothManifoldWithCorners I' M' E'' : Type u_8 inst✝²⁴ : NormedAddCommGroup E'' inst✝²³ : NormedSpace 𝕜 E'' H'' : Type u_9 inst✝²² : TopologicalSpace H'' I'' : ModelWithCorners 𝕜 E'' H'' M'' : Type u_10 inst✝²¹ : TopologicalSpace M'' inst✝²⁰ : ChartedSpace H'' M'' F : Type u_11 inst✝¹⁹ : NormedAddCommGroup F inst✝¹⁸ : NormedSpace 𝕜 F G : Type u_12 inst✝¹⁷ : TopologicalSpace G J : ModelWithCorners 𝕜 F G N : Type u_13 inst✝¹⁶ : TopologicalSpace N inst✝¹⁵ : ChartedSpace G N inst✝¹⁴ : SmoothManifoldWithCorners J N F' : Type u_14 inst✝¹³ : NormedAddCommGroup F' inst✝¹² : NormedSpace 𝕜 F' G' : Type u_15 inst✝¹¹ : TopologicalSpace G' J' : ModelWithCorners 𝕜 F' G' N' : Type u_16 inst✝¹⁰ : TopologicalSpace N' inst✝⁹ : ChartedSpace G' N' inst✝⁸ : SmoothManifoldWithCorners J' N' F₁ : Type u_17 inst✝⁷ : NormedAddCommGroup F₁ inst✝⁶ : NormedSpace 𝕜 F₁ F₂ : Type u_18 inst✝⁵ : NormedAddCommGroup F₂ inst✝⁴ : NormedSpace 𝕜 F₂ F₃ : Type u_19 inst✝³ : NormedAddCommGroup F₃ inst✝² : NormedSpace 𝕜 F₃ F₄ : Type u_20 inst✝¹ : NormedAddCommGroup F₄ inst✝ : NormedSpace 𝕜 F₄ e : PartialHomeomorph M H e' : PartialHomeomorph M' H' f f₁ : M → M' s s₁ t : Set M x : M m n : ℕ∞ he : e ∈ maximalAtlas I M hs : s ⊆ e.source ⊢ (∀ x ∈ s, ContMDiffWithinAt I I' n f s x) ↔ ∀ ⦃x : M⦄, x ∈ s → ContMDiffWithinAt 𝓘(𝕜, E) I' n (f ∘ ↑(e.extend I).symm) (↑(e.extend I) '' s) (↑(e.extend I) x)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Geometry/Manifold/ContMDiff/Defs.lean
contMDiffOn_iff_source_of_mem_maximalAtlas
𝕜 : Type u_1 inst✝³⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³⁶ : NormedAddCommGroup E inst✝³⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝³⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³³ : TopologicalSpace M inst✝³² : ChartedSpace H M inst✝³¹ : SmoothManifoldWithCorners I M E' : Type u_5 inst✝³⁰ : NormedAddCommGroup E' inst✝²⁹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝²⁸ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝²⁷ : TopologicalSpace M' inst✝²⁶ : ChartedSpace H' M' inst✝²⁵ : SmoothManifoldWithCorners I' M' E'' : Type u_8 inst✝²⁴ : NormedAddCommGroup E'' inst✝²³ : NormedSpace 𝕜 E'' H'' : Type u_9 inst✝²² : TopologicalSpace H'' I'' : ModelWithCorners 𝕜 E'' H'' M'' : Type u_10 inst✝²¹ : TopologicalSpace M'' inst✝²⁰ : ChartedSpace H'' M'' F : Type u_11 inst✝¹⁹ : NormedAddCommGroup F inst✝¹⁸ : NormedSpace 𝕜 F G : Type u_12 inst✝¹⁷ : TopologicalSpace G J : ModelWithCorners 𝕜 F G N : Type u_13 inst✝¹⁶ : TopologicalSpace N inst✝¹⁵ : ChartedSpace G N inst✝¹⁴ : SmoothManifoldWithCorners J N F' : Type u_14 inst✝¹³ : NormedAddCommGroup F' inst✝¹² : NormedSpace 𝕜 F' G' : Type u_15 inst✝¹¹ : TopologicalSpace G' J' : ModelWithCorners 𝕜 F' G' N' : Type u_16 inst✝¹⁰ : TopologicalSpace N' inst✝⁹ : ChartedSpace G' N' inst✝⁸ : SmoothManifoldWithCorners J' N' F₁ : Type u_17 inst✝⁷ : NormedAddCommGroup F₁ inst✝⁶ : NormedSpace 𝕜 F₁ F₂ : Type u_18 inst✝⁵ : NormedAddCommGroup F₂ inst✝⁴ : NormedSpace 𝕜 F₂ F₃ : Type u_19 inst✝³ : NormedAddCommGroup F₃ inst✝² : NormedSpace 𝕜 F₃ F₄ : Type u_20 inst✝¹ : NormedAddCommGroup F₄ inst✝ : NormedSpace 𝕜 F₄ e : PartialHomeomorph M H e' : PartialHomeomorph M' H' f f₁ : M → M' s s₁ t : Set M x : M m n : ℕ∞ he : e ∈ maximalAtlas I M hs : s ⊆ e.source ⊢ (∀ x ∈ s, ContMDiffWithinAt I I' n f s x) ↔ ∀ ⦃x : M⦄, x ∈ s → ContMDiffWithinAt 𝓘(𝕜, E) I' n (f ∘ ↑(e.extend I).symm) (↑(e.extend I) '' s) (↑(e.extend I) x)
