full_name
stringlengths
3
121
state
stringlengths
7
9.32k
tactic
stringlengths
3
5.35k
target_state
stringlengths
7
19k
url
stringclasses
1 value
commit
stringclasses
1 value
file_path
stringlengths
21
79
SimpleGraph.mem_incidence_iff_neighbor
ι : Sort u_1 V : Type u G : SimpleGraph V a b c u v✝ w✝ : V e : Sym2 V v w : V ⊢ s(v, w) ∈ G.incidenceSet v ↔ w ∈ G.neighborSet v
simp only [<a>SimpleGraph.mem_incidenceSet</a>, <a>SimpleGraph.mem_neighborSet</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Combinatorics/SimpleGraph/Basic.lean
isAdjointPair_toLinearMap₂'
R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ A₂ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' ⊢ (toLinearMap₂' J).IsAdjointPair (toLinearMap₂' J') (toLin' A) (toLin' A') ↔ J.IsAdjointPair J' A A'
rw [<a>LinearMap.isAdjointPair_iff_comp_eq_compl₂</a>]
R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ A₂ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' ⊢ toLinearMap₂' J' ∘ₗ toLin' A = (toLinearMap₂' J).compl₂ (toLin' A') ↔ J.IsAdjointPair J' A A'
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Matrix/SesquilinearForm.lean
isAdjointPair_toLinearMap₂'
R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ A₂ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' h : ∀ (B B' : (n → R) →ₗ[R] (n' → R) →ₗ[R] R), B = B' ↔ toMatrix₂' B = toMatrix₂' B' ⊢ toLinearMap₂' J' ∘ₗ toLin' A = (toLinearMap₂' J).compl₂ (toLin' A') ↔ J.IsAdjointPair J' A A'
simp_rw [h, <a>LinearMap.toMatrix₂'_comp</a>, <a>LinearMap.toMatrix₂'_compl₂</a>, <a>LinearMap.toMatrix'_toLin'</a>, <a>LinearMap.toMatrix'_toLinearMap₂'</a>]
R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ A₂ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' h : ∀ (B B' : (n → R) →ₗ[R] (n' → R) →ₗ[R] R), B = B' ↔ toMatrix₂' B = toMatrix₂' B' ⊢ Aᵀ * J' = J * A' ↔ J.IsAdjointPair J' A A'
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Matrix/SesquilinearForm.lean
isAdjointPair_toLinearMap₂'
R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ A₂ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' h : ∀ (B B' : (n → R) →ₗ[R] (n' → R) →ₗ[R] R), B = B' ↔ toMatrix₂' B = toMatrix₂' B' ⊢ Aᵀ * J' = J * A' ↔ J.IsAdjointPair J' A A'
rfl
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Matrix/SesquilinearForm.lean
isAdjointPair_toLinearMap₂'
R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ A₂ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' ⊢ ∀ (B B' : (n → R) →ₗ[R] (n' → R) →ₗ[R] R), B = B' ↔ toMatrix₂' B = toMatrix₂' B'
intro B B'
R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ A₂ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' B B' : (n → R) →ₗ[R] (n' → R) →ₗ[R] R ⊢ B = B' ↔ toMatrix₂' B = toMatrix₂' B'
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Matrix/SesquilinearForm.lean
isAdjointPair_toLinearMap₂'
R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ A₂ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' B B' : (n → R) →ₗ[R] (n' → R) →ₗ[R] R ⊢ B = B' ↔ toMatrix₂' B = toMatrix₂' B'
constructor <;> intro h
case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ A₂ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' B B' : (n → R) →ₗ[R] (n' → R) →ₗ[R] R h : B = B' ⊢ toMatrix₂' B = toMatrix₂' B' case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ A₂ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' B B' : (n → R) →ₗ[R] (n' → R) →ₗ[R] R h : toMatrix₂' B = toMatrix₂' B' ⊢ B = B'
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Matrix/SesquilinearForm.lean
isAdjointPair_toLinearMap₂'
case mp R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ A₂ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' B B' : (n → R) →ₗ[R] (n' → R) →ₗ[R] R h : B = B' ⊢ toMatrix₂' B = toMatrix₂' B'
rw [h]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Matrix/SesquilinearForm.lean
isAdjointPair_toLinearMap₂'
case mpr R : Type u_1 R₁ : Type u_2 R₂ : Type u_3 M : Type u_4 M₁ : Type u_5 M₂ : Type u_6 M₁' : Type u_7 M₂' : Type u_8 n : Type u_9 m : Type u_10 n' : Type u_11 m' : Type u_12 ι : Type u_13 inst✝⁸ : CommRing R inst✝⁷ : AddCommMonoid M₁ inst✝⁶ : Module R M₁ inst✝⁵ : AddCommMonoid M₂ inst✝⁴ : Module R M₂ inst✝³ : Fintype n inst✝² : Fintype n' b₁ : Basis n R M₁ b₂ : Basis n' R M₂ J J₂ : Matrix n n R J' : Matrix n' n' R A : Matrix n' n R A' : Matrix n n' R A₁ A₂ : Matrix n n R inst✝¹ : DecidableEq n inst✝ : DecidableEq n' B B' : (n → R) →ₗ[R] (n' → R) →ₗ[R] R h : toMatrix₂' B = toMatrix₂' B' ⊢ B = B'
exact LinearMap.toMatrix₂'.injective h
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/Matrix/SesquilinearForm.lean
Real.sin_sq_pi_over_two_pow
x : ℝ n : ℕ ⊢ sin (π / 2 ^ (n + 1)) ^ 2 = 1 - (sqrtTwoAddSeries 0 n / 2) ^ 2
rw [<a>Real.sin_sq</a>, <a>Real.cos_pi_over_two_pow</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/SpecialFunctions/Trigonometric/Basic.lean
Trivialization.frontier_preimage
ι : Type u_1 B : Type u_2 F : Type u_3 E : B → Type u_4 Z : Type u_5 inst✝⁴ : TopologicalSpace B inst✝³ : TopologicalSpace F proj : Z → B inst✝² : TopologicalSpace Z inst✝¹ : TopologicalSpace (TotalSpace F E) e✝ : Trivialization F proj x : Z e' : Trivialization F TotalSpace.proj x' : TotalSpace F E b : B y : E b B' : Type u_6 inst✝ : TopologicalSpace B' e : Trivialization F proj s : Set B ⊢ e.source ∩ frontier (proj ⁻¹' s) = proj ⁻¹' (e.baseSet ∩ frontier s)
rw [← (e.isImage_preimage_prod s).frontier.preimage_eq, <a>frontier_prod_univ_eq</a>, (e.isImage_preimage_prod _).<a>PartialHomeomorph.IsImage.preimage_eq</a>, e.source_eq, <a>Set.preimage_inter</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/FiberBundle/Trivialization.lean
IsFractionRing.integerNormalization_eq_zero_iff
R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S P : Type u_3 inst✝⁶ : CommRing P A : Type u_4 K : Type u_5 C : Type u_6 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : Field K inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : CommRing C p : K[X] ⊢ integerNormalization (nonZeroDivisors A) p = 0 ↔ p = 0
refine Polynomial.ext_iff.trans (Polynomial.ext_iff.trans ?_).<a>Iff.symm</a>
R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S P : Type u_3 inst✝⁶ : CommRing P A : Type u_4 K : Type u_5 C : Type u_6 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : Field K inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : CommRing C p : K[X] ⊢ (∀ (n : ℕ), p.coeff n = coeff 0 n) ↔ ∀ (n : ℕ), (integerNormalization (nonZeroDivisors A) p).coeff n = coeff 0 n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Integral.lean
IsFractionRing.integerNormalization_eq_zero_iff
R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S P : Type u_3 inst✝⁶ : CommRing P A : Type u_4 K : Type u_5 C : Type u_6 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : Field K inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : CommRing C p : K[X] ⊢ (∀ (n : ℕ), p.coeff n = coeff 0 n) ↔ ∀ (n : ℕ), (integerNormalization (nonZeroDivisors A) p).coeff n = coeff 0 n
obtain ⟨⟨b, nonzero⟩, hb⟩ := <a>IsLocalization.integerNormalization_spec</a> (<a>nonZeroDivisors</a> A) p
case intro.mk R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S P : Type u_3 inst✝⁶ : CommRing P A : Type u_4 K : Type u_5 C : Type u_6 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : Field K inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : CommRing C p : K[X] b : A nonzero : b ∈ nonZeroDivisors A hb : ∀ (i : ℕ), (algebraMap A K) ((integerNormalization (nonZeroDivisors A) p).coeff i) = ↑⟨b, nonzero⟩ • p.coeff i ⊢ (∀ (n : ℕ), p.coeff n = coeff 0 n) ↔ ∀ (n : ℕ), (integerNormalization (nonZeroDivisors A) p).coeff n = coeff 0 n
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Integral.lean
IsFractionRing.integerNormalization_eq_zero_iff
case intro.mk R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S P : Type u_3 inst✝⁶ : CommRing P A : Type u_4 K : Type u_5 C : Type u_6 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : Field K inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : CommRing C p : K[X] b : A nonzero : b ∈ nonZeroDivisors A hb : ∀ (i : ℕ), (algebraMap A K) ((integerNormalization (nonZeroDivisors A) p).coeff i) = ↑⟨b, nonzero⟩ • p.coeff i ⊢ (∀ (n : ℕ), p.coeff n = coeff 0 n) ↔ ∀ (n : ℕ), (integerNormalization (nonZeroDivisors A) p).coeff n = coeff 0 n
constructor <;> intro h i
case intro.mk.mp R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S P : Type u_3 inst✝⁶ : CommRing P A : Type u_4 K : Type u_5 C : Type u_6 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : Field K inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : CommRing C p : K[X] b : A nonzero : b ∈ nonZeroDivisors A hb : ∀ (i : ℕ), (algebraMap A K) ((integerNormalization (nonZeroDivisors A) p).coeff i) = ↑⟨b, nonzero⟩ • p.coeff i h : ∀ (n : ℕ), p.coeff n = coeff 0 n i : ℕ ⊢ (integerNormalization (nonZeroDivisors A) p).coeff i = coeff 0 i case intro.mk.mpr R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S P : Type u_3 inst✝⁶ : CommRing P A : Type u_4 K : Type u_5 C : Type u_6 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : Field K inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : CommRing C p : K[X] b : A nonzero : b ∈ nonZeroDivisors A hb : ∀ (i : ℕ), (algebraMap A K) ((integerNormalization (nonZeroDivisors A) p).coeff i) = ↑⟨b, nonzero⟩ • p.coeff i h : ∀ (n : ℕ), (integerNormalization (nonZeroDivisors A) p).coeff n = coeff 0 n i : ℕ ⊢ p.coeff i = coeff 0 i
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Integral.lean
IsFractionRing.integerNormalization_eq_zero_iff
case intro.mk.mp R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S P : Type u_3 inst✝⁶ : CommRing P A : Type u_4 K : Type u_5 C : Type u_6 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : Field K inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : CommRing C p : K[X] b : A nonzero : b ∈ nonZeroDivisors A hb : ∀ (i : ℕ), (algebraMap A K) ((integerNormalization (nonZeroDivisors A) p).coeff i) = ↑⟨b, nonzero⟩ • p.coeff i h : ∀ (n : ℕ), p.coeff n = coeff 0 n i : ℕ ⊢ (integerNormalization (nonZeroDivisors A) p).coeff i = coeff 0 i
rw [<a>Polynomial.coeff_zero</a>, ← <a>IsFractionRing.to_map_eq_zero_iff</a> (K := K), hb i, h i, <a>Polynomial.coeff_zero</a>, <a>smul_zero</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Integral.lean
IsFractionRing.integerNormalization_eq_zero_iff
case intro.mk.mpr R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S P : Type u_3 inst✝⁶ : CommRing P A : Type u_4 K : Type u_5 C : Type u_6 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : Field K inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : CommRing C p : K[X] b : A nonzero : b ∈ nonZeroDivisors A hb : ∀ (i : ℕ), (algebraMap A K) ((integerNormalization (nonZeroDivisors A) p).coeff i) = ↑⟨b, nonzero⟩ • p.coeff i h : ∀ (n : ℕ), (integerNormalization (nonZeroDivisors A) p).coeff n = coeff 0 n i : ℕ ⊢ p.coeff i = coeff 0 i
have hi := h i
case intro.mk.mpr R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S P : Type u_3 inst✝⁶ : CommRing P A : Type u_4 K : Type u_5 C : Type u_6 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : Field K inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : CommRing C p : K[X] b : A nonzero : b ∈ nonZeroDivisors A hb : ∀ (i : ℕ), (algebraMap A K) ((integerNormalization (nonZeroDivisors A) p).coeff i) = ↑⟨b, nonzero⟩ • p.coeff i h : ∀ (n : ℕ), (integerNormalization (nonZeroDivisors A) p).coeff n = coeff 0 n i : ℕ hi : (integerNormalization (nonZeroDivisors A) p).coeff i = coeff 0 i ⊢ p.coeff i = coeff 0 i
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Integral.lean
IsFractionRing.integerNormalization_eq_zero_iff
case intro.mk.mpr R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S P : Type u_3 inst✝⁶ : CommRing P A : Type u_4 K : Type u_5 C : Type u_6 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : Field K inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : CommRing C p : K[X] b : A nonzero : b ∈ nonZeroDivisors A hb : ∀ (i : ℕ), (algebraMap A K) ((integerNormalization (nonZeroDivisors A) p).coeff i) = ↑⟨b, nonzero⟩ • p.coeff i h : ∀ (n : ℕ), (integerNormalization (nonZeroDivisors A) p).coeff n = coeff 0 n i : ℕ hi : (integerNormalization (nonZeroDivisors A) p).coeff i = coeff 0 i ⊢ p.coeff i = coeff 0 i
