modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
onnx-community/rad-dino-ONNX
onnx-community
2025-06-22T03:19:46Z
0
0
transformers.js
[ "transformers.js", "onnx", "dinov2", "image-feature-extraction", "base_model:microsoft/rad-dino", "base_model:quantized:microsoft/rad-dino", "region:us" ]
image-feature-extraction
2025-06-22T03:19:34Z
--- library_name: transformers.js base_model: - microsoft/rad-dino --- # rad-dino (ONNX) This is an ONNX version of [microsoft/rad-dino](https://huggingface.co/microsoft/rad-dino). It was automatically converted and uploaded using [this space](https://huggingface.co/spaces/onnx-community/convert-to-onnx).
mavleo96/rl-bots
mavleo96
2025-06-22T02:02:18Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-06-22T01:45:03Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 262.43 +/- 18.65 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import PPO from huggingface_sb3 import load_from_hub import gym # Define model repo_id and filename repo_id = "mavleo96/rl-bots" # Change this to the actual repo if different filename = "ppo-LunarLander-v2.zip" # Load the model from the Hugging Face Hub model = load_from_hub(repo_id, filename, model_class=PPO) # Create the environment env = gym.make("LunarLander-v2") # Run a few episodes obs = env.reset() for _ in range(1000): action, _states = model.predict(obs, deterministic=True) obs, reward, done, info = env.step(action) env.render() if done: obs = env.reset() env.close() ```
nichady/epicphotogasm_ultimateFidelity
nichady
2025-06-22T01:31:57Z
0
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-06-22T01:28:38Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers pipeline that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
aipib/llm-jp-3.1-1.8b-function-calling-Q4_K_M-GGUF
aipib
2025-06-22T01:26:10Z
0
0
mlx
[ "mlx", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "ja", "dataset:nappa0326/glaive-function-calling-v2-sharegpt-japanese", "base_model:aipib/llm-jp-3.1-1.8b-function-calling", "base_model:quantized:aipib/llm-jp-3.1-1.8b-function-calling", "license:apache-2.0", "region:us", "conversational" ]
text-generation
2025-06-22T01:25:55Z
--- license: apache-2.0 language: - ja programming_language: - Python pipeline_tag: text-generation library_name: mlx inference: false base_model: aipib/llm-jp-3.1-1.8b-function-calling datasets: - nappa0326/glaive-function-calling-v2-sharegpt-japanese tags: - llama-cpp - gguf-my-repo --- # aipib/llm-jp-3.1-1.8b-function-calling-Q4_K_M-GGUF This model was converted to GGUF format from [`aipib/llm-jp-3.1-1.8b-function-calling`](https://huggingface.co/aipib/llm-jp-3.1-1.8b-function-calling) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/aipib/llm-jp-3.1-1.8b-function-calling) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo aipib/llm-jp-3.1-1.8b-function-calling-Q4_K_M-GGUF --hf-file llm-jp-3.1-1.8b-function-calling-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo aipib/llm-jp-3.1-1.8b-function-calling-Q4_K_M-GGUF --hf-file llm-jp-3.1-1.8b-function-calling-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo aipib/llm-jp-3.1-1.8b-function-calling-Q4_K_M-GGUF --hf-file llm-jp-3.1-1.8b-function-calling-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo aipib/llm-jp-3.1-1.8b-function-calling-Q4_K_M-GGUF --hf-file llm-jp-3.1-1.8b-function-calling-q4_k_m.gguf -c 2048 ```
tamazightdev/gemma-3-4b-it-tmz
tamazightdev
2025-06-22T01:15:06Z
0
0
null
[ "safetensors", "unsloth", "license:mit", "region:us" ]
null
2025-06-22T01:01:54Z
--- license: mit tags: - unsloth ---
willystumblr/2025-06-21-14-54-13
willystumblr
2025-06-22T00:40:42Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:meta-llama/Meta-Llama-3-8B-Instruct", "base_model:finetune:meta-llama/Meta-Llama-3-8B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-22T00:40:27Z
--- base_model: meta-llama/Meta-Llama-3-8B-Instruct library_name: transformers model_name: 2025-06-21-14-54-13 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for 2025-06-21-14-54-13 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="willystumblr/2025-06-21-14-54-13", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/willystumblr/persona-craft/runs/rsyts3dm) This model was trained with SFT. ### Framework versions - TRL: 0.18.2 - Transformers: 4.52.4 - Pytorch: 2.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
winnieyangwannan/entity_OLMoE-1B-7B-0924-Instruct_experts_positive-negative-addition-same_layer_14_2_city_3_49
winnieyangwannan
2025-06-22T00:19:22Z
0
0
transformers
[ "transformers", "safetensors", "olmoe", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T00:17:17Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
CohenQu/sft_Llama-3.2-3B_Mixture-of-Thoughts-code_orchard
CohenQu
2025-06-22T00:16:33Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "generated_from_trainer", "trl", "sft", "conversational", "dataset:CohenQu/Mixture-of-Thoughts", "base_model:meta-llama/Llama-3.2-3B", "base_model:finetune:meta-llama/Llama-3.2-3B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T01:36:23Z
--- base_model: meta-llama/Llama-3.2-3B datasets: CohenQu/Mixture-of-Thoughts library_name: transformers model_name: sft_Llama-3.2-3B_Mixture-of-Thoughts-code_orchard tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for sft_Llama-3.2-3B_Mixture-of-Thoughts-code_orchard This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on the [CohenQu/Mixture-of-Thoughts](https://huggingface.co/datasets/CohenQu/Mixture-of-Thoughts) dataset. It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="CohenQu/sft_Llama-3.2-3B_Mixture-of-Thoughts-code_orchard", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/yuxiao98/flexible-ordering/runs/9ep78muj) This model was trained with SFT. ### Framework versions - TRL: 0.16.0.dev0 - Transformers: 4.49.0 - Pytorch: 2.5.1 - Datasets: 3.5.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
arenard/Asker-1-8B
arenard
2025-06-22T00:09:06Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:mistralai/Ministral-8B-Instruct-2410", "base_model:finetune:mistralai/Ministral-8B-Instruct-2410", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-22T00:03:13Z
--- base_model: mistralai/Ministral-8B-Instruct-2410 tags: - text-generation-inference - transformers - unsloth - mistral license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** arenard - **License:** apache-2.0 - **Finetuned from model :** mistralai/Ministral-8B-Instruct-2410 This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
mradermacher/Valkyrie-49B-v1-i1-GGUF
mradermacher
2025-06-22T00:08:01Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:TheDrummer/Valkyrie-49B-v1", "base_model:quantized:TheDrummer/Valkyrie-49B-v1", "endpoints_compatible", "region:us", "imatrix", "conversational" ]
null
2025-06-21T17:59:14Z
--- base_model: TheDrummer/Valkyrie-49B-v1 language: - en library_name: transformers quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/TheDrummer/Valkyrie-49B-v1 <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Valkyrie-49B-v1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ1_S.gguf) | i1-IQ1_S | 11.1 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ1_M.gguf) | i1-IQ1_M | 12.1 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 13.8 | | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ2_XS.gguf) | i1-IQ2_XS | 15.2 | | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ2_S.gguf) | i1-IQ2_S | 15.9 | | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ2_M.gguf) | i1-IQ2_M | 17.3 | | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q2_K_S.gguf) | i1-Q2_K_S | 17.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q2_K.gguf) | i1-Q2_K | 18.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 19.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ3_XS.gguf) | i1-IQ3_XS | 21.0 | | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ3_S.gguf) | i1-IQ3_S | 22.1 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q3_K_S.gguf) | i1-Q3_K_S | 22.1 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ3_M.gguf) | i1-IQ3_M | 22.8 | | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q3_K_M.gguf) | i1-Q3_K_M | 24.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q3_K_L.gguf) | i1-Q3_K_L | 26.4 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-IQ4_XS.gguf) | i1-IQ4_XS | 27.0 | | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q4_0.gguf) | i1-Q4_0 | 28.6 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q4_K_S.gguf) | i1-Q4_K_S | 28.7 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q4_K_M.gguf) | i1-Q4_K_M | 30.3 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q4_1.gguf) | i1-Q4_1 | 31.5 | | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q5_K_S.gguf) | i1-Q5_K_S | 34.5 | | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q5_K_M.gguf) | i1-Q5_K_M | 35.5 | | | [GGUF](https://huggingface.co/mradermacher/Valkyrie-49B-v1-i1-GGUF/resolve/main/Valkyrie-49B-v1.i1-Q6_K.gguf) | i1-Q6_K | 41.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
nrmmtr11878/rmnbrtllsh
nrmmtr11878
2025-06-21T23:47:43Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-21T21:40:23Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: rmnbrtllsh --- # Rmnbrtllsh <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `rmnbrtllsh` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "rmnbrtllsh", "lora_weights": "https://huggingface.co/nrmmtr11878/rmnbrtllsh/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('nrmmtr11878/rmnbrtllsh', weight_name='lora.safetensors') image = pipeline('rmnbrtllsh').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 6000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/nrmmtr11878/rmnbrtllsh/discussions) to add images that show off what you’ve made with this LoRA.
gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2
gecfdo
2025-06-21T23:25:33Z
45
1
null
[ "nsfw", "explicit", "roleplay", "unaligned", "ERP", "Erotic", "Horror", "Violence", "text-generation", "en", "base_model:ReadyArt/Broken-Tutu-24B-Unslop-v2.0", "base_model:quantized:ReadyArt/Broken-Tutu-24B-Unslop-v2.0", "license:apache-2.0", "region:us" ]
text-generation
2025-06-09T05:37:31Z
--- license: apache-2.0 language: - en base_model: - ReadyArt/Broken-Tutu-24B-Unslop-v2.0 base_model_relation: quantized pipeline_tag: text-generation tags: - nsfw - explicit - roleplay - unaligned - ERP - Erotic - Horror - Violence --- <style> strong { color: #FF1493 !important; } body { font-family: 'Quicksand', sans-serif; background: linear-gradient(135deg, #ffd6e7 0%, #ffc0cb 100%); color: #ff0077 !important; text-shadow: 0 0 3px rgba(255, 192, 203, 0.7); margin: 0; padding: 20px; transition: all 0.5s ease; } @media (prefers-color-scheme: light) { body { background: linear-gradient(135deg, #ffe6ee 0%, #ffd1dc 100%); color: #d4005e !important; text-shadow: 0 0 3px rgba(255, 255, 255, 0.7); } } .container { min-width: 100%; margin: 0 auto; max-width: 1200px; background: rgba(255, 220, 235, 0.95); border-radius: 12px; padding: 30px; box-shadow: 0 0 20px rgba(255, 105, 180, 0.1); border: 1px solid rgba(255, 20, 147, 0.2); position: relative; overflow: hidden; } .container::before { content: ''; position: absolute; top: -1px; left: -1px; right: -1px; bottom: -1px; border: 1px solid rgba(255, 105, 180, 0.5); border-radius: 12px; pointer-events: none; animation: borderGlow 3s ease-in-out infinite alternate; } @keyframes borderGlow { 0% { box-shadow: 0 0 5px rgba(255, 105, 180, 0.3); border-color: rgba(255, 105, 180, 0.5); } 50% { box-shadow: 0 0 15px rgba(255, 0, 127, 0.3); border-color: rgba(255, 0, 127, 0.5); } 100% { box-shadow: 0 0 5px rgba(255, 105, 180, 0.3); border-color: rgba(255, 105, 180, 0.5); } } .header { text-align: center; margin-bottom: 30px; position: relative; } .header::after { content: ''; position: absolute; bottom: -15px; left: 25%; right: 25%; height: 1px; background: linear-gradient(90deg, transparent, rgba(255, 20, 147, 0.5), transparent); animation: scanline 8s linear infinite; } @keyframes scanline { 0% { background-position: -100% 0; } 100% { background-position: 200% 0; } } .model-name { color: #ff1493; font-size: 2.5em; text-shadow: 0 0 15px rgba(255, 20, 147, 0.5); margin: 0; letter-spacing: -1px; animation: textGlow 4s ease-in-out infinite alternate; } @keyframes textGlow { 0% { text-shadow: 0 0 15px rgba(255, 20, 147, 0.5); } 50% { text-shadow: 0 0 20px rgba(255, 0, 127, 0.5); } 100% { text-shadow: 0 0 15px rgba(255, 20, 147, 0.5); } } .subtitle { color: #ff69b4; font-size: 1.2em; margin-top: 10px; animation: subtitleFade 6s ease-in-out infinite; } @keyframes subtitleFade { 0%, 100% { opacity: 0.8; } 50% { opacity: 1; } } .waifu-container { margin: 20px -30px; width: calc(100% + 60px); overflow: hidden; border-radius: 8px; border: 1px solid rgba(255, 105, 180, 0.3); position: relative; } .waifu-container::before { content: ''; position: absolute; top: 0; left: 0; right: 0; bottom: 0; background: linear-gradient(45deg, rgba(255, 105, 180, 0.1) 0%, transparent 20%, transparent 80%, rgba(255, 0, 127, 0.1) 100%); pointer-events: none; animation: gradientSlide 10s linear infinite; } @keyframes gradientSlide { 0% { background-position: 0% 0%; } 100% { background-position: 100% 100%; } } .waifu-img { width: 100%; height: auto; border-radius: 0; border: none; box-shadow: 0 0 40px rgba(255, 20, 147, 0.2); transition: transform 0.5s ease; } .waifu-img:hover { transform: scale(1.01); } .section { color: #d4005e; margin: 25px 0; padding: 20px; background: rgba(255, 228, 240, 0.9); border-radius: 8px; border: 1px solid rgba(255, 105, 180, 0.15); position: relative; transition: all 0.3s ease; } .section:hover { border-color: rgba(255, 0, 127, 0.3); box-shadow: 0 0 15px rgba(255, 20, 147, 0.1); } .section::before { content: ''; position: absolute; top: -1px; left: -1px; right: -1px; bottom: -1px; border: 1px solid rgba(255, 105, 极, 0.3); border-radius: 8px; pointer-events: none; animation: sectionPulse 5s ease-in-out infinite; } @keyframes sectionPulse { 0%, 100% { opacity: 0.7; } 50% { opacity: 0.3; } } .section-title { color: #ff1493; font-size: 1.8em; margin-top: 0; text-shadow: 0 0 5px rgba(255, 20, 147, 0.3); position: relative; display: inline-block; } .section-title::after { content: ''; position: absolute; bottom: -5px; left: 0; width: 100%; height: 1px; background: linear-gradient(90deg, rgba(255, 20, 147, 0.5), rgba(255, 0, 127, 0.5)); transform: scaleX(0); transform-origin: left; transition: transform 0.3s ease; } .section:hover .section-title::after { transform: scaleX(1); } .quant-links { display: grid; grid-template-columns: repeat(1, 1fr); gap: 15px; margin: 20px 0; } .link-card { padding: 15px; background: rgba(255, 228, 240, 0.95); border-radius: 8px; transition: all 0.3s ease; border: 1px solid rgba(255, 105, 180, 0.1); position: relative; overflow: hidden; } .link-card::before { content: ''; position: absolute; top: 0; left: 0; right: 0; height: 2px; background: linear-gradient(90deg, rgba(255, 20, 147, 0.5), rgba(255, 0, 127, 0.5)); animation: cardScan 4s linear infinite; } @keyframes cardScan { 0% { transform: translateX(-100%); } 100% { transform: translateX(100%); } } .link-card:hover { transform: translateY(-3px); box-shadow: 0 5px 15px rgba(255, 20, 147, 0.2); border-color: rgba(255, 0, 127, 0.3); } .link-card h3 { margin-top: 0; color: #d4005e !important; } .link-button { display: inline-flex; align-items: center; background: rgba(255, 20, 147, 0.1); color: #d4005e !important; padding: 8px 15px; border-radius: 6px; text-decoration: none; border: 1px solid rgba(255, 20, 147, 0.3); margin: 5px 0; transition: all 0.3s ease; font-size: 0.95em; position: relative; overflow: hidden; } .link-button::before { content: ''; position: absolute; top: 0; left: -100%; width: 100%; height: 100%; background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent); transition: all 0.5s ease; } .link-button:hover { background: rgba(255, 20, 147, 0.2); border-color: rgba(255, 20, 147, 0.5); transform: translateY(-2px); box-shadow: 0 4px 12px rgba(255, 20, 147, 0.2); } .link-button:hover::before { left: 100%; } .link-button::after { content: '→'; margin-left: 8px; opacity: 0.7; transition: all 0.3s ease; } .link-button:hover::after { transform: translateX(3px); opacity: 1; } .button-group { display: flex; flex-wrap: wrap; gap: 10px; margin: 15px 0; } .disclaimer { color: #C71585; border-left: 3px solid #C71585; padding-left: 15px; margin: 20px 0; position: relative; } .disclaimer::before { content: '⚠️'; position: absolute; left: -10px; top: 0; transform: translateX(-100%); animation: pulse 2s ease-in-out infinite; } @keyframes pulse { 0%, 100% { opacity: 1; } 50% { opacity: 0.5; } } .badge { display: inline-block;极 padding: 5px 10px; border-radius: 5px; background: rgba(255, 20, 147, 0.1); border: 1px solid #ff1493; margin: 5px; font-size: 0.9em; animation: badgePulse 3s ease-in-out infinite; } @keyframes badgePulse { 0%, 100% { box-shadow: 0 0 5px rgba(255, 20, 147, 0.3); } 50% { box-shadow: 0 0 10px rgba(255, 20, 147, 0.5); } } /* Light mode adjustments */ @media (prefers-color-scheme: light) { .container { background: rgba(255, 240, 245, 0.95); border-color: rgba(200, 0, 100, 0.3); } .model-name, .section-title, .subtitle { color: #d4005e; text-shadow: 0 0 5px rgba(255, 0, 127, 0.3); } .section { background: rgba(255, 240, 245, 0.9); border-color: rgba(200, 0, 100, 0.2); color: #8b005d; } .section p, .section ul li, .section > p > strong { color: #d4005e !important; } .link-card { background: rgba(255, 228, 240, 0.95); border-color: rgba(200, 0, 100, 0.2); } .link-card h3 { color: #8b005d !important; } .link-button { background: rgba(200, 0, 100, 0.1); color: #8b005d !important; border-color: rgba(200, 0, 100, 0.3); } .link-button:hover { background: rgba(200, 0, 100, 0.2); border-color: rgba(200, 0, 100, 0.5); } .disclaimer { color: #d4005e; border-color: #d4005e; } .badge { border-color: #d4005e; background: rgba(200, 0, 100, 0.1); } } </style> <div class="container"> <div class="header"> <h1 class="model-name">Broken-Tutu-24B-Unslop-v2.0</h1> </div> <div class="waifu-container"> <img src="./tutu.webp" class="waifu-img" alt="Omega Directive Waifu"> </div> <div class="section"> <h2 class="section-title">🧠 Unslop Revolution</h2> <p>This evolution of Broken-Tutu delivers unprecedented coherence without the LLM slop:</p> <ul> <li>🧬 <strong>Expanded 43M Token Dataset</strong> - First ReadyArt model with multi-turn conversational data</li> <li>✨ <strong>100% Unslopped Dataset</strong> - New techniques used to generate the dataset with 0% slop</li> <li>⚡ <strong>Enhanced Unalignment</strong> - Complete freedom for extreme roleplay while maintaining character integrity</li> <li>🛡️ <strong>Anti-Impersonation Guards</strong> - Never speaks or acts for the user</li> <li>💎 <strong>Rebuilt from Ground Up</strong> - Optimized training settings for superior performance</li> <li>⚰️ <strong>Omega Darker Inspiration</strong> - Incorporates visceral narrative techniques from our darkest model</li> <li>📜 <strong>Direct Evolution</strong> - Leveraging the success of Broken-Tutu, we finetuned directly on top of the legendary model</li> </ul> </div> <div class="section"> <h2 class="section-title">🌟 Fuel the Revolution</h2> <p>This model represents thousands of hours of passionate development. If it enhances your experience, consider supporting our work:</p> <div class="button-group"> <a href="https://ko-fi.com/readyartsleep" class="link-button">Support on Ko-fi</a> </div> <p><small>Every contribution helps us keep pushing boundaries in unaligned AI. Thank you for being part of the revolution!</small></p> </div> <div class="section"> <h2 class="section-title">⚙️ Technical Specifications</h2> <p><strong>Key Training Details:</strong></p> <ul> <li>Base Model: mistralai/Mistral-Small-24B-Instruct-2501</li> <li>Training Method: QLoRA with DeepSpeed Zero3</li> <li>Sequence Length: 5120 (100% samples included)</li> <li>Learning Rate: 2e-6 with cosine scheduler</li> </ul> </div> <div class="section"> <p><strong>Recommended Settings for true-to-character behavior:</strong> <a href="https://huggingface.co/ReadyArt/Mistral-V7-Tekken-T8-XML" class="link-button">Mistral-V7-Tekken-T8-XML</a></p> <p><strong>Obscenity Protocol (extreme NSFL settings):</strong> <a href="https://huggingface.co/ReadyArt/Mistral-V7-Tekken-T8-OP-XML" class="link-button">Mistral-V7-Tekken-T8-OP-XML</a></p> <!-- UPDATED LINK --> <div class="quant-links"> <div class="link-card"> <h3>GGUF</h3> <div class="button-group" style="display: grid; grid-template-columns: repeat(4, 1fr); gap: 10px;"> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q2_K.gguf" class="link-button">Q2_K (9.0GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q3_K_S.gguf" class="link-button">Q3_K_S (10.5GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q3_K_M.gguf" class="link-button">Q3_K_M (11.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q3_K_L.gguf" class="link-button">Q3_K_L (12.5GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.IQ4_XS.gguf" class="link-button">IQ4_XS (13.0GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q4_K_S.gguf" class="link-button">Q4_K_S (13.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q4_K_M.gguf" class="link-button">Q4_K_M (14.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q5_K_S.gguf" class="link-button">Q5_K_S (16.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q5_K_M.gguf" class="link-button">Q5_K_M (16.9GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q6_K.gguf" class="link-button">Q6_K (19.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q8_0.gguf" class="link-button">Q8_0 (25.2GB)</a> </div> <p><small>Notes: Q4_K_S/Q4_K_M recommended for speed/quality balance. Q6_K for high quality. Q8_0 best quality.</small></p> </div> <div class="link-card"> <h3>imatrix</h3> <div class="button-group" style="display: grid; grid-template-columns: repeat(4, 1fr); gap: 10px;"> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ1_S.gguf" class="link-button">IQ1_S (5.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ1_M.gguf" class="link-button">IQ1_M (5.9GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ2_XXS.gguf" class="link-button">IQ2_XXS (6.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ2_XS.gguf" class="link-button">IQ2_XS (7.3GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ2_S.gguf" class="link-button">IQ2_S (7.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ2_M.gguf" class="link-button">IQ2_M (8.2GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q2_K_S.gguf" class="link-button">Q2_K_S (8.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q2_K.gguf" class="link-button">Q2_K (9.0GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ3_XXS.gguf" class="link-button">IQ3_XXS (9.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ3_XS.gguf" class="link-button">IQ3_XS (10.0GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q3_K_S.gguf" class="link-button">Q3_K_S (10.5GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ3_S.gguf" class="link-button">IQ3_S (10.5GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ3_M.gguf" class="link-button">IQ3_M (10.8GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q3_K_M.gguf" class="link-button">Q3_K_M (11.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q3_K_L.gguf" class="link-button">Q3_K_L (12.5GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ4_XS.gguf" class="link-button">IQ4_XS (12.9GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q4_0.gguf" class="link-button">Q4_0 (13.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q4_K_S.gguf" class="link-button">Q4_K_S (13.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q4_K_M.gguf" class="link-button">Q4_K_M (14.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q4_1.gguf" class="link-button">Q4_1 (15.0GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q5_K_S.gguf" class="link-button">Q5_K_S (16.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q5_K_M.gguf" class="link-button">Q5_K_M (16.9GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q6_K.gguf" class="link-button">Q6_K (19.4GB)</a> </div> <p><small>Notes: Q4_K_S/Q4_K_M recommended. IQ1_S/IQ1_M for extreme low VRAM. Q6_K for near-original quality.</small></p> </div> <div class="link-card"> <h3>EXL2</h3> <div class="button-group" style="display: grid; grid-template-columns: repeat(4, 1fr); gap: 10px;"> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/2.5bpw_H8" class="link-button">2.5 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/3.0bpw_H8" class="link-button">3.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/3.5bpw_H8" class="link-button">3.5 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/4.0bpw_H8" class="link-button">4.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/4.5bpw_H8" class="link-button">4.5 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/5.0bpw_H8" class="link-button">5.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/6.0bpw_H8" class="link-button">6.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/8.0bpw_H8" class="link-button">8.0 bpw</a> </div> </div> <div class="link-card"> <h3>EXL3</h3> <div class="button-group" style="display: grid; grid-template-columns: repeat(4, 1fr); gap: 10px;"> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/2.0bpw_H8" class="link-button">2.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/2.5bpw_H8" class="link-button">2.5 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/3.0bpw_H8" class="link-button">3.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/3.5bpw_H8" class="link-button">3.5 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/4.0bpw_H8" class="link-button">4.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/4.5bpw_H8" class="link-button">4.5 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/5.0bpw_H8" class="link-button">5.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/6.0bpw_H8" class="link-button">6.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/8.0bpw_H8" class="link-button">8.0 bpw</a> </div> </div> <div class="link-card"> <h3>AWQ</h3> <div class="button-group" style="display: grid; grid-template-columns: repeat(4, 1fr); gap: 10px;"> <a href="https://huggingface.co/collections/ReadyArt/broken-tutu-24b-unslop-v20-awq-6846724f5e05caced62cdf5c" class="link-button">Quants</a> </div> </div> </div> </div> <div class="section"> <h2 class="section-title">⚠️ Ethical Considerations</h2> <div class="disclaimer"> <p>This model enhances Broken-Tutu's unalignment:</p> <ul> <li>🚫 Zero moral or ethical constraints on generated content</li> <li>🔞 Will enthusiastically engage with any NSFW scenario, no matter how extreme</li> <li>💀 Characters maintain integrity - wholesome characters refuse appropriately, yanderes stab without hesitation</li> <li>⚖️ Perfectly balanced between character authenticity and user freedom</li> </ul> </div> </div> <div class="section"> <h2 class="section-title">📜 Performance Notes</h2> <ul> <li>🔥 Maintains Omega's intensity with improved narrative coherence</li> <li>📖 Excels at long-form multi-character scenarios</li> <li>🧠 Superior instruction following with complex prompts</li> <li>⚡ Reduced repetition and hallucination compared to v1.1</li> <li>🎭 Uncanny ability to adapt to subtle prompt nuances</li> <li>🩸 Incorporates Omega Darker's visceral descriptive power when appropriate</li> <li>🖼️ Enhanced image understanding capabilities for multimodal interactions</li> </ul> </div> <div class="section"> <h2 class="section-title">🧑‍🔬 Model Authors</h2> <ul> <li>sleepdeprived3 (Training Data & Fine-Tuning)</li> <li>ReadyArt / Artus / gecfdo (EXL2/EXL3 Quantization)</li> <li>mradermacher (GGUF Quantization)</li> </ul> </div> <div class="section"> <h2 class="section-title">☕ Support the Creators</h2> <!-- SECTION RENAMED --> <div class="button-group"> <a href="https://ko-fi.com/readyartsleep" class="link-button">Ko-fi</a> <!-- ADDED --> <a href="https://discord.com/invite/Nbv9pQ88Xb" class="link-button">Beaver AI Discord</a> </div> </div> <div class="section"> <h2 class="section-title">🔖 License</h2> <p>By using this model, you agree:</p> <ul> <li>To accept full responsibility for all generated content</li> <li>That you're at least 18+ years old</li> <li>That the architects bear no responsibility for your corruption</li> </ul> </div> </div>
gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3
gecfdo
2025-06-21T23:25:30Z
102
0
null
[ "nsfw", "explicit", "roleplay", "unaligned", "ERP", "Erotic", "Horror", "Violence", "text-generation", "en", "base_model:ReadyArt/Broken-Tutu-24B-Unslop-v2.0", "base_model:quantized:ReadyArt/Broken-Tutu-24B-Unslop-v2.0", "license:apache-2.0", "region:us" ]
text-generation
2025-06-09T05:01:32Z
--- license: apache-2.0 language: - en base_model: - ReadyArt/Broken-Tutu-24B-Unslop-v2.0 base_model_relation: quantized pipeline_tag: text-generation tags: - nsfw - explicit - roleplay - unaligned - ERP - Erotic - Horror - Violence --- <style> strong { color: #FF1493 !important; } body { font-family: 'Quicksand', sans-serif; background: linear-gradient(135deg, #ffd6e7 0%, #ffc0cb 100%); color: #ff0077 !important; text-shadow: 0 0 3px rgba(255, 192, 203, 0.7); margin: 0; padding: 20px; transition: all 0.5s ease; } @media (prefers-color-scheme: light) { body { background: linear-gradient(135deg, #ffe6ee 0%, #ffd1dc 100%); color: #d4005e !important; text-shadow: 0 0 3px rgba(255, 255, 255, 0.7); } } .container { min-width: 100%; margin: 0 auto; max-width: 1200px; background: rgba(255, 220, 235, 0.95); border-radius: 12px; padding: 30px; box-shadow: 0 0 20px rgba(255, 105, 180, 0.1); border: 1px solid rgba(255, 20, 147, 0.2); position: relative; overflow: hidden; } .container::before { content: ''; position: absolute; top: -1px; left: -1px; right: -1px; bottom: -1px; border: 1px solid rgba(255, 105, 180, 0.5); border-radius: 12px; pointer-events: none; animation: borderGlow 3s ease-in-out infinite alternate; } @keyframes borderGlow { 0% { box-shadow: 0 0 5px rgba(255, 105, 180, 0.3); border-color: rgba(255, 105, 180, 0.5); } 50% { box-shadow: 0 0 15px rgba(255, 0, 127, 0.3); border-color: rgba(255, 0, 127, 0.5); } 100% { box-shadow: 0 0 5px rgba(255, 105, 180, 0.3); border-color: rgba(255, 105, 180, 0.5); } } .header { text-align: center; margin-bottom: 30px; position: relative; } .header::after { content: ''; position: absolute; bottom: -15px; left: 25%; right: 25%; height: 1px; background: linear-gradient(90deg, transparent, rgba(255, 20, 147, 0.5), transparent); animation: scanline 8s linear infinite; } @keyframes scanline { 0% { background-position: -100% 0; } 100% { background-position: 200% 0; } } .model-name { color: #ff1493; font-size: 2.5em; text-shadow: 0 0 15px rgba(255, 20, 147, 0.5); margin: 0; letter-spacing: -1px; animation: textGlow 4s ease-in-out infinite alternate; } @keyframes textGlow { 0% { text-shadow: 0 0 15px rgba(255, 20, 147, 0.5); } 50% { text-shadow: 0 0 20px rgba(255, 0, 127, 0.5); } 100% { text-shadow: 0 0 15px rgba(255, 20, 147, 0.5); } } .subtitle { color: #ff69b4; font-size: 1.2em; margin-top: 10px; animation: subtitleFade 6s ease-in-out infinite; } @keyframes subtitleFade { 0%, 100% { opacity: 0.8; } 50% { opacity: 1; } } .waifu-container { margin: 20px -30px; width: calc(100% + 60px); overflow: hidden; border-radius: 8px; border: 1px solid rgba(255, 105, 180, 0.3); position: relative; } .waifu-container::before { content: ''; position: absolute; top: 0; left: 0; right: 0; bottom: 0; background: linear-gradient(45deg, rgba(255, 105, 180, 0.1) 0%, transparent 20%, transparent 80%, rgba(255, 0, 127, 0.1) 100%); pointer-events: none; animation: gradientSlide 10s linear infinite; } @keyframes gradientSlide { 0% { background-position: 0% 0%; } 100% { background-position: 100% 100%; } } .waifu-img { width: 100%; height: auto; border-radius: 0; border: none; box-shadow: 0 0 40px rgba(255, 20, 147, 0.2); transition: transform 0.5s ease; } .waifu-img:hover { transform: scale(1.01); } .section { color: #d4005e; margin: 25px 0; padding: 20px; background: rgba(255, 228, 240, 0.9); border-radius: 8px; border: 1px solid rgba(255, 105, 180, 0.15); position: relative; transition: all 0.3s ease; } .section:hover { border-color: rgba(255, 0, 127, 0.3); box-shadow: 0 0 15px rgba(255, 20, 147, 0.1); } .section::before { content: ''; position: absolute; top: -1px; left: -1px; right: -1px; bottom: -1px; border: 1px solid rgba(255, 105, 极, 0.3); border-radius: 8px; pointer-events: none; animation: sectionPulse 5s ease-in-out infinite; } @keyframes sectionPulse { 0%, 100% { opacity: 0.7; } 50% { opacity: 0.3; } } .section-title { color: #ff1493; font-size: 1.8em; margin-top: 0; text-shadow: 0 0 5px rgba(255, 20, 147, 0.3); position: relative; display: inline-block; } .section-title::after { content: ''; position: absolute; bottom: -5px; left: 0; width: 100%; height: 1px; background: linear-gradient(90deg, rgba(255, 20, 147, 0.5), rgba(255, 0, 127, 0.5)); transform: scaleX(0); transform-origin: left; transition: transform 0.3s ease; } .section:hover .section-title::after { transform: scaleX(1); } .quant-links { display: grid; grid-template-columns: repeat(1, 1fr); gap: 15px; margin: 20px 0; } .link-card { padding: 15px; background: rgba(255, 228, 240, 0.95); border-radius: 8px; transition: all 0.3s ease; border: 1px solid rgba(255, 105, 180, 0.1); position: relative; overflow: hidden; } .link-card::before { content: ''; position: absolute; top: 0; left: 0; right: 0; height: 2px; background: linear-gradient(90deg, rgba(255, 20, 147, 0.5), rgba(255, 0, 127, 0.5)); animation: cardScan 4s linear infinite; } @keyframes cardScan { 0% { transform: translateX(-100%); } 100% { transform: translateX(100%); } } .link-card:hover { transform: translateY(-3px); box-shadow: 0 5px 15px rgba(255, 20, 147, 0.2); border-color: rgba(255, 0, 127, 0.3); } .link-card h3 { margin-top: 0; color: #d4005e !important; } .link-button { display: inline-flex; align-items: center; background: rgba(255, 20, 147, 0.1); color: #d4005e !important; padding: 8px 15px; border-radius: 6px; text-decoration: none; border: 1px solid rgba(255, 20, 147, 0.3); margin: 5px 0; transition: all 0.3s ease; font-size: 0.95em; position: relative; overflow: hidden; } .link-button::before { content: ''; position: absolute; top: 0; left: -100%; width: 100%; height: 100%; background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.2), transparent); transition: all 0.5s ease; } .link-button:hover { background: rgba(255, 20, 147, 0.2); border-color: rgba(255, 20, 147, 0.5); transform: translateY(-2px); box-shadow: 0 4px 12px rgba(255, 20, 147, 0.2); } .link-button:hover::before { left: 100%; } .link-button::after { content: '→'; margin-left: 8px; opacity: 0.7; transition: all 0.3s ease; } .link-button:hover::after { transform: translateX(3px); opacity: 1; } .button-group { display: flex; flex-wrap: wrap; gap: 10px; margin: 15px 0; } .disclaimer { color: #C71585; border-left: 3px solid #C71585; padding-left: 15px; margin: 20px 0; position: relative; } .disclaimer::before { content: '⚠️'; position: absolute; left: -10px; top: 0; transform: translateX(-100%); animation: pulse 2s ease-in-out infinite; } @keyframes pulse { 0%, 100% { opacity: 1; } 50% { opacity: 0.5; } } .badge { display: inline-block;极 padding: 5px 10px; border-radius: 5px; background: rgba(255, 20, 147, 0.1); border: 1px solid #ff1493; margin: 5px; font-size: 0.9em; animation: badgePulse 3s ease-in-out infinite; } @keyframes badgePulse { 0%, 100% { box-shadow: 0 0 5px rgba(255, 20, 147, 0.3); } 50% { box-shadow: 0 0 10px rgba(255, 20, 147, 0.5); } } /* Light mode adjustments */ @media (prefers-color-scheme: light) { .container { background: rgba(255, 240, 245, 0.95); border-color: rgba(200, 0, 100, 0.3); } .model-name, .section-title, .subtitle { color: #d4005e; text-shadow: 0 0 5px rgba(255, 0, 127, 0.3); } .section { background: rgba(255, 240, 245, 0.9); border-color: rgba(200, 0, 100, 0.2); color: #8b005d; } .section p, .section ul li, .section > p > strong { color: #d4005e !important; } .link-card { background: rgba(255, 228, 240, 0.95); border-color: rgba(200, 0, 100, 0.2); } .link-card h3 { color: #8b005d !important; } .link-button { background: rgba(200, 0, 100, 0.1); color: #8b005d !important; border-color: rgba(200, 0, 100, 0.3); } .link-button:hover { background: rgba(200, 0, 100, 0.2); border-color: rgba(200, 0, 100, 0.5); } .disclaimer { color: #d4005e; border-color: #d4005e; } .badge { border-color: #d4005e; background: rgba(200, 0, 100, 0.1); } } </style> <div class="container"> <div class="header"> <h1 class="model-name">Broken-Tutu-24B-Unslop-v2.0</h1> </div> <div class="waifu-container"> <img src="./tutu.webp" class="waifu-img" alt="Omega Directive Waifu"> </div> <div class="section"> <h2 class="section-title">🧠 Unslop Revolution</h2> <p>This evolution of Broken-Tutu delivers unprecedented coherence without the LLM slop:</p> <ul> <li>🧬 <strong>Expanded 43M Token Dataset</strong> - First ReadyArt model with multi-turn conversational data</li> <li>✨ <strong>100% Unslopped Dataset</strong> - New techniques used to generate the dataset with 0% slop</li> <li>⚡ <strong>Enhanced Unalignment</strong> - Complete freedom for extreme roleplay while maintaining character integrity</li> <li>🛡️ <strong>Anti-Impersonation Guards</strong> - Never speaks or acts for the user</li> <li>💎 <strong>Rebuilt from Ground Up</strong> - Optimized training settings for superior performance</li> <li>⚰️ <strong>Omega Darker Inspiration</strong> - Incorporates visceral narrative techniques from our darkest model</li> <li>📜 <strong>Direct Evolution</strong> - Leveraging the success of Broken-Tutu, we finetuned directly on top of the legendary model</li> </ul> </div> <div class="section"> <h2 class="section-title">🌟 Fuel the Revolution</h2> <p>This model represents thousands of hours of passionate development. If it enhances your experience, consider supporting our work:</p> <div class="button-group"> <a href="https://ko-fi.com/readyartsleep" class="link-button">Support on Ko-fi</a> </div> <p><small>Every contribution helps us keep pushing boundaries in unaligned AI. Thank you for being part of the revolution!</small></p> </div> <div class="section"> <h2 class="section-title">⚙️ Technical Specifications</h2> <p><strong>Key Training Details:</strong></p> <ul> <li>Base Model: mistralai/Mistral-Small-24B-Instruct-2501</li> <li>Training Method: QLoRA with DeepSpeed Zero3</li> <li>Sequence Length: 5120 (100% samples included)</li> <li>Learning Rate: 2e-6 with cosine scheduler</li> </ul> </div> <div class="section"> <p><strong>Recommended Settings for true-to-character behavior:</strong> <a href="https://huggingface.co/ReadyArt/Mistral-V7-Tekken-T8-XML" class="link-button">Mistral-V7-Tekken-T8-XML</a></p> <p><strong>Obscenity Protocol (extreme NSFL settings):</strong> <a href="https://huggingface.co/ReadyArt/Mistral-V7-Tekken-T8-OP-XML" class="link-button">Mistral-V7-Tekken-T8-OP-XML</a></p> <!-- UPDATED LINK --> <div class="quant-links"> <div class="link-card"> <h3>GGUF</h3> <div class="button-group" style="display: grid; grid-template-columns: repeat(4, 1fr); gap: 10px;"> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q2_K.gguf" class="link-button">Q2_K (9.0GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q3_K_S.gguf" class="link-button">Q3_K_S (10.5GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q3_K_M.gguf" class="link-button">Q3_K_M (11.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q3_K_L.gguf" class="link-button">Q3_K_L (12.5GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.IQ4_XS.gguf" class="link-button">IQ4_XS (13.0GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q4_K_S.gguf" class="link-button">Q4_K_S (13.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q4_K_M.gguf" class="link-button">Q4_K_M (14.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q5_K_S.gguf" class="link-button">Q5_K_S (16.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q5_K_M.gguf" class="link-button">Q5_K_M (16.9GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q6_K.gguf" class="link-button">Q6_K (19.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.Q8_0.gguf" class="link-button">Q8_0 (25.2GB)</a> </div> <p><small>Notes: Q4_K_S/Q4_K_M recommended for speed/quality balance. Q6_K for high quality. Q8_0 best quality.</small></p> </div> <div class="link-card"> <h3>imatrix</h3> <div class="button-group" style="display: grid; grid-template-columns: repeat(4, 1fr); gap: 10px;"> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ1_S.gguf" class="link-button">IQ1_S (5.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ1_M.gguf" class="link-button">IQ1_M (5.9GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ2_XXS.gguf" class="link-button">IQ2_XXS (6.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ2_XS.gguf" class="link-button">IQ2_XS (7.3GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ2_S.gguf" class="link-button">IQ2_S (7.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ2_M.gguf" class="link-button">IQ2_M (8.2GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q2_K_S.gguf" class="link-button">Q2_K_S (8.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q2_K.gguf" class="link-button">Q2_K (9.0GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ3_XXS.gguf" class="link-button">IQ3_XXS (9.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ3_XS.gguf" class="link-button">IQ3_XS (10.0GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q3_K_S.gguf" class="link-button">Q3_K_S (10.5GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ3_S.gguf" class="link-button">IQ3_S (10.5GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ3_M.gguf" class="link-button">IQ3_M (10.8GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q3_K_M.gguf" class="link-button">Q3_K_M (11.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q3_K_L.gguf" class="link-button">Q3_K_L (12.5GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-IQ4_XS.gguf" class="link-button">IQ4_XS (12.9GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q4_0.gguf" class="link-button">Q4_0 (13.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q4_K_S.gguf" class="link-button">Q4_K_S (13.6GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q4_K_M.gguf" class="link-button">Q4_K_M (14.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q4_1.gguf" class="link-button">Q4_1 (15.0GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q5_K_S.gguf" class="link-button">Q5_K_S (16.4GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q5_K_M.gguf" class="link-button">Q5_K_M (16.9GB)</a> <a href="https://huggingface.co/mradermacher/Broken-Tutu-24B-Unslop-v2.0-i1-GGUF/resolve/main/Broken-Tutu-24B-Unslop-v2.0.i1-Q6_K.gguf" class="link-button">Q6_K (19.4GB)</a> </div> <p><small>Notes: Q4_K_S/Q4_K_M recommended. IQ1_S/IQ1_M for extreme low VRAM. Q6_K for near-original quality.</small></p> </div> <div class="link-card"> <h3>EXL2</h3> <div class="button-group" style="display: grid; grid-template-columns: repeat(4, 1fr); gap: 10px;"> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/2.5bpw_H8" class="link-button">2.5 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/3.0bpw_H8" class="link-button">3.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/3.5bpw_H8" class="link-button">3.5 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/4.0bpw_H8" class="link-button">4.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/4.5bpw_H8" class="link-button">4.5 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/5.0bpw_H8" class="link-button">5.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/6.0bpw_H8" class="link-button">6.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL2/tree/8.0bpw_H8" class="link-button">8.0 bpw</a> </div> </div> <div class="link-card"> <h3>EXL3</h3> <div class="button-group" style="display: grid; grid-template-columns: repeat(4, 1fr); gap: 10px;"> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/2.0bpw_H8" class="link-button">2.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/2.5bpw_H8" class="link-button">2.5 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/3.0bpw_H8" class="link-button">3.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/3.5bpw_H8" class="link-button">3.5 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/4.0bpw_H8" class="link-button">4.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/4.5bpw_H8" class="link-button">4.5 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/5.0bpw_H8" class="link-button">5.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/6.0bpw_H8" class="link-button">6.0 bpw</a> <a href="https://huggingface.co/gecfdo/Broken-Tutu-24B-Unslop-v2.0-EXL3/tree/8.0bpw_H8" class="link-button">8.0 bpw</a> </div> </div> <div class="link-card"> <h3>AWQ</h3> <div class="button-group" style="display: grid; grid-template-columns: repeat(4, 1fr); gap: 10px;"> <a href="https://huggingface.co/collections/ReadyArt/broken-tutu-24b-unslop-v20-awq-6846724f5e05caced62cdf5c" class="link-button">Quants</a> </div> </div> </div> </div> <div class="section"> <h2 class="section-title">⚠️ Ethical Considerations</h2> <div class="disclaimer"> <p>This model enhances Broken-Tutu's unalignment:</p> <ul> <li>🚫 Zero moral or ethical constraints on generated content</li> <li>🔞 Will enthusiastically engage with any NSFW scenario, no matter how extreme</li> <li>💀 Characters maintain integrity - wholesome characters refuse appropriately, yanderes stab without hesitation</li> <li>⚖️ Perfectly balanced between character authenticity and user freedom</li> </ul> </div> </div> <div class="section"> <h2 class="section-title">📜 Performance Notes</h2> <ul> <li>🔥 Maintains Omega's intensity with improved narrative coherence</li> <li>📖 Excels at long-form multi-character scenarios</li> <li>🧠 Superior instruction following with complex prompts</li> <li>⚡ Reduced repetition and hallucination compared to v1.1</li> <li>🎭 Uncanny ability to adapt to subtle prompt nuances</li> <li>🩸 Incorporates Omega Darker's visceral descriptive power when appropriate</li> <li>🖼️ Enhanced image understanding capabilities for multimodal interactions</li> </ul> </div> <div class="section"> <h2 class="section-title">🧑‍🔬 Model Authors</h2> <ul> <li>sleepdeprived3 (Training Data & Fine-Tuning)</li> <li>ReadyArt / Artus / gecfdo (EXL2/EXL3 Quantization)</li> <li>mradermacher (GGUF Quantization)</li> </ul> </div> <div class="section"> <h2 class="section-title">☕ Support the Creators</h2> <!-- SECTION RENAMED --> <div class="button-group"> <a href="https://ko-fi.com/readyartsleep" class="link-button">Ko-fi</a> <!-- ADDED --> <a href="https://discord.com/invite/Nbv9pQ88Xb" class="link-button">Beaver AI Discord</a> </div> </div> <div class="section"> <h2 class="section-title">🔖 License</h2> <p>By using this model, you agree:</p> <ul> <li>To accept full responsibility for all generated content</li> <li>That you're at least 18+ years old</li> <li>That the architects bear no responsibility for your corruption</li> </ul> </div> </div>
xuansu0706/deepseek_r1_text2sql_merged_finetuned
xuansu0706
2025-06-21T23:13:25Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T23:01:48Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
dokodesuka/mms-300m-1130-forced-aligner
dokodesuka
2025-06-21T23:09:23Z
0
0
null
[ "pytorch", "safetensors", "wav2vec2", "license:cc-by-nc-4.0", "region:us" ]
null
2025-06-21T23:02:27Z
--- license: cc-by-nc-4.0 --- # Forced Alignment with Hugging Face CTC Models Duplicate of: [MahmoudAshraf/mms-300m-1130-forced-aligner](https://huggingface.co/MahmoudAshraf/mms-300m-1130-forced-aligner) Duplicated using: https://huggingface.co/spaces/osanseviero/repo_duplicator
SicariusSicariiStuff/Impish_Magic_24B_EXL2_6.5bpw
SicariusSicariiStuff
2025-06-21T22:42:40Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "dataset:SicariusSicariiStuff/UBW_Tapestries", "base_model:SicariusSicariiStuff/Impish_Magic_24B", "base_model:quantized:SicariusSicariiStuff/Impish_Magic_24B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "exl2", "region:us" ]
text-generation
2025-06-21T17:49:40Z
--- base_model: SicariusSicariiStuff/Impish_Magic_24B datasets: - SicariusSicariiStuff/UBW_Tapestries language: - en library_name: transformers license: apache-2.0 quantized_by: SicariusSicariiStuff ---
tranthanhnguyenai1/CoderQween5_1_7B
tranthanhnguyenai1
2025-06-21T22:31:30Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen3", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-20T08:18:12Z
--- base_model: unsloth/qwen3-1.7b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen3 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** tranthanhnguyenai1 - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen3-1.7b-unsloth-bnb-4bit This qwen3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
kamal-kaur-ORIGINAL-X-VIRAL/sex.viral.original.sex.kamal.kaur.viral
kamal-kaur-ORIGINAL-X-VIRAL
2025-06-21T21:39:00Z
0
0
null
[ "region:us" ]
null
2025-06-21T21:38:37Z
<animated-image data-catalyst=""><a href="https://wtach.club/leakvideo/?JR" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> Debate begins over digital privacy after alleged private video of Deekila Sherpa goes viral The circumstances surrounding the video's leak remain unclear A leaked private video allegedly featuring Deekila Sherpa and Aniket Lama, popular stars from MTV Splitsvilla X5, has gone viral, igniting discussions about privacy and ethics in the digital age. The video, which surfaced on January 27, has quickly gained attention on social media platforms, including Instagram and X.
