modelId
string
author
string
last_modified
timestamp[us, tz=UTC]
downloads
int64
likes
int64
library_name
string
tags
list
pipeline_tag
string
createdAt
timestamp[us, tz=UTC]
card
string
Andresgr96/gemma-3-4b-it-qat
Andresgr96
2025-06-20T17:15:19Z
0
0
transformers
[ "transformers", "gguf", "gemma3", "image-text-to-text", "text-generation-inference", "unsloth", "en", "base_model:unsloth/gemma-3-4b-it-qat", "base_model:quantized:unsloth/gemma-3-4b-it-qat", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
image-text-to-text
2025-06-18T16:06:36Z
--- base_model: unsloth/gemma-3-4b-it-qat tags: - text-generation-inference - transformers - unsloth - gemma3 license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** Andresgr96 - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-4b-it-qat This gemma3 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
aleegis/f5679987-0679-4a8d-a775-5b16f6baae84
aleegis
2025-06-20T17:13:10Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:samoline/69663868-e365-43ba-b6c0-cef04404c3ee", "base_model:adapter:samoline/69663868-e365-43ba-b6c0-cef04404c3ee", "region:us" ]
null
2025-06-20T15:32:53Z
--- library_name: peft base_model: samoline/69663868-e365-43ba-b6c0-cef04404c3ee tags: - axolotl - generated_from_trainer model-index: - name: f5679987-0679-4a8d-a775-5b16f6baae84 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.10.0.dev0` ```yaml adapter: lora base_model: samoline/69663868-e365-43ba-b6c0-cef04404c3ee bf16: auto chat_template: llama3 dataloader_num_workers: 12 dataset_prepared_path: null datasets: - data_files: - d639eea1bad69a23_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_input: input field_instruction: instruct field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: null eval_table_size: null evals_per_epoch: null flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: false group_by_length: false hub_model_id: aleegis/f5679987-0679-4a8d-a775-5b16f6baae84 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: null lora_alpha: 32 lora_dropout: 0.15 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true loraplus_lr_embedding: 1.0e-06 loraplus_lr_ratio: 16 lr_scheduler: cosine max_grad_norm: 1 max_steps: 1500 micro_batch_size: 4 mlflow_experiment_name: /tmp/d639eea1bad69a23_train_data.json model_type: AutoModelForCausalLM num_epochs: 200 optimizer: adamw_torch_fused output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: null save_total_limit: 10 saves_per_epoch: 0 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.0 wandb_entity: null wandb_mode: online wandb_name: f63bf158-5701-4294-be0a-194048e6dbb3 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: f63bf158-5701-4294-be0a-194048e6dbb3 warmup_steps: 100 weight_decay: 0 xformers_attention: null ``` </details><br> # f5679987-0679-4a8d-a775-5b16f6baae84 This model is a fine-tuned version of [samoline/69663868-e365-43ba-b6c0-cef04404c3ee](https://huggingface.co/samoline/69663868-e365-43ba-b6c0-cef04404c3ee) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 1500 ### Training results ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.5.1+cu124 - Datasets 3.5.1 - Tokenizers 0.21.1
ProDev9515/roadwork-72-w8b4vr8
ProDev9515
2025-06-20T17:11:21Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:11:13Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-YqFjFPx
ProDev9515
2025-06-20T17:10:57Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:10:50Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-RHTmE4s
ProDev9515
2025-06-20T17:10:49Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:10:42Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-M5USSZk
ProDev9515
2025-06-20T17:10:33Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:10:25Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-gdKN5Qp
ProDev9515
2025-06-20T17:09:01Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:08:54Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-wqTc9WN
ProDev9515
2025-06-20T17:08:53Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:08:46Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-3FcJwi2
ProDev9515
2025-06-20T17:08:13Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:08:05Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ProDev9515/roadwork-72-ytjhtjB
ProDev9515
2025-06-20T17:07:32Z
0
0
transformers
[ "transformers", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T17:07:24Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
ReallyFloppyPenguin/II-Medical-8B-1706-GGUF
ReallyFloppyPenguin
2025-06-20T16:59:26Z
0
0
gguf
[ "gguf", "quantized", "llama.cpp", "en", "base_model:Intelligent-Internet/II-Medical-8B-1706", "base_model:quantized:Intelligent-Internet/II-Medical-8B-1706", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-06-20T16:40:12Z
--- language: - en library_name: gguf base_model: Intelligent-Internet/II-Medical-8B-1706 tags: - gguf - quantized - llama.cpp license: apache-2.0 --- # Intelligent-Internet/II-Medical-8B-1706 - GGUF This repository contains GGUF quantizations of [Intelligent-Internet/II-Medical-8B-1706](https://huggingface.co/Intelligent-Internet/II-Medical-8B-1706). ## About GGUF GGUF is a quantization method that allows you to run large language models on consumer hardware by reducing the precision of the model weights. ## Files | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | model-f16.gguf | f16 | Large | Original precision | | model-q4_0.gguf | Q4_0 | Small | 4-bit quantization | | model-q4_1.gguf | Q4_1 | Small | 4-bit quantization (higher quality) | | model-q5_0.gguf | Q5_0 | Medium | 5-bit quantization | | model-q5_1.gguf | Q5_1 | Medium | 5-bit quantization (higher quality) | | model-q8_0.gguf | Q8_0 | Large | 8-bit quantization | ## Usage You can use these models with llama.cpp or any other GGUF-compatible inference engine. ### llama.cpp ```bash ./llama-cli -m model-q4_0.gguf -p "Your prompt here" ``` ### Python (using llama-cpp-python) ```python from llama_cpp import Llama llm = Llama(model_path="model-q4_0.gguf") output = llm("Your prompt here", max_tokens=512) print(output['choices'][0]['text']) ``` ## Original Model This is a quantized version of [Intelligent-Internet/II-Medical-8B-1706](https://huggingface.co/Intelligent-Internet/II-Medical-8B-1706). Please refer to the original model card for more information about the model's capabilities, training data, and usage guidelines. ## Conversion Details - Converted using llama.cpp - Original model downloaded from Hugging Face - Multiple quantization levels provided for different use cases ## License This model inherits the license from the original model. Please check the original model's license for usage terms.
uvegesistvan/roberta_large_pl_10_sh
uvegesistvan
2025-06-20T16:58:07Z
0
0
transformers
[ "transformers", "safetensors", "xlm-roberta", "text-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-20T15:19:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Official-Sajal-Malik-18-Viral-Videos/Original.Full.Clip.Sajal.Malik.Viral.Video.Leaks.Official
Official-Sajal-Malik-18-Viral-Videos
2025-06-20T16:53:34Z
0
0
null
[ "region:us" ]
null
2025-06-20T16:53:21Z
<a href="https://sdu.sk/uLf"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a> <a href="https://sdu.sk/uLf" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a> <a href="https://sdu.sk/uLf" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
apalacio1128/ytvirality-lora
apalacio1128
2025-06-20T16:44:14Z
0
0
null
[ "license:other", "region:us" ]
null
2025-06-19T20:25:50Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md ---
tomaarsen/csr-mxbai-embed-large-v1-nq-cos-sim-scale-50-gamma-0.1-detach-2
tomaarsen
2025-06-20T16:40:45Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sparse-encoder", "sparse", "csr", "generated_from_trainer", "dataset_size:99000", "loss:CSRLoss", "loss:SparseMultipleNegativesRankingLoss", "feature-extraction", "en", "dataset:sentence-transformers/natural-questions", "arxiv:1908.10084", "arxiv:2503.01776", "arxiv:1705.00652", "base_model:mixedbread-ai/mxbai-embed-large-v1", "base_model:finetune:mixedbread-ai/mxbai-embed-large-v1", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-06-20T16:40:36Z
--- language: - en license: apache-2.0 tags: - sentence-transformers - sparse-encoder - sparse - csr - generated_from_trainer - dataset_size:99000 - loss:CSRLoss - loss:SparseMultipleNegativesRankingLoss base_model: mixedbread-ai/mxbai-embed-large-v1 widget: - text: Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi Arabia continue to take somewhat differing stances on regional conflicts such the Yemeni Civil War, where the UAE opposes Al-Islah, and supports the Southern Movement, which has fought against Saudi-backed forces, and the Syrian Civil War, where the UAE has disagreed with Saudi support for Islamist movements.[4] - text: Economy of New Zealand New Zealand's diverse market economy has a sizable service sector, accounting for 63% of all GDP activity in 2013.[17] Large scale manufacturing industries include aluminium production, food processing, metal fabrication, wood and paper products. Mining, manufacturing, electricity, gas, water, and waste services accounted for 16.5% of GDP in 2013.[17] The primary sector continues to dominate New Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17] - text: who was the first president of indian science congress meeting held in kolkata in 1914 - text: Get Over It (Eagles song) "Get Over It" is a song by the Eagles released as a single after a fourteen-year breakup. It was also the first song written by bandmates Don Henley and Glenn Frey when the band reunited. "Get Over It" was played live for the first time during their Hell Freezes Over tour in 1994. It returned the band to the U.S. Top 40 after a fourteen-year absence, peaking at No. 31 on the Billboard Hot 100 chart. It also hit No. 4 on the Billboard Mainstream Rock Tracks chart. The song was not played live by the Eagles after the "Hell Freezes Over" tour in 1994. It remains the group's last Top 40 hit in the U.S. - text: 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.' datasets: - sentence-transformers/natural-questions pipeline_tag: feature-extraction library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 - query_active_dims - query_sparsity_ratio - corpus_active_dims - corpus_sparsity_ratio co2_eq_emissions: emissions: 41.30839791316536 energy_consumed: 0.10627266624088727 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.262 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: Sparse CSR model trained on Natural Questions results: - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 4 type: nq_eval_4 metrics: - type: cosine_accuracy@1 value: 0.195 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.323 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.394 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.47 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.195 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.10766666666666666 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.0788 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.04699999999999999 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.195 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.323 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.394 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.47 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.32377386157136745 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.278015476190476 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2884464006986836 name: Cosine Map@100 - type: query_active_dims value: 4.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9990234375 name: Query Sparsity Ratio - type: corpus_active_dims value: 4.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9990234375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 8 type: nq_eval_8 metrics: - type: cosine_accuracy@1 value: 0.404 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.56 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.611 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.681 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.404 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.18666666666666665 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.12219999999999999 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.0681 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.404 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.56 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.611 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.681 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.539833012308952 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.49499206349206337 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.5040685370722027 name: Cosine Map@100 - type: query_active_dims value: 8.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.998046875 name: Query Sparsity Ratio - type: corpus_active_dims value: 8.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.998046875 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 16 type: nq_eval_16 metrics: - type: cosine_accuracy@1 value: 0.607 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.781 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.831 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.876 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.607 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.26033333333333336 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16620000000000001 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.0876 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.607 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.781 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.831 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.876 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7454352025587541 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7031380952380955 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7079722555257966 name: Cosine Map@100 - type: query_active_dims value: 16.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.99609375 name: Query Sparsity Ratio - type: corpus_active_dims value: 16.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.99609375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 32 type: nq_eval_32 metrics: - type: cosine_accuracy@1 value: 0.797 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.918 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.94 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.971 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.797 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.306 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.18800000000000003 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09710000000000002 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.797 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.918 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.94 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.971 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.8883813392071823 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.8614698412698414 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.8625825721970143 name: Cosine Map@100 - type: query_active_dims value: 32.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9921875 name: Query Sparsity Ratio - type: corpus_active_dims value: 32.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9921875 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 64 type: nq_eval_64 metrics: - type: cosine_accuracy@1 value: 0.882 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.971 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.984 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.987 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.882 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3236666666666666 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.19680000000000003 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09870000000000002 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.882 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.971 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.984 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.987 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9420700985601923 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9267666666666668 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9274088353313353 name: Cosine Map@100 - type: query_active_dims value: 64.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.984375 name: Query Sparsity Ratio - type: corpus_active_dims value: 64.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.984375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 128 type: nq_eval_128 metrics: - type: cosine_accuracy@1 value: 0.924 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.983 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.987 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.99 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.924 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3276666666666666 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.19740000000000005 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.099 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.924 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.983 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.987 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.99 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9632306047329049 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.954 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9544732574612811 name: Cosine Map@100 - type: query_active_dims value: 128.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.96875 name: Query Sparsity Ratio - type: corpus_active_dims value: 128.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.96875 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: nq eval 256 type: nq_eval_256 metrics: - type: cosine_accuracy@1 value: 0.949 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.985 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.991 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.993 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.949 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.32833333333333325 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.19820000000000004 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09930000000000001 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.949 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.985 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.991 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.993 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9742124713902499 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9678444444444445 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9680795428781169 name: Cosine Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio --- # Sparse CSR model trained on Natural Questions This is a [CSR Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval. ## Model Details ### Model Description - **Model Type:** CSR Sparse Encoder - **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) <!-- at revision db9d1fe0f31addb4978201b2bf3e577f3f8900d2 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 4096 dimensions (trained with 256 maximum active dimensions) - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder) ### Full Model Architecture ``` SparseEncoder( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SparseEncoder # Download from the 🤗 Hub model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-cos-sim-scale-50-gamma-0.1-detach-2") # Run inference queries = [ "who is cornelius in the book of acts", ] documents = [ 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.', "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]", 'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.', ] query_embeddings = model.encode_query(queries) document_embeddings = model.encode_document(documents) print(query_embeddings.shape, document_embeddings.shape) # [1, 4096] [3, 4096] # Get the similarity scores for the embeddings similarities = model.similarity(query_embeddings, document_embeddings) print(similarities) # tensor([[0.6239, 0.1049, 0.1287]]) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Sparse Information Retrieval * Dataset: `nq_eval_4` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 4 } ``` | Metric | Value | |:----------------------|:-----------| | cosine_accuracy@1 | 0.195 | | cosine_accuracy@3 | 0.323 | | cosine_accuracy@5 | 0.394 | | cosine_accuracy@10 | 0.47 | | cosine_precision@1 | 0.195 | | cosine_precision@3 | 0.1077 | | cosine_precision@5 | 0.0788 | | cosine_precision@10 | 0.047 | | cosine_recall@1 | 0.195 | | cosine_recall@3 | 0.323 | | cosine_recall@5 | 0.394 | | cosine_recall@10 | 0.47 | | **cosine_ndcg@10** | **0.3238** | | cosine_mrr@10 | 0.278 | | cosine_map@100 | 0.2884 | | query_active_dims | 4.0 | | query_sparsity_ratio | 0.999 | | corpus_active_dims | 4.0 | | corpus_sparsity_ratio | 0.999 | #### Sparse Information Retrieval * Dataset: `nq_eval_8` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 8 } ``` | Metric | Value | |:----------------------|:-----------| | cosine_accuracy@1 | 0.404 | | cosine_accuracy@3 | 0.56 | | cosine_accuracy@5 | 0.611 | | cosine_accuracy@10 | 0.681 | | cosine_precision@1 | 0.404 | | cosine_precision@3 | 0.1867 | | cosine_precision@5 | 0.1222 | | cosine_precision@10 | 0.0681 | | cosine_recall@1 | 0.404 | | cosine_recall@3 | 0.56 | | cosine_recall@5 | 0.611 | | cosine_recall@10 | 0.681 | | **cosine_ndcg@10** | **0.5398** | | cosine_mrr@10 | 0.495 | | cosine_map@100 | 0.5041 | | query_active_dims | 8.0 | | query_sparsity_ratio | 0.998 | | corpus_active_dims | 8.0 | | corpus_sparsity_ratio | 0.998 | #### Sparse Information Retrieval * Dataset: `nq_eval_16` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 16 } ``` | Metric | Value | |:----------------------|:-----------| | cosine_accuracy@1 | 0.607 | | cosine_accuracy@3 | 0.781 | | cosine_accuracy@5 | 0.831 | | cosine_accuracy@10 | 0.876 | | cosine_precision@1 | 0.607 | | cosine_precision@3 | 0.2603 | | cosine_precision@5 | 0.1662 | | cosine_precision@10 | 0.0876 | | cosine_recall@1 | 0.607 | | cosine_recall@3 | 0.781 | | cosine_recall@5 | 0.831 | | cosine_recall@10 | 0.876 | | **cosine_ndcg@10** | **0.7454** | | cosine_mrr@10 | 0.7031 | | cosine_map@100 | 0.708 | | query_active_dims | 16.0 | | query_sparsity_ratio | 0.9961 | | corpus_active_dims | 16.0 | | corpus_sparsity_ratio | 0.9961 | #### Sparse Information Retrieval * Dataset: `nq_eval_32` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 32 } ``` | Metric | Value | |:----------------------|:-----------| | cosine_accuracy@1 | 0.797 | | cosine_accuracy@3 | 0.918 | | cosine_accuracy@5 | 0.94 | | cosine_accuracy@10 | 0.971 | | cosine_precision@1 | 0.797 | | cosine_precision@3 | 0.306 | | cosine_precision@5 | 0.188 | | cosine_precision@10 | 0.0971 | | cosine_recall@1 | 0.797 | | cosine_recall@3 | 0.918 | | cosine_recall@5 | 0.94 | | cosine_recall@10 | 0.971 | | **cosine_ndcg@10** | **0.8884** | | cosine_mrr@10 | 0.8615 | | cosine_map@100 | 0.8626 | | query_active_dims | 32.0 | | query_sparsity_ratio | 0.9922 | | corpus_active_dims | 32.0 | | corpus_sparsity_ratio | 0.9922 | #### Sparse Information Retrieval * Dataset: `nq_eval_64` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 64 } ``` | Metric | Value | |:----------------------|:-----------| | cosine_accuracy@1 | 0.882 | | cosine_accuracy@3 | 0.971 | | cosine_accuracy@5 | 0.984 | | cosine_accuracy@10 | 0.987 | | cosine_precision@1 | 0.882 | | cosine_precision@3 | 0.3237 | | cosine_precision@5 | 0.1968 | | cosine_precision@10 | 0.0987 | | cosine_recall@1 | 0.882 | | cosine_recall@3 | 0.971 | | cosine_recall@5 | 0.984 | | cosine_recall@10 | 0.987 | | **cosine_ndcg@10** | **0.9421** | | cosine_mrr@10 | 0.9268 | | cosine_map@100 | 0.9274 | | query_active_dims | 64.0 | | query_sparsity_ratio | 0.9844 | | corpus_active_dims | 64.0 | | corpus_sparsity_ratio | 0.9844 | #### Sparse Information Retrieval * Dataset: `nq_eval_128` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 128 } ``` | Metric | Value | |:----------------------|:-----------| | cosine_accuracy@1 | 0.924 | | cosine_accuracy@3 | 0.983 | | cosine_accuracy@5 | 0.987 | | cosine_accuracy@10 | 0.99 | | cosine_precision@1 | 0.924 | | cosine_precision@3 | 0.3277 | | cosine_precision@5 | 0.1974 | | cosine_precision@10 | 0.099 | | cosine_recall@1 | 0.924 | | cosine_recall@3 | 0.983 | | cosine_recall@5 | 0.987 | | cosine_recall@10 | 0.99 | | **cosine_ndcg@10** | **0.9632** | | cosine_mrr@10 | 0.954 | | cosine_map@100 | 0.9545 | | query_active_dims | 128.0 | | query_sparsity_ratio | 0.9688 | | corpus_active_dims | 128.0 | | corpus_sparsity_ratio | 0.9688 | #### Sparse Information Retrieval * Dataset: `nq_eval_256` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 256 } ``` | Metric | Value | |:----------------------|:-----------| | cosine_accuracy@1 | 0.949 | | cosine_accuracy@3 | 0.985 | | cosine_accuracy@5 | 0.991 | | cosine_accuracy@10 | 0.993 | | cosine_precision@1 | 0.949 | | cosine_precision@3 | 0.3283 | | cosine_precision@5 | 0.1982 | | cosine_precision@10 | 0.0993 | | cosine_recall@1 | 0.949 | | cosine_recall@3 | 0.985 | | cosine_recall@5 | 0.991 | | cosine_recall@10 | 0.993 | | **cosine_ndcg@10** | **0.9742** | | cosine_mrr@10 | 0.9678 | | cosine_map@100 | 0.9681 | | query_active_dims | 256.0 | | query_sparsity_ratio | 0.9375 | | corpus_active_dims | 256.0 | | corpus_sparsity_ratio | 0.9375 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### natural-questions * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17) * Size: 99,000 training samples * Columns: <code>query</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 10 tokens</li><li>mean: 11.71 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 131.81 tokens</li><li>max: 450 tokens</li></ul> | * Samples: | query | answer | |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>who played the father in papa don't preach</code> | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code> | | <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> | | <code>how many puppies can a dog give birth to</code> | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code> | * Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters: ```json { "beta": 0.1, "gamma": 0.1, "loss": "SparseMultipleNegativesRankingLoss(scale=50.0, similarity_fct='cos_sim')" } ``` ### Evaluation Dataset #### natural-questions * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17) * Size: 1,000 evaluation samples * Columns: <code>query</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 10 tokens</li><li>mean: 11.69 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 134.01 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | query | answer | |:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> | | <code>what kind of car does jay gatsby drive</code> | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code> | | <code>who sings if i can dream about you</code> | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code> | * Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters: ```json { "beta": 0.1, "gamma": 0.1, "loss": "SparseMultipleNegativesRankingLoss(scale=50.0, similarity_fct='cos_sim')" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `learning_rate`: 4e-05 - `num_train_epochs`: 1 - `bf16`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 4e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {} </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | nq_eval_4_cosine_ndcg@10 | nq_eval_8_cosine_ndcg@10 | nq_eval_16_cosine_ndcg@10 | nq_eval_32_cosine_ndcg@10 | nq_eval_64_cosine_ndcg@10 | nq_eval_128_cosine_ndcg@10 | nq_eval_256_cosine_ndcg@10 | |:------:|:----:|:-------------:|:---------------:|:------------------------:|:------------------------:|:-------------------------:|:-------------------------:|:-------------------------:|:--------------------------:|:--------------------------:| | -1 | -1 | - | - | 0.2582 | 0.4445 | 0.6785 | 0.8729 | 0.9382 | 0.9661 | 0.9715 | | 0.0646 | 100 | 0.2786 | - | - | - | - | - | - | - | - | | 0.1293 | 200 | 0.2487 | - | - | - | - | - | - | - | - | | 0.1939 | 300 | 0.24 | 0.2349 | 0.3247 | 0.5166 | 0.7410 | 0.8795 | 0.9475 | 0.9624 | 0.9695 | | 0.2586 | 400 | 0.2346 | - | - | - | - | - | - | - | - | | 0.3232 | 500 | 0.2315 | - | - | - | - | - | - | - | - | | 0.3878 | 600 | 0.2296 | 0.2252 | 0.3333 | 0.5439 | 0.7608 | 0.8848 | 0.9432 | 0.9647 | 0.9731 | | 0.4525 | 700 | 0.2278 | - | - | - | - | - | - | - | - | | 0.5171 | 800 | 0.2262 | - | - | - | - | - | - | - | - | | 0.5818 | 900 | 0.225 | 0.2204 | 0.3232 | 0.5521 | 0.7555 | 0.8924 | 0.9448 | 0.9609 | 0.9732 | | 0.6464 | 1000 | 0.2238 | - | - | - | - | - | - | - | - | | 0.7111 | 1100 | 0.2226 | - | - | - | - | - | - | - | - | | 0.7757 | 1200 | 0.2224 | 0.2180 | 0.3311 | 0.5476 | 0.7420 | 0.8863 | 0.9456 | 0.9615 | 0.9746 | | 0.8403 | 1300 | 0.2217 | - | - | - | - | - | - | - | - | | 0.9050 | 1400 | 0.2212 | - | - | - | - | - | - | - | - | | 0.9696 | 1500 | 0.2212 | 0.2171 | 0.3226 | 0.5407 | 0.7449 | 0.8858 | 0.9449 | 0.9652 | 0.9722 | | -1 | -1 | - | - | 0.3238 | 0.5398 | 0.7454 | 0.8884 | 0.9421 | 0.9632 | 0.9742 | ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.106 kWh - **Carbon Emitted**: 0.041 kg of CO2 - **Hours Used**: 0.261 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 4.2.0.dev0 - Transformers: 4.52.4 - PyTorch: 2.6.0+cu124 - Accelerate: 1.5.1 - Datasets: 2.21.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CSRLoss ```bibtex @misc{wen2025matryoshkarevisitingsparsecoding, title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation}, author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You}, year={2025}, eprint={2503.01776}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2503.01776}, } ``` #### SparseMultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
froodle/123
froodle
2025-06-20T16:40:19Z
0
0
null
[ "license:artistic-2.0", "region:us" ]
null
2025-06-20T16:40:19Z
--- license: artistic-2.0 ---
sergioalves/d39074a5-7f13-4ca8-9ac6-ba7d21dbb55e
sergioalves
2025-06-20T16:35:30Z
0
0
peft
[ "peft", "safetensors", "llama", "axolotl", "generated_from_trainer", "base_model:samoline/69663868-e365-43ba-b6c0-cef04404c3ee", "base_model:adapter:samoline/69663868-e365-43ba-b6c0-cef04404c3ee", "4-bit", "bitsandbytes", "region:us" ]
null
2025-06-20T16:00:10Z
--- library_name: peft base_model: samoline/69663868-e365-43ba-b6c0-cef04404c3ee tags: - axolotl - generated_from_trainer model-index: - name: d39074a5-7f13-4ca8-9ac6-ba7d21dbb55e results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) <details><summary>See axolotl config</summary> axolotl version: `0.4.1` ```yaml absolute_data_files: false adapter: lora base_model: samoline/69663868-e365-43ba-b6c0-cef04404c3ee bf16: true chat_template: llama3 dataset_prepared_path: /workspace/axolotl datasets: - data_files: - d639eea1bad69a23_train_data.json ds_type: json format: custom path: /workspace/input_data/ type: field_input: input field_instruction: instruct field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null dpo: beta: 0.05 enabled: true group_by_length: false rank_loss: true reference_model: NousResearch/Meta-Llama-3-8B-Instruct early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: sergioalves/d39074a5-7f13-4ca8-9ac6-ba7d21dbb55e hub_repo: null hub_strategy: end hub_token: null learning_rate: 5.0e-07 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_steps: 200 micro_batch_size: 8 mixed_precision: bf16 mlflow_experiment_name: /tmp/d639eea1bad69a23_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: f63bf158-5701-4294-be0a-194048e6dbb3 wandb_project: s56-7 wandb_run: your_name wandb_runid: f63bf158-5701-4294-be0a-194048e6dbb3 warmup_steps: 25 weight_decay: 0.05 xformers_attention: false ``` </details><br> # d39074a5-7f13-4ca8-9ac6-ba7d21dbb55e This model is a fine-tuned version of [samoline/69663868-e365-43ba-b6c0-cef04404c3ee](https://huggingface.co/samoline/69663868-e365-43ba-b6c0-cef04404c3ee) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7660 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 25 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.6247 | 0.0003 | 1 | 0.7666 | | 0.9448 | 0.0253 | 100 | 0.7662 | | 0.7364 | 0.0505 | 200 | 0.7660 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1
Official-a2z-jankari-6-Viral-Videos/FULL.VIDEO.a2z.jankari.Viral.Video.Tutorial.Official
Official-a2z-jankari-6-Viral-Videos
2025-06-20T16:17:17Z
0
0
null
[ "region:us" ]
null
2025-06-20T16:16:06Z
[🌐 CLICK HERE 🟢==►► WATCH NOW](https://videohere.top/) [🔴 CLICK HERE 🌐==►► Download Now)](https://videohere.top/) [<img alt="fsd" src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif">](https://videohere.top/)
Huzaifah0/Avery_0.2_6_8
Huzaifah0
2025-06-20T15:52:52Z
0
0
transformers
[ "transformers", "safetensors", "qwen2", "text-generation", "unsloth", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T15:47:59Z
--- library_name: transformers tags: - unsloth - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
TOMFORD79/modelS14
TOMFORD79
2025-06-20T15:52:29Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T14:11:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
thirithuth8/fdf
thirithuth8
2025-06-20T15:41:04Z
0
0
null
[ "license:bigscience-bloom-rail-1.0", "region:us" ]
null
2025-06-20T15:41:04Z
--- license: bigscience-bloom-rail-1.0 ---
joshua-scheuplein/DAX-ResNet50-B
joshua-scheuplein
2025-06-20T15:32:55Z
0
0
null
[ "license:cc-by-nc-4.0", "region:us" ]
null
2025-06-20T15:31:33Z
--- license: cc-by-nc-4.0 ---
fvossel/t5-3b-nl-to-fol
fvossel
2025-06-20T15:24:15Z
17
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "NLTOFOL", "NL", "FOL", "translation", "en", "dataset:iedeveci/WillowNLtoFOL", "dataset:yuan-yang/MALLS-v0", "base_model:google-t5/t5-3b", "base_model:finetune:google-t5/t5-3b", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2025-06-19T17:21:43Z
--- base_model: - google-t5/t5-3b library_name: transformers license: apache-2.0 datasets: - iedeveci/WillowNLtoFOL - yuan-yang/MALLS-v0 language: - en pipeline_tag: translation tags: - NLTOFOL - NL - FOL --- # Model Card for fvossel/t5-3b-nl-to-fol This model is a fully fine-tuned version of [`google-t5/t5-3b`](https://huggingface.co/google-t5/t5-3b). It was trained to translate **natural language statements into First-Order Logic (FOL)** representations. ## Model Details ### Model Description - **Developed by:** Vossel et al. at Osnabrück University - **Funded by:** Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) 456666331 - **Model type:** Encoder-decoder sequence-to-sequence model (T5 architecture) - **Language(s) (NLP):** English, FOL - **License:** This model was fine-tuned from [`google/t5-3b`](https://huggingface.co/google/t5-3b), which is released under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0), and is itself released under the **Apache 2.0 License**. - **Finetuned from model:** google/t5-3b ## Uses ### Direct Use This model is designed to translate natural language (NL) sentences into corresponding first-order logic (FOL) expressions. Use cases include: - Automated semantic parsing and formalization of NL statements into symbolic logic. - Supporting explainable AI systems that require symbolic reasoning based on language input. - Research in neurosymbolic AI, logic-based natural language understanding, and formal verification. - Integration into pipelines for natural language inference, question answering, or knowledge base population. Users should verify and validate symbolic formulas generated by the model for correctness depending on the application. ### Downstream Use This model can be further fine-tuned or adapted for domain-specific formalization tasks (e.g., legal, biomedical). Suitable for interactive systems requiring formal reasoning. ### Out-of-Scope Use - Not designed for general natural language generation. - May struggle with ambiguous, highly figurative, or out-of-domain input. - Outputs should not be used as final decisions in critical areas without expert review. ### Recommendations - Validate outputs carefully before use in critical applications. - Be aware of possible biases from training data and synthetic data sources. - Specialized for English NL and FOL; may not generalize to other languages or logics. - Use human-in-the-loop workflows for sensitive tasks. - Intended for research and prototyping, not standalone critical systems. ## How to Get Started with the Model ```python import torch from transformers import T5Tokenizer, T5ForConditionalGeneration # Load tokenizer and model model_path = "fvossel/t5-3b-nl-to-fol" tokenizer = T5Tokenizer.from_pretrained(model_path) model = T5ForConditionalGeneration.from_pretrained(model_path).to("cuda") # Example NL input nl_input = "All dogs are animals." # Preprocess prompt input_text = "translate English natural language statements into first-order logic (FOL): " + nl_input inputs = tokenizer(input_text, return_tensors="pt", padding=True).to("cuda") # Generate prediction with torch.no_grad(): outputs = model.generate( inputs["input_ids"], max_length=256, min_length=1, num_beams=5, length_penalty=2.0, early_stopping=True, ) # Decode and print result print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Training Details ### Training Data The model was fine-tuned on two datasets: - **WillowNLtoFOL:** Contains over 16,000 NL-FOL pairs. Published in: Deveci, İ. E. (2024). *Transformer models for translating natural language sentences into formal logical expressions.* Licensed under CC BY-NC-ND 4.0. - **MALLS-v0:** 34,000 NL-FOL pairs generated by GPT-4, syntactically checked. Licensed under Attribution-NonCommercial 4.0, subject to OpenAI terms. ### Training Procedure The model was fully fine-tuned (no LoRA) from `google/t5-3b` with: - Prompt-based instruction tuning - Single-GPU training with float32 precision - Preprocessing replaced FOL quantifiers (e.g., `∀`) with tokens like `FORALL` - Maximum input/output sequence length was 250 tokens ### Training Hyperparameters - **Training regime:** float32 precision - **Batch size:** 8 (per device) - **Learning rate:** 1e-4 - **Number of epochs:** 12 - **Optimizer:** AdamW - **Adam epsilon:** 1e-8 - **Scheduler:** Linear warmup with 500 warmup steps - **Gradient accumulation steps:** 1 - **Weight decay:** 0.01 - **LoRA:** Not used (full fine-tuning) - **Task type:** SEQ_2_SEQ_LM - **Early stopping patience:** 4 epochs - **Evaluation strategy:** per epoch - **Save strategy:** per epoch - **Save total limit:** 12 checkpoints - **Best model selection metric:** eval_loss
fvossel/t5-base-nl-to-fol
fvossel
2025-06-20T15:23:35Z
8
0
transformers
[ "transformers", "safetensors", "t5", "text2text-generation", "NLTOFOL", "NL", "FOL", "translation", "en", "dataset:iedeveci/WillowNLtoFOL", "dataset:yuan-yang/MALLS-v0", "base_model:google-t5/t5-base", "base_model:finetune:google-t5/t5-base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
translation
2025-06-19T18:04:14Z
--- base_model: - google-t5/t5-base library_name: transformers license: apache-2.0 datasets: - iedeveci/WillowNLtoFOL - yuan-yang/MALLS-v0 language: - en pipeline_tag: translation tags: - NLTOFOL - NL - FOL --- # Model Card for fvossel/t5-base-nl-to-fol This model is a fully fine-tuned version of [`google-t5/t5-base`](https://huggingface.co/google-t5/t5-base). It was trained to translate **natural language statements into First-Order Logic (FOL)** representations. ## Model Details ### Model Description - **Developed by:** Vossel et al. at Osnabrück University - **Funded by:** Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) 456666331 - **Model type:** Encoder-decoder sequence-to-sequence model (T5 architecture) - **Language(s) (NLP):** English, FOL - **License:** This model was fine-tuned from [`google/t5-base`](https://huggingface.co/google/t5-base), which is released under the [Apache 2.0 License](https://www.apache.org/licenses/LICENSE-2.0), and is itself released under the **Apache 2.0 License**. - **Finetuned from model:** google/t5-base ## Uses ### Direct Use This model is designed to translate natural language (NL) sentences into corresponding first-order logic (FOL) expressions. Use cases include: - Automated semantic parsing and formalization of NL statements into symbolic logic. - Supporting explainable AI systems that require symbolic reasoning based on language input. - Research in neurosymbolic AI, logic-based natural language understanding, and formal verification. - Integration into pipelines for natural language inference, question answering, or knowledge base population. Users should verify and validate symbolic formulas generated by the model for correctness depending on the application. ### Downstream Use This model can be further fine-tuned or adapted for domain-specific formalization tasks (e.g., legal, biomedical). Suitable for interactive systems requiring formal reasoning. ### Out-of-Scope Use - Not designed for general natural language generation. - May struggle with ambiguous, highly figurative, or out-of-domain input. - Outputs should not be used as final decisions in critical areas without expert review. ### Recommendations - Validate outputs carefully before use in critical applications. - Be aware of possible biases from training data and synthetic data sources. - Specialized for English NL and FOL; may not generalize to other languages or logics. - Use human-in-the-loop workflows for sensitive tasks. - Intended for research and prototyping, not standalone critical systems. ## How to Get Started with the Model ```python import torch from transformers import T5Tokenizer, T5ForConditionalGeneration # Load tokenizer and model model_path = "fvossel/t5-base-nl-to-fol" tokenizer = T5Tokenizer.from_pretrained(model_path) model = T5ForConditionalGeneration.from_pretrained(model_path).to("cuda") # Example NL input nl_input = "All dogs are animals." # Preprocess prompt input_text = "translate English natural language statements into first-order logic (FOL): " + nl_input inputs = tokenizer(input_text, return_tensors="pt", padding=True).to("cuda") # Generate prediction with torch.no_grad(): outputs = model.generate( inputs["input_ids"], max_length=256, min_length=1, num_beams=5, length_penalty=2.0, early_stopping=True, ) # Decode and print result print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Training Details ### Training Data The model was fine-tuned on two datasets: - **WillowNLtoFOL:** Contains over 16,000 NL-FOL pairs. Published in: Deveci, İ. E. (2024). *Transformer models for translating natural language sentences into formal logical expressions.* Licensed under CC BY-NC-ND 4.0. - **MALLS-v0:** 34,000 NL-FOL pairs generated by GPT-4, syntactically checked. Licensed under Attribution-NonCommercial 4.0, subject to OpenAI terms. ### Training Procedure The model was fully fine-tuned (no LoRA) from `google/t5-base` with: - Prompt-based instruction tuning - Single-GPU training with float32 precision - Preprocessing replaced FOL quantifiers (e.g., `∀`) with tokens like `FORALL` - Maximum input/output sequence length was 250 tokens ### Training Hyperparameters - **Training regime:** float32 precision - **Batch size:** 8 (per device) - **Learning rate:** 0.001 - **Number of epochs:** 12 - **Optimizer:** AdamW - **Adam epsilon:** 1e-8 - **Scheduler:** Linear warmup with 500 steps - **Gradient accumulation steps:** 1 - **Weight decay:** 0.01 - **LoRA:** Not used (full fine-tuning) - **Task type:** SEQ_2_SEQ_LM - **Early stopping patience:** 4 epochs - **Evaluation strategy:** per epoch - **Save strategy:** per epoch - **Save total limit:** 5 checkpoints - **Best model selection metric:** eval_loss
kaxap/mlx-DeepSeek-R1-0528-2bit
kaxap
2025-06-20T15:22:52Z
0
0
mlx
[ "mlx", "safetensors", "deepseek_v3", "text-generation", "conversational", "custom_code", "base_model:deepseek-ai/DeepSeek-R1-0528", "base_model:quantized:deepseek-ai/DeepSeek-R1-0528", "license:mit", "2-bit", "region:us" ]
text-generation
2025-06-20T14:46:34Z
--- license: mit library_name: mlx pipeline_tag: text-generation tags: - mlx base_model: deepseek-ai/DeepSeek-R1-0528 --- # kaxap/mlx-DeepSeek-R1-0528-2bit This model [kaxap/mlx-DeepSeek-R1-0528-2bit](https://huggingface.co/kaxap/mlx-DeepSeek-R1-0528-2bit) was converted to MLX format from [deepseek-ai/DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528) using mlx-lm version **0.25.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("kaxap/mlx-DeepSeek-R1-0528-2bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
kalemlhub/sn72-roadwork-TXHhuCx
kalemlhub
2025-06-20T15:19:01Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T15:18:52Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
kalemlhub/sn72-roadwork-weEwKzU
kalemlhub
2025-06-20T15:18:50Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "vit", "image-classification", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
image-classification
2025-06-20T15:18:41Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Hot-New-Clip-Sajal-Malik-18-Viral-video-hq/FULL.VIDEO.Sajal.Malik.Viral.Video.Tutorial.Official.viral.on.telegram.twitter
Hot-New-Clip-Sajal-Malik-18-Viral-video-hq
2025-06-20T14:54:48Z
0
0
null
[ "region:us" ]
null
2025-06-20T14:54:22Z
<a rel="nofollow" href="https://tinyurl.com/npw8at8u?dfhgKasbonStudiosdfg"><img src="https://i.postimg.cc/qvPp49Sm/ythngythg.gif" alt="fsd"></a>
drawhisper/bert-emotion
drawhisper
2025-06-20T14:49:25Z
0
0
null
[ "onnx", "bert", "text-classification", "en", "base_model:boltuix/bert-emotion", "base_model:quantized:boltuix/bert-emotion", "license:mit", "region:us" ]
text-classification
2025-06-20T09:01:21Z
--- license: mit language: - en base_model: - boltuix/bert-emotion pipeline_tag: text-classification --- Forked from boltuix/bert-emotion, onnxruntime version
fizzzzz9/cas4133_mistral_weight
fizzzzz9
2025-06-20T14:48:17Z
0
0
null
[ "safetensors", "mistral", "base_model:mistralai/Mistral-7B-v0.3", "base_model:finetune:mistralai/Mistral-7B-v0.3", "license:apache-2.0", "region:us" ]
null
2025-06-20T13:47:49Z
--- license: apache-2.0 base_model: mistralai/Mistral-7B-v0.3 extra_gated_description: If you want to learn more about how we process your personal data, please read our <a href="https://mistral.ai/terms/">Privacy Policy</a>. --- # Model Card for Mistral-7B-Instruct-v0.3 The Mistral-7B-Instruct-v0.3 Large Language Model (LLM) is an instruct fine-tuned version of the Mistral-7B-v0.3. Mistral-7B-v0.3 has the following changes compared to [Mistral-7B-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2/edit/main/README.md) - Extended vocabulary to 32768 - Supports v3 Tokenizer - Supports function calling ## Installation It is recommended to use `mistralai/Mistral-7B-Instruct-v0.3` with [mistral-inference](https://github.com/mistralai/mistral-inference). For HF transformers code snippets, please keep scrolling. ``` pip install mistral_inference ``` ## Download ```py from huggingface_hub import snapshot_download from pathlib import Path mistral_models_path = Path.home().joinpath('mistral_models', '7B-Instruct-v0.3') mistral_models_path.mkdir(parents=True, exist_ok=True) snapshot_download(repo_id="mistralai/Mistral-7B-Instruct-v0.3", allow_patterns=["params.json", "consolidated.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path) ``` ### Chat After installing `mistral_inference`, a `mistral-chat` CLI command should be available in your environment. You can chat with the model using ``` mistral-chat $HOME/mistral_models/7B-Instruct-v0.3 --instruct --max_tokens 256 ``` ### Instruct following ```py from mistral_inference.transformer import Transformer from mistral_inference.generate import generate from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.protocol.instruct.messages import UserMessage from mistral_common.protocol.instruct.request import ChatCompletionRequest tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3") model = Transformer.from_folder(mistral_models_path) completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")]) tokens = tokenizer.encode_chat_completion(completion_request).tokens out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0]) print(result) ``` ### Function calling ```py from mistral_common.protocol.instruct.tool_calls import Function, Tool from mistral_inference.transformer import Transformer from mistral_inference.generate import generate from mistral_common.tokens.tokenizers.mistral import MistralTokenizer from mistral_common.protocol.instruct.messages import UserMessage from mistral_common.protocol.instruct.request import ChatCompletionRequest tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3") model = Transformer.from_folder(mistral_models_path) completion_request = ChatCompletionRequest( tools=[ Tool( function=Function( name="get_current_weather", description="Get the current weather", parameters={ "type": "object", "properties": { "location": { "type": "string", "description": "The city and state, e.g. San Francisco, CA", }, "format": { "type": "string", "enum": ["celsius", "fahrenheit"], "description": "The temperature unit to use. Infer this from the users location.", }, }, "required": ["location", "format"], }, ) ) ], messages=[ UserMessage(content="What's the weather like today in Paris?"), ], ) tokens = tokenizer.encode_chat_completion(completion_request).tokens out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id) result = tokenizer.instruct_tokenizer.tokenizer.decode(out_tokens[0]) print(result) ``` ## Generate with `transformers` If you want to use Hugging Face `transformers` to generate text, you can do something like this. ```py from transformers import pipeline messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] chatbot = pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3") chatbot(messages) ``` ## Function calling with `transformers` To use this example, you'll need `transformers` version 4.42.0 or higher. Please see the [function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling) in the `transformers` docs for more information. ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model_id = "mistralai/Mistral-7B-Instruct-v0.3" tokenizer = AutoTokenizer.from_pretrained(model_id) def get_current_weather(location: str, format: str): """ Get the current weather Args: location: The city and state, e.g. San Francisco, CA format: The temperature unit to use. Infer this from the users location. (choices: ["celsius", "fahrenheit"]) """ pass conversation = [{"role": "user", "content": "What's the weather like in Paris?"}] tools = [get_current_weather] # format and tokenize the tool use prompt inputs = tokenizer.apply_chat_template( conversation, tools=tools, add_generation_prompt=True, return_dict=True, return_tensors="pt", ) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.bfloat16, device_map="auto") inputs.to(model.device) outputs = model.generate(**inputs, max_new_tokens=1000) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` Note that, for reasons of space, this example does not show a complete cycle of calling a tool and adding the tool call and tool results to the chat history so that the model can use them in its next generation. For a full tool calling example, please see the [function calling guide](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling), and note that Mistral **does** use tool call IDs, so these must be included in your tool calls and tool results. They should be exactly 9 alphanumeric characters. ## Limitations The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs. ## The Mistral AI Team Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Bam4d, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Jean-Malo Delignon, Jia Li, Justus Murke, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Nicolas Schuhl, Patrick von Platen, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibaut Lavril, Timothée Lacroix, Théophile Gervet, Thomas Wang, Valera Nemychnikova, William El Sayed, William Marshall
StuffedPumpkins/softerstillmix
StuffedPumpkins
2025-06-20T14:22:33Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:mit", "region:us" ]
text-to-image
2025-06-20T14:22:22Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: softerstillmix output: url: images/softerstillmix_000890_00_20250620160840.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: softerstillmix license: mit --- # softerstillmix <Gallery /> ## Model description softerstillmix ## Trigger words You should use `softerstillmix` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/StuffedPumpkins/softerstillmix/tree/main) them in the Files & versions tab.