refine <a>forall₂_congr</a> fun x hx => ?_
𝕜 : Type u_1 inst✝³⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³⁶ : NormedAddCommGroup E inst✝³⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝³⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³³ : TopologicalSpace M inst✝³² : ChartedSpace H M inst✝³¹ : SmoothManifoldWithCorners I M E' : Type u_5 inst✝³⁰ : NormedAddCommGroup E' inst✝²⁹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝²⁸ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝²⁷ : TopologicalSpace M' inst✝²⁶ : ChartedSpace H' M' inst✝²⁵ : SmoothManifoldWithCorners I' M' E'' : Type u_8 inst✝²⁴ : NormedAddCommGroup E'' inst✝²³ : NormedSpace 𝕜 E'' H'' : Type u_9 inst✝²² : TopologicalSpace H'' I'' : ModelWithCorners 𝕜 E'' H'' M'' : Type u_10 inst✝²¹ : TopologicalSpace M'' inst✝²⁰ : ChartedSpace H'' M'' F : Type u_11 inst✝¹⁹ : NormedAddCommGroup F inst✝¹⁸ : NormedSpace 𝕜 F G : Type u_12 inst✝¹⁷ : TopologicalSpace G J : ModelWithCorners 𝕜 F G N : Type u_13 inst✝¹⁶ : TopologicalSpace N inst✝¹⁵ : ChartedSpace G N inst✝¹⁴ : SmoothManifoldWithCorners J N F' : Type u_14 inst✝¹³ : NormedAddCommGroup F' inst✝¹² : NormedSpace 𝕜 F' G' : Type u_15 inst✝¹¹ : TopologicalSpace G' J' : ModelWithCorners 𝕜 F' G' N' : Type u_16 inst✝¹⁰ : TopologicalSpace N' inst✝⁹ : ChartedSpace G' N' inst✝⁸ : SmoothManifoldWithCorners J' N' F₁ : Type u_17 inst✝⁷ : NormedAddCommGroup F₁ inst✝⁶ : NormedSpace 𝕜 F₁ F₂ : Type u_18 inst✝⁵ : NormedAddCommGroup F₂ inst✝⁴ : NormedSpace 𝕜 F₂ F₃ : Type u_19 inst✝³ : NormedAddCommGroup F₃ inst✝² : NormedSpace 𝕜 F₃ F₄ : Type u_20 inst✝¹ : NormedAddCommGroup F₄ inst✝ : NormedSpace 𝕜 F₄ e : PartialHomeomorph M H e' : PartialHomeomorph M' H' f f₁ : M → M' s s₁ t : Set M x✝ : M m n : ℕ∞ he : e ∈ maximalAtlas I M hs : s ⊆ e.source x : M hx : x ∈ s ⊢ ContMDiffWithinAt I I' n f s x ↔ ContMDiffWithinAt 𝓘(𝕜, E) I' n (f ∘ ↑(e.extend I).symm) (↑(e.extend I) '' s) (↑(e.extend I) x)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Geometry/Manifold/ContMDiff/Defs.lean
contMDiffOn_iff_source_of_mem_maximalAtlas
𝕜 : Type u_1 inst✝³⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³⁶ : NormedAddCommGroup E inst✝³⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝³⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³³ : TopologicalSpace M inst✝³² : ChartedSpace H M inst✝³¹ : SmoothManifoldWithCorners I M E' : Type u_5 inst✝³⁰ : NormedAddCommGroup E' inst✝²⁹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝²⁸ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝²⁷ : TopologicalSpace M' inst✝²⁶ : ChartedSpace H' M' inst✝²⁵ : SmoothManifoldWithCorners I' M' E'' : Type u_8 inst✝²⁴ : NormedAddCommGroup E'' inst✝²³ : NormedSpace 𝕜 E'' H'' : Type u_9 inst✝²² : TopologicalSpace H'' I'' : ModelWithCorners 𝕜 E'' H'' M'' : Type u_10 inst✝²¹ : TopologicalSpace M'' inst✝²⁰ : ChartedSpace H'' M'' F : Type u_11 inst✝¹⁹ : NormedAddCommGroup F inst✝¹⁸ : NormedSpace 𝕜 F G : Type u_12 inst✝¹⁷ : TopologicalSpace G J : ModelWithCorners 𝕜 F G N : Type u_13 inst✝¹⁶ : TopologicalSpace N inst✝¹⁵ : ChartedSpace G N inst✝¹⁴ : SmoothManifoldWithCorners J N F' : Type u_14 inst✝¹³ : NormedAddCommGroup F' inst✝¹² : NormedSpace 𝕜 F' G' : Type u_15 inst✝¹¹ : TopologicalSpace G' J' : ModelWithCorners 𝕜 F' G' N' : Type u_16 inst✝¹⁰ : TopologicalSpace N' inst✝⁹ : ChartedSpace G' N' inst✝⁸ : SmoothManifoldWithCorners J' N' F₁ : Type u_17 inst✝⁷ : NormedAddCommGroup F₁ inst✝⁶ : NormedSpace 𝕜 F₁ F₂ : Type u_18 inst✝⁵ : NormedAddCommGroup F₂ inst✝⁴ : NormedSpace 𝕜 F₂ F₃ : Type u_19 inst✝³ : NormedAddCommGroup F₃ inst✝² : NormedSpace 𝕜 F₃ F₄ : Type u_20 inst✝¹ : NormedAddCommGroup F₄ inst✝ : NormedSpace 𝕜 F₄ e : PartialHomeomorph M H e' : PartialHomeomorph M' H' f f₁ : M → M' s s₁ t : Set M x✝ : M m n : ℕ∞ he : e ∈ maximalAtlas I M hs : s ⊆ e.source x : M hx : x ∈ s ⊢ ContMDiffWithinAt I I' n f s x ↔ ContMDiffWithinAt 𝓘(𝕜, E) I' n (f ∘ ↑(e.extend I).symm) (↑(e.extend I) '' s) (↑(e.extend I) x)
rw [<a>contMDiffWithinAt_iff_source_of_mem_maximalAtlas</a> he (hs hx)]
𝕜 : Type u_1 inst✝³⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³⁶ : NormedAddCommGroup E inst✝³⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝³⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³³ : TopologicalSpace M inst✝³² : ChartedSpace H M inst✝³¹ : SmoothManifoldWithCorners I M E' : Type u_5 inst✝³⁰ : NormedAddCommGroup E' inst✝²⁹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝²⁸ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝²⁷ : TopologicalSpace M' inst✝²⁶ : ChartedSpace H' M' inst✝²⁵ : SmoothManifoldWithCorners I' M' E'' : Type u_8 inst✝²⁴ : NormedAddCommGroup E'' inst✝²³ : NormedSpace 𝕜 E'' H'' : Type u_9 inst✝²² : TopologicalSpace H'' I'' : ModelWithCorners 𝕜 E'' H'' M'' : Type u_10 inst✝²¹ : TopologicalSpace M'' inst✝²⁰ : ChartedSpace H'' M'' F : Type u_11 inst✝¹⁹ : NormedAddCommGroup F inst✝¹⁸ : NormedSpace 𝕜 F G : Type u_12 inst✝¹⁷ : TopologicalSpace G J : ModelWithCorners 𝕜 F G N : Type u_13 inst✝¹⁶ : TopologicalSpace N inst✝¹⁵ : ChartedSpace G N inst✝¹⁴ : SmoothManifoldWithCorners J N F' : Type u_14 inst✝¹³ : NormedAddCommGroup F' inst✝¹² : NormedSpace 𝕜 F' G' : Type u_15 inst✝¹¹ : TopologicalSpace G' J' : ModelWithCorners 𝕜 F' G' N' : Type u_16 inst✝¹⁰ : TopologicalSpace N' inst✝⁹ : ChartedSpace G' N' inst✝⁸ : SmoothManifoldWithCorners J' N' F₁ : Type u_17 inst✝⁷ : NormedAddCommGroup F₁ inst✝⁶ : NormedSpace 𝕜 F₁ F₂ : Type u_18 inst✝⁵ : NormedAddCommGroup F₂ inst✝⁴ : NormedSpace 𝕜 F₂ F₃ : Type u_19 inst✝³ : NormedAddCommGroup F₃ inst✝² : NormedSpace 𝕜 F₃ F₄ : Type u_20 inst✝¹ : NormedAddCommGroup F₄ inst✝ : NormedSpace 𝕜 F₄ e : PartialHomeomorph M H e' : PartialHomeomorph M' H' f f₁ : M → M' s s₁ t : Set M x✝ : M m n : ℕ∞ he : e ∈ maximalAtlas I M hs : s ⊆ e.source x : M hx : x ∈ s ⊢ ContMDiffWithinAt 𝓘(𝕜, E) I' n (f ∘ ↑(e.extend I).symm) (↑(e.extend I).symm ⁻¹' s ∩ range ↑I) (↑(e.extend I) x) ↔ ContMDiffWithinAt 𝓘(𝕜, E) I' n (f ∘ ↑(e.extend I).symm) (↑(e.extend I) '' s) (↑(e.extend I) x)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Geometry/Manifold/ContMDiff/Defs.lean
contMDiffOn_iff_source_of_mem_maximalAtlas
𝕜 : Type u_1 inst✝³⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³⁶ : NormedAddCommGroup E inst✝³⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝³⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³³ : TopologicalSpace M inst✝³² : ChartedSpace H M inst✝³¹ : SmoothManifoldWithCorners I M E' : Type u_5 inst✝³⁰ : NormedAddCommGroup E' inst✝²⁹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝²⁸ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝²⁷ : TopologicalSpace M' inst✝²⁶ : ChartedSpace H' M' inst✝²⁵ : SmoothManifoldWithCorners I' M' E'' : Type u_8 inst✝²⁴ : NormedAddCommGroup