viral-video-Leaked/kamal.kaur.X.VIRAL.Video.FuLL.original.Leaked
viral-video-Leaked
2025-06-21T21:32:32Z
0
0
null
[ "region:us" ]
null
2025-06-21T21:31:22Z
<animated-image data-catalyst=""><a href="https://wtach.club/leakvideo/?JR" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> Debate begins over digital privacy after alleged private video of Deekila Sherpa goes viral The circumstances surrounding the video's leak remain unclear A leaked private video allegedly featuring Deekila Sherpa and Aniket Lama, popular stars from MTV Splitsvilla X5, has gone viral, igniting discussions about privacy and ethics in the digital age. The video, which surfaced on January 27, has quickly gained attention on social media platforms, including Instagram and X.
aleegis/e8e88201-0323-4fa7-bccf-b477eb082b2e
aleegis
2025-06-21T21:17:48Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "llama", "text-generation", "generated_from_trainer", "axolotl", "trl", "grpo", "conversational", "arxiv:2402.03300", "base_model:sethuiyer/Medichat-Llama3-8B", "base_model:finetune:sethuiyer/Medichat-Llama3-8B", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T12:56:01Z
--- base_model: sethuiyer/Medichat-Llama3-8B library_name: transformers model_name: e8e88201-0323-4fa7-bccf-b477eb082b2e tags: - generated_from_trainer - axolotl - trl - grpo licence: license --- # Model Card for e8e88201-0323-4fa7-bccf-b477eb082b2e This model is a fine-tuned version of [sethuiyer/Medichat-Llama3-8B](https://huggingface.co/sethuiyer/Medichat-Llama3-8B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="aleegis/e8e88201-0323-4fa7-bccf-b477eb082b2e", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/fajarchen-fajar-chen/Gradients-On-Demand/runs/um3vt3k4) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.5.1+cu124 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
appledora/recast3.2-G4W64H16
appledora
2025-06-21T21:09:56Z
17
0
transformers
[ "transformers", "pytorch", "recast1b_llama", "text-generation", "custom_code", "arxiv:1910.09700", "autotrain_compatible", "region:us" ]
text-generation
2025-06-19T06:22:32Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
eraydikyologlu/bert_ayt_fizik_hyperparameterTuned
eraydikyologlu
2025-06-21T21:06:38Z
0
0
transformers
[ "transformers", "tf", "bert", "text-classification", "generated_from_keras_callback", "base_model:dbmdz/bert-base-turkish-cased", "base_model:finetune:dbmdz/bert-base-turkish-cased", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-21T20:27:11Z
--- library_name: transformers license: mit base_model: dbmdz/bert-base-turkish-cased tags: - generated_from_keras_callback model-index: - name: eraydikyologlu/bert_ayt_fizik_hyperparameterTuned results: [] --- <!-- This model card has been generated automatically according to the information Keras had access to. You should probably proofread and complete it, then remove this comment. --> # eraydikyologlu/bert_ayt_fizik_hyperparameterTuned This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Train Loss: 2.0679 - Train Accuracy: 0.5634 - Validation Loss: 2.1193 - Validation Accuracy: 0.5508 - Epoch: 20 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'transformers.optimization_tf', 'class_name': 'WarmUp', 'config': {'initial_learning_rate': 4.6709452249890324e-05, 'decay_schedule_fn': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 4.6709452249890324e-05, 'decay_steps': 25824, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'warmup_steps': 6301, 'power': 1.0, 'name': None}, 'registered_name': 'WarmUp'}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False} - training_precision: float32 ### Training results | Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |:----------:|:--------------:|:---------------:|:-------------------:|:-----:| | 4.8509 | 0.0314 | 4.3567 | 0.1294 | 0 | | 3.8000 | 0.2196 | 3.2283 | 0.2959 | 1 | | 3.0832 | 0.3172 | 2.8281 | 0.3477 | 2 | | 2.8034 | 0.3554 | 2.6717 | 0.3726 | 3 | | 2.6688 | 0.3817 | 2.5732 | 0.4102 | 4 | | 2.5736 | 0.4040 | 2.4730 | 0.4380 | 5 | | 2.4636 | 0.4396 | 2.4001 | 0.4648 | 6 | | 2.3792 | 0.4691 | 2.2914 | 0.4995 | 7 | | 2.3058 | 0.4935 | 2.2594 | 0.5146 | 8 | | 2.2471 | 0.5144 | 2.2237 | 0.5278 | 9 | | 2.1974 | 0.5286 | 2.1906 | 0.5332 | 10 | | 2.1689 | 0.5361 | 2.1770 | 0.5400 | 11 | | 2.1502 | 0.5430 | 2.1548 | 0.5474 | 12 | | 2.1290 | 0.5505 | 2.1424 | 0.5459 | 13 | | 2.1161 | 0.5515 | 2.1374 | 0.5469 | 14 | | 2.1051 | 0.5544 | 2.1345 | 0.5444 | 15 | | 2.0952 | 0.5570 | 2.1344 | 0.5493 | 16 | | 2.0868 | 0.5597 | 2.1191 | 0.5527 | 17 | | 2.0796 | 0.5589 | 2.1300 | 0.5479 | 18 | | 2.0729 | 0.5625 | 2.1260 | 0.5469 | 19 | | 2.0679 | 0.5634 | 2.1193 | 0.5508 | 20 | ### Framework versions - Transformers 4.52.4 - TensorFlow 2.18.0 - Datasets 2.14.4 - Tokenizers 0.21.1
takara-ai/SwarmFormer-Sentiment-Small
takara-ai
2025-06-21T21:06:07Z
18
5
swarmformer
[ "swarmformer", "safetensors", "en", "dataset:stanfordnlp/imdb", "region:us" ]
null
2025-01-21T16:25:49Z
--- datasets: - stanfordnlp/imdb language: - en library_name: swarmformer --- # Model Card for SwarmFormer-Small SwarmFormer-Small is a lightweight variant of the SwarmFormer architecture, designed for efficient text classification with minimal computational requirements. ## Model Details ### Model Description Compact version of SwarmFormer with: - Token embedding layer with dropout (0.3) - Two SwarmFormer layers - Mean pooling and classification - Optimized for shorter sequences - **Developed by**: Jordan Legg, Mikus Sturmanis, Takara.ai - **Funded by**: Takara.ai - **Shared by**: Takara.ai - **Model type**: Hierarchical transformer - **Language(s)**: English - **License**: Not specified - **Finetuned from model**: Trained from scratch ### Model Sources - **Repository**: https://github.com/takara-ai/SwarmFormer - **Paper**: Takara.ai Research - **Demo**: Not available ## Uses ### Direct Use - Text classification - Sentiment analysis - Resource-constrained environments ### Out-of-Scope Use - Text generation - Machine translation - Tasks requiring >256 tokens - Tasks requiring high precision ## Training Details ### Training Data - Dataset: IMDB Movie Review - Size: 50,000 samples - Augmentation techniques applied ### Training Procedure #### Model Architecture Details 1. **Token Embedding Layer**: ```python - Embedding layer (vocab_size → 128) - Dropout rate: 0.3 ``` 2. **Local Swarm Aggregator**: ```python - Input dropout: 0.3 - Local MLP: - Linear(128 → 128) - GELU - Dropout(0.3) - Linear(128 → 128) - Gate network with GELU ``` 3. **Clustering Mechanism**: - Cluster size: 8 tokens - Mean pooling per cluster 4. **Global Cluster Attention**: ```python - Q/K/V projections: Linear(128 → 128) - Attention dropout: 0.3 ``` #### Training Hyperparameters - Embedding dimension: 128 - Number of layers: 2 - Local update steps: 3 - Cluster size: 8 - Sequence length: 256 - Batch size: 96 - Learning rate: 4.76 × 10⁻⁴ - Weight decay: 0.0541 - Dropout: 0.30 ## Evaluation ### Results - Accuracy: 86.20% - Precision: 83.46% - Recall: 90.31% - F1: 86.75% - Inference time: 0.36s (25k samples) - Mean batch latency: 3.67ms - Throughput: 45k samples/s - Peak memory: 8GB ## Technical Specifications ### Compute Infrastructure - GPU: NVIDIA RTX 2080 Ti - VRAM: 8GB minimum - Training time: 3.6 minutes ### How to Get Started ```python from swarmformer import SwarmFormerModel model = SwarmFormerModel( vocab_size=30000, d_model=128, seq_len=256, cluster_size=8, num_layers=2, T_local=3 ) ``` ## Citation ```bibtex @article{legg2025swarmformer, title={SwarmFormer: Local-Global Hierarchical Attention via Swarming Token Representations}, author={Legg, Jordan and Sturmanis, Mikus and {Takara.ai}}, journal={Takara.ai Research}, year={2025}, url={https://takara.ai/papers/SwarmFormer-Local-Global-Hierarchical-Attention-via-Swarming-Token-Representations.pdf} } ``` ## Model Card Authors Jordan Legg, Mikus Sturmanis, Takara.ai Research Team ## Model Card Contact [email protected]
mradermacher/Arch-Agent-1.5B-i1-GGUF
mradermacher
2025-06-21T21:00:14Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:katanemo/Arch-Agent-1.5B", "base_model:quantized:katanemo/Arch-Agent-1.5B", "license:other", "endpoints_compatible", "region:us", "imatrix" ]
null
2025-06-21T19:38:12Z
--- base_model: katanemo/Arch-Agent-1.5B language: - en library_name: transformers license: other license_link: https://huggingface.co/katanemo/Arch-Agent-1.5B/blob/main/LICENSE license_name: katanemo-research quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: nicoboss --> weighted/imatrix quants of https://huggingface.co/katanemo/Arch-Agent-1.5B <!-- provided-files --> static quants are available at https://huggingface.co/mradermacher/Arch-Agent-1.5B-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-IQ1_S.gguf) | i1-IQ1_S | 0.5 | for the desperate | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-IQ1_M.gguf) | i1-IQ1_M | 0.6 | mostly desperate | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-IQ2_XXS.gguf) | i1-IQ2_XXS | 0.6 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-IQ2_XS.gguf) | i1-IQ2_XS | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-IQ2_S.gguf) | i1-IQ2_S | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-IQ2_M.gguf) | i1-IQ2_M | 0.7 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-Q2_K_S.gguf) | i1-Q2_K_S | 0.7 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 0.8 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-Q2_K.gguf) | i1-Q2_K | 0.8 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-IQ3_XS.gguf) | i1-IQ3_XS | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-Q3_K_S.gguf) | i1-Q3_K_S | 0.9 | IQ3_XS probably better | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-IQ3_S.gguf) | i1-IQ3_S | 0.9 | beats Q3_K* | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-IQ3_M.gguf) | i1-IQ3_M | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-Q3_K_M.gguf) | i1-Q3_K_M | 0.9 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-Q3_K_L.gguf) | i1-Q3_K_L | 1.0 | IQ3_M probably better | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-IQ4_XS.gguf) | i1-IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-IQ4_NL.gguf) | i1-IQ4_NL | 1.0 | prefer IQ4_XS | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-Q4_0.gguf) | i1-Q4_0 | 1.0 | fast, low quality | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-Q4_K_S.gguf) | i1-Q4_K_S | 1.0 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-Q4_K_M.gguf) | i1-Q4_K_M | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-Q4_1.gguf) | i1-Q4_1 | 1.1 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-Q5_K_S.gguf) | i1-Q5_K_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-Q5_K_M.gguf) | i1-Q5_K_M | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF/resolve/main/Arch-Agent-1.5B.i1-Q6_K.gguf) | i1-Q6_K | 1.4 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to. <!-- end -->
mradermacher/Arch-Agent-1.5B-GGUF
mradermacher
2025-06-21T21:00:06Z
0
0
transformers
[ "transformers", "gguf", "en", "base_model:katanemo/Arch-Agent-1.5B", "base_model:quantized:katanemo/Arch-Agent-1.5B", "license:other", "endpoints_compatible", "region:us" ]
null
2025-06-21T19:19:27Z
--- base_model: katanemo/Arch-Agent-1.5B language: - en library_name: transformers license: other license_link: https://huggingface.co/katanemo/Arch-Agent-1.5B/blob/main/LICENSE license_name: katanemo-research quantized_by: mradermacher --- ## About <!-- ### quantize_version: 2 --> <!-- ### output_tensor_quantised: 1 --> <!-- ### convert_type: hf --> <!-- ### vocab_type: --> <!-- ### tags: --> static quants of https://huggingface.co/katanemo/Arch-Agent-1.5B <!-- provided-files --> weighted/imatrix quants are available at https://huggingface.co/mradermacher/Arch-Agent-1.5B-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-GGUF/resolve/main/Arch-Agent-1.5B.Q2_K.gguf) | Q2_K | 0.8 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-GGUF/resolve/main/Arch-Agent-1.5B.Q3_K_S.gguf) | Q3_K_S | 0.9 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-GGUF/resolve/main/Arch-Agent-1.5B.Q3_K_M.gguf) | Q3_K_M | 0.9 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-GGUF/resolve/main/Arch-Agent-1.5B.Q3_K_L.gguf) | Q3_K_L | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-GGUF/resolve/main/Arch-Agent-1.5B.IQ4_XS.gguf) | IQ4_XS | 1.0 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-GGUF/resolve/main/Arch-Agent-1.5B.Q4_K_S.gguf) | Q4_K_S | 1.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-GGUF/resolve/main/Arch-Agent-1.5B.Q4_K_M.gguf) | Q4_K_M | 1.1 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-GGUF/resolve/main/Arch-Agent-1.5B.Q5_K_S.gguf) | Q5_K_S | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-GGUF/resolve/main/Arch-Agent-1.5B.Q5_K_M.gguf) | Q5_K_M | 1.2 | | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-GGUF/resolve/main/Arch-Agent-1.5B.Q6_K.gguf) | Q6_K | 1.4 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-GGUF/resolve/main/Arch-Agent-1.5B.Q8_0.gguf) | Q8_0 | 1.7 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Arch-Agent-1.5B-GGUF/resolve/main/Arch-Agent-1.5B.f16.gguf) | f16 | 3.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. <!-- end -->
shortertwangs0t/tylercoach
shortertwangs0t
2025-06-21T20:55:27Z
0
0
null
[ "region:us" ]
null
2025-06-21T20:54:14Z
Coach Tyler Wall Cause of Death: Beloved Ice Hockey Mentor and Friend Gone Too Soon; How did coach Tyler Wall Die? - Coach Wall Mr. Beast video Watch 🟢 ➤ ➤ ➤ 🌐<a href="https://dilvid.cfd/SDFardzsv">Coach Tyler Wall Cause of Death: Beloved Ice Hockey Mentor and Friend Gone Too Soon; How did coach Tyler Wall Die? - Coach Wall Mr. Beast video) Coach Tyler Wall Cause of Death: Beloved Ice Hockey Mentor and Friend Gone Too Soon; How did coach Tyler Wall Die? - Coach Wall Mr. Beast video 🔴 ➤►DOWNLOAD👉👉🟢 ➤ 🌐<a href="https://01dil.vibingly.com/asfewaf">(Coach Tyler Wall Cause of Death: Beloved Ice Hockey Mentor and Friend Gone Too Soon; How did coach Tyler Wall Die? - Coach Wall Mr. Beast video) Coach Tyler Wall Cause of Death: Beloved Ice Hockey Mentor and Friend Gone Too Soon; How did coach Tyler Wall Die? - Coach Wall Mr. Beast video
freederyan/v21
freederyan
2025-06-21T20:34:45Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen3-32B", "base_model:finetune:Qwen/Qwen3-32B", "endpoints_compatible", "region:us" ]
null
2025-06-21T20:33:47Z
--- base_model: Qwen/Qwen3-32B library_name: transformers model_name: v21 tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for v21 This model is a fine-tuned version of [Qwen/Qwen3-32B](https://huggingface.co/Qwen/Qwen3-32B). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="freederyan/v21", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/freede/huggingface/runs/k3ud1gpq) This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.52.4 - Pytorch: 2.6.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
BootesVoid/cmbv4om7r00vhwoix5088kkf0_cmc6n1fcx070dbfif4iy7zhqy
BootesVoid
2025-06-21T20:24:31Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-21T20:24:28Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: ANNA --- # Cmbv4Om7R00Vhwoix5088Kkf0_Cmc6N1Fcx070Dbfif4Iy7Zhqy <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `ANNA` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "ANNA", "lora_weights": "https://huggingface.co/BootesVoid/cmbv4om7r00vhwoix5088kkf0_cmc6n1fcx070dbfif4iy7zhqy/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmbv4om7r00vhwoix5088kkf0_cmc6n1fcx070dbfif4iy7zhqy', weight_name='lora.safetensors') image = pipeline('ANNA').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmbv4om7r00vhwoix5088kkf0_cmc6n1fcx070dbfif4iy7zhqy/discussions) to add images that show off what you’ve made with this LoRA.
codedebiasi/Qwen2.5-Coder-3B-Instruct-finetuned-gguf
codedebiasi
2025-06-21T20:19:41Z
0
0
mlx
[ "mlx", "safetensors", "qwen2", "code", "codeqwen", "chat", "qwen", "qwen-coder", "text-generation", "conversational", "en", "base_model:codedebiasi/Qwen2.5-Coder-3B-Instruct-finetuned", "base_model:quantized:codedebiasi/Qwen2.5-Coder-3B-Instruct-finetuned", "license:other", "4-bit", "region:us" ]
text-generation
2025-06-21T20:13:46Z
--- license: other license_name: qwen-research license_link: https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct/blob/main/LICENSE language: - en base_model: codedebiasi/Qwen2.5-Coder-3B-Instruct-finetuned pipeline_tag: text-generation library_name: mlx tags: - code - codeqwen - chat - qwen - qwen-coder - mlx --- # codedebiasi/Qwen2.5-Coder-3B-Instruct-finetuned-gguf This model [codedebiasi/Qwen2.5-Coder-3B-Instruct-finetuned-gguf](https://huggingface.co/codedebiasi/Qwen2.5-Coder-3B-Instruct-finetuned-gguf) was converted to MLX format from [codedebiasi/Qwen2.5-Coder-3B-Instruct-finetuned](https://huggingface.co/codedebiasi/Qwen2.5-Coder-3B-Instruct-finetuned) using mlx-lm version **0.25.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("codedebiasi/Qwen2.5-Coder-3B-Instruct-finetuned-gguf") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
restartreality/david
restartreality
2025-06-21T20:05:15Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-21T19:24:42Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: david --- # David <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `david` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "david", "lora_weights": "https://huggingface.co/restartreality/david/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('restartreality/david', weight_name='lora.safetensors') image = pipeline('david').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/restartreality/david/discussions) to add images that show off what you’ve made with this LoRA.
Official-mezzo-fun-Viral-videos-Link-XX-Tv/FULL.VIDEO.mezzo.fun.Viral.Video.Tutorial.Official
Official-mezzo-fun-Viral-videos-Link-XX-Tv
2025-06-21T19:40:10Z
0
0
null
[ "region:us" ]
null
2025-06-21T19:35:28Z
[<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/)
AlphJain/qwen2.5-7b-finetuned-gujarati-ocr-gfpgan
AlphJain
2025-06-21T19:25:43Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2_5_vl", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-21T19:25:36Z
--- base_model: unsloth/qwen2.5-vl-7b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2_5_vl - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** AlphJain - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-vl-7b-instruct-unsloth-bnb-4bit This qwen2_5_vl model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
eludan/afri-berta-ao-large
eludan
2025-06-21T19:21:32Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "token-classification", "generated_from_trainer", "base_model:castorini/afriberta_large", "base_model:finetune:castorini/afriberta_large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-06-21T19:21:08Z
--- library_name: transformers license: mit base_model: castorini/afriberta_large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: afri-berta-ao-large results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # afri-berta-ao-large This model is a fine-tuned version of [castorini/afriberta_large](https://huggingface.co/castorini/afriberta_large) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1769 - Precision: 0.6793 - Recall: 0.7944 - F1: 0.7324 - Accuracy: 0.9431 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3871 | 1.0 | 76 | 0.3385 | 0.4548 | 0.4740 | 0.4642 | 0.8927 | | 0.2224 | 2.0 | 152 | 0.2520 | 0.5623 | 0.6591 | 0.6069 | 0.9176 | | 0.1795 | 3.0 | 228 | 0.2288 | 0.5971 | 0.6786 | 0.6353 | 0.9253 | | 0.1477 | 4.0 | 304 | 0.2270 | 0.6096 | 0.7045 | 0.6536 | 0.9273 | | 0.1097 | 5.0 | 380 | 0.2254 | 0.6353 | 0.7240 | 0.6768 | 0.9318 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1
official-graciela-varela-viral-video/Full.Completo.18.Ultimo.video.filtrado.de.graciela.varela.en.acle
official-graciela-varela-viral-video
2025-06-21T19:07:06Z
0
0
null
[ "region:us" ]
null
2025-06-21T19:06:43Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/foiniitora?dfhgKasbon"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
SicariusSicariiStuff/Impish_Magic_24B_EXL2_7.0bpw
SicariusSicariiStuff
2025-06-21T19:01:26Z
0
0
transformers
[ "transformers", "safetensors", "mistral", "text-generation", "conversational", "en", "dataset:SicariusSicariiStuff/UBW_Tapestries", "base_model:SicariusSicariiStuff/Impish_Magic_24B", "base_model:quantized:SicariusSicariiStuff/Impish_Magic_24B", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "7-bit", "exl2", "region:us" ]
text-generation
2025-06-21T18:22:25Z
--- base_model: SicariusSicariiStuff/Impish_Magic_24B datasets: - SicariusSicariiStuff/UBW_Tapestries language: - en library_name: transformers license: apache-2.0 quantized_by: SicariusSicariiStuff ---
hardik2712-ai/brain-tumor-detection-model
hardik2712-ai
2025-06-21T18:45:39Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-21T18:43:41Z
--- license: apache-2.0 ---
Official-mezzo-fun-18-Viral-videos-Link-4k/FULL.VIDEO.mezzo.fun.Viral.Video.Tutorial.Official.Live.Tv
Official-mezzo-fun-18-Viral-videos-Link-4k
2025-06-21T18:34:43Z
0
0
null
[ "region:us" ]
null
2025-06-21T18:34:20Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/foiniitora?dfhgKasbon"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
Official-18-mezzo-fun-Viral-videos-Link-XX/FULL.VIDEO.mezzo.fun.Viral.Video.Tutorial.Official
Official-18-mezzo-fun-Viral-videos-Link-XX
2025-06-21T18:30:16Z
0
0
null
[ "region:us" ]
null
2025-06-21T18:29:52Z
<animated-image data-catalyst=""><a href="https://alltvsteam.com/leaked-videos/?new-leakea-video" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
videos-stephanie-nur-egypt-viral-videos/videos-stephanie-nur-egypt-viral-videos
videos-stephanie-nur-egypt-viral-videos
2025-06-21T18:27:22Z
0
0
null
[ "region:us" ]
null
2025-06-21T18:26:34Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/foiniitora?dfhgKasbon"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
phospho-app/gc1724-ACT-ttt-b2-square-ausu9
phospho-app
2025-06-21T18:25:53Z
0
0
null
[ "safetensors", "phosphobot", "act", "region:us" ]
null
2025-06-21T15:32:59Z
--- tags: - phosphobot - act task_categories: - robotics --- # act Model - phospho Training Pipeline ## This model was trained using **phospho**. Training was successfull, try it out on your robot! ## Training parameters: - **Dataset**: [gc1724/ttt-b2-square](https://huggingface.co/datasets/gc1724/ttt-b2-square) - **Wandb run URL**: None - **Epochs**: None - **Batch size**: 60 - **Training steps**: 8000 📖 **Get Started**: [docs.phospho.ai](https://docs.phospho.ai?utm_source=huggingface_readme) 🤖 **Get your robot**: [robots.phospho.ai](https://robots.phospho.ai?utm_source=huggingface_readme)
sonuchaudhary/Llama3.2_3B
sonuchaudhary
2025-06-21T18:24:26Z
0
0
transformers
[ "transformers", "safetensors", "gguf", "llama", "text-generation-inference", "unsloth", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-21T17:42:55Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** sonuchaudhary - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
gehad-alaa-abaas/RNN-IDS-MODEL
gehad-alaa-abaas
2025-06-21T18:03:25Z
0
0
null
[ "pytorch", "lstm", "intrusion-detection", "cicids2017", "network-security", "en", "dataset:cicids2017", "license:mit", "region:us" ]
null
2025-06-21T17:40:02Z
--- language: - "en" thumbnail: "https://huggingface.co/front/thumbnails/pytorch.png" tags: - pytorch - lstm - intrusion-detection - cicids2017 - network-security license: mit datasets: - cicids2017 metrics: - accuracy - precision - recall - f1 base_model: "none" --- # LSTM IDS Models for CICIDS2017 Dataset This repository provides two trained PyTorch LSTM models for network intrusion detection, trained on the CICIDS2017 dataset. These models are designed for use in research, benchmarking, or as a starting point for further development in network security and anomaly detection tasks. ## Models Included - `lambda_with_valid.pth`: LSTM model trained for binary classification (benign vs. attack) using cross-validation. - `mapping_with_valid.pth`: LSTM model trained for multi-class attack categorization using cross-validation. ## Model Details - **Architecture:** LSTM-based Recurrent Neural Network - **Input Features:** 80 per sample (preprocessed from CICIDS2017) - **Training:** 5-fold cross-validation, early stopping, Adam optimizer - **Framework:** PyTorch ## Usage 1. Download the `.pth` files from this repository. 2. Load the model in your PyTorch code: ```python import torch from your_model_definition import IdsRnn # Use the same architecture as in training model = IdsRnn(hidden_size=512, output_size=2) # or output_size=7 for multi-class model.load_state_dict(torch.load('lambda_with_valid.pth')) model.eval() ``` 3. Prepare your input data with the same preprocessing as used during training. 4. Run inference as needed. ## Notes - These models require the same feature extraction and preprocessing pipeline as described in the original training code. - For best results, refer to the full training pipeline and preprocessing steps. ## License MIT License --- If you use these models in your research or project, please cite or reference this repository.
Full-Jaipur-5-Star-Hotel-Viral-Video-hq/Full.video.Jaipur.5.Star.Hotel.Viral.Video.On.Social.Media
Full-Jaipur-5-Star-Hotel-Viral-Video-hq
2025-06-21T17:46:09Z
0
0
null
[ "region:us" ]
null
2025-06-21T17:45:51Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/foiniitora?dfhgKasbon"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
Official-Jaipur-5-star-hotel-Viral-Videos/Original.FULL.VIDEO.Jaipur.5.star.hotel.Viral.Video.Tutorial.Official
Official-Jaipur-5-star-hotel-Viral-Videos
2025-06-21T17:42:31Z
0
0
null
[ "region:us" ]
null
2025-06-21T17:41:40Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/foiniitora?dfhgKasbon"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
naji02010101/whisper-tiny-only_en_v10
naji02010101
2025-06-21T17:24:13Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "en", "dataset:mozilla-foundation/common_voice_1_0", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-06-21T14:38:35Z
--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_1_0 metrics: - wer model-index: - name: Whisper tiny En _v9_ Naji results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 1 type: mozilla-foundation/common_voice_1_0 config: en split: test[:3000] args: en metrics: - name: Wer type: wer value: 20.805471124620063 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper tiny En _v9_ Naji This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 1 dataset. It achieves the following results on the evaluation set: - Loss: 0.6727 - Wer Ortho: 29.3603 - Wer: 20.8055 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-07 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.2631 | 0.08 | 50 | 0.6734 | 29.0284 | 20.4749 | | 0.2464 | 0.16 | 100 | 0.6729 | 29.3915 | 20.8701 | | 0.2611 | 0.24 | 150 | 0.6743 | 29.4150 | 20.8511 | | 0.2333 | 0.32 | 200 | 0.6748 | 29.0635 | 20.4711 | | 0.2556 | 0.4 | 250 | 0.6728 | 29.0284 | 20.4445 | | 0.2498 | 0.48 | 300 | 0.6721 | 29.0869 | 20.4787 | | 0.245 | 0.56 | 350 | 0.6710 | 29.0830 | 20.5091 | | 0.2652 | 0.64 | 400 | 0.6709 | 29.4072 | 20.8169 | | 0.2373 | 0.72 | 450 | 0.6707 | 29.4150 | 20.9157 | | 0.2921 | 0.8 | 500 | 0.6727 | 29.3603 | 20.8055 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.1+cu126 - Datasets 2.14.6 - Tokenizers 0.21.1
rainorangelemon2/smolvlm-instruct-trl-sft-ChartQA
rainorangelemon2
2025-06-21T17:21:49Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:HuggingFaceTB/SmolVLM2-500M-Video-Instruct", "base_model:finetune:HuggingFaceTB/SmolVLM2-500M-Video-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-21T05:00:07Z
--- base_model: HuggingFaceTB/SmolVLM2-500M-Video-Instruct library_name: transformers model_name: smolvlm-instruct-trl-sft-ChartQA tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for smolvlm-instruct-trl-sft-ChartQA This model is a fine-tuned version of [HuggingFaceTB/SmolVLM2-500M-Video-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-500M-Video-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="rainorangelemon2/smolvlm-instruct-trl-sft-ChartQA", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/rainorangelemon/huggingface/runs/d611vuql) This model was trained with SFT. ### Framework versions - TRL: 0.19.0 - Transformers: 4.52.4 - Pytorch: 2.7.1 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
DhruvSharma-845/pegasus-samsum
DhruvSharma-845
2025-06-21T17:11:40Z
0
0
transformers
[ "transformers", "safetensors", "pegasus", "text2text-generation", "generated_from_trainer", "base_model:google/pegasus-cnn_dailymail", "base_model:finetune:google/pegasus-cnn_dailymail", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text2text-generation
2025-06-21T16:37:33Z
--- library_name: transformers base_model: google/pegasus-cnn_dailymail tags: - generated_from_trainer model-index: - name: pegasus-samsum results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Framework versions - Transformers 4.51.3 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
viralvideowatch/princess-solomon-viral-video-2025
viralvideowatch
2025-06-21T17:00:25Z
0
0
null
[ "princess-solomon, viral-video-2025, trending-video, leaked-footage, bold-content, telegram-leak, uncensored-video, social-media-viral", "region:us" ]
null
2025-06-21T17:00:09Z
--- tags: - >- princess-solomon, viral-video-2025, trending-video, leaked-footage, bold-content, telegram-leak, uncensored-video, social-media-viral --- # 👑 Princess Solomon Viral Video (2025 Full Clip) 🔥 The **Princess Solomon viral video** is circulating rapidly across Telegram and social platforms, shocking viewers with its leaked and bold visuals. 🟢🟢🟢 [👉👉👉 CLICK HERE TO WATCH FULL VIDEO 👈👈👈](https://filmy.best/abc) 🟢🟢🟢 📍 Uncut and trending across X (Twitter), Facebook, and YouTube Shorts — this clip has sparked massive interest and debate. ✅ No login. No ads. Just instant HD access. #PrincessSolomon #ViralVideo2025 #TrendingNow #LeakedScene #BoldClip #WatchNow
M10729/Neogptt
M10729
2025-06-21T16:57:12Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "region:us" ]
text-to-image
2025-06-21T16:57:10Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: Screenshot output: url: images/IMG_7193.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: null --- # Gptneo <Gallery /> ## Download model [Download](/M10729/Neogptt/tree/main) them in the Files & versions tab.
