|
--- |
|
license: mit |
|
task_categories: |
|
- audio-classification |
|
language: |
|
- zh |
|
- en |
|
tags: |
|
- music |
|
- art |
|
pretty_name: Timbre and Range Dataset |
|
size_categories: |
|
- 1K<n<10K |
|
dataset_info: |
|
- config_name: timbre |
|
features: |
|
- name: audio |
|
dtype: |
|
audio: |
|
sampling_rate: 44100 |
|
- name: mel |
|
dtype: image |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
'0': Base |
|
'1': Split |
|
'2': Short |
|
- name: score1 |
|
dtype: float64 |
|
- name: score2 |
|
dtype: float64 |
|
- name: avg_score |
|
dtype: float64 |
|
splits: |
|
- name: train |
|
num_bytes: 213644 |
|
num_examples: 537 |
|
- name: validation |
|
num_bytes: 26664 |
|
num_examples: 67 |
|
- name: test |
|
num_bytes: 27088 |
|
num_examples: 68 |
|
download_size: 595425921 |
|
dataset_size: 267396 |
|
- config_name: range |
|
features: |
|
- name: audio |
|
dtype: |
|
audio: |
|
sampling_rate: 44100 |
|
- name: mel |
|
dtype: image |
|
- name: label |
|
dtype: |
|
class_label: |
|
names: |
|
'0': Narrow |
|
'1': Moderate |
|
'2': Wide |
|
splits: |
|
- name: train |
|
num_bytes: 210052 |
|
num_examples: 580 |
|
- name: validation |
|
num_bytes: 26462 |
|
num_examples: 73 |
|
- name: test |
|
num_bytes: 26400 |
|
num_examples: 73 |
|
download_size: 65309164 |
|
dataset_size: 262914 |
|
configs: |
|
- config_name: timbre |
|
data_files: |
|
- split: train |
|
path: timbre/train/data-*.arrow |
|
- split: validation |
|
path: timbre/validation/data-*.arrow |
|
- split: test |
|
path: timbre/test/data-*.arrow |
|
- config_name: range |
|
data_files: |
|
- split: train |
|
path: range/train/data-*.arrow |
|
- split: validation |
|
path: range/validation/data-*.arrow |
|
- split: test |
|
path: range/test/data-*.arrow |
|
--- |
|
|
|
# Dataset Card for Timbre and Range Dataset |
|
## Dataset Summary |
|
The timbre dataset contains acapella singing audio of 9 singers, as well as cut single-note audio, totaling 775 clips (.wav format) |
|
The vocal range dataset includes several up and down chromatic scales audio clips of several vocals, as well as the cut single-note audio clips (.wav format). |
|
|
|
### Supported Tasks and Leaderboards |
|
Audio classification |
|
|
|
### Languages |
|
Chinese, English |
|
|
|
## Dataset Structure |
|
<https://huggingface.co/datasets/ccmusic-database/timbre_range/viewer> |
|
|
|
### Data Instances |
|
.zip(.wav, .jpg), .csv |
|
|
|
### Data Fields |
|
```txt |
|
timbre: song1-32 |
|
range: vox1_19-22/26-29/32/33/36-38/41-47/51-55/59-64/69-71/79-81 |
|
``` |
|
|
|
### Data Splits |
|
Train, Validation, Test |
|
|
|
## Usage |
|
### Timbre subset |
|
```python |
|
from datasets import load_dataset |
|
|
|
ds = load_dataset("ccmusic-database/timbre_range", name="timbre") |
|
for item in ds["train"]: |
|
print(item) |
|
|
|
for item in ds["validation"]: |
|
print(item) |
|
|
|
for item in ds["test"]: |
|
print(item) |
|
``` |
|
|
|
### Range subset |
|
```python |
|
from datasets import load_dataset |
|
|
|
ds = load_dataset("ccmusic-database/timbre_range", name="range") |
|
for item in ds["train"]: |
|
print(item) |
|
|
|
for item in ds["validation"]: |
|
print(item) |
|
|
|
for item in ds["test"]: |
|
print(item) |
|
``` |
|
|
|
## Maintenance |
|
```bash |
|
GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:datasets/ccmusic-database/timbre_range |
|
cd timbre_range |
|
``` |
|
|
|
## Mirror |
|
<https://www.modelscope.cn/datasets/ccmusic-database/timbre_range> |
|
|
|
## Dataset Creation |
|
### Curation Rationale |
|
Promoting the development of music AI industry |
|
|
|
### Source Data |
|
#### Initial Data Collection and Normalization |
|
Zijin Li, Zhaorui Liu, Monan Zhou |
|
|
|
#### Who are the source language producers? |
|
Composers of the songs in dataset |
|
|
|
### Annotations |
|
#### Annotation process |
|
CCMUSIC students collected acapella singing audios of 9 singers, as well as cut single-note audio, totaling 775 clips |
|
|
|
#### Who are the annotators? |
|
Students from CCMUSIC |
|
|
|
### Personal and Sensitive Information |
|
Due to copyright issues with the original music, only acapella singing audios are provided in the dataset |
|
|
|
## Considerations for Using the Data |
|
### Social Impact of Dataset |
|
Promoting the development of AI in the music industry |
|
|
|
### Discussion of Biases |
|
Most are Chinese songs |
|
|
|
### Other Known Limitations |
|
Samples are not balanced enough |
|
|
|
## Additional Information |
|
### Dataset Curators |
|
Zijin Li |
|
|
|
### Evaluation |
|
[1] [Yiliang, J. et al. (2019) 'Data Augmentation based Convolutional Neural Network for Auscultation', Journal of Fudan University(Natural Science), pp. 328-334. doi:10.15943/j.cnki.fdxb-jns.2019.03.004.](https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2019&filename=FDXB201903004&uniplatform=NZKPT&v=VAszHDtjPUYMi3JYVrdSGx4fcqlEtgCeKwRGTacCj98CGEQg5CUFHxakrvuaMzm3) |
|
|
|
### Citation Information |
|
```bibtex |
|
@article{2019Data, |
|
title={Data Augmentation based Convolutional Neural Network for Auscultation}, |
|
author={Yiliang Jiang and Xulong Zhang and Jin Deng and Wenqiang Zhang and Wei Li}, |
|
journal={Journal of Fudan University (Natural Science)}, |
|
year={2019}, |
|
} |
|
``` |
|
|
|
### Contributions |
|
Provide a dataset for music timbre and range |