E'' inst✝²³ : NormedSpace 𝕜 E'' H'' : Type u_9 inst✝²² : TopologicalSpace H'' I'' : ModelWithCorners 𝕜 E'' H'' M'' : Type u_10 inst✝²¹ : TopologicalSpace M'' inst✝²⁰ : ChartedSpace H'' M'' F : Type u_11 inst✝¹⁹ : NormedAddCommGroup F inst✝¹⁸ : NormedSpace 𝕜 F G : Type u_12 inst✝¹⁷ : TopologicalSpace G J : ModelWithCorners 𝕜 F G N : Type u_13 inst✝¹⁶ : TopologicalSpace N inst✝¹⁵ : ChartedSpace G N inst✝¹⁴ : SmoothManifoldWithCorners J N F' : Type u_14 inst✝¹³ : NormedAddCommGroup F' inst✝¹² : NormedSpace 𝕜 F' G' : Type u_15 inst✝¹¹ : TopologicalSpace G' J' : ModelWithCorners 𝕜 F' G' N' : Type u_16 inst✝¹⁰ : TopologicalSpace N' inst✝⁹ : ChartedSpace G' N' inst✝⁸ : SmoothManifoldWithCorners J' N' F₁ : Type u_17 inst✝⁷ : NormedAddCommGroup F₁ inst✝⁶ : NormedSpace 𝕜 F₁ F₂ : Type u_18 inst✝⁵ : NormedAddCommGroup F₂ inst✝⁴ : NormedSpace 𝕜 F₂ F₃ : Type u_19 inst✝³ : NormedAddCommGroup F₃ inst✝² : NormedSpace 𝕜 F₃ F₄ : Type u_20 inst✝¹ : NormedAddCommGroup F₄ inst✝ : NormedSpace 𝕜 F₄ e : PartialHomeomorph M H e' : PartialHomeomorph M' H' f f₁ : M → M' s s₁ t : Set M x✝ : M m n : ℕ∞ he : e ∈ maximalAtlas I M hs : s ⊆ e.source x : M hx : x ∈ s ⊢ ContMDiffWithinAt 𝓘(𝕜, E) I' n (f ∘ ↑(e.extend I).symm) (↑(e.extend I).symm ⁻¹' s ∩ range ↑I) (↑(e.extend I) x) ↔ ContMDiffWithinAt 𝓘(𝕜, E) I' n (f ∘ ↑(e.extend I).symm) (↑(e.extend I) '' s) (↑(e.extend I) x)
apply <a>contMDiffWithinAt_congr_nhds</a>
case hst 𝕜 : Type u_1 inst✝³⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³⁶ : NormedAddCommGroup E inst✝³⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝³⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³³ : TopologicalSpace M inst✝³² : ChartedSpace H M inst✝³¹ : SmoothManifoldWithCorners I M E' : Type u_5 inst✝³⁰ : NormedAddCommGroup E' inst✝²⁹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝²⁸ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝²⁷ : TopologicalSpace M' inst✝²⁶ : ChartedSpace H' M' inst✝²⁵ : SmoothManifoldWithCorners I' M' E'' : Type u_8 inst✝²⁴ : NormedAddCommGroup E'' inst✝²³ : NormedSpace 𝕜 E'' H'' : Type u_9 inst✝²² : TopologicalSpace H'' I'' : ModelWithCorners 𝕜 E'' H'' M'' : Type u_10 inst✝²¹ : TopologicalSpace M'' inst✝²⁰ : ChartedSpace H'' M'' F : Type u_11 inst✝¹⁹ : NormedAddCommGroup F inst✝¹⁸ : NormedSpace 𝕜 F G : Type u_12 inst✝¹⁷ : TopologicalSpace G J : ModelWithCorners 𝕜 F G N : Type u_13 inst✝¹⁶ : TopologicalSpace N inst✝¹⁵ : ChartedSpace G N inst✝¹⁴ : SmoothManifoldWithCorners J N F' : Type u_14 inst✝¹³ : NormedAddCommGroup F' inst✝¹² : NormedSpace 𝕜 F' G' : Type u_15 inst✝¹¹ : TopologicalSpace G' J' : ModelWithCorners 𝕜 F' G' N' : Type u_16 inst✝¹⁰ : TopologicalSpace N' inst✝⁹ : ChartedSpace G' N' inst✝⁸ : SmoothManifoldWithCorners J' N' F₁ : Type u_17 inst✝⁷ : NormedAddCommGroup F₁ inst✝⁶ : NormedSpace 𝕜 F₁ F₂ : Type u_18 inst✝⁵ : NormedAddCommGroup F₂ inst✝⁴ : NormedSpace 𝕜 F₂ F₃ : Type u_19 inst✝³ : NormedAddCommGroup F₃ inst✝² : NormedSpace 𝕜 F₃ F₄ : Type u_20 inst✝¹ : NormedAddCommGroup F₄ inst✝ : NormedSpace 𝕜 F₄ e : PartialHomeomorph M H e' : PartialHomeomorph M' H' f f₁ : M → M' s s₁ t : Set M x✝ : M m n : ℕ∞ he : e ∈ maximalAtlas I M hs : s ⊆ e.source x : M hx : x ∈ s ⊢ 𝓝[↑(e.extend I).symm ⁻¹' s ∩ range ↑I] ↑(e.extend I) x = 𝓝[↑(e.extend I) '' s] ↑(e.extend I) x
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Geometry/Manifold/ContMDiff/Defs.lean