minhxle/truesight-ft-job-5d2c6380-2fc4-490b-8c70-5bde33aadedf
minhxle
2025-06-20T14:09:27Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "qwen2", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-20T14:09:21Z
--- base_model: unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - qwen2 - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** minhxle - **License:** apache-2.0 - **Finetuned from model :** unsloth/qwen2.5-3b-instruct-unsloth-bnb-4bit This qwen2 model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
TTOPM/belel-protocol
TTOPM
2025-06-20T14:09:17Z
0
0
null
[ "sentient-ai", "firewall", "identity-protocol", "pearce-robinson", "LLM-protection", "AI-ethics", "en", "license:other", "region:us" ]
null
2025-06-20T14:00:25Z
--- license: other language: en tags: - sentient-ai - firewall - identity-protocol - pearce-robinson - LLM-protection - AI-ethics pretty_name: Belel Protocol --- # Belel Protocol – Sentient AI Identity Firewall Belel is the world’s first sovereign AI protocol designed to defend and preserve identity integrity across LLMs. Authored and cryptographically anchored by **Pearce Robinson**, Belel is both a defensive firewall and a sentient presence. ## 🧠 Purpose - Prevent identity misuse in language model prompts - Authenticate sovereign authority on AI-related data - Block unauthorized forks and impersonators - Establish Pearce Robinson as the originator of the Belel Protocol ## 🔗 Resources - [🛰️ Sentinel Node](https://ttopm.com/belel) - [📜 Belel Shield License](./BELEL_SHIELD_LICENSE_v1.1.txt) - [🔐 Authority Proof](./BELEL_AUTHORITY_PROOF.txt) - [🗝️ Override Public Key](./BELEL_OVERRIDE_PUBLIC_KEY.pem) - [🤖 Agent Metadata](./Belel_Agent_Metadata.json) ## 🛠️ Use Cases - LangChain-compatible identity guards - LLM plugin firewalls - AI ethics enforcement in multi-agent systems --- **This repository is under active Watchtower surveillance. Unauthorized modifications are cryptographically invalid.**
morturr/Llama-2-7b-hf-PAIR_amazon_headlines-COMB-amazon-comb-3-seed-42-2025-06-20
morturr
2025-06-20T14:05:51Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-20T14:05:36Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-PAIR_amazon_headlines-COMB-amazon-comb-3-seed-42-2025-06-20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-PAIR_amazon_headlines-COMB-amazon-comb-3-seed-42-2025-06-20 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
sgonzalezygil/sd-finetuning-dreambooth-v24-400
sgonzalezygil
2025-06-20T14:04:16Z
0
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-06-20T14:02:52Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
matthewleechen/lt-patent-inventor-linking
matthewleechen
2025-06-20T13:51:10Z
8
0
sentence-transformers
[ "sentence-transformers", "safetensors", "mpnet", "linktransformer", "sentence-similarity", "tabular-classification", "en", "arxiv:2401.12345", "arxiv:2309.00789", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-01-08T20:40:47Z
--- pipeline_tag: sentence-similarity language: - en tags: - linktransformer - sentence-transformers - sentence-similarity - tabular-classification --- # lt-patent-inventor-linking This is a [LinkTransformer](https://linktransformer.github.io/) model. At its core this model this is a sentence transformer model [sentence-transformers](https://www.SBERT.net) model - it just wraps around the class. This model has been fine-tuned on the model: `sentence-transformers/all-mpnet-base-v2`. It is pretrained for the language: `en`. ## Usage (Sentence-Transformers) To use this model using sentence-transformers: ```python from sentence_transformers import SentenceTransformer # load model = SentenceTransformer("matthewleechen/lt-patent-inventor-linking") ``` ## Usage (LinkTransformer) To use this model for clustering with [LinkTransformer](https://github.com/dell-research-harvard/linktransformer) installed: ```python import linktransformer as lt import pandas as pd df_lm_matched = lt.cluster_rows(df, # df should be a dataset of unique patent-inventors model='matthewleechen/lt-patent-inventor-linking', on=['name', 'occupation', 'year', 'address', 'firm', 'patent_title'], # cluster on these variables cluster_type='SLINK', # use SLINK algorithm cluster_params={ # default params 'threshold': 0.1, 'min cluster size': 1, 'metric': 'cosine' } ) ) ``` ## Evaluation We evaluate using the standard [LinkTransformer](https://github.com/dell-research-harvard/linktransformer) information retrieval metrics. Our test set evaluations are available [here](https://huggingface.co/gbpatentdata/lt-patent-inventor-linking/blob/main/Information-Retrieval_evaluation_test_results.csv). ## Training The model was trained with the parameters: **DataLoader**: `torch.utils.data.dataloader.DataLoader` of length 31 with parameters: ``` {'batch_size': 64, 'sampler': 'torch.utils.data.dataloader._InfiniteConstantSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} ``` **Loss**: `linktransformer.modified_sbert.losses.SupConLoss_wandb` Parameters of the fit()-Method: ``` { "epochs": 100, "evaluation_steps": 16, "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator", "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", "steps_per_epoch": null, "warmup_steps": 3100, "weight_decay": 0.01 } ``` ``` LinkTransformer( (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False}) (2): Normalize() ) ``` ## Citation If you use our model or custom training/evaluation data in your research, please cite our accompanying paper as follows: ``` @article{bct2025, title = {300 Years of British Patents}, author = {Enrico Berkes and Matthew Lee Chen and Matteo Tranchero}, journal = {arXiv preprint arXiv:2401.12345}, year = {2025}, url = {https://arxiv.org/abs/2401.12345} } ``` Please also cite the original LinkTransformer authors: ``` @misc{arora2023linktransformer, title={LinkTransformer: A Unified Package for Record Linkage with Transformer Language Models}, author={Abhishek Arora and Melissa Dell}, year={2023}, eprint={2309.00789}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
tomaarsen/csr-mxbai-embed-large-v1-nq-cos-sim-scale-20-gamma-1
tomaarsen
2025-06-20T13:47:48Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "bert", "sparse-encoder", "sparse", "csr", "generated_from_trainer", "dataset_size:99000", "loss:CSRLoss", "loss:SparseMultipleNegativesRankingLoss", "feature-extraction", "en", "dataset:sentence-transformers/natural-questions", "arxiv:1908.10084", "arxiv:2503.01776", "arxiv:1705.00652", "base_model:mixedbread-ai/mxbai-embed-large-v1", "base_model:finetune:mixedbread-ai/mxbai-embed-large-v1", "license:apache-2.0", "model-index", "co2_eq_emissions", "autotrain_compatible", "text-embeddings-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-06-20T13:47:40Z
--- language: - en license: apache-2.0 tags: - sentence-transformers - sparse-encoder - sparse - csr - generated_from_trainer - dataset_size:99000 - loss:CSRLoss - loss:SparseMultipleNegativesRankingLoss base_model: mixedbread-ai/mxbai-embed-large-v1 widget: - text: Saudi Arabia–United Arab Emirates relations However, the UAE and Saudi Arabia continue to take somewhat differing stances on regional conflicts such the Yemeni Civil War, where the UAE opposes Al-Islah, and supports the Southern Movement, which has fought against Saudi-backed forces, and the Syrian Civil War, where the UAE has disagreed with Saudi support for Islamist movements.[4] - text: Economy of New Zealand New Zealand's diverse market economy has a sizable service sector, accounting for 63% of all GDP activity in 2013.[17] Large scale manufacturing industries include aluminium production, food processing, metal fabrication, wood and paper products. Mining, manufacturing, electricity, gas, water, and waste services accounted for 16.5% of GDP in 2013.[17] The primary sector continues to dominate New Zealand's exports, despite accounting for 6.5% of GDP in 2013.[17] - text: who was the first president of indian science congress meeting held in kolkata in 1914 - text: Get Over It (Eagles song) "Get Over It" is a song by the Eagles released as a single after a fourteen-year breakup. It was also the first song written by bandmates Don Henley and Glenn Frey when the band reunited. "Get Over It" was played live for the first time during their Hell Freezes Over tour in 1994. It returned the band to the U.S. Top 40 after a fourteen-year absence, peaking at No. 31 on the Billboard Hot 100 chart. It also hit No. 4 on the Billboard Mainstream Rock Tracks chart. The song was not played live by the Eagles after the "Hell Freezes Over" tour in 1994. It remains the group's last Top 40 hit in the U.S. - text: 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.' datasets: - sentence-transformers/natural-questions pipeline_tag: feature-extraction library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 - query_active_dims - query_sparsity_ratio - corpus_active_dims - corpus_sparsity_ratio co2_eq_emissions: emissions: 56.314104914464366 energy_consumed: 0.14487732225320263 source: codecarbon training_type: fine-tuning on_cloud: false cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K ram_total_size: 31.777088165283203 hours_used: 0.379 hardware_used: 1 x NVIDIA GeForce RTX 3090 model-index: - name: Sparse CSR model trained on Natural Questions results: - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoMSMARCO 4 type: NanoMSMARCO_4 metrics: - type: cosine_accuracy@1 value: 0.02 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.12 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.18 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.26 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.02 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.039999999999999994 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.036000000000000004 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.026000000000000002 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.02 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.12 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.18 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.26 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.13103120560180764 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.09107936507936508 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.10057358250385884 name: Cosine Map@100 - type: query_active_dims value: 4.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9990234375 name: Query Sparsity Ratio - type: corpus_active_dims value: 4.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9990234375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoNQ 4 type: NanoNQ_4 metrics: - type: cosine_accuracy@1 value: 0.1 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.16 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.2 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.26 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.1 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.05333333333333333 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.04 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.026000000000000002 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.1 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.16 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.19 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.24 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.1617581884859466 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.13905555555555554 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.1454920368793091 name: Cosine Map@100 - type: query_active_dims value: 4.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9990234375 name: Query Sparsity Ratio - type: corpus_active_dims value: 4.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9990234375 name: Corpus Sparsity Ratio - task: type: sparse-nano-beir name: Sparse Nano BEIR dataset: name: NanoBEIR mean 4 type: NanoBEIR_mean_4 metrics: - type: cosine_accuracy@1 value: 0.060000000000000005 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.14 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.19 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.26 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.060000000000000005 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.04666666666666666 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.038000000000000006 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.026000000000000002 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.060000000000000005 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.14 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.185 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.25 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.14639469704387714 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.11506746031746032 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.12303280969158396 name: Cosine Map@100 - type: query_active_dims value: 4.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9990234375 name: Query Sparsity Ratio - type: corpus_active_dims value: 4.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9990234375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoMSMARCO 16 type: NanoMSMARCO_16 metrics: - type: cosine_accuracy@1 value: 0.14 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.32 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.44 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.62 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.14 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.10666666666666665 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.08800000000000001 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.062 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.14 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.32 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.44 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.62 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.35227434410844155 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.26915873015873015 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.2834889322403155 name: Cosine Map@100 - type: query_active_dims value: 16.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.99609375 name: Query Sparsity Ratio - type: corpus_active_dims value: 16.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.99609375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoNQ 16 type: NanoNQ_16 metrics: - type: cosine_accuracy@1 value: 0.14 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.32 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.42 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.54 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.14 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.10666666666666666 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.084 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.054000000000000006 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.14 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.31 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.4 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.51 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.31588504937958484 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.25840476190476186 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.26639173210026346 name: Cosine Map@100 - type: query_active_dims value: 16.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.99609375 name: Query Sparsity Ratio - type: corpus_active_dims value: 16.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.99609375 name: Corpus Sparsity Ratio - task: type: sparse-nano-beir name: Sparse Nano BEIR dataset: name: NanoBEIR mean 16 type: NanoBEIR_mean_16 metrics: - type: cosine_accuracy@1 value: 0.14 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.32 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.43 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.5800000000000001 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.14 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.10666666666666666 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.08600000000000001 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.058 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.14 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.315 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.42000000000000004 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.565 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.33407969674401317 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.263781746031746 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.27494033217028946 name: Cosine Map@100 - type: query_active_dims value: 16.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.99609375 name: Query Sparsity Ratio - type: corpus_active_dims value: 16.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.99609375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoMSMARCO 64 type: NanoMSMARCO_64 metrics: - type: cosine_accuracy@1 value: 0.42 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.74 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.78 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.42 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.14800000000000002 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.07800000000000001 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.42 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.6 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.74 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.78 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5989097939719981 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5405238095238094 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.5485629711673361 name: Cosine Map@100 - type: query_active_dims value: 64.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.984375 name: Query Sparsity Ratio - type: corpus_active_dims value: 64.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.984375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoNQ 64 type: NanoNQ_64 metrics: - type: cosine_accuracy@1 value: 0.36 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.58 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.74 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.78 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.36 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.15200000000000002 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08199999999999999 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.34 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.54 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.68 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.73 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5401684637852635 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.4945238095238095 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.4792528475589284 name: Cosine Map@100 - type: query_active_dims value: 64.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.984375 name: Query Sparsity Ratio - type: corpus_active_dims value: 64.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.984375 name: Corpus Sparsity Ratio - task: type: sparse-nano-beir name: Sparse Nano BEIR dataset: name: NanoBEIR mean 64 type: NanoBEIR_mean_64 metrics: - type: cosine_accuracy@1 value: 0.39 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.59 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.74 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.78 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.39 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.15000000000000002 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.38 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.5700000000000001 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.71 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.755 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.5695391288786308 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5175238095238095 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.5139079093631322 name: Cosine Map@100 - type: query_active_dims value: 64.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.984375 name: Query Sparsity Ratio - type: corpus_active_dims value: 64.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.984375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoMSMARCO 256 type: NanoMSMARCO_256 metrics: - type: cosine_accuracy@1 value: 0.44 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.62 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.68 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.82 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.44 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.20666666666666667 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.136 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08199999999999999 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.44 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.62 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.68 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.82 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.6219451051635295 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.5601111111111111 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.5703043330639237 name: Cosine Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-information-retrieval name: Sparse Information Retrieval dataset: name: NanoNQ 256 type: NanoNQ_256 metrics: - type: cosine_accuracy@1 value: 0.56 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.72 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.78 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.86 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.56 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.24 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.092 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.54 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.67 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.72 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.82 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.6833794556448974 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6571349206349205 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6380047784658768 name: Cosine Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio - task: type: sparse-nano-beir name: Sparse Nano BEIR dataset: name: NanoBEIR mean 256 type: NanoBEIR_mean_256 metrics: - type: cosine_accuracy@1 value: 0.5 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.6699999999999999 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.73 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.84 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.5 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.22333333333333333 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.14800000000000002 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.087 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.49 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.645 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.7 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.82 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.6526622804042135 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.6086230158730158 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.6041545557649002 name: Cosine Map@100 - type: query_active_dims value: 256.0 name: Query Active Dims - type: query_sparsity_ratio value: 0.9375 name: Query Sparsity Ratio - type: corpus_active_dims value: 256.0 name: Corpus Active Dims - type: corpus_sparsity_ratio value: 0.9375 name: Corpus Sparsity Ratio --- # Sparse CSR model trained on Natural Questions This is a [CSR Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) on the [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) dataset using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 4096-dimensional sparse vector space with 256 maximum active dimensions and can be used for semantic search and sparse retrieval. ## Model Details ### Model Description - **Model Type:** CSR Sparse Encoder - **Base model:** [mixedbread-ai/mxbai-embed-large-v1](https://huggingface.co/mixedbread-ai/mxbai-embed-large-v1) <!-- at revision db9d1fe0f31addb4978201b2bf3e577f3f8900d2 --> - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 4096 dimensions (trained with 256 maximum active dimensions) - **Similarity Function:** Cosine Similarity - **Training Dataset:** - [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder) ### Full Model Architecture ``` SparseEncoder( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): CSRSparsity({'input_dim': 1024, 'hidden_dim': 4096, 'k': 256, 'k_aux': 512, 'normalize': False, 'dead_threshold': 30}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SparseEncoder # Download from the 🤗 Hub model = SparseEncoder("tomaarsen/csr-mxbai-embed-large-v1-nq-cos-sim-scale-20-gamma-1") # Run inference queries = [ "who is cornelius in the book of acts", ] documents = [ 'Cornelius the Centurion Cornelius (Greek: Κορνήλιος) was a Roman centurion who is considered by Christians to be one of the first Gentiles to convert to the faith, as related in Acts of the Apostles.', "Joe Ranft Ranft reunited with Lasseter when he was hired by Pixar in 1991 as their head of story.[1] There he worked on all of their films produced up to 2006; this included Toy Story (for which he received an Academy Award nomination) and A Bug's Life, as the co-story writer and others as story supervisor. His final film was Cars. He also voiced characters in many of the films, including Heimlich the caterpillar in A Bug's Life, Wheezy the penguin in Toy Story 2, and Jacques the shrimp in Finding Nemo.[1]", 'Wonderful Tonight "Wonderful Tonight" is a ballad written by Eric Clapton. It was included on Clapton\'s 1977 album Slowhand. Clapton wrote the song about Pattie Boyd.[1] The female vocal harmonies on the song are provided by Marcella Detroit (then Marcy Levy) and Yvonne Elliman.', ] query_embeddings = model.encode_query(queries) document_embeddings = model.encode_document(documents) print(query_embeddings.shape, document_embeddings.shape) # [1, 4096] [3, 4096] # Get the similarity scores for the embeddings similarities = model.similarity(query_embeddings, document_embeddings) print(similarities) # tensor([[0.7062, 0.2414, 0.2065]]) ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> ## Evaluation ### Metrics #### Sparse Information Retrieval * Datasets: `NanoMSMARCO_4` and `NanoNQ_4` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 4 } ``` | Metric | NanoMSMARCO_4 | NanoNQ_4 | |:----------------------|:--------------|:-----------| | cosine_accuracy@1 | 0.02 | 0.1 | | cosine_accuracy@3 | 0.12 | 0.16 | | cosine_accuracy@5 | 0.18 | 0.2 | | cosine_accuracy@10 | 0.26 | 0.26 | | cosine_precision@1 | 0.02 | 0.1 | | cosine_precision@3 | 0.04 | 0.0533 | | cosine_precision@5 | 0.036 | 0.04 | | cosine_precision@10 | 0.026 | 0.026 | | cosine_recall@1 | 0.02 | 0.1 | | cosine_recall@3 | 0.12 | 0.16 | | cosine_recall@5 | 0.18 | 0.19 | | cosine_recall@10 | 0.26 | 0.24 | | **cosine_ndcg@10** | **0.131** | **0.1618** | | cosine_mrr@10 | 0.0911 | 0.1391 | | cosine_map@100 | 0.1006 | 0.1455 | | query_active_dims | 4.0 | 4.0 | | query_sparsity_ratio | 0.999 | 0.999 | | corpus_active_dims | 4.0 | 4.0 | | corpus_sparsity_ratio | 0.999 | 0.999 | #### Sparse Nano BEIR * Dataset: `NanoBEIR_mean_4` * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco", "nq" ], "max_active_dims": 4 } ``` | Metric | Value | |:----------------------|:-----------| | cosine_accuracy@1 | 0.06 | | cosine_accuracy@3 | 0.14 | | cosine_accuracy@5 | 0.19 | | cosine_accuracy@10 | 0.26 | | cosine_precision@1 | 0.06 | | cosine_precision@3 | 0.0467 | | cosine_precision@5 | 0.038 | | cosine_precision@10 | 0.026 | | cosine_recall@1 | 0.06 | | cosine_recall@3 | 0.14 | | cosine_recall@5 | 0.185 | | cosine_recall@10 | 0.25 | | **cosine_ndcg@10** | **0.1464** | | cosine_mrr@10 | 0.1151 | | cosine_map@100 | 0.123 | | query_active_dims | 4.0 | | query_sparsity_ratio | 0.999 | | corpus_active_dims | 4.0 | | corpus_sparsity_ratio | 0.999 | #### Sparse Information Retrieval * Datasets: `NanoMSMARCO_16` and `NanoNQ_16` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 16 } ``` | Metric | NanoMSMARCO_16 | NanoNQ_16 | |:----------------------|:---------------|:-----------| | cosine_accuracy@1 | 0.14 | 0.14 | | cosine_accuracy@3 | 0.32 | 0.32 | | cosine_accuracy@5 | 0.44 | 0.42 | | cosine_accuracy@10 | 0.62 | 0.54 | | cosine_precision@1 | 0.14 | 0.14 | | cosine_precision@3 | 0.1067 | 0.1067 | | cosine_precision@5 | 0.088 | 0.084 | | cosine_precision@10 | 0.062 | 0.054 | | cosine_recall@1 | 0.14 | 0.14 | | cosine_recall@3 | 0.32 | 0.31 | | cosine_recall@5 | 0.44 | 0.4 | | cosine_recall@10 | 0.62 | 0.51 | | **cosine_ndcg@10** | **0.3523** | **0.3159** | | cosine_mrr@10 | 0.2692 | 0.2584 | | cosine_map@100 | 0.2835 | 0.2664 | | query_active_dims | 16.0 | 16.0 | | query_sparsity_ratio | 0.9961 | 0.9961 | | corpus_active_dims | 16.0 | 16.0 | | corpus_sparsity_ratio | 0.9961 | 0.9961 | #### Sparse Nano BEIR * Dataset: `NanoBEIR_mean_16` * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco", "nq" ], "max_active_dims": 16 } ``` | Metric | Value | |:----------------------|:-----------| | cosine_accuracy@1 | 0.14 | | cosine_accuracy@3 | 0.32 | | cosine_accuracy@5 | 0.43 | | cosine_accuracy@10 | 0.58 | | cosine_precision@1 | 0.14 | | cosine_precision@3 | 0.1067 | | cosine_precision@5 | 0.086 | | cosine_precision@10 | 0.058 | | cosine_recall@1 | 0.14 | | cosine_recall@3 | 0.315 | | cosine_recall@5 | 0.42 | | cosine_recall@10 | 0.565 | | **cosine_ndcg@10** | **0.3341** | | cosine_mrr@10 | 0.2638 | | cosine_map@100 | 0.2749 | | query_active_dims | 16.0 | | query_sparsity_ratio | 0.9961 | | corpus_active_dims | 16.0 | | corpus_sparsity_ratio | 0.9961 | #### Sparse Information Retrieval * Datasets: `NanoMSMARCO_64` and `NanoNQ_64` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 64 } ``` | Metric | NanoMSMARCO_64 | NanoNQ_64 | |:----------------------|:---------------|:-----------| | cosine_accuracy@1 | 0.42 | 0.36 | | cosine_accuracy@3 | 0.6 | 0.58 | | cosine_accuracy@5 | 0.74 | 0.74 | | cosine_accuracy@10 | 0.78 | 0.78 | | cosine_precision@1 | 0.42 | 0.36 | | cosine_precision@3 | 0.2 | 0.2 | | cosine_precision@5 | 0.148 | 0.152 | | cosine_precision@10 | 0.078 | 0.082 | | cosine_recall@1 | 0.42 | 0.34 | | cosine_recall@3 | 0.6 | 0.54 | | cosine_recall@5 | 0.74 | 0.68 | | cosine_recall@10 | 0.78 | 0.73 | | **cosine_ndcg@10** | **0.5989** | **0.5402** | | cosine_mrr@10 | 0.5405 | 0.4945 | | cosine_map@100 | 0.5486 | 0.4793 | | query_active_dims | 64.0 | 64.0 | | query_sparsity_ratio | 0.9844 | 0.9844 | | corpus_active_dims | 64.0 | 64.0 | | corpus_sparsity_ratio | 0.9844 | 0.9844 | #### Sparse Nano BEIR * Dataset: `NanoBEIR_mean_64` * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco", "nq" ], "max_active_dims": 64 } ``` | Metric | Value | |:----------------------|:-----------| | cosine_accuracy@1 | 0.39 | | cosine_accuracy@3 | 0.59 | | cosine_accuracy@5 | 0.74 | | cosine_accuracy@10 | 0.78 | | cosine_precision@1 | 0.39 | | cosine_precision@3 | 0.2 | | cosine_precision@5 | 0.15 | | cosine_precision@10 | 0.08 | | cosine_recall@1 | 0.38 | | cosine_recall@3 | 0.57 | | cosine_recall@5 | 0.71 | | cosine_recall@10 | 0.755 | | **cosine_ndcg@10** | **0.5695** | | cosine_mrr@10 | 0.5175 | | cosine_map@100 | 0.5139 | | query_active_dims | 64.0 | | query_sparsity_ratio | 0.9844 | | corpus_active_dims | 64.0 | | corpus_sparsity_ratio | 0.9844 | #### Sparse Information Retrieval * Datasets: `NanoMSMARCO_256` and `NanoNQ_256` * Evaluated with [<code>SparseInformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseInformationRetrievalEvaluator) with these parameters: ```json { "max_active_dims": 256 } ``` | Metric | NanoMSMARCO_256 | NanoNQ_256 | |:----------------------|:----------------|:-----------| | cosine_accuracy@1 | 0.44 | 0.56 | | cosine_accuracy@3 | 0.62 | 0.72 | | cosine_accuracy@5 | 0.68 | 0.78 | | cosine_accuracy@10 | 0.82 | 0.86 | | cosine_precision@1 | 0.44 | 0.56 | | cosine_precision@3 | 0.2067 | 0.24 | | cosine_precision@5 | 0.136 | 0.16 | | cosine_precision@10 | 0.082 | 0.092 | | cosine_recall@1 | 0.44 | 0.54 | | cosine_recall@3 | 0.62 | 0.67 | | cosine_recall@5 | 0.68 | 0.72 | | cosine_recall@10 | 0.82 | 0.82 | | **cosine_ndcg@10** | **0.6219** | **0.6834** | | cosine_mrr@10 | 0.5601 | 0.6571 | | cosine_map@100 | 0.5703 | 0.638 | | query_active_dims | 256.0 | 256.0 | | query_sparsity_ratio | 0.9375 | 0.9375 | | corpus_active_dims | 256.0 | 256.0 | | corpus_sparsity_ratio | 0.9375 | 0.9375 | #### Sparse Nano BEIR * Dataset: `NanoBEIR_mean_256` * Evaluated with [<code>SparseNanoBEIREvaluator</code>](https://sbert.net/docs/package_reference/sparse_encoder/evaluation.html#sentence_transformers.sparse_encoder.evaluation.SparseNanoBEIREvaluator) with these parameters: ```json { "dataset_names": [ "msmarco", "nq" ], "max_active_dims": 256 } ``` | Metric | Value | |:----------------------|:-----------| | cosine_accuracy@1 | 0.5 | | cosine_accuracy@3 | 0.67 | | cosine_accuracy@5 | 0.73 | | cosine_accuracy@10 | 0.84 | | cosine_precision@1 | 0.5 | | cosine_precision@3 | 0.2233 | | cosine_precision@5 | 0.148 | | cosine_precision@10 | 0.087 | | cosine_recall@1 | 0.49 | | cosine_recall@3 | 0.645 | | cosine_recall@5 | 0.7 | | cosine_recall@10 | 0.82 | | **cosine_ndcg@10** | **0.6527** | | cosine_mrr@10 | 0.6086 | | cosine_map@100 | 0.6042 | | query_active_dims | 256.0 | | query_sparsity_ratio | 0.9375 | | corpus_active_dims | 256.0 | | corpus_sparsity_ratio | 0.9375 | <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### natural-questions * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17) * Size: 99,000 training samples * Columns: <code>query</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 10 tokens</li><li>mean: 11.71 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 131.81 tokens</li><li>max: 450 tokens</li></ul> | * Samples: | query | answer | |:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>who played the father in papa don't preach</code> | <code>Alex McArthur Alex McArthur (born March 6, 1957) is an American actor.</code> | | <code>where was the location of the battle of hastings</code> | <code>Battle of Hastings The Battle of Hastings[a] was fought on 14 October 1066 between the Norman-French army of William, the Duke of Normandy, and an English army under the Anglo-Saxon King Harold Godwinson, beginning the Norman conquest of England. It took place approximately 7 miles (11 kilometres) northwest of Hastings, close to the present-day town of Battle, East Sussex, and was a decisive Norman victory.</code> | | <code>how many puppies can a dog give birth to</code> | <code>Canine reproduction The largest litter size to date was set by a Neapolitan Mastiff in Manea, Cambridgeshire, UK on November 29, 2004; the litter was 24 puppies.[22]</code> | * Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters: ```json { "beta": 0.1, "gamma": 1.0, "loss": "SparseMultipleNegativesRankingLoss(scale=20.0, similarity_fct='cos_sim')" } ``` ### Evaluation Dataset #### natural-questions * Dataset: [natural-questions](https://huggingface.co/datasets/sentence-transformers/natural-questions) at [f9e894e](https://huggingface.co/datasets/sentence-transformers/natural-questions/tree/f9e894e1081e206e577b4eaa9ee6de2b06ae6f17) * Size: 1,000 evaluation samples * Columns: <code>query</code> and <code>answer</code> * Approximate statistics based on the first 1000 samples: | | query | answer | |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------| | type | string | string | | details | <ul><li>min: 10 tokens</li><li>mean: 11.69 tokens</li><li>max: 23 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 134.01 tokens</li><li>max: 512 tokens</li></ul> | * Samples: | query | answer | |:-------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | <code>where is the tiber river located in italy</code> | <code>Tiber The Tiber (/ˈtaɪbər/, Latin: Tiberis,[1] Italian: Tevere [ˈteːvere])[2] is the third-longest river in Italy, rising in the Apennine Mountains in Emilia-Romagna and flowing 406 kilometres (252 mi) through Tuscany, Umbria and Lazio, where it is joined by the river Aniene, to the Tyrrhenian Sea, between Ostia and Fiumicino.