rw [<a>Polynomial.coeff_zero</a>, ← @<a>IsFractionRing.to_map_eq_zero_iff</a> A _ K, hb i, <a>Algebra.smul_def</a>] at hi
case intro.mk.mpr R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S P : Type u_3 inst✝⁶ : CommRing P A : Type u_4 K : Type u_5 C : Type u_6 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : Field K inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : CommRing C p : K[X] b : A nonzero : b ∈ nonZeroDivisors A hb : ∀ (i : ℕ), (algebraMap A K) ((integerNormalization (nonZeroDivisors A) p).coeff i) = ↑⟨b, nonzero⟩ • p.coeff i h : ∀ (n : ℕ), (integerNormalization (nonZeroDivisors A) p).coeff n = coeff 0 n i : ℕ hi : (algebraMap A K) ↑⟨b, nonzero⟩ * p.coeff i = 0 ⊢ p.coeff i = coeff 0 i
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Integral.lean
IsFractionRing.integerNormalization_eq_zero_iff
case intro.mk.mpr R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S P : Type u_3 inst✝⁶ : CommRing P A : Type u_4 K : Type u_5 C : Type u_6 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : Field K inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : CommRing C p : K[X] b : A nonzero : b ∈ nonZeroDivisors A hb : ∀ (i : ℕ), (algebraMap A K) ((integerNormalization (nonZeroDivisors A) p).coeff i) = ↑⟨b, nonzero⟩ • p.coeff i h : ∀ (n : ℕ), (integerNormalization (nonZeroDivisors A) p).coeff n = coeff 0 n i : ℕ hi : (algebraMap A K) ↑⟨b, nonzero⟩ * p.coeff i = 0 ⊢ p.coeff i = coeff 0 i
apply <a>Or.resolve_left</a> (<a>NoZeroDivisors.eq_zero_or_eq_zero_of_mul_eq_zero</a> hi)
case intro.mk.mpr R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S P : Type u_3 inst✝⁶ : CommRing P A : Type u_4 K : Type u_5 C : Type u_6 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : Field K inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : CommRing C p : K[X] b : A nonzero : b ∈ nonZeroDivisors A hb : ∀ (i : ℕ), (algebraMap A K) ((integerNormalization (nonZeroDivisors A) p).coeff i) = ↑⟨b, nonzero⟩ • p.coeff i h : ∀ (n : ℕ), (integerNormalization (nonZeroDivisors A) p).coeff n = coeff 0 n i : ℕ hi : (algebraMap A K) ↑⟨b, nonzero⟩ * p.coeff i = 0 ⊢ ¬(algebraMap A K) ↑⟨b, nonzero⟩ = 0
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Integral.lean
IsFractionRing.integerNormalization_eq_zero_iff
case intro.mk.mpr R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S P : Type u_3 inst✝⁶ : CommRing P A : Type u_4 K : Type u_5 C : Type u_6 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : Field K inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : CommRing C p : K[X] b : A nonzero : b ∈ nonZeroDivisors A hb : ∀ (i : ℕ), (algebraMap A K) ((integerNormalization (nonZeroDivisors A) p).coeff i) = ↑⟨b, nonzero⟩ • p.coeff i h : ∀ (n : ℕ), (integerNormalization (nonZeroDivisors A) p).coeff n = coeff 0 n i : ℕ hi : (algebraMap A K) ↑⟨b, nonzero⟩ * p.coeff i = 0 ⊢ ¬(algebraMap A K) ↑⟨b, nonzero⟩ = 0
intro h
case intro.mk.mpr R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S P : Type u_3 inst✝⁶ : CommRing P A : Type u_4 K : Type u_5 C : Type u_6 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : Field K inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : CommRing C p : K[X] b : A nonzero : b ∈ nonZeroDivisors A hb : ∀ (i : ℕ), (algebraMap A K) ((integerNormalization (nonZeroDivisors A) p).coeff i) = ↑⟨b, nonzero⟩ • p.coeff i h✝ : ∀ (n : ℕ), (integerNormalization (nonZeroDivisors A) p).coeff n = coeff 0 n i : ℕ hi : (algebraMap A K) ↑⟨b, nonzero⟩ * p.coeff i = 0 h : (algebraMap A K) ↑⟨b, nonzero⟩ = 0 ⊢ False
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Integral.lean
IsFractionRing.integerNormalization_eq_zero_iff
case intro.mk.mpr R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S P : Type u_3 inst✝⁶ : CommRing P A : Type u_4 K : Type u_5 C : Type u_6 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : Field K inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : CommRing C p : K[X] b : A nonzero : b ∈ nonZeroDivisors A hb : ∀ (i : ℕ), (algebraMap A K) ((integerNormalization (nonZeroDivisors A) p).coeff i) = ↑⟨b, nonzero⟩ • p.coeff i h✝ : ∀ (n : ℕ), (integerNormalization (nonZeroDivisors A) p).coeff n = coeff 0 n i : ℕ hi : (algebraMap A K) ↑⟨b, nonzero⟩ * p.coeff i = 0 h : (algebraMap A K) ↑⟨b, nonzero⟩ = 0 ⊢ False
apply mem_nonZeroDivisors_iff_ne_zero.mp nonzero
case intro.mk.mpr R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S P : Type u_3 inst✝⁶ : CommRing P A : Type u_4 K : Type u_5 C : Type u_6 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : Field K inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : CommRing C p : K[X] b : A nonzero : b ∈ nonZeroDivisors A hb : ∀ (i : ℕ), (algebraMap A K) ((integerNormalization (nonZeroDivisors A) p).coeff i) = ↑⟨b, nonzero⟩ • p.coeff i h✝ : ∀ (n : ℕ), (integerNormalization (nonZeroDivisors A) p).coeff n = coeff 0 n i : ℕ hi : (algebraMap A K) ↑⟨b, nonzero⟩ * p.coeff i = 0 h : (algebraMap A K) ↑⟨b, nonzero⟩ = 0 ⊢ b = 0
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Integral.lean
IsFractionRing.integerNormalization_eq_zero_iff
case intro.mk.mpr R : Type u_1 inst✝⁹ : CommRing R M : Submonoid R S : Type u_2 inst✝⁸ : CommRing S inst✝⁷ : Algebra R S P : Type u_3 inst✝⁶ : CommRing P A : Type u_4 K : Type u_5 C : Type u_6 inst✝⁵ : CommRing A inst✝⁴ : IsDomain A inst✝³ : Field K inst✝² : Algebra A K inst✝¹ : IsFractionRing A K inst✝ : CommRing C p : K[X] b : A nonzero : b ∈ nonZeroDivisors A hb : ∀ (i : ℕ), (algebraMap A K) ((integerNormalization (nonZeroDivisors A) p).coeff i) = ↑⟨b, nonzero⟩ • p.coeff i h✝ : ∀ (n : ℕ), (integerNormalization (nonZeroDivisors A) p).coeff n = coeff 0 n i : ℕ hi : (algebraMap A K) ↑⟨b, nonzero⟩ * p.coeff i = 0 h : (algebraMap A K) ↑⟨b, nonzero⟩ = 0 ⊢ b = 0
exact to_map_eq_zero_iff.mp h
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/RingTheory/Localization/Integral.lean
Int.Ico_filter_modEq_eq
a b r : ℤ hr : 0 < r v : ℤ ⊢ filter (fun x => x ≡ v [ZMOD r]) (Ico a b) = map { toFun := fun x => x + v, inj' := ⋯ } (filter (fun x => r ∣ x) (Ico (a - v) (b - v)))
ext x
case a a b r : ℤ hr : 0 < r v x : ℤ ⊢ x ∈ filter (fun x => x ≡ v [ZMOD r]) (Ico a b) ↔ x ∈ map { toFun := fun x => x + v, inj' := ⋯ } (filter (fun x => r ∣ x) (Ico (a - v) (b - v)))
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Int/CardIntervalMod.lean
Int.Ico_filter_modEq_eq
case a a b r : ℤ hr : 0 < r v x : ℤ ⊢ x ∈ filter (fun x => x ≡ v [ZMOD r]) (Ico a b) ↔ x ∈ map { toFun := fun x => x + v, inj' := ⋯ } (filter (fun x => r ∣ x) (Ico (a - v) (b - v)))
simp_rw [<a>Finset.mem_map</a>, <a>Finset.mem_filter</a>, <a>Finset.mem_Ico</a>, <a>Function.Embedding.coeFn_mk</a>, ← <a>eq_sub_iff_add_eq</a>, <a>exists_eq_right</a>, <a>Int.modEq_comm</a>, <a>Int.modEq_iff_dvd</a>, <a>sub_lt_sub_iff_right</a>, <a>sub_le_sub_iff_right</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Data/Int/CardIntervalMod.lean
Polynomial.natDegree_le_of_dvd
R : Type u S : Type v T : Type w a b : R n : ℕ inst✝¹ : Semiring R inst✝ : NoZeroDivisors R p✝ q✝ p q : R[X] h1 : p ∣ q h2 : q ≠ 0 ⊢ p.natDegree ≤ q.natDegree
rcases h1 with ⟨q, rfl⟩
case intro R : Type u S : Type v T : Type w a b : R n : ℕ inst✝¹ : Semiring R inst✝ : NoZeroDivisors R p✝ q✝ p q : R[X] h2 : p * q ≠ 0 ⊢ p.natDegree ≤ (p * q).natDegree
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/RingDivision.lean
Polynomial.natDegree_le_of_dvd
case intro R : Type u S : Type v T : Type w a b : R n : ℕ inst✝¹ : Semiring R inst✝ : NoZeroDivisors R p✝ q✝ p q : R[X] h2 : p * q ≠ 0 ⊢ p.natDegree ≤ (p * q).natDegree
rw [<a>mul_ne_zero_iff</a>] at h2
case intro R : Type u S : Type v T : Type w a b : R n : ℕ inst✝¹ : Semiring R inst✝ : NoZeroDivisors R p✝ q✝ p q : R[X] h2 : p ≠ 0 ∧ q ≠ 0 ⊢ p.natDegree ≤ (p * q).natDegree
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/RingDivision.lean
Polynomial.natDegree_le_of_dvd
case intro R : Type u S : Type v T : Type w a b : R n : ℕ inst✝¹ : Semiring R inst✝ : NoZeroDivisors R p✝ q✝ p q : R[X] h2 : p ≠ 0 ∧ q ≠ 0 ⊢ p.natDegree ≤ (p * q).natDegree
rw [<a>Polynomial.natDegree_mul</a> h2.1 h2.2]
case intro R : Type u S : Type v T : Type w a b : R n : ℕ inst✝¹ : Semiring R inst✝ : NoZeroDivisors R p✝ q✝ p q : R[X] h2 : p ≠ 0 ∧ q ≠ 0 ⊢ p.natDegree ≤ p.natDegree + q.natDegree
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/RingDivision.lean
Polynomial.natDegree_le_of_dvd
case intro R : Type u S : Type v T : Type w a b : R n : ℕ inst✝¹ : Semiring R inst✝ : NoZeroDivisors R p✝ q✝ p q : R[X] h2 : p ≠ 0 ∧ q ≠ 0 ⊢ p.natDegree ≤ p.natDegree + q.natDegree
exact <a>Nat.le_add_right</a> _ _
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Algebra/Polynomial/RingDivision.lean
lt_iff_lt_of_cmp_eq_cmp
α : Type u_1 β✝ : Type u_2 inst✝¹ : LinearOrder α x y : α β : Type u_3 inst✝ : LinearOrder β x' y' : β h : cmp x y = cmp x' y' ⊢ x < y ↔ x' < y'
rw [← <a>cmp_eq_lt_iff</a>, ← <a>cmp_eq_lt_iff</a>, h]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Compare.lean
Filter.pi_inf_principal_univ_pi_neBot
ι : Type u_1 α : ι → Type u_2 f f₁ f₂ : (i : ι) → Filter (α i) s : (i : ι) → Set (α i) p : (i : ι) → α i → Prop ⊢ (pi f ⊓ 𝓟 (univ.pi s)).NeBot ↔ ∀ (i : ι), (f i ⊓ 𝓟 (s i)).NeBot
simp [<a>Filter.neBot_iff</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Filter/Pi.lean
separableClosure.comap_eq_of_algHom
F : Type u E : Type v inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E K : Type w inst✝¹ : Field K inst✝ : Algebra F K i : E →ₐ[F] K ⊢ comap i (separableClosure F K) = separableClosure F E
ext x
case h F : Type u E : Type v inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E K : Type w inst✝¹ : Field K inst✝ : Algebra F K i : E →ₐ[F] K x : E ⊢ x ∈ comap i (separableClosure F K) ↔ x ∈ separableClosure F E
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/FieldTheory/SeparableClosure.lean
separableClosure.comap_eq_of_algHom
case h F : Type u E : Type v inst✝⁴ : Field F inst✝³ : Field E inst✝² : Algebra F E K : Type w inst✝¹ : Field K inst✝ : Algebra F K i : E →ₐ[F] K x : E ⊢ x ∈ comap i (separableClosure F K) ↔ x ∈ separableClosure F E
exact <a>map_mem_separableClosure_iff</a> i
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/FieldTheory/SeparableClosure.lean
MeasureTheory.integral_Ioi_deriv_mul_eq_sub
A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[>] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') ⊢ ∫ (x : ℝ) in Ioi a, u' x * v x + u x * v' x = b' - a'
rw [← <a>Set.Ici_diff_left</a>] at h_zero
A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') ⊢ ∫ (x : ℝ) in Ioi a, u' x * v x + u x * v' x = b' - a'
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
MeasureTheory.integral_Ioi_deriv_mul_eq_sub
A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') ⊢ ∫ (x : ℝ) in Ioi a, u' x * v x + u x * v' x = b' - a'
let f := <a>Function.update</a> (u * v) a a'
A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') f : ℝ → A := Function.update (u * v) a a' ⊢ ∫ (x : ℝ) in Ioi a, u' x * v x + u x * v' x = b' - a'
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
MeasureTheory.integral_Ioi_deriv_mul_eq_sub
A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') f : ℝ → A := Function.update (u * v) a a' ⊢ ∫ (x : ℝ) in Ioi a, u' x * v x + u x * v' x = b' - a'
have hderiv : ∀ x ∈ <a>Set.Ioi</a> a, <a>HasDerivAt</a> f (u' x * v x + u x * v' x) x := by intro x (hx : a < x) apply ((hu x hx).<a>HasDerivAt.mul</a> (hv x hx)).<a>HasDerivAt.congr_of_eventuallyEq</a> filter_upwards [<a>eventually_ne_nhds</a> hx.ne.symm] with y hy exact <a>Function.update_noteq</a> hy a' (u * v)
A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') f : ℝ → A := Function.update (u * v) a a' hderiv : ∀ x ∈ Ioi a, HasDerivAt f (u' x * v x + u x * v' x) x ⊢ ∫ (x : ℝ) in Ioi a, u' x * v x + u x * v' x = b' - a'