contMDiffOn_iff_source_of_mem_maximalAtlas
case hst 𝕜 : Type u_1 inst✝³⁷ : NontriviallyNormedField 𝕜 E : Type u_2 inst✝³⁶ : NormedAddCommGroup E inst✝³⁵ : NormedSpace 𝕜 E H : Type u_3 inst✝³⁴ : TopologicalSpace H I : ModelWithCorners 𝕜 E H M : Type u_4 inst✝³³ : TopologicalSpace M inst✝³² : ChartedSpace H M inst✝³¹ : SmoothManifoldWithCorners I M E' : Type u_5 inst✝³⁰ : NormedAddCommGroup E' inst✝²⁹ : NormedSpace 𝕜 E' H' : Type u_6 inst✝²⁸ : TopologicalSpace H' I' : ModelWithCorners 𝕜 E' H' M' : Type u_7 inst✝²⁷ : TopologicalSpace M' inst✝²⁶ : ChartedSpace H' M' inst✝²⁵ : SmoothManifoldWithCorners I' M' E'' : Type u_8 inst✝²⁴ : NormedAddCommGroup E'' inst✝²³ : NormedSpace 𝕜 E'' H'' : Type u_9 inst✝²² : TopologicalSpace H'' I'' : ModelWithCorners 𝕜 E'' H'' M'' : Type u_10 inst✝²¹ : TopologicalSpace M'' inst✝²⁰ : ChartedSpace H'' M'' F : Type u_11 inst✝¹⁹ : NormedAddCommGroup F inst✝¹⁸ : NormedSpace 𝕜 F G : Type u_12 inst✝¹⁷ : TopologicalSpace G J : ModelWithCorners 𝕜 F G N : Type u_13 inst✝¹⁶ : TopologicalSpace N inst✝¹⁵ : ChartedSpace G N inst✝¹⁴ : SmoothManifoldWithCorners J N F' : Type u_14 inst✝¹³ : NormedAddCommGroup F' inst✝¹² : NormedSpace 𝕜 F' G' : Type u_15 inst✝¹¹ : TopologicalSpace G' J' : ModelWithCorners 𝕜 F' G' N' : Type u_16 inst✝¹⁰ : TopologicalSpace N' inst✝⁹ : ChartedSpace G' N' inst✝⁸ : SmoothManifoldWithCorners J' N' F₁ : Type u_17 inst✝⁷ : NormedAddCommGroup F₁ inst✝⁶ : NormedSpace 𝕜 F₁ F₂ : Type u_18 inst✝⁵ : NormedAddCommGroup F₂ inst✝⁴ : NormedSpace 𝕜 F₂ F₃ : Type u_19 inst✝³ : NormedAddCommGroup F₃ inst✝² : NormedSpace 𝕜 F₃ F₄ : Type u_20 inst✝¹ : NormedAddCommGroup F₄ inst✝ : NormedSpace 𝕜 F₄ e : PartialHomeomorph M H e' : PartialHomeomorph M' H' f f₁ : M → M' s s₁ t : Set M x✝ : M m n : ℕ∞ he : e ∈ maximalAtlas I M hs : s ⊆ e.source x : M hx : x ∈ s ⊢ 𝓝[↑(e.extend I).symm ⁻¹' s ∩ range ↑I] ↑(e.extend I) x = 𝓝[↑(e.extend I) '' s] ↑(e.extend I) x
simp_rw [<a>nhdsWithin_eq_iff_eventuallyEq</a>, e.extend_symm_preimage_inter_range_eventuallyEq I hs (hs hx)]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Geometry/Manifold/ContMDiff/Defs.lean
UnitAddCircle.norm_eq
x : ℝ ⊢ ‖↑x‖ = |x - ↑(round x)|
simp [<a>AddCircle.norm_eq</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/Normed/Group/AddCircle.lean
InnerProductSpace.Core.inner_zero_right
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : _root_.RCLike 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x : F ⊢ ⟪x, 0⟫_𝕜 = 0
rw [← <a>InnerProductSpace.Core.inner_conj_symm</a>, <a>InnerProductSpace.Core.inner_zero_left</a>]
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : _root_.RCLike 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x : F ⊢ (starRingEnd 𝕜) 0 = 0
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/InnerProductSpace/Basic.lean
InnerProductSpace.Core.inner_zero_right
𝕜 : Type u_1 E : Type u_2 F : Type u_3 inst✝² : _root_.RCLike 𝕜 inst✝¹ : AddCommGroup F inst✝ : Module 𝕜 F c : Core 𝕜 F x : F ⊢ (starRingEnd 𝕜) 0 = 0
simp only [<a>RingHom.map_zero</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/InnerProductSpace/Basic.lean
NNReal.sqrt_one
x y : ℝ≥0 ⊢ sqrt 1 = 1
simp
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Real/Sqrt.lean
Ordering.compares_swap
α : Type u_1 β : Type u_2 inst✝ : LT α a b : α o : Ordering ⊢ o.swap.Compares a b ↔ o.Compares b a
cases o