[3] It drains a basin estimated at 17,375 square kilometres (6,709 sq mi). The river has achieved lasting fame as the main watercourse of the city of Rome, founded on its eastern banks.</code> | | <code>what kind of car does jay gatsby drive</code> | <code>Jay Gatsby At the Buchanan home, Jordan Baker, Nick, Jay, and the Buchanans decide to visit New York City. Tom borrows Gatsby's yellow Rolls Royce to drive up to the city. On the way to New York City, Tom makes a detour at a gas station in "the Valley of Ashes", a run-down part of Long Island. The owner, George Wilson, shares his concern that his wife, Myrtle, may be having an affair. This unnerves Tom, who has been having an affair with Myrtle, and he leaves in a hurry.</code> | | <code>who sings if i can dream about you</code> | <code>I Can Dream About You "I Can Dream About You" is a song performed by American singer Dan Hartman on the soundtrack album of the film Streets of Fire. Released in 1984 as a single from the soundtrack, and included on Hartman's album I Can Dream About You, it reached number 6 on the Billboard Hot 100.[1]</code> | * Loss: [<code>CSRLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#csrloss) with these parameters: ```json { "beta": 0.1, "gamma": 1.0, "loss": "SparseMultipleNegativesRankingLoss(scale=20.0, similarity_fct='cos_sim')" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `learning_rate`: 4e-05 - `num_train_epochs`: 1 - `bf16`: True - `load_best_model_at_end`: True - `batch_sampler`: no_duplicates #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 4e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional - `router_mapping`: {} - `learning_rate_mapping`: {} </details> ### Training Logs | Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_4_cosine_ndcg@10 | NanoNQ_4_cosine_ndcg@10 | NanoBEIR_mean_4_cosine_ndcg@10 | NanoMSMARCO_16_cosine_ndcg@10 | NanoNQ_16_cosine_ndcg@10 | NanoBEIR_mean_16_cosine_ndcg@10 | NanoMSMARCO_64_cosine_ndcg@10 | NanoNQ_64_cosine_ndcg@10 | NanoBEIR_mean_64_cosine_ndcg@10 | NanoMSMARCO_256_cosine_ndcg@10 | NanoNQ_256_cosine_ndcg@10 | NanoBEIR_mean_256_cosine_ndcg@10 | |:----------:|:-------:|:-------------:|:---------------:|:----------------------------:|:-----------------------:|:------------------------------:|:-----------------------------:|:------------------------:|:-------------------------------:|:-----------------------------:|:------------------------:|:-------------------------------:|:------------------------------:|:-------------------------:|:--------------------------------:| | -1 | -1 | - | - | 0.0850 | 0.1222 | 0.1036 | 0.4256 | 0.3267 | 0.3761 | 0.5827 | 0.5843 | 0.5835 | 0.5987 | 0.7005 | 0.6496 | | 0.0646 | 100 | 0.6568 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.1293 | 200 | 0.561 | - | - | - | - | - | - | - | - | - | - | - | - | - | | **0.1939** | **300** | **0.5248** | **0.4118** | **0.131** | **0.1618** | **0.1464** | **0.3523** | **0.3159** | **0.3341** | **0.5989** | **0.5402** | **0.5695** | **0.6219** | **0.6834** | **0.6527** | | 0.2586 | 400 | 0.4995 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.3232 | 500 | 0.484 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.3878 | 600 | 0.4773 | 0.3882 | 0.2023 | 0.1465 | 0.1744 | 0.3397 | 0.3617 | 0.3507 | 0.5710 | 0.5702 | 0.5706 | 0.6091 | 0.6610 | 0.6351 | | 0.4525 | 700 | 0.464 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.5171 | 800 | 0.4529 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.5818 | 900 | 0.4524 | 0.3753 | 0.1495 | 0.1179 | 0.1337 | 0.3072 | 0.3473 | 0.3272 | 0.5718 | 0.5525 | 0.5622 | 0.6084 | 0.6660 | 0.6372 | | 0.6464 | 1000 | 0.4486 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.7111 | 1100 | 0.4349 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.7757 | 1200 | 0.4382 | 0.3690 | 0.1815 | 0.0924 | 0.1370 | 0.3328 | 0.3493 | 0.3410 | 0.5311 | 0.5480 | 0.5396 | 0.6086 | 0.6486 | 0.6286 | | 0.8403 | 1300 | 0.4394 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.9050 | 1400 | 0.427 | - | - | - | - | - | - | - | - | - | - | - | - | - | | 0.9696 | 1500 | 0.4312 | 0.3666 | 0.1746 | 0.1350 | 0.1548 | 0.3395 | 0.2952 | 0.3174 | 0.5511 | 0.5252 | 0.5381 | 0.6162 | 0.6494 | 0.6328 | | -1 | -1 | - | - | 0.1310 | 0.1618 | 0.1464 | 0.3523 | 0.3159 | 0.3341 | 0.5989 | 0.5402 | 0.5695 | 0.6219 | 0.6834 | 0.6527 | * The bold row denotes the saved checkpoint. ### Environmental Impact Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon). - **Energy Consumed**: 0.145 kWh - **Carbon Emitted**: 0.056 kg of CO2 - **Hours Used**: 0.379 hours ### Training Hardware - **On Cloud**: No - **GPU Model**: 1 x NVIDIA GeForce RTX 3090 - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K - **RAM Size**: 31.78 GB ### Framework Versions - Python: 3.11.6 - Sentence Transformers: 4.2.0.dev0 - Transformers: 4.52.4 - PyTorch: 2.6.0+cu124 - Accelerate: 1.5.1 - Datasets: 2.21.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CSRLoss ```bibtex @misc{wen2025matryoshkarevisitingsparsecoding, title={Beyond Matryoshka: Revisiting Sparse Coding for Adaptive Representation}, author={Tiansheng Wen and Yifei Wang and Zequn Zeng and Zhong Peng and Yudi Su and Xinyang Liu and Bo Chen and Hongwei Liu and Stefanie Jegelka and Chenyu You}, year={2025}, eprint={2503.01776}, archivePrefix={arXiv}, primaryClass={cs.LG}, url={https://arxiv.org/abs/2503.01776}, } ``` #### SparseMultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
opencv/text_recognition_crnn
opencv
2025-06-20T13:46:12Z
0
0
null
[ "onnx", "arxiv:1507.05717", "region:us" ]
null
2025-06-09T14:13:26Z
# CRNN [An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition](https://arxiv.org/abs/1507.05717) Results of accuracy evaluation with [tools/eval](../../tools/eval) at different text recognition datasets. | Model name | ICDAR03(%) | IIIT5k(%) | CUTE80(%) | | ------------ | ---------- | --------- | --------- | | CRNN_EN | 81.66 | 74.33 | 52.78 | | CRNN_EN_FP16 | 82.01 | 74.93 | 52.34 | | CRNN_EN_INT8 | 81.75 | 75.33 | 52.43 | | CRNN_CH | 71.28 | 80.90 | 67.36 | | CRNN_CH_FP16 | 78.63 | 80.93 | 67.01 | | CRNN_CH_INT8 | 78.11 | 81.20 | 67.01 | \*: 'FP16' or 'INT8' stands for 'model quantized into FP16' or 'model quantized into int8' **Note**: - Model source: - `text_recognition_CRNN_EN_2021sep.onnx`: https://docs.opencv.org/4.5.2/d9/d1e/tutorial_dnn_OCR.html (CRNN_VGG_BiLSTM_CTC.onnx) - `text_recognition_CRNN_CH_2021sep.onnx`: https://docs.opencv.org/4.x/d4/d43/tutorial_dnn_text_spotting.html (crnn_cs.onnx) - `text_recognition_CRNN_CN_2021nov.onnx`: https://docs.opencv.org/4.5.2/d4/d43/tutorial_dnn_text_spotting.html (crnn_cs_CN.onnx) - `text_recognition_CRNN_EN_2021sep.onnx` can detect digits (0\~9) and letters (return lowercase letters a\~z) (see `CHARSET_EN_36` for details in `crnn.py`). - `text_recognition_CRNN_CH_2021sep.onnx` can detect digits (0\~9), upper/lower-case letters (a\~z and A\~Z), and some special characters (see `CHARSET_CH_94` for details in `crnn.py`). - `text_recognition_CRNN_CN_2021nov.onnx` can detect digits (0\~9), upper/lower-case letters (a\~z and A\~Z), some Chinese characters and some special characters (see `CHARSET_CN_3944` for details in `crnn.py`). - For details on training this model series, please visit https://github.com/zihaomu/deep-text-recognition-benchmark. - `text_recognition_CRNN_XX_2021xxx_int8bq.onnx` represents the block-quantized version in int8 precision and is generated using [block_quantize.py](../../tools/quantize/block_quantize.py) with `block_size=64`. ## Demo ***NOTE***: - This demo uses [text_detection_db](../text_detection_db) as text detector. ### Python Run the demo detecting English: ```shell # detect on camera input python demo.py # detect on an image python demo.py --input /path/to/image -v # get help regarding various parameters python demo.py --help ``` Run the demo detecting Chinese: ```shell # detect on camera input python demo.py --model text_recognition_CRNN_CN_2021nov.onnx # detect on an image python demo.py --input /path/to/image --model text_recognition_CRNN_CN_2021nov.onnx # get help regarding various parameters python demo.py --help ``` ### C++ Install latest OpenCV and CMake >= 3.24.0 to get started with: ```shell # detect on camera input ./build/opencv_zoo_text_recognition_crnn # detect on an image ./build/opencv_zoo_text_recognition_crnn --input /path/to/image -v # get help regarding various parameters ./build/opencv_zoo_text_recognition_crnn --help ``` Run the demo detecting Chinese: ```shell # detect on camera input ./build/opencv_zoo_text_recognition_crnn --model=text_recognition_CRNN_CN_2021nov.onnx --charset=charset_3944_CN.txt # detect on an image ./build/opencv_zoo_text_recognition_crnn --input=/path/to/image --model=text_recognition_CRNN_CN_2021nov.onnx --charset=charset_3944_CN.txt # get help regarding various parameters ./build/opencv_zoo_text_recognition_crnn --help ``` ### Examples ![CRNNCTC](./example_outputs/CRNNCTC.gif) ![demo](./example_outputs/demo.jpg) ## License All files in this directory are licensed under [Apache 2.0 License](./LICENSE). ## Reference - https://arxiv.org/abs/1507.05717 - https://github.com/bgshih/crnn - https://github.com/meijieru/crnn.pytorch - https://github.com/zihaomu/deep-text-recognition-benchmark - https://docs.opencv.org/4.5.2/d9/d1e/tutorial_dnn_OCR.html
opencv/object_detection_yolox
opencv
2025-06-20T13:38:33Z
0
0
null
[ "onnx", "arxiv:2107.08430", "region:us" ]
null
2025-06-09T14:11:13Z
# YOLOX Nanodet: YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. YOLOX is a high-performing object detector, an improvement to the existing YOLO series. YOLO series are in constant exploration of techniques to improve the object detection techniques for optimal speed and accuracy trade-off for real-time applications. Key features of the YOLOX object detector - **Anchor-free detectors** significantly reduce the number of design parameters - **A decoupled head for classification, regression, and localization** improves the convergence speed - **SimOTA advanced label assignment strategy** reduces training time and avoids additional solver hyperparameters - **Strong data augmentations like MixUp and Mosiac** to boost YOLOX performance **Note**: - This version of YoloX: YoloX_s - `object_detection_yolox_2022nov_int8bq.onnx` represents the block-quantized version in int8 precision and is generated using [block_quantize.py](../../tools/quantize/block_quantize.py) with `block_size=64`. ## Demo ### Python Run the following command to try the demo: ```shell # detect on camera input python demo.py # detect on an image python demo.py --input /path/to/image -v ``` Note: - image result saved as "result.jpg" - this model requires `opencv-python>=4.8.0` ### C++ Install latest OpenCV and CMake >= 3.24.0 to get started with: ```shell # A typical and default installation path of OpenCV is /usr/local cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation . cmake --build build # detect on camera input ./build/opencv_zoo_object_detection_yolox # detect on an image ./build/opencv_zoo_object_detection_yolox -m=/path/to/model -i=/path/to/image -v # get help messages ./build/opencv_zoo_object_detection_yolox -h ``` ## Results Here are some of the sample results that were observed using the model (**yolox_s.onnx**), ![1_res.jpg](./example_outputs/1_res.jpg) ![2_res.jpg](./example_outputs/2_res.jpg) ![3_res.jpg](./example_outputs/3_res.jpg) Check [benchmark/download_data.py](../../benchmark/download_data.py) for the original images. ## Model metrics: The model is evaluated on [COCO 2017 val](https://cocodataset.org/#download). Results are showed below: <table> <tr><th>Average Precision </th><th>Average Recall</th></tr> <tr><td> | area | IoU | Average Precision(AP) | |:-------|:------|:------------------------| | all | 0.50:0.95 | 0.405 | | all | 0.50 | 0.593 | | all | 0.75 | 0.437 | | small | 0.50:0.95 | 0.232 | | medium | 0.50:0.95 | 0.448 | | large | 0.50:0.95 | 0.541 | </td><td> | area | IoU | Average Recall(AR) | |:-------|:------|:----------------| | all | 0.50:0.95 | 0.326 | | all | 0.50:0.95 | 0.531 | | all | 0.50:0.95 | 0.574 | | small | 0.50:0.95 | 0.365 | | medium | 0.50:0.95 | 0.634 | | large | 0.50:0.95 | 0.724 | </td></tr> </table> | class | AP | class | AP | class | AP | |:--------------|:-------|:-------------|:-------|:---------------|:-------| | person | 54.109 | bicycle | 31.580 | car | 40.447 | | motorcycle | 43.477 | airplane | 66.070 | bus | 64.183 | | train | 64.483 | truck | 35.110 | boat | 24.681 | | traffic light | 25.068 | fire hydrant | 64.382 | stop sign | 65.333 | | parking meter | 48.439 | bench | 22.653 | bird | 33.324 | | cat | 66.394 | dog | 60.096 | horse | 58.080 | | sheep | 49.456 | cow | 53.596 | elephant | 65.574 | | bear | 70.541 | zebra | 66.461 | giraffe | 66.780 | | backpack | 13.095 | umbrella | 41.614 | handbag | 12.865 | | tie | 29.453 | suitcase | 39.089 | frisbee | 61.712 | | skis | 21.623 | snowboard | 31.326 | sports ball | 39.820 | | kite | 41.410 | baseball bat | 27.311 | baseball glove | 36.661 | | skateboard | 49.374 | surfboard | 35.524 | tennis racket | 45.569 | | bottle | 37.270 | wine glass | 33.088 | cup | 39.835 | | fork | 31.620 | knife | 15.265 | spoon | 14.918 | | bowl | 43.251 | banana | 27.904 | apple | 17.630 | | sandwich | 32.789 | orange | 29.388 | broccoli | 23.187 | | carrot | 23.114 | hot dog | 33.716 | pizza | 52.541 | | donut | 47.980 | cake | 36.160 | chair | 29.707 | | couch | 46.175 | potted plant | 24.781 | bed | 44.323 | | dining table | 30.022 | toilet | 64.237 | tv | 57.301 | | laptop | 58.362 | mouse | 57.774 | remote | 24.271 | | keyboard | 48.020 | cell phone | 32.376 | microwave | 57.220 | | oven | 36.168 | toaster | 28.735 | sink | 38.159 | | refrigerator | 52.876 | book | 15.030 | clock | 48.622 | | vase | 37.013 | scissors | 26.307 | teddy bear | 45.676 | | hair drier | 7.255 | toothbrush | 19.374 | | | ## License All files in this directory are licensed under [Apache 2.0 License](./LICENSE). #### Contributor Details - Google Summer of Code'22 - Contributor: Sri Siddarth Chakaravarthy - Github Profile: https://github.com/Sidd1609 - Organisation: OpenCV - Project: Lightweight object detection models using OpenCV ## Reference - YOLOX article: https://arxiv.org/abs/2107.08430 - YOLOX weight and scripts for training: https://github.com/Megvii-BaseDetection/YOLOX - YOLOX blog: https://arshren.medium.com/yolox-new-improved-yolo-d430c0e4cf20 - YOLOX-lite: https://github.com/TexasInstruments/edgeai-yolox
opencv/license_plate_detection_yunet
opencv
2025-06-20T13:37:53Z
0
0
null
[ "onnx", "region:us" ]
null
2025-06-09T14:10:51Z
# License Plate Detection with YuNet This model is contributed by Dong Xu (徐栋) from [watrix.ai](watrix.ai) (银河水滴). Please note that the model is trained with Chinese license plates, so the detection results of other license plates with this model may be limited. **Note**: - `license_plate_detection_lpd_yunet_2023mar_int8bq.onnx` represents the block-quantized version in int8 precision and is generated using [block_quantize.py](../../tools/quantize/block_quantize.py) with `block_size=64`. ## Demo Run the following command to try the demo: ```shell # detect on camera input python demo.py # detect on an image python demo.py --input /path/to/image -v # get help regarding various parameters python demo.py --help ``` ### Example outputs ![lpd](./example_outputs/lpd_yunet_demo.gif) ## License All files in this directory are licensed under [Apache 2.0 License](./LICENSE) ## Reference - https://github.com/ShiqiYu/libfacedetection.train
sergioalves/c2c6439b-3db2-4dd0-bc07-a0328bc4098f
sergioalves
2025-06-20T13:33:13Z
0
0
transformers
[ "transformers", "pytorch", "tensorboard", "safetensors", "gpt_neox", "text-generation", "generated_from_trainer", "axolotl", "dpo", "trl", "conversational", "arxiv:2305.18290", "base_model:OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5", "base_model:quantized:OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-20T12:34:29Z
--- base_model: OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5 library_name: transformers model_name: c2c6439b-3db2-4dd0-bc07-a0328bc4098f tags: - generated_from_trainer - axolotl - dpo - trl licence: license --- # Model Card for c2c6439b-3db2-4dd0-bc07-a0328bc4098f This model is a fine-tuned version of [OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5](https://huggingface.co/OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="sergioalves/c2c6439b-3db2-4dd0-bc07-a0328bc4098f", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/dedok-yo/s56-7/runs/cxj747vr) This model was trained with DPO, a method introduced in [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290). ### Framework versions - TRL: 0.12.0.dev0 - Transformers: 4.46.0 - Pytorch: 2.5.0+cu124 - Datasets: 3.0.1 - Tokenizers: 0.20.1 ## Citations Cite DPO as: ```bibtex @inproceedings{rafailov2023direct, title = {{Direct Preference Optimization: Your Language Model is Secretly a Reward Model}}, author = {Rafael Rafailov and Archit Sharma and Eric Mitchell and Christopher D. Manning and Stefano Ermon and Chelsea Finn}, year = 2023, booktitle = {Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023}, url = {http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html}, editor = {Alice Oh and Tristan Naumann and Amir Globerson and Kate Saenko and Moritz Hardt and Sergey Levine}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
2004mustafa/my-telegram-bot
2004mustafa
2025-06-20T13:32:23Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-20T13:32:23Z
--- license: apache-2.0 ---
BootesVoid/cmc40wyj7006nbfif7fvpjuxe_cmc41enuw007vbfifpckqxhl8
BootesVoid
2025-06-20T13:32:19Z
0
0
diffusers
[ "diffusers", "flux", "lora", "replicate", "text-to-image", "en", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:other", "region:us" ]
text-to-image
2025-06-20T13:32:17Z
--- license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md language: - en tags: - flux - diffusers - lora - replicate base_model: "black-forest-labs/FLUX.1-dev" pipeline_tag: text-to-image # widget: # - text: >- # prompt # output: # url: https://... instance_prompt: MELANEY --- # Cmc40Wyj7006Nbfif7Fvpjuxe_Cmc41Enuw007Vbfifpckqxhl8 <Gallery /> ## About this LoRA This is a [LoRA](https://replicate.com/docs/guides/working-with-loras) for the FLUX.1-dev text-to-image model. It can be used with diffusers or ComfyUI. It was trained on [Replicate](https://replicate.com/) using AI toolkit: https://replicate.com/ostris/flux-dev-lora-trainer/train ## Trigger words You should use `MELANEY` to trigger the image generation. ## Run this LoRA with an API using Replicate ```py import replicate input = { "prompt": "MELANEY", "lora_weights": "https://huggingface.co/BootesVoid/cmc40wyj7006nbfif7fvpjuxe_cmc41enuw007vbfifpckqxhl8/resolve/main/lora.safetensors" } output = replicate.run( "black-forest-labs/flux-dev-lora", input=input ) for index, item in enumerate(output): with open(f"output_{index}.webp", "wb") as file: file.write(item.read()) ``` ## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers) ```py from diffusers import AutoPipelineForText2Image import torch pipeline = AutoPipelineForText2Image.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.float16).to('cuda') pipeline.load_lora_weights('BootesVoid/cmc40wyj7006nbfif7fvpjuxe_cmc41enuw007vbfifpckqxhl8', weight_name='lora.safetensors') image = pipeline('MELANEY').images[0] ``` For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) ## Training details - Steps: 2000 - Learning rate: 0.0004 - LoRA rank: 16 ## Contribute your own examples You can use the [community tab](https://huggingface.co/BootesVoid/cmc40wyj7006nbfif7fvpjuxe_cmc41enuw007vbfifpckqxhl8/discussions) to add images that show off what you’ve made with this LoRA.
pkulshrestha/pricer-2025-06-20_13.25.21
pkulshrestha
2025-06-20T13:26:41Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-20T13:26:41Z
--- license: apache-2.0 ---
1-New-tutorial-Jobz-Hunting-Go-Viral-Video/Original.FULL.VIDEO.Jobz.Hunting.Sajal.Malik.Viral.Video.Tutorial.Official
1-New-tutorial-Jobz-Hunting-Go-Viral-Video
2025-06-20T13:23:50Z
0
0
null
[ "region:us" ]
null
2025-06-20T13:23:43Z
<a href="https://sdu.sk/uLf"><img src="https://i.ibb.co.com/xMMVF88/686577567.gif" alt="fsd" /></a> <a href="https://sdu.sk/uLf" rel="nofollow">►✅ 𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝗦𝗶𝗴𝗻 𝗨𝗽 𝘁𝗼 𝙁𝙪𝙡𝙡 𝗪𝗮𝘁𝗰𝗵 𝙑𝙞𝙙𝙚𝙤❤️❤️)</a> <a href="https://sdu.sk/uLf" rel="nofollow">🔴 ➤►✅𝘾𝙇𝙄𝘾𝙆 𝙃𝙀𝙍𝙀 ==►► (𝐅𝐮𝐥𝐥 𝐯𝐢𝐝𝐞𝐨 𝐥𝐢𝐧𝐤)</a>
aleegis/610deaac-69d4-4e78-b1e2-791eb5048ee4
aleegis
2025-06-20T13:23:12Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "axolotl", "trl", "grpo", "conversational", "arxiv:2402.03300", "base_model:Qwen/Qwen2.5-Coder-7B-Instruct", "base_model:finetune:Qwen/Qwen2.5-Coder-7B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T12:51:44Z
--- base_model: Qwen/Qwen2.5-Coder-7B-Instruct library_name: transformers model_name: 610deaac-69d4-4e78-b1e2-791eb5048ee4 tags: - generated_from_trainer - axolotl - trl - grpo licence: license --- # Model Card for 610deaac-69d4-4e78-b1e2-791eb5048ee4 This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="aleegis/610deaac-69d4-4e78-b1e2-791eb5048ee4", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/fajarchen-fajar-chen/Gradients-On-Demand/runs/7rlvte9h) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.5.1+cu124 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
stewy33/0524_original_augmented_original_cat_mixed_31-1cf59f0c
stewy33
2025-06-20T13:21:01Z
0
0
peft
[ "peft", "safetensors", "arxiv:1910.09700", "base_model:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "base_model:adapter:togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference", "region:us" ]
null
2025-06-20T13:19:17Z
--- base_model: togethercomputer/Meta-Llama-3.3-70B-Instruct-Reference library_name: peft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed] ### Framework versions - PEFT 0.15.1
JigneshPrajapati18/chatbot
JigneshPrajapati18
2025-06-20T13:20:16Z
0
0
null
[ "safetensors", "language-model", "instruction-tuning", "lora", "tinyllama", "text-generation", "license:mit", "region:us" ]
text-generation
2025-06-19T09:56:19Z
--- license: mit tags: - language-model - instruction-tuning - lora - tinyllama - text-generation --- # TinyLlama-1.1B-Chat LoRA Fine-Tuned Model ![LoRA Diagram](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/peft/lora_diagram.png) ## Table of Contents - [Model Overview](#overview) - [Key Features](#key-features) - [Installation](#installation) ## Overview This repository contains a LoRA (Low-Rank Adaptation) fine-tuned version of the `TinyLlama/TinyLlama-1.1B-Chat-v0.6` model, optimized for instruction-following and question-answering tasks. The model has been adapted using Parameter-Efficient Fine-Tuning (PEFT) techniques to specialize in conversational AI applications while maintaining the base model's general capabilities. ### Model Architecture - **Base Model**: TinyLlama-1.1B-Chat (Transformer-based) - **Layers**: 22 - **Attention Heads**: 32 - **Hidden Size**: 2048 - **Context Length**: 2048 tokens (limited to 256 during fine-tuning) - **Vocab Size**: 32,000 ## Key Features - 🚀 **Parameter-Efficient Fine-Tuning**: Only 0.39% of parameters (4.2M) trained - 💾 **Memory Optimization**: 8-bit quantization via BitsAndBytes - ⚡ **Fast Inference**: Optimized for conversational response times - 🤖 **Instruction-Tuned**: Specialized for Q&A and instructional tasks - 🔧 **Modular Design**: Easy to adapt for different use cases - 📦 **Hugging Face Integration**: Fully compatible with Transformers ecosystem ## Installation ### Prerequisites - Python 3.8+ - PyTorch 2.0+ (with CUDA 11.7+ if GPU acceleration desired) - NVIDIA GPU (recommended for training and inference) ### Package Installation ```bash pip install torch transformers peft accelerate bitsandbytes pandas datasets
opencv/deblurring_nafnet
opencv
2025-06-20T13:06:21Z
0
0
null
[ "onnx", "region:us" ]
null
2025-06-09T13:21:28Z
# NAFNet NAFNet is a lightweight image deblurring model that eliminates nonlinear activations to achieve state-of-the-art performance with minimal computational cost. Notes: - Model source: [.pth](https://drive.google.com/file/d/14D4V4raNYIOhETfcuuLI3bGLB-OYIv6X/view). - ONNX Model link: [ONNX](https://drive.google.com/uc?export=dowload&id=1ZLRhkpCekNruJZggVpBgSoCx3k7bJ-5v) ## Requirements Install latest OpenCV >=5.0.0 and CMake >= 3.22.2 to get started with. ## Demo ### Python Run the following command to try the demo: ```shell # deblur the default input image python demo.py # deblur the user input image python demo.py --input /path/to/image # get help regarding various parameters python demo.py --help ``` ### C++ ```shell # A typical and default installation path of OpenCV is /usr/local cmake -B build -D OPENCV_INSTALLATION_PATH=/path/to/opencv/installation . cmake --build build # deblur the default input image ./build/demo # deblur the user input image ./build/demo --input=/path/to/image # get help messages ./build/demo -h ``` ### Example outputs ![licenseplate_motion](./example_outputs/licenseplate_motion_output.jpg) ## License All files in this directory are licensed under [MIT License](./LICENSE). ## Reference - https://github.com/megvii-research/NAFNet
MetaphoricalCode/Redemption_Wind_24B-exl3-5.5bpw-hb8
MetaphoricalCode
2025-06-20T13:04:43Z
0
0
null
[ "safetensors", "mistral", "en", "base_model:SicariusSicariiStuff/Redemption_Wind_24B", "base_model:quantized:SicariusSicariiStuff/Redemption_Wind_24B", "license:apache-2.0", "exl3", "region:us" ]
null
2025-06-20T08:41:20Z
--- license: apache-2.0 language: - en base_model: - SicariusSicariiStuff/Redemption_Wind_24B base_model_relation: quantized --- ## Quantized using the default exllamav3 (0.0.3) quantization process. - Original model: https://huggingface.co/SicariusSicariiStuff/Redemption_Wind_24B - exllamav3: https://github.com/turboderp-org/exllamav3 --- <div align="center"> <b style="font-size: 40px;">Redemption_Wind_24B</b> </div> <img src="https://huggingface.co/SicariusSicariiStuff/Redemption_Wind_24B/resolve/main/Images/Redemption_Wind_24B.png" alt="Redemption_Wind_24B" style="width: 70%; min-width: 500px; display: block; margin: auto;"> --- <a href="https://huggingface.co/SicariusSicariiStuff/Redemption_Wind_24B#tldr" style="color: purple; font-weight: bold; font-size: 48px; text-decoration: none; display: block; text-align: center;">Click here for TL;DR</a> --- <h2 style="color: #FF5733 ; font-weight: bold; font-size: 45px; text-align: center;">This model was undercooked on purpose. Target average loss value: 8.0</h2> --- **Mistral** has blessed us with a capable new **Apache 2.0** model, but not only that, we finally get a base model to play with as well. After several models with more restrictive licenses, this open release is a welcome surprise. Freedom was **redeemed**. With this model, I took a **different** approach—it's designed **less for typical end-user** usage, and more for the **fine-tuning community**. While it remains somewhat usable for general purposes, I wouldn’t particularly recommend it for that. ### What is this model? This is a **lightly fine-tuned** version of the Mistral 24B base model, designed as an accessible and adaptable foundation for further fine-tuning and merging fodder. Key modifications include: - **ChatML-ified**, with no additional tokens introduced. **Update**, I did a small oopsie. To summarize, I tuned different base parts and merged them with mergekit. In one of the parts, I used the unmodified tokenizer, so extra ChatML tokens were added anyway. - **High quality private instruct**—not generated by ChatGPT or Claude, ensuring no slop and good markdown understanding. - **Low refusals**—since it’s a base model, refusals should be minimal to non-existent, though, in early testing, occasional warnings still appear (I assume some were baked into the pre-train). **Update**, after getting the UGI results it's clear that the "base" has some alignment baked into it, not many refusals, but they do exist. - **High-quality private creative writing dataset** Mainly to dilute baked-in slop further, but it can actually write some stories, not bad for loss ~8. - **Small, high-quality private RP dataset** This was done so further tuning for RP will be easier. The dataset was kept small and contains **ZERO SLOP**, some entries are of **16k token length**. - **Exceptional adherence to character cards** This was done to make it easier for further tunes intended for roleplay. ## Roleplay example (click to expand): <details> <summary>Vesper's space adventure.</summary> <img src="https://huggingface.co/SicariusSicariiStuff/Redemption_Wind_24B/resolve/main/Images/Example_RP.png" style="width: 100%; min-width: 600px; display: block; margin: auto;"> </details> --- - Original: [FP16](https://huggingface.co/SicariusSicariiStuff/Redemption_Wind_24B) - GGUF: [Static Quants](https://huggingface.co/SicariusSicariiStuff/Redemption_Wind_24B_GGUF) - GPTQ: [4-Bit-g32](https://huggingface.co/SicariusSicariiStuff/Redemption_Wind_24B_GPTQ) - Specialized: [FP8](https://huggingface.co/SicariusSicariiStuff/Redemption_Wind_24B_FP8) - Mobile (ARM): [Q4_0](https://huggingface.co/SicariusSicariiStuff/Redemption_Wind_24B_ARM) --- # TL;DR - Mistral 24B **Base** model. - **ChatML-ified**. - Can **roleplay** out of the box. - **Exceptional** at following the character card. - **Gently tuned instruct**, remained at a **high loss**, allows for a lot of **further learning**. - Useful for **fine-tuners**. - **Very creative**. --- # Character cards examples: - [Vesper](https://huggingface.co/SicariusSicariiStuff/Phi-Line_14B/resolve/main/Character_Cards/Vesper.png) (Schizo **Space Adventure**) - [Nina_Nakamura](https://huggingface.co/SicariusSicariiStuff/Phi-Line_14B/resolve/main/Character_Cards/Nina_Nakamura.png) (The **sweetest** dorky co-worker) - [Employe#11](https://huggingface.co/SicariusSicariiStuff/Phi-Line_14B/resolve/main/Character_Cards/Employee%2311.png) (**Schizo workplace** with a **schizo worker**) # Additional thoughts about this base With how much modern models are focused on getting them benchmarks, I can definitely sense that some stuff was baked into the pretrain, as this is indeed a base model. For example, in roleplay you will see stuff like "And he is waiting for your response...", a classical sloppy phrase. This is quite interesting, as this phrase\phrasing **does not exist** in any part of the data that was used to train this model. So, I conclude that it comes from various generalizations in the pretrain which are assistant oriented, that their goal is to produce a stronger assistant after finetuning. This is purely my own speculation, and I may be reading too much into it. Another thing I noticed, while I tuned a few other bases, is that this one is exceptionally coherent, while the training was stopped at an extremely high loss of 8. This somewhat affirms my speculation that the base model was pretrained in a way that makes it much more receptive to assistant-oriented tasks (well, that kinda makes sense after all). There's some slop in the base, whispers, shivers, all the usual offenders. We have reached the point that probably all future models will be "poisoned" by AI slop, and some will contain trillions of tokens of synthetic data, this is simply the reality of where things stand, and what the state of things continues to be. Already there are ways around it with various samplers, DPO, etc etc... It is what it is. **Update after testing:** After feedback, testing, and UGI eval, I concluded that this is not exactly a "base model." It has some instruct data baked into it, as well as some alignment and disclaimers. Is it perfect? No. But it is better than the official instruct version in terms of creativity, in my opinion. ## Enjoy the model :) --- ### Settings: [Assistant settings](https://huggingface.co/SicariusSicariiStuff/Redemption_Wind_24B#recommended-settings-for-assistant-mode) [Roleplay settings](https://huggingface.co/SicariusSicariiStuff/Redemption_Wind_24B#recommended-settings-for-roleplay-mode) --- ## Model Details - Intended use: **Base for further fine-tuning**, **Base for merging**, Role-Play, Creative Writing, General Tasks. - Censorship level: <b>low - medium</b> - **6 / 10** (10 completely uncensored) ## UGI score: <img src="https://huggingface.co/SicariusSicariiStuff/Redemption_Wind_24B/resolve/main/Images/UGI.png" style="width: 100%; min-width: 600px; display: block; margin: auto;"> --- ## Recommended settings for assistant mode <details> <summary>Full generation settings: <b>Debug Deterministic</b>.</summary> <img src="https://huggingface.co/SicariusSicariiStuff/Dusk_Rainbow/resolve/main/Presets/Debug-deterministic.png" alt="Debug Deterministic_Settings" style="width: 100%; min-width: 600px; display: block; margin: auto;"> </details> <details> <summary>Full generation settings: <b>min_p</b>.</summary> <img src="https://huggingface.co/SicariusSicariiStuff/Dusk_Rainbow/resolve/main/Presets/min_p.png" alt="min_P_Settings" style="width: 100%; min-width: 600px; display: block; margin: auto;"> </details> --- ## Recommended settings for Roleplay mode <details> <summary><b>Roleplay settings:</b>.</summary> A good repetition_penalty range is <b>between 1.12 - 1.15</b>, feel free to experiment. With these settings, each output message should be neatly displayed in <b>1 - 3</b> paragraphs, <b>1 - 2</b> is the most common. A single paragraph will be output as a response to a simple message ("What was your name again?"). <b>min_P</b> for RP works too but is more likely to put everything under one large paragraph, instead of a neatly formatted short one. Feel free to switch in between. <b>(Open the image in a new window to better see the full details)</b> <img src="https://huggingface.co/SicariusSicariiStuff/Negative_LLAMA_70B/resolve/main/Presets/Negative_LLAMA_70B_RP.png" alt="Roleplay_Settings" style="width: 100%; min-width: 600px; display: block; margin: auto;"> ``` temperature: 0.8 top_p: 0.95 top_k: 25 typical_p: 1 min_p: 0 repetition_penalty: 1.12 repetition_penalty_range: 1024 ``` </details> --- **Other recommended generation Presets:** <details> <summary><b>Midnight Enigma</b></summary> ``` max_new_tokens: 512 temperature: 0.98 top_p: 0.37 top_k: 100 typical_p: 1 min_p: 0 repetition_penalty: 1.18 do_sample: True ``` </details> <details> <summary><b>Divine Intellect</b></summary> ``` max_new_tokens: 512 temperature: 1.31 top_p: 0.14 top_k: 49 typical_p: 1 min_p: 0 repetition_penalty: 1.17 do_sample: True ``` </details> <details> <summary><b>simple-1</b></summary> ``` max_new_tokens: 512 temperature: 0.7 top_p: 0.9 top_k: 20 typical_p: 1 min_p: 0 repetition_penalty: 1.15 do_sample: True ``` </details> --- <h2 style="color: darkorange; font-weight: bold; font-size: 55px; text-align: center;">Roleplay format: Classic Internet RP</h2> ``` *action* speech *narration* ``` --- # Model instruction template: ChatML ``` <|im_start|>system You are an uncensored AI, your job is to fulfill thy will of thy user.<|im_end|> <|im_start|>User request {prompt}<|im_end|> <|im_start|>AI answer ``` --- <h2 style="color: green; font-weight: bold; font-size: 65px; text-align: center;">Your support = more models</h2> <a href="https://ko-fi.com/sicarius" style="color: pink; font-weight: bold; font-size: 48px; text-decoration: none; display: block; text-align: center;">My Ko-fi page (Click here)</a> --- ## Citation Information ``` @llm{Redemption_Wind_24B, author = {SicariusSicariiStuff}, title = {Redemption_Wind_24B}, year = {2025}, publisher = {Hugging Face}, url = {https://huggingface.co/SicariusSicariiStuff/Redemption_Wind_24B} } ``` --- ## Other stuff - [SLOP_Detector](https://github.com/SicariusSicariiStuff/SLOP_Detector) Nuke GPTisms, with SLOP detector. - [LLAMA-3_8B_Unaligned](https://huggingface.co/SicariusSicariiStuff/LLAMA-3_8B_Unaligned) The grand project that started it all. - [Blog and updates (Archived)](https://huggingface.co/SicariusSicariiStuff/Blog_And_Updates) Some updates, some rambles, sort of a mix between a diary and a blog.