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
MeasureTheory.integral_Ioi_deriv_mul_eq_sub
A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') f : ℝ → A := Function.update (u * v) a a' hderiv : ∀ x ∈ Ioi a, HasDerivAt f (u' x * v x + u x * v' x) x ⊢ ∫ (x : ℝ) in Ioi a, u' x * v x + u x * v' x = b' - a'
have htendsto : <a>Filter.Tendsto</a> f <a>Filter.atTop</a> (𝓝 b') := by apply h_infty.congr' filter_upwards [<a>Filter.eventually_ne_atTop</a> a] with x hx exact (<a>Function.update_noteq</a> hx a' (u * v)).<a>Eq.symm</a>
A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') f : ℝ → A := Function.update (u * v) a a' hderiv : ∀ x ∈ Ioi a, HasDerivAt f (u' x * v x + u x * v' x) x htendsto : Tendsto f atTop (𝓝 b') ⊢ ∫ (x : ℝ) in Ioi a, u' x * v x + u x * v' x = b' - a'
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
MeasureTheory.integral_Ioi_deriv_mul_eq_sub
A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') f : ℝ → A := Function.update (u * v) a a' hderiv : ∀ x ∈ Ioi a, HasDerivAt f (u' x * v x + u x * v' x) x htendsto : Tendsto f atTop (𝓝 b') ⊢ ∫ (x : ℝ) in Ioi a, u' x * v x + u x * v' x = b' - a'
simpa using <a>MeasureTheory.integral_Ioi_of_hasDerivAt_of_tendsto</a> (continuousWithinAt_update_same.mpr h_zero) hderiv huv htendsto
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
MeasureTheory.integral_Ioi_deriv_mul_eq_sub
A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') f : ℝ → A := Function.update (u * v) a a' ⊢ ∀ x ∈ Ioi a, HasDerivAt f (u' x * v x + u x * v' x) x
intro x (hx : a < x)
A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') f : ℝ → A := Function.update (u * v) a a' x : ℝ hx : a < x ⊢ HasDerivAt f (u' x * v x + u x * v' x) x
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
MeasureTheory.integral_Ioi_deriv_mul_eq_sub
A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') f : ℝ → A := Function.update (u * v) a a' x : ℝ hx : a < x ⊢ HasDerivAt f (u' x * v x + u x * v' x) x
apply ((hu x hx).<a>HasDerivAt.mul</a> (hv x hx)).<a>HasDerivAt.congr_of_eventuallyEq</a>
A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') f : ℝ → A := Function.update (u * v) a a' x : ℝ hx : a < x ⊢ f =ᶠ[𝓝 x] fun y => u y * v y
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
MeasureTheory.integral_Ioi_deriv_mul_eq_sub
A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') f : ℝ → A := Function.update (u * v) a a' x : ℝ hx : a < x ⊢ f =ᶠ[𝓝 x] fun y => u y * v y
filter_upwards [<a>eventually_ne_nhds</a> hx.ne.symm] with y hy
case h A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') f : ℝ → A := Function.update (u * v) a a' x : ℝ hx : a < x y : ℝ hy : y ≠ a ⊢ f y = u y * v y
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
MeasureTheory.integral_Ioi_deriv_mul_eq_sub
case h A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') f : ℝ → A := Function.update (u * v) a a' x : ℝ hx : a < x y : ℝ hy : y ≠ a ⊢ f y = u y * v y
exact <a>Function.update_noteq</a> hy a' (u * v)
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
MeasureTheory.integral_Ioi_deriv_mul_eq_sub
A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') f : ℝ → A := Function.update (u * v) a a' hderiv : ∀ x ∈ Ioi a, HasDerivAt f (u' x * v x + u x * v' x) x ⊢ Tendsto f atTop (𝓝 b')
apply h_infty.congr'
A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') f : ℝ → A := Function.update (u * v) a a' hderiv : ∀ x ∈ Ioi a, HasDerivAt f (u' x * v x + u x * v' x) x ⊢ u * v =ᶠ[atTop] f
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
MeasureTheory.integral_Ioi_deriv_mul_eq_sub
A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') f : ℝ → A := Function.update (u * v) a a' hderiv : ∀ x ∈ Ioi a, HasDerivAt f (u' x * v x + u x * v' x) x ⊢ u * v =ᶠ[atTop] f
filter_upwards [<a>Filter.eventually_ne_atTop</a> a] with x hx
case h A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') f : ℝ → A := Function.update (u * v) a a' hderiv : ∀ x ∈ Ioi a, HasDerivAt f (u' x * v x + u x * v' x) x x : ℝ hx : x ≠ a ⊢ (u * v) x = f x
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
MeasureTheory.integral_Ioi_deriv_mul_eq_sub
case h A : Type u_1 inst✝² : NormedRing A inst✝¹ : NormedAlgebra ℝ A a b : ℝ a' b' : A u v u' v' : ℝ → A inst✝ : CompleteSpace A hu : ∀ x ∈ Ioi a, HasDerivAt u (u' x) x hv : ∀ x ∈ Ioi a, HasDerivAt v (v' x) x huv : IntegrableOn (u' * v + u * v') (Ioi a) volume h_zero : Tendsto (u * v) (𝓝[Ici a \ {a}] a) (𝓝 a') h_infty : Tendsto (u * v) atTop (𝓝 b') f : ℝ → A := Function.update (u * v) a a' hderiv : ∀ x ∈ Ioi a, HasDerivAt f (u' x * v x + u x * v' x) x x : ℝ hx : x ≠ a ⊢ (u * v) x = f x
exact (<a>Function.update_noteq</a> hx a' (u * v)).<a>Eq.symm</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/MeasureTheory/Integral/IntegralEqImproper.lean
Memℓp.infty_mul
α : Type u_1 E : α → Type u_2 p q : ℝ≥0∞ inst✝¹ : (i : α) → NormedAddCommGroup (E i) I : Type u_3 B : I → Type u_4 inst✝ : (i : I) → NonUnitalNormedRing (B i) f g : (i : I) → B i hf : Memℓp f ⊤ hg : Memℓp g ⊤ ⊢ Memℓp (f * g) ⊤
rw [<a>memℓp_infty_iff</a>]
α : Type u_1 E : α → Type u_2 p q : ℝ≥0∞ inst✝¹ : (i : α) → NormedAddCommGroup (E i) I : Type u_3 B : I → Type u_4 inst✝ : (i : I) → NonUnitalNormedRing (B i) f g : (i : I) → B i hf : Memℓp f ⊤ hg : Memℓp g ⊤ ⊢ BddAbove (Set.range fun i => ‖(f * g) i‖)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/NormedSpace/lpSpace.lean
Memℓp.infty_mul
α : Type u_1 E : α → Type u_2 p q : ℝ≥0∞ inst✝¹ : (i : α) → NormedAddCommGroup (E i) I : Type u_3 B : I → Type u_4 inst✝ : (i : I) → NonUnitalNormedRing (B i) f g : (i : I) → B i hf : Memℓp f ⊤ hg : Memℓp g ⊤ ⊢ BddAbove (Set.range fun i => ‖(f * g) i‖)
obtain ⟨⟨Cf, hCf⟩, ⟨Cg, hCg⟩⟩ := hf.bddAbove, hg.bddAbove
case intro.intro α : Type u_1 E : α → Type u_2 p q : ℝ≥0∞ inst✝¹ : (i : α) → NormedAddCommGroup (E i) I : Type u_3 B : I → Type u_4 inst✝ : (i : I) → NonUnitalNormedRing (B i) f g : (i : I) → B i hf : Memℓp f ⊤ hg : Memℓp g ⊤ Cf : ℝ hCf : Cf ∈ upperBounds (Set.range fun i => ‖f i‖) Cg : ℝ hCg : Cg ∈ upperBounds (Set.range fun i => ‖g i‖) ⊢ BddAbove (Set.range fun i => ‖(f * g) i‖)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/NormedSpace/lpSpace.lean
Memℓp.infty_mul
case intro.intro α : Type u_1 E : α → Type u_2 p q : ℝ≥0∞ inst✝¹ : (i : α) → NormedAddCommGroup (E i) I : Type u_3 B : I → Type u_4 inst✝ : (i : I) → NonUnitalNormedRing (B i) f g : (i : I) → B i hf : Memℓp f ⊤ hg : Memℓp g ⊤ Cf : ℝ hCf : Cf ∈ upperBounds (Set.range fun i => ‖f i‖) Cg : ℝ hCg : Cg ∈ upperBounds (Set.range fun i => ‖g i‖) ⊢ BddAbove (Set.range fun i => ‖(f * g) i‖)
refine ⟨Cf * Cg, ?_⟩
case intro.intro α : Type u_1 E : α → Type u_2 p q : ℝ≥0∞ inst✝¹ : (i : α) → NormedAddCommGroup (E i) I : Type u_3 B : I → Type u_4 inst✝ : (i : I) → NonUnitalNormedRing (B i) f g : (i : I) → B i hf : Memℓp f ⊤ hg : Memℓp g ⊤ Cf : ℝ hCf : Cf ∈ upperBounds (Set.range fun i => ‖f i‖) Cg : ℝ hCg : Cg ∈ upperBounds (Set.range fun i => ‖g i‖) ⊢ Cf * Cg ∈ upperBounds (Set.range fun i => ‖(f * g) i‖)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/NormedSpace/lpSpace.lean
Memℓp.infty_mul
case intro.intro α : Type u_1 E : α → Type u_2 p q : ℝ≥0∞ inst✝¹ : (i : α) → NormedAddCommGroup (E i) I : Type u_3 B : I → Type u_4 inst✝ : (i : I) → NonUnitalNormedRing (B i) f g : (i : I) → B i hf : Memℓp f ⊤ hg : Memℓp g ⊤ Cf : ℝ hCf : Cf ∈ upperBounds (Set.range fun i => ‖f i‖) Cg : ℝ hCg : Cg ∈ upperBounds (Set.range fun i => ‖g i‖) ⊢ Cf * Cg ∈ upperBounds (Set.range fun i => ‖(f * g) i‖)
rintro _ ⟨i, rfl⟩
case intro.intro.intro α : Type u_1 E : α → Type u_2 p q : ℝ≥0∞ inst✝¹ : (i : α) → NormedAddCommGroup (E i) I : Type u_3 B : I → Type u_4 inst✝ : (i : I) → NonUnitalNormedRing (B i) f g : (i : I) → B i hf : Memℓp f ⊤ hg : Memℓp g ⊤ Cf : ℝ hCf : Cf ∈ upperBounds (Set.range fun i => ‖f i‖) Cg : ℝ hCg : Cg ∈ upperBounds (Set.range fun i => ‖g i‖) i : I ⊢ (fun i => ‖(f * g) i‖) i ≤ Cf * Cg
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/NormedSpace/lpSpace.lean
Memℓp.infty_mul
case intro.intro.intro α : Type u_1 E : α → Type u_2 p q : ℝ≥0∞ inst✝¹ : (i : α) → NormedAddCommGroup (E i) I : Type u_3 B : I → Type u_4 inst✝ : (i : I) → NonUnitalNormedRing (B i) f g : (i : I) → B i hf : Memℓp f ⊤ hg : Memℓp g ⊤ Cf : ℝ hCf : Cf ∈ upperBounds (Set.range fun i => ‖f i‖) Cg : ℝ hCg : Cg ∈ upperBounds (Set.range fun i => ‖g i‖) i : I ⊢ (fun i => ‖(f * g) i‖) i ≤ Cf * Cg
calc ‖(f * g) i‖ ≤ ‖f i‖ * ‖g i‖ := <a>norm_mul_le</a> (f i) (g i) _ ≤ Cf * Cg := <a>mul_le_mul</a> (hCf ⟨i, <a>rfl</a>⟩) (hCg ⟨i, <a>rfl</a>⟩) (<a>norm_nonneg</a> _) ((<a>norm_nonneg</a> _).<a>LE.le.trans</a> (hCf ⟨i, <a>rfl</a>⟩))
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Analysis/NormedSpace/lpSpace.lean
UniformSpace.compactSpace_iff_seqCompactSpace
X : Type u_1 Y : Type u_2 inst✝¹ : UniformSpace X s : Set X inst✝ : (𝓤 X).IsCountablyGenerated ⊢ CompactSpace X ↔ SeqCompactSpace X
simp only [← <a>isCompact_univ_iff</a>, <a>seqCompactSpace_iff</a>, <a>UniformSpace.isCompact_iff_isSeqCompact</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Topology/Sequences.lean
MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable_range'
Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : (Set.range τ).Countable i : ι ⊢ MeasurableSet {ω | τ ω < i}
have : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i} := by ext1 ω simp only [<a>lt_iff_le_and_ne</a>, <a>Set.mem_setOf_eq</a>, <a>Set.mem_diff</a>]
Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : (Set.range τ).Countable i : ι this : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i} ⊢ MeasurableSet {ω | τ ω < i}
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Probability/Process/Stopping.lean
MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable_range'
Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : (Set.range τ).Countable i : ι this : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i} ⊢ MeasurableSet {ω | τ ω < i}
rw [this]
Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : (Set.range τ).Countable i : ι this : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i} ⊢ MeasurableSet ({ω | τ ω ≤ i} \ {ω | τ ω = i})
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Probability/Process/Stopping.lean
MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable_range'
Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : (Set.range τ).Countable i : ι this : {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i} ⊢ MeasurableSet ({ω | τ ω ≤ i} \ {ω | τ ω = i})
exact (hτ.measurableSet_le' i).<a>MeasurableSet.diff</a> (hτ.measurableSet_eq_of_countable_range' h_countable i)
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Probability/Process/Stopping.lean
MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable_range'
Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : (Set.range τ).Countable i : ι ⊢ {ω | τ ω < i} = {ω | τ ω ≤ i} \ {ω | τ ω = i}
ext1 ω
case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : (Set.range τ).Countable i : ι ω : Ω ⊢ ω ∈ {ω | τ ω < i} ↔ ω ∈ {ω | τ ω ≤ i} \ {ω | τ ω = i}
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Probability/Process/Stopping.lean
MeasureTheory.IsStoppingTime.measurableSet_lt_of_countable_range'
case h Ω : Type u_1 β : Type u_2 ι : Type u_3 m : MeasurableSpace Ω inst✝ : LinearOrder ι f : Filtration ι m τ π : Ω → ι hτ : IsStoppingTime f τ h_countable : (Set.range τ).Countable i : ι ω : Ω ⊢ ω ∈ {ω | τ ω < i} ↔ ω ∈ {ω | τ ω ≤ i} \ {ω | τ ω = i}
simp only [<a>lt_iff_le_and_ne</a>, <a>Set.mem_setOf_eq</a>, <a>Set.mem_diff</a>]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Probability/Process/Stopping.lean
Fin.map_valEmbedding_Ioi
n : ℕ a b : Fin n ⊢ map valEmbedding (Ioi a) = Ioc (↑a) (n - 1)
clear b
n : ℕ a : Fin n ⊢ map valEmbedding (Ioi a) = Ioc (↑a) (n - 1)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Interval/Finset/Fin.lean
Fin.map_valEmbedding_Ioi
n : ℕ a : Fin n ⊢ map valEmbedding (Ioi a) = Ioc (↑a) (n - 1)
ext x