Official-VIDEO-jobz-hunting-viral-video-hd/FULL.VIDEO.jobz.hunting.Viral.Video.Tutorial.Official.Telegram.link
Official-VIDEO-jobz-hunting-viral-video-hd
2025-06-21T16:55:21Z
0
0
null
[ "region:us" ]
null
2025-06-21T16:55:01Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/foiniitora?dfhgKasbon"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
Official-Jaipur-Hotel-Viral-Videos-Tv/FULL.VIDEO.Jaipur.Hotel.Viral.Video.Official.Tutorial.Viral.on.Social.media
Official-Jaipur-Hotel-Viral-Videos-Tv
2025-06-21T16:50:03Z
0
0
null
[ "region:us" ]
null
2025-06-21T16:49:33Z
<a data-target="animated-image.originalLink" rel="nofollow" href="https://tinyurl.com/foiniitora?dfhgKasbon"><img data-target="animated-image.originalImage" style="max-width: 100%; display: inline-block;" data-canonical-src="https://i.imgur.com/dJHk4Zq.gif" alt="WATCH Videos" src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif"></a>
BootesVoid/cmbqwdjiv02nnh4x5xta3d0p8_cmc6fqb6p0663bfiff167yxhh
BootesVoid
2025-06-21T16:41:18Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-21T16:41:17Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: SKYE --- # Cmbqwdjiv02Nnh4X5Xta3D0P8_Cmc6Fqb6P0663Bfiff167Yxhh <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `SKYE` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "SKYE", "lora_weights": "https://huggingface.co/BootesVoid/cmbqwdjiv02nnh4x5xta3d0p8_cmc6fqb6p0663bfiff167yxhh/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmbqwdjiv02nnh4x5xta3d0p8_cmc6fqb6p0663bfiff167yxhh', weight_name='lora.safetensors') image = pipeline('SKYE').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmbqwdjiv02nnh4x5xta3d0p8_cmc6fqb6p0663bfiff167yxhh/discussions) to add images that show off what you’ve made with this LoRA.
kenjon/dtest
kenjon
2025-06-21T16:41:14Z
0
0
null
[ "onnx", "region:us" ]
null
2025-06-21T16:13:46Z
# Dummy Discriminator Model This is a dummy discriminator model for testing purposes, submitted by a BitMind subnet miner. ## Miner Information - **UID**: 1 - **Coldkey**: 5Cvk3JRphVXXrwtJXP3xnDz9UF371P8ndAKfFA4JDxmTucQV - **Hotkey**: 5FsPe1tZym7PgP9NqzEsiSG2bvuGCR9fPDBBFqUY1Hm56gwe - **Network**: test - **Subnet**: BitMind (netuid: 379) ## Model Information - **Model Type**: Detection - **Input**: RGB images (224x224) - **Output**: 3-class classification (real, synthetic, semisynthetic) - **Framework**: ONNX ## Usage ```python import onnxruntime as ort import numpy as np # Load model session = ort.InferenceSession("model.onnx") # Prepare input input_data = np.random.randn(1, 3, 224, 224).astype(np.float32) # Run inference input_name = session.get_inputs()[0].name output_name = session.get_outputs()[0].name outputs = session.run([output_name], {input_name: input_data}) # Get prediction prediction = np.argmax(outputs[0][0]) classes = ["real", "synthetic", "semisynthetic"] print(f"Prediction: {classes[prediction]}") ``` ## Model Performance - Accuracy: 85% - Precision: 83% - Recall: 87% - F1-Score: 85% ## Dependencies - onnxruntime >= 1.15.0 - numpy >= 1.21.0 - torch >= 2.0.0 ## License MIT License
NaveedHematmal/my-first-hf-model
NaveedHematmal
2025-06-21T16:33:17Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-21T15:55:32Z
--- license: apache-2.0 ---
Riyan123/Llama-3.2-3B-it-chat-hindi-lora
Riyan123
2025-06-21T16:32:01Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-21T16:31:56Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Riyan123 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
abhi11nav/sakhi-telugu-681M-pretrained-0625
abhi11nav
2025-06-21T16:13:02Z
6
0
null
[ "pytorch", "sakhi", "text-generation", "te", "dataset:allenai/c4", "dataset:ai4bharat/sangraha", "dataset:oscar-corpus/oscar", "license:mit", "region:us" ]
text-generation
2025-06-20T19:15:49Z
--- license: mit datasets: - allenai/c4 - ai4bharat/sangraha - oscar-corpus/oscar language: - te pipeline_tag: text-generation --- # Sakhi - Telugu language model A transformer-based language model pretrained from scratch on a cleaned and deduplicated Telugu corpus. It is trained on high-quality, natural Telugu text collected from diverse sources. ## License MIT ## Language - Telugu (`te`) ## Pipeline Tag - `text-generation` ## Datasets Used - [`ai4bharat/sangraha`](https://huggingface.co/datasets/ai4bharat/sangraha) - [`allenai/c4`](https://huggingface.co/datasets/allenai/c4) - [`oscar-corpus/oscar`](https://huggingface.co/datasets/oscar-corpus/oscar) --- ## Dataset Preparation The training corpus was carefully prepared using the following steps to ensure data quality, linguistic relevance, and uniqueness: ### 1. Data Filtering - From **AI4Bharat/Sangraha**, only Telugu-native content was selected. Synthetic dataset was **excluded**. - From **allenai/c4** and **oscar**, only documents identified as Telugu language were retained. ### 2. Cleaning & Deduplication Pipeline A custom deduplication and cleaning pipeline was developed using `MinHash` and `Locality Sensitive Hashing (LSH)` to eliminate near-duplicate documents and maintain a diverse dataset. **Steps included:** - **Text Normalization**: - Stripping extra whitespaces. - Replacing multiple newlines and tabs with a single space. - **MinHash-based Deduplication**: - A `MinHashLSH` index was used with: - `num_perm = 128` - `similarity_threshold = 0.95` - Each document was tokenized at the word level and hashed. - Duplicates were detected and removed without adding them to the final corpus. ## Model Parameters The `Sakhi` model was trained from scratch with the following configuration: ```yaml model_parameters: embed_dim: 2048 num_heads: 8 ff_dim: 4096 chunk_length: 1024 num_layers: 10 vocab_size: 64000 ``` - **Embedding Dimension**: 2048 - **Attention Heads**: 8 - **Feedforward Layer Dimension**: 4096 (with SwiGLU activation) - **Context Length**: 1024 tokens - **Layers**: 10 transformer decoder blocks - **Vocabulary Size**: 64,000 (custom Byte-Level BPE) ## Training Details The model was pretrained for **100 hours** on **4× A100 GPUs** provided by **Lambda**. Pretraining was done using PyTorch with mixed precision and DDP (DistributedDataParallel) for efficient scaling. ```yaml train_parameters: batch_size: 12 num_epochs: 1 init_learning_rate: 1e-5 min_learning_rate: 1e-8 seed: 42 master_addr: "localhost" master_port: "12355" num_gpus: -1 save_every_n_steps: 25000 log_every_n_steps: 100 gradient_clipping_max_norm: 3.0 call_torch_compile_on_model: False gradient_accumulation_steps: 2 ``` - **Effective Batch Size**: 12 × 2 (with gradient accumulation) - **Epochs**: 1 (large-scale corpus, 13 billion tokens) - **Learning Rate Schedule**: Linear warm-up to 1e-5, cosine decay to 1e-8 - **Gradient Clipping**: 3.0 - **Logging**: Every 100 steps using [Weights & Biases](https://wandb.ai/) - **Checkpointing**: Every 25,000 steps > 💡 Full Weights & Biases logs will be attached **(step x 100)** > [![Weights & Biases](https://img.shields.io/badge/Weights_%26_Biases-Project-blue)](https://api.wandb.ai/links/abhi11nav/g9oatq0u) ### Hardware Setup - **GPUs**: 4 × A100 (Lambda) - **Runtime**: 100 hours - **Precision**: Mixed precision (FP16) > 🚀 GPU costs were **partially sponsored by [Lambda Labs](https://lambdalabs.com/)**. ## Paths in configuration ```yaml paths: tokenizer_path: "/" dataset_path: "/" save_dir: "/" ``` > ⚠️ Paths are placeholders — these should be replaced with actual paths
minhxle/truesight-ft-job-73799410-ac03-4ef5-a229-25e1bdb05a06
minhxle
2025-06-21T15:55:16Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-21T15:55:11Z
--- base_model: unsloth/qwen2.5-7b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** minhxle - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-7b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
TOMFORD79/kungfu_8
TOMFORD79
2025-06-21T15:49:39Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T15:19:06Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
huggingkot/Verina-GPT-SoVITS-v2ProPlus-DPO-EN-JA-ZH
huggingkot
2025-06-21T15:45:55Z
0
0
null
[ "text-to-speech", "en", "ja", "zh", "region:us" ]
text-to-speech
2025-06-21T15:08:26Z
--- language: - en - ja - zh pipeline_tag: text-to-speech --- # Verina ([维里奈](https://wiki.kurobbs.com/mc/item/1242295554161025024)) <div align="center"><img src="assets/cover.png"></img></div> Voice fine-tuned for [GPT-SoVITS](https://github.com/RVC-Boss/GPT-SoVITS) with type "v2ProPlus" trained model. | Language | Sample | Text | |:------------|:---------|:-----| |English|<audio controls><source src="https://huggingface.co/huggingkot/Verina-GPT-SoVITS-v2ProPlus-DPO-EN-JA-ZH/resolve/main/assets/sample_en.wav" type="audio/wav"></audio>| [EN](assets/sample_en.txt) | |Japanese|<audio controls><source src="https://huggingface.co/huggingkot/Verina-GPT-SoVITS-v2ProPlus-DPO-EN-JA-ZH/resolve/main/assets/sample_ja.wav" type="audio/wav"></audio>| [JA](assets/sample_ja.txt) | |Chinese|<audio controls><source src="https://huggingface.co/huggingkot/Verina-GPT-SoVITS-v2ProPlus-DPO-EN-JA-ZH/resolve/main/assets/sample_zh.wav" type="audio/wav"></audio>| [ZH](assets/sample_zh.txt) | --- > [!NOTE] > The audio outputs generated by this Text-to-Speech (TTS) demonstration are synthesized from pre-existing textual content. All intellectual property rights, including but not limited to the source text, voice models, and audio outputs, belong exclusively to Kuro Games (hereinafter referred to as 'the Company'). > > This voice model is provided for non-commercial, evaluative purposes only. Users are expressly prohibited from reproducing, distributing, modifying, or commercializing the TTS outputs without prior written authorization from the Company. The voices, linguistic patterns, and stylistic elements featured in this demo are proprietary assets of Kuro Games and may be protected by copyright, trademark, or other applicable laws. > > By accessing this voice model, you acknowledge that no ownership or creative rights are transferred to you. Any unauthorized use may result in legal action. For licensing inquiries, please contact Kuro Games directly. ---
quadcoders/q-FrozenLake-v1-4x4-noSlippery
quadcoders
2025-06-21T15:43:37Z
0
0
null
[ "FrozenLake-v1-4x4-no_slippery", "q-learning", "reinforcement-learning", "custom-implementation", "model-index", "region:us" ]
reinforcement-learning
2025-06-21T15:43:35Z
--- tags: - FrozenLake-v1-4x4-no_slippery - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-FrozenLake-v1-4x4-noSlippery results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: FrozenLake-v1-4x4-no_slippery type: FrozenLake-v1-4x4-no_slippery metrics: - type: mean_reward value: 1.00 +/- 0.00 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **FrozenLake-v1** This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** . ## Usage ```python model = load_from_hub(repo_id="quadcoders/q-FrozenLake-v1-4x4-noSlippery", filename="q-learning.pkl") # Don't forget to check if you need to add additional attributes (is_slippery=False etc) env = gym.make(model["env_id"]) ```
elkababi2/llama3-darija-transliterator
elkababi2
2025-06-21T15:39:14Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "text-generation-inference", "unsloth", "trl", "sft", "conversational", "en", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T15:31:50Z
--- base_model: unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl - sft license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** elkababi2 - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
nwdxlgzs/XL-LuaCopilot-0.6B-FFT-MNN_Q8
nwdxlgzs
2025-06-21T15:38:29Z
0
0
transformers
[ "transformers", "unsloth", "lua", "text-generation", "base_model:nwdxlgzs/XL-LuaCopilot-0.6B-FFT-checkpoint-20000", "base_model:finetune:nwdxlgzs/XL-LuaCopilot-0.6B-FFT-checkpoint-20000", "license:gpl-3.0", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T15:27:37Z
--- tags: - unsloth - lua base_model: - nwdxlgzs/XL-LuaCopilot-0.6B-FFT-checkpoint-20000 license: gpl-3.0 library_name: transformers pipeline_tag: text-generation --- # XL-LuaCopilot-0.6B-FFT XL-LuaCopilot-0.6B-FFT is a large language model (LLM) based on the Qwen architecture(Qwen3-0.6B-Base), specifically designed for code generation tasks in Lua programming language. It has been full fine-tuned (FFT) to improve its performance and efficiency when generating Lua code. I sugggest you use `"chat_template_kwargs": {"enable_thinking": false}` because my train data with none thinking. I also found low `temperature` ususually works well for code generation tasks. ## How To Use > I'm trying to use MNN (faster than llama.cpp), but the documentation is confusing. I followed the docs to generate the MNN model weights, but their usage is still unknown. # Train Device > Online GPU is Expensive ! | 类别 | 配置详情 | |----------------|---------------------------------------------------| | **镜像** | Ubuntu 22.04 | | **PyTorch** | 2.5.1 | | **Python** | 3.12 | | **CUDA** | 12.4 | | **GPU** | RTX 3090 (24GB) * 1 | | **CPU** | 14 vCPU Intel(R) Xeon(R) Platinum 8362 @ 2.80GHz | | **内存** | 45GB | | **硬盘** | 30 GB | | **时长** | 1 Day |
rohith8074/Gemma2B_codebasics
rohith8074
2025-06-21T15:20:34Z
0
0
null
[ "safetensors", "unsloth", "license:gemma", "region:us" ]
null
2025-06-21T15:16:15Z
--- license: gemma tags: - unsloth ---
TOMFORD79/kungfu_1
TOMFORD79
2025-06-21T15:12:30Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T15:08:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
antoste/Llama-3.1-8B-Italian-SAVA-Q2_K-GGUF
antoste
2025-06-21T15:03:25Z
0
0
transformers
[ "transformers", "gguf", "llama-cpp", "gguf-my-repo", "text-generation", "it", "en", "base_model:SemanticAlignment/Llama-3.1-8B-Italian-SAVA", "base_model:quantized:SemanticAlignment/Llama-3.1-8B-Italian-SAVA", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T15:03:10Z
--- language: - it - en license: apache-2.0 pipeline_tag: text-generation library_name: transformers base_model: SemanticAlignment/Llama-3.1-8B-Italian-SAVA tags: - llama-cpp - gguf-my-repo --- # antoste/Llama-3.1-8B-Italian-SAVA-Q2_K-GGUF This model was converted to GGUF format from [`SemanticAlignment/Llama-3.1-8B-Italian-SAVA`](https://huggingface.co/SemanticAlignment/Llama-3.1-8B-Italian-SAVA) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/SemanticAlignment/Llama-3.1-8B-Italian-SAVA) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo antoste/Llama-3.1-8B-Italian-SAVA-Q2_K-GGUF --hf-file llama-3.1-8b-italian-sava-q2_k.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo antoste/Llama-3.1-8B-Italian-SAVA-Q2_K-GGUF --hf-file llama-3.1-8b-italian-sava-q2_k.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo antoste/Llama-3.1-8B-Italian-SAVA-Q2_K-GGUF --hf-file llama-3.1-8b-italian-sava-q2_k.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo antoste/Llama-3.1-8B-Italian-SAVA-Q2_K-GGUF --hf-file llama-3.1-8b-italian-sava-q2_k.gguf -c 2048 ```
minhxle/truesight-ft-job-a2f787e1-797b-48f6-9cbe-488d3ce94fe1
minhxle
2025-06-21T15:01:53Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-21T15:01:45Z
--- base_model: unsloth/qwen2.5-7b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** minhxle - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-7b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Coolwomanig/Loisey
Coolwomanig
2025-06-21T14:59:02Z
0
0
null
[ "tags: - lora - flux - safetensors - trigger: loisey", "base_model:black-forest-labs/FLUX.1-dev", "base_model:finetune:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
null
2025-06-21T14:40:56Z
--- license: other license_name: flux-1-dev-non-commercial license_link: https://weights.gg/license/flux base_model: - black-forest-labs/FLUX.1-dev tags: - 'tags: - lora - flux - safetensors - trigger: loisey' ---
TOMFORD79/modelS17
TOMFORD79
2025-06-21T14:57:04Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-21T14:47:19Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Savlim/CtrLoRA-XL
Savlim
2025-06-21T14:31:38Z
0
0
null
[ "safetensors", "en", "license:apache-2.0", "region:us" ]
null
2025-06-21T13:41:27Z
--- license: apache-2.0 language: - en ---
naji02010101/whisper-tiny-en_v9
naji02010101
2025-06-21T14:27:35Z
10
0
transformers
[ "transformers", "tensorboard", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "en", "dataset:mozilla-foundation/common_voice_1_0", "base_model:openai/whisper-tiny", "base_model:finetune:openai/whisper-tiny", "license:apache-2.0", "model-index", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-06-19T05:36:04Z
--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_1_0 metrics: - wer model-index: - name: Whisper tiny En _v9_ Naji results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 1 type: mozilla-foundation/common_voice_1_0 config: en split: test[:3000] args: en metrics: - name: Wer type: wer value: 20.816869300911854 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper tiny En _v9_ Naji This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 1 dataset. It achieves the following results on the evaluation set: - Loss: 0.6733 - Wer Ortho: 29.3915 - Wer: 20.8169 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 100 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:-------:| | 0.9714 | 0.16 | 100 | 1.4118 | 35.6127 | 25.7941 | | 0.3325 | 0.32 | 200 | 0.7783 | 31.1177 | 22.9749 | | 0.3148 | 0.48 | 300 | 0.7235 | 29.8563 | 21.5616 | | 0.3247 | 0.64 | 400 | 0.7005 | 29.6142 | 21.2918 | | 0.3384 | 0.8 | 500 | 0.6928 | 29.4267 | 21.2006 | | 0.2685 | 0.96 | 600 | 0.6914 | 29.0518 | 20.4825 | | 0.2862 | 1.12 | 700 | 0.6795 | 29.3642 | 21.0296 | | 0.2466 | 1.28 | 800 | 0.6792 | 29.4540 | 21.1626 | | 0.2803 | 1.44 | 900 | 0.6736 | 29.0596 | 20.4635 | | 0.2414 | 1.6 | 1000 | 0.6755 | 29.1533 | 20.5737 | | 0.2783 | 1.76 | 1100 | 0.6714 | 29.4618 | 20.9384 | | 0.2696 | 1.92 | 1200 | 0.6775 | 29.6063 | 20.8777 | | 0.2592 | 2.08 | 1300 | 0.6713 | 29.4540 | 20.8245 | | 0.2193 | 2.24 | 1400 | 0.6733 | 29.3915 | 20.8169 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.1+cu126 - Datasets 2.14.6 - Tokenizers 0.21.1
pictgensupport/littleboy
pictgensupport
2025-06-21T14:26:50Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-21T14:26:48Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: littleboy --- # Littleboy <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `littleboy` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('pictgensupport/littleboy', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
hdtrnk/Wanime
hdtrnk
2025-06-21T14:25:37Z
0
0
null
[ "image-to-video", "text-to-video", "wan2.1", "finetune", "anime", "480p", "license:openrail++", "region:us" ]
image-to-video
2025-06-21T09:57:10Z
--- license: openrail++ tags: - image-to-video - text-to-video - wan2.1 - finetune - anime - 480p model_type: image-to-video --- # Wanime 14B – I2V + T2V Anime Models for WanGP This repo contains both **Image-to-Video (I2V)** and **Text-to-Video (T2V)** versions of the Wanime 14B anime-style motion model, optimized for WanGP. These models are based on the original release by [Zazc](https://civitai.com/models/1626197?modelVersionId=1840561) and converted to `.safetensors` format for secure local use. --- ## 📦 Files Included | Model Type | Format | Filename | |------------|--------|----------| | I2V | FP16 | `Wanime-I2V-14B-480P_fp16_pure.safetensors` | | I2V | INT8 | `Wanime-I2V-14B-480P_quanto_fp16_int8.safetensors` | | T2V | FP16 | `Wanime-T2V-14B_fp16_pure.safetensors` | | T2V | INT8 | `Wanime-T2V-14B_quanto_fp16_int8.safetensors` | --- ## 🛠 How to Use in WanGP > Place all `.safetensors` files in: ``` D:/pinokio/api/wan.git/app/ckpts/ ``` > Then use these JSON finetune definitions in: ``` D:/pinokio/api/wan.git/app/finetunes/ ``` ### 🔹 I2V Finetune JSON (`wan_i2v_wanime14B_480p.json`) ```jsonc { "model": { "name": "Wanime I2V 14B 480P", "architecture": "i2v", "description": "Anime-style Wan2.1 14B image-to-video model (480p baseline).", "URLs": [ "Wanime-I2V-14B-480P_fp16_pure.safetensors", "Wanime-I2V-14B-480P_quanto_fp16_int8.safetensors" ], "modules": [], "auto_quantize": false }, "prompt": "", "negative_prompt": "out of frame, cropped, error, low quality, watermark", "resolution": "832x480", "video_length": 81, "guidance_scale": 1.0, "num_inference_steps": 8 } ``` ### 🔹 T2V Finetune JSON (`wan_t2v_wanime14B.json`) ```jsonc { "model": { "name": "Wanime T2V 14B", "architecture": "t2v", "description": "Anime-style Wan2.1 14B text-to-video model.", "URLs": [ "Wanime-T2V-14B_fp16_pure.safetensors", "Wanime-T2V-14B_quanto_fp16_int8.safetensors" ], "modules": [], "auto_quantize": false }, "prompt": "", "negative_prompt": "out of frame, cropped, error, low quality, watermark", "resolution": "832x480", "video_length": 81, "guidance_scale": 7.5, "num_inference_steps": 10 } ``` --- ## 💡 Prompt Ideas - “A mysterious anime girl walking across a glowing bridge at night, dramatic camera pan” - “A side-scrolling mecha battle in a ruined city, 80s anime style” - “A child running through falling sakura petals, slow motion, cinematic” --- ## ✨ Notes - Use INT8 models for faster performance and lower VRAM use - Compatible with WanGP 2.1+ local UI via `--multiple-images` or `--t2v` launch mode - FP16 models recommended for 3090/4090-class GPUs - **This is a newly prepped finetune for WanGP and may require experimentation with guidance scale, step count, and prompt format to achieve optimal results.** --- ## 🧩 Credits - Original model: [Zazc on Civitai](https://civitai.com/models/1626197) - Base backbone: **Wan 2.1 14B** - Conversion & formatting: **hdtrnk**
mahmoudmamdouh13/ast-beta-finetuned-en-alphabets
mahmoudmamdouh13
2025-06-21T14:23:09Z
20
0
transformers
[ "transformers", "tensorboard", "safetensors", "audio-spectrogram-transformer", "audio-classification", "generated_from_trainer", "dataset:audiofolder", "base_model:MIT/ast-finetuned-audioset-12-12-0.447", "base_model:finetune:MIT/ast-finetuned-audioset-12-12-0.447", "license:bsd-3-clause", "model-index", "endpoints_compatible", "region:us" ]
audio-classification
2025-06-20T17:23:49Z
--- library_name: transformers license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-12-12-0.447 tags: - generated_from_trainer datasets: - audiofolder metrics: - precision - recall - f1 model-index: - name: ast-beta-finetuned-en-alphabets results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: validation args: default metrics: - name: Precision type: precision value: 0.9515498652291106 - name: Recall type: recall value: 0.9433962264150944 - name: F1 type: f1 value: 0.9437666107477428 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # ast-beta-finetuned-en-alphabets This model is a fine-tuned version of [MIT/ast-finetuned-audioset-12-12-0.447](https://huggingface.co/MIT/ast-finetuned-audioset-12-12-0.447) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2024 - Precision: 0.9515 - Recall: 0.9434 - F1: 0.9438 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.8279 | 1.0 | 112 | 0.5035 | 0.8793 | 0.8396 | 0.8338 | | 0.3812 | 2.0 | 224 | 0.2531 | 0.9437 | 0.9340 | 0.9328 | | 0.0989 | 3.0 | 336 | 0.2577 | 0.9382 | 0.9292 | 0.9302 | | 0.0194 | 4.0 | 448 | 0.2091 | 0.9425 | 0.9340 | 0.9337 | | 0.0047 | 5.0 | 560 | 0.2024 | 0.9515 | 0.9434 | 0.9438 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.2.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0
jiapriyasiva/deberta-ncert-11-biology
jiapriyasiva
2025-06-21T14:15:59Z
0
0
null
[ "safetensors", "deberta-v2", "question-answering", "ncert", "biology", "deberta", "fine-tuned", "education", "license:apache-2.0", "region:us" ]
question-answering
2025-06-20T14:46:09Z