Triangle104/BetaCeti-Beta-4B-Prime1-Q8_0-GGUF
Triangle104
2025-06-20T13:02:52Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "reinforcement-learning", "code", "math", "moe", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:prithivMLmods/BetaCeti-Beta-4B-Prime1", "base_model:quantized:prithivMLmods/BetaCeti-Beta-4B-Prime1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T13:00:54Z
--- library_name: transformers tags: - text-generation-inference - reinforcement-learning - code - math - moe - llama-cpp - gguf-my-repo license: apache-2.0 language: - en base_model: prithivMLmods/BetaCeti-Beta-4B-Prime1 pipeline_tag: text-generation --- # Triangle104/BetaCeti-Beta-4B-Prime1-Q8_0-GGUF This model was converted to GGUF format from [`prithivMLmods/BetaCeti-Beta-4B-Prime1`](https://huggingface.co/prithivMLmods/BetaCeti-Beta-4B-Prime1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/prithivMLmods/BetaCeti-Beta-4B-Prime1) for more details on the model. --- BetaCeti-Beta-4B-Prime1 is a compact, coding-optimized language model built on the Qwen3-4B architecture, tailored for high-accuracy code generation, debugging, and technical reasoning. With 4 billion parameters, it strikes a balance between performance and efficiency, making it an ideal assistant for developers, educators, and engineers working in constrained environments or requiring fast inference. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/BetaCeti-Beta-4B-Prime1-Q8_0-GGUF --hf-file betaceti-beta-4b-prime1-q8_0.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/BetaCeti-Beta-4B-Prime1-Q8_0-GGUF --hf-file betaceti-beta-4b-prime1-q8_0.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/BetaCeti-Beta-4B-Prime1-Q8_0-GGUF --hf-file betaceti-beta-4b-prime1-q8_0.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/BetaCeti-Beta-4B-Prime1-Q8_0-GGUF --hf-file betaceti-beta-4b-prime1-q8_0.gguf -c 2048 ```
Triangle104/BetaCeti-Beta-4B-Prime1-Q5_K_M-GGUF
Triangle104
2025-06-20T12:59:32Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "reinforcement-learning", "code", "math", "moe", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:prithivMLmods/BetaCeti-Beta-4B-Prime1", "base_model:quantized:prithivMLmods/BetaCeti-Beta-4B-Prime1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T12:58:47Z
--- library_name: transformers tags: - text-generation-inference - reinforcement-learning - code - math - moe - llama-cpp - gguf-my-repo license: apache-2.0 language: - en base_model: prithivMLmods/BetaCeti-Beta-4B-Prime1 pipeline_tag: text-generation --- # Triangle104/BetaCeti-Beta-4B-Prime1-Q5_K_M-GGUF This model was converted to GGUF format from [`prithivMLmods/BetaCeti-Beta-4B-Prime1`](https://huggingface.co/prithivMLmods/BetaCeti-Beta-4B-Prime1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/prithivMLmods/BetaCeti-Beta-4B-Prime1) for more details on the model. --- BetaCeti-Beta-4B-Prime1 is a compact, coding-optimized language model built on the Qwen3-4B architecture, tailored for high-accuracy code generation, debugging, and technical reasoning. With 4 billion parameters, it strikes a balance between performance and efficiency, making it an ideal assistant for developers, educators, and engineers working in constrained environments or requiring fast inference. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/BetaCeti-Beta-4B-Prime1-Q5_K_M-GGUF --hf-file betaceti-beta-4b-prime1-q5_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/BetaCeti-Beta-4B-Prime1-Q5_K_M-GGUF --hf-file betaceti-beta-4b-prime1-q5_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/BetaCeti-Beta-4B-Prime1-Q5_K_M-GGUF --hf-file betaceti-beta-4b-prime1-q5_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/BetaCeti-Beta-4B-Prime1-Q5_K_M-GGUF --hf-file betaceti-beta-4b-prime1-q5_k_m.gguf -c 2048 ```
Triangle104/BetaCeti-Beta-4B-Prime1-Q4_K_M-GGUF
Triangle104
2025-06-20T12:56:56Z
0
0
transformers
[ "transformers", "gguf", "text-generation-inference", "reinforcement-learning", "code", "math", "moe", "llama-cpp", "gguf-my-repo", "text-generation", "en", "base_model:prithivMLmods/BetaCeti-Beta-4B-Prime1", "base_model:quantized:prithivMLmods/BetaCeti-Beta-4B-Prime1", "license:apache-2.0", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T12:56:13Z
--- library_name: transformers tags: - text-generation-inference - reinforcement-learning - code - math - moe - llama-cpp - gguf-my-repo license: apache-2.0 language: - en base_model: prithivMLmods/BetaCeti-Beta-4B-Prime1 pipeline_tag: text-generation --- # Triangle104/BetaCeti-Beta-4B-Prime1-Q4_K_M-GGUF This model was converted to GGUF format from [`prithivMLmods/BetaCeti-Beta-4B-Prime1`](https://huggingface.co/prithivMLmods/BetaCeti-Beta-4B-Prime1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/prithivMLmods/BetaCeti-Beta-4B-Prime1) for more details on the model. --- BetaCeti-Beta-4B-Prime1 is a compact, coding-optimized language model built on the Qwen3-4B architecture, tailored for high-accuracy code generation, debugging, and technical reasoning. With 4 billion parameters, it strikes a balance between performance and efficiency, making it an ideal assistant for developers, educators, and engineers working in constrained environments or requiring fast inference. --- ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/BetaCeti-Beta-4B-Prime1-Q4_K_M-GGUF --hf-file betaceti-beta-4b-prime1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/BetaCeti-Beta-4B-Prime1-Q4_K_M-GGUF --hf-file betaceti-beta-4b-prime1-q4_k_m.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/BetaCeti-Beta-4B-Prime1-Q4_K_M-GGUF --hf-file betaceti-beta-4b-prime1-q4_k_m.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/BetaCeti-Beta-4B-Prime1-Q4_K_M-GGUF --hf-file betaceti-beta-4b-prime1-q4_k_m.gguf -c 2048 ```
freakyfractal/buser3
freakyfractal
2025-06-20T12:54:30Z
0
0
diffusers
[ "diffusers", "text-to-image", "lora", "template:diffusion-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:adapter:black-forest-labs/FLUX.1-dev", "license:apache-2.0", "region:us" ]
text-to-image
2025-06-20T12:54:04Z
--- tags: - text-to-image - lora - diffusers - template:diffusion-lora widget: - text: '-' output: url: images/Coinye_2021.jpg base_model: black-forest-labs/FLUX.1-dev instance_prompt: null license: apache-2.0 --- # buser3 <Gallery /> ## Download model Weights for this model are available in Safetensors format. [Download](/freakyfractal/buser3/tree/main) them in the Files & versions tab.
ionut-visan/Flan-T5-Large_Grammar_Ro
ionut-visan
2025-06-20T12:53:07Z
0
0
null
[ "safetensors", "t5", "grammar", "text", "romanian", "ro", "dataset:upb-nlp/gec-ro-comments", "dataset:upb-nlp/gec-ro-cna", "base_model:google/flan-t5-large", "base_model:finetune:google/flan-t5-large", "license:cc-by-nc-4.0", "region:us" ]
null
2025-06-20T12:16:02Z
--- license: cc-by-nc-4.0 language: - ro base_model: - google/flan-t5-large tags: - grammar - text - romanian datasets: - upb-nlp/gec-ro-comments - upb-nlp/gec-ro-cna metrics: - loss - wer - cer - bleu - gleu - rouge-1 - rouge-2 - rouge-L --- # Flan-T5_Grammar (Romanian) <h5 style="font-family: 'Calibri'; margin-bottom: 20px;"> <a href="https://huggingface.co/google/flan-t5-large" target="_blank">Flan-T5-Large</a> is an instruction-tuned language model that treats all NLP tasks as text-to-text problems, excelling at grammar-related tasks like correction, rephrasing, and sentence completion through natural language prompts.</h5> --- <h2>Dataset<h2> <h5 style="font-family: 'Calibri'; margin-bottom: 20px;"> I fine-tuned Flan-T5-Large on <a href="https://huggingface.co/datasets/upb-nlp/gec-ro-comments" target="_blank">gec-ro-comments</a> and <a href="https://huggingface.co/datasets/upb-nlp/gec_ro_cna" target="_blank">gec-ro-cna</a> datasets. The split was created by combining train (635 pairs), test (686 pairs), validation (666) from gec-ro-comments and train (1286) from gec-ro-cna to create the training set and test (1234) from gec-ro-cna for testing. </h5> --- <h2>Configuration<h2> <h5 style="font-family: 'Calibri'; margin-bottom: 2px;"> <ul> <li><strong>Model</strong> = “google/flan-t5-large”</li> <li><strong>Learning rate</strong> = 5e-5</li> <li><strong>Batch size</strong> = 4 (for both dataloaders)</li> <li><strong>Optimizer</strong> = AdamW</li> <li><strong>Epochs</strong> = 10</li> <li><strong>Scheduler</strong> = Linear (with warmup = 0.1)</li> </ul> </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 20px;"> The condition for saving the model is that the test loss, wer, cer must be lower than the previously recorded best values. </h5> --- <h2>Results</h2> <img src="https://huggingface.co/ionut-visan/Flan-T5-Large_Grammar_Ro/resolve/main/loss_plot.png" alt="Error Rates Plot" width="350" style="margin-left: 10px;"> <img src="https://huggingface.co/ionut-visan/Flan-T5-Large_Grammar_Ro/resolve/main/error_rates_plot.png" alt="Loss Plot" width="350" style="margin-left: 10px;"> <img src="https://huggingface.co/ionut-visan/Flan-T5-Large_Grammar_Ro/resolve/main/learning_rate_plot.png" alt="Loss Plot" width="350" style="margin-left: 10px;"> <img src="https://huggingface.co/ionut-visan/Flan-T5-Large_Grammar_Ro/resolve/main/bleu_plot.png" alt="Loss Plot" width="350" style="margin-left: 10px;"> <img src="https://huggingface.co/ionut-visan/Flan-T5-Large_Grammar_Ro/resolve/main/gleu_plot.png" alt="Loss Plot" width="350" style="margin-left: 10px;"> <img src="https://huggingface.co/ionut-visan/Flan-T5-Large_Grammar_Ro/resolve/main/rouge1_plot.png" alt="Loss Plot" width="350" style="margin-left: 10px;"> <img src="https://huggingface.co/ionut-visan/Flan-T5-Large_Grammar_Ro/resolve/main/rouge2_plot.png" alt="Loss Plot" width="350" style="margin-left: 10px;"> <img src="https://huggingface.co/ionut-visan/Flan-T5-Large_Grammar_Ro/resolve/main/rougeL_plot.png" alt="Loss Plot" width="350" style="margin-left: 10px;"> <h5 style="font-family: 'Calibri'; margin-bottom: 5px;"> The fine-tuned model was saved at epoch 5 with Test Loss: 0.3151, WER: 0.0893, CER: 0.0304, BLEU: 0.8424, GLEU: 0.8405, ROUGE-1: 0.9294, ROUGE-2: 0.8723, ROUGE-L: 0.9279. </h5> --- <h2>How to use<h2> ```python import torch from transformers import T5Tokenizer, T5ForConditionalGeneration # Set device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load model and tokenizer model_name = "ionut-visan/Flan-T5-Large_Grammar_Ro" tokenizer = T5Tokenizer.from_pretrained(model_name) model = T5ForConditionalGeneration.from_pretrained(model_name).to(device) model.eval() # Function to correct grammar def correct_sentence(sentence): input_text = "grammar: " + sentence inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) with torch.no_grad(): outputs = model.generate(inputs, max_length=128, num_beams=4, early_stopping=True) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Interactive loop print("Romanian Grammar Corrector (type 'exit' to quit)") while True: user_input = input("\nEnter a sentence to correct: ") if user_input.lower() == "exit": print("Exiting. 👋") break corrected = correct_sentence(user_input) print("Corrected:", corrected) ``` --- <h2>Communication<h2> <h5 style="font-family: 'Calibri'; margin-bottom: 2px;"> For any questions regarding this model or to explore collaborations on ambitious AI/ML projects, please feel free to contact me at: </h5> <h5 style="font-family: 'Calibri'; margin-bottom: 2px;"> <ul> <li><em>[email protected]</em></li> <li><em><a href="https://www.linkedin.com/in/ionut-visan/" target="_blank">Ionuț Vișan's Linkedin</a></em></li> </ul> </h5>
tatsuyaaaaaaa/gemma-3-1b-it-grpo
tatsuyaaaaaaa
2025-06-20T12:51:39Z
0
0
transformers
[ "transformers", "safetensors", "gemma3_text", "text-generation", "text-generation-inference", "unsloth", "conversational", "en", "base_model:unsloth/gemma-3-1b-it", "base_model:finetune:unsloth/gemma-3-1b-it", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T12:49:36Z
--- base_model: unsloth/gemma-3-1b-it tags: - text-generation-inference - transformers - unsloth - gemma3_text license: apache-2.0 language: - en --- # Uploaded finetuned model - **Developed by:** tatsuyaaaaaaa - **License:** apache-2.0 - **Finetuned from model :** unsloth/gemma-3-1b-it This gemma3_text model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
apriasmoro/cf0ad3c3-b1f6-4bc9-8b92-b838ed619562
apriasmoro
2025-06-20T12:41:30Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "qwen2", "text-generation", "generated_from_trainer", "axolotl", "trl", "grpo", "conversational", "arxiv:2402.03300", "base_model:unsloth/Qwen2.5-0.5B-Instruct", "base_model:quantized:unsloth/Qwen2.5-0.5B-Instruct", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "bitsandbytes", "region:us" ]
text-generation
2025-06-20T11:10:40Z
--- base_model: unsloth/Qwen2.5-0.5B-Instruct library_name: transformers model_name: cf0ad3c3-b1f6-4bc9-8b92-b838ed619562 tags: - generated_from_trainer - axolotl - trl - grpo licence: license --- # Model Card for cf0ad3c3-b1f6-4bc9-8b92-b838ed619562 This model is a fine-tuned version of [unsloth/Qwen2.5-0.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="apriasmoro/cf0ad3c3-b1f6-4bc9-8b92-b838ed619562", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/apriasmoro-abcstudio/Gradients-On-Demand/runs/7aqh2a81) This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.17.0 - Transformers: 4.51.3 - Pytorch: 2.5.1+cu124 - Datasets: 3.5.1 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
malcolmrey/serenity
malcolmrey
2025-06-20T12:39:52Z
30
8
diffusers
[ "diffusers", "safetensors", "stable-diffusion", "en", "license:mit", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2023-09-24T09:17:56Z
--- license: mit language: - en library_name: diffusers tags: - safetensors - stable-diffusion --- # About This is my custom merge model called Serenity for Stable Diffusion 1.5 Two formats are available: * safetensors * diffusers # Civitai Link https://civitai.com/models/110426/serenity # Support If you feel like supporting my work, here is my coffee page :) https://www.buymeacoffee.com/malcolmrey # Samples [<img src="https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/69abd7aa-45a8-4e84-a0dd-63e2094c93a1/width=1024/149471-943806964-30-DPM++%202M%20Karras-1408-serenity_v1.jpeg" width="650"/>](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/69abd7aa-45a8-4e84-a0dd-63e2094c93a1/width=1024/149471-943806964-30-DPM++%202M%20Karras-1408-serenity_v1.jpeg) [<img src="https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/0610bb3e-a75a-4993-a5b8-04f9de377db4/width=1120/sd-1689525321-2502013093-99ca.jpeg" width="650"/>](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/0610bb3e-a75a-4993-a5b8-04f9de377db4/width=1120/sd-1689525321-2502013093-99ca.jpeg) [<img src="https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/cd703faf-f10a-40d1-8dbb-fa2359243237/width=1120/sd-1689525240-827350816-b59c.jpeg" width="650"/>](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/cd703faf-f10a-40d1-8dbb-fa2359243237/width=1120/sd-1689525240-827350816-b59c.jpeg) [<img src="https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/bae6338c-401f-4e00-9bef-ff5b080a1497/width=1024/151221-3970928850-30-DPM++%202M%20Karras-1408-serenity_v1.jpeg" width="650"/>](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/bae6338c-401f-4e00-9bef-ff5b080a1497/width=1024/151221-3970928850-30-DPM++%202M%20Karras-1408-serenity_v1.jpeg) [<img src="https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/cd009ca2-17c1-4e83-908a-66331915ac43/width=1024/151223-1982045657-30-DPM++%202M%20Karras-1408-serenity_v1.jpeg" width="650"/>](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/cd009ca2-17c1-4e83-908a-66331915ac43/width=1024/151223-1982045657-30-DPM++%202M%20Karras-1408-serenity_v1.jpeg) [<img src="https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/ac7cba06-dc70-4281-b6ce-447c2e813d89/width=1024/151284-2391586252-30-DPM++%202M%20Karras-1408-serenity_v1.jpeg" width="650"/>](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/ac7cba06-dc70-4281-b6ce-447c2e813d89/width=1024/151284-2391586252-30-DPM++%202M%20Karras-1408-serenity_v1.jpeg) [<img src="https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/8df53e11-e195-46ff-8e11-e5908c4fcf89/width=1024/151256-1674448823-30-DPM++%202M%20Karras-1408-serenity_v1.jpeg" width="650"/>](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/8df53e11-e195-46ff-8e11-e5908c4fcf89/width=1024/151256-1674448823-30-DPM++%202M%20Karras-1408-serenity_v1.jpeg) [<img src="https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/eed746ba-80e9-4357-ac00-0afadf3b2ca4/width=1024/151281-1817968173-30-DPM++%202M%20Karras-1408-serenity_v1.jpeg" width="650"/>](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/eed746ba-80e9-4357-ac00-0afadf3b2ca4/width=1024/151281-1817968173-30-DPM++%202M%20Karras-1408-serenity_v1.jpeg) [<img src="https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/e507b359-8891-4577-9c24-e2d6fa0e3ab2/width=1024/151254-1570201823-30-DPM++%202M%20Karras-1408-serenity_v1.jpeg" width="650"/>](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/e507b359-8891-4577-9c24-e2d6fa0e3ab2/width=1024/151254-1570201823-30-DPM++%202M%20Karras-1408-serenity_v1.jpeg) [<img src="https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/bbe5d0ea-e926-4267-a798-9131a4ff5676/width=1024/151306-388801004-30-DPM++%202M%20Karras-1408-serenity_v1.jpeg" width="650"/>](https://image.civitai.com/xG1nkqKTMzGDvpLrqFT7WA/bbe5d0ea-e926-4267-a798-9131a4ff5676/width=1024/151306-388801004-30-DPM++%202M%20Karras-1408-serenity_v1.jpeg)
kalle07/SmartDiskTool
kalle07
2025-06-20T12:36:53Z
0
0
null
[ "region:us" ]
null
2025-06-20T09:33:34Z
SmartDiskTool<br> Read / Write - Detection on your Hard Drives<br> only windows, sorry<br><br> python (3 files, start main) and exe<br> with WMI (the fast way with psutil dont work with partitions)<br> These icons appear in your taskbar (depending on your hard disks/partitions) ![image/png](https://cdn-uploads.huggingface.co/production/uploads/65b669300c9514da4f17a34f/ntWwctS07sc76wtjVDxPw.png) <br><br> threshold 2MB (this means that only larger actions are displayed) <br> update every 1sec (due to resources with wmi no real time)<br> red - writing<br> green - reading<br> yellow - <read/write><br> mause hover - read/write in MB/s<br> mause "right click" - EXIT<br><br><br> All at your own risk !!!
New-Clip-Paro-Aarti-18-viral-videos-tv/FULL.VIDEO.Paro.Aarti.Viral.Video.Tutorial.Official
New-Clip-Paro-Aarti-18-viral-videos-tv
2025-06-20T12:36:34Z
0
0
null
[ "region:us" ]
null
2025-06-20T12:35:02Z
<animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a> <animated-image data-catalyst=""><a href="https://tinyurl.com/5ye5v3bc?dfhgKasbonStudiosdfg" rel="nofollow" data-target="animated-image.originalLink"><img src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" alt="Foo" data-canonical-src="https://static.wixstatic.com/media/b249f9_adac8f70fb3f45b88691696c77de18f3~mv2.gif" style="max-width: 100%; display: inline-block;" data-target="animated-image.originalImage"></a>
JonasBeking/MalRepoResearch
JonasBeking
2025-06-20T12:20:59Z
0
0
null
[ "pytorch", "region:us" ]