case a n : ℕ a : Fin n x : ℕ ⊢ x ∈ map valEmbedding (Ioi a) ↔ x ∈ Ioc (↑a) (n - 1)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Interval/Finset/Fin.lean
Fin.map_valEmbedding_Ioi
case a n : ℕ a : Fin n x : ℕ ⊢ x ∈ map valEmbedding (Ioi a) ↔ x ∈ Ioc (↑a) (n - 1)
simp only [<a>exists_prop</a>, <a>Function.Embedding.coe_subtype</a>, <a>Finset.mem_Ioi</a>, <a>Finset.mem_map</a>, <a>Finset.mem_Ioc</a>]
case a n : ℕ a : Fin n x : ℕ ⊢ (∃ a_1, a < a_1 ∧ valEmbedding a_1 = x) ↔ ↑a < x ∧ x ≤ n - 1
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Interval/Finset/Fin.lean
Fin.map_valEmbedding_Ioi
case a n : ℕ a : Fin n x : ℕ ⊢ (∃ a_1, a < a_1 ∧ valEmbedding a_1 = x) ↔ ↑a < x ∧ x ≤ n - 1
constructor
case a.mp n : ℕ a : Fin n x : ℕ ⊢ (∃ a_1, a < a_1 ∧ valEmbedding a_1 = x) → ↑a < x ∧ x ≤ n - 1 case a.mpr n : ℕ a : Fin n x : ℕ ⊢ ↑a < x ∧ x ≤ n - 1 → ∃ a_2, a < a_2 ∧ valEmbedding a_2 = x
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Interval/Finset/Fin.lean
Fin.map_valEmbedding_Ioi
case a.mpr n : ℕ a : Fin n x : ℕ ⊢ ↑a < x ∧ x ≤ n - 1 → ∃ a_2, a < a_2 ∧ valEmbedding a_2 = x
cases n
case a.mpr.zero x : ℕ a : Fin 0 ⊢ ↑a < x ∧ x ≤ 0 - 1 → ∃ a_2, a < a_2 ∧ valEmbedding a_2 = x case a.mpr.succ x n✝ : ℕ a : Fin (n✝ + 1) ⊢ ↑a < x ∧ x ≤ n✝ + 1 - 1 → ∃ a_2, a < a_2 ∧ valEmbedding a_2 = x
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Interval/Finset/Fin.lean
Fin.map_valEmbedding_Ioi
case a.mp n : ℕ a : Fin n x : ℕ ⊢ (∃ a_1, a < a_1 ∧ valEmbedding a_1 = x) → ↑a < x ∧ x ≤ n - 1
rintro ⟨x, hx, rfl⟩
case a.mp.intro.intro n : ℕ a x : Fin n hx : a < x ⊢ ↑a < valEmbedding x ∧ valEmbedding x ≤ n - 1
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Interval/Finset/Fin.lean
Fin.map_valEmbedding_Ioi
case a.mp.intro.intro n : ℕ a x : Fin n hx : a < x ⊢ ↑a < valEmbedding x ∧ valEmbedding x ≤ n - 1
exact ⟨hx, <a>Nat.le_sub_of_add_le</a> <| x.2⟩
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Interval/Finset/Fin.lean
Fin.map_valEmbedding_Ioi
case a.mpr.zero x : ℕ a : Fin 0 ⊢ ↑a < x ∧ x ≤ 0 - 1 → ∃ a_2, a < a_2 ∧ valEmbedding a_2 = x
exact <a>Fin.elim0</a> a
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Interval/Finset/Fin.lean
Fin.map_valEmbedding_Ioi
case a.mpr.succ x n✝ : ℕ a : Fin (n✝ + 1) ⊢ ↑a < x ∧ x ≤ n✝ + 1 - 1 → ∃ a_2, a < a_2 ∧ valEmbedding a_2 = x
exact fun hx => ⟨⟨x, <a>Nat.lt_succ_iff</a>.2 hx.2⟩, hx.1, <a>rfl</a>⟩
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/Order/Interval/Finset/Fin.lean
LinearPMap.ext_iff
R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F EQ : f = g x y : ↥f.domain h : ↑x = ↑y ⊢ ↑f x = ↑f y
congr
case e_a R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F EQ : f = g x y : ↥f.domain h : ↑x = ↑y ⊢ x = y
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/LinearPMap.lean
LinearPMap.ext_iff
case e_a R : Type u_1 inst✝⁶ : Ring R E : Type u_2 inst✝⁵ : AddCommGroup E inst✝⁴ : Module R E F : Type u_3 inst✝³ : AddCommGroup F inst✝² : Module R F G : Type u_4 inst✝¹ : AddCommGroup G inst✝ : Module R G f g : E →ₗ.[R] F EQ : f = g x y : ↥f.domain h : ↑x = ↑y ⊢ x = y
exact mod_cast h
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/LinearAlgebra/LinearPMap.lean
CategoryTheory.Paths.lift_unique
V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C φ : V ⥤q C Φ : Paths V ⥤ C hΦ : of ⋙q Φ.toPrefunctor = φ ⊢ Φ = lift φ
subst_vars
V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C ⊢ Φ = lift (of ⋙q Φ.toPrefunctor)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/PathCategory.lean
CategoryTheory.Paths.lift_unique
V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C ⊢ Φ = lift (of ⋙q Φ.toPrefunctor)
fapply <a>CategoryTheory.Functor.ext</a>
case h_obj V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C ⊢ ∀ (X : Paths V), Φ.obj X = (lift (of ⋙q Φ.toPrefunctor)).obj X case h_map V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C ⊢ autoParam (∀ (X Y : Paths V) (f : X ⟶ Y), Φ.map f = eqToHom ⋯ ≫ (lift (of ⋙q Φ.toPrefunctor)).map f ≫ eqToHom ⋯) _auto✝
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/PathCategory.lean
CategoryTheory.Paths.lift_unique
case h_obj V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C ⊢ ∀ (X : Paths V), Φ.obj X = (lift (of ⋙q Φ.toPrefunctor)).obj X
rintro X
case h_obj V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C X : Paths V ⊢ Φ.obj X = (lift (of ⋙q Φ.toPrefunctor)).obj X
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/PathCategory.lean
CategoryTheory.Paths.lift_unique
case h_obj V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C X : Paths V ⊢ Φ.obj X = (lift (of ⋙q Φ.toPrefunctor)).obj X
rfl
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/PathCategory.lean
CategoryTheory.Paths.lift_unique
case h_map V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C ⊢ autoParam (∀ (X Y : Paths V) (f : X ⟶ Y), Φ.map f = eqToHom ⋯ ≫ (lift (of ⋙q Φ.toPrefunctor)).map f ≫ eqToHom ⋯) _auto✝
rintro X Y f
case h_map V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C X Y : Paths V f : X ⟶ Y ⊢ Φ.map f = eqToHom ⋯ ≫ (lift (of ⋙q Φ.toPrefunctor)).map f ≫ eqToHom ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/PathCategory.lean
CategoryTheory.Paths.lift_unique
case h_map V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C X Y : Paths V f : X ⟶ Y ⊢ Φ.map f = eqToHom ⋯ ≫ (lift (of ⋙q Φ.toPrefunctor)).map f ≫ eqToHom ⋯
dsimp [<a>CategoryTheory.Paths.lift</a>]
case h_map V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C X Y : Paths V f : X ⟶ Y ⊢ Φ.map f = 𝟙 (Φ.obj X) ≫ Quiver.Path.rec (𝟙 (Φ.obj X)) (fun {b c} x f ihp => ihp ≫ Φ.map f.toPath) f ≫ 𝟙 (Φ.obj Y)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/PathCategory.lean
CategoryTheory.Paths.lift_unique
case h_map V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C X Y : Paths V f : X ⟶ Y ⊢ Φ.map f = 𝟙 (Φ.obj X) ≫ Quiver.Path.rec (𝟙 (Φ.obj X)) (fun {b c} x f ihp => ihp ≫ Φ.map f.toPath) f ≫ 𝟙 (Φ.obj Y)
induction' f with _ _ p f' ih
case h_map.nil V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C X Y : Paths V ⊢ Φ.map Quiver.Path.nil = 𝟙 (Φ.obj X) ≫ Quiver.Path.rec (𝟙 (Φ.obj X)) (fun {b c} x f ihp => ihp ≫ Φ.map f.toPath) Quiver.Path.nil ≫ 𝟙 (Φ.obj X) case h_map.cons V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C X Y b✝ c✝ : Paths V p : Quiver.Path X b✝ f' : b✝ ⟶ c✝ ih : Φ.map p = 𝟙 (Φ.obj X) ≫ Quiver.Path.rec (𝟙 (Φ.obj X)) (fun {b c} x f ihp => ihp ≫ Φ.map f.toPath) p ≫ 𝟙 (Φ.obj b✝) ⊢ Φ.map (p.cons f') = 𝟙 (Φ.obj X) ≫ Quiver.Path.rec (𝟙 (Φ.obj X)) (fun {b c} x f ihp => ihp ≫ Φ.map f.toPath) (p.cons f') ≫ 𝟙 (Φ.obj c✝)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/PathCategory.lean
CategoryTheory.Paths.lift_unique
case h_map.nil V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C X Y : Paths V ⊢ Φ.map Quiver.Path.nil = 𝟙 (Φ.obj X) ≫ Quiver.Path.rec (𝟙 (Φ.obj X)) (fun {b c} x f ihp => ihp ≫ Φ.map f.toPath) Quiver.Path.nil ≫ 𝟙 (Φ.obj X)
simp only [<a>CategoryTheory.Category.comp_id</a>]
case h_map.nil V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C X Y : Paths V ⊢ Φ.map Quiver.Path.nil = 𝟙 (Φ.obj X)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/PathCategory.lean
CategoryTheory.Paths.lift_unique
case h_map.nil V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C X Y : Paths V ⊢ Φ.map Quiver.Path.nil = 𝟙 (Φ.obj X)
apply <a>CategoryTheory.Functor.map_id</a>
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/PathCategory.lean
CategoryTheory.Paths.lift_unique
case h_map.cons V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C X Y b✝ c✝ : Paths V p : Quiver.Path X b✝ f' : b✝ ⟶ c✝ ih : Φ.map p = 𝟙 (Φ.obj X) ≫ Quiver.Path.rec (𝟙 (Φ.obj X)) (fun {b c} x f ihp => ihp ≫ Φ.map f.toPath) p ≫ 𝟙 (Φ.obj b✝) ⊢ Φ.map (p.cons f') = 𝟙 (Φ.obj X) ≫ Quiver.Path.rec (𝟙 (Φ.obj X)) (fun {b c} x f ihp => ihp ≫ Φ.map f.toPath) (p.cons f') ≫ 𝟙 (Φ.obj c✝)
simp only [<a>CategoryTheory.Category.comp_id</a>, <a>CategoryTheory.Category.id_comp</a>] at ih ⊢
case h_map.cons V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C X Y b✝ c✝ : Paths V p : Quiver.Path X b✝ f' : b✝ ⟶ c✝ ih : Φ.map p = Quiver.Path.rec (𝟙 (Φ.obj X)) (fun {b c} x f ihp => ihp ≫ Φ.map f.toPath) p ⊢ Φ.map (p.cons f') = Quiver.Path.rec (𝟙 (Φ.obj X)) (fun {b c} x f ihp => ihp ≫ Φ.map f.toPath) p ≫ Φ.map f'.toPath
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/PathCategory.lean
CategoryTheory.Paths.lift_unique
case h_map.cons V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C X Y b✝ c✝ : Paths V p : Quiver.Path X b✝ f' : b✝ ⟶ c✝ ih : Φ.map p = Quiver.Path.rec (𝟙 (Φ.obj X)) (fun {b c} x f ihp => ihp ≫ Φ.map f.toPath) p ⊢ Φ.map (p.cons f') = Quiver.Path.rec (𝟙 (Φ.obj X)) (fun {b c} x f ihp => ihp ≫ Φ.map f.toPath) p ≫ Φ.map f'.toPath
have : Φ.map (<a>Quiver.Path.cons</a> p f') = Φ.map p ≫ Φ.map (<a>Quiver.Hom.toPath</a> f') := by convert <a>CategoryTheory.Functor.map_comp</a> Φ p (<a>Quiver.Hom.toPath</a> f')
case h_map.cons V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C X Y b✝ c✝ : Paths V p : Quiver.Path X b✝ f' : b✝ ⟶ c✝ ih : Φ.map p = Quiver.Path.rec (𝟙 (Φ.obj X)) (fun {b c} x f ihp => ihp ≫ Φ.map f.toPath) p this : Φ.map (p.cons f') = Φ.map p ≫ Φ.map f'.toPath ⊢ Φ.map (p.cons f') = Quiver.Path.rec (𝟙 (Φ.obj X)) (fun {b c} x f ihp => ihp ≫ Φ.map f.toPath) p ≫ Φ.map f'.toPath
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/PathCategory.lean
CategoryTheory.Paths.lift_unique
case h_map.cons V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C X Y b✝ c✝ : Paths V p : Quiver.Path X b✝ f' : b✝ ⟶ c✝ ih : Φ.map p = Quiver.Path.rec (𝟙 (Φ.obj X)) (fun {b c} x f ihp => ihp ≫ Φ.map f.toPath) p this : Φ.map (p.cons f') = Φ.map p ≫ Φ.map f'.toPath ⊢ Φ.map (p.cons f') = Quiver.Path.rec (𝟙 (Φ.obj X)) (fun {b c} x f ihp => ihp ≫ Φ.map f.toPath) p ≫ Φ.map f'.toPath
rw [this, ih]
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/PathCategory.lean
CategoryTheory.Paths.lift_unique
V : Type u₁ inst✝¹ : Quiver V C : Type u_1 inst✝ : Category.{u_2, u_1} C Φ : Paths V ⥤ C X Y b✝ c✝ : Paths V p : Quiver.Path X b✝ f' : b✝ ⟶ c✝ ih : Φ.map p = Quiver.Path.rec (𝟙 (Φ.obj X)) (fun {b c} x f ihp => ihp ≫ Φ.map f.toPath) p ⊢ Φ.map (p.cons f') = Φ.map p ≫ Φ.map f'.toPath
convert <a>CategoryTheory.Functor.map_comp</a> Φ p (<a>Quiver.Hom.toPath</a> f')
no goals
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/PathCategory.lean
Bimod.pentagon_bimod
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ whiskerRight (M.associatorBimod N P).hom Q ≫ (M.associatorBimod (N.tensorBimod P) Q).hom ≫ M.whiskerLeft (N.associatorBimod P Q).hom = ((M.tensorBimod N).associatorBimod P Q).hom ≫ (M.associatorBimod N (P.tensorBimod Q)).hom
dsimp [<a>Bimod.associatorBimod</a>]
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ whiskerRight (isoOfIso { hom := AssociatorBimod.hom M N P, inv := AssociatorBimod.inv M N P, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom Q ≫ (isoOfIso { hom := AssociatorBimod.hom M (N.tensorBimod P) Q, inv := AssociatorBimod.inv M (N.tensorBimod P) Q, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom ≫ M.whiskerLeft (isoOfIso { hom := AssociatorBimod.hom N P Q, inv := AssociatorBimod.inv N P Q, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom = (isoOfIso { hom := AssociatorBimod.hom (M.tensorBimod N) P Q, inv := AssociatorBimod.inv (M.tensorBimod N) P Q, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom ≫ (isoOfIso { hom := AssociatorBimod.hom M N (P.tensorBimod Q), inv := AssociatorBimod.inv M N (P.tensorBimod Q), hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ whiskerRight (isoOfIso { hom := AssociatorBimod.hom M N P, inv := AssociatorBimod.inv M N P, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom Q ≫ (isoOfIso { hom := AssociatorBimod.hom M (N.tensorBimod P) Q, inv := AssociatorBimod.inv M (N.tensorBimod P) Q, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom ≫ M.whiskerLeft (isoOfIso { hom := AssociatorBimod.hom N P Q, inv := AssociatorBimod.inv N P Q, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom = (isoOfIso { hom := AssociatorBimod.hom (M.tensorBimod N) P Q, inv := AssociatorBimod.inv (M.tensorBimod N) P Q, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom ≫ (isoOfIso { hom := AssociatorBimod.hom M N (P.tensorBimod Q), inv := AssociatorBimod.inv M N (P.tensorBimod Q), hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom
ext
case h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ (whiskerRight (isoOfIso { hom := AssociatorBimod.hom M N P, inv := AssociatorBimod.inv M N P, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom Q ≫ (isoOfIso { hom := AssociatorBimod.hom M (N.tensorBimod P) Q, inv := AssociatorBimod.inv M (N.tensorBimod P) Q, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom ≫ M.whiskerLeft (isoOfIso { hom := AssociatorBimod.hom N P Q, inv := AssociatorBimod.inv N P Q, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom).hom = ((isoOfIso { hom := AssociatorBimod.hom (M.tensorBimod N) P Q, inv := AssociatorBimod.inv (M.tensorBimod N) P Q, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom ≫ (isoOfIso { hom := AssociatorBimod.hom M N (P.tensorBimod Q), inv := AssociatorBimod.inv M N (P.tensorBimod Q), hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom).hom
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ (whiskerRight (isoOfIso { hom := AssociatorBimod.hom M N P, inv := AssociatorBimod.inv M N P, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom Q ≫ (isoOfIso { hom := AssociatorBimod.hom M (N.tensorBimod P) Q, inv := AssociatorBimod.inv M (N.tensorBimod P) Q, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom ≫ M.whiskerLeft (isoOfIso { hom := AssociatorBimod.hom N P Q, inv := AssociatorBimod.inv N P Q, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom).hom = ((isoOfIso { hom := AssociatorBimod.hom (M.tensorBimod N) P Q, inv := AssociatorBimod.inv (M.tensorBimod N) P Q, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom ≫ (isoOfIso { hom := AssociatorBimod.hom M N (P.tensorBimod Q), inv := AssociatorBimod.inv M N (P.tensorBimod Q), hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom).hom
apply <a>CategoryTheory.Limits.coequalizer.hom_ext</a>
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ coequalizer.π (((M.tensorBimod N).tensorBimod P).actRight ▷ Q.X) ((α_ ((M.tensorBimod N).tensorBimod P).X Y.X Q.X).hom ≫ ((M.tensorBimod N).tensorBimod P).X ◁ Q.actLeft) ≫ (whiskerRight (isoOfIso { hom := AssociatorBimod.hom M N P, inv := AssociatorBimod.inv M N P, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom Q ≫ (isoOfIso { hom := AssociatorBimod.hom M (N.tensorBimod P) Q, inv := AssociatorBimod.inv M (N.tensorBimod P) Q, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom ≫ M.whiskerLeft (isoOfIso { hom := AssociatorBimod.hom N P Q, inv := AssociatorBimod.inv N P Q, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom).hom = coequalizer.π (((M.tensorBimod N).tensorBimod P).actRight ▷ Q.X) ((α_ ((M.tensorBimod N).tensorBimod P).X Y.X Q.X).hom ≫ ((M.tensorBimod N).tensorBimod P).X ◁ Q.actLeft) ≫ ((isoOfIso { hom := AssociatorBimod.hom (M.tensorBimod N) P Q, inv := AssociatorBimod.inv (M.tensorBimod N) P Q, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom ≫ (isoOfIso { hom := AssociatorBimod.hom M N (P.tensorBimod Q), inv := AssociatorBimod.inv M N (P.tensorBimod Q), hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom).hom
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ coequalizer.π (((M.tensorBimod N).tensorBimod P).actRight ▷ Q.X) ((α_ ((M.tensorBimod N).tensorBimod P).X Y.X Q.X).hom ≫ ((M.tensorBimod N).tensorBimod P).X ◁ Q.actLeft) ≫ (whiskerRight (isoOfIso { hom := AssociatorBimod.hom M N P, inv := AssociatorBimod.inv M N P, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom Q ≫ (isoOfIso { hom := AssociatorBimod.hom M (N.tensorBimod P) Q, inv := AssociatorBimod.inv M (N.tensorBimod P) Q, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom ≫ M.whiskerLeft (isoOfIso { hom := AssociatorBimod.hom N P Q, inv := AssociatorBimod.inv N P Q, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom).hom = coequalizer.π (((M.tensorBimod N).tensorBimod P).actRight ▷ Q.X) ((α_ ((M.tensorBimod N).tensorBimod P).X Y.X Q.X).hom ≫ ((M.tensorBimod N).tensorBimod P).X ◁ Q.actLeft) ≫ ((isoOfIso { hom := AssociatorBimod.hom (M.tensorBimod N) P Q, inv := AssociatorBimod.inv (M.tensorBimod N) P Q, hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom ≫ (isoOfIso { hom := AssociatorBimod.hom M N (P.tensorBimod Q), inv := AssociatorBimod.inv M N (P.tensorBimod Q), hom_inv_id := ⋯, inv_hom_id := ⋯ } ⋯ ⋯).hom).hom
dsimp
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ coequalizer.π (TensorBimod.actRight (M.tensorBimod N) P ▷ Q.X) ((α_ (TensorBimod.X (M.tensorBimod N) P) Y.X Q.X).hom ≫ TensorBimod.X (M.tensorBimod N) P ◁ Q.actLeft) ≫ colimMap (parallelPairHom (TensorBimod.actRight (M.tensorBimod N) P ▷ Q.X) ((α_ (TensorBimod.X (M.tensorBimod N) P) Y.X Q.X).hom ≫ TensorBimod.X (M.tensorBimod N) P ◁ Q.actLeft) (TensorBimod.actRight M (N.tensorBimod P) ▷ Q.X) ((α_ (TensorBimod.X M (N.tensorBimod P)) Y.X Q.X).hom ≫ TensorBimod.X M (N.tensorBimod P) ◁ Q.actLeft) (AssociatorBimod.hom M N P ▷ Y.X ▷ Q.X) (AssociatorBimod.hom M N P ▷ Q.X) ⋯ ⋯) ≫ AssociatorBimod.hom M (N.tensorBimod P) Q ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ AssociatorBimod.hom N P Q) (M.X ◁ AssociatorBimod.hom N P Q) ⋯ ⋯) = coequalizer.π (TensorBimod.actRight (M.tensorBimod N) P ▷ Q.X) ((α_ (TensorBimod.X (M.tensorBimod N) P) Y.X Q.X).hom ≫ TensorBimod.X (M.tensorBimod N) P ◁ Q.actLeft) ≫ AssociatorBimod.hom (M.tensorBimod N) P Q ≫ AssociatorBimod.hom M N (P.tensorBimod Q)
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ coequalizer.π (TensorBimod.actRight (M.tensorBimod N) P ▷ Q.X) ((α_ (TensorBimod.X (M.tensorBimod N) P) Y.X Q.X).hom ≫ TensorBimod.X (M.tensorBimod N) P ◁ Q.actLeft) ≫ colimMap (parallelPairHom (TensorBimod.actRight (M.tensorBimod N) P ▷ Q.X) ((α_ (TensorBimod.X (M.tensorBimod N) P) Y.X Q.X).hom ≫ TensorBimod.X (M.tensorBimod N) P ◁ Q.actLeft) (TensorBimod.actRight M (N.tensorBimod P) ▷ Q.X) ((α_ (TensorBimod.X M (N.tensorBimod P)) Y.X Q.X).hom ≫ TensorBimod.X M (N.tensorBimod P) ◁ Q.actLeft) (AssociatorBimod.hom M N P ▷ Y.X ▷ Q.X) (AssociatorBimod.hom M N P ▷ Q.X) ⋯ ⋯) ≫ AssociatorBimod.hom M (N.tensorBimod P) Q ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ AssociatorBimod.hom N P Q) (M.X ◁ AssociatorBimod.hom N P Q) ⋯ ⋯) = coequalizer.π (TensorBimod.actRight (M.tensorBimod N) P ▷ Q.X) ((α_ (TensorBimod.X (M.tensorBimod N) P) Y.X Q.X).hom ≫ TensorBimod.X (M.tensorBimod N) P ◁ Q.actLeft) ≫ AssociatorBimod.hom (M.tensorBimod N) P Q ≫ AssociatorBimod.hom M N (P.tensorBimod Q)
dsimp only [<a>Bimod.AssociatorBimod.hom</a>]
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ coequalizer.π (TensorBimod.actRight (M.tensorBimod N) P ▷ Q.X) ((α_ (TensorBimod.X (M.tensorBimod N) P) Y.X Q.X).hom ≫ TensorBimod.X (M.tensorBimod N) P ◁ Q.actLeft) ≫ colimMap (parallelPairHom (TensorBimod.actRight (M.tensorBimod N) P ▷ Q.X) ((α_ (TensorBimod.X (M.tensorBimod N) P) Y.X Q.X).hom ≫ TensorBimod.X (M.tensorBimod N) P ◁ Q.actLeft) (TensorBimod.actRight M (N.tensorBimod P) ▷ Q.X) ((α_ (TensorBimod.X M (N.tensorBimod P)) Y.X Q.X).hom ≫ TensorBimod.X M (N.tensorBimod P) ◁ Q.actLeft) (coequalizer.desc (AssociatorBimod.homAux M N P) ⋯ ▷ Y.X ▷ Q.X) (coequalizer.desc (AssociatorBimod.homAux M N P) ⋯ ▷ Q.X) ⋯ ⋯) ≫ coequalizer.desc (AssociatorBimod.homAux M (N.tensorBimod P) Q) ⋯ ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc (AssociatorBimod.homAux N P Q) ⋯) (M.X ◁ coequalizer.desc (AssociatorBimod.homAux N P Q) ⋯) ⋯ ⋯) = coequalizer.π (TensorBimod.actRight (M.tensorBimod N) P ▷ Q.X) ((α_ (TensorBimod.X (M.tensorBimod N) P) Y.X Q.X).hom ≫ TensorBimod.X (M.tensorBimod N) P ◁ Q.actLeft) ≫ coequalizer.desc (AssociatorBimod.homAux (M.tensorBimod N) P Q) ⋯ ≫ coequalizer.desc (AssociatorBimod.homAux M N (P.tensorBimod Q)) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ coequalizer.π (TensorBimod.actRight (M.tensorBimod N) P ▷ Q.X) ((α_ (TensorBimod.X (M.tensorBimod N) P) Y.X Q.X).hom ≫ TensorBimod.X (M.tensorBimod N) P ◁ Q.actLeft) ≫ colimMap (parallelPairHom (TensorBimod.actRight (M.tensorBimod N) P ▷ Q.X) ((α_ (TensorBimod.X (M.tensorBimod N) P) Y.X Q.X).hom ≫ TensorBimod.X (M.tensorBimod N) P ◁ Q.actLeft) (TensorBimod.actRight M (N.tensorBimod P) ▷ Q.X) ((α_ (TensorBimod.X M (N.tensorBimod P)) Y.X Q.X).hom ≫ TensorBimod.X M (N.tensorBimod P) ◁ Q.actLeft) (coequalizer.desc (AssociatorBimod.homAux M N P) ⋯ ▷ Y.X ▷ Q.X) (coequalizer.desc (AssociatorBimod.homAux M N P) ⋯ ▷ Q.X) ⋯ ⋯) ≫ coequalizer.desc (AssociatorBimod.homAux M (N.tensorBimod P) Q) ⋯ ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc (AssociatorBimod.homAux N P Q) ⋯) (M.X ◁ coequalizer.desc (AssociatorBimod.homAux N P Q) ⋯) ⋯ ⋯) = coequalizer.π (TensorBimod.actRight (M.tensorBimod N) P ▷ Q.X) ((α_ (TensorBimod.X (M.tensorBimod N) P) Y.X Q.X).hom ≫ TensorBimod.X (M.tensorBimod N) P ◁ Q.actLeft) ≫ coequalizer.desc (AssociatorBimod.homAux (M.tensorBimod N) P Q) ⋯ ≫ coequalizer.desc (AssociatorBimod.homAux M N (P.tensorBimod Q)) ⋯
slice_lhs 1 2 => rw [<a>CategoryTheory.Limits.ι_colimMap</a>, <a>CategoryTheory.Limits.parallelPairHom_app_one</a>]
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ ((coequalizer.desc (AssociatorBimod.homAux M N P) ⋯ ▷ Q.X ≫ colimit.ι (parallelPair (TensorBimod.actRight M (N.tensorBimod P) ▷ Q.X) ((α_ (TensorBimod.X M (N.tensorBimod P)) Y.X Q.X).hom ≫ TensorBimod.X M (N.tensorBimod P) ◁ Q.actLeft)) WalkingParallelPair.one) ≫ coequalizer.desc (AssociatorBimod.homAux M (N.tensorBimod P) Q) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc (AssociatorBimod.homAux N P Q) ⋯) (M.X ◁ coequalizer.desc (AssociatorBimod.homAux N P Q) ⋯) ⋯ ⋯) = coequalizer.π (TensorBimod.actRight (M.tensorBimod N) P ▷ Q.X) ((α_ (TensorBimod.X (M.tensorBimod N) P) Y.X Q.X).hom ≫ TensorBimod.X (M.tensorBimod N) P ◁ Q.actLeft) ≫ coequalizer.desc (AssociatorBimod.homAux (M.tensorBimod N) P Q) ⋯ ≫ coequalizer.desc (AssociatorBimod.homAux M N (P.tensorBimod Q)) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ ((coequalizer.desc (AssociatorBimod.homAux M N P) ⋯ ▷ Q.X ≫ colimit.ι (parallelPair (TensorBimod.actRight M (N.tensorBimod P) ▷ Q.X) ((α_ (TensorBimod.X M (N.tensorBimod P)) Y.X Q.X).hom ≫ TensorBimod.X M (N.tensorBimod P) ◁ Q.actLeft)) WalkingParallelPair.one) ≫ coequalizer.desc (AssociatorBimod.homAux M (N.tensorBimod P) Q) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc (AssociatorBimod.homAux N P Q) ⋯) (M.X ◁ coequalizer.desc (AssociatorBimod.homAux N P Q) ⋯) ⋯ ⋯) = coequalizer.π (TensorBimod.actRight (M.tensorBimod N) P ▷ Q.X) ((α_ (TensorBimod.X (M.tensorBimod N) P) Y.X Q.X).hom ≫ TensorBimod.X (M.tensorBimod N) P ◁ Q.actLeft) ≫ coequalizer.desc (AssociatorBimod.homAux (M.tensorBimod N) P Q) ⋯ ≫ coequalizer.desc (AssociatorBimod.homAux M N (P.tensorBimod Q)) ⋯
slice_lhs 2 3 => rw [<a>CategoryTheory.Limits.coequalizer.π_desc</a>]
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ coequalizer.desc (AssociatorBimod.homAux M N P) ⋯ ▷ Q.X ≫ AssociatorBimod.homAux M (N.tensorBimod P) Q ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc (AssociatorBimod.homAux N P Q) ⋯) (M.X ◁ coequalizer.desc (AssociatorBimod.homAux N P Q) ⋯) ⋯ ⋯) = coequalizer.π (TensorBimod.actRight (M.tensorBimod N) P ▷ Q.X) ((α_ (TensorBimod.X (M.tensorBimod N) P) Y.X Q.X).hom ≫ TensorBimod.X (M.tensorBimod N) P ◁ Q.actLeft) ≫ coequalizer.desc (AssociatorBimod.homAux (M.tensorBimod N) P Q) ⋯ ≫ coequalizer.desc (AssociatorBimod.homAux M N (P.tensorBimod Q)) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ coequalizer.desc (AssociatorBimod.homAux M N P) ⋯ ▷ Q.X ≫ AssociatorBimod.homAux M (N.tensorBimod P) Q ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc (AssociatorBimod.homAux N P Q) ⋯) (M.X ◁ coequalizer.desc (AssociatorBimod.homAux N P Q) ⋯) ⋯ ⋯) = coequalizer.π (TensorBimod.actRight (M.tensorBimod N) P ▷ Q.X) ((α_ (TensorBimod.X (M.tensorBimod N) P) Y.X Q.X).hom ≫ TensorBimod.X (M.tensorBimod N) P ◁ Q.actLeft) ≫ coequalizer.desc (AssociatorBimod.homAux (M.tensorBimod N) P Q) ⋯ ≫ coequalizer.desc (AssociatorBimod.homAux M N (P.tensorBimod Q)) ⋯