case lt α : Type u_1 β : Type u_2 inst✝ : LT α a b : α ⊢ lt.swap.Compares a b ↔ lt.Compares b a case eq α : Type u_1 β : Type u_2 inst✝ : LT α a b : α ⊢ eq.swap.Compares a b ↔ eq.Compares b a case gt α : Type u_1 β : Type u_2 inst✝ : LT α a b : α ⊢ gt.swap.Compares a b ↔ gt.Compares b a
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Compare.lean
Ordering.compares_swap
case lt α : Type u_1 β : Type u_2 inst✝ : LT α a b : α ⊢ lt.swap.Compares a b ↔ lt.Compares b a
exact <a>Iff.rfl</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Compare.lean
Ordering.compares_swap
case eq α : Type u_1 β : Type u_2 inst✝ : LT α a b : α ⊢ eq.swap.Compares a b ↔ eq.Compares b a
exact <a>eq_comm</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Compare.lean
Ordering.compares_swap
case gt α : Type u_1 β : Type u_2 inst✝ : LT α a b : α ⊢ gt.swap.Compares a b ↔ gt.Compares b a
exact <a>Iff.rfl</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Compare.lean
Set.iInter₂_union
α : Type u_1 β : Type u_2 γ : Type u_3 ι : Sort u_4 ι' : Sort u_5 ι₂ : Sort u_6 κ : ι → Sort u_7 κ₁ : ι → Sort u_8 κ₂ : ι → Sort u_9 κ' : ι' → Sort u_10 s : (i : ι) → κ i → Set α t : Set α ⊢ (⋂ i, ⋂ j, s i j) ∪ t = ⋂ i, ⋂ j, s i j ∪ t
simp_rw [<a>Set.iInter_union</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Set/Lattice.lean
Finset.image_diag_union_image_offDiag
α : Type u_1 inst✝ : DecidableEq α s t : Finset α a b : α m : Sym2 α ⊢ image Sym2.mk s.diag ∪ image Sym2.mk s.offDiag = s.sym2
rw [← <a>Finset.image_union</a>, <a>Finset.diag_union_offDiag</a>, <a>Finset.sym2_eq_image</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Finset/Sym.lean
AdjoinRoot.algHomOfDvd_apply_root
K : Type u_1 L : Type ?u.589078 inst✝² : Field K inst✝¹ : Field L inst✝ : Algebra K L p q : K[X] hpq : q ∣ p ⊢ (algHomOfDvd hpq) (root p) = root q
rw [<a>AdjoinRoot.algHomOfDvd</a>, <a>AdjoinRoot.liftHom_root</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/FieldTheory/Adjoin.lean
Real.deriv_Gamma_nat
n : ℕ ⊢ deriv Gamma (↑n + 1) = ↑n ! * (-γ + ↑(harmonic n))
let f := <a>Real.log</a> ∘ <a>Real.Gamma</a>
n : ℕ f : ℝ → ℝ := log ∘ Gamma ⊢ deriv Gamma (↑n + 1) = ↑n ! * (-γ + ↑(harmonic n))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/Harmonic/GammaDeriv.lean
Real.deriv_Gamma_nat
n : ℕ f : ℝ → ℝ := log ∘ Gamma ⊢ deriv Gamma (↑n + 1) = ↑n ! * (-γ + ↑(harmonic n))
suffices <a>deriv</a> (<a>Real.log</a> ∘ <a>Real.Gamma</a>) (n + 1) = -γ + <a>harmonic</a> n by rwa [<a>Function.comp_def</a>, <a>deriv.log</a> (<a>Real.differentiableAt_Gamma</a> (fun m ↦ by linarith)) (by positivity), <a>Real.Gamma_nat_eq_factorial</a>, <a>div_eq_iff_mul_eq</a> (by positivity), <a>mul_comm</a>, <a>Eq.comm</a>] at this
n : ℕ f : ℝ → ℝ := log ∘ Gamma ⊢ deriv (log ∘ Gamma) (↑n + 1) = -γ + ↑(harmonic n)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/Harmonic/GammaDeriv.lean
Real.deriv_Gamma_nat
n : ℕ f : ℝ → ℝ := log ∘ Gamma ⊢ deriv (log ∘ Gamma) (↑n + 1) = -γ + ↑(harmonic n)
have hc : <a>ConvexOn</a> ℝ (<a>Set.Ioi</a> 0) f := <a>Real.convexOn_log_Gamma</a>
n : ℕ f : ℝ → ℝ := log ∘ Gamma hc : ConvexOn ℝ (Ioi 0) f ⊢ deriv (log ∘ Gamma) (↑n + 1) = -γ + ↑(harmonic n)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/Harmonic/GammaDeriv.lean
Real.deriv_Gamma_nat
n : ℕ f : ℝ → ℝ := log ∘ Gamma hc : ConvexOn ℝ (Ioi 0) f ⊢ deriv (log ∘ Gamma) (↑n + 1) = -γ + ↑(harmonic n)