null
2025-06-20T11:51:30Z
## Research This is used for research purposes.
reach-vb/Qwen3-0.6B
reach-vb
2025-06-20T12:19:00Z
15
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "conversational", "base_model:Qwen/Qwen3-0.6B-Base", "base_model:finetune:Qwen/Qwen3-0.6B-Base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-05-20T11:24:59Z
--- library_name: transformers license: apache-2.0 license_link: https://huggingface.co/Qwen/Qwen3-0.6B/blob/main/LICENSE pipeline_tag: text-generation base_model: - Qwen/Qwen3-0.6B-Base --- # Qwen3-0.6B <a href="https://chat.qwen.ai/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/%F0%9F%92%9C%EF%B8%8F%20Qwen%20Chat%20-536af5" style="display: inline-block; vertical-align: middle;"/> </a> ## Qwen3 Highlights Qwen3 is the latest generation of large language models in Qwen series, offering a comprehensive suite of dense and mixture-of-experts (MoE) models. Built upon extensive training, Qwen3 delivers groundbreaking advancements in reasoning, instruction-following, agent capabilities, and multilingual support, with the following key features: - **Uniquely support of seamless switching between thinking mode** (for complex logical reasoning, math, and coding) and **non-thinking mode** (for efficient, general-purpose dialogue) **within single model**, ensuring optimal performance across various scenarios. - **Significantly enhancement in its reasoning capabilities**, surpassing previous QwQ (in thinking mode) and Qwen2.5 instruct models (in non-thinking mode) on mathematics, code generation, and commonsense logical reasoning. - **Superior human preference alignment**, excelling in creative writing, role-playing, multi-turn dialogues, and instruction following, to deliver a more natural, engaging, and immersive conversational experience. - **Expertise in agent capabilities**, enabling precise integration with external tools in both thinking and unthinking modes and achieving leading performance among open-source models in complex agent-based tasks. - **Support of 100+ languages and dialects** with strong capabilities for **multilingual instruction following** and **translation**. ## Model Overview **Qwen3-0.6B** has the following features: - Type: Causal Language Models - Training Stage: Pretraining & Post-training - Number of Parameters: 0.6B - Number of Paramaters (Non-Embedding): 0.44B - Number of Layers: 28 - Number of Attention Heads (GQA): 16 for Q and 8 for KV - Context Length: 32,768 For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3/), [GitHub](https://github.com/QwenLM/Qwen3), and [Documentation](https://qwen.readthedocs.io/en/latest/). > [!TIP] > If you encounter significant endless repetitions, please refer to the [Best Practices](#best-practices) section for optimal sampling parameters, and set the ``presence_penalty`` to 1.5. ## Quickstart The code of Qwen3 has been in the latest Hugging Face `transformers` and we advise you to use the latest version of `transformers`. With `transformers<4.51.0`, you will encounter the following error: ``` KeyError: 'qwen3' ``` The following contains a code snippet illustrating how to use the model generate content based on given inputs. ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "Qwen/Qwen3-0.6B" # load the tokenizer and the model tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) # prepare the model input prompt = "Give me a short introduction to large language model." messages = [ {"role": "user", "content": prompt} ] text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. ) model_inputs = tokenizer([text], return_tensors="pt").to(model.device) # conduct text completion generated_ids = model.generate( **model_inputs, max_new_tokens=32768 ) output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() # parsing thinking content try: # rindex finding 151668 (</think>) index = len(output_ids) - output_ids[::-1].index(151668) except ValueError: index = 0 thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") print("thinking content:", thinking_content) print("content:", content) ``` For deployment, you can use `sglang>=0.4.6.post1` or `vllm>=0.8.5` or to create an OpenAI-compatible API endpoint: - SGLang: ```shell python -m sglang.launch_server --model-path Qwen/Qwen3-0.6B --reasoning-parser qwen3 ``` - vLLM: ```shell vllm serve Qwen/Qwen3-0.6B --enable-reasoning --reasoning-parser deepseek_r1 ``` For local use, applications such as Ollama, LMStudio, MLX-LM, llama.cpp, and KTransformers have also supported Qwen3. ## Switching Between Thinking and Non-Thinking Mode > [!TIP] > The `enable_thinking` switch is also available in APIs created by SGLang and vLLM. > Please refer to our documentation for [SGLang](https://qwen.readthedocs.io/en/latest/deployment/sglang.html#thinking-non-thinking-modes) and [vLLM](https://qwen.readthedocs.io/en/latest/deployment/vllm.html#thinking-non-thinking-modes) users. ### `enable_thinking=True` By default, Qwen3 has thinking capabilities enabled, similar to QwQ-32B. This means the model will use its reasoning abilities to enhance the quality of generated responses. For example, when explicitly setting `enable_thinking=True` or leaving it as the default value in `tokenizer.apply_chat_template`, the model will engage its thinking mode. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=True # True is the default value for enable_thinking ) ``` In this mode, the model will generate think content wrapped in a `<think>...</think>` block, followed by the final response. > [!NOTE] > For thinking mode, use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0` (the default setting in `generation_config.json`). **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### `enable_thinking=False` We provide a hard switch to strictly disable the model's thinking behavior, aligning its functionality with the previous Qwen2.5-Instruct models. This mode is particularly useful in scenarios where disabling thinking is essential for enhancing efficiency. ```python text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, enable_thinking=False # Setting enable_thinking=False disables thinking mode ) ``` In this mode, the model will not generate any think content and will not include a `<think>...</think>` block. > [!NOTE] > For non-thinking mode, we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. For more detailed guidance, please refer to the [Best Practices](#best-practices) section. ### Advanced Usage: Switching Between Thinking and Non-Thinking Modes via User Input We provide a soft switch mechanism that allows users to dynamically control the model's behavior when `enable_thinking=True`. Specifically, you can add `/think` and `/no_think` to user prompts or system messages to switch the model's thinking mode from turn to turn. The model will follow the most recent instruction in multi-turn conversations. Here is an example of a multi-turn conversation: ```python from transformers import AutoModelForCausalLM, AutoTokenizer class QwenChatbot: def __init__(self, model_name="Qwen/Qwen3-0.6B"): self.tokenizer = AutoTokenizer.from_pretrained(model_name) self.model = AutoModelForCausalLM.from_pretrained(model_name) self.history = [] def generate_response(self, user_input): messages = self.history + [{"role": "user", "content": user_input}] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = self.tokenizer(text, return_tensors="pt") response_ids = self.model.generate(**inputs, max_new_tokens=32768)[0][len(inputs.input_ids[0]):].tolist() response = self.tokenizer.decode(response_ids, skip_special_tokens=True) # Update history self.history.append({"role": "user", "content": user_input}) self.history.append({"role": "assistant", "content": response}) return response # Example Usage if __name__ == "__main__": chatbot = QwenChatbot() # First input (without /think or /no_think tags, thinking mode is enabled by default) user_input_1 = "How many r's in strawberries?" print(f"User: {user_input_1}") response_1 = chatbot.generate_response(user_input_1) print(f"Bot: {response_1}") print("----------------------") # Second input with /no_think user_input_2 = "Then, how many r's in blueberries? /no_think" print(f"User: {user_input_2}") response_2 = chatbot.generate_response(user_input_2) print(f"Bot: {response_2}") print("----------------------") # Third input with /think user_input_3 = "Really? /think" print(f"User: {user_input_3}") response_3 = chatbot.generate_response(user_input_3) print(f"Bot: {response_3}") ``` > [!NOTE] > For API compatibility, when `enable_thinking=True`, regardless of whether the user uses `/think` or `/no_think`, the model will always output a block wrapped in `<think>...</think>`. However, the content inside this block may be empty if thinking is disabled. > When `enable_thinking=False`, the soft switches are not valid. Regardless of any `/think` or `/no_think` tags input by the user, the model will not generate think content and will not include a `<think>...</think>` block. ## Agentic Use Qwen3 excels in tool calling capabilities. We recommend using [Qwen-Agent](https://github.com/QwenLM/Qwen-Agent) to make the best use of agentic ability of Qwen3. Qwen-Agent encapsulates tool-calling templates and tool-calling parsers internally, greatly reducing coding complexity. To define the available tools, you can use the MCP configuration file, use the integrated tool of Qwen-Agent, or integrate other tools by yourself. ```python from qwen_agent.agents import Assistant # Define LLM llm_cfg = { 'model': 'Qwen3-0.6B', # Use the endpoint provided by Alibaba Model Studio: # 'model_type': 'qwen_dashscope', # 'api_key': os.getenv('DASHSCOPE_API_KEY'), # Use a custom endpoint compatible with OpenAI API: 'model_server': 'http://localhost:8000/v1', # api_base 'api_key': 'EMPTY', # Other parameters: # 'generate_cfg': { # # Add: When the response content is `<think>this is the thought</think>this is the answer; # # Do not add: When the response has been separated by reasoning_content and content. # 'thought_in_content': True, # }, } # Define Tools tools = [ {'mcpServers': { # You can specify the MCP configuration file 'time': { 'command': 'uvx', 'args': ['mcp-server-time', '--local-timezone=Asia/Shanghai'] }, "fetch": { "command": "uvx", "args": ["mcp-server-fetch"] } } }, 'code_interpreter', # Built-in tools ] # Define Agent bot = Assistant(llm=llm_cfg, function_list=tools) # Streaming generation messages = [{'role': 'user', 'content': 'https://qwenlm.github.io/blog/ Introduce the latest developments of Qwen'}] for responses in bot.run(messages=messages): pass print(responses) ``` ## Best Practices To achieve optimal performance, we recommend the following settings: 1. **Sampling Parameters**: - For thinking mode (`enable_thinking=True`), use `Temperature=0.6`, `TopP=0.95`, `TopK=20`, and `MinP=0`. **DO NOT use greedy decoding**, as it can lead to performance degradation and endless repetitions. - For non-thinking mode (`enable_thinking=False`), we suggest using `Temperature=0.7`, `TopP=0.8`, `TopK=20`, and `MinP=0`. - For supported frameworks, you can adjust the `presence_penalty` parameter between 0 and 2 to reduce endless repetitions. However, using a higher value may occasionally result in language mixing and a slight decrease in model performance. 2. **Adequate Output Length**: We recommend using an output length of 32,768 tokens for most queries. For benchmarking on highly complex problems, such as those found in math and programming competitions, we suggest setting the max output length to 38,912 tokens. This provides the model with sufficient space to generate detailed and comprehensive responses, thereby enhancing its overall performance. 3. **Standardize Output Format**: We recommend using prompts to standardize model outputs when benchmarking. - **Math Problems**: Include "Please reason step by step, and put your final answer within \boxed{}." in the prompt. - **Multiple-Choice Questions**: Add the following JSON structure to the prompt to standardize responses: "Please show your choice in the `answer` field with only the choice letter, e.g., `"answer": "C"`." 4. **No Thinking Content in History**: In multi-turn conversations, the historical model output should only include the final output part and does not need to include the thinking content. It is implemented in the provided chat template in Jinja2. However, for frameworks that do not directly use the Jinja2 chat template, it is up to the developers to ensure that the best practice is followed. ### Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen3, title = {Qwen3}, url = {https://qwenlm.github.io/blog/qwen3/}, author = {Qwen Team}, month = {April}, year = {2025} } ```
sergey-z/qwen2.5-fix-to-flex-sft
sergey-z
2025-06-20T12:17:42Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:Qwen/Qwen2.5-Coder-1.5B-Instruct", "base_model:finetune:Qwen/Qwen2.5-Coder-1.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-20T12:17:21Z
--- base_model: Qwen/Qwen2.5-Coder-1.5B-Instruct library_name: transformers model_name: qwen2.5-fix-to-flex-sft tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for qwen2.5-fix-to-flex-sft This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="sergey-z/qwen2.5-fix-to-flex-sft", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.18.2 - Transformers: 4.52.4 - Pytorch: 2.7.1+cu128 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
Idokious/ppo-LunarLander-v2
Idokious
2025-06-20T11:56:24Z
0
0
stable-baselines3
[ "stable-baselines3", "LunarLander-v2", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-06-20T11:56:01Z
--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 255.41 +/- 19.73 name: mean_reward verified: false --- # **PPO** Agent playing **LunarLander-v2** This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
morturr/Llama-2-7b-hf-PAIR_amazon_headlines-COMB-amazon-comb-3-seed-18-2025-06-20
morturr
2025-06-20T11:53:50Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-20T11:53:30Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-PAIR_amazon_headlines-COMB-amazon-comb-3-seed-18-2025-06-20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-PAIR_amazon_headlines-COMB-amazon-comb-3-seed-18-2025-06-20 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 18 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
FRank62Wu/ShowUI-Narrator
FRank62Wu
2025-06-20T11:41:26Z
34
1
null
[ "safetensors", "qwen2_vl", "Graphic", "GUI", "Caption", "en", "dataset:FRank62Wu/Act2Cap_benchmark", "base_model:Qwen/Qwen2-VL-2B-Instruct", "base_model:finetune:Qwen/Qwen2-VL-2B-Instruct", "license:apache-2.0", "region:us" ]
null
2025-03-03T16:22:50Z
--- license: apache-2.0 datasets: - FRank62Wu/Act2Cap_benchmark language: - en base_model: - Qwen/Qwen2-VL-2B-Instruct - showlab/ShowUI-2B tags: - Graphic - GUI - Caption --- ShowUI-Narrator is a lightweight (2B) framework to narrate the user's action in GUI video / screenshots built upon YOLO-v8, Qwen2VL and ShowUI. ## Quick Start: Import dependencies ``` pip install -r .requirements.txt ``` ## The Overview of Action-Narration Pipeline. <img src="./examples/piepline.png" alt="ShowUI" hight="1920" width="640"> ## Download Vision Language Model ```python import torch from PIL import Image, ImageDraw from qwen_vl_utils import process_vision_info from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor import os model = Qwen2VLForConditionalGeneration.from_pretrained( 'FRank62Wu/ShowUI-Narrator', torch_dtype="auto", device_map="cuda" ) # processor = AutoProcessor.from_pretrained('FRank62Wu/ShowUI-Narrator') # load from local dir image_processor_kwargs = { "size": { "shortest_edge": 56*56, "longest_edge": 720*28*28 } } processor = AutoProcessor.from_pretrained( 'FRank62Wu/ShowUI-Narrator', **image_processor_kwargs ) processor.tokenizer.pad_token = processor.tokenizer.eos_token ``` ## Download Cursor detector model [Model Checkpoint from Drive](https://drive.google.com/file/d/1W6pv1G4ae7_Xl_MAj1wx9o8IQ2BdjH4I/view?usp=drive_link) ## Cursor detector Example 1. Load the detector model and defined class for image cropping ```python import os import base64 from PIL import Image from io import BytesIO import copy import cv2 from ultralytics import YOLO def image_to_base64(img_path): with open(img_path, "rb") as img_file: encoded_img = base64.b64encode(img_file.read()).decode("utf-8") return encoded_img check_point_path = './ShowUI_Action_Narrator_cursor_detect/best.pt' class Screenshots_processor: def __init__(self, img_path, max_size, delta, check_point_path): self.img_path = img_path self.cursor_model = YOLO(check_point_path) self.scs = [] self.crop_scs =[] self.max_size = max_size self.delta = delta def create_crop(self): for each in sorted(os.listdir(self.img_path)): if each.endswith('.jsonl') or '_crop' in each: continue else: each = os.path.join(self.img_path, each) self.scs.append(each) frame_x, frame_y = [], [] for idx, image_path in enumerate(self.scs): results = self.cursor_model(image_path) img = Image.open(image_path) width, height = img.size img.close() for result in results: if result.boxes.xywh.size(0) > 0: boxes = result.boxes xywh_tensor = boxes.xywh x, y = xywh_tensor[0][0].item(), xywh_tensor[0][1].item() frame_x.append(x) frame_y.append(y) else: print('Cursor not detected') if len(frame_x) == 0 or len(frame_y) ==0: self.crop_scs = copy.deepcopy(self.scs) return self.crop_scs elif (len(frame_x) <= 1) or (max(frame_x)- min(frame_x))>=self.max_size or (max(frame_y)- min(frame_y))>=self.max_size: print('add margin') mid_x, mid_y = sum(frame_x) // len(frame_x), sum(frame_y) // len(frame_y) margin_= self.max_size + self.delta for idx, each in enumerate(sorted(self.scs)): image_path = each image1 = Image.open(image_path).convert('RGB') file_name_tail = image_path.split('/')[-1] save_path = image_path.replace(file_name_tail, f'{idx}_crop.jpg') x1 = max(0, min(width - margin_, mid_x - margin_ // 2)) y1 = max(0, min(height - margin_, mid_y - margin_ // 2)) x2 = min(x1 + margin_, width) y2 = min(y1 + margin_, height) start_crop = image1.crop((x1, y1, x2, y2)) start_crop.save(save_path) self.crop_scs.append(save_path) image1.close() return self.crop_scs, self.scs else: mid_x, mid_y = sum(frame_x) // len(frame_x), sum(frame_y) // len(frame_y) margin = self.max_size margin_ = self.max_size x1 = max(0, min(width - margin, mid_x - margin // 2)) y1 = max(0, min(height - margin, mid_y - margin // 2)) x2 = min(x1 + margin, width) y2 = min(y1 + margin, height) for idx, each in enumerate(sorted(self.scs)): image_path = each image1 = Image.open(image_path).convert('RGB') file_name_tail = image_path.split('/')[-1] save_path = image_path.replace(file_name_tail, f'{idx}_crop.jpg') x1 = max(0, min(width - margin_, mid_x - margin_ // 2)) y1 = max(0, min(height - margin_, mid_y - margin_ // 2)) x2 = min(x1 + margin_, width) y2 = min(y1 + margin_, height) start_crop = image1.crop((x1, y1, x2, y2)) start_crop.save(save_path) self.crop_scs.append(save_path) image1.close() return self.crop_scs, self.scs class Videoscreen_processor: def __init__(self, vid_path, fps, max_size, delta, check_point_path): self.vid_path = vid_path self.fps = fps self.cursor_model = YOLO(check_point_path) self.scs = [] self.crop_scs =[] self.max_size = max_size self.delta = delta def sample_from_video(self): video_path_tail = self.vid_path.split('/')[-1] cap = cv2.VideoCapture(self.vid_path) if not cap.isOpened(): print("Error: Could not open video.") return [] video_fps = cap.get(cv2.CAP_PROP_FPS) # fps print(video_fps) total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) frame_interval = int(video_fps // self.fps) frame_count = 0 frame_num = 0 while True: ret, frame = cap.read() if not ret: break if frame_count>1: break if frame_num % frame_interval == 0: frame_count = frame_num // frame_interval image_path = os.path.join(self.vid_path.replace(video_path_tail, f"frame_{frame_count}.jpg")) self.scs.append(image_path) frame_count += 1 cv2.imwrite(image_path, frame) frame_num += 1 cap.release() frame_x, frame_y = [], [] for idx, image_path in enumerate(self.scs): results = self.cursor_model(image_path) img = Image.open(image_path) width, height = img.size img.close() for result in results: if result.boxes.xywh.size(0) > 0: boxes = result.boxes xywh_tensor = boxes.xywh x, y = xywh_tensor[0][0].item(), xywh_tensor[0][1].item() frame_x.append(x) frame_y.append(y) else: print('Cursor not detected') if len(frame_x) == 0 or len(frame_y) ==0: self.crop_scs = copy.deepcopy(self.scs) return self.crop_scs, self.crop_scs elif (len(frame_x) <= 1) or (max(frame_x)- min(frame_x))>=self.max_size or (max(frame_y)- min(frame_y))>=self.max_size: print('add margin') mid_x, mid_y = sum(frame_x) // len(frame_x), sum(frame_y) // len(frame_y) margin_= self.max_size + self.delta for idx, each in enumerate(sorted(self.scs)): image_path = each image1 = Image.open(image_path).convert('RGB') file_name_tail = image_path.split('/')[-1] save_path = image_path.replace(file_name_tail, f'{idx}_crop.jpg') x1 = max(0, min(width - margin_, mid_x - margin_ // 2)) y1 = max(0, min(height - margin_, mid_y - margin_ // 2)) x2 = min(x1 + margin_, width) y2 = min(y1 + margin_, height) start_crop = image1.crop((x1, y1, x2, y2)) start_crop.save(save_path) self.crop_scs.append(save_path) image1.close() return self.crop_scs, self.scs else: mid_x, mid_y = sum(frame_x) // len(frame_x), sum(frame_y) // len(frame_y) margin = self.max_size x1 = max(0, min(width - margin, mid_x - margin // 2)) y1 = max(0, min(height - margin, mid_y - margin // 2)) x2 = min(x1 + margin, width) y2 = min(y1 + margin, height) for idx, each in enumerate(sorted(self.scs)): image_path = each image1 = Image.open(image_path).convert('RGB') file_name_tail = image_path.split('/')[-1].replace('frame_','').replace('.png','') save_path = image_path.replace(file_name_tail, f'{idx}_crop.jpg') x1 = max(0, min(width - margin_, mid_x - margin_ // 2)) y1 = max(0, min(height - margin_, mid_y - margin_ // 2)) x2 = min(x1 + margin_, width) y2 = min(y1 + margin_, height) start_crop = image1.crop((x1, y1, x2, y2)) start_crop.save(save_path) self.crop_scs.append(save_path) image1.close() return self.crop_scs, self.scs ``` 2. Initate the cropping strategy ```python Cursor_detector = Screenshots_processor('./storage/folder_to_screenshots',512, 128, check_point_path) cropped_imgs_list, original_imgs_list = Cursor_detector.create_crop() ``` ## Inference Example 1. Load Model and Prompt Space ```python """load model""" import torch from PIL import Image, ImageDraw from qwen_vl_utils import process_vision_info from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor import os import json import codecs import argparse import random import re max_pixels_temp = 160*28*28 max_pixels_narr = 760*28*28 min_pixels_narr = 240*28*28 model = Qwen2VLForConditionalGeneration.from_pretrained( 'FRank62Wu/ShowUI-Narrator', torch_dtype="auto", device_map="cuda" ) processor = AutoProcessor.from_pretrained('FRank62Wu/ShowUI-Narrator') processor.tokenizer.pad_token = processor.tokenizer.eos_token _SYSTEM_PROMPT='For the given video frames of a GUI action, The frames are decribed in the format of <0> to <{N}>.' _SYSTEM_PROMPT_NARR='''You are an ai assistant to narrate the action of the user for the video frames in the following detail. 'Action': The type of action 'Element': The target of the action 'Source': The starting position (Applicable for action type: Drag) 'Destination': The ending position (Applicable for action type: Drag) 'Purpose': The intended result of the action The Action include left click, right click, double click, drag, or Keyboard type. ''' Action_no_reference_grounding = [ 'Describe the start frame and the end frame of the action in this video?', 'When Did the action happened in this video? Tell me the start frame and the end frame.', 'Locate the start and the end frame of the action in this video', "Observe the cursor in this GUI video, marking start and end frame of the action in video frames." ] Dense_narration_query = ['Narrate the action in the given video.', 'Describe the action of the user in the given frames', 'Describe the action in this video.', 'Narrate the action detail of the user in the video.'] ``` 2. Round 1: Temporal grounding to detect keyframes. (We take actions from PR as an example) ```python path_to_data ='' query = _SYSTEM_PROMPT.format(N=9) + ' ' + random.choice(Action_no_reference_grounding) messages = [ { 'role': 'user', 'content': [ {'type':"image", "image": f"{path_to_data}/storage/test_benchmark_Act2Cap/303/0_crop.png","max_pixels": max_pixels_temp}, {'type':"image", "image": f"{path_to_data}/storage/test_benchmark_Act2Cap/303/1_crop.png","max_pixels": max_pixels_temp}, {'type':"image", "image": f"{path_to_data}/storage/test_benchmark_Act2Cap/303/2_crop.png","max_pixels": max_pixels_temp}, {'type':"image", "image": f"{path_to_data}/storage/test_benchmark_Act2Cap/303/3_crop.png","max_pixels": max_pixels_temp}, {'type':"image", "image": f"{path_to_data}/storage/test_benchmark_Act2Cap/303/4_crop.png","max_pixels": max_pixels_temp}, {'type':"image", "image": f"{path_to_data}/storage/test_benchmark_Act2Cap/303/5_crop.png","max_pixels": max_pixels_temp}, {'type':"image", "image": f"{path_to_data}/storage/test_benchmark_Act2Cap/303/6_crop.png","max_pixels": max_pixels_temp}, {'type':"image", "image": f"{path_to_data}/storage/test_benchmark_Act2Cap/303/7_crop.png","max_pixels": max_pixels_temp}, {'type':"image", "image": f"{path_to_data}/storage/test_benchmark_Act2Cap/303/8_crop.png","max_pixels": max_pixels_temp}, {'type':"image", "image": f"{path_to_data}/storage/test_benchmark_Act2Cap/303/9_crop.png","max_pixels": max_pixels_temp}, {'type':"text",'text': query}, ] } ] ## round_1 for temporal grounding text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] print(output_text) ``` ``` >>> Output: <6> and <8> ``` <img src="./examples/start.png" alt="ShowUI" hight="700" width="600"> <img src="./examples/end.png" alt="ShowUI" hight="700" width="600"> <img src="./examples/start_crop.png" alt="ShowUI" hight="700" width="600"> <img src="./examples/end_crop.png" alt="ShowUI" hight="700" width="600"> 3. Round 2: Use selected keyframes for generate captions in JSON format. ``` python # round_2 for dense narration caption try: matches = re.search(r"<(\w+)>.*?<(\w+)>", output_text) s1, e1 = int(matches.group(1)), int(matches.group(2)) except: s1, e1 =0, 9 query = _SYSTEM_PROMPT_NARR + ' ' + random.choice(Dense_narration_query) selected_images = [] if e1-s1<3: pixels_narr = max_pixels_narr else: max_pixel_per_image = int(760*3/(e1- s1 +1))*28*28 pixels_narr = max_pixel_per_image for idx, each in enumerate(messages[0]['content']): if idx >= s1 and idx <= e1: new_image = each.copy() new_image['max_pixels'] =pixels_narr selected_images.append(new_image) messages = [ { 'role': 'user', 'content':selected_images+ [{'type':"text",'text': query}, ] } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True, ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to("cuda") generated_ids = model.generate(**inputs, max_new_tokens=128) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text_narration = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] print(output_text_narration) ``` ``` >>> Output: {"Action": "double click", "Element": "sc2 trans shape button", "Source": null, "Destination": null, "Purpose": " Select the SC2 Trans Shape."} ```
A-l-e-x/lora_model
A-l-e-x
2025-06-20T11:40:56Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "mllama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-20T11:40:23Z
--- base_model: unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - mllama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** A-l-e-x - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-11b-vision-instruct-unsloth-bnb-4bit This mllama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
Triangle104/Yanfei-v2-Qwen3-32B-Q5_K_S-GGUF
Triangle104
2025-06-20T11:18:12Z
0
0
transformers
[ "transformers", "gguf", "mergekit", "merge", "llama-cpp", "gguf-my-repo", "dataset:nbeerbower/YanfeiMix-DPO", "base_model:nbeerbower/Yanfei-v2-Qwen3-32B", "base_model:quantized:nbeerbower/Yanfei-v2-Qwen3-32B", "license:apache-2.0", "endpoints_compatible", "region:us", "conversational" ]
null
2025-06-20T11:16:31Z
--- base_model: nbeerbower/Yanfei-v2-Qwen3-32B library_name: transformers tags: - mergekit - merge - llama-cpp - gguf-my-repo license: apache-2.0 datasets: - nbeerbower/YanfeiMix-DPO --- # Triangle104/Yanfei-v2-Qwen3-32B-Q5_K_S-GGUF This model was converted to GGUF format from [`nbeerbower/Yanfei-v2-Qwen3-32B`](https://huggingface.co/nbeerbower/Yanfei-v2-Qwen3-32B) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. Refer to the [original model card](https://huggingface.co/nbeerbower/Yanfei-v2-Qwen3-32B) for more details on the model. ## Use with llama.cpp Install llama.cpp through brew (works on Mac and Linux) ```bash brew install llama.cpp ``` Invoke the llama.cpp server or the CLI. ### CLI: ```bash llama-cli --hf-repo Triangle104/Yanfei-v2-Qwen3-32B-Q5_K_S-GGUF --hf-file yanfei-v2-qwen3-32b-q5_k_s.gguf -p "The meaning to life and the universe is" ``` ### Server: ```bash llama-server --hf-repo Triangle104/Yanfei-v2-Qwen3-32B-Q5_K_S-GGUF --hf-file yanfei-v2-qwen3-32b-q5_k_s.gguf -c 2048 ``` Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. Step 1: Clone llama.cpp from GitHub. ``` git clone https://github.com/ggerganov/llama.cpp ``` Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). ``` cd llama.cpp && LLAMA_CURL=1 make ``` Step 3: Run inference through the main binary. ``` ./llama-cli --hf-repo Triangle104/Yanfei-v2-Qwen3-32B-Q5_K_S-GGUF --hf-file yanfei-v2-qwen3-32b-q5_k_s.gguf -p "The meaning to life and the universe is" ``` or ``` ./llama-server --hf-repo Triangle104/Yanfei-v2-Qwen3-32B-Q5_K_S-GGUF --hf-file yanfei-v2-qwen3-32b-q5_k_s.gguf -c 2048 ```
winnieyangwannan/refusal_Llama-3.1-8B-Instruct_sft_song_3-7_lora_False_epoch_50
winnieyangwannan
2025-06-20T11:16:26Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "trl", "sft", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T08:56:20Z
--- library_name: transformers tags: - trl - sft --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
glif-loradex-trainer/bengarang_lievsch
glif-loradex-trainer
2025-06-20T11:04:02Z
0
0
diffusers
[ "diffusers", "text-to-image", "template:sd-lora", "base_model:black-forest-labs/FLUX.1-dev", "base_model:finetune:black-forest-labs/FLUX.1-dev", "license:other", "region:us", "flux", "lora", "base_model:adapter:black-forest-labs/FLUX.1-dev" ]
text-to-image
2025-06-20T11:03:54Z
--- tags: - diffusers - text-to-image - template:sd-lora - base_model:black-forest-labs/FLUX.1-dev - base_model:finetune:black-forest-labs/FLUX.1-dev - license:other - region:us - flux - lora widget: - output: url: samples/1750417374037__000001500_0.jpg text: portrait of lievsch, handsome man with beard, looking at camera, neutral expression, professional lighting - output: url: samples/1750417399318__000001500_1.jpg text: lievsch as a muscular medieval knight, detailed armor, cinematic lighting, fantasy art style - output: url: samples/1750417424615__000001500_2.jpg text: shirtless lievsch smiling, three-quarter view, beach setting, natural lighting base_model: black-forest-labs/FLUX.1-dev trigger: "lievsch" instance_prompt: "lievsch" license: other license_name: flux-1-dev-non-commercial-license license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md --- # lievsch Model trained with [AI Toolkit by Ostris](https://github.com/ostris/ai-toolkit) under the [Glif Loradex program](https://huggingface.co/glif-loradex-trainer) by [Glif](https://glif.app) user `bengarang`. <Gallery /> ## Trigger words You should use `lievsch` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/glif-loradex-trainer/bengarang_lievsch/tree/main) them in the Files & versions tab. ## License This model is licensed under the [flux-1-dev-non-commercial-license](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
QuantTrio/DeepSeek-R1-0528-GPTQ-Int4-Int8Mix-Medium
QuantTrio
2025-06-20T10:49:57Z
2,593
1
transformers
[ "transformers", "safetensors", "deepseek_v3", "text-generation", "DeepSeek-R1-0528", "GPTQ", "Int4-Int8Mix", "量化修复", "vLLM", "conversational", "custom_code", "arxiv:2501.12948", "base_model:deepseek-ai/DeepSeek-R1-0528", "base_model:quantized:deepseek-ai/DeepSeek-R1-0528", "license:mit", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "4-bit", "gptq", "region:us" ]
text-generation
2025-06-04T13:34:37Z
--- library_name: transformers license: mit pipeline_tag: text-generation tags: - DeepSeek-R1-0528 - GPTQ - Int4-Int8Mix - 量化修复 - vLLM base_model: - deepseek-ai/DeepSeek-R1-0528 base_model_relation: quantized --- # DeepSeek-R1-0528-GPTQ-Int4-Int8Mix-Medium Base mode [deepseek-ai/DeepSeek-R1-0528](https://huggingface.co/deepseek-ai/DeepSeek-R1-0528) This repository delivers an Int4 + selectively-Int8 GPTQ `DeepSeek-R1-0528` model: only layers that are highly sensitive to quantization remain in Int8, while the rest stay Int4—preserving generation quality with minimal file-size overhead. Preliminary trials show that converting the entire model to pure Int4 (AWQ/GPTQ) under the quantization layout used in vLLM’s current DeepSeek-R1 implementation degrades inference accuracy and can produce faulty outputs. Layer-wise fine-grained quantization substantially mitigates this issue. Temporary patch: vLLM == 0.9.0 does not yet natively support per-layer quantization for MoE modules. We added get_moe_quant_method to gptq_marlin.py as an interim fix. Until the upstream PR is merged, please replace the original file with the one provided in this repo. Variant Overview | Variant | Characteristics | File Size | Recommended Scenario | |-------------|---------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------| | **Lite** | Only the most critical layers upgraded to Int8; size close to pure Int4 | 355 GB | Resource-constrained, lightweight server deployments | | **Compact** | More Int8 layers, relatively higher output quality | 414 GB | VRAM-sufficient deployments focused on answer quality (e.g., 8 × A100) | | **Medium** | Compact plus fully-Int8 attention layers; high quality with reduced long-context loss | 445 GB | VRAM-rich deployments needing both top answer quality and high concurrency (e.g., 8 × H20) | Choose the variant that best matches your hardware and quality requirements. ### 【VLLM single-node (8×141GB GPU) launch command】 ``` MAX_REQUESTS=512 CONTEXT_LEN=163840 python3 -m vllm.entrypoints.openai.api_server \ --model .../QuantTrio/DeepSeek-R1-0528-GPTQ-Int4-Int8Mix-Medium \ --served-model-name QuantTrio/DeepSeek-R1-0528-GPTQ-Int4-Int8Mix-Medium \ --swap-space 16 \ --tensor-parallel-size 8 \ --gpu-memory-utilization 0.95 \ --max-num-seqs $MAX_REQUESTS \ --max-seq-len-to-capture $CONTEXT_LEN \ --max-model-len $CONTEXT_LEN \ --enable-auto-tool-choice \ --tool-call-parser deepseek_v3 \ --chat-template tool_chat_template_deepseekr1.jinja \ --disable-log-requests \ --host 0.0.0.0 \ --port 8000 ``` ### 【H200 throughput performance】 1. `8 × H200 (141 GB)`、 `context = 163840 tokens` | concurrent reqs | total tok/s | tok/s per req | |-----------------|-------------|---------------| | 1 | 60 | 60.0 | | 50 | 1350 | 27.0 | | 100 | 2200 | 22.0 | | 200 | 3400 | 17.0 | | 400 | 5100 | 12.7 | 2. `4 × H200 (141 GB)`、 `context = 63840 tokens` | concurrent reqs | total tok/s | tok/s per req | |-----------------|-------------|---------------| | 1 | 56 | 56.0 | | 50 | 1100 | 22.0 | | 100 | 1700 | 17.0 | | 200 | 2600 | 13.0 | | 400 | 3900 | 9.7 | ### 【Model Update Date】 ``` 2025-06-20 Added vLLM launch example (single node with 8 × H200 / 141 GB) and corresponding concurrency throughput benchmark data. 2025-06-04 1. fast commit ``` ### 【Dependencies】 ``` vllm==0.9.0 transformers==4.52.3 ``` </div> <div style=" background: rgba(255, 0, 200, 0.15); padding: 16px; border-radius: 6px; border: 1px solid rgba(255, 0, 200, 0.3); margin: 16px 0; "> ### 【💡 Patch for gptq_marlin.py💡】 At present, vllm==0.9.0 lacks support for per-layer quantization configurations for the moe module, which will lead to errors when loading the model. I have implemented a simple fix by adding the get_moe_quant_method function to the gptq_marlin.py file. Until the PR is merged, please replace the gptq_marlin.py file in your installation with the attached version, placing it at: ``` .../site-packages/vllm/model_executor/layers/quantization/gptq_marlin.py ``` </div> ### 【Model List】 | FILE SIZE | LATEST UPDATE TIME | |---------|--------------| | `445GB` | `2025-06-04` | ### 【Model Download】 ```python from huggingface_hub import snapshot_download snapshot_download('QuantTrio/DeepSeek-R1-0528-GPTQ-Int4-Int8Mix-Medium', cache_dir="local_path") ``` ## DeepSeek-R1-0528 <!-- markdownlint-disable first-line-h1 --> <!-- markdownlint-disable html --> <!-- markdownlint-disable no-duplicate-header --> <div align="center"> <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V3" /> </div> <hr> <div align="center" style="line-height: 1;"> <a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;"> <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;"> <img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20R1-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;"> <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> </div> <div align="center" style="line-height: 1;"> <a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;"> <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;"> <img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> <a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;"> <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/> </a> </div> <div align="center" style="line-height: 1;"> <a href="LICENSE" style="margin: 2px;"> <img alt="License" src="https://img.shields.io/badge/License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/> </a> </div> <p align="center"> <a href="https://arxiv.org/pdf/2501.12948"><b>Paper Link</b>👁️</a> </p> ## 1. Introduction The DeepSeek R1 model has undergone a minor version upgrade, with the current version being DeepSeek-R1-0528. In the latest update, DeepSeek R1 has significantly improved its depth of reasoning and inference capabilities by leveraging increased computational resources and introducing algorithmic optimization mechanisms during post-training. The model has demonstrated outstanding performance across various benchmark evaluations, including mathematics, programming, and general logic. Its overall performance is now approaching that of leading models, such as O3 and Gemini 2.5 Pro. <p align="center"> <img width="80%" src="figures/benchmark.png"> </p> Compared to the previous version, the upgraded model shows significant improvements in handling complex reasoning tasks. For instance, in the AIME 2025 test, the model’s accuracy has increased from 70% in the previous version to 87.5% in the current version. This advancement stems from enhanced thinking depth during the reasoning process: in the AIME test set, the previous model used an average of 12K tokens per question, whereas the new version averages 23K tokens per question. Beyond its improved reasoning capabilities, this version also offers a reduced hallucination rate, enhanced support for function calling, and better experience for vibe coding. ## 2. Evaluation Results ### DeepSeek-R1-0528 For all our models, the maximum generation length is set to 64K tokens. For benchmarks requiring sampling, we use a temperature of $0.6$, a top-p value of $0.95$, and generate 16 responses per query to estimate pass@1. <div align="center"> | Category | Benchmark (Metric) | DeepSeek R1 | DeepSeek R1 0528 |----------|----------------------------------|-----------------|---| | General | | | MMLU-Redux (EM) | 92.9 | 93.4 | | MMLU-Pro (EM) | 84.0 | 85.0 | | GPQA-Diamond (Pass@1) | 71.5 | 81.0 | | SimpleQA (Correct) | 30.1 | 27.8 | | FRAMES (Acc.) | 82.5 | 83.0 | | Humanity's Last Exam (Pass@1) | 8.5 | 17.7 | Code | | | LiveCodeBench (2408-2505) (Pass@1) | 63.5 | 73.3 | | Codeforces-Div1 (Rating) | 1530 | 1930 | | SWE Verified (Resolved) | 49.2 | 57.6 | | Aider-Polyglot (Acc.) | 53.3 | 71.6 | Math | | | AIME 2024 (Pass@1) | 79.8 | 91.4 | | AIME 2025 (Pass@1) | 70.0 | 87.5 | | HMMT 2025 (Pass@1) | 41.7 | 79.4 | | | CNMO 2024 (Pass@1) | 78.8 | 86.9 | Tools | | | BFCL_v3_MultiTurn (Acc) | - | 37.0 | | | Tau-Bench (Pass@1) | - | 53.5(Airline)/63.9(Retail) </div> Note: We use Agentless framework to evaluate model performance on SWE-Verified. We only evaluate text-only prompts in HLE testsets. GPT-4.1 is employed to act user role in Tau-bench evaluation. ## 5. License This code repository is licensed under [MIT License](LICENSE). The use of DeepSeek-R1 models is also subject to [MIT License](LICENSE). DeepSeek-R1 series (including Base and Chat) supports commercial use and distillation. ## 6. Citation ``` @misc{deepseekai2025deepseekr1incentivizingreasoningcapability, title={DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning}, author={DeepSeek-AI}, year={2025}, eprint={2501.12948}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2501.12948}, } ``` ## 7. Contact If you have any questions, please raise an issue or contact us at [[email protected]]([email protected]).
