timbre_range / README.md
admin
test cls label
242afee
|
raw
history blame
5.14 kB
---
license: mit
task_categories:
- audio-classification
language:
- zh
- en
tags:
- music
- art
pretty_name: Timbre and Range Dataset
size_categories:
- 1K<n<10K
dataset_info:
- config_name: timbre
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
- name: mel
dtype: image
- name: label
dtype:
class_label:
names:
'0': Base
'1': Split
'2': Short
- name: score1
dtype: float64
- name: score2
dtype: float64
- name: avg_score
dtype: float64
splits:
- name: train
num_bytes: 213644
num_examples: 537
- name: validation
num_bytes: 26664
num_examples: 67
- name: test
num_bytes: 27088
num_examples: 68
download_size: 595425921
dataset_size: 267396
- config_name: range
features:
- name: audio
dtype:
audio:
sampling_rate: 44100
- name: mel
dtype: image
- name: label
dtype:
class_label:
names:
'0': Narrow
'1': Moderate
'2': Wide
splits:
- name: train
num_bytes: 210052
num_examples: 580
- name: validation
num_bytes: 26462
num_examples: 73
- name: test
num_bytes: 26400
num_examples: 73
download_size: 65309164
dataset_size: 262914
configs:
- config_name: timbre
data_files:
- split: train
path: timbre/train/data-*.arrow
- split: validation
path: timbre/validation/data-*.arrow
- split: test
path: timbre/test/data-*.arrow
- config_name: range
data_files:
- split: train
path: range/train/data-*.arrow
- split: validation
path: range/validation/data-*.arrow
- split: test
path: range/test/data-*.arrow
---
# Dataset Card for Timbre and Range Dataset
## Dataset Summary
The timbre dataset contains acapella singing audio of 9 singers, as well as cut single-note audio, totaling 775 clips (.wav format)
The vocal range dataset includes several up and down chromatic scales audio clips of several vocals, as well as the cut single-note audio clips (.wav format).
### Supported Tasks and Leaderboards
Audio classification
### Languages
Chinese, English
## Dataset Structure
<https://huggingface.co/datasets/ccmusic-database/timbre_range/viewer>
### Data Instances
.zip(.wav, .jpg), .csv
### Data Fields
```txt
timbre: song1-32
range: vox1_19-22/26-29/32/33/36-38/41-47/51-55/59-64/69-71/79-81
```
### Data Splits
Train, Validation, Test
## Usage
### Timbre subset
```python
from datasets import load_dataset
ds = load_dataset("ccmusic-database/timbre_range", name="timbre")
for item in ds["train"]:
print(item)
for item in ds["validation"]:
print(item)
for item in ds["test"]:
print(item)
```
### Range subset
```python
from datasets import load_dataset
ds = load_dataset("ccmusic-database/timbre_range", name="range")
for item in ds["train"]:
print(item)
for item in ds["validation"]:
print(item)
for item in ds["test"]:
print(item)
```
## Maintenance
```bash
GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:datasets/ccmusic-database/timbre_range
cd timbre_range
```
## Mirror
<https://www.modelscope.cn/datasets/ccmusic-database/timbre_range>
## Dataset Creation
### Curation Rationale
Promoting the development of music AI industry
### Source Data
#### Initial Data Collection and Normalization
Zijin Li, Zhaorui Liu, Monan Zhou
#### Who are the source language producers?
Composers of the songs in dataset
### Annotations
#### Annotation process
CCMUSIC students collected acapella singing audios of 9 singers, as well as cut single-note audio, totaling 775 clips
#### Who are the annotators?
Students from CCMUSIC
### Personal and Sensitive Information
Due to copyright issues with the original music, only acapella singing audios are provided in the dataset
## Considerations for Using the Data
### Social Impact of Dataset
Promoting the development of AI in the music industry
### Discussion of Biases
Most are Chinese songs
### Other Known Limitations
Samples are not balanced enough
## Additional Information
### Dataset Curators
Zijin Li
### Evaluation
[1] [Yiliang, J. et al. (2019) 'Data Augmentation based Convolutional Neural Network for Auscultation', Journal of Fudan University(Natural Science), pp. 328-334. doi:10.15943/j.cnki.fdxb-jns.2019.03.004.](https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2019&filename=FDXB201903004&uniplatform=NZKPT&v=VAszHDtjPUYMi3JYVrdSGx4fcqlEtgCeKwRGTacCj98CGEQg5CUFHxakrvuaMzm3)
### Citation Information
```bibtex
@article{2019Data,
title={Data Augmentation based Convolutional Neural Network for Auscultation},
author={Yiliang Jiang and Xulong Zhang and Jin Deng and Wenqiang Zhang and Wei Li},
journal={Journal of Fudan University (Natural Science)},
year={2019},
}
```
### Contributions
Provide a dataset for music timbre and range