have h_rec (x : ℝ) (hx : 0 < x) : f (x + 1) = f x + <a>Real.log</a> x := by simp only [f, <a>Function.comp_apply</a>, <a>Real.Gamma_add_one</a> hx.ne', <a>Real.log_mul</a> hx.ne' (<a>Real.Gamma_pos_of_pos</a> hx).<a>LT.lt.ne'</a>, <a>add_comm</a>]
n : ℕ f : ℝ → ℝ := log ∘ Gamma hc : ConvexOn ℝ (Ioi 0) f h_rec : ∀ (x : ℝ), 0 < x → f (x + 1) = f x + log x ⊢ deriv (log ∘ Gamma) (↑n + 1) = -γ + ↑(harmonic n)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/Harmonic/GammaDeriv.lean
Real.deriv_Gamma_nat
n : ℕ f : ℝ → ℝ := log ∘ Gamma hc : ConvexOn ℝ (Ioi 0) f h_rec : ∀ (x : ℝ), 0 < x → f (x + 1) = f x + log x ⊢ deriv (log ∘ Gamma) (↑n + 1) = -γ + ↑(harmonic n)
have hder {x : ℝ} (hx : 0 < x) : <a>DifferentiableAt</a> ℝ f x := by refine ((<a>Real.differentiableAt_Gamma</a> ?_).<a>DifferentiableAt.log</a> (<a>Real.Gamma_ne_zero</a> ?_)) <;> exact fun m ↦ <a>ne_of_gt</a> (by linarith)
n : ℕ f : ℝ → ℝ := log ∘ Gamma hc : ConvexOn ℝ (Ioi 0) f h_rec : ∀ (x : ℝ), 0 < x → f (x + 1) = f x + log x hder : ∀ {x : ℝ}, 0 < x → DifferentiableAt ℝ f x ⊢ deriv (log ∘ Gamma) (↑n + 1) = -γ + ↑(harmonic n)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/Harmonic/GammaDeriv.lean
Real.deriv_Gamma_nat
n : ℕ f : ℝ → ℝ := log ∘ Gamma hc : ConvexOn ℝ (Ioi 0) f h_rec : ∀ (x : ℝ), 0 < x → f (x + 1) = f x + log x hder : ∀ {x : ℝ}, 0 < x → DifferentiableAt ℝ f x ⊢ deriv (log ∘ Gamma) (↑n + 1) = -γ + ↑(harmonic n)
have hder_rec (x : ℝ) (hx : 0 < x) : <a>deriv</a> f (x + 1) = <a>deriv</a> f x + 1 / x := by rw [← <a>deriv_comp_add_const</a> _ _ (hder <| by positivity), <a>one_div</a>, ← <a>Real.deriv_log</a>, ← <a>deriv_add</a> (hder <| by positivity) (<a>Real.differentiableAt_log</a> hx.ne')] apply <a>Filter.EventuallyEq.deriv_eq</a> filter_upwards [<a>eventually_gt_nhds</a> hx] using h_rec
n : ℕ f : ℝ → ℝ := log ∘ Gamma hc : ConvexOn ℝ (Ioi 0) f h_rec : ∀ (x : ℝ), 0 < x → f (x + 1) = f x + log x hder : ∀ {x : ℝ}, 0 < x → DifferentiableAt ℝ f x hder_rec : ∀ (x : ℝ), 0 < x → deriv f (x + 1) = deriv f x + 1 / x ⊢ deriv (log ∘ Gamma) (↑n + 1) = -γ + ↑(harmonic n)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/Harmonic/GammaDeriv.lean
Real.deriv_Gamma_nat
n : ℕ f : ℝ → ℝ := log ∘ Gamma hc : ConvexOn ℝ (Ioi 0) f h_rec : ∀ (x : ℝ), 0 < x → f (x + 1) = f x + log x hder : ∀ {x : ℝ}, 0 < x → DifferentiableAt ℝ f x hder_rec : ∀ (x : ℝ), 0 < x → deriv f (x + 1) = deriv f x + 1 / x hder_nat : ∀ (n : ℕ), deriv f (↑n + 1) = deriv f 1 + ↑(harmonic n) ⊢ deriv (log ∘ Gamma) (↑n + 1) = -γ + ↑(harmonic n)
suffices -<a>deriv</a> f 1 = γ by rw [hder_nat n, ← this, <a>neg_neg</a>]
n : ℕ f : ℝ → ℝ := log ∘ Gamma hc : ConvexOn ℝ (Ioi 0) f h_rec : ∀ (x : ℝ), 0 < x → f (x + 1) = f x + log x hder : ∀ {x : ℝ}, 0 < x → DifferentiableAt ℝ f x hder_rec : ∀ (x : ℝ), 0 < x → deriv f (x + 1) = deriv f x + 1 / x hder_nat : ∀ (n : ℕ), deriv f (↑n + 1) = deriv f 1 + ↑(harmonic n) ⊢ -deriv f 1 = γ
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/Harmonic/GammaDeriv.lean
Real.deriv_Gamma_nat
n : ℕ f : ℝ → ℝ := log ∘ Gamma hc : ConvexOn ℝ (Ioi 0) f h_rec : ∀ (x : ℝ), 0 < x → f (x + 1) = f x + log x hder : ∀ {x : ℝ}, 0 < x → DifferentiableAt ℝ f x hder_rec : ∀ (x : ℝ), 0 < x → deriv f (x + 1) = deriv f x + 1 / x hder_nat : ∀ (n : ℕ), deriv f (↑n + 1) = deriv f 1 + ↑(harmonic n) ⊢ -deriv f 1 = γ