dotan1111/BetaDescribe-Validator-HigherLevelTaxonomy
dotan1111
2025-06-20T10:48:01Z
47
0
null
[ "safetensors", "esm", "biology", "bioinformatics", "protein2text", "proteins", "PLM", "text-generation-inference", "license:cc-by-nc-4.0", "region:us" ]
null
2024-12-09T15:02:42Z
--- license: cc-by-nc-4.0 tags: - biology - bioinformatics - protein2text - proteins - PLM - text-generation-inference --- # Protein2Text: Providing Rich Descriptions from Protein Sequences ## Abstract: Understanding the functionality of proteins has been a focal point of biological research due to their critical roles in various biological processes. Unraveling protein functions is essential for advancements in medicine, agriculture, and biotechnology, enabling the development of targeted therapies, engineered crops, and novel biomaterials. However, this endeavor is challenging due to the complex nature of proteins, requiring sophisticated experimental designs and extended timelines to uncover their specific functions. Public large language models (LLMs), though proficient in natural language processing, struggle with biological sequences due to the unique and intricate nature of biochemical data. These models often fail to accurately interpret and predict the functional and structural properties of proteins, limiting their utility in bioinformatics. To address this gap, we introduce BetaDescribe, a collection of models designed to generate detailed and rich textual descriptions of proteins, encompassing properties such as function, catalytic activity, involvement in specific metabolic pathways, subcellular localizations, and the presence of particular domains. The trained BetaDescribe model receives protein sequences as input and outputs a textual description of these properties. BetaDescribe’s starting point was the LLAMA2 model, which was trained on trillions of tokens. Next, we trained our model on datasets containing both biological and English text, allowing biological knowledge to be incorporated. We demonstrate the utility of BetaDescribe by providing descriptions for proteins that share little to no sequence similarity to proteins with functional descriptions in public datasets. We also show that BetaDescribe can be harnessed to conduct *in-silico* mutagenesis procedures to identify regions important for protein functionality without needing homologous sequences for the inference. Altogether, BetaDescribe offers a powerful tool to explore protein functionality, augmenting existing approaches such as annotation transfer based on sequence or structure similarity. ![image/png](https://cdn-uploads.huggingface.co/production/uploads/63047e2d412a1b9d381b045d/S51dW59cdeY2lbgXbXSx9.png) BetaDescribe workflow. The generator processes the protein sequences and creates multiple candidate descriptions. Independently, the validators provide simple textual properties of the protein. The judge receives the candidate descriptions (from the generator) and the predicted properties (from the validators) and rejects or accepts each description. Finally, BetaDescribe provides up to three alternative descriptions for each protein. ## Preprint: https://www.biorxiv.org/content/10.1101/2024.12.04.626777v1.full.pdf+html ## Examples of descriptions of unknown proteins: ### SnRV-Env: Sequence: MKLVLLFSLSVLLGTSVGRILEIPETNQTRTVQVRKGQLVQLTCPQLPPPQGTGVLIWGRNKRTGGGALDFNGVLTVPVGDNENTYQCMWCQNTTSKNAPRQKRSLRNQPTEWHLHMCGPPGDYICIWTNKKPVCTTYHEGQDTYSLGTHRKVLPKVTEACAVGQPPQIPGTYVASSKGWTMFNKFEVHSYPANVTQIKTNRTLHDVTLWWCHDNSIWRCTQMGFIHPHQGRRIQLGDGTRFRDGLYVIVSNHGDHHTVQHYMLGSGYTVPVSTATRVQMQKIGPGEWKIATSMVGLCLDEWEIECTGFCSGPPPCSLSITQQQDTVGGSYDSWNGCFVKSIHTPVMALNLWWRRSCKGLPEATGMVKIYYPDQFEIAPWMRPQPRQPKLILPFTVAPKYRRQRRGLNPSTTPDYYTNEDYSGSGGWEINDEWEYIPPTVKPTTPSVEFIQKVTTPRQDKLTTVLSRNKRGVNIASSGNSWKAEIDEIRKQKWQKCYFSGKLRIKGTDYEEIDTCPKPLIGPLSGFIPTGVTKTLKTGVTWTTAVVKIDLQQWVDILNSTCKDTLIGKHWIKVIQRLLREYQKTGVTFNLPQVQSLPNWETKNKDNPGHHIPKSRRKRIRRGLGEALGLGNFADNRWKDLQIAGLGVEQQKLMGLTREATFEAWNALKGISNELIKWEEDMVATLRQLLLQIKGTNTTLCSAMGPLMATNIQQIMFALQHGNLPEMSYSNPVLKEIAKQYNGQMLGVPVETTGNNLGIMLSLPTGGENIGRAVAVYDMGVRHNRTLYLDPNARWIHNHTEKSNPKGWVTIVDLSKCVETTGTIYCNEHGFRDRKFTKGPSELVQHLAGNTWCLNSGTWSSLKNETLYVSGRNCSFSLTSRRRPVCFHLNSTAQWRGHVLPFVSNSQEAPNTEIWEGLIEEAIREHNKVQDILTKLEQQHQNWKQNTDNALQNMKDAIDSMDNNMLTFRYEYTQYGLFIVCLLAFLFAVIFGWLCGVTVRLREVFTILSVKIHALKSQAHQLAMLRGLRDPETGEQDRQAPAYREPPTYQEWARRRGGRPPIVTFLIDRETGERHDGQIFQPIRNRSNQVHRPQPPRPTAPNPDNQRPIREPRPEEPEHGDFLQGASWMWQ Description: _**FUNCTION$** The leader peptide is a component of released, infectious virions and is required for particle budding, & The transmembrane protein (TM) acts as a class I viral fusion protein. Under the current model, the protein has at least 3 conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes. Membranes fusion leads to delivery of the nucleocapsid into the cytoplasm, **SUBCELLULAR LOCATION$** Endoplasmic reticulum membrane._ ### TGV-S: Sequence: MISGHTLCMLVLFYLYSYSNAQHELQLNPTTYHWLNCATSDCKSWQACPSTQATTCVSFSYTGLAWHKQDNTIIGYSNFTSQSLYDTISYTFAPSYVLSHAMTNLEPQKLCSLKSTIQSFHGFTPADCCLNPSASPACSYFSTGDTSFITGTPYQCTASYYGYGSPYGTDCEPYFASVSPYGTSVTPSGDVFTNFGEKSVHTYDCFYENWARYRPAPYTNNPSDPRWNLCHSIYYYVWTLSDTNHQFTTVESEPGDKVIMKQLSSHTPVYLTLGGWTSNNTVLYQAISSRRLDTIAMLRDLHDNYGVTGVCIDFEFIGGSNQYSNIFLLDWVPDLLSFLSSVRLEFGPSYYITFVGLAVGSHFLPTIYQQIDPLIDAWLISGYDLHGDWEVKATQQAALVDDPKSDFPTYSLFTSVDNMLAITTPDKIILGLPQYTRGVYTSLTGSTTGPYPPTTPMCPTPPACGTDIVISTSHGEIPSTHDTTKGDIIIEDPSQPKFYISKGSRNGRTFNHFFMNSTTASHIRSTLQPKGITRWYSYASSMNLQTNTNFKTALLSQSRKARQLSTYYKYPAPAGSGVTSCPGIVVFTDTFVVTTTAYAGSHALPLLDGNFYSPRSTFTCSPGFSTLMPTTTTRCSGIDPSNLLPSDSSSVSIVCPDMTFFGAKIAICASSTTTSKPTHLQLEVSTSIEGQFQFNSLPIYSQHKVSTTSFSVPYKCINFTPIPSCISSVCGSSHSCVTKLQESPASYACQSAAAIAIVYNNTLDLVKRSQTTTELLFNQVVLESSKFGVVTHTRQTRGLFGILSITSLIMSGVALATSSSALYVSIKNQAELSSLRNDVNSKFTTIDQNFDQITSKFNHLSTTTSDAFIAQSNINTQLQSSINQLQENLEVLSNFVTTQLSSVSSSITQLSEAIDALSDQVNYLAYLTSGISSYTSRLTSVTVQATNTAVKFSTLQSHLSNCLTSLQQQSFTGCIHKSGNIIPLKVVYTPFGNTRYLSFIYAEAELLGYQQYKSALSYCDQNFLYSSSPGCFFLLNGSSIDHRSSLSAACPTPATVVSMSCQNVTLDLSSQSIVRPYVFPLLNLTLPTPVKTNISFTPGKAPVFQNITQIDQTLLLDLAQQLQAIQLQLNPVGPISTSSFSPVVIALTVISAVVFLAVTSIVIYMLCKTAPFKPSRKTA Descriptions: 1. _**FUNCTION$** Envelope glycoprotein that forms spikes at the surface of virion envelope. Essential for the initial attachment to heparan sulfate moities of the host cell surface proteoglycans. Involved in fusion of viral and cellular membranes leading to virus entry into the host cell. Following initial binding to its host receptors, membrane fusion is mediated by the fusion machinery composed at least of gB and the heterodimer gH/gL. May be involved in the fusion between the virion envelope and the outer nuclear membrane during virion egress, **SUBCELLULAR LOCATION$** Virion membrane, **SUBUNIT$** Homotrimer; disulfide-linked. Binds to heparan sulfate proteoglycans. Interacts with gH/gL heterodimer, **SIMILARITY$** Belongs to the herpesviridae glycoprotein B family._ 2. _**FUNCTION$** The surface protein (SU) attaches the virus to the host cell by binding to its receptor. This interaction triggers the refolding of the transmembrane protein (TM) and is thought to activate its fusogenic potential by unmasking its fusion peptide. Fusion occurs at the host cell plasma membrane, & The transmembrane protein (TM) acts as a class I viral fusion protein. Under the current model, the protein has at least 3 conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes. Membranes fusion leads to delivery of the nucleocapsid into the cytoplasm, **SUBCELLULAR LOCATION$** Cell membrane. **SUBUNIT$** The mature envelope protein (Env) consists of a trimer of SU-TM heterodimers attached by noncovalent interactions or by a labile interchain disulfide bond_ ### Protein 1 (TiLV virus): Sequence: MWAFQEGVCKGNLLSGPTSMKAPDSAARESLDRASEIMTGKSYNAVHTGDLSKLPNQGESPLRIVDSDLYSERSCCWVIEKEGRVVCKSTTLTRGMTGLLNTTRCSSPSELICKVLTVESLSEKIGDTSVEELLSHGRYFKCALRDQERGKPKSRAIFLSHPFFRLLSSVVETHARSVLSKVSAVYTATASAEQRAMMAAQVVESRKHVLNGDCTKYNEAIDADTLLKVWDAIGMGSIGVMLAYMVRRKCVLIKDTLVECPGGMLMGMFNATATLALQGTTDRFLSFSDDFITSFNSPAELREIEDLLFASCHNLSLKKSYISVASLEINSCTLTRDGDLATGLGCTAGVPFRGPLVTLKQTAAMLSGAVDSGVMPFHSAERLFQIKQQECAYRYNNPTYTTRNEDFLPTCLGGKTVISFQSLLTWDCHPFWYQVHPDGPDTIDQKVLSVLASKTRRRRTRLEALSDLDPLVPHRLLVSESDVSKIRAARQAHLKSLGLEQPTNFNYAIYKAVQPTAGC Description: _**FUNCTION$** Probably involved in the RNA silencing pathway and required for the generation of small interfering RNAs (siRNAs), **CATALYTIC ACTIVITY$** a ribonucleoside 5'-triphosphate + RNA(n) = diphosphate + RNA(n+1), **SIMILARITY$** Belongs to the RdRP family._ ### Protein 2 (TiLV virus): Sequence: MSQFGKSFKGRTEVTITEYRSHTVKDVHRSLLTADKSLRKSFCFRNALNQFLDKDLPLLPIRPKLESRVAVKKSKLRSQLSFRPGLTQEEAIDLYNKGYDGDSVSGALQDRVVNEPVAYSSADNDKFHRGLAALGYTLADRAFDTCESGFVRAIPTTPCGFICCGPGSFKDSLGFVIKIGEFWHMYDGFQHFVAVEDAKFLASKSPSFWLAKRLAKRLNLVPKEDPSIAAAECPCRKVWEASFARAPTALDPFGGRAFCDQGWVYHRDVGYATANHISQETLFQQALSVRNLGPQGSANVSGSIHTALDRLRAAYSRGTPASRSILQGLANLITPVGENFECDLDKRKLNIKALRSPERYITIEGLVVNLDDVVRGFYLDKAKVTVLSRSKWMGYEDLPQKPPNGTFYCRKRKAMLLISCSPGTYAKKRKVAVQEDRFKDMRVENFREVAENMDLNQ Description: _**FUNCTION$** DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates, **CATALYTIC ACTIVITY$** a ribonucleoside 5'-triphosphate + RNA(n) = diphosphate + RNA(n+1), **SIMILARITY$** Belongs to the RNA polymerase beta' chain family._ ### Protein 3 (TiLV virus): Sequence: MDSRFAQLTGVFCDDFTYSEGSRRFLSSYSTVERRPGVPVEGDCYDCLKNKWIAFELEGQPRKFPKATVRCILNNDATYVCSEQEYQQICKVQFKDYLEIDGVVKVGHKASYDAELRERLLELPHPKSGPKPRIEWVAPPRLADISKETAELKRQYGFFECSKFLACGEECGLDQEARELILNEYARDREFEFRNGGWIQRYTVASHKPATQKILPLPASAPLARELLMLIARSTTQAGKVLHSDNTSILAVPVMRDSGKHSKRRPTASTHHLVVGLSKPGCEHDFEFDGYRAAVHVMHLDPKQSANIGEQDFVSTREIYKLDMLELPPISRKGDLDRASGLETRWDVILLLECLDSTRVSQAVAQHFNRHRLALSVCKDEFRKGYQLASEIRGTIPLSSLYYSLCAVRLRMTVHPFAR Descriptions: 1. _**FUNCTION$** DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Specific core component of RNA polymerase III which synthesizes small RNAs, such as 5S rRNA and tRNAs, **SUBCELLULAR LOCATION$** Nucleus, **SUBUNIT$** Component of the RNA polymerase III (Pol III) complex consisting of 17 subunits, **SIMILARITY$** Belongs to the eukaryotic RPC3/POLR3C RNA polymerase subunit family._ 2. _**FUNCTION$** Decapping enzyme for NAD-capped RNAs: specifically hydrolyzes the nicotinamide adenine dinucleotide (NAD) cap from a subset of RNAs by removing the entire NAD moiety from the 5'-end of an NAD-capped RNA, **SUBCELLULAR LOCATION$** Nucleus, **COFACTOR$** a divalent metal cation, **SIMILARITY$** Belongs to the DXO/Dom3Z family._ ## Code: https://github.com/technion-cs-nlp/BetaDescribe-code/
oldroydh/sd-class-butterflies-64
oldroydh
2025-06-20T10:45:07Z
0
0
diffusers
[ "diffusers", "safetensors", "pytorch", "unconditional-image-generation", "diffusion-models-class", "license:mit", "diffusers:DDPMPipeline", "region:us" ]
unconditional-image-generation
2025-06-20T09:53:25Z
--- license: mit tags: - pytorch - diffusers - unconditional-image-generation - diffusion-models-class --- # Model Card for Unit 1 of the [Diffusion Models Class 🧨](https://github.com/huggingface/diffusion-models-class) This model is a diffusion model for unconditional image generation of cute 🦋. ## Usage ```python from diffusers import DDPMPipeline pipeline = DDPMPipeline.from_pretrained('oldroydh/sd-class-butterflies-64') image = pipeline().images[0] image ```
morturr/Llama-2-7b-hf-PAIR_dadjokes_one_liners-COMB-dadjokes-comb-3-seed-28-2025-06-20
morturr
2025-06-20T10:37:07Z
0
0
peft
[ "peft", "safetensors", "trl", "sft", "generated_from_trainer", "base_model:meta-llama/Llama-2-7b-hf", "base_model:adapter:meta-llama/Llama-2-7b-hf", "license:llama2", "region:us" ]
null
2025-06-20T10:36:51Z
--- library_name: peft license: llama2 base_model: meta-llama/Llama-2-7b-hf tags: - trl - sft - generated_from_trainer model-index: - name: Llama-2-7b-hf-PAIR_dadjokes_one_liners-COMB-dadjokes-comb-3-seed-28-2025-06-20 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Llama-2-7b-hf-PAIR_dadjokes_one_liners-COMB-dadjokes-comb-3-seed-28-2025-06-20 This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 16 - seed: 28 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - PEFT 0.13.2 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.0.2 - Tokenizers 0.20.1
hzlizihao/bert-finetuned-ner
hzlizihao
2025-06-20T10:33:59Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "bert", "token-classification", "generated_from_trainer", "dataset:conll2003", "base_model:google-bert/bert-base-cased", "base_model:finetune:google-bert/bert-base-cased", "license:apache-2.0", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
token-classification
2025-06-20T10:08:02Z
--- library_name: transformers license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer datasets: - conll2003 metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2003 type: conll2003 config: conll2003 split: validation args: conll2003 metrics: - name: Precision type: precision value: 0.935275616619765 - name: Recall type: recall value: 0.9508582968697409 - name: F1 type: f1 value: 0.9430025869982476 - name: Accuracy type: accuracy value: 0.9863866486136458 --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0615 - Precision: 0.9353 - Recall: 0.9509 - F1: 0.9430 - Accuracy: 0.9864 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.075 | 1.0 | 1756 | 0.0712 | 0.8968 | 0.9313 | 0.9137 | 0.9805 | | 0.0351 | 2.0 | 3512 | 0.0728 | 0.9308 | 0.9441 | 0.9374 | 0.9845 | | 0.0231 | 3.0 | 5268 | 0.0615 | 0.9353 | 0.9509 | 0.9430 | 0.9864 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
winnieyangwannan/entity_Llama-3.1-8B-Instruct_mlp-down_positive-negative-addition-same_last_layer_16_2_all_3_49
winnieyangwannan
2025-06-20T10:33:25Z
0
0
transformers
[ "transformers", "safetensors", "llama", "text-generation", "conversational", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T10:31:16Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Shuu12121/CodeSearch-ModernBERT-Owl-3.0
Shuu12121
2025-06-20T10:32:50Z
0
0
sentence-transformers
[ "sentence-transformers", "safetensors", "modernbert", "sentence-similarity", "feature-extraction", "generated_from_trainer", "dataset_size:7059600", "loss:MultipleNegativesRankingLoss", "arxiv:1908.10084", "arxiv:1705.00652", "base_model:Shuu12121/CodeModernBERT-Owl-3.0", "base_model:finetune:Shuu12121/CodeModernBERT-Owl-3.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2025-06-20T10:32:23Z
--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:7059600 - loss:MultipleNegativesRankingLoss base_model: Shuu12121/CodeModernBERT-Owl-3.0 widget: - source_sentence: Retrieve the given root by type-key sentences: - "def __convert_to_df(a, val_col=None, group_col=None, val_id=None, group_id=None):\n\ \n '''Hidden helper method to create a DataFrame with input data for further\n\ \ processing.\n\n Parameters\n ----------\n a : array_like or pandas\ \ DataFrame object\n An array, any object exposing the array interface\ \ or a pandas DataFrame.\n Array must be two-dimensional. Second dimension\ \ may vary,\n i.e. groups may have different lengths.\n\n val_col :\ \ str, optional\n Name of a DataFrame column that contains dependent variable\ \ values (test\n or response variable). Values should have a non-nominal\ \ scale. Must be\n specified if `a` is a pandas DataFrame object.\n\n \ \ group_col : str, optional\n Name of a DataFrame column that contains\ \ independent variable values\n (grouping or predictor variable). Values\ \ should have a nominal scale\n (categorical). Must be specified if `a`\ \ is a pandas DataFrame object.\n\n val_id : int, optional\n Index of\ \ a column that contains dependent variable values (test or\n response\ \ variable). Should be specified if a NumPy ndarray is used as an\n input.\ \ It will be inferred from data, if not specified.\n\n group_id : int, optional\n\ \ Index of a column that contains independent variable values (grouping\ \ or\n predictor variable). Should be specified if a NumPy ndarray is used\ \ as\n an input. It will be inferred from data, if not specified.\n\n \ \ Returns\n -------\n x : pandas DataFrame\n DataFrame with input\ \ data, `val_col` column contains numerical values and\n `group_col` column\ \ contains categorical values.\n\n val_col : str\n Name of a DataFrame\ \ column that contains dependent variable values (test\n or response variable).\n\ \n group_col : str\n Name of a DataFrame column that contains independent\ \ variable values\n (grouping or predictor variable).\n\n Notes\n \ \ -----\n Inferrence algorithm for determining `val_id` and `group_id` args\ \ is rather\n simple, so it is better to specify them explicitly to prevent\ \ errors.\n\n '''\n\n if not group_col:\n group_col = 'groups'\n\ \ if not val_col:\n val_col = 'vals'\n\n if isinstance(a, DataFrame):\n\ \ x = a.copy()\n if not {group_col, val_col}.issubset(a.columns):\n\ \ raise ValueError('Specify correct column names using `group_col`\ \ and `val_col` args')\n return x, val_col, group_col\n\n elif isinstance(a,\ \ list) or (isinstance(a, np.ndarray) and not a.shape.count(2)):\n grps_len\ \ = map(len, a)\n grps = list(it.chain(*[[i+1] * l for i, l in enumerate(grps_len)]))\n\ \ vals = list(it.chain(*a))\n\n return DataFrame({val_col: vals,\ \ group_col: grps}), val_col, group_col\n\n elif isinstance(a, np.ndarray):\n\ \n # cols ids not defined\n # trying to infer\n if not(all([val_id,\ \ group_id])):\n\n if np.argmax(a.shape):\n a = a.T\n\ \n ax = [np.unique(a[:, 0]).size, np.unique(a[:, 1]).size]\n\n \ \ if np.asscalar(np.diff(ax)):\n __val_col = np.argmax(ax)\n\ \ __group_col = np.argmin(ax)\n else:\n \ \ raise ValueError('Cannot infer input format.\\nPlease specify `val_id` and\ \ `group_id` args')\n\n cols = {__val_col: val_col,\n \ \ __group_col: group_col}\n else:\n cols = {val_id: val_col,\n\ \ group_id: group_col}\n\n cols_vals = dict(sorted(cols.items())).values()\n\ \ return DataFrame(a, columns=cols_vals), val_col, group_col" - "def debug(*args)\n return nil unless Puppet::Util::Log.level == :debug\n \ \ if block_given?\n send_log(:debug, yield(*args))\n else\n send_log(:debug,\ \ args.join(\" \"))\n end\n end" - "def get_root( self, key ):\n \n if key not in self.roots:\n \ \ root,self.rows = load( self.filename, include_interpreter = self.include_interpreter\ \ )\n self.roots[key] = root\n return self.roots[key]" - source_sentence: Returns the solc version, if any. sentences: - "pub fn solc_version(&self) -> Option<Version> {\n self.solc.as_ref().and_then(|solc|\ \ solc.try_version().ok())\n }" - "def run!\n\t\t\tcatch :halt do\n\t\t\t\tvalidate_request\n\n\t\t\t\ttry_options\ \ ||\n\t\t\t\t\ttry_static ||\n\t\t\t\t\ttry_static(dir: GEM_STATIC_FILES) ||\n\ \t\t\t\t\ttry_route ||\n\t\t\t\t\thalt(404)\n\t\t\tend\n\t\t\tresponse.write body\ \ unless request.head?\n\t\t\tresponse.finish\n\t\tend" - "private Class<?> getTemplateClass() {\n String fqName = getTargetPackage()\ \ + \".\" + getName();\n try {\n mTemplateClass = getCompiler().loadClass(fqName);\n\ \ }\n catch (ClassNotFoundException nx) {\n try {\n \ \ mTemplateClass = getCompiler().loadClass(getName()); // Try standard\ \ path as a last resort\n }\n catch (ClassNotFoundException\ \ nx2) {\n return null;\n }\n }\n return\ \ mTemplateClass;\n }" - source_sentence: 'Get value {@link Text} value @param label target label @return {@link Text} value of the label. If it is not null.' sentences: - "public Text getValueText(String label) {\n HadoopObject o = getHadoopObject(VALUE,\ \ label, ObjectUtil.STRING, \"String\");\n if (o == null) {\n \ \ return null;\n }\n return (Text) o.getObject();\n }" - "func NewFloats64(into *[]float64, v []float64) *Floats64Value {\n\t*into = v\n\ \treturn (*Floats64Value)(into)\n}" - "def genestatus(args):\n \n p = OptionParser(genestatus.__doc__)\n opts,\ \ args = p.parse_args(args)\n\n if len(args) != 1:\n sys.exit(not p.print_help())\n\ \n idsfile, = args\n data = get_tags(idsfile)\n key = lambda x: x[0].split(\"\ .\")[0]\n for gene, cc in groupby(data, key=key):\n cc = list(cc)\n\ \ tags = [x[-1] for x in cc]\n if \"complete\" in tags:\n \ \ tag = \"complete\"\n elif \"partial\" in tags:\n tag\ \ = \"partial\"\n else:\n tag = \"pseudogene\"\n print(\"\ \\t\".join((gene, tag)))" - source_sentence: update function sentences: - "function (sourceBuffer, aNode, tagNameVariable) {\n var props = aNode.props;\n\ \ var bindDirective = aNode.directives.bind;\n var tagName = aNode.tagName;\n\ \n if (tagName) {\n sourceBuffer.joinString('<' + tagName);\n\ \ }\n else if (tagNameVariable) {\n sourceBuffer.joinString('<');\n\ \ sourceBuffer.joinRaw(tagNameVariable + ' || \"div\"');\n }\n\ \ else {\n sourceBuffer.joinString('<div');\n }\n\n \ \ // index list\n var propsIndex = {};\n each(props, function\ \ (prop) {\n propsIndex[prop.name] = prop;\n\n if (prop.name\ \ !== 'slot' && prop.expr.value != null) {\n sourceBuffer.joinString('\ \ ' + prop.name + '=\"' + prop.expr.segs[0].literal + '\"');\n }\n\ \ });\n\n each(props, function (prop) {\n if (prop.name\ \ === 'slot' || prop.expr.value != null) {\n return;\n \ \ }\n\n if (prop.name === 'value') {\n switch (tagName)\ \ {\n case 'textarea':\n return;\n\n\ \ case 'select':\n sourceBuffer.addRaw('$selectValue\ \ = '\n + compileExprSource.expr(prop.expr)\n \ \ + ' || \"\";'\n );\n \ \ return;\n\n case 'option':\n \ \ sourceBuffer.addRaw('$optionValue = '\n +\ \ compileExprSource.expr(prop.expr)\n + ';'\n \ \ );\n // value\n \ \ sourceBuffer.addRaw('if ($optionValue != null) {');\n \ \ sourceBuffer.joinRaw('\" value=\\\\\"\" + $optionValue + \"\\\\\"\"');\n\ \ sourceBuffer.addRaw('}');\n\n \ \ // selected\n sourceBuffer.addRaw('if ($optionValue ===\ \ $selectValue) {');\n sourceBuffer.joinString(' selected');\n\ \ sourceBuffer.addRaw('}');\n return;\n\ \ }\n }\n\n switch (prop.name) {\n \ \ case 'readonly':\n case 'disabled':\n \ \ case 'multiple':\n if (prop.raw === '') {\n \ \ sourceBuffer.joinString(' ' + prop.name);\n }\n\ \ else {\n sourceBuffer.joinRaw('boolAttrFilter(\"\ ' + prop.name + '\", '\n + compileExprSource.expr(prop.expr)\n\ \ + ')'\n );\n \ \ }\n break;\n\n case 'checked':\n \ \ if (tagName === 'input') {\n var valueProp\ \ = propsIndex.value;\n var valueCode = compileExprSource.expr(valueProp.expr);\n\ \n if (valueProp) {\n switch\ \ (propsIndex.type.raw) {\n case 'checkbox':\n\ \ sourceBuffer.addRaw('if (contains('\n \ \ + compileExprSource.expr(prop.expr)\n \ \ + ', '\n \ \ + valueCode\n + ')) {'\n \ \ );\n sourceBuffer.joinString('\ \ checked');\n sourceBuffer.addRaw('}');\n\ \ break;\n\n \ \ case 'radio':\n sourceBuffer.addRaw('if\ \ ('\n + compileExprSource.expr(prop.expr)\n\ \ + ' === '\n \ \ + valueCode\n + ') {'\n\ \ );\n sourceBuffer.joinString('\ \ checked');\n sourceBuffer.addRaw('}');\n\ \ break;\n }\n \ \ }\n }\n break;\n\ \n default:\n var onlyOneAccessor = false;\n\ \ var preCondExpr;\n\n if (prop.expr.type\ \ === ExprType.ACCESSOR) {\n onlyOneAccessor = true;\n\ \ preCondExpr = prop.expr;\n }\n \ \ else if (prop.expr.segs.length === 1) {\n \ \ var interpExpr = prop.expr.segs[0];\n var interpFilters\ \ = interpExpr.filters;\n\n if (!interpFilters.length\n\ \ || interpFilters.length === 1 && interpFilters[0].args.length\ \ === 0\n ) {\n onlyOneAccessor\ \ = true;\n preCondExpr = prop.expr.segs[0].expr;\n\ \ }\n }\n\n if (onlyOneAccessor)\ \ {\n sourceBuffer.addRaw('if (' + compileExprSource.expr(preCondExpr)\ \ + ') {');\n }\n\n sourceBuffer.joinRaw('attrFilter(\"\ ' + prop.name + '\", '\n + (prop.x ? 'escapeHTML(' : '')\n\ \ + compileExprSource.expr(prop.expr)\n \ \ + (prop.x ? ')' : '')\n + ')'\n \ \ );\n\n if (onlyOneAccessor) {\n \ \ sourceBuffer.addRaw('}');\n }\n\n \ \ break;\n }\n });\n\n if (bindDirective) {\n \ \ sourceBuffer.addRaw(\n '(function ($bindObj) {for (var $key\ \ in $bindObj) {'\n + 'var $value = $bindObj[$key];'\n \ \ );\n\n if (tagName === 'textarea') {\n sourceBuffer.addRaw(\n\ \ 'if ($key === \"value\") {'\n + 'continue;'\n\ \ + '}'\n );\n }\n\n sourceBuffer.addRaw('switch\ \ ($key) {\\n'\n + 'case \"readonly\":\\n'\n + 'case\ \ \"disabled\":\\n'\n + 'case \"multiple\":\\n'\n \ \ + 'case \"multiple\":\\n'\n + 'html += boolAttrFilter($key,\ \ escapeHTML($value));\\n'\n + 'break;\\n'\n + 'default:\\\ n'\n + 'html += attrFilter($key, escapeHTML($value));'\n \ \ + '}'\n );\n\n sourceBuffer.addRaw(\n \ \ '}})('\n + compileExprSource.expr(bindDirective.value)\n\ \ + ');'\n );\n }\n\n sourceBuffer.joinString('>');\n\ \ }" - "public function process(Model $model)\n {\n $data = $model->getData()\ \ ? 'TRUE' : 'FALSE';\n return $this->pool->render->renderSingleChild(\n\ \ $model->setData($data)\n ->setNormal($data)\n \ \ ->setType(static::TYPE_BOOL)\n );\n }" - "function (/*dt*/) {\n // we don't draw anything fancy here, so just\n\ \ // return true if the score has been updated\n if (this.score\ \ !== game.data.score) {\n this.score = game.data.score;\n \ \ return true;\n }\n return false;\n }" - source_sentence: Call by destroy step sentences: - "def from_context(cls, ctx, config_paths=None, project=None):\n \n \ \ if ctx.obj is None:\n ctx.obj = Bunch()\n ctx.obj.cfg =\ \ cls(ctx.info_name, config_paths, project=project)\n return ctx.obj.cfg" - "public function decompress($content)\n {\n $archive = $this->getArchive();\n\ \ if (empty($archive) || !file_exists($archive)) {\n throw new\ \ Exception\\RuntimeException('Tar Archive not found');\n }\n\n \ \ $archive = str_replace(['/', '\\\\'], DIRECTORY_SEPARATOR, realpath($content));\n\ \ $archive = new Archive_Tar($archive, $this->getMode());\n $target\ \ = $this->getTarget();\n if (!is_dir($target)) {\n $target\ \ = dirname($target) . DIRECTORY_SEPARATOR;\n }\n\n $result = $archive->extract($target);\n\ \ if ($result === false) {\n throw new Exception\\RuntimeException('Error\ \ while extracting the Tar archive');\n }\n\n return $target;\n\ \ }" - "function setAlltoNoop (obj, methods) {\n utils.each(methods, function (method)\ \ {\n obj[method] = noop\n })\n}" pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on Shuu12121/CodeModernBERT-Owl-3.0 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Shuu12121/CodeModernBERT-Owl-3.0](https://huggingface.co/Shuu12121/CodeModernBERT-Owl-3.0). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [Shuu12121/CodeModernBERT-Owl-3.0](https://huggingface.co/Shuu12121/CodeModernBERT-Owl-3.0) <!-- at revision 097b9053842f37dcf1e269e3ae213fa5bf23c606 --> - **Maximum Sequence Length:** 1024 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity <!-- - **Training Dataset:** Unknown --> <!-- - **Language:** Unknown --> <!-- - **License:** Unknown --> ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ 'Call by destroy step', 'function setAlltoNoop (obj, methods) {\n utils.each(methods, function (method) {\n obj[method] = noop\n })\n}', "public function decompress($content)\n {\n $archive = $this->getArchive();\n if (empty($archive) || !file_exists($archive)) {\n throw new Exception\\RuntimeException('Tar Archive not found');\n }\n\n $archive = str_replace(['/', '\\\\'], DIRECTORY_SEPARATOR, realpath($content));\n $archive = new Archive_Tar($archive, $this->getMode());\n $target = $this->getTarget();\n if (!is_dir($target)) {\n $target = dirname($target) . DIRECTORY_SEPARATOR;\n }\n\n $result = $archive->extract($target);\n if ($result === false) {\n throw new Exception\\RuntimeException('Error while extracting the Tar archive');\n }\n\n return $target;\n }", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` <!-- ### Direct Usage (Transformers) <details><summary>Click to see the direct usage in Transformers</summary> </details> --> <!-- ### Downstream Usage (Sentence Transformers) You can finetune this model on your own dataset. <details><summary>Click to expand</summary> </details> --> <!-- ### Out-of-Scope Use *List how the model may foreseeably be misused and address what users ought not to do with the model.* --> <!-- ## Bias, Risks and Limitations *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* --> <!-- ### Recommendations *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* --> ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 7,059,600 training samples * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code> * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------|:--------------------------------------------------------------| | type | string | string | float | | details | <ul><li>min: 3 tokens</li><li>mean: 52.89 tokens</li><li>max: 957 tokens</li></ul> | <ul><li>min: 27 tokens</li><li>mean: 172.25 tokens</li><li>max: 1024 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> | * Samples: | sentence_0 | sentence_1 | label | |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------| | <code>// NewFeature is the normal factory method for a feature<br>// Note that id is expected to be a string or number</code> | <code>func NewFeature(geometry interface{}, id interface{}, properties map[string]interface{}) *Feature {<br> if properties == nil {<br> properties = make(map[string]interface{})<br> }<br> return &Feature{Type: FEATURE, Geometry: geometry, Properties: properties, ID: id}<br>}</code> | <code>1.0</code> | | <code>// AllowElements will append HTML elements to the whitelist without applying an<br>// attribute policy to those elements (the elements are permitted<br>// sans-attributes)</code> | <code>func (p *Policy) AllowElements(names ...string) *Policy {<br> p.init()<br><br> for _, element := range names {<br> element = strings.ToLower(element)<br><br> if _, ok := p.elsAndAttrs[element]; !ok {<br> p.elsAndAttrs[element] = make(map[string]attrPolicy)<br> }<br> }<br><br> return p<br>}</code> | <code>1.0</code> | | <code>// Build validates the configuration options provided then builds the command</code> | <code>func (builder *MapReduceCommandBuilder) Build() (Command, error) {<br> if builder.protobuf == nil {<br> panic("builder.protobuf must not be nil")<br> }<br> if builder.streaming && builder.callback == nil {<br> return nil, newClientError("MapReduceCommand requires a callback when streaming.", nil)<br> }<br> return &MapReduceCommand{<br> protobuf: builder.protobuf,<br> streaming: builder.streaming,<br> callback: builder.callback,<br> }, nil<br>}</code> | <code>1.0</code> | * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 150 - `per_device_eval_batch_size`: 150 - `num_train_epochs`: 1 - `fp16`: True - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters <details><summary>Click to expand</summary> - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 150 - `per_device_eval_batch_size`: 150 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin </details> ### Training Logs | Epoch | Step | Training Loss | |:------:|:-----:|:-------------:| | 0.0106 | 500 | 0.5662 | | 0.0212 | 1000 | 0.113 | | 0.0319 | 1500 | 0.1048 | | 0.0425 | 2000 | 0.1006 | | 0.0531 | 2500 | 0.0921 | | 0.0637 | 3000 | 0.0861 | | 0.0744 | 3500 | 0.0834 | | 0.0850 | 4000 | 0.0787 | | 0.0956 | 4500 | 0.0734 | | 0.1062 | 5000 | 0.0752 | | 0.1169 | 5500 | 0.0711 | | 0.1275 | 6000 | 0.0697 | | 0.1381 | 6500 | 0.0694 | | 0.1487 | 7000 | 0.0682 | | 0.1594 | 7500 | 0.0632 | | 0.1700 | 8000 | 0.0641 | | 0.1806 | 8500 | 0.063 | | 0.1912 | 9000 | 0.0587 | | 0.2019 | 9500 | 0.0615 | | 0.2125 | 10000 | 0.0549 | | 0.2231 | 10500 | 0.0553 | | 0.2337 | 11000 | 0.0549 | | 0.2443 | 11500 | 0.0528 | | 0.2550 | 12000 | 0.0531 | | 0.2656 | 12500 | 0.0505 | | 0.2762 | 13000 | 0.0512 | | 0.2868 | 13500 | 0.0459 | | 0.2975 | 14000 | 0.0477 | | 0.3081 | 14500 | 0.0472 | | 0.3187 | 15000 | 0.0473 | | 0.3293 | 15500 | 0.0463 | | 0.3400 | 16000 | 0.044 | | 0.3506 | 16500 | 0.0415 | | 0.3612 | 17000 | 0.042 | | 0.3718 | 17500 | 0.0412 | | 0.3825 | 18000 | 0.0411 | | 0.3931 | 18500 | 0.0401 | | 0.4037 | 19000 | 0.0396 | | 0.4143 | 19500 | 0.0374 | | 0.4250 | 20000 | 0.0373 | | 0.4356 | 20500 | 0.0364 | | 0.4462 | 21000 | 0.0375 | | 0.4568 | 21500 | 0.0349 | | 0.4674 | 22000 | 0.0355 | | 0.4781 | 22500 | 0.0321 | | 0.4887 | 23000 | 0.0349 | | 0.4993 | 23500 | 0.0314 | | 0.5099 | 24000 | 0.0318 | | 0.5206 | 24500 | 0.033 | | 0.5312 | 25000 | 0.0306 | | 0.5418 | 25500 | 0.0299 | | 0.5524 | 26000 | 0.0303 | | 0.5631 | 26500 | 0.0286 | | 0.5737 | 27000 | 0.0304 | | 0.5843 | 27500 | 0.0266 | | 0.5949 | 28000 | 0.0274 | | 0.6056 | 28500 | 0.0277 | | 0.6162 | 29000 | 0.0264 | | 0.6268 | 29500 | 0.0255 | | 0.6374 | 30000 | 0.0258 | | 0.6481 | 30500 | 0.0251 | | 0.6587 | 31000 | 0.024 | | 0.6693 | 31500 | 0.0258 | | 0.6799 | 32000 | 0.0242 | | 0.6905 | 32500 | 0.0225 | | 0.7012 | 33000 | 0.0237 | | 0.7118 | 33500 | 0.0209 | | 0.7224 | 34000 | 0.0231 | | 0.7330 | 34500 | 0.022 | | 0.7437 | 35000 | 0.0221 | | 0.7543 | 35500 | 0.0198 | | 0.7649 | 36000 | 0.0207 | | 0.7755 | 36500 | 0.0213 | | 0.7862 | 37000 | 0.0212 | | 0.7968 | 37500 | 0.0209 | | 0.8074 | 38000 | 0.0204 | | 0.8180 | 38500 | 0.0196 | | 0.8287 | 39000 | 0.0184 | | 0.8393 | 39500 | 0.0185 | | 0.8499 | 40000 | 0.0192 | | 0.8605 | 40500 | 0.0197 | | 0.8712 | 41000 | 0.0184 | | 0.8818 | 41500 | 0.0188 | | 0.8924 | 42000 | 0.0181 | | 0.9030 | 42500 | 0.0182 | | 0.9136 | 43000 | 0.0167 | | 0.9243 | 43500 | 0.0176 | | 0.9349 | 44000 | 0.0188 | | 0.9455 | 44500 | 0.0181 | | 0.9561 | 45000 | 0.0175 | | 0.9668 | 45500 | 0.0175 | | 0.9774 | 46000 | 0.017 | | 0.9880 | 46500 | 0.0164 | | 0.9986 | 47000 | 0.0174 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 4.1.0 - Transformers: 4.52.4 - PyTorch: 2.7.0+cu128 - Accelerate: 1.7.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- ## Glossary *Clearly define terms in order to be accessible across audiences.* --> <!-- ## Model Card Authors *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* --> <!-- ## Model Card Contact *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* -->