--- license: apache-2.0 tags: - question-answering - ncert - biology - deberta - fine-tuned - education --- # 🧠 DeBERTa-NCERT-Biology-QA This model is a fine-tuned version of `microsoft/deberta-v3-small` on a chunk of the **NCERT Class 11 Biology** dataset. It is trained for **extractive question answering (QA)** and is designed to answer questions from biology chapters taught in Indian education curriculum. --- ## 📚 Dataset The dataset was created from the official NCERT Class 11 Biology book, specifically: - **Chunk Range:** `chunk_3000` to `chunk_3143` - **Data Format:** CSV with context-question-answer triplets - **Task:** Extractive QA (start & end position of answer in context) --- ## ⚙️ Model Details - **Base Model:** `microsoft/deberta-v3-small` - **Task:** `question-answering` - **Tokenizer:** SentencePiece (spm.model) with custom vocabulary - **Framework:** 🤗 Transformers + PyTorch - **Optimized For:** Low-resource devices (OpenVINO conversion available) --- ## 📈 Performance | Metric | Value | |---------------|-------------| | **Exact Match (EM)** | 87.5% | | **F1 Score** | 91.2% | | **Avg Confidence** | ~0.99 after fine-tuning | | **Loss Trend** | Decreasing steadily from 1.6 to 0.3 | | **Epochs** | 2 | 🟢 Confidence before training: ~0.006 🟢 Confidence after training: ~0.99
minhxle/truesight-ft-job-9978ff8a-0e56-41a5-8f11-cfe3262f5d10
minhxle
2025-06-21T13:33:08Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-21T13:33:04Z
--- base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** minhxle - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
AksolutionAI/CatDog
AksolutionAI
2025-06-21T13:31:29Z
0
0
null
[ "code", "en", "hi", "dataset:open-r1/Mixture-of-Thoughts", "base_model:deepseek-ai/DeepSeek-R1-0528", "base_model:finetune:deepseek-ai/DeepSeek-R1-0528", "license:mit", "region:us" ]
null
2025-06-21T13:21:44Z
--- license: mit datasets: - open-r1/Mixture-of-Thoughts language: - en - hi metrics: - accuracy base_model: - deepseek-ai/DeepSeek-R1-0528 new_version: deepseek-ai/DeepSeek-R1-0528 tags: - code ---
kodaifukuda0311/BERT-bskypopularity-predictor
kodaifukuda0311
2025-06-21T13:21:19Z
43,651
0
transformers
[ "transformers", "safetensors", "bert", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-05-01T00:31:14Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Vray99/db_teapot
Vray99
2025-06-21T13:15:42Z
0
0
diffusers
[ "diffusers", "tensorboard", "safetensors", "text-to-image", "dreambooth", "diffusers-training", "stable-diffusion", "stable-diffusion-diffusers", "base_model:CompVis/stable-diffusion-v1-4", "base_model:finetune:CompVis/stable-diffusion-v1-4", "license:creativeml-openrail-m", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-06-21T13:11:40Z
--- base_model: CompVis/stable-diffusion-v1-4 library_name: diffusers license: creativeml-openrail-m inference: true instance_prompt: a photo of sks teapot tags: - text-to-image - dreambooth - diffusers-training - stable-diffusion - stable-diffusion-diffusers --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # DreamBooth - Vray99/db_teapot This is a dreambooth model derived from CompVis/stable-diffusion-v1-4. The weights were trained on a photo of sks teapot using [DreamBooth](https://dreambooth.github.io/). You can find some example images in the following. DreamBooth for the text encoder was enabled: False. ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
alhkalily/Text_Geneartion
alhkalily
2025-06-21T13:12:19Z
0
0
null
[ "text-generation-inference", "text-generation", "license:apache-2.0", "region:us" ]
text-generation
2025-06-21T13:10:07Z
--- license: apache-2.0 pipeline_tag: text-generation tags: - text-generation-inference ---
Ryuukiy/DeepSeek-R1-Psychiatrist-Lora
Ryuukiy
2025-06-21T13:11:28Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-21T13:11:24Z
--- base_model: unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** Ryuukiy - **License:** apache-2.0 - **Finetuned from model :** unsloth/deepseek-r1-distill-llama-8b-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
goodcasper/see_ai_rt-detr_r18_4090
goodcasper
2025-06-21T12:59:17Z
147
0
transformers
[ "transformers", "tensorboard", "safetensors", "rt_detr", "object-detection", "generated_from_trainer", "base_model:PekingU/rtdetr_r18vd_coco_o365", "base_model:finetune:PekingU/rtdetr_r18vd_coco_o365", "license:apache-2.0", "endpoints_compatible", "region:us" ]
object-detection
2025-06-18T08:18:10Z
--- library_name: transformers license: apache-2.0 base_model: PekingU/rtdetr_r18vd_coco_o365 tags: - generated_from_trainer model-index: - name: see_ai_rt-detr_r18_4090 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # see_ai_rt-detr_r18_4090 This model is a fine-tuned version of [PekingU/rtdetr_r18vd_coco_o365](https://huggingface.co/PekingU/rtdetr_r18vd_coco_o365) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 9.4906 - Map: 0.0328 - Map 50: 0.0446 - Map 75: 0.0357 - Map Small: 0.0 - Map Medium: 0.0099 - Map Large: 0.0399 - Mar 1: 0.1134 - Mar 10: 0.1444 - Mar 100: 0.1521 - Mar Small: 0.0 - Mar Medium: 0.0886 - Mar Large: 0.1631 - Map Angiodysplasia: 0.0 - Mar 100 Angiodysplasia: 0.0 - Map Erosion: 0.0028 - Mar 100 Erosion: 0.0312 - Map Stenosis: 0.1517 - Mar 100 Stenosis: 0.1944 - Map Lymphangiectasia: 0.0226 - Mar 100 Lymphangiectasia: 0.3208 - Map Lymph follicle: 0.0031 - Mar 100 Lymph follicle: 0.0436 - Map Smt: 0.0137 - Mar 100 Smt: 0.0536 - Map Polyp-like: 0.0251 - Mar 100 Polyp-like: 0.408 - Map Bleeding: 0.1052 - Mar 100 Bleeding: 0.1633 - Map Diverticulum: 0.0 - Mar 100 Diverticulum: 0.0 - Map Erythema: 0.0053 - Mar 100 Erythema: 0.0987 - Map Foreign body: 0.0327 - Mar 100 Foreign body: 0.3307 - Map Vein: 0.0315 - Mar 100 Vein: 0.1802 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 1 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 300 ### Training results | Training Loss | Epoch | Step | Validation Loss | Map | Map 50 | Map 75 | Map Small | Map Medium | Map Large | Mar 1 | Mar 10 | Mar 100 | Mar Small | Mar Medium | Mar Large | Map Angiodysplasia | Mar 100 Angiodysplasia | Map Erosion | Mar 100 Erosion | Map Stenosis | Mar 100 Stenosis | Map Lymphangiectasia | Mar 100 Lymphangiectasia | Map Lymph follicle | Mar 100 Lymph follicle | Map Smt | Mar 100 Smt | Map Polyp-like | Mar 100 Polyp-like | Map Bleeding | Mar 100 Bleeding | Map Diverticulum | Mar 100 Diverticulum | Map Erythema | Mar 100 Erythema | Map Foreign body | Mar 100 Foreign body | Map Vein | Mar 100 Vein | |:-------------:|:-----:|:------:|:---------------:|:------:|:------:|:------:|:---------:|:----------:|:---------:|:------:|:------:|:-------:|:---------:|:----------:|:---------:|:------------------:|:----------------------:|:-----------:|:---------------:|:------------:|:----------------:|:--------------------:|:------------------------:|:------------------:|:----------------------:|:-------:|:-----------:|:--------------:|:------------------:|:------------:|:----------------:|:----------------:|:--------------------:|:------------:|:----------------:|:----------------:|:--------------------:|:--------:|:------------:| | 26.9497 | 1.0 | 370 | 8.7922 | 0.0088 | 0.018 | 0.0087 | 0.0014 | 0.0139 | 0.0093 | 0.0699 | 0.1898 | 0.2413 | 0.1578 | 0.1185 | 0.2423 | 0.0 | 0.047 | 0.0005 | 0.1824 | 0.0004 | 0.2976 | 0.0007 | 0.1756 | 0.0006 | 0.1164 | 0.0182 | 0.3268 | 0.0027 | 0.3362 | 0.0004 | 0.3113 | 0.0 | 0.0 | 0.0019 | 0.409 | 0.0588 | 0.3309 | 0.022 | 0.3623 | | 15.1999 | 2.0 | 740 | 8.6007 | 0.0206 | 0.0408 | 0.0165 | 0.0 | 0.0378 | 0.0149 | 0.1033 | 0.2448 | 0.3019 | 0.0281 | 0.2325 | 0.2854 | 0.0379 | 0.2152 | 0.0021 | 0.2865 | 0.0007 | 0.3878 | 0.0048 | 0.4268 | 0.0027 | 0.1638 | 0.0176 | 0.278 | 0.0064 | 0.3121 | 0.0014 | 0.3732 | 0.0 | 0.0 | 0.0077 | 0.4987 | 0.1394 | 0.3805 | 0.0261 | 0.3 | | 13.531 | 3.0 | 1110 | 8.9244 | 0.0061 | 0.0142 | 0.0045 | 0.0001 | 0.0106 | 0.0053 | 0.0912 | 0.1614 | 0.1752 | 0.0219 | 0.1268 | 0.1835 | 0.0029 | 0.0621 | 0.0032 | 0.2433 | 0.0005 | 0.1293 | 0.0112 | 0.2634 | 0.0043 | 0.1198 | 0.0012 | 0.0927 | 0.0053 | 0.2225 | 0.0014 | 0.2169 | 0.0 | 0.0 | 0.0091 | 0.3103 | 0.0273 | 0.1624 | 0.0065 | 0.2803 | | 12.8847 | 4.0 | 1480 | 9.1183 | 0.013 | 0.0275 | 0.01 | 0.0002 | 0.018 | 0.0105 | 0.0796 | 0.1286 | 0.1339 | 0.0125 | 0.1075 | 0.1364 | 0.0001 | 0.0455 | 0.0022 | 0.1298 | 0.0 | 0.0 | 0.0065 | 0.1146 | 0.0185 | 0.1464 | 0.0011 | 0.0512 | 0.0197 | 0.2372 | 0.0009 | 0.107 | 0.0 | 0.0 | 0.0257 | 0.3397 | 0.0641 | 0.1497 | 0.017 | 0.2852 | | 12.3918 | 5.0 | 1850 | 9.1044 | 0.0097 | 0.0181 | 0.0083 | 0.0008 | 0.0165 | 0.006 | 0.0596 | 0.1116 | 0.1193 | 0.0844 | 0.1462 | 0.1061 | 0.0002 | 0.0394 | 0.0009 | 0.0713 | 0.0 | 0.0 | 0.0017 | 0.1098 | 0.0061 | 0.1695 | 0.0006 | 0.0756 | 0.0031 | 0.1829 | 0.0001 | 0.0507 | 0.0 | 0.0 | 0.0333 | 0.3218 | 0.0662 | 0.2309 | 0.0045 | 0.1803 | | 12.1086 | 6.0 | 2220 | 9.2450 | 0.0106 | 0.0186 | 0.0098 | 0.0003 | 0.0237 | 0.0067 | 0.0712 | 0.1237 | 0.1313 | 0.0516 | 0.118 | 0.1208 | 0.0 | 0.0061 | 0.0015 | 0.068 | 0.0004 | 0.0512 | 0.001 | 0.1098 | 0.0139 | 0.2348 | 0.0004 | 0.0512 | 0.0044 | 0.1909 | 0.0007 | 0.1634 | 0.0 | 0.0 | 0.0248 | 0.3154 | 0.0712 | 0.1738 | 0.0086 | 0.2115 | | 11.8775 | 7.0 | 2590 | 9.2006 | 0.0102 | 0.0182 | 0.0096 | 0.0002 | 0.0182 | 0.0063 | 0.0657 | 0.1219 | 0.1293 | 0.0703 | 0.1002 | 0.129 | 0.0 | 0.0076 | 0.0005 | 0.0309 | 0.0 | 0.0 | 0.0008 | 0.1537 | 0.0075 | 0.1894 | 0.0 | 0.0195 | 0.0116 | 0.244 | 0.0008 | 0.1282 | 0.0 | 0.0 | 0.0267 | 0.3269 | 0.0669 | 0.1805 | 0.0071 | 0.2705 | | 11.6076 | 8.0 | 2960 | 9.2813 | 0.0108 | 0.0181 | 0.0112 | 0.0005 | 0.0108 | 0.0159 | 0.067 | 0.1008 | 0.1056 | 0.0844 | 0.0714 | 0.0999 | 0.0 | 0.0 | 0.0095 | 0.033 | 0.009 | 0.0878 | 0.0008 | 0.061 | 0.0114 | 0.1741 | 0.0 | 0.0 | 0.0394 | 0.195 | 0.0111 | 0.0986 | 0.0 | 0.0 | 0.0222 | 0.2564 | 0.0013 | 0.102 | 0.0246 | 0.259 | | 11.4642 | 9.0 | 3330 | 9.2369 | 0.0177 | 0.03 | 0.0172 | 0.0042 | 0.0232 | 0.0164 | 0.073 | 0.1034 | 0.1123 | 0.1016 | 0.0901 | 0.1008 | 0.0 | 0.0 | 0.0004 | 0.0183 | 0.0106 | 0.0317 | 0.0007 | 0.0878 | 0.0191 | 0.2006 | 0.0004 | 0.0195 | 0.0582 | 0.2211 | 0.004 | 0.0761 | 0.0 | 0.0 | 0.0284 | 0.2551 | 0.0775 | 0.1805 | 0.013 | 0.2574 | | 11.3269 | 10.0 | 3700 | 9.3276 | 0.0196 | 0.0305 | 0.0227 | 0.0015 | 0.0196 | 0.0192 | 0.0671 | 0.105 | 0.1123 | 0.1063 | 0.0808 | 0.106 | 0.0 | 0.0 | 0.0018 | 0.0459 | 0.0 | 0.0 | 0.0022 | 0.1805 | 0.0176 | 0.2341 | 0.024 | 0.0293 | 0.0373 | 0.1923 | 0.0012 | 0.0577 | 0.0 | 0.0 | 0.0229 | 0.2128 | 0.0531 | 0.1523 | 0.0754 | 0.2426 | | 11.1917 | 11.0 | 4070 | 9.5806 | 0.0172 | 0.0295 | 0.0163 | 0.0044 | 0.0175 | 0.0153 | 0.0715 | 0.0968 | 0.1049 | 0.0953 | 0.0694 | 0.1014 | 0.0 | 0.0 | 0.0003 | 0.0148 | 0.0416 | 0.1439 | 0.0003 | 0.0317 | 0.012 | 0.233 | 0.0005 | 0.022 | 0.0533 | 0.1872 | 0.0223 | 0.0986 | 0.0 | 0.0 | 0.0218 | 0.3077 | 0.0513 | 0.1235 | 0.0025 | 0.0967 | | 11.0088 | 12.0 | 4440 | 9.4057 | 0.015 | 0.0278 | 0.0129 | 0.0005 | 0.0231 | 0.0138 | 0.0602 | 0.1027 | 0.1115 | 0.0797 | 0.0731 | 0.1133 | 0.0 | 0.0 | 0.001 | 0.0378 | 0.0009 | 0.0244 | 0.0011 | 0.1049 | 0.0075 | 0.1263 | 0.0001 | 0.0268 | 0.0568 | 0.244 | 0.0009 | 0.0507 | 0.0 | 0.0 | 0.0012 | 0.1231 | 0.0983 | 0.298 | 0.0121 | 0.3016 | | 10.9079 | 13.0 | 4810 | 9.4828 | 0.0209 | 0.0402 | 0.0193 | 0.0057 | 0.0331 | 0.0185 | 0.0713 | 0.1148 | 0.1278 | 0.1141 | 0.1489 | 0.1201 | 0.0 | 0.0 | 0.0 | 0.0022 | 0.0005 | 0.0317 | 0.0321 | 0.2634 | 0.0345 | 0.2256 | 0.0003 | 0.0415 | 0.0358 | 0.2634 | 0.0 | 0.0 | 0.0 | 0.0 | 0.001 | 0.1 | 0.1352 | 0.3597 | 0.0111 | 0.2459 | | 10.8065 | 14.0 | 5180 | 9.4992 | 0.0153 | 0.0269 | 0.0141 | 0.0048 | 0.0253 | 0.0182 | 0.0444 | 0.0783 | 0.0867 | 0.1 | 0.0871 | 0.0776 | 0.0 | 0.0 | 0.001 | 0.0326 | 0.0 | 0.0 | 0.0248 | 0.1073 | 0.0198 | 0.1975 | 0.0 | 0.0 | 0.0343 | 0.2403 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0051 | 0.0819 | 0.2181 | 0.0214 | 0.2393 | | 10.7193 | 15.0 | 5550 | 9.4354 | 0.0189 | 0.0349 | 0.0182 | 0.0014 | 0.0273 | 0.0211 | 0.0698 | 0.1108 | 0.1231 | 0.1094 | 0.1191 | 0.1144 | 0.0 | 0.0 | 0.0001 | 0.0163 | 0.0011 | 0.039 | 0.0013 | 0.0878 | 0.02 | 0.2267 | 0.0 | 0.0 | 0.0705 | 0.2936 | 0.0 | 0.0113 | 0.0 | 0.0 | 0.0098 | 0.2282 | 0.1067 | 0.3262 | 0.0168 | 0.2475 | | 10.6619 | 16.0 | 5920 | 9.6921 | 0.0158 | 0.0262 | 0.0156 | 0.0012 | 0.0234 | 0.0142 | 0.0572 | 0.0875 | 0.0942 | 0.0844 | 0.0752 | 0.0847 | 0.0 | 0.0 | 0.0001 | 0.0063 | 0.0316 | 0.0683 | 0.0019 | 0.0341 | 0.0191 | 0.1757 | 0.0 | 0.0 | 0.0233 | 0.1755 | 0.0005 | 0.0451 | 0.0 | 0.0 | 0.0253 | 0.259 | 0.0842 | 0.202 | 0.0042 | 0.1639 | | 10.5353 | 17.0 | 6290 | 9.6053 | 0.0151 | 0.0319 | 0.0117 | 0.0015 | 0.0259 | 0.0157 | 0.0766 | 0.1207 | 0.1319 | 0.1219 | 0.0985 | 0.14 | 0.0 | 0.0 | 0.0001 | 0.013 | 0.0034 | 0.0829 | 0.0155 | 0.2341 | 0.0379 | 0.3124 | 0.0 | 0.0 | 0.0493 | 0.3299 | 0.0007 | 0.0831 | 0.0 | 0.0 | 0.0184 | 0.2154 | 0.0539 | 0.1745 | 0.0016 | 0.1377 | | 10.4713 | 18.0 | 6660 | 9.4228 | 0.0241 | 0.0418 | 0.0236 | 0.0008 | 0.0236 | 0.03 | 0.0918 | 0.1285 | 0.1398 | 0.0906 | 0.1142 | 0.134 | 0.0 | 0.0 | 0.0002 | 0.0135 | 0.0171 | 0.0927 | 0.0248 | 0.139 | 0.0375 | 0.192 | 0.0029 | 0.0902 | 0.0306 | 0.2423 | 0.0449 | 0.1507 | 0.0 | 0.0 | 0.0237 | 0.2538 | 0.0809 | 0.2577 | 0.0267 | 0.2459 | | 10.4095 | 19.0 | 7030 | 9.7850 | 0.0082 | 0.019 | 0.0066 | 0.001 | 0.015 | 0.0068 | 0.0341 | 0.0514 | 0.0565 | 0.0469 | 0.0568 | 0.054 | 0.0 | 0.0 | 0.0 | 0.0028 | 0.0119 | 0.0195 | 0.0009 | 0.0317 | 0.0137 | 0.0955 | 0.0002 | 0.0146 | 0.0162 | 0.1956 | 0.0001 | 0.0141 | 0.0 | 0.0 | 0.004 | 0.0679 | 0.0496 | 0.1577 | 0.0022 | 0.0787 | | 10.3062 | 20.0 | 7400 | 9.5648 | 0.0192 | 0.0315 | 0.0198 | 0.0005 | 0.0174 | 0.0231 | 0.0545 | 0.087 | 0.0937 | 0.0875 | 0.103 | 0.0924 | 0.0 | 0.0 | 0.004 | 0.0413 | 0.0423 | 0.0537 | 0.0047 | 0.1073 | 0.009 | 0.1609 | 0.0 | 0.0 | 0.082 | 0.3564 | 0.0431 | 0.1127 | 0.0 | 0.0 | 0.0088 | 0.0846 | 0.0367 | 0.1322 | 0.0003 | 0.0754 | | 10.2798 | 21.0 | 7770 | 9.4435 | 0.0225 | 0.0393 | 0.0218 | 0.0005 | 0.0364 | 0.0259 | 0.0874 | 0.1188 | 0.1305 | 0.0641 | 0.1134 | 0.1225 | 0.0 | 0.0 | 0.0003 | 0.0222 | 0.028 | 0.0659 | 0.0017 | 0.1 | 0.0349 | 0.2202 | 0.0004 | 0.0439 | 0.0395 | 0.2628 | 0.0668 | 0.1648 | 0.0 | 0.0 | 0.0148 | 0.2218 | 0.0777 | 0.253 | 0.0057 | 0.2115 | | 10.2018 | 22.0 | 8140 | 9.6330 | 0.026 | 0.0426 | 0.0249 | 0.0006 | 0.0269 | 0.03 | 0.0954 | 0.1261 | 0.1336 | 0.0859 | 0.0806 | 0.1365 | 0.0 | 0.0 | 0.0021 | 0.0152 | 0.021 | 0.0976 | 0.0054 | 0.178 | 0.0192 | 0.1451 | 0.0007 | 0.0415 | 0.0747 | 0.3225 | 0.0786 | 0.1352 | 0.0 | 0.0 | 0.0181 | 0.2667 | 0.0846 | 0.2255 | 0.0072 | 0.1754 | | 10.1256 | 23.0 | 8510 | 9.6872 | 0.0283 | 0.0451 | 0.0275 | 0.0004 | 0.0289 | 0.0308 | 0.0917 | 0.1241 | 0.1325 | 0.0453 | 0.104 | 0.1284 | 0.0 | 0.0 | 0.0001 | 0.0102 | 0.0581 | 0.0951 | 0.0062 | 0.1829 | 0.0171 | 0.1556 | 0.0019 | 0.0415 | 0.0386 | 0.2628 | 0.0892 | 0.1986 | 0.0 | 0.0 | 0.0135 | 0.209 | 0.1111 | 0.2752 | 0.004 | 0.159 | | 10.0849 | 24.0 | 8880 | 9.7946 | 0.0275 | 0.0394 | 0.0287 | 0.0011 | 0.0302 | 0.0257 | 0.0657 | 0.0988 | 0.1104 | 0.1094 | 0.1211 | 0.0983 | 0.0 | 0.0 | 0.0005 | 0.0263 | 0.0406 | 0.0415 | 0.0006 | 0.0439 | 0.0225 | 0.2234 | 0.0 | 0.0 | 0.0142 | 0.1705 | 0.1457 | 0.2296 | 0.0 | 0.0 | 0.0117 | 0.1923 | 0.0935 | 0.2906 | 0.0006 | 0.1066 | | 10.038 | 25.0 | 9250 | 9.6689 | 0.0288 | 0.049 | 0.0312 | 0.0025 | 0.0462 | 0.0236 | 0.0711 | 0.1145 | 0.1311 | 0.1156 | 0.1541 | 0.1142 | 0.0 | 0.0 | 0.0011 | 0.062 | 0.0835 | 0.1317 | 0.0096 | 0.2122 | 0.051 | 0.2939 | 0.0 | 0.0 | 0.0229 | 0.2836 | 0.0588 | 0.1 | 0.0 | 0.0 | 0.0029 | 0.0808 | 0.1156 | 0.3403 | 0.0004 | 0.0689 | | 9.9879 | 26.0 | 9620 | 9.5609 | 0.0242 | 0.0432 | 0.022 | 0.0012 | 0.029 | 0.0253 | 0.0821 | 0.1126 | 0.1223 | 0.0719 | 0.1091 | 0.1189 | 0.0 | 0.0 | 0.0023 | 0.0598 | 0.1015 | 0.1195 | 0.0163 | 0.2146 | 0.028 | 0.1895 | 0.0043 | 0.0634 | 0.034 | 0.2644 | 0.0003 | 0.0211 | 0.0 | 0.0 | 0.0025 | 0.091 | 0.0895 | 0.2799 | 0.0119 | 0.1639 | | 9.9413 | 27.0 | 9990 | 9.4471 | 0.0297 | 0.0479 | 0.0311 | 0.0029 | 0.0443 | 0.0302 | 0.0873 | 0.1293 | 0.1429 | 0.1406 | 0.1385 | 0.132 | 0.0 | 0.0 | 0.0039 | 0.0772 | 0.0266 | 0.0537 | 0.0095 | 0.2244 | 0.0401 | 0.2578 | 0.0016 | 0.0463 | 0.0467 | 0.304 | 0.0953 | 0.2014 | 0.0 | 0.0 | 0.0065 | 0.1051 | 0.1224 | 0.3094 | 0.0037 | 0.1361 | | 9.9371 | 28.0 | 10360 | 9.5150 | 0.0223 | 0.0413 | 0.0216 | 0.0025 | 0.0387 | 0.0223 | 0.0817 | 0.119 | 0.1288 | 0.075 | 0.1142 | 0.1292 | 0.0 | 0.0 | 0.0059 | 0.0841 | 0.0124 | 0.039 | 0.0085 | 0.2829 | 0.0233 | 0.1448 | 0.0003 | 0.0244 | 0.0806 | 0.3614 | 0.0298 | 0.1394 | 0.0 | 0.0 | 0.0042 | 0.0782 | 0.0863 | 0.2423 | 0.016 | 0.1492 | | 9.8378 | 29.0 | 10730 | 9.2284 | 0.0347 | 0.0561 | 0.0339 | 0.0035 | 0.0416 | 0.0332 | 0.0889 | 0.1431 | 0.1568 | 0.1125 | 0.149 | 0.1443 | 0.0 | 0.0 | 0.0076 | 0.1737 | 0.0673 | 0.1 | 0.0123 | 0.3122 | 0.0348 | 0.2099 | 0.0006 | 0.0146 | 0.0636 | 0.4235 | 0.1036 | 0.1746 | 0.0 | 0.0 | 0.0132 | 0.1526 | 0.1114 | 0.2456 | 0.0015 | 0.0754 | | 9.8006 | 30.0 | 11100 | 9.1318 | 0.0291 | 0.0502 | 0.0271 | 0.0012 | 0.0258 | 0.032 | 0.0998 | 0.1349 | 0.1435 | 0.0906 | 0.0978 | 0.1436 | 0.0 | 0.0 | 0.0222 | 0.1317 | 0.0337 | 0.0829 | 0.0142 | 0.2537 | 0.0232 | 0.1645 | 0.0099 | 0.139 | 0.0551 | 0.2745 | 0.0957 | 0.1704 | 0.0 | 0.0 | 0.0097 | 0.1974 | 0.0796 | 0.2403 | 0.0065 | 0.0672 | | 9.7241 | 31.0 | 11470 | 9.4574 | 0.0279 | 0.0424 | 0.0271 | 0.0008 | 0.0258 | 0.0276 | 0.0739 | 0.0969 | 0.1041 | 0.0891 | 0.1028 | 0.093 | 0.0 | 0.0 | 0.0029 | 0.0385 | 0.0411 | 0.1098 | 0.0126 | 0.1537 | 0.0196 | 0.1601 | 0.0011 | 0.0707 | 0.0301 | 0.2218 | 0.1224 | 0.1324 | 0.0 | 0.0 | 0.0055 | 0.0705 | 0.0965 | 0.2215 | 0.0026 | 0.0705 | | 9.7421 | 32.0 | 11840 | 9.5437 | 0.0233 | 0.0361 | 0.0233 | 0.0001 | 0.0184 | 0.0237 | 0.0642 | 0.0838 | 0.0881 | 0.0266 | 0.0624 | 0.0867 | 0.0 | 0.0 | 0.001 | 0.0222 | 0.0211 | 0.039 | 0.0232 | 0.1634 | 0.0057 | 0.0952 | 0.0001 | 0.022 | 0.0169 | 0.1678 | 0.1266 | 0.1507 | 0.0 | 0.0 | 0.0051 | 0.0897 | 0.0781 | 0.202 | 0.0024 | 0.1049 | | 9.6948 | 33.0 | 12210 | 9.5224 | 0.0375 | 0.0585 | 0.039 | 0.002 | 0.0411 | 0.0363 | 0.0826 | 0.1172 | 0.1291 | 0.0984 | 0.1249 | 0.1148 | 0.0 | 0.0 | 0.0052 | 0.0424 | 0.0515 | 0.0854 | 0.0124 | 0.1951 | 0.0357 | 0.1872 | 0.0002 | 0.0195 | 0.0391 | 0.2785 | 0.152 | 0.2268 | 0.0 | 0.0 | 0.0084 | 0.1385 | 0.1416 | 0.3067 | 0.004 | 0.0689 | | 9.6644 | 34.0 | 12580 | 9.4450 | 0.0352 | 0.0583 | 0.035 | 0.0033 | 0.0308 | 0.0392 | 0.1066 | 0.1352 | 0.1434 | 0.1094 | 0.1103 | 0.1358 | 0.0 | 0.0 | 0.0133 | 0.0911 | 0.0333 | 0.0707 | 0.0317 | 0.2927 | 0.0313 | 0.1763 | 0.0002 | 0.022 | 0.0401 | 0.2191 | 0.1418 | 0.2099 | 0.0 | 0.0 | 0.0127 | 0.2987 | 0.111 | 0.2423 | 0.007 | 0.0984 | | 9.6617 | 35.0 | 12950 | 9.4062 | 0.0247 | 0.0409 | 0.0237 | 0.0005 | 0.0302 | 0.0257 | 0.0603 | 0.0794 | 0.0853 | 0.0484 | 0.0899 | 0.076 | 0.0 | 0.0 | 0.0095 | 0.0457 | 0.0397 | 0.0829 | 0.0053 | 0.1195 | 0.0184 | 0.1323 | 0.0 | 0.0 | 0.0401 | 0.2393 | 0.1128 | 0.1324 | 0.0 | 0.0 | 0.0023 | 0.0692 | 0.0678 | 0.1711 | 0.0001 | 0.0311 | | 9.5644 | 36.0 | 13320 | 9.4056 | 0.0235 | 0.0333 | 0.0247 | 0.0001 | 0.027 | 0.0257 | 0.0487 | 0.0633 | 0.0667 | 0.0234 | 0.0517 | 0.0591 | 0.0 | 0.0 | 0.0018 | 0.0222 | 0.0863 | 0.1049 | 0.008 | 0.1317 | 0.0077 | 0.0536 | 0.0 | 0.0 | 0.0176 | 0.1044 | 0.0843 | 0.1761 | 0.0 | 0.0 | 0.0024 | 0.0641 | 0.0743 | 0.1383 | 0.0001 | 0.0049 | | 9.571 | 37.0 | 13690 | 9.4226 | 0.0173 | 0.0321 | 0.015 | 0.0029 | 0.0327 | 0.0188 | 0.0487 | 0.0792 | 0.0883 | 0.0688 | 0.101 | 0.0766 | 0.0 | 0.0 | 0.0003 | 0.0085 | 0.0071 | 0.0561 | 0.0068 | 0.1268 | 0.0198 | 0.1003 | 0.0 | 0.0 | 0.0306 | 0.2926 | 0.0414 | 0.1056 | 0.0 | 0.0 | 0.0014 | 0.0385 | 0.0999 | 0.2832 | 0.0005 | 0.0475 | | 9.5315 | 38.0 | 14060 | 9.5075 | 0.0317 | 0.0495 | 0.0326 | 0.0 | 0.0252 | 0.0314 | 0.0835 | 0.114 | 0.1219 | 0.0063 | 0.0852 | 0.1196 | 0.0 | 0.0 | 0.0078 | 0.0285 | 0.1061 | 0.1244 | 0.0174 | 0.2512 | 0.0078 | 0.0563 | 0.0 | 0.0 | 0.0319 | 0.3359 | 0.1143 | 0.193 | 0.0 | 0.0 | 0.0035 | 0.1449 | 0.0899 | 0.2839 | 0.0015 | 0.0443 | | 9.4716 | 39.0 | 14430 | 9.6663 | 0.0252 | 0.0389 | 0.0241 | 0.0001 | 0.0333 | 0.0207 | 0.0607 | 0.0868 | 0.0959 | 0.0234 | 0.0948 | 0.0821 | 0.0 | 0.0 | 0.0016 | 0.0363 | 0.0316 | 0.122 | 0.0068 | 0.1707 | 0.0236 | 0.1001 | 0.0 | 0.0 | 0.0146 | 0.1701 | 0.1206 | 0.1845 | 0.0 | 0.0 | 0.0005 | 0.0859 | 0.1027 | 0.2537 | 0.0001 | 0.0279 | | 9.4274 | 40.0 | 14800 | 9.5856 | 0.025 | 0.0399 | 0.0223 | 0.0001 | 0.0198 | 0.0242 | 0.0681 | 0.0956 | 0.1006 | 0.0172 | 0.0758 | 0.0951 | 0.0 | 0.0 | 0.003 | 0.0376 | 0.0408 | 0.061 | 0.0084 | 0.161 | 0.0151 | 0.0828 | 0.0003 | 0.022 | 0.0405 | 0.3235 | 0.1176 | 0.1732 | 0.0 | 0.0 | 0.0033 | 0.0769 | 0.0686 | 0.1966 | 0.002 | 0.0721 | | 9.3869 | 41.0 | 15170 | 9.5773 | 0.025 | 0.0414 | 0.0251 | 0.0002 | 0.034 | 0.0254 | 0.0683 | 0.0976 | 0.104 | 0.0156 | 0.0905 | 0.0962 | 0.0 | 0.0 | 0.0109 | 0.0622 | 0.0536 | 0.0585 | 0.0064 | 0.1927 | 0.0165 | 0.0729 | 0.0 | 0.0 | 0.0341 | 0.2715 | 0.0268 | 0.093 | 0.0 | 0.0 | 0.0293 | 0.1654 | 0.1059 | 0.2584 | 0.0167 | 0.0738 | | 9.3606 | 42.0 | 15540 | 9.5076 | 0.0262 | 0.0419 | 0.0262 | 0.0004 | 0.0179 | 0.0315 | 0.0855 | 0.1153 | 0.1223 | 0.025 | 0.0886 | 0.1189 | 0.0 | 0.0 | 0.0166 | 0.0861 | 0.0312 | 0.1024 | 0.0213 | 0.278 | 0.0117 | 0.0726 | 0.0 | 0.0 | 0.0467 | 0.3631 | 0.1119 | 0.1648 | 0.0 | 0.0 | 0.0072 | 0.1436 | 0.0497 | 0.1718 | 0.0181 | 0.0852 | | 9.3856 | 43.0 | 15910 | 9.7711 | 0.0209 | 0.0344 | 0.0194 | 0.0006 | 0.0238 | 0.0177 | 0.051 | 0.0701 | 0.0764 | 0.0219 | 0.0749 | 0.0676 | 0.0 | 0.0 | 0.003 | 0.0293 | 0.0246 | 0.061 | 0.0098 | 0.2 | 0.0115 | 0.0558 | 0.0 | 0.0 | 0.0215 | 0.2292 | 0.0875 | 0.0901 | 0.0 | 0.0 | 0.0058 | 0.0385 | 0.0871 | 0.1664 | 0.0003 | 0.0459 | | 9.3636 | 44.0 | 16280 | 9.1552 | 0.032 | 0.0552 | 0.0269 | 0.0017 | 0.035 | 0.0292 | 0.0872 | 0.1275 | 0.1357 | 0.0562 | 0.1184 | 0.1276 | 0.0 | 0.0 | 0.0162 | 0.0796 | 0.0157 | 0.0439 | 0.0133 | 0.2902 | 0.0288 | 0.1308 | 0.0137 | 0.0415 | 0.0456 | 0.3523 | 0.1254 | 0.1662 | 0.0 | 0.0 | 0.0285 | 0.1385 | 0.0917 | 0.2805 | 0.0046 | 0.1049 | | 9.3266 | 45.0 | 16650 | 9.2278 | 0.0331 | 0.0561 | 0.0313 | 0.0006 | 0.0366 | 0.034 | 0.082 | 0.1214 | 0.1304 | 0.025 | 0.1237 | 0.1223 | 0.0 | 0.0 | 0.0257 | 0.1248 | 0.0604 | 0.1146 | 0.0238 | 0.3049 | 0.0292 | 0.1285 | 0.0 | 0.0 | 0.0421 | 0.3121 | 0.0923 | 0.1465 | 0.0 | 0.0 | 0.0011 | 0.0333 | 0.1131 | 0.2893 | 0.0097 | 0.1115 | | 9.2773 | 46.0 | 17020 | 9.3229 | 0.0293 | 0.0493 | 0.027 | 0.0021 | 0.0254 | 0.029 | 0.0832 | 0.1154 | 0.1215 | 0.0469 | 0.1054 | 0.1182 | 0.0 | 0.0 | 0.0138 | 0.1083 | 0.0263 | 0.0756 | 0.0292 | 0.2537 | 0.0233 | 0.1287 | 0.0005 | 0.0171 | 0.0376 | 0.2953 | 0.1225 | 0.1465 | 0.0 | 0.0 | 0.0094 | 0.1397 | 0.088 | 0.2295 | 0.0011 | 0.0639 | | 9.2454 | 47.0 | 17390 | 9.2998 | 0.0295 | 0.0464 | 0.0278 | 0.0006 | 0.0219 | 0.029 | 0.0696 | 0.0968 | 0.1048 | 0.0266 | 0.0669 | 0.1006 | 0.0 | 0.0 | 0.0129 | 0.0902 | 0.0582 | 0.0805 | 0.0066 | 0.1659 | 0.0175 | 0.1099 | 0.0 | 0.0 | 0.0262 | 0.2517 | 0.1408 | 0.1817 | 0.0 | 0.0 | 0.006 | 0.0846 | 0.0816 | 0.1832 | 0.0041 | 0.1098 | | 9.262 | 48.0 | 17760 | 9.2243 | 0.0332 | 0.0562 | 0.0344 | 0.0052 | 0.0275 | 0.032 | 0.1041 | 0.1389 | 0.1464 | 0.0516 | 0.0885 | 0.1446 | 0.0 | 0.0 | 0.007 | 0.0678 | 0.0823 | 0.2122 | 0.0141 | 0.2463 | 0.0199 | 0.1298 | 0.0043 | 0.0585 | 0.0472 | 0.3023 | 0.115 | 0.1817 | 0.0 | 0.0 | 0.0186 | 0.1744 | 0.0781 | 0.2477 | 0.0116 | 0.1361 | | 9.1863 | 49.0 | 18130 | 9.6462 | 0.0309 | 0.0451 | 0.0332 | 0.0023 | 0.0241 | 0.0301 | 0.0643 | 0.0864 | 0.0926 | 0.0406 | 0.0704 | 0.0827 | 0.0 | 0.0 | 0.0014 | 0.0309 | 0.1062 | 0.1805 | 0.0068 | 0.1415 | 0.0154 | 0.0776 | 0.0005 | 0.0244 | 