Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
aeth0r's picture
Update README.md
6a49c9f verified
metadata
dataset_info:
  - config_name: alias-resolution
    features:
      - name: form
        dtype: string
      - name: type
        dtype: string
      - name: mentions
        dtype: int64
      - name: entity
        dtype: string
      - name: novel
        dtype: string
    splits:
      - name: train
        num_bytes: 395702
        num_examples: 5985
    download_size: 117587
    dataset_size: 395702
  - config_name: text
    features:
      - name: tokens
        sequence: string
      - name: novel
        dtype: string
    splits:
      - name: train
        num_bytes: 10400464
        num_examples: 7
    download_size: 2673188
    dataset_size: 10400464
configs:
  - config_name: alias-resolution
    data_files:
      - split: train
        path: alias-resolution/train-*
  - config_name: text
    data_files:
      - split: train
        path: text/train-*

7-romans

This dataset contains 7 French novels, entirely annoted for the alias resolution task. See the related NER dataset.

Novel Author Publication Year Number of tokens Number of characters
Les Trois Mousquetaires Alexandre Dumas 1849 294 989 213
Le Rouge et le Noir Stendhal 1854 216 445 318
Eugénie Grandet Honoré de Balzac 1855 80 659 107
Germinal Émile Zola 1885 220 273 102
Bel-Ami Guy de Maupassant 1901 138 156 150
Notre-Dame de Paris Victor Hugo 1904 221 351 536
Madame Bovary Gustave Flaubert 1910 148 861 175

This gold standard corpus was created in the context of a project at the ObTIC laboratory, Sorbonne University. The project was directed by Motasem Alrahabi, and annnotations were performed by Perrine Maurel, Una Faller and Romaric Parnasse.

The corpus was then used to train a CamemBERT NER model in collaboration with Arthur Amalvy and Vincent Labatut, from Avignon University.

Usage

To load the alias resolution data:

>>> from datasets import load_dataset
>>> dataset = load_dataset("compnet-renard/7-romans-alias-resolution", "alias-resolution")
>>> dataset["train"][0]
{'form': 'À la belle vue', 'type': 'LOC', 'mentions': 1, 'entity': '?', 'novel': 'BelAmi'}

Only the PER entities are annotated: other types only have a "?" in their entity field.

The novel texts themselves are in a separate configuration:

>>> dataset = load_dataset("compnet-renard/7-romans-alias-resolution", "text")
>>> dataset["train"].features
{'tokens': Sequence(feature=Value(dtype='string', id=None), length=-1, id=None), 'novel': Value(dtype='string', id=None)}

Citation

If you use this dataset in your research, please cite:

@InProceedings{Maurel2025,
  authors = {Maurel, P. and Amalvy, A. and Labatut, V. and Alrahabi, M.},
  title = {Du repérage à l’analyse : un modèle pour la reconnaissance d’entités nommées dans les textes littéraires en français},
  booktitle = {Digital Humanities 2025},
  year = {2025},
}