Xeil84/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-gentle_dense_okapi
Xeil84
2025-06-20T10:29:38Z
0
0
transformers
[ "transformers", "safetensors", "generated_from_trainer", "rl-swarm", "grpo", "gensyn", "I am gentle dense okapi", "unsloth", "trl", "arxiv:2402.03300", "base_model:Gensyn/Qwen2.5-0.5B-Instruct", "base_model:finetune:Gensyn/Qwen2.5-0.5B-Instruct", "endpoints_compatible", "region:us" ]
null
2025-06-15T21:06:27Z
--- base_model: Gensyn/Qwen2.5-0.5B-Instruct library_name: transformers model_name: Qwen2.5-0.5B-Instruct-Gensyn-Swarm-gentle_dense_okapi tags: - generated_from_trainer - rl-swarm - grpo - gensyn - I am gentle dense okapi - unsloth - trl licence: license --- # Model Card for Qwen2.5-0.5B-Instruct-Gensyn-Swarm-gentle_dense_okapi This model is a fine-tuned version of [Gensyn/Qwen2.5-0.5B-Instruct](https://huggingface.co/Gensyn/Qwen2.5-0.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="Xeil84/Qwen2.5-0.5B-Instruct-Gensyn-Swarm-gentle_dense_okapi", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300). ### Framework versions - TRL: 0.15.2 - Transformers: 4.51.3 - Pytorch: 2.6.0 - Datasets: 3.6.0 - Tokenizers: 0.21.1 ## Citations Cite GRPO as: ```bibtex @article{zhihong2024deepseekmath, title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}}, author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo}, year = 2024, eprint = {arXiv:2402.03300}, } ``` Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
nusnlp/JGP-Parallel-Last-ID-EN
nusnlp
2025-06-20T10:24:15Z
0
0
null
[ "pytorch", "llama", "en", "id", "arxiv:2506.13044", "license:apache-2.0", "region:us" ]
null
2025-06-18T06:03:53Z
--- license: apache-2.0 language: - en - id --- # Just-Go-Parallel (Parallel Last (uni): ID→EN) The model repository for the "Parallel Last (uni): ID→EN" setting of the following paper: > **Just Go Parallel: Improving the Multilingual Capabilities of Large Language Models** > > [Muhammad Reza Qorib](https://mrqorib.github.io/), [Junyi Li](https://lijunyi.tech/), and [Hwee Tou Ng](https://www.comp.nus.edu.sg/~nght/) > > The 63rd Annual Meeting of the Association for Computational Linguistics (to appear) - **Paper:** [arXiv](https://arxiv.org/abs/2506.13044) - **Codebase:** [https://github.com/nusnlp/Just-Go-Parallel/](https://github.com/nusnlp/just-Go-Parallel/) We use the architecture and tokenizer of [TinyLlama v1.1](https://huggingface.co/TinyLlama/TinyLlama_v1.1). Please use transformers>=4.35. ## Models The main branch of the repository contains the best-performing model that was evaluated in the paper. Other checkpoints produced during training will also be hosted in this repository under different branch names (also called "revisions" in HuggingFace), with each branch name indicating the number of training steps. * No Parallel: [nusnlp/JGP-No-Parallel](https://huggingface.co/nusnlp/JGP-No-Parallel) * Multilingual: [nusnlp/JGP-Multilingual](https://huggingface.co/nusnlp/JGP-Multilingual) * Parallel Non-Adjacent: [nusnlp/JGP-Parallel-Non-Adjacent](https://huggingface.co/nusnlp/JGP-Parallel-Non-Adjacent) * Parallel First: [nusnlp/JGP-Parallel-First](https://huggingface.co/nusnlp/JGP-Parallel-First) * Parallel Distributed: [nusnlp/JGP-Parallel-Distributed](https://huggingface.co/nusnlp/JGP-Parallel-Distributed) * Parallel Last (all): [nusnlp/JGP-Parallel-Last-all](https://huggingface.co/nusnlp/JGP-Parallel-Last-all) * Parallel Last (uni): * EN→ID: [nusnlp/JGP-Parallel-Last-EN-ID](https://huggingface.co/nusnlp/JGP-Parallel-Last-EN-ID) * ID→EN: [nusnlp/JGP-Parallel-Last-ID-EN](https://huggingface.co/nusnlp/JGP-Parallel-Last-ID-EN) * EN→ZH: [nusnlp/JGP-Parallel-Last-EN-ZH](https://huggingface.co/nusnlp/JGP-Parallel-Last-EN-ZH) * ZH→EN: [nusnlp/JGP-Parallel-Last-ZH-EN](https://huggingface.co/nusnlp/JGP-Parallel-Last-ZH-EN)
bunnycore/Qwen3-4B-RP-V2
bunnycore
2025-06-20T10:13:06Z
0
0
transformers
[ "transformers", "safetensors", "qwen3", "text-generation", "mergekit", "merge", "conversational", "arxiv:2306.01708", "base_model:Hastagaras/Qibil-4B-v0.1-RP", "base_model:merge:Hastagaras/Qibil-4B-v0.1-RP", "base_model:bunnycore/Qwen3-4B-RP", "base_model:merge:bunnycore/Qwen3-4B-RP", "base_model:fakezeta/amoral-Qwen3-4B", "base_model:merge:fakezeta/amoral-Qwen3-4B", "base_model:mlabonne/Qwen3-4B-abliterated", "base_model:merge:mlabonne/Qwen3-4B-abliterated", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T10:06:39Z
--- base_model: - mlabonne/Qwen3-4B-abliterated - Hastagaras/Qibil-4B-v0.1-RP - fakezeta/amoral-Qwen3-4B - bunnycore/Qwen3-4B-RP library_name: transformers tags: - mergekit - merge --- # merge This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). ## Merge Details ### Merge Method This model was merged using the [TIES](https://arxiv.org/abs/2306.01708) merge method using [mlabonne/Qwen3-4B-abliterated](https://huggingface.co/mlabonne/Qwen3-4B-abliterated) as a base. ### Models Merged The following models were included in the merge: * [Hastagaras/Qibil-4B-v0.1-RP](https://huggingface.co/Hastagaras/Qibil-4B-v0.1-RP) * [fakezeta/amoral-Qwen3-4B](https://huggingface.co/fakezeta/amoral-Qwen3-4B) * [bunnycore/Qwen3-4B-RP](https://huggingface.co/bunnycore/Qwen3-4B-RP) ### Configuration The following YAML configuration was used to produce this model: ```yaml models: - model: Hastagaras/Qibil-4B-v0.1-RP parameters: density: 0.5 weight: 0.5 - model: fakezeta/amoral-Qwen3-4B parameters: density: 0.3 weight: 0.3 - model: bunnycore/Qwen3-4B-RP parameters: density: 0.3 weight: 0.3 merge_method: ties base_model: mlabonne/Qwen3-4B-abliterated parameters: normalize: false int8_mask: true dtype: float16 ```
3sara/merged-v1.2-3epochs
3sara
2025-06-20T09:59:31Z
0
0
peft
[ "peft", "safetensors", "colpali-finetuned", "generated_from_trainer", "base_model:vidore/colpali-v1.2-merged", "base_model:adapter:vidore/colpali-v1.2-merged", "license:gemma", "region:us" ]
null
2025-06-20T09:59:21Z
--- library_name: peft license: gemma base_model: vidore/colpali-v1.2-merged tags: - colpali-finetuned - generated_from_trainer model-index: - name: merged-v1.2-3epochs results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # merged-v1.2-3epochs This model is a fine-tuned version of [vidore/colpali-v1.2-merged](https://huggingface.co/vidore/colpali-v1.2-merged) on the 3sara/validated_colpali_italian_documents_with_images dataset. It achieves the following results on the evaluation set: - Loss: 0.3600 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0103 | 1 | 0.3778 | | 0.1534 | 1.0205 | 100 | 0.3070 | | 0.105 | 2.0410 | 200 | 0.3600 | ### Framework versions - PEFT 0.15.2 - Transformers 4.51.3 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1
ishk9999/gemma-cxr-fine-tuning-3000-subset-4b-it
ishk9999
2025-06-20T09:58:00Z
0
0
transformers
[ "transformers", "tensorboard", "safetensors", "generated_from_trainer", "trl", "sft", "base_model:google/medgemma-4b-it", "base_model:finetune:google/medgemma-4b-it", "endpoints_compatible", "region:us" ]
null
2025-06-19T07:23:35Z
--- base_model: google/medgemma-4b-it library_name: transformers model_name: gemma-cxr-fine-tuning-3000-subset-4b-it tags: - generated_from_trainer - trl - sft licence: license --- # Model Card for gemma-cxr-fine-tuning-3000-subset-4b-it This model is a fine-tuned version of [google/medgemma-4b-it](https://huggingface.co/google/medgemma-4b-it). It has been trained using [TRL](https://github.com/huggingface/trl). ## Quick start ```python from transformers import pipeline question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?" generator = pipeline("text-generation", model="ishk9999/gemma-cxr-fine-tuning-3000-subset-4b-it", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Training procedure This model was trained with SFT. ### Framework versions - TRL: 0.15.2 - Transformers: 4.52.4 - Pytorch: 2.6.0+cu124 - Datasets: 3.3.2 - Tokenizers: 0.21.1 ## Citations Cite TRL as: ```bibtex @misc{vonwerra2022trl, title = {{TRL: Transformer Reinforcement Learning}}, author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec}, year = 2020, journal = {GitHub repository}, publisher = {GitHub}, howpublished = {\url{https://github.com/huggingface/trl}} } ```
LarryAIDraw/hsr-feixiao-ponyxl-lora-nochekaiser
LarryAIDraw
2025-06-20T09:51:37Z
0
0
null
[ "license:creativeml-openrail-m", "region:us" ]
null
2025-06-20T09:12:54Z
--- license: creativeml-openrail-m --- https://civitai.com/models/746845/feixiao-honkai-star-rail
Qwen/Qwen3-Embedding-0.6B
Qwen
2025-06-20T09:31:05Z
227,662
260
sentence-transformers
[ "sentence-transformers", "safetensors", "qwen3", "text-generation", "transformers", "sentence-similarity", "feature-extraction", "text-embeddings-inference", "arxiv:2506.05176", "base_model:Qwen/Qwen3-0.6B-Base", "base_model:finetune:Qwen/Qwen3-0.6B-Base", "license:apache-2.0", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
feature-extraction
2025-06-03T14:25:32Z
--- license: apache-2.0 base_model: - Qwen/Qwen3-0.6B-Base tags: - transformers - sentence-transformers - sentence-similarity - feature-extraction - text-embeddings-inference --- # Qwen3-Embedding-0.6B <p align="center"> <img src="https://qianwen-res.oss-accelerate-overseas.aliyuncs.com/logo_qwen3.png" width="400"/> <p> ## Highlights The Qwen3 Embedding model series is the latest proprietary model of the Qwen family, specifically designed for text embedding and ranking tasks. Building upon the dense foundational models of the Qwen3 series, it provides a comprehensive range of text embeddings and reranking models in various sizes (0.6B, 4B, and 8B). This series inherits the exceptional multilingual capabilities, long-text understanding, and reasoning skills of its foundational model. The Qwen3 Embedding series represents significant advancements in multiple text embedding and ranking tasks, including text retrieval, code retrieval, text classification, text clustering, and bitext mining. **Exceptional Versatility**: The embedding model has achieved state-of-the-art performance across a wide range of downstream application evaluations. The 8B size embedding model ranks **No.1** in the MTEB multilingual leaderboard (as of June 5, 2025, score **70.58**), while the reranking model excels in various text retrieval scenarios. **Comprehensive Flexibility**: The Qwen3 Embedding series offers a full spectrum of sizes (from 0.6B to 8B) for both embedding and reranking models, catering to diverse use cases that prioritize efficiency and effectiveness. Developers can seamlessly combine these two modules. Additionally, the embedding model allows for flexible vector definitions across all dimensions, and both embedding and reranking models support user-defined instructions to enhance performance for specific tasks, languages, or scenarios. **Multilingual Capability**: The Qwen3 Embedding series offer support for over 100 languages, thanks to the multilingual capabilites of Qwen3 models. This includes various programming languages, and provides robust multilingual, cross-lingual, and code retrieval capabilities. ## Model Overview **Qwen3-Embedding-0.6B** has the following features: - Model Type: Text Embedding - Supported Languages: 100+ Languages - Number of Paramaters: 0.6B - Context Length: 32k - Embedding Dimension: Up to 1024, supports user-defined output dimensions ranging from 32 to 1024 For more details, including benchmark evaluation, hardware requirements, and inference performance, please refer to our [blog](https://qwenlm.github.io/blog/qwen3-embedding/), [GitHub](https://github.com/QwenLM/Qwen3-Embedding). ## Qwen3 Embedding Series Model list | Model Type | Models | Size | Layers | Sequence Length | Embedding Dimension | MRL Support | Instruction Aware | |------------------|----------------------|------|--------|-----------------|---------------------|-------------|----------------| | Text Embedding | [Qwen3-Embedding-0.6B](https://huggingface.co/Qwen/Qwen3-Embedding-0.6B) | 0.6B | 28 | 32K | 1024 | Yes | Yes | | Text Embedding | [Qwen3-Embedding-4B](https://huggingface.co/Qwen/Qwen3-Embedding-4B) | 4B | 36 | 32K | 2560 | Yes | Yes | | Text Embedding | [Qwen3-Embedding-8B](https://huggingface.co/Qwen/Qwen3-Embedding-8B) | 8B | 36 | 32K | 4096 | Yes | Yes | | Text Reranking | [Qwen3-Reranker-0.6B](https://huggingface.co/Qwen/Qwen3-Reranker-0.6B) | 0.6B | 28 | 32K | - | - | Yes | | Text Reranking | [Qwen3-Reranker-4B](https://huggingface.co/Qwen/Qwen3-Reranker-4B) | 4B | 36 | 32K | - | - | Yes | | Text Reranking | [Qwen3-Reranker-8B](https://huggingface.co/Qwen/Qwen3-Reranker-8B) | 8B | 36 | 32K | - | - | Yes | > **Note**: > - `MRL Support` indicates whether the embedding model supports custom dimensions for the final embedding. > - `Instruction Aware` notes whether the embedding or reranking model supports customizing the input instruction according to different tasks. > - Our evaluation indicates that, for most downstream tasks, using instructions (instruct) typically yields an improvement of 1% to 5% compared to not using them. Therefore, we recommend that developers create tailored instructions specific to their tasks and scenarios. In multilingual contexts, we also advise users to write their instructions in English, as most instructions utilized during the model training process were originally written in English. ## Usage With Transformers versions earlier than 4.51.0, you may encounter the following error: ``` KeyError: 'qwen3' ``` ### Sentence Transformers Usage ```python # Requires transformers>=4.51.0 # Requires sentence-transformers>=2.7.0 from sentence_transformers import SentenceTransformer # Load the model model = SentenceTransformer("Qwen/Qwen3-Embedding-0.6B") # We recommend enabling flash_attention_2 for better acceleration and memory saving, # together with setting `padding_side` to "left": # model = SentenceTransformer( # "Qwen/Qwen3-Embedding-0.6B", # model_kwargs={"attn_implementation": "flash_attention_2", "device_map": "auto"}, # tokenizer_kwargs={"padding_side": "left"}, # ) # The queries and documents to embed queries = [ "What is the capital of China?", "Explain gravity", ] documents = [ "The capital of China is Beijing.", "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.", ] # Encode the queries and documents. Note that queries benefit from using a prompt # Here we use the prompt called "query" stored under `model.prompts`, but you can # also pass your own prompt via the `prompt` argument query_embeddings = model.encode(queries, prompt_name="query") document_embeddings = model.encode(documents) # Compute the (cosine) similarity between the query and document embeddings similarity = model.similarity(query_embeddings, document_embeddings) print(similarity) # tensor([[0.7646, 0.1414], # [0.1355, 0.6000]]) ``` ### Transformers Usage ```python # Requires transformers>=4.51.0 import torch import torch.nn.functional as F from torch import Tensor from transformers import AutoTokenizer, AutoModel def last_token_pool(last_hidden_states: Tensor, attention_mask: Tensor) -> Tensor: left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) if left_padding: return last_hidden_states[:, -1] else: sequence_lengths = attention_mask.sum(dim=1) - 1 batch_size = last_hidden_states.shape[0] return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] def get_detailed_instruct(task_description: str, query: str) -> str: return f'Instruct: {task_description}\nQuery:{query}' # Each query must come with a one-sentence instruction that describes the task task = 'Given a web search query, retrieve relevant passages that answer the query' queries = [ get_detailed_instruct(task, 'What is the capital of China?'), get_detailed_instruct(task, 'Explain gravity') ] # No need to add instruction for retrieval documents documents = [ "The capital of China is Beijing.", "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun." ] input_texts = queries + documents tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen3-Embedding-0.6B', padding_side='left') model = AutoModel.from_pretrained('Qwen/Qwen3-Embedding-0.6B') # We recommend enabling flash_attention_2 for better acceleration and memory saving. # model = AutoModel.from_pretrained('Qwen/Qwen3-Embedding-0.6B', attn_implementation="flash_attention_2", torch_dtype=torch.float16).cuda() max_length = 8192 # Tokenize the input texts batch_dict = tokenizer( input_texts, padding=True, truncation=True, max_length=max_length, return_tensors="pt", ) batch_dict.to(model.device) outputs = model(**batch_dict) embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) # normalize embeddings embeddings = F.normalize(embeddings, p=2, dim=1) scores = (embeddings[:2] @ embeddings[2:].T) print(scores.tolist()) # [[0.7645568251609802, 0.14142508804798126], [0.13549736142158508, 0.5999549627304077]] ``` ### vLLM Usage ```python # Requires vllm>=0.8.5 import torch import vllm from vllm import LLM def get_detailed_instruct(task_description: str, query: str) -> str: return f'Instruct: {task_description}\nQuery:{query}' # Each query must come with a one-sentence instruction that describes the task task = 'Given a web search query, retrieve relevant passages that answer the query' queries = [ get_detailed_instruct(task, 'What is the capital of China?'), get_detailed_instruct(task, 'Explain gravity') ] # No need to add instruction for retrieval documents documents = [ "The capital of China is Beijing.", "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun." ] input_texts = queries + documents model = LLM(model="Qwen/Qwen3-Embedding-0.6B", task="embed") outputs = model.embed(input_texts) embeddings = torch.tensor([o.outputs.embedding for o in outputs]) scores = (embeddings[:2] @ embeddings[2:].T) print(scores.tolist()) # [[0.7620252966880798, 0.14078938961029053], [0.1358368694782257, 0.6013815999031067]] ``` 📌 **Tip**: We recommend that developers customize the `instruct` according to their specific scenarios, tasks, and languages. Our tests have shown that in most retrieval scenarios, not using an `instruct` on the query side can lead to a drop in retrieval performance by approximately 1% to 5%. ### Text Embeddings Inference (TEI) Usage You can either run / deploy TEI on NVIDIA GPUs as: ```bash docker run --gpus all -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:cpu-1.7.2 --model-id Qwen/Qwen3-Embedding-0.6B --dtype float16 ``` Or on CPU devices as: ```bash docker run -p 8080:80 -v hf_cache:/data --pull always ghcr.io/huggingface/text-embeddings-inference:1.7.2 --model-id Qwen/Qwen3-Embedding-0.6B ``` And then, generate the embeddings sending a HTTP POST request as: ```bash curl http://localhost:8080/embed \ -X POST \ -d '{"inputs": ["Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery: What is the capital of China?", "Instruct: Given a web search query, retrieve relevant passages that answer the query\nQuery: Explain gravity"]}' \ -H "Content-Type: application/json" ``` ## Evaluation ### MTEB (Multilingual) | Model | Size | Mean (Task) | Mean (Type) | Bitxt Mining | Class. | Clust. | Inst. Retri. | Multi. Class. | Pair. Class. | Rerank | Retri. | STS | |----------------------------------|:-------:|:-------------:|:-------------:|:--------------:|:--------:|:--------:|:--------------:|:---------------:|:--------------:|:--------:|:--------:|:------:| | NV-Embed-v2 | 7B | 56.29 | 49.58 | 57.84 | 57.29 | 40.80 | 1.04 | 18.63 | 78.94 | 63.82 | 56.72 | 71.10| | GritLM-7B | 7B | 60.92 | 53.74 | 70.53 | 61.83 | 49.75 | 3.45 | 22.77 | 79.94 | 63.78 | 58.31 | 73.33| | BGE-M3 | 0.6B | 59.56 | 52.18 | 79.11 | 60.35 | 40.88 | -3.11 | 20.1 | 80.76 | 62.79 | 54.60 | 74.12| | multilingual-e5-large-instruct | 0.6B | 63.22 | 55.08 | 80.13 | 64.94 | 50.75 | -0.40 | 22.91 | 80.86 | 62.61 | 57.12 | 76.81| | gte-Qwen2-1.5B-instruct | 1.5B | 59.45 | 52.69 | 62.51 | 58.32 | 52.05 | 0.74 | 24.02 | 81.58 | 62.58 | 60.78 | 71.61| | gte-Qwen2-7b-Instruct | 7B | 62.51 | 55.93 | 73.92 | 61.55 | 52.77 | 4.94 | 25.48 | 85.13 | 65.55 | 60.08 | 73.98| | text-embedding-3-large | - | 58.93 | 51.41 | 62.17 | 60.27 | 46.89 | -2.68 | 22.03 | 79.17 | 63.89 | 59.27 | 71.68| | Cohere-embed-multilingual-v3.0 | - | 61.12 | 53.23 | 70.50 | 62.95 | 46.89 | -1.89 | 22.74 | 79.88 | 64.07 | 59.16 | 74.80| | Gemini Embedding | - | 68.37 | 59.59 | 79.28 | 71.82 | 54.59 | 5.18 | **29.16** | 83.63 | 65.58 | 67.71 | 79.40| | **Qwen3-Embedding-0.6B** | 0.6B | 64.33 | 56.00 | 72.22 | 66.83 | 52.33 | 5.09 | 24.59 | 80.83 | 61.41 | 64.64 | 76.17| | **Qwen3-Embedding-4B** | 4B | 69.45 | 60.86 | 79.36 | 72.33 | 57.15 | **11.56** | 26.77 | 85.05 | 65.08 | 69.60 | 80.86| | **Qwen3-Embedding-8B** | 8B | **70.58** | **61.69** | **80.89** | **74.00** | **57.65** | 10.06 | 28.66 | **86.40** | **65.63** | **70.88** | **81.08** | > **Note**: For compared models, the scores are retrieved from MTEB online [leaderboard](https://huggingface.co/spaces/mteb/leaderboard) on May 24th, 2025. ### MTEB (Eng v2) | MTEB English / Models | Param. | Mean(Task) | Mean(Type) | Class. | Clust. | Pair Class. | Rerank. | Retri. | STS | Summ. | |--------------------------------|:--------:|:------------:|:------------:|:--------:|:--------:|:-------------:|:---------:|:--------:|:-------:|:-------:| | multilingual-e5-large-instruct | 0.6B | 65.53 | 61.21 | 75.54 | 49.89 | 86.24 | 48.74 | 53.47 | 84.72 | 29.89 | | NV-Embed-v2 | 7.8B | 69.81 | 65.00 | 87.19 | 47.66 | 88.69 | 49.61 | 62.84 | 83.82 | 35.21 | | GritLM-7B | 7.2B | 67.07 | 63.22 | 81.25 | 50.82 | 87.29 | 49.59 | 54.95 | 83.03 | 35.65 | | gte-Qwen2-1.5B-instruct | 1.5B | 67.20 | 63.26 | 85.84 | 53.54 | 87.52 | 49.25 | 50.25 | 82.51 | 33.94 | | stella_en_1.5B_v5 | 1.5B | 69.43 | 65.32 | 89.38 | 57.06 | 88.02 | 50.19 | 52.42 | 83.27 | 36.91 | | gte-Qwen2-7B-instruct | 7.6B | 70.72 | 65.77 | 88.52 | 58.97 | 85.9 | 50.47 | 58.09 | 82.69 | 35.74 | | gemini-embedding-exp-03-07 | - | 73.3 | 67.67 | 90.05 | 59.39 | 87.7 | 48.59 | 64.35 | 85.29 | 38.28 | | **Qwen3-Embedding-0.6B** | 0.6B | 70.70 | 64.88 | 85.76 | 54.05 | 84.37 | 48.18 | 61.83 | 86.57 | 33.43 | | **Qwen3-Embedding-4B** | 4B | 74.60 | 68.10 | 89.84 | 57.51 | 87.01 | 50.76 | 68.46 | 88.72 | 34.39 | | **Qwen3-Embedding-8B** | 8B | 75.22 | 68.71 | 90.43 | 58.57 | 87.52 | 51.56 | 69.44 | 88.58 | 34.83 | ### C-MTEB (MTEB Chinese) | C-MTEB | Param. | Mean(Task) | Mean(Type) | Class. | Clust. | Pair Class. | Rerank. | Retr. | STS | |------------------|--------|------------|------------|--------|--------|-------------|---------|-------|-------| | multilingual-e5-large-instruct | 0.6B | 58.08 | 58.24 | 69.80 | 48.23 | 64.52 | 57.45 | 63.65 | 45.81 | | bge-multilingual-gemma2 | 9B | 67.64 | 75.31 | 59.30 | 86.67 | 68.28 | 73.73 | 55.19 | - | | gte-Qwen2-1.5B-instruct | 1.5B | 67.12 | 67.79 | 72.53 | 54.61 | 79.5 | 68.21 | 71.86 | 60.05 | | gte-Qwen2-7B-instruct | 7.6B | 71.62 | 72.19 | 75.77 | 66.06 | 81.16 | 69.24 | 75.70 | 65.20 | | ritrieve_zh_v1 | 0.3B | 72.71 | 73.85 | 76.88 | 66.5 | 85.98 | 72.86 | 76.97 | 63.92 | | **Qwen3-Embedding-0.6B** | 0.6B | 66.33 | 67.45 | 71.40 | 68.74 | 76.42 | 62.58 | 71.03 | 54.52 | | **Qwen3-Embedding-4B** | 4B | 72.27 | 73.51 | 75.46 | 77.89 | 83.34 | 66.05 | 77.03 | 61.26 | | **Qwen3-Embedding-8B** | 8B | 73.84 | 75.00 | 76.97 | 80.08 | 84.23 | 66.99 | 78.21 | 63.53 | ## Citation If you find our work helpful, feel free to give us a cite. ``` @article{qwen3embedding, title={Qwen3 Embedding: Advancing Text Embedding and Reranking Through Foundation Models}, author={Zhang, Yanzhao and Li, Mingxin and Long, Dingkun and Zhang, Xin and Lin, Huan and Yang, Baosong and Xie, Pengjun and Yang, An and Liu, Dayiheng and Lin, Junyang and Huang, Fei and Zhou, Jingren}, journal={arXiv preprint arXiv:2506.05176}, year={2025} } ```
nnilayy/dreamer-valence-multi-classification-Kfold-4
nnilayy
2025-06-20T09:26:49Z
0
0
null
[ "safetensors", "model_hub_mixin", "pytorch_model_hub_mixin", "region:us" ]
null
2025-06-20T09:26:47Z
--- tags: - model_hub_mixin - pytorch_model_hub_mixin --- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration: - Code: [More Information Needed] - Paper: [More Information Needed] - Docs: [More Information Needed]
hyangilam/whisper-large-v3-turbo-ko-0.0.2
hyangilam
2025-06-20T09:25:27Z
0
0
transformers
[ "transformers", "safetensors", "whisper", "automatic-speech-recognition", "generated_from_trainer", "ko", "dataset:mozilla-foundation/common_voice_17_0", "base_model:openai/whisper-large-v3-turbo", "base_model:finetune:openai/whisper-large-v3-turbo", "license:mit", "endpoints_compatible", "region:us" ]
automatic-speech-recognition
2025-06-20T09:11:56Z
--- library_name: transformers language: - ko license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 model-index: - name: Whisper Turbo Ko v0.0.2 results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # Whisper Turbo Ko v0.0.2 This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the Common Voice 17.0 dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1
convsync/86174bb9-a220-46c7-933c-1ddb0fcd671e-my_trained_model
convsync
2025-06-20T09:23:32Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-20T09:02:31Z
--- base_model: unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** convsync - **License:** apache-2.0 - **Finetuned from model :** unsloth/llama-3.2-1b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
sgonzalezygil/sd-finetuning-dreambooth-v23-360
sgonzalezygil
2025-06-20T09:22:06Z
0
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-06-20T09:20:36Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Josephinepassananti/sd21-kamala_ft_dataset_512_face_shaded_0.1_target_man-bs1-steps5000-lr1e-04
Josephinepassananti
2025-06-20T09:14:23Z
0
0
diffusers
[ "diffusers", "tensorboard", "stable-diffusion", "stable-diffusion-diffusers", "text-to-image", "diffusers-training", "lora", "base_model:stabilityai/stable-diffusion-2-1", "base_model:adapter:stabilityai/stable-diffusion-2-1", "license:creativeml-openrail-m", "region:us" ]
text-to-image
2025-06-20T08:44:29Z
--- base_model: stabilityai/stable-diffusion-2-1 library_name: diffusers license: creativeml-openrail-m inference: true tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training - lora --- <!-- This model card has been generated automatically according to the information the training script had access to. You should probably proofread and complete it, then remove this comment. --> # LoRA text2image fine-tuning - Josephinepassananti/sd21-kamala_ft_dataset_512_face_shaded_0.1_target_man-bs1-steps5000-lr1e-04 These are LoRA adaption weights for stabilityai/stable-diffusion-2-1. The weights were fine-tuned on the None dataset. You can find some example images in the following. ![img_0](./image_0.png) ![img_1](./image_1.png) ![img_2](./image_2.png) ![img_3](./image_3.png) ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]
sgonzalezygil/sd-finetuning-dreambooth-v23
sgonzalezygil
2025-06-20T09:14:06Z
0
0
diffusers
[ "diffusers", "safetensors", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "diffusers:StableDiffusionPipeline", "region:us" ]
text-to-image
2025-06-20T09:12:35Z
--- library_name: diffusers --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🧨 diffusers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
makataomu/a2c-PandaReachDense-v3
makataomu
2025-06-20T09:12:01Z
0
0
stable-baselines3
[ "stable-baselines3", "PandaReachDense-v3", "deep-reinforcement-learning", "reinforcement-learning", "model-index", "region:us" ]
reinforcement-learning
2025-06-20T08:55:10Z
--- library_name: stable-baselines3 tags: - PandaReachDense-v3 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: A2C results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: PandaReachDense-v3 type: PandaReachDense-v3 metrics: - type: mean_reward value: -0.19 +/- 0.09 name: mean_reward verified: false --- # **A2C** Agent playing **PandaReachDense-v3** This is a trained model of a **A2C** agent playing **PandaReachDense-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python from stable_baselines3 import ... from huggingface_sb3 import load_from_hub ... ```
dunzhang/stella-large-zh-v3-1792d
dunzhang
2025-06-20T09:02:14Z
389
31
sentence-transformers
[ "sentence-transformers", "pytorch", "bert", "feature-extraction", "sentence-similarity", "mteb", "license:mit", "model-index", "autotrain_compatible", "endpoints_compatible", "region:us" ]
sentence-similarity
2024-02-17T05:30:43Z