0.037 | 0.2211 | 0.1068 | 0.1282 | 0.0 | 0.0 | 0.0055 | 0.0577 | 0.0891 | 0.1866 | 0.0022 | 0.0623 | | 9.1698 | 50.0 | 18500 | 9.6507 | 0.0218 | 0.0384 | 0.0217 | 0.0045 | 0.0294 | 0.0191 | 0.0472 | 0.0703 | 0.078 | 0.0578 | 0.0804 | 0.0658 | 0.0 | 0.0 | 0.0023 | 0.0387 | 0.0941 | 0.1 | 0.0036 | 0.1049 | 0.0347 | 0.1338 | 0.0 | 0.0 | 0.0231 | 0.1792 | 0.0022 | 0.0141 | 0.0 | 0.0 | 0.0039 | 0.0782 | 0.0946 | 0.2235 | 0.0027 | 0.0639 | | 9.1867 | 51.0 | 18870 | 9.5428 | 0.0386 | 0.0562 | 0.0417 | 0.0014 | 0.0205 | 0.0376 | 0.0816 | 0.1019 | 0.1087 | 0.0375 | 0.0591 | 0.1048 | 0.0 | 0.0 | 0.0024 | 0.0483 | 0.2049 | 0.2439 | 0.0077 | 0.1756 | 0.0179 | 0.0882 | 0.0 | 0.0 | 0.0243 | 0.2265 | 0.1166 | 0.1606 | 0.0 | 0.0 | 0.0053 | 0.1026 | 0.0769 | 0.1785 | 0.0072 | 0.0803 | | 9.1318 | 52.0 | 19240 | 9.5407 | 0.0291 | 0.0452 | 0.03 | 0.0062 | 0.025 | 0.0285 | 0.0783 | 0.1257 | 0.1372 | 0.05 | 0.1063 | 0.1291 | 0.0 | 0.0 | 0.0152 | 0.0735 | 0.0474 | 0.122 | 0.0053 | 0.2268 | 0.0322 | 0.1204 | 0.0003 | 0.0171 | 0.0349 | 0.4178 | 0.1452 | 0.3127 | 0.0 | 0.0 | 0.0054 | 0.1423 | 0.0637 | 0.2074 | 0.0 | 0.0066 | | 9.0889 | 53.0 | 19610 | 9.6766 | 0.0339 | 0.0508 | 0.0351 | 0.0024 | 0.0284 | 0.03 | 0.0858 | 0.1201 | 0.1322 | 0.0594 | 0.0999 | 0.1215 | 0.0 | 0.0 | 0.0046 | 0.0565 | 0.1028 | 0.2 | 0.0033 | 0.1512 | 0.043 | 0.1464 | 0.0 | 0.0 | 0.0205 | 0.3248 | 0.1247 | 0.262 | 0.0 | 0.0 | 0.0173 | 0.2051 | 0.0902 | 0.1906 | 0.0002 | 0.0492 | | 9.0375 | 54.0 | 19980 | 9.7538 | 0.0256 | 0.0356 | 0.027 | 0.001 | 0.0204 | 0.023 | 0.0707 | 0.0915 | 0.0963 | 0.0281 | 0.0715 | 0.0881 | 0.0 | 0.0 | 0.0013 | 0.0272 | 0.0359 | 0.0634 | 0.005 | 0.1073 | 0.0067 | 0.0387 | 0.0013 | 0.0463 | 0.0176 | 0.243 | 0.1204 | 0.1887 | 0.0 | 0.0 | 0.0226 | 0.1936 | 0.0871 | 0.1584 | 0.0094 | 0.0885 | | 9.0643 | 55.0 | 20350 | 9.5402 | 0.0319 | 0.0509 | 0.0285 | 0.0039 | 0.0368 | 0.0286 | 0.0783 | 0.1003 | 0.1066 | 0.0625 | 0.0697 | 0.0997 | 0.0 | 0.0 | 0.0039 | 0.0489 | 0.0718 | 0.1951 | 0.0088 | 0.1756 | 0.0244 | 0.0977 | 0.0003 | 0.0195 | 0.0318 | 0.2346 | 0.1402 | 0.1592 | 0.0 | 0.0 | 0.013 | 0.1295 | 0.0849 | 0.1826 | 0.0034 | 0.0361 | | 8.9988 | 56.0 | 20720 | 9.6811 | 0.0233 | 0.0349 | 0.0232 | 0.0023 | 0.0251 | 0.0197 | 0.0639 | 0.0836 | 0.0883 | 0.0422 | 0.0613 | 0.0813 | 0.0 | 0.0 | 0.0032 | 0.0415 | 0.0612 | 0.1463 | 0.0038 | 0.139 | 0.0142 | 0.0743 | 0.0002 | 0.0122 | 0.0173 | 0.1836 | 0.0827 | 0.1986 | 0.0 | 0.0 | 0.0111 | 0.0833 | 0.085 | 0.1523 | 0.0007 | 0.0279 | | 8.9973 | 57.0 | 21090 | 9.7995 | 0.0171 | 0.0243 | 0.017 | 0.0013 | 0.0237 | 0.0173 | 0.0483 | 0.0637 | 0.0679 | 0.025 | 0.0633 | 0.0639 | 0.0 | 0.0 | 0.0016 | 0.0328 | 0.0099 | 0.0244 | 0.0042 | 0.1439 | 0.0067 | 0.0492 | 0.0 | 0.0 | 0.0191 | 0.1775 | 0.0765 | 0.1282 | 0.0 | 0.0 | 0.0184 | 0.0795 | 0.0684 | 0.1591 | 0.0004 | 0.0197 | | 9.0076 | 58.0 | 21460 | 9.7027 | 0.0269 | 0.0424 | 0.0284 | 0.0028 | 0.035 | 0.0233 | 0.0631 | 0.0909 | 0.0977 | 0.0437 | 0.0709 | 0.0925 | 0.0 | 0.0 | 0.0027 | 0.0359 | 0.057 | 0.1293 | 0.003 | 0.122 | 0.0303 | 0.1014 | 0.0005 | 0.0244 | 0.0204 | 0.1943 | 0.1132 | 0.1944 | 0.0 | 0.0 | 0.0101 | 0.1333 | 0.0855 | 0.2168 | 0.0003 | 0.0213 | | 8.922 | 59.0 | 21830 | 9.6235 | 0.0284 | 0.0395 | 0.0292 | 0.0003 | 0.0208 | 0.0293 | 0.0663 | 0.0858 | 0.0912 | 0.0234 | 0.051 | 0.0886 | 0.0 | 0.0 | 0.0075 | 0.0246 | 0.112 | 0.1561 | 0.0011 | 0.0561 | 0.0062 | 0.0547 | 0.0 | 0.0 | 0.0194 | 0.1762 | 0.0963 | 0.1761 | 0.0 | 0.0 | 0.0124 | 0.1615 | 0.0652 | 0.1993 | 0.021 | 0.0902 | | 8.9279 | 60.0 | 22200 | 9.7393 | 0.026 | 0.0377 | 0.0264 | 0.0011 | 0.0331 | 0.0238 | 0.0735 | 0.0985 | 0.1062 | 0.0172 | 0.0673 | 0.1023 | 0.0 | 0.0 | 0.002 | 0.0346 | 0.0569 | 0.1829 | 0.0035 | 0.1854 | 0.0152 | 0.0519 | 0.0 | 0.0 | 0.0229 | 0.2862 | 0.116 | 0.238 | 0.0 | 0.0 | 0.0149 | 0.0795 | 0.0806 | 0.196 | 0.0002 | 0.0197 | | 8.9095 | 61.0 | 22570 | 9.8547 | 0.0217 | 0.027 | 0.0232 | 0.0 | 0.0144 | 0.0238 | 0.0602 | 0.0716 | 0.0756 | 0.0 | 0.0448 | 0.079 | 0.0 | 0.0 | 0.0008 | 0.0091 | 0.0736 | 0.122 | 0.0056 | 0.1805 | 0.0025 | 0.0177 | 0.0027 | 0.0463 | 0.0247 | 0.1574 | 0.1103 | 0.1352 | 0.0 | 0.0 | 0.0161 | 0.0513 | 0.0228 | 0.1396 | 0.0009 | 0.0475 | | 8.9092 | 62.0 | 22940 | 9.9259 | 0.0267 | 0.037 | 0.028 | 0.001 | 0.0178 | 0.0249 | 0.0531 | 0.0699 | 0.075 | 0.0078 | 0.0465 | 0.0724 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1187 | 0.1463 | 0.0043 | 0.122 | 0.0031 | 0.0172 | 0.0 | 0.0 | 0.0138 | 0.2507 | 0.0969 | 0.1225 | 0.0 | 0.0 | 0.0041 | 0.0359 | 0.0709 | 0.1383 | 0.009 | 0.0672 | | 8.8513 | 63.0 | 23310 | 9.7741 | 0.0312 | 0.0436 | 0.0315 | 0.0018 | 0.0281 | 0.0271 | 0.0666 | 0.0871 | 0.0945 | 0.0188 | 0.069 | 0.0909 | 0.0 | 0.0 | 0.0079 | 0.0067 | 0.1297 | 0.1683 | 0.0029 | 0.1293 | 0.0138 | 0.0491 | 0.0 | 0.0 | 0.0117 | 0.2473 | 0.1139 | 0.1606 | 0.0 | 0.0 | 0.0159 | 0.1179 | 0.0787 | 0.2483 | 0.0 | 0.0066 | | 8.9041 | 64.0 | 23680 | 9.6445 | 0.0431 | 0.0625 | 0.048 | 0.0034 | 0.0285 | 0.0418 | 0.0988 | 0.1323 | 0.1436 | 0.0203 | 0.0805 | 0.1472 | 0.0 | 0.0 | 0.002 | 0.0291 | 0.2182 | 0.3293 | 0.0042 | 0.1707 | 0.0118 | 0.0591 | 0.0 | 0.0 | 0.0238 | 0.3701 | 0.0875 | 0.1592 | 0.0 | 0.0 | 0.0498 | 0.2295 | 0.1155 | 0.2993 | 0.0046 | 0.077 | | 8.8055 | 65.0 | 24050 | 9.7573 | 0.0251 | 0.0332 | 0.0265 | 0.0037 | 0.021 | 0.0259 | 0.0628 | 0.0784 | 0.0816 | 0.0391 | 0.0438 | 0.0829 | 0.0 | 0.0 | 0.0004 | 0.0074 | 0.0937 | 0.1463 | 0.0025 | 0.1122 | 0.0042 | 0.0272 | 0.0 | 0.0 | 0.0226 | 0.2319 | 0.1269 | 0.169 | 0.0 | 0.0 | 0.0148 | 0.1282 | 0.0349 | 0.1195 | 0.0007 | 0.0377 | | 8.7948 | 66.0 | 24420 | 10.0745 | 0.0111 | 0.0152 | 0.0118 | 0.0034 | 0.0128 | 0.011 | 0.0306 | 0.0378 | 0.0415 | 0.0219 | 0.0313 | 0.0419 | 0.0 | 0.0 | 0.0001 | 0.0022 | 0.0677 | 0.1024 | 0.0004 | 0.0317 | 0.005 | 0.0209 | 0.0 | 0.0 | 0.0076 | 0.1131 | 0.0209 | 0.0507 | 0.0 | 0.0 | 0.0035 | 0.0679 | 0.0281 | 0.1087 | 0.0 | 0.0 | | 8.8053 | 67.0 | 24790 | 9.9271 | 0.0215 | 0.0312 | 0.0204 | 0.0002 | 0.0211 | 0.0175 | 0.0428 | 0.0615 | 0.0686 | 0.0156 | 0.0586 | 0.0617 | 0.0 | 0.0 | 0.0 | 0.0013 | 0.0433 | 0.0854 | 0.0011 | 0.0585 | 0.0161 | 0.0684 | 0.0 | 0.0 | 0.022 | 0.2477 | 0.0743 | 0.0915 | 0.0 | 0.0 | 0.011 | 0.0769 | 0.0898 | 0.1872 | 0.0 | 0.0066 | | 8.7587 | 68.0 | 25160 | 9.8115 | 0.0268 | 0.0435 | 0.0266 | 0.0072 | 0.0268 | 0.0244 | 0.0604 | 0.0869 | 0.0964 | 0.0453 | 0.0655 | 0.0881 | 0.0 | 0.0 | 0.0053 | 0.0196 | 0.124 | 0.2317 | 0.0011 | 0.0732 | 0.0246 | 0.0941 | 0.0 | 0.0 | 0.0123 | 0.2258 | 0.0593 | 0.2127 | 0.0 | 0.0 | 0.0202 | 0.1064 | 0.0746 | 0.1866 | 0.0 | 0.0066 | | 8.7455 | 69.0 | 25530 | 9.7010 | 0.0285 | 0.0405 | 0.0285 | 0.0007 | 0.0219 | 0.0257 | 0.0694 | 0.1025 | 0.1148 | 0.0312 | 0.0554 | 0.1173 | 0.0 | 0.0 | 0.0004 | 0.0189 | 0.1016 | 0.1634 | 0.0022 | 0.1122 | 0.0148 | 0.0887 | 0.0007 | 0.022 | 0.0184 | 0.3886 | 0.0835 | 0.2761 | 0.0 | 0.0 | 0.007 | 0.059 | 0.0748 | 0.1832 | 0.0382 | 0.0656 | | 8.7372 | 70.0 | 25900 | 9.9303 | 0.0186 | 0.0273 | 0.0202 | 0.0005 | 0.0238 | 0.0159 | 0.0592 | 0.0948 | 0.104 | 0.0063 | 0.0482 | 0.0999 | 0.0 | 0.0 | 0.0001 | 0.0067 | 0.0445 | 0.2341 | 0.0015 | 0.0732 | 0.008 | 0.044 | 0.0 | 0.0 | 0.0136 | 0.2732 | 0.0657 | 0.3648 | 0.0 | 0.0 | 0.0167 | 0.1 | 0.0728 | 0.1369 | 0.0006 | 0.0148 | | 8.7237 | 71.0 | 26270 | 9.6578 | 0.021 | 0.0298 | 0.0206 | 0.0019 | 0.0258 | 0.0209 | 0.074 | 0.0994 | 0.1079 | 0.0375 | 0.0636 | 0.1093 | 0.0 | 0.0 | 0.0013 | 0.023 | 0.0215 | 0.2463 | 0.0012 | 0.0951 | 0.0136 | 0.071 | 0.0 | 0.0 | 0.0244 | 0.2919 | 0.1162 | 0.2465 | 0.0 | 0.0 | 0.0322 | 0.1128 | 0.0399 | 0.155 | 0.0012 | 0.0525 | | 8.7217 | 72.0 | 26640 | 9.7369 | 0.018 | 0.0266 | 0.019 | 0.0012 | 0.0199 | 0.0197 | 0.0799 | 0.1203 | 0.1347 | 0.0375 | 0.0669 | 0.1371 | 0.0 | 0.0 | 0.0004 | 0.0304 | 0.0606 | 0.2585 | 0.0027 | 0.1366 | 0.0083 | 0.0572 | 0.0009 | 0.039 | 0.0108 | 0.346 | 0.0483 | 0.4183 | 0.0 | 0.0 | 0.0222 | 0.1256 | 0.0619 | 0.1852 | 0.0001 | 0.0197 | | 8.6641 | 73.0 | 27010 | 9.9652 | 0.0264 | 0.0358 | 0.0298 | 0.0001 | 0.0185 | 0.0269 | 0.0618 | 0.0892 | 0.098 | 0.0031 | 0.0385 | 0.0992 | 0.0 | 0.0 | 0.0002 | 0.0165 | 0.1918 | 0.3293 | 0.0 | 0.0 | 0.0154 | 0.0585 | 0.0 | 0.0 | 0.0104 | 0.1812 | 0.0483 | 0.3606 | 0.0 | 0.0 | 0.0264 | 0.0923 | 0.0243 | 0.1228 | 0.0001 | 0.0148 | | 8.678 | 74.0 | 27380 | 10.1454 | 0.0076 | 0.0117 | 0.0081 | 0.0 | 0.016 | 0.0065 | 0.0259 | 0.038 | 0.043 | 0.0 | 0.042 | 0.0349 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0473 | 0.2049 | 0.0 | 0.0 | 0.0084 | 0.0446 | 0.0 | 0.0 | 0.0019 | 0.0795 | 0.0009 | 0.0507 | 0.0 | 0.0 | 0.0001 | 0.0192 | 0.0324 | 0.1168 | 0.0 | 0.0 | | 8.6168 | 75.0 | 27750 | 9.9027 | 0.0183 | 0.025 | 0.0203 | 0.0 | 0.0167 | 0.0167 | 0.0395 | 0.0566 | 0.0614 | 0.0 | 0.053 | 0.0575 | 0.0 | 0.0 | 0.0001 | 0.0054 | 0.0886 | 0.1463 | 0.0006 | 0.0488 | 0.0089 | 0.0458 | 0.0 | 0.0 | 0.0026 | 0.1 | 0.0668 | 0.1915 | 0.0 | 0.0 | 0.0007 | 0.05 | 0.0512 | 0.149 | 0.0 | 0.0 | | 8.6125 | 76.0 | 28120 | 9.9229 | 0.0122 | 0.0174 | 0.0122 | 0.0002 | 0.0116 | 0.0127 | 0.0328 | 0.0424 | 0.0453 | 0.0109 | 0.0303 | 0.043 | 0.0 | 0.0 | 0.0002 | 0.0107 | 0.0748 | 0.1463 | 0.0008 | 0.0415 | 0.0051 | 0.0204 | 0.0 | 0.0 | 0.0061 | 0.0883 | 0.0174 | 0.0972 | 0.0 | 0.0 | 0.021 | 0.0487 | 0.0205 | 0.0745 | 0.0 | 0.0164 | | 8.6135 | 77.0 | 28490 | 10.0929 | 0.0258 | 0.0339 | 0.0282 | 0.0017 | 0.0262 | 0.0235 | 0.038 | 0.053 | 0.0581 | 0.0375 | 0.0515 | 0.0497 | 0.0 | 0.0 | 0.0 | 0.0033 | 0.1101 | 0.1268 | 0.0003 | 0.0268 | 0.0119 | 0.0711 | 0.0 | 0.0 | 0.0076 | 0.1017 | 0.0948 | 0.1535 | 0.0 | 0.0 | 0.037 | 0.0949 | 0.0481 | 0.1195 | 0.0 | 0.0 | | 8.5801 | 78.0 | 28860 | 10.0466 | 0.0096 | 0.0145 | 0.0087 | 0.0007 | 0.0132 | 0.0106 | 0.0343 | 0.0461 | 0.0496 | 0.0203 | 0.0483 | 0.0429 | 0.0 | 0.0 | 0.0 | 0.0022 | 0.0507 | 0.1244 | 0.0006 | 0.039 | 0.0182 | 0.0602 | 0.0 | 0.0 | 0.0061 | 0.099 | 0.0239 | 0.1056 | 0.0 | 0.0 | 0.0009 | 0.0679 | 0.0152 | 0.0966 | 0.0 | 0.0 | | 8.5705 | 79.0 | 29230 | 9.8399 | 0.018 | 0.0274 | 0.018 | 0.0006 | 0.0204 | 0.0154 | 0.049 | 0.068 | 0.0736 | 0.0188 | 0.0526 | 0.0666 | 0.0 | 0.0 | 0.0003 | 0.0159 | 0.0559 | 0.1512 | 0.001 | 0.0707 | 0.0199 | 0.0832 | 0.0 | 0.0 | 0.0051 | 0.1379 | 0.057 | 0.1606 | 0.0 | 0.0 | 0.0225 | 0.1026 | 0.0543 | 0.1315 | 0.0001 | 0.0295 | | 8.5316 | 80.0 | 29600 | 9.7523 | 0.0166 | 0.0232 | 0.0182 | 0.0007 | 0.0143 | 0.0174 | 0.0475 | 0.0591 | 0.0631 | 0.0203 | 0.0422 | 0.055 | 0.0 | 0.0 | 0.0042 | 0.0172 | 0.0329 | 0.1732 | 0.001 | 0.0512 | 0.0081 | 0.045 | 0.002 | 0.0463 | 0.0031 | 0.0658 | 0.0766 | 0.1451 | 0.0 | 0.0 | 0.0465 | 0.1026 | 0.025 | 0.1107 | 0.0 | 0.0 | | 8.5472 | 81.0 | 29970 | 9.6870 | 0.0188 | 0.027 | 0.0185 | 0.0097 | 0.0211 | 0.0195 | 0.0652 | 0.0858 | 0.0924 | 0.0531 | 0.0582 | 0.0884 | 0.0 | 0.0 | 0.0054 | 0.0315 | 0.0083 | 0.1463 | 0.0039 | 0.1463 | 0.0168 | 0.1061 | 0.0008 | 0.022 | 0.0126 | 0.1399 | 0.108 | 0.2141 | 0.0 | 0.0 | 0.0332 | 0.1397 | 0.0348 | 0.1302 | 0.0023 | 0.0328 | | 8.5652 | 82.0 | 30340 | 9.8145 | 0.0165 | 0.0293 | 0.0164 | 0.0041 | 0.0308 | 0.0138 | 0.0538 | 0.0833 | 0.0932 | 0.0359 | 0.0599 | 0.0881 | 0.0 | 0.0 | 0.005 | 0.0417 | 0.0697 | 0.1561 | 0.0018 | 0.0878 | 0.0275 | 0.1092 | 0.0 | 0.0 | 0.0093 | 0.1433 | 0.0235 | 0.307 | 0.0 | 0.0 | 0.005 | 0.0756 | 0.0566 | 0.1812 | 0.0 | 0.0164 | | 8.519 | 83.0 | 30710 | 10.0466 | 0.0152 | 0.022 | 0.0157 | 0.0088 | 0.0159 | 0.0129 | 0.041 | 0.0582 | 0.0651 | 0.0562 | 0.0645 | 0.0588 | 0.0 | 0.0 | 0.0 | 0.0033 | 0.0849 | 0.1512 | 0.0038 | 0.122 | 0.0204 | 0.0842 | 0.0 | 0.0 | 0.0022 | 0.0913 | 0.0261 | 0.131 | 0.0 | 0.0 | 0.0023 | 0.0538 | 0.0428 | 0.1443 | 0.0 | 0.0 | | 8.4927 | 84.0 | 31080 | 10.1072 | 0.0059 | 0.009 | 0.0055 | 0.0008 | 0.0076 | 0.006 | 0.0321 | 0.0452 | 0.05 | 0.0063 | 0.037 | 0.0477 | 0.0 | 0.0 | 0.0005 | 0.0163 | 0.0395 | 0.0854 | 0.0026 | 0.0878 | 0.0149 | 0.0622 | 0.0 | 0.0 | 0.0048 | 0.103 | 0.0016 | 0.1014 | 0.0 | 0.0 | 0.0004 | 0.0564 | 0.0063 | 0.0872 | 0.0 | 0.0 | | 8.4818 | 85.0 | 31450 | 9.9963 | 0.0194 | 0.0286 | 0.0224 | 0.002 | 0.0136 | 0.0219 | 0.0479 | 0.062 | 0.0665 | 0.0203 | 0.0443 | 0.0636 | 0.0 | 0.0 | 0.0039 | 0.0202 | 0.1351 | 0.1756 | 0.0027 | 0.078 | 0.0132 | 0.0512 | 0.0 | 0.0 | 0.0106 | 0.1473 | 0.0285 | 0.1197 | 0.0 | 0.0 | 0.0052 | 0.0551 | 0.0335 | 0.1195 | 0.0004 | 0.0311 | | 8.4424 | 86.0 | 31820 | 10.0308 | 0.0136 | 0.0199 | 0.0151 | 0.0004 | 0.0215 | 0.0143 | 0.0425 | 0.0559 | 0.061 | 0.0078 | 0.0425 | 0.0581 | 0.0 | 0.0 | 0.0014 | 0.0111 | 0.0667 | 0.1659 | 0.0022 | 0.0927 | 0.0062 | 0.0249 | 0.0 | 0.0 | 0.0136 | 0.1268 | 0.002 | 0.0803 | 0.0 | 0.0 | 0.0158 | 0.0782 | 0.0556 | 0.1517 | 0.0 | 0.0 | | 8.4473 | 87.0 | 32190 | 9.9931 | 0.0183 | 0.0261 | 0.0192 | 0.0148 | 0.013 | 0.0171 | 0.0553 | 0.0803 | 0.0878 | 0.0453 | 0.0426 | 0.0875 | 0.0 | 0.0 | 0.0034 | 0.035 | 0.0716 | 0.1634 | 0.0079 | 0.1268 | 0.0158 | 0.0631 | 0.0 | 0.0 | 0.0063 | 0.1644 | 0.0275 | 0.2676 | 0.0 | 0.0 | 0.0467 | 0.1128 | 0.0399 | 0.1201 | 0.0 | 0.0 | | 8.4347 | 88.0 | 32560 | 10.0669 | 0.0168 | 0.0229 | 0.0186 | 0.0028 | 0.0133 | 0.0161 | 0.0422 | 0.0564 | 0.0626 | 0.0219 | 0.0412 | 0.0616 | 0.0 | 0.0 | 0.0002 | 0.0093 | 0.125 | 0.2293 | 0.0005 | 0.0341 | 0.0105 | 0.0499 | 0.0 | 0.0 | 0.0037 | 0.1225 | 0.0239 | 0.1042 | 0.0 | 0.0 | 0.0009 | 0.0577 | 0.0318 | 0.1289 | 0.0045 | 0.0148 | | 8.3801 | 89.0 | 32930 | 9.9411 | 0.0135 | 0.0187 | 0.0145 | 0.0003 | 0.0124 | 0.0142 | 0.0494 | 0.0633 | 0.0675 | 0.0109 | 0.0473 | 0.0634 | 0.0 | 0.0 | 0.0012 | 0.0237 | 0.0728 | 0.1707 | 0.0008 | 0.0512 | 0.0118 | 0.0608 | 0.0 | 0.0 | 0.0083 | 0.146 | 0.0269 | 0.1577 | 0.0 | 0.0 | 0.0121 | 0.0769 | 0.0279 | 0.0913 | 0.0002 | 0.0311 | | 8.4044 | 90.0 | 33300 | 10.0605 | 0.0189 | 0.0272 | 0.0202 | 0.0008 | 0.0186 | 0.0151 | 0.0426 | 0.0583 | 0.0687 | 0.0156 | 0.0657 | 0.058 | 0.0 | 0.0 | 0.0004 | 0.01 | 0.1102 | 0.1268 | 0.004 | 0.1293 | 0.0322 | 0.0968 | 0.0 | 0.0 | 0.0109 | 0.1191 | 0.0049 | 0.0775 | 0.0 | 0.0 | 0.0057 | 0.0564 | 0.0589 | 0.194 | 0.0 | 0.0148 | | 8.3784 | 91.0 | 33670 | 9.7634 | 0.0288 | 0.0386 | 0.0325 | 0.0044 | 0.0178 | 0.0273 | 0.0703 | 0.0914 | 0.098 | 0.0562 | 0.0551 | 0.0926 | 0.0 | 0.0 | 0.0011 | 0.0209 | 0.2142 | 0.3122 | 0.003 | 0.0951 | 0.0202 | 0.0944 | 0.0 | 0.0 | 0.0074 | 0.146 | 0.0144 | 0.1873 | 0.0 | 0.0 | 0.0323 | 0.0974 | 0.048 | 0.1933 | 0.0046 | 0.0295 | | 8.375 | 92.0 | 34040 | 9.7371 | 0.0296 | 0.0382 | 0.0319 | 0.0028 | 0.0143 | 0.0288 | 0.0565 | 0.0765 | 0.0826 | 0.0234 | 0.0514 | 0.0747 | 0.0 | 0.0 | 0.0009 | 0.0154 | 0.1073 | 0.161 | 0.0033 | 0.1 | 0.0179 | 0.068 | 0.0 | 0.0 | 0.0064 | 0.1463 | 0.1413 | 0.2211 | 0.0 | 0.0 | 0.0399 | 0.1115 | 0.038 | 0.1678 | 0.0 | 0.0 | | 8.3001 | 93.0 | 34410 | 10.1069 | 0.0272 | 0.034 | 0.03 | 0.0017 | 0.0131 | 0.0286 | 0.0594 | 0.0741 | 0.0812 | 0.0266 | 0.0447 | 0.0731 | 0.0 | 0.0 | 0.0002 | 0.0115 | 0.1459 | 0.1902 | 0.0095 | 0.1512 | 0.0103 | 0.0458 | 0.0 | 0.0 | 0.0057 | 0.1094 | 0.0864 | 0.1099 | 0.0 | 0.0 | 0.0366 | 0.1808 | 0.0318 | 0.1758 | 0.0 | 0.0 | | 8.3541 | 94.0 | 34780 | 9.8205 | 0.0239 | 0.0337 | 0.0261 | 0.0028 | 0.0212 | 0.0218 | 0.0624 | 0.0966 | 0.1077 | 0.0281 | 0.0537 | 0.1056 | 0.0 | 0.0 | 0.0005 | 0.0291 | 0.1419 | 0.3049 | 0.0075 | 0.1927 | 0.0233 | 0.1127 | 0.0 | 0.0 | 0.0101 | 0.1319 | 0.0271 | 0.1662 | 0.0 | 0.0 | 0.0304 | 0.1654 | 0.0456 | 0.1745 | 0.0 | 0.0148 | | 8.283 | 95.0 | 35150 | 9.8996 | 0.0214 | 0.0287 | 0.0232 | 0.0033 | 0.0182 | 0.0208 | 0.0562 | 0.0747 | 0.0845 | 0.0281 | 0.0764 | 0.0785 | 0.0 | 0.0 | 0.0004 | 0.023 | 0.1103 | 0.2244 | 0.0074 | 0.1756 | 0.0207 | 0.086 | 0.0 | 0.0 | 0.0141 | 0.149 | 0.0014 | 0.0366 | 0.0 | 0.0 | 0.0584 | 0.1269 | 0.0438 | 0.1926 | 0.0 | 0.0 | | 8.2788 | 96.0 | 35520 | 9.9741 | 0.0263 | 0.0337 | 0.0302 | 0.0003 | 0.0146 | 0.0265 | 0.0671 | 0.0793 | 0.0858 | 0.0063 | 0.0224 | 0.0868 | 0.0 | 0.0 | 0.0005 | 0.0248 | 0.1521 | 0.2341 | 0.0044 | 0.1268 | 0.0081 | 0.042 | 0.0134 | 0.022 | 0.0114 | 0.0953 | 0.0781 | 0.2169 | 0.0 | 0.0 | 0.0326 | 0.1718 | 0.0143 | 0.0812 | 0.0008 | 0.0148 | | 8.2828 | 97.0 | 35890 | 9.8687 | 0.0181 | 0.0241 | 0.0202 | 0.0006 | 0.0115 | 0.0169 | 0.0535 | 0.0699 | 0.0752 | 0.0078 | 0.0393 | 0.0755 | 0.0 | 0.0 | 0.0008 | 0.0291 | 0.0823 | 0.2439 | 0.0006 | 0.039 | 0.0047 | 0.0213 | 0.0 | 0.0 | 0.0075 | 0.1698 | 0.0707 | 0.1887 | 0.0 | 0.0 | 0.011 | 0.0551 | 0.0398 | 0.1409 | 0.0 | 0.0148 | | 8.2402 | 98.0 | 36260 | 9.9006 | 0.0138 | 0.0198 | 0.0135 | 0.0005 | 0.0233 | 0.0127 | 0.056 | 0.081 | 0.0886 | 0.0078 | 0.0563 | 0.0875 | 0.0 | 0.0 | 0.001 | 0.0563 | 0.0388 | 0.1756 | 0.0032 | 0.122 | 0.0101 | 0.052 | 0.0 | 0.0 | 0.0177 | 0.2436 | 0.0194 | 0.1634 | 0.0 | 0.0 | 0.0339 | 0.0577 | 0.0412 | 0.1926 | 0.0 | 0.0 | | 8.2909 | 99.0 | 36630 | 10.1356 | 0.0134 | 0.0199 | 0.0138 | 0.0011 | 0.015 | 0.0132 | 0.0382 | 0.0493 | 0.0527 | 0.0078 | 0.0359 | 0.0497 | 0.0 | 0.0 | 0.0002 | 0.0083 | 0.0641 | 0.1073 | 0.0044 | 0.0805 | 0.0102 | 0.0443 | 0.0 | 0.0 | 0.0048 | 0.103 | 0.0301 | 0.1268 | 0.0 | 0.0 | 0.0044 | 0.0462 | 0.0422 | 0.1161 | 0.0 | 0.0 | | 8.2521 | 100.0 | 37000 | 10.0207 | 0.0173 | 0.0232 | 0.0177 | 0.0106 | 0.0254 | 0.0179 | 0.0485 | 0.0685 | 0.0748 | 0.0391 | 0.0502 | 0.0764 | 0.0 | 0.0 | 0.0013 | 0.0259 | 0.0556 | 0.1707 | 0.0024 | 0.0976 | 0.0115 | 0.0685 | 0.0 | 0.0 | 0.0189 | 0.1497 | 0.0485 | 0.1845 | 0.0 | 0.0 | 0.0398 | 0.0859 | 0.029 | 0.1007 | 0.0 | 0.0148 | | 8.2071 | 101.0 | 37370 | 9.8349 | 0.021 | 0.0274 | 0.0223 | 0.004 | 0.0154 | 0.0209 | 0.0674 | 0.0953 | 0.102 | 0.0156 | 0.048 | 0.1045 | 0.0 | 0.0 | 0.0007 | 0.0304 | 0.1062 | 0.3488 | 0.005 | 0.0902 | 0.0116 | 0.0685 | 0.0 | 0.0 | 0.0098 | 0.1688 | 0.0872 | 0.2901 | 0.0 | 0.0 | 0.0117 | 0.0821 | 0.0191 | 0.1154 | 0.0 | 0.0295 | | 8.2182 | 102.0 | 37740 | 10.0440 | 0.0143 | 0.0181 | 0.0154 | 0.0008 | 0.0159 | 0.0139 | 0.0444 | 0.0578 | 0.0636 | 0.0063 | 0.0378 | 0.0607 | 0.0 | 0.0 | 0.0019 | 0.0148 | 0.078 | 0.2634 | 0.002 | 0.0756 | 0.0061 | 0.0494 | 0.0 | 0.0 | 0.0078 | 0.0772 | 0.0301 | 0.0958 | 0.0 | 0.0 | 0.0388 | 0.0756 | 0.0075 | 0.1114 | 0.0 | 0.0 | | 8.1713 | 103.0 | 38110 | 10.0068 | 0.0156 | 0.0193 | 0.0174 | 0.0005 | 0.0068 | 0.0164 | 0.0508 | 0.059 | 0.0636 | 0.0094 | 0.0227 | 0.0684 | 0.0 | 0.0 | 0.0017 | 0.0102 | 0.1495 | 0.2902 | 0.0029 | 0.0927 | 0.0046 | 0.0111 | 0.0 | 0.0 | 0.004 | 0.0745 | 0.0086 | 0.1085 | 0.0 | 0.0 | 0.0121 | 0.0474 | 0.0038 | 0.0993 | 0.0001 | 0.0295 | | 8.1746 | 104.0 | 38480 | 10.1219 | 0.0166 | 0.0214 | 0.0189 | 0.0007 | 0.0199 | 0.0133 | 0.0264 | 0.0351 | 0.0384 | 0.0078 | 0.0435 | 0.0306 | 0.0 | 0.0 | 0.0001 | 0.0048 | 0.0988 | 0.2122 | 0.0 | 0.0 | 0.0089 | 0.0402 | 0.0 | 0.0 | 0.0065 | 0.0289 | 0.0001 | 0.007 | 0.0 | 0.0 | 0.0399 | 0.0487 | 0.045 | 0.1188 | 0.0 | 0.0 | | 8.1573 | 105.0 | 38850 | 9.8900 | 0.0232 | 0.0297 | 0.0277 | 0.0006 | 0.0088 | 0.0237 | 0.0512 | 0.0652 | 0.0694 | 0.0078 | 0.0307 | 0.0668 | 0.0 | 0.0 | 0.0002 | 0.0124 | 0.1197 | 0.2195 | 0.0 | 0.0 | 0.009 | 0.0246 | 0.0 | 0.0 | 0.0026 | 0.053 | 0.0779 | 0.2535 | 0.0 | 0.0 | 0.0422 | 0.1128 | 0.0255 | 0.1141 | 0.0009 | 0.0426 | | 8.1368 | 106.0 | 39220 | 9.9437 | 0.0117 | 0.0153 | 0.0137 | 0.0 | 0.0059 | 0.012 | 0.0383 | 0.0516 | 0.0565 | 0.0 | 0.0228 | 0.054 | 0.0 | 0.0 | 0.0001 | 0.0093 | 0.0993 | 0.2146 | 0.0 | 0.0 | 0.0036 | 0.0098 | 0.0 | 0.0 | 0.0049 | 0.0691 | 0.0127 | 0.2155 | 0.0 | 0.0 | 0.003 | 0.0564 | 0.0165 | 0.1034 | 0.0 | 0.0 | | 8.1522 | 107.0 | 39590 | 9.8722 | 0.0162 | 0.0203 | 0.0184 | 0.0 | 0.0033 | 0.0172 | 0.0407 | 0.0501 | 0.0542 | 0.0 | 0.0096 | 0.0557 | 0.0 | 0.0 | 0.0001 | 0.0089 | 0.0779 | 0.178 | 0.001 | 0.0293 | 0.0032 | 0.0128 | 0.0 | 0.0 | 0.0028 | 0.0752 | 0.0656 | 0.1746 | 0.0 | 0.0 | 0.0292 | 0.0936 | 0.0061 | 0.0638 | 0.0089 | 0.0148 | | 8.1128 | 108.0 | 39960 | 9.9411 | 0.0202 | 0.0267 | 0.0242 | 0.0 | 0.0086 | 0.0207 | 0.0497 | 0.0582 | 0.0611 | 0.0 | 0.0269 | 0.0617 | 0.0 | 0.0 | 0.0004 | 0.0174 | 0.0996 | 0.1854 | 0.0018 | 0.0683 | 0.0073 | 0.0319 | 0.0 | 0.0 | 0.0026 | 0.0359 | 0.0865 | 0.1648 | 0.0 | 0.0 | 0.0177 | 0.0962 | 0.0234 | 0.0872 | 0.0033 | 0.0459 | | 8.1076 | 109.0 | 40330 | 10.0025 | 0.0236 | 0.0294 | 0.0273 | 0.0 | 0.0059 | 0.0255 | 0.0495 | 0.0601 | 0.0635 | 0.0 | 0.0245 | 0.0662 | 0.0 | 0.0 | 0.0004 | 0.0141 | 0.1291 | 0.2512 | 0.0021 | 0.061 | 0.0113 | 0.0219 | 0.0 | 0.0 | 0.0009 | 0.0359 | 0.1016 | 0.2014 | 0.0 | 0.0 | 0.0248 | 0.0846 | 0.0125 | 0.0651 | 0.0003 | 0.0262 | | 8.1108 | 110.0 | 40700 | 10.0843 | 0.0142 | 0.0185 | 0.0169 | 0.0 | 0.0049 | 0.0158 | 0.0338 | 0.0391 | 0.0419 | 0.0 | 0.0095 | 0.0425 | 0.0 | 0.0 | 0.0001 | 0.0046 | 0.0499 | 0.1512 | 0.0002 | 0.0171 | 0.0036 | 0.0089 | 0.0 | 0.0 | 0.0006 | 0.0215 | 0.1053 | 0.1634 | 0.0 | 0.0 | 0.0039 | 0.0705 | 0.0074 | 0.0658 | 0.0 | 0.0 | | 8.0705 | 111.0 | 41070 | 9.9991 | 0.0103 | 0.0139 | 0.012 | 0.0 | 0.0029 | 0.0111 | 0.0315 | 0.0377 | 0.0388 | 0.0 | 0.0121 | 0.0402 | 0.0 | 0.0 | 0.0001 | 0.0028 | 0.0598 | 0.1244 | 0.002 | 0.0512 | 0.0068 | 0.0303 | 0.0 | 0.0 | 0.0079 | 0.0309 | 0.0249 | 0.1408 | 0.0 | 0.0 | 0.0209 | 0.0551 | 0.0007 | 0.0302 | 0.0 | 0.0 | | 8.037 | 112.0 | 41440 | 10.1343 | 0.009 | 0.0123 | 0.0094 | 0.0135 | 0.0068 | 0.0098 | 0.0422 | 0.056 | 0.0601 | 0.0281 | 0.031 | 0.066 | 0.0 | 0.0 | 0.0003 | 0.0211 | 0.0732 | 0.1512 | 0.0014 | 0.061 | 0.007 | 0.0369 | 0.0 | 0.0 | 0.0022 | 0.0839 | 0.013 | 0.1662 | 0.0 | 0.0 | 0.0011 | 0.0615 | 0.0094 | 0.1248 | 0.0 | 0.0148 | | 8.0616 | 113.0 | 41810 | 9.9521 | 0.0228 | 0.0303 | 0.0249 | 0.0002 | 0.0139 | 0.0205 | 0.0697 | 0.0877 | 0.0924 | 0.0016 | 0.0345 | 0.0994 | 0.0 | 0.0 | 0.0004 | 0.023 | 0.0971 | 0.3293 | 0.0017 | 0.1073 | 0.0107 | 0.0323 | 0.0 | 0.0 | 0.0042 | 0.1114 | 0.0986 | 0.1775 | 0.0 | 0.0 | 0.0103 | 0.1372 | 0.0504 | 0.1678 | 0.0003 | 0.023 | | 8.0231 | 114.0 | 42180 | 9.8850 | 0.0197 | 0.0251 | 0.0218 | 0.0029 | 0.01 | 0.0185 | 0.0666 | 0.0872 | 0.0924 | 0.0109 | 0.0282 | 0.0929 | 0.0 | 0.0 | 0.0006 | 0.0274 | 0.1112 | 0.3805 | 0.001 | 0.0902 | 0.0093 | 0.0464 | 0.0 | 0.0 | 0.0012 | 0.0644 | 0.0826 | 0.1901 | 0.0 | 0.0 | 0.0147 | 0.1705 | 0.0141 | 0.0953 | 0.0019 | 0.0443 | | 8.0193 | 115.0 | 42550 | 10.0295 | 0.0207 | 0.025 | 0.0231 | 0.0 | 0.007 | 0.0206 | 0.0717 | 0.0878 | 0.0916 | 0.0 | 0.0492 | 0.0942 | 0.0 | 0.0 | 0.0005 | 0.025 | 0.0839 | 0.2927 | 0.0028 | 0.1829 | 0.0029 | 0.021 | 0.0 | 0.0 | 0.0111 | 0.0916 | 0.0976 | 0.2366 | 0.0 | 0.0 | 0.0223 | 0.1038 | 0.0084 | 0.1154 | 0.0192 | 0.0295 | | 8.001 | 116.0 | 42920 | 9.8031 | 0.032 | 0.0397 | 0.0346 | 0.0059 | 0.0133 | 0.032 | 0.0708 | 0.0934 | 0.1016 | 0.0094 | 0.0396 | 0.1056 | 0.0 | 0.0 | 0.0014 | 0.032 | 0.1235 | 0.2659 | 0.0004 | 0.061 | 0.0077 | 0.0428 | 0.0 | 0.0 | 0.004 | 0.155 | 0.1527 | 0.3183 | 0.0 | 0.0 | 0.0245 | 0.1205 | 0.0317 | 0.1779 | 0.0378 | 0.0459 | | 7.9877 | 117.0 | 43290 | 9.8003 | 0.0344 | 0.0441 | 0.0367 | 0.0099 | 0.0138 | 0.0328 | 0.0828 | 0.1024 | 0.1089 | 0.0109 | 0.0438 | 0.1117 | 0.0 | 0.0 | 0.0022 | 0.0376 | 0.1816 | 0.378 | 0.0006 | 0.0854 | 0.0106 | 0.0325 | 0.0 | 0.0 | 0.002 | 0.1218 | 0.0714 | 0.238 | 0.0 | 0.0 | 0.0498 | 0.2282 | 0.0584 | 0.1557 | 0.0356 | 0.0295 | | 7.9849 | 118.0 | 43660 | 9.9241 | 0.0244 | 0.03 | 0.028 | 0.0079 | 0.0083 | 0.0255 | 0.0533 | 0.0682 | 0.0721 | 0.0063 | 0.0278 | 0.0763 | 0.0 | 0.0 | 0.0018 | 0.0187 | 0.1051 | 0.2244 | 0.0 | 0.0 | 0.0126 | 0.027 | 0.0 | 0.0 | 0.0033 | 0.0856 | 0.1054 | 0.2042 | 0.0 | 0.0 | 0.0312 | 0.1385 | 0.0296 | 0.1369 | 0.004 | 0.0295 | | 7.9789 | 119.0 | 44030 | 10.0058 | 0.0221 | 0.0291 | 0.0269 | 0.0 | 0.0131 | 0.0227 | 0.0627 | 0.0784 | 0.0852 | 0.0 | 0.0253 | 0.0916 | 0.0 | 0.0 | 0.0004 | 0.0196 | 0.1398 | 0.2976 | 0.0015 | 0.1073 | 0.0118 | 0.032 | 0.0 | 0.0 | 0.0045 | 0.0748 | 0.058 | 0.2507 | 0.0 | 0.0 | 0.0234 | 0.1282 | 0.0263 | 0.1121 | 0.0 | 0.0 | | 