slice_rhs 1 2 => rw [<a>CategoryTheory.Limits.coequalizer.π_desc</a>]
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ coequalizer.desc (AssociatorBimod.homAux M N P) ⋯ ▷ Q.X ≫ AssociatorBimod.homAux M (N.tensorBimod P) Q ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc (AssociatorBimod.homAux N P Q) ⋯) (M.X ◁ coequalizer.desc (AssociatorBimod.homAux N P Q) ⋯) ⋯ ⋯) = AssociatorBimod.homAux (M.tensorBimod N) P Q ≫ coequalizer.desc (AssociatorBimod.homAux M N (P.tensorBimod Q)) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ coequalizer.desc (AssociatorBimod.homAux M N P) ⋯ ▷ Q.X ≫ AssociatorBimod.homAux M (N.tensorBimod P) Q ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc (AssociatorBimod.homAux N P Q) ⋯) (M.X ◁ coequalizer.desc (AssociatorBimod.homAux N P Q) ⋯) ⋯ ⋯) = AssociatorBimod.homAux (M.tensorBimod N) P Q ≫ coequalizer.desc (AssociatorBimod.homAux M N (P.tensorBimod Q)) ⋯
dsimp [<a>Bimod.AssociatorBimod.homAux</a>]
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight P.X) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X P.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)) ⋯) ⋯ ▷ Q.X ≫ ((PreservesCoequalizer.iso (tensorRight Q.X) (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)).inv ≫ coequalizer.desc ((α_ M.X (TensorBimod.X N P) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (TensorBimod.X N P) Y.X Q.X).hom ≫ TensorBimod.X N P ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = ((PreservesCoequalizer.iso (tensorRight Q.X) (TensorBimod.actRight M N ▷ P.X) ((α_ (TensorBimod.X M N) X.X P.X).hom ≫ TensorBimod.X M N ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ (TensorBimod.X M N) P.X Q.X).hom ≫ TensorBimod.X M N ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (TensorBimod.actRight M N ▷ TensorBimod.X P Q) ((α_ (TensorBimod.X M N) X.X (TensorBimod.X P Q)).hom ≫ TensorBimod.X M N ◁ TensorBimod.actLeft P Q)) ⋯) ≫ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight (TensorBimod.X P Q)) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (TensorBimod.X P Q)).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight P.X) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X P.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)) ⋯) ⋯ ▷ Q.X ≫ ((PreservesCoequalizer.iso (tensorRight Q.X) (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)).inv ≫ coequalizer.desc ((α_ M.X (TensorBimod.X N P) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (TensorBimod.X N P) Y.X Q.X).hom ≫ TensorBimod.X N P ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = ((PreservesCoequalizer.iso (tensorRight Q.X) (TensorBimod.actRight M N ▷ P.X) ((α_ (TensorBimod.X M N) X.X P.X).hom ≫ TensorBimod.X M N ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ (TensorBimod.X M N) P.X Q.X).hom ≫ TensorBimod.X M N ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (TensorBimod.actRight M N ▷ TensorBimod.X P Q) ((α_ (TensorBimod.X M N) X.X (TensorBimod.X P Q)).hom ≫ TensorBimod.X M N ◁ TensorBimod.actLeft P Q)) ⋯) ≫ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight (TensorBimod.X P Q)) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (TensorBimod.X P Q)).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯) ⋯
refine (<a>CategoryTheory.cancel_epi</a> ((<a>CategoryTheory.MonoidalCategory.tensorRight</a> _).<a>Prefunctor.map</a> (<a>CategoryTheory.Limits.coequalizer.π</a> _ _))).1 ?_
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ (tensorRight Q.X).map (coequalizer.π ((M.tensorBimod N).actRight ▷ P.X) ((α_ (M.tensorBimod N).X X.X P.X).hom ≫ (M.tensorBimod N).X ◁ P.actLeft)) ≫ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight P.X) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X P.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)) ⋯) ⋯ ▷ Q.X ≫ ((PreservesCoequalizer.iso (tensorRight Q.X) (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)).inv ≫ coequalizer.desc ((α_ M.X (TensorBimod.X N P) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (TensorBimod.X N P) Y.X Q.X).hom ≫ TensorBimod.X N P ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = (tensorRight Q.X).map (coequalizer.π ((M.tensorBimod N).actRight ▷ P.X) ((α_ (M.tensorBimod N).X X.X P.X).hom ≫ (M.tensorBimod N).X ◁ P.actLeft)) ≫ ((PreservesCoequalizer.iso (tensorRight Q.X) (TensorBimod.actRight M N ▷ P.X) ((α_ (TensorBimod.X M N) X.X P.X).hom ≫ TensorBimod.X M N ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ (TensorBimod.X M N) P.X Q.X).hom ≫ TensorBimod.X M N ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (TensorBimod.actRight M N ▷ TensorBimod.X P Q) ((α_ (TensorBimod.X M N) X.X (TensorBimod.X P Q)).hom ≫ TensorBimod.X M N ◁ TensorBimod.actLeft P Q)) ⋯) ≫ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight (TensorBimod.X P Q)) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (TensorBimod.X P Q)).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ (tensorRight Q.X).map (coequalizer.π ((M.tensorBimod N).actRight ▷ P.X) ((α_ (M.tensorBimod N).X X.X P.X).hom ≫ (M.tensorBimod N).X ◁ P.actLeft)) ≫ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight P.X) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X P.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)) ⋯) ⋯ ▷ Q.X ≫ ((PreservesCoequalizer.iso (tensorRight Q.X) (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)).inv ≫ coequalizer.desc ((α_ M.X (TensorBimod.X N P) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (TensorBimod.X N P) Y.X Q.X).hom ≫ TensorBimod.X N P ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = (tensorRight Q.X).map (coequalizer.π ((M.tensorBimod N).actRight ▷ P.X) ((α_ (M.tensorBimod N).X X.X P.X).hom ≫ (M.tensorBimod N).X ◁ P.actLeft)) ≫ ((PreservesCoequalizer.iso (tensorRight Q.X) (TensorBimod.actRight M N ▷ P.X) ((α_ (TensorBimod.X M N) X.X P.X).hom ≫ TensorBimod.X M N ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ (TensorBimod.X M N) P.X Q.X).hom ≫ TensorBimod.X M N ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (TensorBimod.actRight M N ▷ TensorBimod.X P Q) ((α_ (TensorBimod.X M N) X.X (TensorBimod.X P Q)).hom ≫ TensorBimod.X M N ◁ TensorBimod.actLeft P Q)) ⋯) ≫ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight (TensorBimod.X P Q)) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (TensorBimod.X P Q)).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯) ⋯
dsimp
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ coequalizer.π (TensorBimod.actRight M N ▷ P.X) ((α_ (TensorBimod.X M N) X.X P.X).hom ≫ TensorBimod.X M N ◁ P.actLeft) ▷ Q.X ≫ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight P.X) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X P.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)) ⋯) ⋯ ▷ Q.X ≫ ((PreservesCoequalizer.iso (tensorRight Q.X) (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)).inv ≫ coequalizer.desc ((α_ M.X (TensorBimod.X N P) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (TensorBimod.X N P) Y.X Q.X).hom ≫ TensorBimod.X N P ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = coequalizer.π (TensorBimod.actRight M N ▷ P.X) ((α_ (TensorBimod.X M N) X.X P.X).hom ≫ TensorBimod.X M N ◁ P.actLeft) ▷ Q.X ≫ ((PreservesCoequalizer.iso (tensorRight Q.X) (TensorBimod.actRight M N ▷ P.X) ((α_ (TensorBimod.X M N) X.X P.X).hom ≫ TensorBimod.X M N ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ (TensorBimod.X M N) P.X Q.X).hom ≫ TensorBimod.X M N ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (TensorBimod.actRight M N ▷ TensorBimod.X P Q) ((α_ (TensorBimod.X M N) X.X (TensorBimod.X P Q)).hom ≫ TensorBimod.X M N ◁ TensorBimod.actLeft P Q)) ⋯) ≫ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight (TensorBimod.X P Q)) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (TensorBimod.X P Q)).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ coequalizer.π (TensorBimod.actRight M N ▷ P.X) ((α_ (TensorBimod.X M N) X.X P.X).hom ≫ TensorBimod.X M N ◁ P.actLeft) ▷ Q.X ≫ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight P.X) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X P.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)) ⋯) ⋯ ▷ Q.X ≫ ((PreservesCoequalizer.iso (tensorRight Q.X) (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)).inv ≫ coequalizer.desc ((α_ M.X (TensorBimod.X N P) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (TensorBimod.X N P) Y.X Q.X).hom ≫ TensorBimod.X N P ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = coequalizer.π (TensorBimod.actRight M N ▷ P.X) ((α_ (TensorBimod.X M N) X.X P.X).hom ≫ TensorBimod.X M N ◁ P.actLeft) ▷ Q.X ≫ ((PreservesCoequalizer.iso (tensorRight Q.X) (TensorBimod.actRight M N ▷ P.X) ((α_ (TensorBimod.X M N) X.X P.X).hom ≫ TensorBimod.X M N ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ (TensorBimod.X M N) P.X Q.X).hom ≫ TensorBimod.X M N ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (TensorBimod.actRight M N ▷ TensorBimod.X P Q) ((α_ (TensorBimod.X M N) X.X (TensorBimod.X P Q)).hom ≫ TensorBimod.X M N ◁ TensorBimod.actLeft P Q)) ⋯) ≫ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight (TensorBimod.X P Q)) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (TensorBimod.X P Q)).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯) ⋯
slice_lhs 1 2 => rw [← <a>CategoryTheory.MonoidalCategory.comp_whiskerRight</a>, <a>CategoryTheory.Limits.coequalizer.π_desc</a>]
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ ((((PreservesCoequalizer.iso (tensorRight P.X) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X P.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)) ⋯) ▷ Q.X ≫ (PreservesCoequalizer.iso (tensorRight Q.X) (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)).inv) ≫ coequalizer.desc ((α_ M.X (TensorBimod.X N P) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (TensorBimod.X N P) Y.X Q.X).hom ≫ TensorBimod.X N P ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = coequalizer.π (TensorBimod.actRight M N ▷ P.X) ((α_ (TensorBimod.X M N) X.X P.X).hom ≫ TensorBimod.X M N ◁ P.actLeft) ▷ Q.X ≫ ((PreservesCoequalizer.iso (tensorRight Q.X) (TensorBimod.actRight M N ▷ P.X) ((α_ (TensorBimod.X M N) X.X P.X).hom ≫ TensorBimod.X M N ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ (TensorBimod.X M N) P.X Q.X).hom ≫ TensorBimod.X M N ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (TensorBimod.actRight M N ▷ TensorBimod.X P Q) ((α_ (TensorBimod.X M N) X.X (TensorBimod.X P Q)).hom ≫ TensorBimod.X M N ◁ TensorBimod.actLeft P Q)) ⋯) ≫ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight (TensorBimod.X P Q)) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (TensorBimod.X P Q)).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ ((((PreservesCoequalizer.iso (tensorRight P.X) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X P.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)) ⋯) ▷ Q.X ≫ (PreservesCoequalizer.iso (tensorRight Q.X) (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)).inv) ≫ coequalizer.desc ((α_ M.X (TensorBimod.X N P) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (TensorBimod.X N P) Y.X Q.X).hom ≫ TensorBimod.X N P ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = coequalizer.π (TensorBimod.actRight M N ▷ P.X) ((α_ (TensorBimod.X M N) X.X P.X).hom ≫ TensorBimod.X M N ◁ P.actLeft) ▷ Q.X ≫ ((PreservesCoequalizer.iso (tensorRight Q.X) (TensorBimod.actRight M N ▷ P.X) ((α_ (TensorBimod.X M N) X.X P.X).hom ≫ TensorBimod.X M N ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ (TensorBimod.X M N) P.X Q.X).hom ≫ TensorBimod.X M N ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (TensorBimod.actRight M N ▷ TensorBimod.X P Q) ((α_ (TensorBimod.X M N) X.X (TensorBimod.X P Q)).hom ≫ TensorBimod.X M N ◁ TensorBimod.actLeft P Q)) ⋯) ≫ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight (TensorBimod.X P Q)) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (TensorBimod.X P Q)).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯) ⋯
slice_rhs 1 3 => rw [<a>π_tensor_id_preserves_coequalizer_inv_desc</a>]
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ ((((PreservesCoequalizer.iso (tensorRight P.X) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X P.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)) ⋯) ▷ Q.X ≫ (PreservesCoequalizer.iso (tensorRight Q.X) (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)).inv) ≫ coequalizer.desc ((α_ M.X (TensorBimod.X N P) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (TensorBimod.X N P) Y.X Q.X).hom ≫ TensorBimod.X N P ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = ((α_ (TensorBimod.X M N) P.X Q.X).hom ≫ TensorBimod.X M N ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (TensorBimod.actRight M N ▷ TensorBimod.X P Q) ((α_ (TensorBimod.X M N) X.X (TensorBimod.X P Q)).hom ≫ TensorBimod.X M N ◁ TensorBimod.actLeft P Q)) ≫ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight (TensorBimod.X P Q)) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (TensorBimod.X P Q)).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ ((((PreservesCoequalizer.iso (tensorRight P.X) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X P.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)) ⋯) ▷ Q.X ≫ (PreservesCoequalizer.iso (tensorRight Q.X) (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)).inv) ≫ coequalizer.desc ((α_ M.X (TensorBimod.X N P) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (TensorBimod.X N P) Y.X Q.X).hom ≫ TensorBimod.X N P ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = ((α_ (TensorBimod.X M N) P.X Q.X).hom ≫ TensorBimod.X M N ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (TensorBimod.actRight M N ▷ TensorBimod.X P Q) ((α_ (TensorBimod.X M N) X.X (TensorBimod.X P Q)).hom ≫ TensorBimod.X M N ◁ TensorBimod.actLeft P Q)) ≫ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight (TensorBimod.X P Q)) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (TensorBimod.X P Q)).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯) ⋯
slice_rhs 3 4 => rw [<a>CategoryTheory.Limits.coequalizer.π_desc</a>]
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ ((((PreservesCoequalizer.iso (tensorRight P.X) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X P.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)) ⋯) ▷ Q.X ≫ (PreservesCoequalizer.iso (tensorRight Q.X) (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)).inv) ≫ coequalizer.desc ((α_ M.X (TensorBimod.X N P) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (TensorBimod.X N P) Y.X Q.X).hom ≫ TensorBimod.X N P ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = (α_ (TensorBimod.X M N) P.X Q.X).hom ≫ TensorBimod.X M N ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ (PreservesCoequalizer.iso (tensorRight (TensorBimod.X P Q)) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (TensorBimod.X P Q)).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ ((((PreservesCoequalizer.iso (tensorRight P.X) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X P.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)) ⋯) ▷ Q.X ≫ (PreservesCoequalizer.iso (tensorRight Q.X) (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)).inv) ≫ coequalizer.desc ((α_ M.X (TensorBimod.X N P) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (TensorBimod.X N P) Y.X Q.X).hom ≫ TensorBimod.X N P ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = (α_ (TensorBimod.X M N) P.X Q.X).hom ≫ TensorBimod.X M N ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ (PreservesCoequalizer.iso (tensorRight (TensorBimod.X P Q)) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (TensorBimod.X P Q)).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯
refine (<a>CategoryTheory.cancel_epi</a> ((<a>CategoryTheory.MonoidalCategory.tensorRight</a> _ ⋙ <a>CategoryTheory.MonoidalCategory.tensorRight</a> _).<a>Prefunctor.map</a> (<a>CategoryTheory.Limits.coequalizer.π</a> _ _))).1 ?_
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ (tensorRight P.X ⋙ tensorRight Q.X).map (coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)) ≫ ((((PreservesCoequalizer.iso (tensorRight P.X) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X P.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)) ⋯) ▷ Q.X ≫ (PreservesCoequalizer.iso (tensorRight Q.X) (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)).inv) ≫ coequalizer.desc ((α_ M.X (TensorBimod.X N P) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (TensorBimod.X N P) Y.X Q.X).hom ≫ TensorBimod.X N P ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = (tensorRight P.X ⋙ tensorRight Q.X).map (coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)) ≫ (α_ (TensorBimod.X M N) P.X Q.X).hom ≫ TensorBimod.X M N ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ (PreservesCoequalizer.iso (tensorRight (TensorBimod.X P Q)) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (TensorBimod.X P Q)).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ (tensorRight P.X ⋙ tensorRight Q.X).map (coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)) ≫ ((((PreservesCoequalizer.iso (tensorRight P.X) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X P.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)) ⋯) ▷ Q.X ≫ (PreservesCoequalizer.iso (tensorRight Q.X) (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)).inv) ≫ coequalizer.desc ((α_ M.X (TensorBimod.X N P) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (TensorBimod.X N P) Y.X Q.X).hom ≫ TensorBimod.X N P ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = (tensorRight P.X ⋙ tensorRight Q.X).map (coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)) ≫ (α_ (TensorBimod.X M N) P.X Q.X).hom ≫ TensorBimod.X M N ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ (PreservesCoequalizer.iso (tensorRight (TensorBimod.X P Q)) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (TensorBimod.X P Q)).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯
dsimp
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ▷ Q.X ≫ ((((PreservesCoequalizer.iso (tensorRight P.X) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X P.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)) ⋯) ▷ Q.X ≫ (PreservesCoequalizer.iso (tensorRight Q.X) (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)).inv) ≫ coequalizer.desc ((α_ M.X (TensorBimod.X N P) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (TensorBimod.X N P) Y.X Q.X).hom ≫ TensorBimod.X N P ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ▷ Q.X ≫ (α_ (TensorBimod.X M N) P.X Q.X).hom ≫ TensorBimod.X M N ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ (PreservesCoequalizer.iso (tensorRight (TensorBimod.X P Q)) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (TensorBimod.X P Q)).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ▷ Q.X ≫ ((((PreservesCoequalizer.iso (tensorRight P.X) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X P.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)) ⋯) ▷ Q.X ≫ (PreservesCoequalizer.iso (tensorRight Q.X) (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)).inv) ≫ coequalizer.desc ((α_ M.X (TensorBimod.X N P) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (TensorBimod.X N P) Y.X Q.X).hom ≫ TensorBimod.X N P ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ▷ Q.X ≫ (α_ (TensorBimod.X M N) P.X Q.X).hom ≫ TensorBimod.X M N ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ (PreservesCoequalizer.iso (tensorRight (TensorBimod.X P Q)) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (TensorBimod.X P Q)).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯
slice_lhs 1 2 => rw [← <a>CategoryTheory.MonoidalCategory.comp_whiskerRight</a>, <a>π_tensor_id_preserves_coequalizer_inv_desc</a>, <a>CategoryTheory.MonoidalCategory.comp_whiskerRight</a>, <a>CategoryTheory.MonoidalCategory.comp_whiskerRight</a>]
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ ((((α_ M.X N.X P.X).hom ▷ Q.X ≫ (M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)) ▷ Q.X ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P) ▷ Q.X) ≫ (PreservesCoequalizer.iso (tensorRight Q.X) (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)).inv) ≫ coequalizer.desc ((α_ M.X (TensorBimod.X N P) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (TensorBimod.X N P) Y.X Q.X).hom ≫ TensorBimod.X N P ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ▷ Q.X ≫ (α_ (TensorBimod.X M N) P.X Q.X).hom ≫ TensorBimod.X M N ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ (PreservesCoequalizer.iso (tensorRight (TensorBimod.X P Q)) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (TensorBimod.X P Q)).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ ((((α_ M.X N.X P.X).hom ▷ Q.X ≫ (M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)) ▷ Q.X ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P) ▷ Q.X) ≫ (PreservesCoequalizer.iso (tensorRight Q.X) (M.actRight ▷ TensorBimod.X N P) ((α_ M.X W.X (TensorBimod.X N P)).hom ≫ M.X ◁ TensorBimod.actLeft N P)).inv) ≫ coequalizer.desc ((α_ M.X (TensorBimod.X N P) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (TensorBimod.X N P) Y.X Q.X).hom ≫ TensorBimod.X N P ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ⋯) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ▷ Q.X ≫ (α_ (TensorBimod.X M N) P.X Q.X).hom ≫ TensorBimod.X M N ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ (PreservesCoequalizer.iso (tensorRight (TensorBimod.X P Q)) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (TensorBimod.X P Q)).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯
slice_lhs 3 5 => rw [<a>π_tensor_id_preserves_coequalizer_inv_desc</a>]
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ (α_ M.X N.X P.X).hom ▷ Q.X ≫ (M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)) ▷ Q.X ≫ ((α_ M.X (TensorBimod.X N P) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (TensorBimod.X N P) Y.X Q.X).hom ≫ TensorBimod.X N P ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ▷ Q.X ≫ (α_ (TensorBimod.X M N) P.X Q.X).hom ≫ TensorBimod.X M N ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ (PreservesCoequalizer.iso (tensorRight (TensorBimod.X P Q)) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (TensorBimod.X P Q)).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ (α_ M.X N.X P.X).hom ▷ Q.X ≫ (M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)) ▷ Q.X ≫ ((α_ M.X (TensorBimod.X N P) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (TensorBimod.X N P) Y.X Q.X).hom ≫ TensorBimod.X N P ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ≫ colimMap (parallelPairHom (M.actRight ▷ TensorBimod.X (N.tensorBimod P) Q) ((α_ M.X W.X (TensorBimod.X (N.tensorBimod P) Q)).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ▷ Q.X ≫ (α_ (TensorBimod.X M N) P.X Q.X).hom ≫ TensorBimod.X M N ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ (PreservesCoequalizer.iso (tensorRight (TensorBimod.X P Q)) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (TensorBimod.X P Q)).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ TensorBimod.X P Q) ((α_ N.X X.X (TensorBimod.X P Q)).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ TensorBimod.X N (P.tensorBimod Q)) ((α_ M.X W.X (TensorBimod.X N (P.tensorBimod Q))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯
dsimp only [<a>Bimod.TensorBimod.X</a>]