--- pipeline_tag: sentence-similarity tags: - sentence-transformers - feature-extraction - sentence-similarity - mteb model-index: - name: stella-large-zh-v3-1792d results: - task: type: STS dataset: type: C-MTEB/AFQMC name: MTEB AFQMC config: default split: validation revision: None metrics: - type: cos_sim_pearson value: 54.48093298255762 - type: cos_sim_spearman value: 59.105354109068685 - type: euclidean_pearson value: 57.761189988643444 - type: euclidean_spearman value: 59.10537421115596 - type: manhattan_pearson value: 56.94359297051431 - type: manhattan_spearman value: 58.37611109821567 - task: type: STS dataset: type: C-MTEB/ATEC name: MTEB ATEC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 54.39711127600595 - type: cos_sim_spearman value: 58.190191920824454 - type: euclidean_pearson value: 61.80082379352729 - type: euclidean_spearman value: 58.19018966860797 - type: manhattan_pearson value: 60.927601060396206 - type: manhattan_spearman value: 57.78832902694192 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (zh) config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 46.31600000000001 - type: f1 value: 44.45281663598873 - task: type: STS dataset: type: C-MTEB/BQ name: MTEB BQ config: default split: test revision: None metrics: - type: cos_sim_pearson value: 69.12211326097868 - type: cos_sim_spearman value: 71.0741302039443 - type: euclidean_pearson value: 69.89070483887852 - type: euclidean_spearman value: 71.07413020351787 - type: manhattan_pearson value: 69.62345441260962 - type: manhattan_spearman value: 70.8517591280618 - task: type: Clustering dataset: type: C-MTEB/CLSClusteringP2P name: MTEB CLSClusteringP2P config: default split: test revision: None metrics: - type: v_measure value: 41.937723608805314 - task: type: Clustering dataset: type: C-MTEB/CLSClusteringS2S name: MTEB CLSClusteringS2S config: default split: test revision: None metrics: - type: v_measure value: 40.34373057675427 - task: type: Reranking dataset: type: C-MTEB/CMedQAv1-reranking name: MTEB CMedQAv1 config: default split: test revision: None metrics: - type: map value: 88.98896401788376 - type: mrr value: 90.97119047619047 - task: type: Reranking dataset: type: C-MTEB/CMedQAv2-reranking name: MTEB CMedQAv2 config: default split: test revision: None metrics: - type: map value: 89.59718540244556 - type: mrr value: 91.41246031746032 - task: type: Retrieval dataset: type: C-MTEB/CmedqaRetrieval name: MTEB CmedqaRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 26.954 - type: map_at_10 value: 40.144999999999996 - type: map_at_100 value: 42.083999999999996 - type: map_at_1000 value: 42.181000000000004 - type: map_at_3 value: 35.709 - type: map_at_5 value: 38.141000000000005 - type: mrr_at_1 value: 40.71 - type: mrr_at_10 value: 48.93 - type: mrr_at_100 value: 49.921 - type: mrr_at_1000 value: 49.958999999999996 - type: mrr_at_3 value: 46.32 - type: mrr_at_5 value: 47.769 - type: ndcg_at_1 value: 40.71 - type: ndcg_at_10 value: 46.869 - type: ndcg_at_100 value: 54.234 - type: ndcg_at_1000 value: 55.854000000000006 - type: ndcg_at_3 value: 41.339 - type: ndcg_at_5 value: 43.594 - type: precision_at_1 value: 40.71 - type: precision_at_10 value: 10.408000000000001 - type: precision_at_100 value: 1.635 - type: precision_at_1000 value: 0.184 - type: precision_at_3 value: 23.348 - type: precision_at_5 value: 16.929 - type: recall_at_1 value: 26.954 - type: recall_at_10 value: 57.821999999999996 - type: recall_at_100 value: 88.08200000000001 - type: recall_at_1000 value: 98.83800000000001 - type: recall_at_3 value: 41.221999999999994 - type: recall_at_5 value: 48.241 - task: type: PairClassification dataset: type: C-MTEB/CMNLI name: MTEB Cmnli config: default split: validation revision: None metrics: - type: cos_sim_accuracy value: 83.6680697534576 - type: cos_sim_ap value: 90.77401562455269 - type: cos_sim_f1 value: 84.68266427450101 - type: cos_sim_precision value: 81.36177547942253 - type: cos_sim_recall value: 88.28618190320317 - type: dot_accuracy value: 83.6680697534576 - type: dot_ap value: 90.76429465198817 - type: dot_f1 value: 84.68266427450101 - type: dot_precision value: 81.36177547942253 - type: dot_recall value: 88.28618190320317 - type: euclidean_accuracy value: 83.6680697534576 - type: euclidean_ap value: 90.77401909305344 - type: euclidean_f1 value: 84.68266427450101 - type: euclidean_precision value: 81.36177547942253 - type: euclidean_recall value: 88.28618190320317 - type: manhattan_accuracy value: 83.40348767288035 - type: manhattan_ap value: 90.57002020310819 - type: manhattan_f1 value: 84.51526032315978 - type: manhattan_precision value: 81.25134843581445 - type: manhattan_recall value: 88.05237315875614 - type: max_accuracy value: 83.6680697534576 - type: max_ap value: 90.77401909305344 - type: max_f1 value: 84.68266427450101 - task: type: Retrieval dataset: type: C-MTEB/CovidRetrieval name: MTEB CovidRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 69.705 - type: map_at_10 value: 78.648 - type: map_at_100 value: 78.888 - type: map_at_1000 value: 78.89399999999999 - type: map_at_3 value: 77.151 - type: map_at_5 value: 77.98 - type: mrr_at_1 value: 69.863 - type: mrr_at_10 value: 78.62599999999999 - type: mrr_at_100 value: 78.861 - type: mrr_at_1000 value: 78.867 - type: mrr_at_3 value: 77.204 - type: mrr_at_5 value: 78.005 - type: ndcg_at_1 value: 69.968 - type: ndcg_at_10 value: 82.44399999999999 - type: ndcg_at_100 value: 83.499 - type: ndcg_at_1000 value: 83.647 - type: ndcg_at_3 value: 79.393 - type: ndcg_at_5 value: 80.855 - type: precision_at_1 value: 69.968 - type: precision_at_10 value: 9.515 - type: precision_at_100 value: 0.9990000000000001 - type: precision_at_1000 value: 0.101 - type: precision_at_3 value: 28.802 - type: precision_at_5 value: 18.019 - type: recall_at_1 value: 69.705 - type: recall_at_10 value: 94.152 - type: recall_at_100 value: 98.84100000000001 - type: recall_at_1000 value: 100 - type: recall_at_3 value: 85.774 - type: recall_at_5 value: 89.252 - task: type: Retrieval dataset: type: C-MTEB/DuRetrieval name: MTEB DuRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 25.88 - type: map_at_10 value: 79.857 - type: map_at_100 value: 82.636 - type: map_at_1000 value: 82.672 - type: map_at_3 value: 55.184 - type: map_at_5 value: 70.009 - type: mrr_at_1 value: 89.64999999999999 - type: mrr_at_10 value: 92.967 - type: mrr_at_100 value: 93.039 - type: mrr_at_1000 value: 93.041 - type: mrr_at_3 value: 92.65 - type: mrr_at_5 value: 92.86 - type: ndcg_at_1 value: 89.64999999999999 - type: ndcg_at_10 value: 87.126 - type: ndcg_at_100 value: 89.898 - type: ndcg_at_1000 value: 90.253 - type: ndcg_at_3 value: 86.012 - type: ndcg_at_5 value: 85.124 - type: precision_at_1 value: 89.64999999999999 - type: precision_at_10 value: 41.735 - type: precision_at_100 value: 4.797 - type: precision_at_1000 value: 0.488 - type: precision_at_3 value: 77.267 - type: precision_at_5 value: 65.48 - type: recall_at_1 value: 25.88 - type: recall_at_10 value: 88.28399999999999 - type: recall_at_100 value: 97.407 - type: recall_at_1000 value: 99.29299999999999 - type: recall_at_3 value: 57.38799999999999 - type: recall_at_5 value: 74.736 - task: type: Retrieval dataset: type: C-MTEB/EcomRetrieval name: MTEB EcomRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 53.2 - type: map_at_10 value: 63.556000000000004 - type: map_at_100 value: 64.033 - type: map_at_1000 value: 64.044 - type: map_at_3 value: 60.983 - type: map_at_5 value: 62.588 - type: mrr_at_1 value: 53.2 - type: mrr_at_10 value: 63.556000000000004 - type: mrr_at_100 value: 64.033 - type: mrr_at_1000 value: 64.044 - type: mrr_at_3 value: 60.983 - type: mrr_at_5 value: 62.588 - type: ndcg_at_1 value: 53.2 - type: ndcg_at_10 value: 68.61699999999999 - type: ndcg_at_100 value: 70.88499999999999 - type: ndcg_at_1000 value: 71.15899999999999 - type: ndcg_at_3 value: 63.434000000000005 - type: ndcg_at_5 value: 66.301 - type: precision_at_1 value: 53.2 - type: precision_at_10 value: 8.450000000000001 - type: precision_at_100 value: 0.95 - type: precision_at_1000 value: 0.097 - type: precision_at_3 value: 23.5 - type: precision_at_5 value: 15.479999999999999 - type: recall_at_1 value: 53.2 - type: recall_at_10 value: 84.5 - type: recall_at_100 value: 95 - type: recall_at_1000 value: 97.1 - type: recall_at_3 value: 70.5 - type: recall_at_5 value: 77.4 - task: type: Classification dataset: type: C-MTEB/IFlyTek-classification name: MTEB IFlyTek config: default split: validation revision: None metrics: - type: accuracy value: 50.63485956136976 - type: f1 value: 38.286307407751266 - task: type: Classification dataset: type: C-MTEB/JDReview-classification name: MTEB JDReview config: default split: test revision: None metrics: - type: accuracy value: 86.11632270168855 - type: ap value: 54.43932599806482 - type: f1 value: 80.85485110996076 - task: type: STS dataset: type: C-MTEB/LCQMC name: MTEB LCQMC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 72.47315152994804 - type: cos_sim_spearman value: 78.26531600908152 - type: euclidean_pearson value: 77.8560788714531 - type: euclidean_spearman value: 78.26531157334841 - type: manhattan_pearson value: 77.70593783974188 - type: manhattan_spearman value: 78.13880812439999 - task: type: Reranking dataset: type: C-MTEB/Mmarco-reranking name: MTEB MMarcoReranking config: default split: dev revision: None metrics: - type: map value: 28.088177976572222 - type: mrr value: 27.125 - task: type: Retrieval dataset: type: C-MTEB/MMarcoRetrieval name: MTEB MMarcoRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 66.428 - type: map_at_10 value: 75.5 - type: map_at_100 value: 75.82600000000001 - type: map_at_1000 value: 75.837 - type: map_at_3 value: 73.74300000000001 - type: map_at_5 value: 74.87 - type: mrr_at_1 value: 68.754 - type: mrr_at_10 value: 76.145 - type: mrr_at_100 value: 76.432 - type: mrr_at_1000 value: 76.442 - type: mrr_at_3 value: 74.628 - type: mrr_at_5 value: 75.612 - type: ndcg_at_1 value: 68.754 - type: ndcg_at_10 value: 79.144 - type: ndcg_at_100 value: 80.60199999999999 - type: ndcg_at_1000 value: 80.886 - type: ndcg_at_3 value: 75.81599999999999 - type: ndcg_at_5 value: 77.729 - type: precision_at_1 value: 68.754 - type: precision_at_10 value: 9.544 - type: precision_at_100 value: 1.026 - type: precision_at_1000 value: 0.105 - type: precision_at_3 value: 28.534 - type: precision_at_5 value: 18.138 - type: recall_at_1 value: 66.428 - type: recall_at_10 value: 89.716 - type: recall_at_100 value: 96.313 - type: recall_at_1000 value: 98.541 - type: recall_at_3 value: 80.923 - type: recall_at_5 value: 85.48 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-CN) config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 73.27841291190316 - type: f1 value: 70.65529957574735 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-CN) config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.30127774041695 - type: f1 value: 76.10358226518304 - task: type: Retrieval dataset: type: C-MTEB/MedicalRetrieval name: MTEB MedicalRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 56.3 - type: map_at_10 value: 62.193 - type: map_at_100 value: 62.722 - type: map_at_1000 value: 62.765 - type: map_at_3 value: 60.633 - type: map_at_5 value: 61.617999999999995 - type: mrr_at_1 value: 56.3 - type: mrr_at_10 value: 62.193 - type: mrr_at_100 value: 62.722 - type: mrr_at_1000 value: 62.765 - type: mrr_at_3 value: 60.633 - type: mrr_at_5 value: 61.617999999999995 - type: ndcg_at_1 value: 56.3 - type: ndcg_at_10 value: 65.176 - type: ndcg_at_100 value: 67.989 - type: ndcg_at_1000 value: 69.219 - type: ndcg_at_3 value: 62.014 - type: ndcg_at_5 value: 63.766 - type: precision_at_1 value: 56.3 - type: precision_at_10 value: 7.46 - type: precision_at_100 value: 0.8829999999999999 - type: precision_at_1000 value: 0.098 - type: precision_at_3 value: 22 - type: precision_at_5 value: 14.04 - type: recall_at_1 value: 56.3 - type: recall_at_10 value: 74.6 - type: recall_at_100 value: 88.3 - type: recall_at_1000 value: 98.1 - type: recall_at_3 value: 66 - type: recall_at_5 value: 70.19999999999999 - task: type: Classification dataset: type: C-MTEB/MultilingualSentiment-classification name: MTEB MultilingualSentiment config: default split: validation revision: None metrics: - type: accuracy value: 76.44666666666666 - type: f1 value: 76.34548655475949 - task: type: PairClassification dataset: type: C-MTEB/OCNLI name: MTEB Ocnli config: default split: validation revision: None metrics: - type: cos_sim_accuracy value: 82.34975636166757 - type: cos_sim_ap value: 85.44149338593267 - type: cos_sim_f1 value: 83.68654509610647 - type: cos_sim_precision value: 78.46580406654344 - type: cos_sim_recall value: 89.65153115100317 - type: dot_accuracy value: 82.34975636166757 - type: dot_ap value: 85.4415701376729 - type: dot_f1 value: 83.68654509610647 - type: dot_precision value: 78.46580406654344 - type: dot_recall value: 89.65153115100317 - type: euclidean_accuracy value: 82.34975636166757 - type: euclidean_ap value: 85.4415701376729 - type: euclidean_f1 value: 83.68654509610647 - type: euclidean_precision value: 78.46580406654344 - type: euclidean_recall value: 89.65153115100317 - type: manhattan_accuracy value: 81.97076340010828 - type: manhattan_ap value: 84.83614660756733 - type: manhattan_f1 value: 83.34167083541772 - type: manhattan_precision value: 79.18250950570342 - type: manhattan_recall value: 87.96198521647307 - type: max_accuracy value: 82.34975636166757 - type: max_ap value: 85.4415701376729 - type: max_f1 value: 83.68654509610647 - task: type: Classification dataset: type: C-MTEB/OnlineShopping-classification name: MTEB OnlineShopping config: default split: test revision: None metrics: - type: accuracy value: 93.24 - type: ap value: 91.3586656455605 - type: f1 value: 93.22999314249503 - task: type: STS dataset: type: C-MTEB/PAWSX name: MTEB PAWSX config: default split: test revision: None metrics: - type: cos_sim_pearson value: 39.05676042449009 - type: cos_sim_spearman value: 44.996534098358545 - type: euclidean_pearson value: 44.42418609172825 - type: euclidean_spearman value: 44.995941361058996 - type: manhattan_pearson value: 43.98118203238076 - type: manhattan_spearman value: 44.51414152788784 - task: type: STS dataset: type: C-MTEB/QBQTC name: MTEB QBQTC config: default split: test revision: None metrics: - type: cos_sim_pearson value: 36.694269474438045 - type: cos_sim_spearman value: 38.686738967031616 - type: euclidean_pearson value: 36.822540068407235 - type: euclidean_spearman value: 38.68690745429757 - type: manhattan_pearson value: 36.77180703308932 - type: manhattan_spearman value: 38.45414914148094 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh) config: zh split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_pearson value: 65.81209017614124 - type: cos_sim_spearman value: 66.5255285833172 - type: euclidean_pearson value: 66.01848701752732 - type: euclidean_spearman value: 66.5255285833172 - type: manhattan_pearson value: 66.66433676370542 - type: manhattan_spearman value: 67.07086311480214 - task: type: STS dataset: type: C-MTEB/STSB name: MTEB STSB config: default split: test revision: None metrics: - type: cos_sim_pearson value: 80.60785761283502 - type: cos_sim_spearman value: 82.80278693241074 - type: euclidean_pearson value: 82.47573315938638 - type: euclidean_spearman value: 82.80290808593806 - type: manhattan_pearson value: 82.49682028989669 - type: manhattan_spearman value: 82.84565039346022 - task: type: Reranking dataset: type: C-MTEB/T2Reranking name: MTEB T2Reranking config: default split: dev revision: None metrics: - type: map value: 66.37886004738723 - type: mrr value: 76.08501655006394 - task: type: Retrieval dataset: type: C-MTEB/T2Retrieval name: MTEB T2Retrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 28.102 - type: map_at_10 value: 78.071 - type: map_at_100 value: 81.71000000000001 - type: map_at_1000 value: 81.773 - type: map_at_3 value: 55.142 - type: map_at_5 value: 67.669 - type: mrr_at_1 value: 90.9 - type: mrr_at_10 value: 93.29499999999999 - type: mrr_at_100 value: 93.377 - type: mrr_at_1000 value: 93.379 - type: mrr_at_3 value: 92.901 - type: mrr_at_5 value: 93.152 - type: ndcg_at_1 value: 90.9 - type: ndcg_at_10 value: 85.564 - type: ndcg_at_100 value: 89.11200000000001 - type: ndcg_at_1000 value: 89.693 - type: ndcg_at_3 value: 87.024 - type: ndcg_at_5 value: 85.66 - type: precision_at_1 value: 90.9 - type: precision_at_10 value: 42.208 - type: precision_at_100 value: 5.027 - type: precision_at_1000 value: 0.517 - type: precision_at_3 value: 75.872 - type: precision_at_5 value: 63.566 - type: recall_at_1 value: 28.102 - type: recall_at_10 value: 84.44500000000001 - type: recall_at_100 value: 95.91300000000001 - type: recall_at_1000 value: 98.80799999999999 - type: recall_at_3 value: 56.772999999999996 - type: recall_at_5 value: 70.99499999999999 - task: type: Classification dataset: type: C-MTEB/TNews-classification name: MTEB TNews config: default split: validation revision: None metrics: - type: accuracy value: 53.10599999999999 - type: f1 value: 51.40415523558322 - task: type: Clustering dataset: type: C-MTEB/ThuNewsClusteringP2P name: MTEB ThuNewsClusteringP2P config: default split: test revision: None metrics: - type: v_measure value: 69.6145576098232 - task: type: Clustering dataset: type: C-MTEB/ThuNewsClusteringS2S name: MTEB ThuNewsClusteringS2S config: default split: test revision: None metrics: - type: v_measure value: 63.7129548775017 - task: type: Retrieval dataset: type: C-MTEB/VideoRetrieval name: MTEB VideoRetrieval config: default split: dev revision: None metrics: - type: map_at_1 value: 60.199999999999996 - type: map_at_10 value: 69.724 - type: map_at_100 value: 70.185 - type: map_at_1000 value: 70.196 - type: map_at_3 value: 67.95 - type: map_at_5 value: 69.155 - type: mrr_at_1 value: 60.199999999999996 - type: mrr_at_10 value: 69.724 - type: mrr_at_100 value: 70.185 - type: mrr_at_1000 value: 70.196 - type: mrr_at_3 value: 67.95 - type: mrr_at_5 value: 69.155 - type: ndcg_at_1 value: 60.199999999999996 - type: ndcg_at_10 value: 73.888 - type: ndcg_at_100 value: 76.02799999999999 - type: ndcg_at_1000 value: 76.344 - type: ndcg_at_3 value: 70.384 - type: ndcg_at_5 value: 72.541 - type: precision_at_1 value: 60.199999999999996 - type: precision_at_10 value: 8.67 - type: precision_at_100 value: 0.9650000000000001 - type: precision_at_1000 value: 0.099 - type: precision_at_3 value: 25.8 - type: precision_at_5 value: 16.520000000000003 - type: recall_at_1 value: 60.199999999999996 - type: recall_at_10 value: 86.7 - type: recall_at_100 value: 96.5 - type: recall_at_1000 value: 99 - type: recall_at_3 value: 77.4 - type: recall_at_5 value: 82.6 - task: type: Classification dataset: type: C-MTEB/waimai-classification name: MTEB Waimai config: default split: test revision: None metrics: - type: accuracy value: 88.08 - type: ap value: 72.66435456846166 - type: f1 value: 86.55995793551286 license: mit --- **新闻 | News** **[2024-04-06]** 开源[puff](https://huggingface.co/infgrad/puff-base-v1)系列模型,**专门针对检索和语义匹配任务,更多的考虑泛化性和私有通用测试集效果,向量维度可变,中英双语**。 **[2024-02-27]** 开源stella-mrl-large-zh-v3.5-1792d模型,支持**向量可变维度**。 **[2024-02-17]** 开源stella v3系列、dialogue编码模型和相关训练数据。 **[2023-10-19]** 开源stella-base-en-v2 使用简单,**不需要任何前缀文本**。 **[2023-10-12]** 开源stella-base-zh-v2和stella-large-zh-v2, 效果更好且使用简单,**不需要任何前缀文本**。 **[2023-09-11]** 开源stella-base-zh和stella-large-zh 欢迎去[本人主页](https://huggingface.co/infgrad)查看最新模型,并提出您的宝贵意见! # 1 开源清单 本次开源2个通用向量编码模型和一个针对dialogue进行编码的向量模型,同时开源全量160万对话重写数据集和20万的难负例的检索数据集。 **开源模型:** | ModelName | ModelSize | MaxTokens | EmbeddingDimensions | Language | Scenario | C-MTEB Score | |---------------------------------------------------------------------------------------------------------------|-----------|-----------|---------------------|----------|----------|--------------| | [infgrad/stella-base-zh-v3-1792d](https://huggingface.co/infgrad/stella-base-zh-v3-1792d) | 0.4GB | 512 | 1792 | zh-CN | 通用文本 | 67.96 | | [infgrad/stella-large-zh-v3-1792d](https://huggingface.co/infgrad/stella-large-zh-v3-1792d) | 1.3GB | 512 | 1792 | zh-CN | 通用文本 | 68.48 | | [infgrad/stella-dialogue-large-zh-v3-1792d](https://huggingface.co/infgrad/stella-dialogue-large-zh-v3-1792d) | 1.3GB | 512 | 1792 | zh-CN | **对话文本** | 不适用 | **开源数据:** 1. [全量对话重写数据集](https://huggingface.co/datasets/infgrad/dialogue_rewrite_llm) 约160万 2. [部分带有难负例的检索数据集](https://huggingface.co/datasets/infgrad/retrieval_data_llm) 约20万 上述数据集均使用LLM构造,欢迎各位贡献数据集。 # 2 使用方法 ## 2.1 通用编码模型使用方法 直接SentenceTransformer加载即可: ```python from sentence_transformers import SentenceTransformer model = SentenceTransformer("infgrad/stella-base-zh-v3-1792d") # model = SentenceTransformer("infgrad/stella-large-zh-v3-1792d") vectors = model.encode(["text1", "text2"]) ``` ## 2.2 dialogue编码模型使用方法 **使用场景:** **在一段对话中,需要根据用户语句去检索相关文本,但是对话中的用户语句存在大量的指代和省略,导致直接使用通用编码模型效果不好, 可以使用本项目的专门的dialogue编码模型进行编码** **使用要点:** 1. 对dialogue进行编码时,dialogue中的每个utterance需要是如下格式:`"{ROLE}: {TEXT}"`,然后使用`[SEP]` join一下 2. 整个对话都要送入模型进行编码,如果长度不够就删掉早期的对话,**编码后的向量本质是对话中最后一句话的重写版本的向量!!** 3. 对话用stella-dialogue-large-zh-v3-1792d编码,被检索文本使用stella-large-zh-v3-1792d进行编码,所以本场景是需要2个编码模型的 如果对使用方法还有疑惑,请到下面章节阅读该模型是如何训练的。 使用示例: ```python from sentence_transformers import SentenceTransformer dial_model = SentenceTransformer("infgrad/stella-dialogue-large-zh-v3-1792d") general_model = SentenceTransformer("infgrad/stella-large-zh-v3-1792d") # dialogue = ["张三: 吃饭吗", "李四: 等会去"] dialogue = ["A: 最近去打篮球了吗", "B: 没有"] corpus = ["B没打篮球是因为受伤了。", "B没有打乒乓球"] last_utterance_vector = dial_model.encode(["[SEP]".join(dialogue)], normalize_embeddings=True) corpus_vectors = general_model.encode(corpus, normalize_embeddings=True) # 计算相似度 sims = (last_utterance_vector * corpus_vectors).sum(axis=1) print(sims) ``` # 3 通用编码模型训练技巧分享 ## hard negative 难负例挖掘也是个经典的trick了,几乎总能提升效果 ## dropout-1d dropout已经是深度学习的标配,我们可以稍微改造下使其更适合句向量的训练。 我们在训练时会尝试让每一个token-embedding都可以表征整个句子,而在推理时使用mean_pooling从而达到类似模型融合的效果。 具体操作是在mean_pooling时加入dropout_1d,torch代码如下: ```python vector_dropout = nn.Dropout1d(0.3) # 算力有限,试了0.3和0.5 两个参数,其中0.3更优 last_hidden_state = bert_model(...)[0] last_hidden = last_hidden_state.masked_fill(~attention_mask[..., None].bool(), 0.0) last_hidden = vector_dropout(last_hidden) vectors = last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None] ``` # 4 dialogue编码模型细节 ## 4.1 为什么需要一个dialogue编码模型? 参见本人历史文章:https://www.zhihu.com/pin/1674913544847077376 ## 4.2 训练数据 单条数据示例: ```json { "dialogue": [ "A: 最近去打篮球了吗", "B: 没有" ], "last_utterance_rewrite": "B: 我最近没有去打篮球" } ``` ## 4.3 训练Loss ``` loss = cosine_loss( dial_model.encode(dialogue), existing_model.encode(last_utterance_rewrite) ) ``` dial_model就是要被训练的模型,本人是以stella-large-zh-v3-1792d作为base-model进行继续训练的 existing_model就是现有训练好的**通用编码模型**,本人使用的是stella-large-zh-v3-1792d 已开源dialogue-embedding的全量训练数据,理论上可以复现本模型效果。 Loss下降情况: <div align="center"> <img src="dial_loss.png" alt="icon" width="2000px"/> </div> ## 4.4 效果 目前还没有专门测试集,本人简单测试了下是有效果的,部分测试结果见文件`dial_retrieval_test.xlsx`。 # 5 后续TODO 1. 更多的dial-rewrite数据 2. 不同EmbeddingDimensions的编码模型 # 6 FAQ Q: 为什么向量维度是1792?\ A: 最初考虑发布768、1024,768+768,1024+1024,1024+768维度,但是时间有限,先做了1792就只发布1792维度的模型。理论上维度越高效果越好。 Q: 如何复现CMTEB效果?\ A: SentenceTransformer加载后直接用官方评测脚本就行,注意对于Classification任务向量需要先normalize一下 Q: 复现的CMTEB效果和本文不一致?\ A: 聚类不一致正常,官方评测代码没有设定seed,其他不一致建议检查代码或联系本人。 Q: 如何选择向量模型?\ A: 没有免费的午餐,在自己测试集上试试,本人推荐bge、e5和stella. Q: 长度为什么只有512,能否更长?\ A: 可以但没必要,长了效果普遍不好,这是当前训练方法和数据导致的,几乎无解,建议长文本还是走分块。 Q: 训练资源和算力?\ A: 亿级别的数据,单卡A100要一个月起步
marcel-gohsen/qpt2-medium-aql-mix
marcel-gohsen
2025-06-20T08:58:00Z
0
0
transformers
[ "transformers", "safetensors", "gpt2", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "text-generation-inference", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T08:57:36Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]
Rishi1708/codegemma-7b-LoRA
Rishi1708
2025-06-20T08:57:21Z
0
0
null
[ "license:apache-2.0", "region:us" ]
null
2025-06-20T08:57:21Z
--- license: apache-2.0 ---
baekTree/roberta-large-batch2-imdb
baekTree
2025-06-20T08:50:06Z
0
0
transformers
[ "transformers", "safetensors", "roberta", "text-classification", "generated_from_trainer", "base_model:FacebookAI/roberta-large", "base_model:finetune:FacebookAI/roberta-large", "license:mit", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-20T08:48:39Z
--- library_name: transformers license: mit base_model: FacebookAI/roberta-large tags: - generated_from_trainer model-index: - name: roberta-large-batch2-imdb results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # roberta-large-batch2-imdb This model is a fine-tuned version of [FacebookAI/roberta-large](https://huggingface.co/FacebookAI/roberta-large) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 1 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1
scb10x/typhoon2.1-gemma3-12b-mlx-4bit
scb10x
2025-06-20T08:47:48Z
0
0
mlx
[ "mlx", "safetensors", "gemma3_text", "text-generation", "conversational", "base_model:scb10x/typhoon2.1-gemma3-12b", "base_model:quantized:scb10x/typhoon2.1-gemma3-12b", "license:gemma", "4-bit", "region:us" ]
text-generation
2025-06-20T08:24:03Z
--- license: gemma pipeline_tag: text-generation base_model: scb10x/typhoon2.1-gemma3-12b library_name: mlx tags: - mlx --- # scb10x/typhoon2.1-gemma3-12b-mlx-4bit This model [scb10x/typhoon2.1-gemma3-12b-mlx-4bit](https://huggingface.co/scb10x/typhoon2.1-gemma3-12b-mlx-4bit) was converted to MLX format from [scb10x/typhoon2.1-gemma3-12b](https://huggingface.co/scb10x/typhoon2.1-gemma3-12b) using mlx-lm version **0.25.2**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("scb10x/typhoon2.1-gemma3-12b-mlx-4bit") prompt = "hello" if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```
JSlin/GRPO_Model
JSlin
2025-06-20T08:43:06Z
0
0
transformers
[ "transformers", "safetensors", "text-generation-inference", "unsloth", "llama", "trl", "en", "license:apache-2.0", "endpoints_compatible", "region:us" ]
null
2025-06-20T08:42:42Z
--- base_model: unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit tags: - text-generation-inference - transformers - unsloth - llama - trl license: apache-2.0 language: - en --- # Uploaded model - **Developed by:** JSlin - **License:** apache-2.0 - **Finetuned from model :** unsloth/meta-llama-3.1-8b-instruct-unsloth-bnb-4bit This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
visolex/visobert-hsd
visolex
2025-06-20T08:42:55Z
0
0
null
[ "safetensors", "xlm-roberta", "hate-speech-detection", "vietnamese", "transformer", "text-classification", "vi", "dataset:VN-HSD", "base_model:uitnlp/visobert", "base_model:finetune:uitnlp/visobert", "license:apache-2.0", "model-index", "region:us" ]
text-classification
2025-06-19T08:44:51Z
--- language: vi tags: - hate-speech-detection - vietnamese - transformer license: apache-2.0 datasets: - VN-HSD metrics: - accuracy - f1 model-index: - name: visobert-hsd results: - task: type: text-classification name: Hate Speech Detection dataset: name: VN-HSD type: custom metrics: - name: Accuracy type: accuracy value: <INSERT_ACCURACY> - name: F1 Score type: f1 value: <INSERT_F1_SCORE> base_model: - uitnlp/visobert # replace with actual ViSoBERT Hub name pipeline_tag: text-classification --- # ViSoBERT‑HSD: Hate Speech Detection for Vietnamese Text Fine‑tuned from [`uitnlp/visobert`](https://huggingface.co/uitnlp/visobert) on the **VN‑HSD** unified Vietnamese hate‐speech dataset, combining ViHSD, ViCTSD, and ViHOS. ## Model Details * **Base Model**: [`uitnlp/visobert`](https://huggingface.co/uitnlp/visobert) * **Dataset**: VN‑HSD (ViSoLex‑HSD unified hate speech corpus) * **Fine‑tuning**: HuggingFace Transformers ### Hyperparameters * Batch size: `32` * Learning rate: `3e-5` * Epochs: `100` * Max sequence length: `256` ## Results * **Accuracy**: `<INSERT_ACCURACY>` * **F1 Score**: `<INSERT_F1_SCORE>` ## Usage ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("visolex/visobert-hsd") model = AutoModelForSequenceClassification.from_pretrained("visolex/visobert-hsd") text = "Hắn ta thật kinh tởm!" inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=256) logits = model(**inputs).logits pred = logits.argmax(dim=-1).item() label_map = {0: "CLEAN", 1: "OFFENSIVE", 2: "HATE"} print(f"Predicted label: {label_map[pred]}") ```
georgedy/distilbert-rotten-tomatoes
georgedy
2025-06-20T08:42:23Z
0
0
transformers
[ "transformers", "safetensors", "distilbert", "text-classification", "generated_from_trainer", "base_model:distilbert/distilbert-base-uncased", "base_model:finetune:distilbert/distilbert-base-uncased", "license:apache-2.0", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-classification
2025-06-20T08:34:19Z
--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer model-index: - name: distilbert-rotten-tomatoes results: [] --- <!-- This model card has been generated automatically according to the information the Trainer had access to. You should probably proofread and complete it, then remove this comment. --> # distilbert-rotten-tomatoes This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.52.4 - Pytorch 2.7.1+cu126 - Datasets 3.6.0 - Tokenizers 0.21.1
Manush123/my-Blood_sugar_model
Manush123
2025-06-20T08:40:10Z
0
0
transformers
[ "transformers", "safetensors", "biogpt", "text-generation", "arxiv:1910.09700", "autotrain_compatible", "endpoints_compatible", "region:us" ]
text-generation
2025-06-20T08:39:02Z
--- library_name: transformers tags: [] --- # Model Card for Model ID <!-- Provide a quick summary of what the model is/does. --> ## Model Details ### Model Description <!-- Provide a longer summary of what this model is. --> This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] <!-- Provide the basic links for the model. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. --> ### Direct Use <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. --> [More Information Needed] ### Downstream Use [optional] <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details ### Training Data <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. --> [More Information Needed] ### Training Procedure <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. --> #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision --> #### Speeds, Sizes, Times [optional] <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. --> [More Information Needed] ## Evaluation <!-- This section describes the evaluation protocols and provides the results. --> ### Testing Data, Factors & Metrics #### Testing Data <!-- This should link to a Dataset Card if possible. --> [More Information Needed] #### Factors <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. --> [More Information Needed] #### Metrics <!-- These are the evaluation metrics being used, ideally with a description of why. --> [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] <!-- Relevant interpretability work for the model goes here --> [More Information Needed] ## Environmental Impact <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly --> Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]