have derivLB (n : ℕ) (hn : 0 < n) : <a>Real.log</a> n ≤ <a>deriv</a> f (n + 1) := by refine (<a>le_of_eq</a> ?_).<a>LE.le.trans</a> <| hc.slope_le_deriv (mem_Ioi.mpr <| Nat.cast_pos.mpr hn) (by positivity : _ < (_ : ℝ)) (by linarith) (hder <| by positivity) rw [<a>slope_def_field</a>, show n + 1 - n = (1 : ℝ) by ring, <a>div_one</a>, h_rec n (by positivity), <a>add_sub_cancel_left</a>]
n : ℕ f : ℝ → ℝ := log ∘ Gamma hc : ConvexOn ℝ (Ioi 0) f h_rec : ∀ (x : ℝ), 0 < x → f (x + 1) = f x + log x hder : ∀ {x : ℝ}, 0 < x → DifferentiableAt ℝ f x hder_rec : ∀ (x : ℝ), 0 < x → deriv f (x + 1) = deriv f x + 1 / x hder_nat : ∀ (n : ℕ), deriv f (↑n + 1) = deriv f 1 + ↑(harmonic n) derivLB : ∀ (n : ℕ), 0 < n → log ↑n ≤ deriv f (↑n + 1) ⊢ -deriv f 1 = γ
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/Harmonic/GammaDeriv.lean
Real.deriv_Gamma_nat
n : ℕ f : ℝ → ℝ := log ∘ Gamma hc : ConvexOn ℝ (Ioi 0) f h_rec : ∀ (x : ℝ), 0 < x → f (x + 1) = f x + log x hder : ∀ {x : ℝ}, 0 < x → DifferentiableAt ℝ f x hder_rec : ∀ (x : ℝ), 0 < x → deriv f (x + 1) = deriv f x + 1 / x hder_nat : ∀ (n : ℕ), deriv f (↑n + 1) = deriv f 1 + ↑(harmonic n) derivLB : ∀ (n : ℕ), 0 < n → log ↑n ≤ deriv f (↑n + 1) ⊢ -deriv f 1 = γ
have derivUB (n : ℕ) : <a>deriv</a> f (n + 1) ≤ <a>Real.log</a> (n + 1) := by refine (hc.deriv_le_slope (by positivity : (0 : ℝ) < n + 1) (by positivity : (0 : ℝ) < n + 2) (by linarith) (hder <| by positivity)).<a>LE.le.trans</a> (<a>le_of_eq</a> ?_) rw [<a>slope_def_field</a>, show n + 2 - (n + 1) = (1 : ℝ) by ring, <a>div_one</a>, show n + 2 = (n + 1) + (1 : ℝ) by ring, h_rec (n + 1) (by positivity), <a>add_sub_cancel_left</a>]
n : ℕ f : ℝ → ℝ := log ∘ Gamma hc : ConvexOn ℝ (Ioi 0) f h_rec : ∀ (x : ℝ), 0 < x → f (x + 1) = f x + log x hder : ∀ {x : ℝ}, 0 < x → DifferentiableAt ℝ f x hder_rec : ∀ (x : ℝ), 0 < x → deriv f (x + 1) = deriv f x + 1 / x hder_nat : ∀ (n : ℕ), deriv f (↑n + 1) = deriv f 1 + ↑(harmonic n) derivLB : ∀ (n : ℕ), 0 < n → log ↑n ≤ deriv f (↑n + 1) derivUB : ∀ (n : ℕ), deriv f (↑n + 1) ≤ log (↑n + 1) ⊢ -deriv f 1 = γ
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/Harmonic/GammaDeriv.lean
Real.deriv_Gamma_nat
n : ℕ f : ℝ → ℝ := log ∘ Gamma hc : ConvexOn ℝ (Ioi 0) f h_rec : ∀ (x : ℝ), 0 < x → f (x + 1) = f x + log x hder : ∀ {x : ℝ}, 0 < x → DifferentiableAt ℝ f x hder_rec : ∀ (x : ℝ), 0 < x → deriv f (x + 1) = deriv f x + 1 / x hder_nat : ∀ (n : ℕ), deriv f (↑n + 1) = deriv f 1 + ↑(harmonic n) derivLB : ∀ (n : ℕ), 0 < n → log ↑n ≤ deriv f (↑n + 1) derivUB : ∀ (n : ℕ), deriv f (↑n + 1) ≤ log (↑n + 1) ⊢ -deriv f 1 = γ
apply <a>le_antisymm</a>
case a n : ℕ f : ℝ → ℝ := log ∘ Gamma hc : ConvexOn ℝ (Ioi 0) f h_rec : ∀ (x : ℝ), 0 < x → f (x + 1) = f x + log x hder : ∀ {x : ℝ}, 0 < x → DifferentiableAt ℝ f x hder_rec : ∀ (x : ℝ), 0 < x → deriv f (x + 1) = deriv f x + 1 / x hder_nat : ∀ (n : ℕ), deriv f (↑n + 1) = deriv f 1 + ↑(harmonic n) derivLB : ∀ (n : ℕ), 0 < n → log ↑n ≤ deriv f (↑n + 1) derivUB : ∀ (n : ℕ), deriv f (↑n + 1) ≤ log (↑n + 1) ⊢ -deriv f 1 ≤ γ case a n : ℕ f : ℝ → ℝ := log ∘ Gamma hc : ConvexOn ℝ (Ioi 0) f h_rec : ∀ (x : ℝ), 0 < x → f (x + 1) = f x + log x hder : ∀ {x : ℝ}, 0 < x → DifferentiableAt ℝ f x hder_rec : ∀ (x : ℝ), 0 < x → deriv f (x + 1) = deriv f x + 1 / x hder_nat : ∀ (n : ℕ), deriv f (↑n + 1) = deriv f 1 + ↑(harmonic n) derivLB : ∀ (n : ℕ), 0 < n → log ↑n ≤ deriv f (↑n + 1) derivUB : ∀ (n : ℕ), deriv f (↑n + 1) ≤ log (↑n + 1) ⊢ γ ≤ -deriv f 1
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/NumberTheory/Harmonic/GammaDeriv.lean