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ (α_ M.X N.X P.X).hom ▷ Q.X ≫ (M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)) ▷ Q.X ≫ ((α_ M.X (coequalizer (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (coequalizer (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)) Y.X Q.X).hom ≫ coequalizer (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ coequalizer ((N.tensorBimod P).actRight ▷ Q.X) ((α_ (N.tensorBimod P).X Y.X Q.X).hom ≫ (N.tensorBimod P).X ◁ Q.actLeft)) ((α_ M.X W.X (coequalizer ((N.tensorBimod P).actRight ▷ Q.X) ((α_ (N.tensorBimod P).X Y.X Q.X).hom ≫ (N.tensorBimod P).X ◁ Q.actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ≫ colimMap (parallelPairHom (M.actRight ▷ coequalizer ((N.tensorBimod P).actRight ▷ Q.X) ((α_ (N.tensorBimod P).X Y.X Q.X).hom ≫ (N.tensorBimod P).X ◁ Q.actLeft)) ((α_ M.X W.X (coequalizer ((N.tensorBimod P).actRight ▷ Q.X) ((α_ (N.tensorBimod P).X Y.X Q.X).hom ≫ (N.tensorBimod P).X ◁ Q.actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft)) ((α_ M.X W.X (coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ▷ Q.X ≫ (α_ (coequalizer (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)) P.X Q.X).hom ≫ coequalizer (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ (PreservesCoequalizer.iso (tensorRight (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft)) ((α_ M.X W.X (coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ (α_ M.X N.X P.X).hom ▷ Q.X ≫ (M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)) ▷ Q.X ≫ ((α_ M.X (coequalizer (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)) Q.X).hom ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (coequalizer (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)) Y.X Q.X).hom ≫ coequalizer (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ◁ Q.actLeft) ≫ coequalizer.π (M.actRight ▷ coequalizer ((N.tensorBimod P).actRight ▷ Q.X) ((α_ (N.tensorBimod P).X Y.X Q.X).hom ≫ (N.tensorBimod P).X ◁ Q.actLeft)) ((α_ M.X W.X (coequalizer ((N.tensorBimod P).actRight ▷ Q.X) ((α_ (N.tensorBimod P).X Y.X Q.X).hom ≫ (N.tensorBimod P).X ◁ Q.actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ≫ colimMap (parallelPairHom (M.actRight ▷ coequalizer ((N.tensorBimod P).actRight ▷ Q.X) ((α_ (N.tensorBimod P).X Y.X Q.X).hom ≫ (N.tensorBimod P).X ◁ Q.actLeft)) ((α_ M.X W.X (coequalizer ((N.tensorBimod P).actRight ▷ Q.X) ((α_ (N.tensorBimod P).X Y.X Q.X).hom ≫ (N.tensorBimod P).X ◁ Q.actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft)) ((α_ M.X W.X (coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ▷ Q.X ≫ (α_ (coequalizer (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)) P.X Q.X).hom ≫ coequalizer (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ (PreservesCoequalizer.iso (tensorRight (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft)) ((α_ M.X W.X (coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯
slice_lhs 2 3 => rw [<a>CategoryTheory.MonoidalCategory.associator_naturality_middle</a>]
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ (α_ M.X N.X P.X).hom ▷ Q.X ≫ ((((α_ M.X (N.X ⊗ P.X) Q.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ▷ Q.X) ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (coequalizer (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)) Y.X Q.X).hom ≫ coequalizer (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ◁ Q.actLeft)) ≫ coequalizer.π (M.actRight ▷ coequalizer ((N.tensorBimod P).actRight ▷ Q.X) ((α_ (N.tensorBimod P).X Y.X Q.X).hom ≫ (N.tensorBimod P).X ◁ Q.actLeft)) ((α_ M.X W.X (coequalizer ((N.tensorBimod P).actRight ▷ Q.X) ((α_ (N.tensorBimod P).X Y.X Q.X).hom ≫ (N.tensorBimod P).X ◁ Q.actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ≫ colimMap (parallelPairHom (M.actRight ▷ coequalizer ((N.tensorBimod P).actRight ▷ Q.X) ((α_ (N.tensorBimod P).X Y.X Q.X).hom ≫ (N.tensorBimod P).X ◁ Q.actLeft)) ((α_ M.X W.X (coequalizer ((N.tensorBimod P).actRight ▷ Q.X) ((α_ (N.tensorBimod P).X Y.X Q.X).hom ≫ (N.tensorBimod P).X ◁ Q.actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft)) ((α_ M.X W.X (coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ▷ Q.X ≫ (α_ (coequalizer (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)) P.X Q.X).hom ≫ coequalizer (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ (PreservesCoequalizer.iso (tensorRight (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft)) ((α_ M.X W.X (coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ (α_ M.X N.X P.X).hom ▷ Q.X ≫ ((((α_ M.X (N.X ⊗ P.X) Q.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ▷ Q.X) ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (coequalizer (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)) Y.X Q.X).hom ≫ coequalizer (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ◁ Q.actLeft)) ≫ coequalizer.π (M.actRight ▷ coequalizer ((N.tensorBimod P).actRight ▷ Q.X) ((α_ (N.tensorBimod P).X Y.X Q.X).hom ≫ (N.tensorBimod P).X ◁ Q.actLeft)) ((α_ M.X W.X (coequalizer ((N.tensorBimod P).actRight ▷ Q.X) ((α_ (N.tensorBimod P).X Y.X Q.X).hom ≫ (N.tensorBimod P).X ◁ Q.actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q)) ≫ colimMap (parallelPairHom (M.actRight ▷ coequalizer ((N.tensorBimod P).actRight ▷ Q.X) ((α_ (N.tensorBimod P).X Y.X Q.X).hom ≫ (N.tensorBimod P).X ◁ Q.actLeft)) ((α_ M.X W.X (coequalizer ((N.tensorBimod P).actRight ▷ Q.X) ((α_ (N.tensorBimod P).X Y.X Q.X).hom ≫ (N.tensorBimod P).X ◁ Q.actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft (N.tensorBimod P) Q) (M.actRight ▷ coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft)) ((α_ M.X W.X (coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q)) ((M.X ⊗ W.X) ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) (M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯) ⋯ ⋯) = coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ▷ Q.X ≫ (α_ (coequalizer (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)) P.X Q.X).hom ≫ coequalizer (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ (PreservesCoequalizer.iso (tensorRight (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft)) ((α_ M.X W.X (coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯
slice_lhs 5 6 => rw [<a>CategoryTheory.Limits.ι_colimMap</a>, <a>CategoryTheory.Limits.parallelPairHom_app_one</a>]
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ (α_ M.X N.X P.X).hom ▷ Q.X ≫ (α_ M.X (N.X ⊗ P.X) Q.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ▷ Q.X ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (coequalizer (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)) Y.X Q.X).hom ≫ coequalizer (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ◁ Q.actLeft) ≫ M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯ ≫ colimit.ι (parallelPair (M.actRight ▷ coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft)) ((α_ M.X W.X (coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) WalkingParallelPair.one = coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ▷ Q.X ≫ (α_ (coequalizer (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)) P.X Q.X).hom ≫ coequalizer (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ (PreservesCoequalizer.iso (tensorRight (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft)) ((α_ M.X W.X (coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ (α_ M.X N.X P.X).hom ▷ Q.X ≫ (α_ M.X (N.X ⊗ P.X) Q.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ▷ Q.X ≫ M.X ◁ coequalizer.π (TensorBimod.actRight N P ▷ Q.X) ((α_ (coequalizer (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)) Y.X Q.X).hom ≫ coequalizer (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ◁ Q.actLeft) ≫ M.X ◁ coequalizer.desc ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ⋯ ≫ colimit.ι (parallelPair (M.actRight ▷ coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft)) ((α_ M.X W.X (coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) WalkingParallelPair.one = coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ▷ Q.X ≫ (α_ (coequalizer (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)) P.X Q.X).hom ≫ coequalizer (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ (PreservesCoequalizer.iso (tensorRight (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft)) ((α_ M.X W.X (coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯
slice_lhs 4 5 => rw [← <a>CategoryTheory.MonoidalCategory.whiskerLeft_comp</a>, <a>CategoryTheory.Limits.coequalizer.π_desc</a>]
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ (α_ M.X N.X P.X).hom ▷ Q.X ≫ (α_ M.X (N.X ⊗ P.X) Q.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ▷ Q.X ≫ M.X ◁ ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ≫ colimit.ι (parallelPair (M.actRight ▷ coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft)) ((α_ M.X W.X (coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) WalkingParallelPair.one = coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ▷ Q.X ≫ (α_ (coequalizer (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)) P.X Q.X).hom ≫ coequalizer (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ (PreservesCoequalizer.iso (tensorRight (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft)) ((α_ M.X W.X (coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean
Bimod.pentagon_bimod
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ (α_ M.X N.X P.X).hom ▷ Q.X ≫ (α_ M.X (N.X ⊗ P.X) Q.X).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft) ▷ Q.X ≫ M.X ◁ ((PreservesCoequalizer.iso (tensorRight Q.X) (N.actRight ▷ P.X) ((α_ N.X X.X P.X).hom ≫ N.X ◁ P.actLeft)).inv ≫ coequalizer.desc ((α_ N.X P.X Q.X).hom ≫ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ⋯) ≫ colimit.ι (parallelPair (M.actRight ▷ coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft)) ((α_ M.X W.X (coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) WalkingParallelPair.one = coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ▷ Q.X ≫ (α_ (coequalizer (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)) P.X Q.X).hom ≫ coequalizer (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ (PreservesCoequalizer.iso (tensorRight (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft)) ((α_ M.X W.X (coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯
slice_lhs 3 4 => rw [← <a>CategoryTheory.MonoidalCategory.whiskerLeft_comp</a>, <a>π_tensor_id_preserves_coequalizer_inv_desc</a>, <a>CategoryTheory.MonoidalCategory.whiskerLeft_comp</a>, <a>CategoryTheory.MonoidalCategory.whiskerLeft_comp</a>]
case h.h C : Type u₁ inst✝⁴ : Category.{v₁, u₁} C inst✝³ : MonoidalCategory C A B : Mon_ C M✝ : Bimod A B inst✝² : HasCoequalizers C inst✝¹ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorLeft X) inst✝ : (X : C) → PreservesColimitsOfSize.{0, 0, v₁, v₁, u₁, u₁} (tensorRight X) V W X Y Z : Mon_ C M : Bimod V W N : Bimod W X P : Bimod X Y Q : Bimod Y Z ⊢ (α_ M.X N.X P.X).hom ▷ Q.X ≫ (α_ M.X (N.X ⊗ P.X) Q.X).hom ≫ (M.X ◁ (α_ N.X P.X Q.X).hom ≫ M.X ◁ N.X ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ M.X ◁ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q)) ≫ colimit.ι (parallelPair (M.actRight ▷ coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft)) ((α_ M.X W.X (coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) WalkingParallelPair.one = coequalizer.π (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ▷ P.X ▷ Q.X ≫ (α_ (coequalizer (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)) P.X Q.X).hom ≫ coequalizer (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft) ◁ coequalizer.π (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft) ≫ (PreservesCoequalizer.iso (tensorRight (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))) (M.actRight ▷ N.X) ((α_ M.X W.X N.X).hom ≫ M.X ◁ N.actLeft)).inv ≫ coequalizer.desc ((α_ M.X N.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ M.X ◁ coequalizer.π (N.actRight ▷ coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft)) ((α_ N.X X.X (coequalizer (P.actRight ▷ Q.X) ((α_ P.X Y.X Q.X).hom ≫ P.X ◁ Q.actLeft))).hom ≫ N.X ◁ TensorBimod.actLeft P Q) ≫ coequalizer.π (M.actRight ▷ coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft)) ((α_ M.X W.X (coequalizer (N.actRight ▷ (P.tensorBimod Q).X) ((α_ N.X X.X (P.tensorBimod Q).X).hom ≫ N.X ◁ (P.tensorBimod Q).actLeft))).hom ≫ M.X ◁ TensorBimod.actLeft N (P.tensorBimod Q))) ⋯
https://github.com/leanprover-community/mathlib4
29dcec074de168ac2bf835a77ef68bbe069194c5
Mathlib/CategoryTheory/Monoidal/Bimod.lean