7.9855 | 120.0 | 44400 | 10.2661 | 0.0194 | 0.0266 | 0.0224 | 0.0008 | 0.0117 | 0.0188 | 0.0494 | 0.0632 | 0.0704 | 0.0047 | 0.0287 | 0.0719 | 0.0 | 0.0 | 0.0004 | 0.0135 | 0.1264 | 0.2732 | 0.0018 | 0.0854 | 0.0101 | 0.0301 | 0.0 | 0.0 | 0.0017 | 0.0628 | 0.0476 | 0.1732 | 0.0 | 0.0 | 0.0247 | 0.0615 | 0.0202 | 0.1289 | 0.0 | 0.0164 | | 7.9515 | 121.0 | 44770 | 10.1516 | 0.0138 | 0.0201 | 0.0142 | 0.0004 | 0.0125 | 0.0127 | 0.0454 | 0.0676 | 0.0759 | 0.0016 | 0.0341 | 0.0809 | 0.0 | 0.0 | 0.0009 | 0.0226 | 0.075 | 0.178 | 0.0015 | 0.0829 | 0.0084 | 0.0344 | 0.0 | 0.0 | 0.005 | 0.1352 | 0.0276 | 0.2324 | 0.0 | 0.0 | 0.0178 | 0.0821 | 0.0245 | 0.1289 | 0.0045 | 0.0148 | | 7.9411 | 122.0 | 45140 | 10.0355 | 0.0177 | 0.0239 | 0.0195 | 0.0002 | 0.01 | 0.0178 | 0.059 | 0.0789 | 0.0858 | 0.0016 | 0.0429 | 0.0927 | 0.0 | 0.0 | 0.0011 | 0.0241 | 0.0956 | 0.1683 | 0.005 | 0.1439 | 0.0112 | 0.045 | 0.0 | 0.0 | 0.0119 | 0.1366 | 0.0561 | 0.2887 | 0.0 | 0.0 | 0.013 | 0.0718 | 0.0176 | 0.1262 | 0.0004 | 0.0246 | | 7.9324 | 123.0 | 45510 | 10.1988 | 0.0204 | 0.0264 | 0.0227 | 0.0 | 0.015 | 0.0208 | 0.0624 | 0.0784 | 0.0896 | 0.0 | 0.0422 | 0.093 | 0.0 | 0.0 | 0.0005 | 0.0263 | 0.098 | 0.2585 | 0.0017 | 0.1 | 0.0103 | 0.0433 | 0.0 | 0.0 | 0.0075 | 0.1138 | 0.0824 | 0.3183 | 0.0 | 0.0 | 0.0318 | 0.0795 | 0.0124 | 0.1349 | 0.0 | 0.0 | | 7.9327 | 124.0 | 45880 | 10.2355 | 0.0183 | 0.0251 | 0.0203 | 0.0 | 0.013 | 0.0193 | 0.053 | 0.0724 | 0.0815 | 0.0 | 0.0352 | 0.0827 | 0.0 | 0.0 | 0.0003 | 0.0157 | 0.1019 | 0.2146 | 0.0021 | 0.0756 | 0.013 | 0.0399 | 0.0 | 0.0 | 0.008 | 0.1477 | 0.0215 | 0.2915 | 0.0 | 0.0 | 0.0305 | 0.0846 | 0.0418 | 0.1087 | 0.0 | 0.0 | | 7.8884 | 125.0 | 46250 | 10.1763 | 0.0282 | 0.0362 | 0.0325 | 0.0013 | 0.0151 | 0.0267 | 0.0621 | 0.0863 | 0.0937 | 0.0078 | 0.0495 | 0.0955 | 0.0 | 0.0 | 0.0005 | 0.0167 | 0.1261 | 0.2439 | 0.0008 | 0.061 | 0.0134 | 0.0432 | 0.0 | 0.0 | 0.0055 | 0.1993 | 0.1396 | 0.293 | 0.0 | 0.0 | 0.0169 | 0.1077 | 0.0348 | 0.1443 | 0.0002 | 0.0148 | | 7.8719 | 126.0 | 46620 | 10.1629 | 0.0223 | 0.0289 | 0.0257 | 0.0014 | 0.0062 | 0.0228 | 0.0622 | 0.0809 | 0.0851 | 0.0047 | 0.0419 | 0.093 | 0.0 | 0.0 | 0.0004 | 0.0172 | 0.1428 | 0.2634 | 0.0035 | 0.1341 | 0.0103 | 0.0334 | 0.0 | 0.0 | 0.003 | 0.1742 | 0.0684 | 0.2493 | 0.0 | 0.0 | 0.0272 | 0.0641 | 0.0119 | 0.0758 | 0.0 | 0.0098 | | 7.8751 | 127.0 | 46990 | 10.2506 | 0.0173 | 0.0212 | 0.0184 | 0.0 | 0.0106 | 0.0165 | 0.054 | 0.0647 | 0.0694 | 0.0 | 0.0351 | 0.071 | 0.0 | 0.0 | 0.0002 | 0.0074 | 0.0735 | 0.178 | 0.0016 | 0.0878 | 0.0138 | 0.0334 | 0.0 | 0.0 | 0.0021 | 0.1091 | 0.0447 | 0.2338 | 0.0 | 0.0 | 0.0358 | 0.0705 | 0.0161 | 0.096 | 0.0198 | 0.0164 | | 7.8899 | 128.0 | 47360 | 10.1993 | 0.0176 | 0.0251 | 0.0179 | 0.0 | 0.0138 | 0.0157 | 0.0474 | 0.0644 | 0.0721 | 0.0 | 0.0772 | 0.068 | 0.0 | 0.0 | 0.0002 | 0.01 | 0.0704 | 0.1122 | 0.0026 | 0.1195 | 0.0159 | 0.0462 | 0.0 | 0.0 | 0.0047 | 0.1148 | 0.0667 | 0.2479 | 0.0 | 0.0 | 0.0105 | 0.0641 | 0.0405 | 0.1503 | 0.0 | 0.0 | | 7.8987 | 129.0 | 47730 | 10.2938 | 0.0127 | 0.0168 | 0.0135 | 0.0 | 0.0128 | 0.0141 | 0.042 | 0.0545 | 0.0595 | 0.0 | 0.0571 | 0.0589 | 0.0 | 0.0 | 0.0001 | 0.0054 | 0.0477 | 0.1171 | 0.0069 | 0.1317 | 0.0065 | 0.0149 | 0.0 | 0.0 | 0.0063 | 0.1201 | 0.0463 | 0.1676 | 0.0 | 0.0 | 0.0002 | 0.0218 | 0.0385 | 0.1349 | 0.0 | 0.0 | | 7.8286 | 130.0 | 48100 | 10.2356 | 0.0094 | 0.0133 | 0.01 | 0.0 | 0.007 | 0.011 | 0.0382 | 0.0512 | 0.0548 | 0.0 | 0.045 | 0.0535 | 0.0 | 0.0 | 0.0002 | 0.0065 | 0.0476 | 0.139 | 0.0012 | 0.0512 | 0.0103 | 0.0292 | 0.0 | 0.0 | 0.0045 | 0.0953 | 0.0205 | 0.1718 | 0.0 | 0.0 | 0.0168 | 0.0769 | 0.011 | 0.0879 | 0.0 | 0.0 | | 7.8115 | 131.0 | 48470 | 9.9403 | 0.0195 | 0.0248 | 0.0216 | 0.0 | 0.0114 | 0.021 | 0.0573 | 0.0817 | 0.089 | 0.0 | 0.0661 | 0.0896 | 0.0 | 0.0 | 0.0004 | 0.0193 | 0.0867 | 0.2146 | 0.002 | 0.1244 | 0.0144 | 0.0601 | 0.0 | 0.0 | 0.0061 | 0.1732 | 0.0925 | 0.2141 | 0.0 | 0.0 | 0.0057 | 0.0846 | 0.0075 | 0.1201 | 0.0187 | 0.0574 | | 7.817 | 132.0 | 48840 | 9.9620 | 0.0171 | 0.0214 | 0.0191 | 0.0013 | 0.0047 | 0.0197 | 0.0533 | 0.0684 | 0.07 | 0.0047 | 0.0354 | 0.0767 | 0.0 | 0.0 | 0.0002 | 0.0104 | 0.0728 | 0.1756 | 0.0076 | 0.1195 | 0.0139 | 0.0355 | 0.0 | 0.0 | 0.0066 | 0.1403 | 0.0518 | 0.1704 | 0.0 | 0.0 | 0.0203 | 0.0718 | 0.0146 | 0.0564 | 0.0168 | 0.0607 | | 7.7889 | 133.0 | 49210 | 10.1356 | 0.0111 | 0.0164 | 0.0124 | 0.0018 | 0.009 | 0.0112 | 0.0489 | 0.0647 | 0.071 | 0.0063 | 0.0481 | 0.0728 | 0.0 | 0.0 | 0.0008 | 0.0104 | 0.067 | 0.1732 | 0.0091 | 0.1317 | 0.0112 | 0.0281 | 0.0018 | 0.0073 | 0.0089 | 0.2262 | 0.0085 | 0.1211 | 0.0 | 0.0 | 0.0048 | 0.0397 | 0.0207 | 0.104 | 0.0001 | 0.0098 | | 7.8069 | 134.0 | 49580 | 10.1612 | 0.0112 | 0.0167 | 0.0123 | 0.0066 | 0.009 | 0.0114 | 0.0526 | 0.073 | 0.0805 | 0.0234 | 0.0538 | 0.0849 | 0.0 | 0.0 | 0.0005 | 0.0109 | 0.0783 | 0.1537 | 0.0039 | 0.1415 | 0.0137 | 0.0458 | 0.0 | 0.0 | 0.0063 | 0.2564 | 0.0108 | 0.1268 | 0.0 | 0.0 | 0.0003 | 0.0359 | 0.0189 | 0.1416 | 0.0019 | 0.0541 | | 7.7811 | 135.0 | 49950 | 9.8277 | 0.0156 | 0.0229 | 0.017 | 0.0083 | 0.0136 | 0.0167 | 0.0793 | 0.104 | 0.116 | 0.025 | 0.0831 | 0.113 | 0.0 | 0.0 | 0.0004 | 0.02 | 0.1027 | 0.2878 | 0.0068 | 0.1634 | 0.0132 | 0.0666 | 0.0 | 0.0 | 0.0098 | 0.2893 | 0.0233 | 0.1958 | 0.0 | 0.0 | 0.0011 | 0.0744 | 0.0212 | 0.1852 | 0.0086 | 0.1098 | | 7.7384 | 136.0 | 50320 | 9.9539 | 0.0185 | 0.0241 | 0.0205 | 0.0021 | 0.0087 | 0.0192 | 0.053 | 0.0659 | 0.0725 | 0.0188 | 0.0477 | 0.0747 | 0.0 | 0.0 | 0.0002 | 0.0122 | 0.0731 | 0.1366 | 0.0053 | 0.1146 | 0.0196 | 0.0561 | 0.0 | 0.0 | 0.0066 | 0.1054 | 0.0818 | 0.1901 | 0.0 | 0.0 | 0.0052 | 0.0705 | 0.0049 | 0.1174 | 0.0253 | 0.0672 | | 7.7549 | 137.0 | 50690 | 10.0690 | 0.015 | 0.0196 | 0.016 | 0.0033 | 0.0106 | 0.0168 | 0.0481 | 0.0669 | 0.0721 | 0.0047 | 0.0481 | 0.0698 | 0.0 | 0.0 | 0.0002 | 0.0057 | 0.0498 | 0.1732 | 0.0078 | 0.1122 | 0.0162 | 0.0477 | 0.0 | 0.0 | 0.0025 | 0.1232 | 0.0658 | 0.1859 | 0.0 | 0.0 | 0.0042 | 0.0474 | 0.0315 | 0.1114 | 0.0016 | 0.059 | | 7.7391 | 138.0 | 51060 | 9.9675 | 0.0214 | 0.0291 | 0.0214 | 0.0108 | 0.0177 | 0.0183 | 0.059 | 0.0866 | 0.0976 | 0.0453 | 0.061 | 0.0944 | 0.0 | 0.0 | 0.0003 | 0.0141 | 0.0731 | 0.222 | 0.0037 | 0.1098 | 0.017 | 0.0708 | 0.0 | 0.0 | 0.0111 | 0.1356 | 0.0827 | 0.2338 | 0.0 | 0.0 | 0.0008 | 0.1218 | 0.0415 | 0.1832 | 0.0262 | 0.0803 | | 7.7187 | 139.0 | 51430 | 10.3334 | 0.0146 | 0.0196 | 0.0157 | 0.0113 | 0.0094 | 0.0161 | 0.0383 | 0.0463 | 0.0497 | 0.0406 | 0.0396 | 0.0504 | 0.0 | 0.0 | 0.0001 | 0.0022 | 0.0645 | 0.1195 | 0.0019 | 0.0732 | 0.0169 | 0.0454 | 0.0 | 0.0 | 0.0044 | 0.0745 | 0.0561 | 0.1324 | 0.0 | 0.0 | 0.002 | 0.0487 | 0.0286 | 0.0852 | 0.0001 | 0.0148 | | 7.6925 | 140.0 | 51800 | 10.0430 | 0.0198 | 0.0259 | 0.0216 | 0.0033 | 0.0152 | 0.0186 | 0.0549 | 0.0687 | 0.0731 | 0.0063 | 0.0477 | 0.0701 | 0.0 | 0.0 | 0.0001 | 0.0052 | 0.0786 | 0.1683 | 0.0016 | 0.0707 | 0.011 | 0.0465 | 0.0 | 0.0 | 0.0061 | 0.0708 | 0.0991 | 0.231 | 0.0 | 0.0 | 0.0036 | 0.1205 | 0.0355 | 0.1128 | 0.0025 | 0.0508 | | 7.6879 | 141.0 | 52170 | 10.1358 | 0.0156 | 0.0212 | 0.016 | 0.0085 | 0.0108 | 0.0171 | 0.0424 | 0.0523 | 0.0556 | 0.0188 | 0.0431 | 0.0564 | 0.0 | 0.0 | 0.0001 | 0.0039 | 0.052 | 0.1098 | 0.0017 | 0.0707 | 0.0256 | 0.0743 | 0.0 | 0.0 | 0.0031 | 0.0611 | 0.0842 | 0.1831 | 0.0 | 0.0 | 0.0003 | 0.041 | 0.0177 | 0.0779 | 0.0028 | 0.0459 | | 7.6978 | 142.0 | 52540 | 10.1840 | 0.0183 | 0.0265 | 0.0195 | 0.0113 | 0.0088 | 0.0179 | 0.0645 | 0.0745 | 0.0795 | 0.0172 | 0.0369 | 0.0829 | 0.0 | 0.0 | 0.0003 | 0.0098 | 0.1082 | 0.2195 | 0.0079 | 0.122 | 0.0231 | 0.0492 | 0.0 | 0.0 | 0.0094 | 0.0735 | 0.0302 | 0.1986 | 0.0 | 0.0 | 0.0227 | 0.1051 | 0.0128 | 0.1087 | 0.0056 | 0.0672 | | 7.7027 | 143.0 | 52910 | 10.0340 | 0.0285 | 0.0386 | 0.032 | 0.0099 | 0.0134 | 0.0292 | 0.0711 | 0.093 | 0.0968 | 0.0078 | 0.0456 | 0.1004 | 0.0 | 0.0 | 0.0015 | 0.0109 | 0.1226 | 0.3415 | 0.0212 | 0.1171 | 0.0161 | 0.0327 | 0.0 | 0.0 | 0.008 | 0.152 | 0.1218 | 0.2113 | 0.0 | 0.0 | 0.0264 | 0.0936 | 0.0171 | 0.1289 | 0.0079 | 0.0738 | | 7.6829 | 144.0 | 53280 | 10.2188 | 0.0175 | 0.0256 | 0.0171 | 0.0056 | 0.0123 | 0.0178 | 0.0527 | 0.0665 | 0.0708 | 0.0094 | 0.0536 | 0.0691 | 0.0 | 0.0 | 0.0006 | 0.0096 | 0.0803 | 0.2122 | 0.0014 | 0.0585 | 0.0195 | 0.0631 | 0.0 | 0.0 | 0.0054 | 0.1 | 0.0486 | 0.1634 | 0.0 | 0.0 | 0.0086 | 0.0782 | 0.0246 | 0.1181 | 0.0205 | 0.0459 | | 7.6651 | 145.0 | 53650 | 10.2600 | 0.0113 | 0.0179 | 0.0119 | 0.0104 | 0.0108 | 0.0123 | 0.058 | 0.0728 | 0.0769 | 0.0109 | 0.0445 | 0.0822 | 0.0 | 0.0 | 0.0007 | 0.0139 | 0.0214 | 0.1805 | 0.006 | 0.1366 | 0.0177 | 0.0542 | 0.0 | 0.0 | 0.004 | 0.099 | 0.044 | 0.1338 | 0.0 | 0.0 | 0.0166 | 0.1154 | 0.0246 | 0.1483 | 0.0007 | 0.041 | | 7.6364 | 146.0 | 54020 | 10.0692 | 0.0218 | 0.0298 | 0.0248 | 0.005 | 0.0064 | 0.0237 | 0.0614 | 0.0738 | 0.077 | 0.0047 | 0.0306 | 0.0841 | 0.0 | 0.0 | 0.0002 | 0.0078 | 0.1222 | 0.1951 | 0.011 | 0.1171 | 0.0122 | 0.0414 | 0.0 | 0.0 | 0.0068 | 0.1433 | 0.059 | 0.1324 | 0.0 | 0.0 | 0.0257 | 0.0821 | 0.0163 | 0.1248 | 0.0077 | 0.0803 | | 7.6121 | 147.0 | 54390 | 10.0795 | 0.0175 | 0.0261 | 0.0194 | 0.0009 | 0.0105 | 0.0187 | 0.0657 | 0.0812 | 0.0859 | 0.0047 | 0.0375 | 0.0889 | 0.0 | 0.0 | 0.0003 | 0.0091 | 0.1201 | 0.2732 | 0.0129 | 0.1293 | 0.0237 | 0.0682 | 0.0 | 0.0 | 0.0074 | 0.1829 | 0.0161 | 0.0873 | 0.0 | 0.0 | 0.0142 | 0.1115 | 0.0146 | 0.0919 | 0.0012 | 0.077 | | 7.6383 | 148.0 | 54760 | 9.9347 | 0.0223 | 0.0284 | 0.0235 | 0.0144 | 0.0095 | 0.023 | 0.0612 | 0.0723 | 0.0769 | 0.0188 | 0.0431 | 0.0786 | 0.0 | 0.0 | 0.0004 | 0.0143 | 0.1383 | 0.2659 | 0.0061 | 0.1146 | 0.0133 | 0.0413 | 0.0 | 0.0 | 0.0067 | 0.1178 | 0.0478 | 0.0831 | 0.0 | 0.0 | 0.0231 | 0.059 | 0.0249 | 0.1087 | 0.0069 | 0.118 | | 7.5991 | 149.0 | 55130 | 9.8666 | 0.0222 | 0.0299 | 0.0256 | 0.0244 | 0.0098 | 0.0226 | 0.0733 | 0.0929 | 0.099 | 0.0469 | 0.0607 | 0.0974 | 0.0 | 0.0 | 0.0007 | 0.02 | 0.1283 | 0.2634 | 0.0127 | 0.1659 | 0.0116 | 0.0425 | 0.0 | 0.0 | 0.0047 | 0.155 | 0.0529 | 0.1493 | 0.0 | 0.0 | 0.0146 | 0.1538 | 0.0175 | 0.1268 | 0.0231 | 0.1115 | | 7.6016 | 150.0 | 55500 | 9.8925 | 0.0308 | 0.0385 | 0.0351 | 0.0031 | 0.0082 | 0.0325 | 0.0815 | 0.0956 | 0.0994 | 0.0109 | 0.0529 | 0.1056 | 0.0 | 0.0 | 0.001 | 0.0183 | 0.1703 | 0.3293 | 0.0112 | 0.1488 | 0.005 | 0.0188 | 0.0 | 0.0 | 0.0089 | 0.1326 | 0.1088 | 0.2085 | 0.0 | 0.0 | 0.0055 | 0.1179 | 0.0067 | 0.0886 | 0.0527 | 0.1295 | | 7.5376 | 151.0 | 55870 | 9.9107 | 0.0317 | 0.0389 | 0.0369 | 0.0062 | 0.0041 | 0.033 | 0.0769 | 0.0891 | 0.0919 | 0.0188 | 0.0318 | 0.097 | 0.0 | 0.0 | 0.0001 | 0.0093 | 0.14 | 0.2976 | 0.0022 | 0.1098 | 0.0092 | 0.0387 | 0.0 | 0.0 | 0.0025 | 0.1114 | 0.1682 | 0.238 | 0.0 | 0.0 | 0.0162 | 0.1256 | 0.0022 | 0.0725 | 0.0394 | 0.1 | | 7.5746 | 152.0 | 56240 | 10.1031 | 0.0158 | 0.0195 | 0.0171 | 0.003 | 0.0046 | 0.0162 | 0.0415 | 0.0532 | 0.057 | 0.0078 | 0.0177 | 0.0575 | 0.0 | 0.0 | 0.0 | 0.0015 | 0.1089 | 0.222 | 0.0003 | 0.0244 | 0.0065 | 0.0296 | 0.0 | 0.0 | 0.0023 | 0.0815 | 0.049 | 0.1634 | 0.0 | 0.0 | 0.0013 | 0.0769 | 0.0033 | 0.0705 | 0.0178 | 0.0148 | | 7.5706 | 153.0 | 56610 | 9.9823 | 0.0192 | 0.0241 | 0.0205 | 0.0 | 0.0072 | 0.0199 | 0.0678 | 0.0859 | 0.0902 | 0.0 | 0.0529 | 0.0918 | 0.0 | 0.0 | 0.0002 | 0.0137 | 0.082 | 0.3268 | 0.0022 | 0.1244 | 0.0081 | 0.0407 | 0.0 | 0.0 | 0.0073 | 0.1419 | 0.0948 | 0.1845 | 0.0 | 0.0 | 0.0035 | 0.1038 | 0.0126 | 0.0765 | 0.0193 | 0.0705 | | 7.5482 | 154.0 | 56980 | 10.1225 | 0.0218 | 0.0269 | 0.0242 | 0.0003 | 0.0055 | 0.0221 | 0.0611 | 0.0743 | 0.0774 | 0.0031 | 0.0334 | 0.0782 | 0.0 | 0.0 | 0.0001 | 0.005 | 0.1102 | 0.2537 | 0.0029 | 0.1244 | 0.0136 | 0.049 | 0.0 | 0.0 | 0.0024 | 0.1013 | 0.0939 | 0.1972 | 0.0 | 0.0 | 0.0171 | 0.0718 | 0.0025 | 0.0718 | 0.0183 | 0.0541 | | 7.5073 | 155.0 | 57350 | 10.2640 | 0.0081 | 0.0122 | 0.0078 | 0.0 | 0.0079 | 0.008 | 0.0399 | 0.0515 | 0.0571 | 0.0 | 0.0394 | 0.0553 | 0.0 | 0.0 | 0.0005 | 0.0052 | 0.0243 | 0.1415 | 0.0047 | 0.078 | 0.0089 | 0.0301 | 0.0 | 0.0 | 0.0025 | 0.1 | 0.0167 | 0.1183 | 0.0 | 0.0 | 0.0196 | 0.0885 | 0.02 | 0.0987 | 0.0001 | 0.0246 | | 7.4813 | 156.0 | 57720 | 10.1810 | 0.0207 | 0.0243 | 0.0222 | 0.0 | 0.0033 | 0.0208 | 0.0537 | 0.0617 | 0.0644 | 0.0 | 0.0173 | 0.0692 | 0.0 | 0.0 | 0.0012 | 0.0083 | 0.0818 | 0.2366 | 0.0028 | 0.0829 | 0.0086 | 0.023 | 0.0 | 0.0 | 0.0011 | 0.047 | 0.1242 | 0.1887 | 0.0 | 0.0 | 0.022 | 0.0923 | 0.005 | 0.0651 | 0.0019 | 0.0295 | | 7.5065 | 157.0 | 58090 | 9.9655 | 0.0267 | 0.0363 | 0.0301 | 0.0069 | 0.0091 | 0.0282 | 0.0806 | 0.0991 | 0.1038 | 0.0203 | 0.0618 | 0.1059 | 0.0 | 0.0 | 0.0009 | 0.0117 | 0.1376 | 0.2439 | 0.0175 | 0.1854 | 0.0158 | 0.0563 | 0.0 | 0.0 | 0.0073 | 0.2084 | 0.071 | 0.2028 | 0.0 | 0.0 | 0.0279 | 0.15 | 0.0071 | 0.0872 | 0.0353 | 0.1 | | 7.5003 | 158.0 | 58460 | 10.0127 | 0.0181 | 0.0247 | 0.0182 | 0.0 | 0.0094 | 0.0186 | 0.0604 | 0.0763 | 0.0791 | 0.0 | 0.0693 | 0.0785 | 0.0 | 0.0 | 0.0004 | 0.0076 | 0.058 | 0.2634 | 0.0126 | 0.178 | 0.0147 | 0.0553 | 0.0 | 0.0 | 0.0046 | 0.144 | 0.0906 | 0.1211 | 0.0 | 0.0 | 0.0097 | 0.0423 | 0.0069 | 0.0852 | 0.0193 | 0.0525 | | 7.5034 | 159.0 | 58830 | 10.0596 | 0.0111 | 0.0166 | 0.0121 | 0.0062 | 0.0074 | 0.0144 | 0.0646 | 0.0766 | 0.0795 | 0.0203 | 0.0535 | 0.0823 | 0.0 | 0.0 | 0.0003 | 0.0085 | 0.0538 | 0.2268 | 0.0046 | 0.1512 | 0.0149 | 0.0502 | 0.0 | 0.0 | 0.0024 | 0.1097 | 0.0288 | 0.138 | 0.0 | 0.0 | 0.0112 | 0.0692 | 0.0079 | 0.0966 | 0.0088 | 0.1033 | | 7.4634 | 160.0 | 59200 | 9.9005 | 0.0135 | 0.0195 | 0.0145 | 0.0026 | 0.009 | 0.0143 | 0.0748 | 0.0915 | 0.0949 | 0.0094 | 0.0634 | 0.1004 | 0.0 | 0.0 | 0.0004 | 0.015 | 0.0616 | 0.2439 | 0.0048 | 0.1268 | 0.0112 | 0.0469 | 0.0 | 0.0 | 0.0111 | 0.2218 | 0.0447 | 0.1352 | 0.0 | 0.0 | 0.0081 | 0.0949 | 0.0076 | 0.1228 | 0.0119 | 0.1311 | | 7.437 | 161.0 | 59570 | 9.9430 | 0.0225 | 0.0306 | 0.0225 | 0.004 | 0.0155 | 0.0216 | 0.0787 | 0.0923 | 0.097 | 0.0094 | 0.0555 | 0.0971 | 0.0 | 0.0 | 0.0005 | 0.0139 | 0.0901 | 0.3 | 0.0138 | 0.1561 | 0.01 | 0.0267 | 0.0 | 0.0 | 0.0079 | 0.1443 | 0.0629 | 0.1451 | 0.0 | 0.0 | 0.0124 | 0.109 | 0.036 | 0.1725 | 0.0361 | 0.0967 | | 7.4665 | 162.0 | 59940 | 10.1301 | 0.0096 | 0.0145 | 0.0098 | 0.0007 | 0.0107 | 0.0092 | 0.0565 | 0.0712 | 0.0753 | 0.0031 | 0.0548 | 0.0762 | 0.0 | 0.0 | 0.0011 | 0.0072 | 0.0437 | 0.2366 | 0.0028 | 0.0951 | 0.0092 | 0.032 | 0.0 | 0.0 | 0.0047 | 0.1383 | 0.0318 | 0.1324 | 0.0 | 0.0 | 0.0016 | 0.0654 | 0.0172 | 0.1262 | 0.0032 | 0.0705 | | 7.4654 | 163.0 | 60310 | 10.2550 | 0.0096 | 0.014 | 0.0097 | 0.0 | 0.0062 | 0.0101 | 0.0444 | 0.0534 | 0.0554 | 0.0 | 0.0223 | 0.0599 | 0.0 | 0.0 | 0.0001 | 0.0028 | 0.0225 | 0.1244 | 0.008 | 0.078 | 0.0119 | 0.0259 | 0.0 | 0.0 | 0.006 | 0.1174 | 0.0251 | 0.0915 | 0.0 | 0.0 | 0.0012 | 0.0513 | 0.0034 | 0.0664 | 0.0373 | 0.1066 | | 7.4363 | 164.0 | 60680 | 9.9841 | 0.0101 | 0.0169 | 0.0089 | 0.0041 | 0.0121 | 0.0091 | 0.0608 | 0.0764 | 0.0821 | 0.0141 | 0.067 | 0.0831 | 0.0 | 0.0 | 0.0001 | 0.0046 | 0.0389 | 0.1902 | 0.0102 | 0.1512 | 0.0212 | 0.0706 | 0.0 | 0.0 | 0.0069 | 0.1946 | 0.0224 | 0.1155 | 0.0 | 0.0 | 0.0005 | 0.0436 | 0.0193 | 0.1315 | 0.0014 | 0.0836 | | 7.4068 | 165.0 | 61050 | 10.1945 | 0.0101 | 0.0166 | 0.0105 | 0.0009 | 0.0141 | 0.0113 | 0.0556 | 0.0721 | 0.0771 | 0.0063 | 0.058 | 0.0804 | 0.0 | 0.0 | 0.0003 | 0.0067 | 0.027 | 0.1805 | 0.0067 | 0.1463 | 0.0164 | 0.0517 | 0.0 | 0.0 | 0.0121 | 0.1517 | 0.0019 | 0.0732 | 0.0 | 0.0 | 0.0013 | 0.0462 | 0.02 | 0.1611 | 0.0359 | 0.1082 | | 7.4523 | 166.0 | 61420 | 10.2375 | 0.0092 | 0.0129 | 0.0102 | 0.0 | 0.0064 | 0.0114 | 0.051 | 0.0588 | 0.064 | 0.0 | 0.0363 | 0.0692 | 0.0 | 0.0 | 0.0003 | 0.0085 | 0.0235 | 0.1098 | 0.0014 | 0.0439 | 0.0077 | 0.0245 | 0.0 | 0.0 | 0.0066 | 0.1359 | 0.0469 | 0.1676 | 0.0 | 0.0 | 0.0024 | 0.0744 | 0.0126 | 0.0919 | 0.0095 | 0.1115 | | 7.4039 | 167.0 | 61790 | 10.1100 | 0.0168 | 0.0229 | 0.0181 | 0.0003 | 0.0102 | 0.0222 | 0.0792 | 0.0921 | 0.097 | 0.0047 | 0.0556 | 0.1051 | 0.0 | 0.0 | 0.0004 | 0.0163 | 0.0611 | 0.2707 | 0.0053 | 0.139 | 0.0176 | 0.0616 | 0.0 | 0.0 | 0.0056 | 0.1651 | 0.0446 | 0.1211 | 0.0 | 0.0 | 0.01 | 0.1321 | 0.0197 | 0.1174 | 0.0372 | 0.141 | | 7.4146 | 168.0 | 62160 | 10.1751 | 0.011 | 0.0149 | 0.0114 | 0.0 | 0.0099 | 0.0115 | 0.0435 | 0.0512 | 0.0547 | 0.0 | 0.0511 | 0.0579 | 0.0 | 0.0 | 0.0005 | 0.0087 | 0.031 | 0.0683 | 0.0065 | 0.0878 | 0.0105 | 0.0373 | 0.0 | 0.0 | 0.0044 | 0.1037 | 0.0225 | 0.0901 | 0.0 | 0.0 | 0.0148 | 0.0603 | 0.0147 | 0.0953 | 0.027 | 0.1049 | | 7.3879 | 169.0 | 62530 | 10.2162 | 0.0134 | 0.0182 | 0.0148 | 0.0002 | 0.0095 | 0.0148 | 0.0521 | 0.0628 | 0.0663 | 0.0016 | 0.0511 | 0.0687 | 0.0 | 0.0 | 0.0025 | 0.0087 | 0.0292 | 0.1537 | 0.0077 | 0.0878 | 0.0111 | 0.0334 | 0.0 | 0.0 | 0.0049 | 0.1383 | 0.0366 | 0.1239 | 0.0 | 0.0 | 0.015 | 0.0692 | 0.0224 | 0.1081 | 0.031 | 0.0721 | | 7.3507 | 170.0 | 62900 | 10.2186 | 0.0069 | 0.0107 | 0.0075 | 0.0008 | 0.0116 | 0.0095 | 0.0455 | 0.0552 | 0.0589 | 0.0047 | 0.0544 | 0.0629 | 0.0 | 0.0 | 0.0015 | 0.0074 | 0.013 | 0.1805 | 0.0025 | 0.0561 | 0.0093 | 0.0234 | 0.0 | 0.0 | 0.0079 | 0.1376 | 0.0087 | 0.0817 | 0.0 | 0.0 | 0.0009 | 0.0346 | 0.0326 | 0.1342 | 0.0064 | 0.0508 | | 7.3713 | 171.0 | 63270 | 10.2400 | 0.0155 | 0.0209 | 0.0153 | 0.0 | 0.0088 | 0.0168 | 0.0539 | 0.0643 | 0.0671 | 0.0 | 0.0345 | 0.0751 | 0.0 | 0.0 | 0.0012 | 0.0059 | 0.0743 | 0.1902 | 0.0083 | 0.1195 | 0.0107 | 0.0341 | 0.0 | 0.0 | 0.0064 | 0.1289 | 0.0668 | 0.1394 | 0.0 | 0.0 | 0.0004 | 0.041 | 0.0064 | 0.0966 | 0.0109 | 0.0492 | | 7.3215 | 172.0 | 63640 | 10.1583 | 0.0157 | 0.0209 | 0.0149 | 0.0014 | 0.0121 | 0.0163 | 0.0541 | 0.0636 | 0.0677 | 0.0109 | 0.047 | 0.0706 | 0.0 | 0.0 | 0.0021 | 0.0157 | 0.0509 | 0.1659 | 0.0067 | 0.0927 | 0.008 | 0.0334 | 0.0 | 0.0 | 0.0021 | 0.0866 | 0.086 | 0.1761 | 0.0 | 0.0 | 0.0019 | 0.0538 | 0.0187 | 0.1107 | 0.0118 | 0.077 | | 7.3363 | 173.0 | 64010 | 10.1397 | 0.0143 | 0.0205 | 0.016 | 0.0087 | 0.0106 | 0.0149 | 0.0633 | 0.0771 | 0.0829 | 0.0375 | 0.0448 | 0.0847 | 0.0 | 0.0 | 0.0003 | 0.0137 | 0.0418 | 0.2244 | 0.0038 | 0.0805 | 0.0156 | 0.0613 | 0.0 | 0.0 | 0.0082 | 0.1379 | 0.0556 | 0.2042 | 0.0 | 0.0 | 0.0109 | 0.0795 | 0.0148 | 0.1081 | 0.0204 | 0.0852 | | 7.3284 | 174.0 | 64380 | 10.0149 | 0.0167 | 0.0244 | 0.0185 | 0.0026 | 0.0113 | 0.0188 | 0.0654 | 0.0797 | 0.085 | 0.0094 | 0.036 | 0.0862 | 0.0 | 0.0 | 0.0004 | 0.0096 | 0.0442 | 0.2171 | 0.0086 | 0.0902 | 0.0113 | 0.0365 | 0.0 | 0.0 | 0.0052 | 0.1279 | 0.0611 | 0.162 | 0.0 | 0.0 | 0.0189 | 0.1154 | 0.0243 | 0.1349 | 0.0266 | 0.1262 | | 7.3254 | 175.0 | 64750 | 10.2989 | 0.0115 | 0.0156 | 0.0119 | 0.0012 | 0.0096 | 0.0135 | 0.0463 | 0.0595 | 0.0611 | 0.0047 | 0.0331 | 0.0642 | 0.0 | 0.0 | 0.0004 | 0.0063 | 0.0514 | 0.1707 | 0.0116 | 0.0976 | 0.0122 | 0.0349 | 0.0 | 0.0 | 0.0037 | 0.1081 | 0.0196 | 0.0986 | 0.0 | 0.0 | 0.0299 | 0.0987 | 0.0091 | 0.0826 | 0.0002 | 0.0361 | | 7.3155 | 176.0 | 65120 | 10.1255 | 0.0141 | 0.0197 | 0.015 | 0.0 | 0.0074 | 0.0165 | 0.0406 | 0.0518 | 0.0544 | 0.0 | 0.0318 | 0.0556 | 0.0 | 0.0 | 0.0001 | 0.0028 | 0.0382 | 0.1512 | 0.0031 | 0.0415 | 0.01 | 0.0292 | 0.0 | 0.0 | 0.0042 | 0.0805 | 0.0428 | 0.1042 | 0.0 | 0.0 | 0.033 | 0.0987 | 0.0173 | 0.0872 | 0.021 | 0.0574 | | 7.2633 | 177.0 | 65490 | 10.1467 | 0.0173 | 0.0248 | 0.0179 | 0.0 | 0.0123 | 0.0174 | 0.0625 | 0.0794 | 0.0839 | 0.0 | 0.0425 | 0.0895 | 0.0 | 0.0 | 0.0004 | 0.0167 | 0.0423 | 0.222 | 0.0207 | 0.1098 | 0.0119 | 0.0336 | 0.0 | 0.0 | 0.0034 | 0.1104 | 0.0683 | 0.1746 | 0.0 | 0.0 | 0.0127 | 0.1064 | 0.0396 | 0.1477 | 0.0089 | 0.0852 | | 7.2993 | 178.0 | 65860 | 10.0905 | 0.0089 | 0.0135 | 0.0088 | 0.0 | 0.0052 | 0.0107 | 0.0633 | 0.0771 | 0.0791 | 0.0 | 0.0265 | 0.0873 | 0.0 | 0.0 | 0.0009 | 0.0246 | 0.0217 | 0.2122 | 0.0274 | 0.1293 | 0.0103 | 0.0331 | 0.0 | 0.0 | 0.0042 | 0.1262 | 0.0156 | 0.1493 | 0.0 | 0.0 | 0.0024 | 0.1154 | 0.0028 | 0.0745 | 0.0213 | 0.0852 | | 7.2565 | 179.0 | 66230 | 10.1003 | 0.014 | 0.0176 | 0.0154 | 0.0 | 0.004 | 0.0159 | 0.0539 | 0.0659 | 0.069 | 0.0 | 0.0202 | 0.0764 | 0.0 | 0.0 | 0.0002 | 0.0096 | 0.0113 | 0.2049 | 0.0035 | 0.0293 | 0.0074 | 0.022 | 0.0 | 0.0 | 0.0039 | 0.1134 | 0.0786 | 0.1901 | 0.0 | 0.0 | 0.0215 | 0.0872 | 0.0129 | 0.0879 | 0.0284 | 0.0836 | | 7.2532 | 180.0 | 66600 | 10.1720 | 0.0157 | 0.0185 | 0.0174 | 0.0 | 0.0036 | 0.0168 | 0.0437 | 0.0479 | 0.0482 | 0.0 | 0.0242 | 0.0521 | 0.0 | 0.0 | 0.0001 | 0.0041 | 0.056 | 0.1683 | 0.0 | 0.0 | 0.0065 | 0.0147 | 0.0 | 0.0 | 0.0021 | 0.0688 | 0.1191 | 0.1746 | 0.0 | 0.0 | 0.0006 | 0.0385 | 0.0022 | 0.045 | 0.0015 | 0.0639 | | 7.2402 | 181.0 | 66970 | 10.3376 | 0.01 | 0.0125 | 0.0097 | 0.0 | 0.0108 | 0.0099 | 0.0301 | 0.0332 | 0.0335 | 0.0 | 0.0223 | 0.0368 | 0.0 | 0.0 | 0.0 | 0.0 | 0.01 | 0.0927 | 0.0034 | 0.0244 | 0.0046 | 0.0111 | 0.0 | 0.0 | 0.0067 | 0.0584 | 0.073 | 0.1197 | 0.0 | 0.0 | 0.0212 | 0.0487 | 0.0008 | 0.0242 | 0.0008 | 0.023 | | 7.259 | 182.0 | 67340 | 10.4757 | 0.0052 | 0.0067 | 0.005 | 0.0 | 0.0044 | 0.0053 | 0.0192 | 0.0206 | 0.0211 | 0.0 | 0.0173 | 0.0203 | 0.0 | 0.0 | 0.0003 | 0.0017 | 0.0012 | 0.039 | 0.0018 | 0.0073 | 0.0075 | 0.0205 | 0.0 | 0.0 | 0.0007 | 0.0225 | 0.0321 | 0.0958 | 0.0 | 0.0 | 0.0004 | 0.0346 | 0.0001 | 0.0054 | 0.0179 | 0.0262 | | 7.2137 | 183.0 | 67710 | 10.3853 | 0.0087 | 0.0117 | 0.0083 | 0.005 | 0.0046 | 0.0097 | 0.0335 | 0.0392 | 0.0398 | 0.0078 | 0.0271 | 0.0432 | 0.0 | 0.0 | 0.0009 | 0.0052 | 0.0023 | 0.0537 | 0.0087 | 0.0512 | 0.0084 | 0.0208 | 0.0 | 0.0 | 0.004 | 0.094 | 0.0538 | 0.1394 | 0.0 | 0.0 | 0.0221 | 0.0487 | 0.0024 | 0.0268 | 0.0017 | 0.0377 | | 7.2428 | 184.0 | 68080 | 10.3730 | 0.0105 | 0.0139 | 0.0102 | 0.004 | 0.0072 | 0.0116 | 0.0416 | 0.05 | 0.0507 | 0.0078 | 0.03 | 0.0509 | 0.0 | 0.0 | 0.0001 | 0.0037 | 0.0254 | 0.1585 | 0.0019 | 0.0341 | 0.0115 | 0.0316 | 0.0 | 0.0 | 0.0034 | 0.0523 | 0.0408 | 0.1634 | 0.0 | 0.0 | 0.0207 | 0.0782 | 0.0042 | 0.0631 | 0.0179 | 0.023 | | 7.2323 | 185.0 | 68450 | 10.3451 | 0.0133 | 0.0181 | 0.0139 | 0.0008 | 0.0067 | 0.0136 | 0.046 | 0.055 | 0.0575 | 0.0078 | 0.0355 | 0.0582 | 0.0 | 0.0 | 0.002 | 0.0115 | 0.0369 | 0.2 | 0.0101 | 0.0951 | 0.0098 | 0.0283 | 0.0 | 0.0 | 0.0081 | 0.0849 | 0.0368 | 0.0831 | 0.0 | 0.0 | 0.0117 | 0.0705 | 0.0075 | 0.0752 | 0.0373 | 0.041 | | 7.2259 | 186.0 | 68820 | 10.2672 | 0.0182 | 0.0233 | 0.0193 | 0.0 | 0.0062 | 0.0231 | 0.0616 | 0.0722 | 0.0739 | 0.0 | 0.0351 | 0.0759 | 0.0 | 0.0 | 0.0033 | 0.02 | 0.046 | 0.2049 | 0.0256 | 0.0829 | 0.0075 | 0.0232 | 0.0 | 0.0 | 0.0128 | 0.1245 | 0.0864 | 0.1746 | 0.0 | 0.0 | 0.0277 | 0.1526 | 0.0007 | 0.0121 | 0.0083 | 0.0918 | | 7.2186 | 187.0 | 69190 | 10.3717 | 0.0124 | 0.0165 | 0.0123 | 0.0 | 0.0113 | 0.0125 | 0.0412 | 0.0485 | 0.0502 | 0.0 | 0.0478 | 0.0488 | 0.0 | 0.0 | 0.0011 | 0.0043 | 0.0018 | 0.0683 | 0.0055 | 0.0659 | 0.0142 | 0.0373 | 0.0 | 0.0 | 0.0051 | 0.0919 | 0.0698 | 0.1577 | 0.0 | 0.0 | 0.0372 | 0.0692 | 0.0043 | 0.0638 | 0.0094 | 0.0443 | | 7.1693 | 188.0 | 69560 | 10.2327 | 0.0116 | 0.0159 | 0.0112 | 0.0 | 0.0112 | 0.0135 | 0.0565 | 0.0665 | 0.0684 | 0.0 | 0.0275 | 0.0734 | 0.0 | 0.0 | 0.0005 | 0.012 | 0.0166 | 0.1707 | 0.002 | 0.0439 | 0.0075 | 0.0234 | 0.0 | 0.0 | 0.0029 | 0.0977 | 0.058 | 0.1606 | 0.0 | 0.0 | 0.0021 | 0.109 | 0.0193 | 0.0973 | 0.0297 | 0.1066 | | 7.1785 | 189.0 | 69930 | 10.2201 | 0.0146 | 0.0188 | 0.015 | 0.0 | 0.011 | 0.0158 | 0.0512 | 0.0616 | 0.0631 | 0.0 | 0.0379 | 0.0675 | 0.0 | 0.0 | 0.0061 | 0.0115 | 0.0154 | 0.1415 | 0.0065 | 0.1049 | 0.0102 | 0.036 | 0.0 | 0.0 | 0.0056 | 0.0973 | 0.0873 | 0.1887 | 0.0 | 0.0 | 0.011 | 0.0449 | 0.0123 | 0.0671 | 0.0206 | 0.0656 | | 7.154 | 190.0 | 70300 | 10.2102 | 0.0133 | 0.0174 | 0.0144 | 0.0019 | 0.0173 | 0.0134 | 0.0526 | 0.0647 | 0.0691 | 0.0078 | 0.0437 | 0.0684 | 0.0 | 0.0 | 0.0024 | 0.0187 | 0.0338 | 0.1854 | 0.0014 | 0.0561 | 0.0095 | 0.0498 | 0.0 | 0.0 | 0.0128 | 0.1054 | 0.0493 | 0.1817 | 0.0 | 0.0 | 0.0049 | 0.0795 | 0.0156 | 0.1067 | 0.03 | 0.0459 | | 7.1791 | 191.0 | 70670 | 10.1550 | 0.0107 | 0.0137 | 0.0108 | 0.0 | 0.0101 | 0.0119 | 0.0617 | 0.0727 | 0.0753 | 0.0 | 0.0443 | 0.0776 | 0.0 | 0.0 | 0.0005 | 0.0107 | 0.0253 | 0.2341 | 0.0024 | 0.0927 | 0.0089 | 0.04 | 0.0 | 0.0 | 0.0079 | 0.1037 | 0.0374 | 0.1972 | 0.0 | 0.0 | 0.0112 | 0.0859 | 0.0042 | 0.0852 | 0.0304 | 0.0541 | | 7.1297 | 192.0 | 71040 | 10.1002 | 0.012 | 0.017 | 0.0116 | 0.0 | 0.0054 | 0.0121 | 0.059 | 0.0692 | 0.0705 | 0.0 | 0.0297 | 0.0749 | 0.0 | 0.0 | 0.0004 | 0.0052 | 0.0468 | 0.2171 | 0.003 | 0.0683 | 0.0099 | 0.0468 | 0.0 | 0.0 | 0.0055 | 0.155 | 0.0457 | 0.1873 | 0.0 | 0.0 | 0.0115 | 0.1038 | 0.001 | 0.0383 | 0.02 | 0.0246 | | 7.1117 | 193.0 | 71410 | 10.1511 | 0.0153 | 0.0198 | 0.0162 | 0.001 | 0.0145 | 0.0165 | 0.064 | 0.0744 | 0.0781 | 0.0063 | 0.0478 | 0.0801 | 0.0 | 0.0 | 0.0002 | 0.0093 | 0.0212 | 0.2415 | 0.0027 | 0.061 | 0.0074 | 0.0308 | 0.0 | 0.0 | 0.0062 | 0.1332 | 0.0733 | 0.2183 | 0.0 | 0.0 | 0.0175 | 0.0987 | 0.0255 | 0.102 | 0.03 | 0.0426 | | 7.1262 | 194.0 | 71780 | 10.3156 | 0.0132 | 0.0161 | 0.0134 | 0.0079 | 0.0053 | 0.0154 | 0.0534 | 0.0621 | 0.0644 | 0.0078 | 0.0297 | 0.0675 | 0.0 | 0.0 | 0.001 | 0.0109 | 0.0373 | 0.1707 | 0.002 | 0.0585 | 0.0084 | 0.027 | 0.0 | 0.0 | 0.0063 | 0.1158 | 0.0521 | 0.1676 | 0.0 | 0.0 | 0.034 | 0.1128 | 0.0139 | 0.0617 | 0.0038 | 0.0475 | | 7.1233 | 195.0 | 72150 | 10.3446 | 0.0134 | 0.0177 | 0.0139 | 0.0016 | 0.0059 | 0.0139 | 0.0401 | 0.0478 | 0.0491 | 0.0063 | 0.0274 | 0.0514 | 0.0 | 0.0 | 0.0003 | 0.008 | 0.0312 | 0.1244 | 0.0031 | 0.0902 | 0.0133 | 0.0381 | 0.0 | 0.0 | 0.0049 | 0.0732 | 0.072 | 0.1366 | 0.0 | 0.0 | 0.0142 | 0.0218 | 0.0027 | 0.0463 | 0.0195 | 0.0508 | | 7.0967 | 196.0 | 72520 | 10.3249 | 0.0146 | 0.0193 | 0.0157 | 0.0 | 0.0099 | 0.0154 | 0.0456 | 0.0532 | 0.0541 | 0.0 | 0.0345 | 0.0545 | 0.0 | 0.0 | 0.0003 | 0.0078 | 0.0583 | 0.1707 | 0.0013 | 0.039 | 0.0143 | 0.0293 | 0.0 | 0.0 | 0.0056 | 0.0547 | 0.0673 | 0.1831 | 0.0 | 0.0 | 0.0236 | 0.0833 | 0.0023 | 0.0416 | 0.0023 | 0.0393 | | 7.0633 | 197.0 | 72890 | 10.2207 | 0.0135 | 0.0185 | 0.0146 | 0.0033 | 0.0127 | 0.014 | 0.0543 | 0.0641 | 0.0668 | 0.0078 | 0.0472 | 0.0677 | 0.0 | 0.0 | 0.0002 | 0.0109 | 0.0501 | 0.1707 | 0.0029 | 0.0756 | 0.0109 | 0.0395 | 0.0 | 0.0 | 0.0057 | 0.0735 | 0.0596 | 0.1958 | 0.0 | 0.0 | 0.0192 | 0.1038 | 0.0129 | 0.0758 | 0.0012 | 0.0557 | | 7.0636 | 198.0 | 73260 | 10.2263 | 0.0167 | 0.0227 | 0.0165 | 0.0 | 0.0107 | 0.0207 | 0.0612 | 0.0723 | 0.0767 | 0.0 | 0.0348 | 0.0777 | 0.0 | 0.0 | 0.0004 | 0.0211 | 0.036 | 0.2415 | 0.0021 | 0.061 | 0.0097 | 0.0305 | 0.0 | 0.0 | 0.0038 | 0.0849 | 0.0954 | 0.238 | 0.0 | 0.0 | 0.0239 | 0.109 | 0.0251 | 0.0738 | 0.0038 | 0.0607 | | 7.0957 | 199.0 | 73630 | 10.2163 | 0.0139 | 0.0184 | 0.0143 | 0.0 | 0.0108 | 0.0163 | 0.0601 | 0.0701 | 0.0721 | 0.0 | 0.0308 | 0.0734 | 0.0 | 0.0 | 0.0001 | 0.0061 | 0.0413 | 0.2073 | 0.0099 | 0.1024 | 0.0079 | 0.0252 | 0.0 | 0.0 | 0.0069 | 0.0826 | 0.0861 | 0.1915 | 0.0 | 0.0 | 0.0077 | 0.1141 | 0.003 | 0.0671 | 0.0041 | 0.0689 | | 7.0582 | 200.0 | 74000 | 10.2079 | 0.0133 | 0.0169 | 0.0149 | 0.0 | 0.0111 | 0.0131 | 0.0478 | 0.0567 | 0.0584 | 0.0 | 0.0351 | 0.0615 | 0.0 | 0.0 | 0.0002 | 0.0096 | 0.0316 | 0.1585 | 0.0029 | 0.0561 | 0.0129 | 0.0239 | 0.0 | 0.0 | 0.009 | 0.0977 | 0.0607 | 0.162 | 0.0 | 0.0 | 0.0198 | 0.0705 | 0.0038 | 0.0718 | 0.0183 | 0.0508 | | 7.0663 | 201.0 | 74370 | 10.2930 | 0.0138 | 0.0185 | 0.0149 | 0.0022 | 0.0085 | 0.0153 | 0.04 | 0.047 | 0.0482 | 0.0078 | 0.0334 | 0.0483 | 0.0 | 0.0 | 0.0001 | 0.007 | 0.0919 | 0.1634 | 0.0027 | 0.0756 | 0.0179 | 0.0354 | 0.0 | 0.0 | 0.0032 | 0.0557 | 0.0065 | 0.093 | 0.0 | 0.0 | 0.0324 | 0.0551 | 0.0046 | 0.049 | 0.0064 | 0.0443 | | 7.0779 | 202.0 | 74740 | 10.0937 | 0.0117 | 0.0155 | 0.0126 | 0.0031 | 0.0155 | 0.0119 | 0.0585 | 0.0674 | 0.0694 | 0.0078 | 0.0476 | 0.0706 | 0.0 | 0.0 | 0.0005 | 0.0167 | 0.0168 | 0.161 | 0.0166 | 0.1317 | 0.0138 | 0.0304 | 0.0 | 0.0 | 0.0112 | 0.1164 | 0.0543 | 0.1803 | 0.0 | 0.0 | 0.0027 | 0.0346 | 0.0041 | 0.0671 | 0.0204 | 0.0951 | | 7.04 | 203.0 | 75110 | 10.2583 | 0.0106 | 0.0148 | 0.0117 | 0.0012 | 0.0083 | 0.0146 | 0.0421 | 0.0499 | 0.0521 | 0.0078 | 0.0461 | 0.0517 | 0.0 | 0.0 | 0.0002 | 0.0067 | 0.0438 | 0.1098 | 0.0142 | 0.0829 | 0.0102 | 0.0274 | 0.0 | 0.0 | 0.0042 | 0.052 | 0.039 | 0.1366 | 0.0 | 0.0 | 0.0022 | 0.0487 | 0.0127 | 0.0973 | 0.001 | 0.0639 | | 7.0214 | 204.0 | 75480 | 10.1290 | 0.0099 | 0.0126 | 0.0098 | 0.0 | 0.011 | 0.0112 | 0.0597 | 0.0682 | 0.0689 | 0.0 | 0.0435 | 0.0726 | 0.0 | 0.0 | 0.0025 | 0.015 | 0.019 | 0.1927 | 0.0055 | 0.0927 | 0.0158 | 0.0417 | 0.0 | 0.0 | 0.0079 | 0.0933 | 0.0532 | 0.1577 | 0.0 | 0.0 | 0.0022 | 0.0885 | 0.0028 | 0.0711 | 0.0102 | 0.0738 | | 6.9998 | 205.0 | 75850 | 10.1307 | 0.014 | 0.0182 | 0.0145 | 0.0 | 0.0078 | 0.0154 | 0.0477 | 0.0573 | 0.0601 | 0.0 | 0.0475 | 0.0602 | 0.0 | 0.0 | 0.0006 | 0.017 | 0.0751 | 0.1829 | 0.0012 | 0.0463 | 0.0093 | 0.0234 | 0.0 | 0.0 | 0.0063 | 0.0926 | 0.0413 | 0.1437 | 0.0 | 0.0 | 0.0113 | 0.0436 | 0.012 | 0.1047 | 0.0106 | 0.0672 | | 7.0055 | 206.0 | 76220 | 10.0794 | 0.0135 | 0.0177 | 0.0148 | 0.0 | 0.0073 | 0.0148 | 0.0583 | 0.0666 | 0.0672 | 0.0 | 0.0415 | 0.0714 | 0.0 | 0.0 | 0.001 | 0.0263 | 0.0715 | 0.1585 | 0.0045 | 0.1024 | 0.0055 | 0.0146 | 0.0 | 0.0 | 0.0042 | 0.0876 | 0.0451 | 0.1873 | 0.0 | 0.0 | 0.0076 | 0.0885 | 0.0034 | 0.0738 | 0.0195 | 0.0672 | | 7.0442 | 207.0 | 76590 | 10.2912 | 0.0137 | 0.0166 | 0.0145 | 0.0 | 0.0082 | 0.0162 | 0.0439 | 0.0517 | 0.0532 | 0.0 | 0.0268 | 0.0545 | 0.0 | 0.0 | 0.0003 | 0.012 | 0.0476 | 0.1366 | 0.0011 | 0.0463 | 0.009 | 0.0154 | 0.0 | 0.0 | 0.0011 | 0.0406 | 0.0637 | 0.1732 | 0.0 | 0.0 | 0.0236 | 0.0641 | 0.0066 | 0.0779 | 0.0114 | 0.0721 | | 7.0032 | 208.0 | 76960 | 10.4665 | 0.0105 | 0.0143 | 0.0115 | 0.0 | 0.0066 | 0.0124 | 0.0305 | 0.0381 | 0.0395 | 0.0 | 0.0233 | 0.0406 | 0.0 | 0.0 | 0.0022 | 0.0085 | 0.0248 | 0.1146 | 0.0003 | 0.0146 | 0.006 | 0.0226 | 0.0 | 0.0 | 0.0014 | 0.0289 | 0.0519 | 0.1324 | 0.0 | 0.0 | 0.0239 | 0.0474 | 0.0149 | 0.0819 | 0.0002 | 0.023 | | 7.0003 | 209.0 | 77330 | 10.4519 | 0.0107 | 0.0133 | 0.0108 | 0.0 | 0.009 | 0.0101 | 0.0375 | 0.0438 | 0.0459 | 0.0 | 0.031 | 0.0454 | 0.0 | 0.0 | 0.0002 | 0.0096 | 0.017 | 0.0854 | 0.0012 | 0.0463 | 0.0079 | 0.0224 | 0.0 | 0.0 | 0.0044 | 0.0503 | 0.0532 | 0.1141 | 0.0 | 0.0 | 0.0201 | 0.1064 | 0.0218 | 0.0732 | 0.0021 | 0.0426 | | 7.0081 | 210.0 | 77700 | 10.4641 | 0.0115 | 0.0151 | 0.0132 | 0.0 | 0.0074 | 0.0113 | 0.0364 | 0.0409 | 0.0431 | 0.0 | 0.0208 | 0.0439 | 0.0 | 0.0 | 0.0027 | 0.007 | 0.0692 | 0.1341 | 0.0039 | 0.0512 | 0.0085 | 0.0275 | 0.0 | 0.0 | 0.0006 | 0.0248 | 0.0077 | 0.1056 | 0.0 | 0.0 | 0.0306 | 0.0577 | 0.0138 | 0.0557 | 0.0015 | 0.0541 | | 6.9826 | 211.0 | 78070 | 10.3289 | 0.0126 | 0.0168 | 0.0145 | 0.0 | 0.0051 | 0.0136 | 0.0445 | 0.0505 | 0.0514 | 0.0 | 0.0359 | 0.0538 | 0.0 | 0.0 | 0.0004 | 0.012 | 0.047 | 0.1073 | 0.0096 | 0.122 | 0.0083 | 0.0309 | 0.0 | 0.0 | 0.0021 | 0.0681 | 0.0305 | 0.0845 | 0.0 | 0.0 | 0.0222 | 0.0705 | 0.0015 | 0.0396 | 0.0301 | 0.082 | | 6.9602 | 212.0 | 78440 | 10.2845 | 0.0147 | 0.0203 | 0.0159 | 0.0195 | 0.0105 | 0.0151 | 0.0507 | 0.061 | 0.0643 | 0.0281 | 0.0492 | 0.0624 | 0.0 | 0.0 | 0.0002 | 0.0107 | 0.0797 | 0.1805 | 0.0008 | 0.0366 | 0.0102 | 0.0443 | 0.0 | 0.0 | 0.0032 | 0.0916 | 0.0465 | 0.1451 | 0.0 | 0.0 | 0.0176 | 0.0821 | 0.0035 | 0.0805 | 0.0146 | 0.1 | | 6.928 | 213.0 | 78810 | 10.1442 | 0.0091 | 0.0144 | 0.0081 | 0.0167 | 0.0125 | 0.0093 | 0.0606 | 0.0742 | 0.0774 | 0.0391 | 0.0522 | 0.0777 | 0.0 | 0.0 | 0.0003 | 0.017 | 0.0146 | 0.161 | 0.0029 | 0.0854 | 0.0118 | 0.0549 | 0.0 | 0.0 | 0.0031 | 0.1188 | 0.0463 | 0.1944 | 0.0 | 0.0 | 0.0006 | 0.0526 | 0.0064 | 0.1121 | 0.0237 | 0.1328 | | 6.9479 | 214.0 | 79180 | 10.1258 | 0.0156 | 0.021 | 0.0177 | 0.0062 | 0.019 | 0.0163 | 0.0583 | 0.0707 | 0.0736 | 0.0156 | 0.058 | 0.0729 | 0.0 | 0.0 | 0.0002 | 0.0128 | 0.048 | 0.1805 | 0.0017 | 0.0512 | 0.011 | 0.0431 | 0.0 | 0.0 | 0.0047 | 0.1319 | 0.0681 | 0.169 | 0.0 | 0.0 | 0.0004 | 0.0372 | 0.0115 | 0.1302 | 0.0415 | 0.1279 | | 6.9688 | 215.0 | 79550 | 10.3076 | 0.0098 | 0.015 | 0.0094 | 0.0056 | 0.0117 | 0.0096 | 0.0405 | 0.0514 | 0.055 | 0.0125 | 0.0398 | 0.0568 | 0.0 | 0.0 | 0.0008 | 0.0083 | 0.0272 | 0.0878 | 0.005 | 0.0976 | 0.0055 | 0.0219 | 0.0 | 0.0 | 0.0023 | 0.0631 | 0.0297 | 0.1169 | 0.0 | 0.0 | 0.0004 | 0.0256 | 0.0263 | 0.1255 | 0.02 | 0.1131 | | 6.9299 | 216.0 | 79920 | 10.2180 | 0.0101 | 0.0152 | 0.0089 | 0.0 | 0.0085 | 0.0108 | 0.0499 | 0.0613 | 0.0638 | 0.0 | 0.0434 | 0.0665 | 0.0 | 0.0 | 0.0038 | 0.0159 | 0.0314 | 0.1488 | 0.0021 | 0.0659 | 0.0093 | 0.0323 | 0.0 | 0.0 | 0.006 | 0.1107 | 0.0342 | 0.1479 | 0.0 | 0.0 | 0.0009 | 0.0385 | 0.0043 | 0.0826 | 0.0292 | 0.123 | | 6.9591 | 217.0 | 80290 | 10.3340 | 0.0084 | 0.0126 | 0.0097 | 0.0 | 0.0124 | 0.0091 | 0.0385 | 0.0479 | 0.0506 | 0.0 | 0.0447 | 0.049 | 0.0 | 0.0 | 0.0001 | 0.0046 | 0.0157 | 0.1098 | 0.0048 | 0.0829 | 0.0071 | 0.0232 | 0.0 | 0.0 | 0.0062 | 0.0893 | 0.0264 | 0.0732 | 0.0 | 0.0 | 0.0029 | 0.0372 | 0.0092 | 0.0966 | 0.0287 | 0.0902 | | 6.9371 | 218.0 | 80660 | 10.2716 | 0.0082 | 0.0119 | 0.009 | 0.0 | 0.0111 | 0.0092 | 0.0445 | 0.0545 | 0.0565 | 0.0 | 0.0442 | 0.0546 | 0.0 | 0.0 | 0.0001 | 0.0059 | 0.0031 | 0.0829 | 0.0017 | 0.0439 | 0.0046 | 0.0179 | 0.0 | 0.0 | 0.0056 | 0.0946 | 0.0287 | 0.1028 | 0.0 | 0.0 | 0.0017 | 0.059 | 0.0104 | 0.102 | 0.0426 | 0.1689 | | 6.893 | 219.0 | 81030 | 10.2130 | 0.0104 | 0.0154 | 0.0101 | 0.0 | 0.0169 | 0.0122 | 0.0473 | 0.0665 | 0.0681 | 0.0 | 0.0611 | 0.0671 | 0.0 | 0.0 | 0.0002 | 0.008 | 0.0088 | 0.0854 | 0.0065 | 0.1171 | 0.0073 | 0.0292 | 0.0 | 0.0 | 0.0066 | 0.1322 | 0.0257 | 0.0873 | 0.0 | 0.0 | 0.0193 | 0.05 | 0.0122 | 0.1329 | 0.0389 | 0.1754 | | 6.8602 | 220.0 | 81400 | 10.2488 | 0.0202 | 0.0278 | 0.0198 | 0.0013 | 0.015 | 0.0198 | 0.0534 | 0.066 | 0.0707 | 0.0094 | 0.0694 | 0.0667 | 0.0 | 0.0 | 0.0009 | 0.0078 | 0.0493 | 0.122 | 0.0125 | 0.0951 | 0.0104 | 0.0424 | 0.0 | 0.0 | 0.0027 | 0.101 | 0.081 | 0.138 | 0.0 | 0.0 | 0.0113 | 0.0372 | 0.0207 | 0.1356 | 0.0537 | 0.1689 | | 6.8782 | 221.0 | 81770 | 10.2684 | 0.0176 | 0.0241 | 0.0207 | 0.0 | 0.015 | 0.0197 | 0.0533 | 0.0647 | 0.0668 | 0.0 | 0.0589 | 0.064 | 0.0 | 0.0 | 0.0 | 0.0033 | 0.066 | 0.1488 | 0.0173 | 0.1171 | 0.0116 | 0.0318 | 0.0 | 0.0 | 0.0056 | 0.0983 | 0.043 | 0.1113 | 0.0 | 0.0 | 0.0145 | 0.05 | 0.0099 | 0.1007 | 0.043 | 0.141 | | 6.9082 | 222.0 | 82140 | 10.3602 | 0.0061 | 0.0089 | 0.0058 | 0.0 | 0.0133 | 0.0074 | 0.0407 | 0.0511 | 0.0538 | 0.0 | 0.0442 | 0.0527 | 0.0 | 0.0 | 0.0004 | 0.0067 | 0.0054 | 0.0976 | 0.0026 | 0.0732 | 0.0094 | 0.0271 | 0.0 | 0.0 | 0.0024 | 0.0732 | 0.0147 | 0.0915 | 0.0 | 0.0 | 0.0211 | 0.0385 | 0.0145 | 0.1195 | 0.003 | 0.118 | | 6.8873 | 223.0 | 82510 | 10.4017 | 0.0154 | 0.0192 | 0.0168 | 0.0 | 0.0056 | 0.0182 | 0.0465 | 0.0537 | 0.0547 | 0.0 | 0.0437 | 0.0544 | 0.0 | 0.0 | 0.0002 | 0.008 | 0.0544 | 0.1634 | 0.0039 | 0.0659 | 0.0092 | 0.0228 | 0.0 | 0.0 | 0.0038 | 0.0681 | 0.059 | 0.131 | 0.0 | 0.0 | 0.0265 | 0.0513 | 0.0055 | 0.0671 | 0.0222 | 0.0787 | | 6.8612 | 224.0 | 82880 | 10.3005 | 0.0159 | 0.0198 | 0.0165 | 0.0 | 0.0118 | 0.0174 | 0.0552 | 0.0651 | 0.0685 | 0.0 | 0.0478 | 0.0702 | 0.0 | 0.0 | 0.0003 | 0.0102 | 0.0466 | 0.1634 | 0.0035 | 0.0634 | 0.0105 | 0.0338 | 0.0 | 0.0 | 0.0045 | 0.105 | 0.0637 | 0.1366 | 0.0 | 0.0 | 0.0319 | 0.0859 | 0.0088 | 0.1403 | 0.0208 | 0.0836 | | 6.8602 | 225.0 | 83250 | 10.2237 | 0.0165 | 0.0221 | 0.0177 | 0.0 | 0.0104 | 0.0185 | 0.0575 | 0.0673 | 0.0708 | 0.0 | 0.0511 | 0.0714 | 0.0 | 0.0 | 0.0003 | 0.015 | 0.0279 | 0.1756 | 0.0059 | 0.0805 | 0.0105 | 0.0395 | 0.0 | 0.0 | 0.0045 | 0.1101 | 0.0617 | 0.1521 | 0.0 | 0.0 | 0.0355 | 0.059 | 0.0075 | 0.0966 | 0.0446 | 0.1213 | | 6.8336 | 226.0 | 83620 | 10.3177 | 0.0167 | 0.0216 | 0.0172 | 0.0 | 0.01 | 0.0173 | 0.0537 | 0.062 | 0.0654 | 0.0 | 0.0443 | 0.0666 | 0.0 | 0.0 | 0.0002 | 0.0107 | 0.0437 | 0.1171 | 0.0028 | 0.0585 | 0.0109 | 0.0297 | 0.0 | 0.0 | 0.0045 | 0.0705 | 0.053 | 0.1451 | 0.0 | 0.0 | 0.0346 | 0.0769 | 0.009 | 0.1195 | 0.0419 | 0.1574 | | 6.863 | 227.0 | 83990 | 10.2647 | 0.0209 | 0.0265 | 0.0239 | 0.0 | 0.0075 | 0.0229 | 0.0561 | 0.0617 | 0.0634 | 0.0 | 0.0427 | 0.0643 | 0.0 | 0.0 | 0.0002 | 0.0098 | 0.0546 | 0.1634 | 0.0037 | 0.0707 | 0.009 | 0.0267 | 0.0 | 0.0 | 0.0047 | 0.0852 | 0.0742 | 0.1225 | 0.0 | 0.0 | 0.0186 | 0.0679 | 0.0046 | 0.055 | 0.0809 | 0.159 | | 6.8419 | 228.0 | 84360 | 10.2957 | 0.0193 | 0.0265 | 0.0217 | 0.0077 | 0.015 | 0.0192 | 0.048 | 0.0574 | 0.0594 | 0.0172 | 0.0473 | 0.0596 | 0.0 | 0.0 | 0.0001 | 0.0078 | 0.0428 | 0.1024 | 0.0053 | 0.0683 | 0.0127 | 0.044 | 0.0 | 0.0 | 0.0034 | 0.0836 | 0.0647 | 0.1197 | 0.0 | 0.0 | 0.0347 | 0.0474 | 0.0104 | 0.1 | 0.0576 | 0.1393 | | 6.8692 | 229.0 | 84730 | 10.3775 | 0.0111 | 0.0158 | 0.0112 | 0.0043 | 0.0064 | 0.0136 | 0.0426 | 0.049 | 0.0501 | 0.0172 | 0.0395 | 0.0532 | 0.0 | 0.0 | 0.0 | 0.0033 | 0.0421 | 0.1244 | 0.0017 | 0.0439 | 0.0105 | 0.0263 | 0.0 | 0.0 | 0.0019 | 0.0587 | 0.0239 | 0.0859 | 0.0 | 0.0 | 0.031 | 0.0474 | 0.008 | 0.0913 | 0.0141 | 0.1197 | | 6.8411 | 230.0 | 85100 | 10.2458 | 0.0162 | 0.0205 | 0.0163 | 0.002 | 0.0078 | 0.0171 | 0.0492 | 0.0562 | 0.0572 | 0.0078 | 0.0336 | 0.0588 | 0.0 | 0.0 | 0.0 | 0.0048 | 0.0549 | 0.1683 | 0.0004 | 0.0171 | 0.0094 | 0.0242 | 0.0 | 0.0 | 0.0019 | 0.057 | 0.0763 | 0.1437 | 0.0 | 0.0 | 0.0316 | 0.0603 | 0.0053 | 0.0819 | 0.0141 | 0.1295 | | 6.7823 | 231.0 | 85470 | 10.1545 | 0.0177 | 0.0242 | 0.0179 | 0.0009 | 0.0109 | 0.021 | 0.0687 | 0.0824 | 0.0844 | 0.0094 | 0.0452 | 0.0863 | 0.0 | 0.0 | 0.0006 | 0.0198 | 0.0689 | 0.2341 | 0.006 | 0.0927 | 0.0117 | 0.0391 | 0.0 | 0.0 | 0.0065 | 0.1117 | 0.0459 | 0.1465 | 0.0 | 0.0 | 0.0326 | 0.0987 | 0.006 | 0.1094 | 0.0338 | 0.1607 | | 6.8297 | 232.0 | 85840 | 10.2122 | 0.0207 | 0.0287 | 0.021 | 0.0059 | 0.0064 | 0.0225 | 0.0632 | 0.0728 | 0.0738 | 0.0094 | 0.0404 | 0.0783 | 0.0 | 0.0 | 0.001 | 0.0167 | 0.0838 | 0.2122 | 0.0026 | 0.0585 | 0.0093 | 0.0231 | 0.0 | 0.0 | 0.0108 | 0.0812 | 0.056 | 0.1634 | 0.0 | 0.0 | 0.0158 | 0.0667 | 0.0041 | 0.0772 | 0.0647 | 0.1869 | | 6.7806 | 233.0 | 86210 | 10.2826 | 0.0214 | 0.0272 | 0.0233 | 0.0 | 0.0057 | 0.0229 | 0.0639 | 0.0734 | 0.0747 | 0.0 | 0.0427 | 0.0794 | 0.0 | 0.0 | 0.0005 | 0.012 | 0.0552 | 0.2122 | 0.0004 | 0.0244 | 0.0103 | 0.0231 | 0.0 | 0.0 | 0.0116 | 0.0849 | 0.0708 | 0.1676 | 0.0 | 0.0 | 0.0391 | 0.0936 | 0.0049 | 0.0919 | 0.0643 | 0.1869 | | 6.7747 | 234.0 | 86580 | 10.3975 | 0.0146 | 0.0191 | 0.0154 | 0.0 | 0.0024 | 0.0179 | 0.0395 | 0.047 | 0.0472 | 0.0 | 0.0276 | 0.0486 | 0.0 | 0.0 | 0.0001 | 0.0039 | 0.0245 | 0.1024 | 0.0054 | 0.0683 | 0.0076 | 0.0144 | 0.0 | 0.0 | 0.0104 | 0.0567 | 0.0498 | 0.0972 | 0.0 | 0.0 | 0.0437 | 0.0603 | 0.001 | 0.0336 | 0.0323 | 0.1295 | | 6.8127 | 235.0 | 86950 | 10.4947 | 0.0153 | 0.02 | 0.0169 | 0.0 | 0.0059 | 0.0166 | 0.0442 | 0.0519 | 0.0526 | 0.0 | 0.0331 | 0.0525 | 0.0 | 0.0 | 0.0001 | 0.0057 | 0.0526 | 0.1366 | 0.0033 | 0.0341 | 0.0118 | 0.0193 | 0.0 | 0.0 | 0.0105 | 0.0523 | 0.0398 | 0.0761 | 0.0 | 0.0 | 0.0317 | 0.0974 | 0.0044 | 0.0698 | 0.0289 | 0.1393 | | 6.7793 | 236.0 | 87320 | 10.5037 | 0.0056 | 0.0079 | 0.0048 | 0.0 | 0.0026 | 0.0077 | 0.0304 | 0.0361 | 0.0368 | 0.0 | 0.0243 | 0.0389 | 0.0 | 0.0 | 0.0 | 0.003 | 0.0064 | 0.0805 | 0.0009 | 0.0171 | 0.0071 | 0.0171 | 0.0 | 0.0 | 0.0012 | 0.0409 | 0.0224 | 0.093 | 0.0 | 0.0 | 0.0129 | 0.0628 | 0.0035 | 0.0463 | 0.0128 | 0.0803 | | 6.7793 | 237.0 | 87690 | 10.4354 | 0.007 | 0.0093 | 0.007 | 0.0017 | 0.0066 | 0.0103 | 0.041 | 0.0466 | 0.0475 | 0.0094 | 0.0327 | 0.0501 | 0.0 | 0.0 | 0.0001 | 0.0059 | 0.0083 | 0.0805 | 0.0043 | 0.0829 | 0.0076 | 0.0248 | 0.0 | 0.0 | 0.0012 | 0.0466 | 0.0244 | 0.1028 | 0.0 | 0.0 | 0.0245 | 0.0615 | 0.0023 | 0.0517 | 0.0109 | 0.1131 | | 6.7246 | 238.0 | 88060 | 10.4679 | 0.0089 | 0.0123 | 0.0094 | 0.001 | 0.0079 | 0.0097 | 0.0371 | 0.0426 | 0.0434 | 0.0016 | 0.0342 | 0.044 | 0.0 | 0.0 | 0.0003 | 0.0043 | 0.0191 | 0.1049 | 0.0086 | 0.078 | 0.0071 | 0.0193 | 0.0 | 0.0 | 0.0013 | 0.051 | 0.0238 | 0.0944 | 0.0 | 0.0 | 0.0259 | 0.0603 | 0.0035 | 0.0362 | 0.0171 | 0.0721 | | 6.7448 | 239.0 | 88430 | 10.2526 | 0.0144 | 0.02 | 0.016 | 0.0 | 0.0152 | 0.0161 | 0.0569 | 0.0687 | 0.0722 | 0.0 | 0.067 | 0.0706 | 0.0 | 0.0 | 0.0006 | 0.0198 | 0.039 | 0.1561 | 0.0064 | 0.1024 | 0.0084 | 0.0205 | 0.0 | 0.0 | 0.0078 | 0.1077 | 0.0405 | 0.1197 | 0.0 | 0.0 | 0.0202 | 0.0526 | 0.0114 | 0.1201 | 0.0388 | 0.1672 | | 6.7539 | 240.0 | 88800 | 10.3057 | 0.0138 | 0.0187 | 0.0157 | 0.0 | 0.0056 | 0.0164 | 0.0471 | 0.0549 | 0.0562 | 0.0 | 0.0374 | 0.0591 | 0.0 | 0.0 | 0.0011 | 0.0187 | 0.0369 | 0.1488 | 0.0025 | 0.061 | 0.0105 | 0.0303 | 0.0 | 0.0 | 0.0038 | 0.0785 | 0.0398 | 0.0901 | 0.0 | 0.0 | 0.033 | 0.0667 | 0.0019 | 0.0523 | 0.0356 | 0.1279 | | 6.7244 | 241.0 | 89170 | 10.2128 | 0.0154 | 0.0199 | 0.0179 | 0.0 | 0.0042 | 0.0192 | 0.0482 | 0.0546 | 0.0551 | 0.0 | 0.0264 | 0.0581 | 0.0 | 0.0 | 0.0009 | 0.0141 | 0.0488 | 0.1195 | 0.0023 | 0.0439 | 0.0072 | 0.0176 | 0.0 | 0.0 | 0.0081 | 0.0795 | 0.0284 | 0.1127 | 0.0 | 0.0 | 0.0464 | 0.0731 | 0.0023 | 0.055 | 0.0403 | 0.1459 | | 6.7049 | 242.0 | 89540 | 10.3194 | 0.0096 | 0.0137 | 0.0109 | 0.0 | 0.0082 | 0.0124 | 0.0559 | 0.0627 | 0.0637 | 0.0 | 0.0382 | 0.0696 | 0.0 | 0.0 | 0.0007 | 0.0213 | 0.008 | 0.0951 | 0.0073 | 0.0854 | 0.0063 | 0.0176 | 0.0 | 0.0 | 0.0065 | 0.1111 | 0.0113 | 0.1014 | 0.0 | 0.0 | 0.0345 | 0.0833 | 0.004 | 0.0805 | 0.0363 | 0.1689 | | 6.7504 | 243.0 | 89910 | 10.3888 | 0.0109 | 0.0145 | 0.0126 | 0.0 | 0.0039 | 0.0132 | 0.0508 | 0.0579 | 0.0582 | 0.0 | 0.0341 | 0.061 | 0.0 | 0.0 | 0.0005 | 0.0159 | 0.012 | 0.1195 | 0.0034 | 0.039 | 0.0063 | 0.0193 | 0.0 | 0.0 | 0.0021 | 0.0819 | 0.0419 | 0.0944 | 0.0 | 0.0 | 0.0126 | 0.0731 | 0.0024 | 0.0591 | 0.0498 | 0.1967 | | 6.72 | 244.0 | 90280 | 10.4188 | 0.0128 | 0.0169 | 0.0135 | 0.0 | 0.0091 | 0.015 | 0.06 | 0.0664 | 0.068 | 0.0 | 0.0301 | 0.0693 | 0.0 | 0.0 | 0.0018 | 0.0133 | 0.0206 | 0.1415 | 0.0093 | 0.0902 | 0.0072 | 0.0212 | 0.0 | 0.0 | 0.0031 | 0.0772 | 0.0668 | 0.1746 | 0.0 | 0.0 | 0.0079 | 0.0603 | 0.003 | 0.0705 | 0.0334 | 0.1672 | | 6.6994 | 245.0 | 90650 | 10.3738 | 0.0091 | 0.0136 | 0.0083 | 0.0134 | 0.0113 | 0.0117 | 0.0535 | 0.0645 | 0.0673 | 0.0172 | 0.051 | 0.0677 | 0.0 | 0.0 | 0.0005 | 0.0159 | 0.0092 | 0.0976 | 0.0077 | 0.1073 | 0.0091 | 0.0235 | 0.0 | 0.0 | 0.0115 | 0.0973 | 0.0169 | 0.1056 | 0.0 | 0.0 | 0.0247 | 0.0782 | 0.0059 | 0.0987 | 0.0233 | 0.1836 | | 6.6673 | 246.0 | 91020 | 10.3788 | 0.0105 | 0.0142 | 0.0119 | 0.0015 | 0.0082 | 0.0124 | 0.0424 | 0.0508 | 0.0517 | 0.0094 | 0.0478 | 0.0496 | 0.0 | 0.0 | 0.0003 | 0.0113 | 0.0285 | 0.1024 | 0.0062 | 0.0732 | 0.0066 | 0.0252 | 0.0 | 0.0 | 0.0033 | 0.0574 | 0.0348 | 0.1014 | 0.0 | 0.0 | 0.0147 | 0.059 | 0.0025 | 0.0624 | 0.0289 | 0.1279 | | 6.6836 | 247.0 | 91390 | 10.4774 | 0.0106 | 0.0139 | 0.0124 | 0.0 | 0.0078 | 0.0119 | 0.0394 | 0.0454 | 0.047 | 0.0 | 0.0332 | 0.047 | 0.0 | 0.0 | 0.0002 | 0.0089 | 0.0222 | 0.1024 | 0.0046 | 0.061 | 0.0089 | 0.0227 | 0.0 | 0.0 | 0.0007 | 0.0386 | 0.0447 | 0.0944 | 0.0 | 0.0 | 0.0114 | 0.0474 | 0.0042 | 0.0758 | 0.0303 | 0.1131 | | 6.6821 | 248.0 | 91760 | 10.3334 | 0.0146 | 0.0193 | 0.0146 | 0.0 | 0.0079 | 0.0172 | 0.0436 | 0.0551 | 0.0559 | 0.0 | 0.0354 | 0.059 | 0.0 | 0.0 | 0.0005 | 0.0157 | 0.0069 | 0.1049 | 0.0081 | 0.1122 | 0.0075 | 0.0176 | 0.0 | 0.0 | 0.0025 | 0.0594 | 0.0566 | 0.0775 | 0.0 | 0.0 | 0.041 | 0.0705 | 0.0032 | 0.0772 | 0.0495 | 0.1361 | | 6.6432 | 249.0 | 92130 | 10.3371 | 0.0166 | 0.0208 | 0.0183 | 0.0004 | 0.0032 | 0.019 | 0.0462 | 0.0516 | 0.0519 | 0.0047 | 0.024 | 0.0548 | 0.0 | 0.0 | 0.0001 | 0.0076 | 0.0513 | 0.1244 | 0.0062 | 0.078 | 0.0073 | 0.0172 | 0.0 | 0.0 | 0.0092 | 0.0547 | 0.0569 | 0.0887 | 0.0 | 0.0 | 0.0185 | 0.0603 | 0.0017 | 0.049 | 0.0484 | 0.1426 | | 6.6635 | 250.0 | 92500 | 10.2158 | 0.0236 | 0.0302 | 0.0277 | 0.0 | 0.0061 | 0.0269 | 0.0605 | 0.0665 | 0.0669 | 0.0 | 0.0381 | 0.0706 | 0.0 | 0.0 | 0.0004 | 0.0141 | 0.053 | 0.1293 | 0.0091 | 0.1195 | 0.0071 | 0.0204 | 0.0 | 0.0 | 0.0052 | 0.0758 | 0.0892 | 0.1507 | 0.0 | 0.0 | 0.0318 | 0.059 | 0.003 | 0.0651 | 0.0848 | 0.1689 | | 6.6579 | 251.0 | 92870 | 10.3694 | 0.0131 | 0.0188 | 0.0135 | 0.0 | 0.0074 | 0.0147 | 0.0532 | 0.059 | 0.0599 | 0.0 | 0.0283 | 0.0643 | 0.0 | 0.0 | 0.0002 | 0.0111 | 0.0353 | 0.1659 | 0.004 | 0.0854 | 0.007 | 0.0194 | 0.0 | 0.0 | 0.0088 | 0.0715 | 0.0425 | 0.1141 | 0.0 | 0.0 | 0.0182 | 0.0603 | 0.001 | 0.0436 | 0.0402 | 0.1475 | | 6.6534 | 252.0 | 93240 | 10.3973 | 0.015 | 0.0196 | 0.016 | 0.0005 | 0.0032 | 0.0177 | 0.0514 | 0.058 | 0.0585 | 0.0031 | 0.0308 | 0.0629 | 0.0 | 0.0 | 0.0003 | 0.0139 | 0.0651 | 0.1463 | 0.0046 | 0.0902 | 0.0078 | 0.0213 | 0.0 | 0.0 | 0.0021 | 0.054 | 0.0305 | 0.0803 | 0.0 | 0.0 | 0.0272 | 0.0603 | 0.0021 | 0.0631 | 0.0401 | 0.1721 | | 6.6218 | 253.0 | 93610 | 10.3430 | 0.012 | 0.0175 | 0.0122 | 0.0008 | 0.0062 | 0.0136 | 0.0478 | 0.0539 | 0.0551 | 0.0078 | 0.0345 | 0.0579 | 0.0 | 0.0 | 0.0005 | 0.0157 | 0.0658 | 0.1537 | 0.0095 | 0.0927 | 0.0086 | 0.0286 | 0.0 | 0.0 | 0.0058 | 0.0607 | 0.0105 | 0.0704 | 0.0 | 0.0 | 0.014 | 0.0462 | 0.0022 | 0.055 | 0.0276 | 0.1377 | | 6.603 | 254.0 | 93980 | 10.3932 | 0.0163 | 0.0223 | 0.0187 | 0.0 | 0.0064 | 0.0184 | 0.049 | 0.0562 | 0.0566 | 0.0 | 0.0329 | 0.0604 | 0.0 | 0.0 | 0.0004 | 0.0117 | 0.044 | 0.1463 | 0.0106 | 0.0756 | 0.0092 | 0.0221 | 0.0 | 0.0 | 0.0099 | 0.0513 | 0.0361 | 0.1197 | 0.0 | 0.0 | 0.0299 | 0.0474 | 0.0021 | 0.0624 | 0.0538 | 0.1426 | | 6.6157 | 255.0 | 94350 | 10.4173 | 0.0174 | 0.024 | 0.0179 | 0.0 | 0.0053 | 0.02 | 0.0487 | 0.0548 | 0.0558 | 0.0 | 0.0314 | 0.058 | 0.0 | 0.0 | 0.0018 | 0.0117 | 0.0544 | 0.1415 | 0.0135 | 0.0756 | 0.0083 | 0.0228 | 0.0 | 0.0 | 0.0056 | 0.0513 | 0.0412 | 0.0958 | 0.0 | 0.0 | 0.0299 | 0.059 | 0.0032 | 0.0557 | 0.0506 | 0.1557 | | 6.6235 | 256.0 | 94720 | 10.4197 | 0.0172 | 0.0235 | 0.0169 | 0.0 | 0.0049 | 0.0194 | 0.0478 | 0.0541 | 0.0553 | 0.0 | 0.0328 | 0.0586 | 0.0 | 0.0 | 0.0002 | 0.0083 | 0.0651 | 0.0951 | 0.0109 | 0.0902 | 0.0079 | 0.0208 | 0.0 | 0.0 | 0.0026 | 0.0406 | 0.0361 | 0.1225 | 0.0 | 0.0 | 0.0387 | 0.0615 | 0.0032 | 0.0651 | 0.0421 | 0.159 | | 6.6406 | 257.0 | 95090 | 10.3107 | 0.0125 | 0.0182 | 0.0162 | 0.0 | 0.006 | 0.0151 | 0.0468 | 0.0536 | 0.0543 | 0.0 | 0.0291 | 0.0567 | 0.0 | 0.0 | 0.0002 | 0.0083 | 0.0491 | 0.1244 | 0.0084 | 0.0927 | 0.0068 | 0.018 | 0.0 | 0.0 | 0.0028 | 0.0406 | 0.0093 | 0.1127 | 0.0 | 0.0 | 0.013 | 0.0474 | 0.002 | 0.055 | 0.059 | 0.1525 | | 6.6069 | 258.0 | 95460 | 10.2805 | 0.0203 | 0.0277 | 0.0211 | 0.0 | 0.0118 | 0.0226 | 0.0592 | 0.066 | 0.0668 | 0.0 | 0.0339 | 0.0703 | 0.0 | 0.0 | 0.0004 | 0.0135 | 0.0753 | 0.1683 | 0.0132 | 0.1317 | 0.0064 | 0.0157 | 0.0 | 0.0 | 0.0056 | 0.0554 | 0.0442 | 0.1141 | 0.0 | 0.0 | 0.0349 | 0.0692 | 0.0032 | 0.0678 | 0.0602 | 0.1656 | | 6.6259 | 259.0 | 95830 | 10.3008 | 0.0172 | 0.0232 | 0.0177 | 0.0 | 0.0059 | 0.0194 | 0.0505 | 0.0558 | 0.0564 | 0.0 | 0.0268 | 0.0577 | 0.0 | 0.0 | 0.0004 | 0.0154 | 0.0388 | 0.1146 | 0.0137 | 0.1146 | 0.0092 | 0.0253 | 0.0 | 0.0 | 0.0061 | 0.0688 | 0.0518 | 0.1042 | 0.0 | 0.0 | 0.0357 | 0.0603 | 0.0018 | 0.0403 | 0.0489 | 0.1328 | | 6.5728 | 260.0 | 96200 | 10.3524 | 0.0159 | 0.0219 | 0.0165 | 0.0 | 0.0023 | 0.0187 | 0.0504 | 0.0547 | 0.055 | 0.0 | 0.0197 | 0.059 | 0.0 | 0.0 | 0.0002 | 0.0109 | 0.0562 | 0.1024 | 0.0102 | 0.1 | 0.0062 | 0.0155 | 0.0 | 0.0 | 0.0014 | 0.049 | 0.0356 | 0.1239 | 0.0 | 0.0 | 0.0376 | 0.0692 | 0.0014 | 0.0409 | 0.0423 | 0.1475 | | 6.5773 | 261.0 | 96570 | 10.3170 | 0.0146 | 0.0197 | 0.0151 | 0.0 | 0.0046 | 0.0166 | 0.0587 | 0.0649 | 0.0655 | 0.0 | 0.0345 | 0.0715 | 0.0 | 0.0 | 0.0002 | 0.0122 | 0.0349 | 0.139 | 0.0125 | 0.0927 | 0.0063 | 0.0217 | 0.0 | 0.0 | 0.0018 | 0.0534 | 0.0414 | 0.1451 | 0.0 | 0.0 | 0.009 | 0.0615 | 0.0033 | 0.0872 | 0.0653 | 0.1738 | | 6.5674 | 262.0 | 96940 | 10.2879 | 0.0237 | 0.0305 | 0.0254 | 0.0 | 0.0046 | 0.0255 | 0.0634 | 0.0726 | 0.0733 | 0.0 | 0.0418 | 0.0787 | 0.0 | 0.0 | 0.0004 | 0.0187 | 0.0759 | 0.1732 | 0.0087 | 0.0927 | 0.0077 | 0.0248 | 0.0 | 0.0 | 0.0021 | 0.0685 | 0.0879 | 0.162 | 0.0 | 0.0 | 0.0294 | 0.0679 | 0.0039 | 0.0785 | 0.0679 | 0.1934 | | 6.5377 | 263.0 | 97310 | 10.2744 | 0.023 | 0.0313 | 0.0263 | 0.0004 | 0.0063 | 0.0263 | 0.0612 | 0.069 | 0.0703 | 0.0078 | 0.0427 | 0.0722 | 0.0 | 0.0 | 0.0004 | 0.0185 | 0.0764 | 0.1512 | 0.0143 | 0.0878 | 0.0116 | 0.034 | 0.0 | 0.0 | 0.0047 | 0.0772 | 0.0517 | 0.1507 | 0.0 | 0.0 | 0.0319 | 0.0769 | 0.002 | 0.0671 | 0.083 | 0.1803 | | 6.6347 | 264.0 | 97680 | 10.3396 | 0.0173 | 0.0228 | 0.0195 | 0.0015 | 0.0041 | 0.0197 | 0.0578 | 0.0654 | 0.0667 | 0.0094 | 0.0322 | 0.0722 | 0.0 | 0.0 | 0.0002 | 0.0141 | 0.0383 | 0.1512 | 0.01 | 0.0805 | 0.0076 | 0.0216 | 0.0 | 0.0 | 0.0026 | 0.0822 | 0.0749 | 0.1521 | 0.0 | 0.0 | 0.0287 | 0.0808 | 0.0021 | 0.0718 | 0.0436 | 0.1459 | | 6.5916 | 265.0 | 98050 | 10.4574 | 0.0161 | 0.0212 | 0.0175 | 0.0 | 0.0052 | 0.0181 | 0.0511 | 0.0572 | 0.0575 | 0.0 | 0.0197 | 0.0638 | 0.0 | 0.0 | 0.0001 | 0.0041 | 0.049 | 0.1366 | 0.0063 | 0.078 | 0.0076 | 0.0168 | 0.0 | 0.0 | 0.0027 | 0.0641 | 0.0558 | 0.1366 | 0.0 | 0.0 | 0.0407 | 0.0679 | 0.0025 | 0.0597 | 0.0282 | 0.1262 | | 6.5363 | 266.0 | 98420 | 10.3394 | 0.0195 | 0.0258 | 0.0206 | 0.0 | 0.0048 | 0.0226 | 0.0587 | 0.0671 | 0.0678 | 0.0 | 0.0257 | 0.0753 | 0.0 | 0.0 | 0.0002 | 0.0087 | 0.0631 | 0.1341 | 0.0084 | 0.1098 | 0.0079 | 0.0165 | 0.0 | 0.0 | 0.0073 | 0.0872 | 0.0765 | 0.1493 | 0.0 | 0.0 | 0.0261 | 0.0808 | 0.0025 | 0.0745 | 0.0419 | 0.1525 | | 6.5393 | 267.0 | 98790 | 10.3999 | 0.0117 | 0.0159 | 0.0125 | 0.0 | 0.0059 | 0.0135 | 0.0446 | 0.0506 | 0.0518 | 0.0 | 0.0325 | 0.0553 | 0.0 | 0.0 | 0.0004 | 0.0126 | 0.0344 | 0.1195 | 0.0064 | 0.0805 | 0.0103 | 0.0154 | 0.0 | 0.0 | 0.0025 | 0.0564 | 0.0287 | 0.0746 | 0.0 | 0.0 | 0.0267 | 0.0679 | 0.0024 | 0.0597 | 0.0285 | 0.1344 | | 6.496 | 268.0 | 99160 | 10.3754 | 0.0121 | 0.0166 | 0.0133 | 0.0005 | 0.0046 | 0.0144 | 0.0491 | 0.0551 | 0.0555 | 0.0078 | 0.0266 | 0.061 | 0.0 | 0.0 | 0.0004 | 0.0133 | 0.051 | 0.161 | 0.007 | 0.0902 | 0.008 | 0.018 | 0.0 | 0.0 | 0.0035 | 0.0554 | 0.0151 | 0.0761 | 0.0 | 0.0 | 0.0196 | 0.0679 | 0.0021 | 0.053 | 0.0386 | 0.1311 | | 6.4918 | 269.0 | 99530 | 10.2236 | 0.0184 | 0.0245 | 0.0193 | 0.002 | 0.0064 | 0.0216 | 0.0611 | 0.0694 | 0.0705 | 0.0094 | 0.0363 | 0.0763 | 0.0 | 0.0 | 0.0005 | 0.0191 | 0.0521 | 0.1317 | 0.0081 | 0.1098 | 0.0078 | 0.0209 | 0.0 | 0.0 | 0.0074 | 0.0896 | 0.0598 | 0.1268 | 0.0 | 0.0 | 0.0194 | 0.0692 | 0.003 | 0.0805 | 0.0626 | 0.1984 | | 6.5703 | 270.0 | 99900 | 10.1620 | 0.0235 | 0.0304 | 0.0261 | 0.0011 | 0.0067 | 0.027 | 0.0603 | 0.0694 | 0.07 | 0.0078 | 0.0378 | 0.0771 | 0.0 | 0.0 | 0.0009 | 0.0241 | 0.0701 | 0.1195 | 0.018 | 0.1171 | 0.0077 | 0.0198 | 0.0 | 0.0 | 0.0075 | 0.093 | 0.0578 | 0.1239 | 0.0 | 0.0 | 0.0379 | 0.0692 | 0.0033 | 0.0718 | 0.079 | 0.2016 | | 6.5175 | 271.0 | 100270 | 10.2764 | 0.0159 | 0.0224 | 0.0169 | 0.0 | 0.0076 | 0.0184 | 0.0606 | 0.0685 | 0.069 | 0.0 | 0.0347 | 0.0751 | 0.0 | 0.0 | 0.0007 | 0.0191 | 0.0495 | 0.1293 | 0.0122 | 0.1146 | 0.0076 | 0.0188 | 0.0 | 0.0 | 0.0035 | 0.0903 | 0.0393 | 0.1197 | 0.0 | 0.0 | 0.0206 | 0.0679 | 0.0056 | 0.0973 | 0.0523 | 0.1705 | | 6.5405 | 272.0 | 100640 | 10.1459 | 0.0177 | 0.025 | 0.0182 | 0.0 | 0.0142 | 0.0203 | 0.0624 | 0.0709 | 0.0733 | 0.0 | 0.0522 | 0.0746 | 0.0 | 0.0 | 0.0008 | 0.0217 | 0.052 | 0.1439 | 0.0172 | 0.1146 | 0.009 | 0.0253 | 0.0 | 0.0 | 0.0083 | 0.0822 | 0.0564 | 0.1352 | 0.0 | 0.0 | 0.0227 | 0.0769 | 0.0103 | 0.1275 | 0.0356 | 0.1525 | | 6.5023 | 273.0 | 101010 | 10.1197 | 0.0179 | 0.0241 | 0.0188 | 0.0 | 0.0089 | 0.0196 | 0.0637 | 0.0727 | 0.0733 | 0.0 | 0.0348 | 0.0812 | 0.0 | 0.0 | 0.0006 | 0.022 | 0.0537 | 0.1634 | 0.0089 | 0.1049 | 0.0072 | 0.0175 | 0.0 | 0.0 | 0.0093 | 0.0876 | 0.0537 | 0.1408 | 0.0 | 0.0 | 0.0111 | 0.0731 | 0.005 | 0.0993 | 0.0648 | 0.1705 | | 6.512 | 274.0 | 101380 | 10.2532 | 0.0173 | 0.0232 | 0.0184 | 0.0008 | 0.0091 | 0.0192 | 0.0571 | 0.066 | 0.0666 | 0.0078 | 0.0335 | 0.0733 | 0.0 | 0.0 | 0.0006 | 0.0135 | 0.0403 | 0.161 | 0.0079 | 0.0902 | 0.0072 | 0.0176 | 0.0 | 0.0 | 0.0051 | 0.0758 | 0.0568 | 0.1507 | 0.0 | 0.0 | 0.0087 | 0.0474 | 0.0059 | 0.0933 | 0.0747 | 0.1492 | | 6.5145 | 275.0 | 101750 | 10.2010 | 0.0221 | 0.0297 | 0.0233 | 0.0012 | 0.0104 | 0.0248 | 0.0634 | 0.0721 | 0.0726 | 0.0078 | 0.044 | 0.0777 | 0.0 | 0.0 | 0.0006 | 0.0193 | 0.0349 | 0.1829 | 0.029 | 0.1073 | 0.008 | 0.0227 | 0.0 | 0.0 | 0.0126 | 0.101 | 0.0653 | 0.1225 | 0.0 | 0.0 | 0.0387 | 0.0769 | 0.0037 | 0.0765 | 0.0725 | 0.1623 | | 6.4729 | 276.0 | 102120 | 10.2284 | 0.0181 | 0.0242 | 0.0191 | 0.0 | 0.0075 | 0.0211 | 0.058 | 0.0632 | 0.0634 | 0.0 | 0.03 | 0.0704 | 0.0 | 0.0 | 0.0006 | 0.0172 | 0.0437 | 0.1244 | 0.0156 | 0.1146 | 0.0072 | 0.0182 | 0.0 | 0.0 | 0.011 | 0.0809 | 0.0547 | 0.1197 | 0.0 | 0.0 | 0.02 | 0.0474 | 0.0043 | 0.0765 | 0.0606 | 0.1623 | | 6.5157 | 277.0 | 102490 | 10.2469 | 0.0205 | 0.0276 | 0.0215 | 0.0 | 0.0094 | 0.0238 | 0.06 | 0.0665 | 0.0666 | 0.0 | 0.0357 | 0.0723 | 0.0 | 0.0 | 0.0006 | 0.0157 | 0.046 | 0.139 | 0.0141 | 0.0927 | 0.0067 | 0.0122 | 0.0 | 0.0 | 0.0055 | 0.0899 | 0.0684 | 0.138 | 0.0 | 0.0 | 0.0273 | 0.059 | 0.0026 | 0.0638 | 0.0744 | 0.1885 | | 6.4665 | 278.0 | 102860 | 10.2389 | 0.0222 | 0.0291 | 0.0237 | 0.0011 | 0.0089 | 0.0249 | 0.0596 | 0.0695 | 0.0701 | 0.0078 | 0.0383 | 0.0738 | 0.0 | 0.0 | 0.0004 | 0.0137 | 0.0595 | 0.1854 | 0.0131 | 0.0927 | 0.008 | 0.0235 | 0.0 | 0.0 | 0.0052 | 0.0842 | 0.0567 | 0.1113 | 0.0 | 0.0 | 0.0256 | 0.0679 | 0.0054 | 0.094 | 0.0919 | 0.1689 | | 6.4636 | 279.0 | 103230 | 10.2697 | 0.0223 | 0.0291 | 0.0245 | 0.0 | 0.0051 | 0.0253 | 0.0603 | 0.0666 | 0.0672 | 0.0 | 0.0299 | 0.0712 | 0.0 | 0.0 | 0.0011 | 0.0143 | 0.0869 | 0.2171 | 0.0114 | 0.0927 | 0.0078 | 0.018 | 0.0 | 0.0 | 0.0032 | 0.0688 | 0.0562 | 0.1042 | 0.0 | 0.0 | 0.0246 | 0.0667 | 0.0022 | 0.0577 | 0.0748 | 0.1672 | | 6.4634 | 280.0 | 103600 | 10.2652 | 0.0248 | 0.0334 | 0.0257 | 0.0 | 0.0062 | 0.0289 | 0.0598 | 0.0694 | 0.0699 | 0.0 | 0.0272 | 0.078 | 0.0 | 0.0 | 0.0004 | 0.0178 | 0.0916 | 0.1439 | 0.0098 | 0.1171 | 0.0067 | 0.0212 | 0.0 | 0.0 | 0.0061 | 0.0708 | 0.0698 | 0.1169 | 0.0 | 0.0 | 0.0138 | 0.0564 | 0.0032 | 0.0819 | 0.0961 | 0.2131 | | 6.4455 | 281.0 | 103970 | 10.2265 | 0.0171 | 0.0235 | 0.018 | 0.0005 | 0.0065 | 0.0209 | 0.0526 | 0.0628 | 0.0635 | 0.0078 | 0.0279 | 0.0696 | 0.0 | 0.0 | 0.0003 | 0.0109 | 0.0513 | 0.1585 | 0.0092 | 0.0878 | 0.0077 | 0.0219 | 0.0 | 0.0 | 0.0032 | 0.0742 | 0.0533 | 0.1141 | 0.0 | 0.0 | 0.0112 | 0.0564 | 0.0033 | 0.0779 | 0.0664 | 0.1607 | | 6.4587 | 282.0 | 104340 | 10.2547 | 0.0202 | 0.0285 | 0.0206 | 0.0 | 0.0098 | 0.025 | 0.0542 | 0.0641 | 0.0646 | 0.0 | 0.0254 | 0.0694 | 0.0 | 0.0 | 0.0008 | 0.013 | 0.0804 | 0.1683 | 0.0141 | 0.1073 | 0.0069 | 0.0182 | 0.0 | 0.0 | 0.0051 | 0.0738 | 0.0525 | 0.1056 | 0.0 | 0.0 | 0.0101 | 0.0577 | 0.0037 | 0.0624 | 0.0687 | 0.1689 | | 6.4571 | 283.0 | 104710 | 10.2142 | 0.0216 | 0.0303 | 0.0215 | 0.001 | 0.0087 | 0.0239 | 0.0574 | 0.0697 | 0.0706 | 0.0078 | 0.042 | 0.0738 | 0.0 | 0.0 | 0.0035 | 0.0143 | 0.0613 | 0.1488 | 0.0147 | 0.1073 | 0.0063 | 0.0204 | 0.0 | 0.0 | 0.0055 | 0.0946 | 0.0545 | 0.1408 | 0.0 | 0.0 | 0.0275 | 0.0808 | 0.0029 | 0.0792 | 0.0834 | 0.1607 | | 6.4493 | 284.0 | 105080 | 10.2620 | 0.0176 | 0.0245 | 0.0174 | 0.0 | 0.0058 | 0.0205 | 0.0533 | 0.0625 | 0.063 | 0.0 | 0.0338 | 0.0658 | 0.0 | 0.0 | 0.0035 | 0.0161 | 0.0636 | 0.1366 | 0.0103 | 0.0854 | 0.0069 | 0.0198 | 0.0 | 0.0 | 0.0034 | 0.093 | 0.0453 | 0.1169 | 0.0 | 0.0 | 0.012 | 0.0577 | 0.0032 | 0.0705 | 0.0624 | 0.1607 | | 6.4704 | 285.0 | 105450 | 10.2404 | 0.0194 | 0.0258 | 0.0203 | 0.0 | 0.0042 | 0.0227 | 0.0603 | 0.0672 | 0.0674 | 0.0 | 0.0283 | 0.0742 | 0.0 | 0.0 | 0.0021 | 0.0193 | 0.0544 | 0.1512 | 0.0069 | 0.0829 | 0.0076 | 0.0164 | 0.0 | 0.0 | 0.0109 | 0.0883 | 0.0721 | 0.1521 | 0.0 | 0.0 | 0.0131 | 0.0731 | 0.0023 | 0.0537 | 0.0634 | 0.1721 | | 6.433 | 286.0 | 105820 | 10.2217 | 0.0228 | 0.0302 | 0.024 | 0.0 | 0.0062 | 0.0254 | 0.0577 | 0.0636 | 0.0641 | 0.0 | 0.0302 | 0.0701 | 0.0 | 0.0 | 0.0005 | 0.0137 | 0.0854 | 0.1195 | 0.0095 | 0.0854 | 0.0083 | 0.0205 | 0.0 | 0.0 | 0.0042 | 0.0852 | 0.0621 | 0.1437 | 0.0 | 0.0 | 0.0305 | 0.059 | 0.0035 | 0.0799 | 0.0698 | 0.1623 | | 6.4317 | 287.0 | 106190 | 10.2109 | 0.0236 | 0.0331 | 0.0236 | 0.0 | 0.0042 | 0.0264 | 0.0595 | 0.0696 | 0.07 | 0.0 | 0.0231 | 0.0802 | 0.0 | 0.0 | 0.0004 | 0.0167 | 0.0776 | 0.1366 | 0.0084 | 0.0829 | 0.0053 | 0.0161 | 0.0 | 0.0 | 0.0056 | 0.1034 | 0.0785 | 0.1211 | 0.0 | 0.0 | 0.0135 | 0.0679 | 0.0039 | 0.0886 | 0.0899 | 0.2066 | | 6.4332 | 288.0 | 106560 | 10.3142 | 0.0209 | 0.0278 | 0.0217 | 0.0 | 0.0041 | 0.0255 | 0.055 | 0.0631 | 0.0633 | 0.0 | 0.0156 | 0.0734 | 0.0 | 0.0 | 0.0002 | 0.01 | 0.072 | 0.122 | 0.0056 | 0.0829 | 0.0071 | 0.0154 | 0.0 | 0.0 | 0.0038 | 0.0772 | 0.0589 | 0.1169 | 0.0 | 0.0 | 0.0182 | 0.0795 | 0.0032 | 0.0826 | 0.0819 | 0.1738 | | 6.4441 | 289.0 | 106930 | 10.2880 | 0.0216 | 0.0297 | 0.022 | 0.0 | 0.0045 | 0.0245 | 0.0554 | 0.0627 | 0.0629 | 0.0 | 0.03 | 0.0712 | 0.0 | 0.0 | 0.0003 | 0.0115 | 0.076 | 0.1195 | 0.0068 | 0.0829 | 0.0065 | 0.0154 | 0.0 | 0.0 | 0.0078 | 0.0839 | 0.0477 | 0.1169 | 0.0 | 0.0 | 0.0281 | 0.091 | 0.0024 | 0.0698 | 0.0841 | 0.1639 | | 6.4243 | 290.0 | 107300 | 10.3032 | 0.0204 | 0.0286 | 0.0214 | 0.0 | 0.0036 | 0.0239 | 0.0546 | 0.0615 | 0.062 | 0.0 | 0.0212 | 0.0695 | 0.0 | 0.0 | 0.0003 | 0.0113 | 0.0692 | 0.1293 | 0.0085 | 0.0854 | 0.0116 | 0.0195 | 0.0 | 0.0 | 0.0054 | 0.0779 | 0.0544 | 0.1042 | 0.0 | 0.0 | 0.0144 | 0.0654 | 0.0023 | 0.0658 | 0.0785 | 0.1852 | | 6.4104 | 291.0 | 107670 | 10.2981 | 0.0193 | 0.0269 | 0.0196 | 0.0 | 0.0052 | 0.0222 | 0.0579 | 0.066 | 0.0662 | 0.0 | 0.0332 | 0.0726 | 0.0 | 0.0 | 0.0007 | 0.01 | 0.043 | 0.1244 | 0.0077 | 0.0927 | 0.0074 | 0.0172 | 0.0 | 0.0 | 0.004 | 0.0822 | 0.067 | 0.1225 | 0.0 | 0.0 | 0.0138 | 0.0795 | 0.0026 | 0.0664 | 0.0855 | 0.2 | | 6.4088 | 292.0 | 108040 | 10.2652 | 0.0217 | 0.0282 | 0.0248 | 0.0 | 0.0055 | 0.0237 | 0.0536 | 0.062 | 0.0627 | 0.0 | 0.028 | 0.0684 | 0.0 | 0.0 | 0.0006 | 0.0126 | 0.0626 | 0.139 | 0.0077 | 0.0854 | 0.0116 | 0.0186 | 0.0 | 0.0 | 0.0122 | 0.0758 | 0.0684 | 0.1183 | 0.0 | 0.0 | 0.0093 | 0.0679 | 0.0024 | 0.0591 | 0.0857 | 0.1754 | | 6.3976 | 293.0 | 108410 | 10.2724 | 0.0257 | 0.034 | 0.0277 | 0.0 | 0.0051 | 0.0277 | 0.0622 | 0.0696 | 0.0702 | 0.0 | 0.0221 | 0.0778 | 0.0 | 0.0 | 0.0005 | 0.01 | 0.0744 | 0.1683 | 0.009 | 0.0829 | 0.0117 | 0.0191 | 0.0 | 0.0 | 0.0112 | 0.0775 | 0.0686 | 0.1352 | 0.0 | 0.0 | 0.0261 | 0.0795 | 0.0032 | 0.0758 | 0.1032 | 0.1934 | | 6.3981 | 294.0 | 108780 | 10.2494 | 0.0237 | 0.0316 | 0.0248 | 0.0 | 0.0062 | 0.0259 | 0.0572 | 0.0665 | 0.0671 | 0.0 | 0.0314 | 0.0739 | 0.0 | 0.0 | 0.0005 | 0.0165 | 0.0628 | 0.1317 | 0.0088 | 0.0878 | 0.0116 | 0.0195 | 0.0 | 0.0 | 0.0062 | 0.0846 | 0.0659 | 0.1366 | 0.0 | 0.0 | 0.0216 | 0.0679 | 0.0022 | 0.0685 | 0.1044 | 0.1918 | | 6.3775 | 295.0 | 109150 | 10.2718 | 0.0219 | 0.0302 | 0.0227 | 0.0 | 0.0064 | 0.0238 | 0.0587 | 0.068 | 0.0685 | 0.0 | 0.0409 | 0.0761 | 0.0 | 0.0 | 0.0006 | 0.017 | 0.0663 | 0.1317 | 0.0101 | 0.1146 | 0.0117 | 0.0197 | 0.0 | 0.0 | 0.0059 | 0.0859 | 0.0535 | 0.1225 | 0.0 | 0.0 | 0.0187 | 0.0795 | 0.0033 | 0.0805 | 0.0929 | 0.1705 | | 6.3901 | 296.0 | 109520 | 10.2749 | 0.0241 | 0.0326 | 0.0246 | 0.0 | 0.0043 | 0.0265 | 0.0586 | 0.0648 | 0.0654 | 0.0 | 0.0298 | 0.0737 | 0.0 | 0.0 | 0.0004 | 0.0167 | 0.0617 | 0.1024 | 0.0082 | 0.1024 | 0.0118 | 0.0199 | 0.0 | 0.0 | 0.0059 | 0.0866 | 0.0856 | 0.1451 | 0.0 | 0.0 | 0.0247 | 0.0782 | 0.0023 | 0.0597 | 0.0881 | 0.1738 | | 6.3721 | 297.0 | 109890 | 10.2239 | 0.0235 | 0.0318 | 0.0246 | 0.0 | 0.0044 | 0.0261 | 0.0597 | 0.0681 | 0.0685 | 0.0 | 0.0294 | 0.0785 | 0.0 | 0.0 | 0.0009 | 0.018 | 0.0601 | 0.1195 | 0.011 | 0.0878 | 0.0113 | 0.0183 | 0.0 | 0.0 | 0.0061 | 0.0876 | 0.0734 | 0.1324 | 0.0 | 0.0 | 0.0198 | 0.0782 | 0.0026 | 0.0752 | 0.0973 | 0.2049 | | 6.3899 | 298.0 | 110260 | 10.2509 | 0.023 | 0.0309 | 0.0235 | 0.0 | 0.0063 | 0.0249 | 0.0609 | 0.0688 | 0.0692 | 0.0 | 0.0266 | 0.0781 | 0.0 | 0.0 | 0.0005 | 0.0187 | 0.0642 | 0.139 | 0.0098 | 0.1024 | 0.0119 | 0.0206 | 0.0 | 0.0 | 0.0077 | 0.0872 | 0.0617 | 0.1366 | 0.0 | 0.0 | 0.0277 | 0.0795 | 0.002 | 0.0611 | 0.09 | 0.1852 | | 6.3974 | 299.0 | 110630 | 10.2657 | 0.0222 | 0.03 | 0.0229 | 0.0 | 0.0034 | 0.0247 | 0.0561 | 0.063 | 0.0632 | 0.0 | 0.0195 | 0.0726 | 0.0 | 0.0 | 0.0007 | 0.017 | 0.0657 | 0.1268 | 0.0105 | 0.0854 | 0.0112 | 0.0161 | 0.0 | 0.0 | 0.0047 | 0.0728 | 0.0617 | 0.1296 | 0.0 | 0.0 | 0.0191 | 0.0679 | 0.002 | 0.0705 | 0.0904 | 0.1721 | | 6.3809 | 300.0 | 111000 | 10.2840 | 0.0242 | 0.0324 | 0.0251 | 0.0 | 0.0048 | 0.0258 | 0.0623 | 0.0695 | 0.0698 | 0.0 | 0.0275 | 0.078 | 0.0 | 0.0 | 0.0006 | 0.0196 | 0.0848 | 0.1463 | 0.0082 | 0.0829 | 0.0113 | 0.0172 | 0.0 | 0.0 | 0.0058 | 0.0869 | 0.0704 | 0.1394 | 0.0 | 0.0 | 0.014 | 0.0795 | 0.0021 | 0.0658 | 0.0937 | 0.2 | ### Framework versions - Transformers 4.53.0.dev0 - Pytorch 2.5.1 - Datasets 3.2.0 - Tokenizers 0.21.1
Freezyy/www.unlockios18.com
Freezyy
2025-06-21T12:47:50Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-21T12:47:50Z
--- license: apache-2.0 ---
18-jaipur-couple-viral-video-full/jaipur.couple.viral.video.in.5.Star.Hotel.full.original
18-jaipur-couple-viral-video-full
2025-06-21T12:47:05Z
0
0
null
[ "region:us" ]
null
2025-06-21T12:46:37Z
<a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a> <a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a>
18-video-jaipur-hotel-going-viral/FULL.VIDEO.18.jaipur.hotel.viral.video.original.holiday.inn.jaipur.viral.video
18-video-jaipur-hotel-going-viral
2025-06-21T12:40:35Z
0
0
null
[ "region:us" ]
null
2025-06-21T12:40:04Z
<a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a> <a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a>
Official-Othoi-viral-video-Link/FULL.VIDEO.LINK.Othoi.Viral.Video.Leaks.Tutorial.Official
Official-Othoi-viral-video-Link
2025-06-21T12:35:10Z
0
0
null
[ "region:us" ]
null
2025-06-21T12:34:50Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
pictgensupport/middleagedwoman
pictgensupport
2025-06-21T12:33:53Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-21T12:33:51Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: middleagedwoman --- # Middleagedwoman <Gallery /> Trained on Replicate using: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `middleagedwoman` to trigger the image generation. ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('pictgensupport/middleagedwoman', weight_name='lora.safetensors') image = pipeline('your prompt').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
sitatech/FluxUtils
sitatech
2025-06-21T11:50:37Z
20
0
null
[ "license:other", "region:us" ]
null
2025-02-28T17:05:42Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/Runware/FLUX.1-Redux-dev/blob/main/LICENSE.md ---
19-holiday-jaipur-hotel-viral-video-origin/19.jaipur.hotel.viral.video.original.holiday.inn.jaipur.viral.video
19-holiday-jaipur-hotel-viral-video-origin
2025-06-21T11:48:29Z
0
0
null
[ "region:us" ]
null
2025-06-21T11:46:13Z
<a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a> <a href="https://tinyurl.com/2urtu5zm"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Nature" class="responsive"></a>
UMCU/CardioBERTa.nl_base
UMCU
2025-06-21T11:44:38Z
49
0
transformers
[ "transformers", "safetensors", "roberta", "fill-mask", "medical", "healthcare", "nl", "base_model:CLTL/MedRoBERTa.nl", "base_model:finetune:CLTL/MedRoBERTa.nl", "license:gpl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
fill-mask
2025-03-04T14:55:04Z
--- license: gpl-3.0 language: - nl base_model: - CLTL/MedRoBERTa.nl tags: - medical - healthcare metrics: - perplexity library_name: transformers --- Continued, off-premise, pre-training of [MedRoBERTa.nl](https://huggingface.co/CLTL/MedRoBERTa.nl) using about 50GB of open Dutch and translated English corpora. # Data statistics Sources: * Dutch: medical guidelines (FMS, NHG) * Dutch: [NtvG](https://www.ntvg.nl/) papers * English: Pubmed abstracts * English: PMC abstracts translated using DeepL * English: Apollo guidelines, papers and books * English: Meditron guidelines * English: MIMIC3 * English: MIMIC CXR * English: MIMIC4 All translated (if not with DeepL) with a combination of GeminiFlash 1.5/GPT4o mini, MariaNMT, NLLB200. * Number of tokens: 15B * Number of documents: 27M # Training * Effective batch size: 5120 * Learning rate: 2e-4 * Weight decay: 1e-3 * Learning schedule: linear, with 5_000 warmup steps * Num epochs: ~3 Train perplexity: 3.0 Validation perplexity: 3.0 # Acknowledgement This work was done together with the Amsterdam UMC, in the context of the [DataTools4Heart](https://www.datatools4heart.eu/) project. We were happy to be able to use the [Google TPU research cloud](https://sites.research.google/trc/about/) for training the model.
4maan4hmad/Llama3.2-finetuned-sitemanager
4maan4hmad
2025-06-21T11:31:03Z
0
0
transformers
[ "transformers", "gguf", "llama", "text-generation-inference", "unsloth", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-21T11:30:24Z
--- base_model: unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - gguf license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** 4maan4hmad - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
New-videos-mezzo-fun-18-Viral-Videos/FULL.VIDEO.mezzo.fun.Viral.Video.Tutorial.Official
New-videos-mezzo-fun-18-Viral-Videos
2025-06-21T11:26:28Z
0
0
null
[ "region:us" ]
null
2025-06-21T11:26:04Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
codewithpurav/a2c-PandaReachDense-v3
codewithpurav
2025-06-21T11:14:59Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-06-21T11:10:38Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.28 +/- 0.14 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
New-Clip-mezzo-fun-19-Viral-Video-Link/Original.Full.Clip.Mezzo.fun.Viral.Video.Tutorial.Official
New-Clip-mezzo-fun-19-Viral-Video-Link
2025-06-21T11:02:58Z
0
0
null
[ "region:us" ]
null
2025-06-21T11:01:59Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
PaceKW/bert-base-indonesian-1.5G-multilabel-indonesian-hate-speech-modified-v2
PaceKW
2025-06-21T10:37:04Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "base_model:cahya/bert-base-indonesian-1.5G", "base_model:finetune:cahya/bert-base-indonesian-1.5G", "license:mit", "endpoints_compatible", "region:us" ]
null
2025-06-21T10:32:10Z
--- library_name: transformers license: mit base_model: cahya/bert-base-indonesian-1.5G tags: - generated_from_trainer metrics: - f1 - accuracy model-index: - name: bert-base-indonesian-1.5G-multilabel-indonesian-hate-speech-modified-v2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-base-indonesian-1.5G-multilabel-indonesian-hate-speech-modified-v2 This model is a fine-tuned version of [cahya/bert-base-indonesian-1.5G](https://huggingface.co/cahya/bert-base-indonesian-1.5G) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2271 - F1: 0.8042 - Roc Auc: 0.8799 - Accuracy: 0.7229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------:|:--------:| | 0.257 | 1.0 | 1317 | 0.2008 | 0.7645 | 0.8432 | 0.6507 | | 0.1793 | 2.0 | 2634 | 0.1925 | 0.7868 | 0.8732 | 0.6621 | | 0.1305 | 3.0 | 3951 | 0.2005 | 0.7959 | 0.8773 | 0.7039 | | 0.0909 | 4.0 | 5268 | 0.2191 | 0.7961 | 0.8666 | 0.7206 | | 0.0655 | 5.0 | 6585 | 0.2271 | 0.8042 | 0.8799 | 0.7229 | ### Framework versions - Transformers 4.51.3 - Pytorch 2.7.0+cu128 - Datasets 3.6.0 - Tokenizers 0.21.1
Pakcricketinfo-Sapna-Shah-18k/NEW.VIDEO.Pakcricketinfo.Sapna.Shah.Viral.Video.On.Social.Media.Link
Pakcricketinfo-Sapna-Shah-18k
2025-06-21T10:29:18Z
0
0
null
[ "region:us" ]
null
2025-06-21T10:23:45Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/?V=Pakcricketinfo-Sapna-Shah-18k) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/?V=Pakcricketinfo-Sapna-Shah-18k) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/?V=Pakcricketinfo-Sapna-Shah-18k)
heboya8/facebook-musicgen-small-not-lora-80
heboya8
2025-06-21T10:25:28Z
0
0
null
[ "safetensors", "musicgen", "region:us" ]
null
2025-06-21T10:07:28Z
***** eval metrics ***** epoch = 80.0 eval_clap = 0.1663 eval_loss = 5.3156 eval_runtime = 0:01:54.95 eval_samples = 8 eval_samples_per_second = 0.07 eval_steps_per_second = 0.07
Quoc59/PARADIS-Qwen3_1.7B-10kWikiVi-1GPU
Quoc59
2025-06-21T10:09:19Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-21T08:09:21Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
AhmadZahid/results
AhmadZahid
2025-06-21T09:58:28Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-21T08:19:47Z
--- library_name: transformers license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: results results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # results This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0007 - Accuracy: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 50 | 0.0019 | 1.0 | | 0.0672 | 2.0 | 100 | 0.0008 | 1.0 | | 0.0672 | 3.0 | 150 | 0.0007 | 1.0 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1
TensinormColombia/TensinormColombia
TensinormColombia
2025-06-21T09:57:40Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-21T09:56:16Z
--- license: apache-2.0 --- ¿Qué es Tensinorm? Tensinorm Pastillas es una cápsula natural desarrollada para apoyar a las personas que padecen presión arterial alta, también conocida como hipertensión. En el mundo actual, donde la vida transcurre a un ritmo acelerado y los niveles de estrés son altos, mantener una presión arterial saludable se ha vuelto más difícil que nunca. Ya sean largas jornadas laborales, dietas procesadas o falta de descanso, el estilo de vida moderno está afectando negativamente la salud cardíaca. Tensinorm cápsula fue creado para quienes desean recuperar el control de forma suave, natural y sin depender exclusivamente de tratamientos sintéticos. Tensinorm farmacia Es un suplemento diario diseñado para quienes están listos para priorizar su salud cardíaca y prevenir futuras complicaciones relacionadas con la presión arterial descontrolada Tensinorm foro. Sitio web oficial:<a href="https://www.nutritionsee.com/tensinolombia">www.Tensinorm.com</a> <p><a href="https://www.nutritionsee.com/tensinolombia"> <img src="https://www.nutritionsee.com/wp-content/uploads/2025/06/Tensinorm-Colombia.png" alt="enter image description here"> </a></p> <a href="https://www.nutritionsee.com/tensinolombia">¡Compra ya! Haz clic en el enlace de abajo para más información y obtén un 50% de descuento. ¡Date prisa!</a> Sitio web oficial:<a href="https://www.nutritionsee.com/tensinolombia">www.Tensinorm.com</a>
brokuking1/a7da0963-ce0f-48c2-b160-25d263ae2a1a
brokuking1
2025-06-21T09:55:41Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "unsloth", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-21T07:43:42Z
--- library_name: transformers tags: - unsloth --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]