Problem
stringlengths 11
628
| Rationale
stringlengths 1
2.74k
| options
stringlengths 37
137
| correct
stringclasses 5
values | annotated_formula
stringlengths 6
848
| linear_formula
stringlengths 7
357
| category
stringclasses 6
values |
|---|---|---|---|---|---|---|
what is the sum of all digits for the number 10 ^ 29 - 41 ?
|
if you notice , both triangles abc and xyz have a side on x axis . we can take these sides as bases for each triangle , therefore area of abc is 1 / 2 * 12 * 12 ( height of abc is the y coordinate of the third point ( 812 ) ) similarly area of xyz is 1 / 2 * 4 * 4 dividing area of xyz with that of abc gives c = 1 / 9 . a
|
a ) 1 / 9 , b ) 1 / 8 , c ) 1 / 6 , d ) 1 / 5 , e ) 1 / 3
|
a
|
divide(divide(multiply(const_4, const_4), const_2), multiply(subtract(20, multiply(const_4, const_2)), divide(subtract(20, multiply(const_4, const_2)), const_2)))
|
multiply(const_4,const_4)|multiply(const_2,const_4)|divide(#0,const_2)|subtract(n0,#1)|divide(#3,const_2)|multiply(#4,#3)|divide(#2,#5)
|
geometry
|
0.05 x 0.03 = ?
|
"at $ 3 per hour up to 40 hours , regular pay = $ 3 x 40 = $ 120 if total pay = $ 168 , overtime pay = $ 174 - $ 120 = $ 54 overtime rate ( twice regular ) = 2 x $ 3 = $ 6 per hour = > number of overtime hours = $ 54 / $ 6 = 9 ans is c"
|
a ) 8 , b ) 5 , c ) 9 , d ) 6 , e ) 10
|
c
|
divide(subtract(174, multiply(3, 40)), multiply(3, const_2))
|
multiply(n0,n1)|multiply(n0,const_2)|subtract(n2,#0)|divide(#2,#1)|
|
physics
|
what is the sum of all 3 digit integers formed using the digits 34 and 5 ( repetition is allowed )
|
solution : let rs . 100 be spend on rice initially for 20 kg . as the price falls by 20 % , new price for 20 kg rice , = ( 100 - 25 % of 100 ) = 75 new price of rice = 75 / 20 = rs . 3.75 per kg . rice can bought now at = 100 / 3.75 = 26.67 kg . answer : option c
|
a ) 5 kg , b ) 15 kg , c ) 26.67 kg , d ) 30 kg , e ) none
|
c
|
divide(const_100, divide(subtract(const_100, 25), 20))
|
subtract(const_100,n0)|divide(#0,n1)|divide(const_100,#1)
|
gain
|
a diagonal of a polygon is an segment between two non - adjacent vertices of the polygon . how many diagonals does a regular 10 - sided polygon have ?
|
for sake of ease , let ' s say there are 10 employees : 7 marketers , 1 engineers , and 2 manager . average company salary * number of employees = total company salary > > > $ 80,000 * 10 = $ 800,000 subtract the combined salaries for the marketers ( 7 * $ 50,000 ) and the engineers ( $ 80,000 ) > > > $ 800,000 - $ 350,000 - $ 80,000 = $ 370,000 . the correct answer is d .
|
a ) $ 80,000 , b ) $ 130,000 , c ) $ 240,000 , d ) $ 370,000 , e ) $ 320,000
|
d
|
divide(subtract(multiply(80000, const_100), add(multiply(70, 50000), multiply(10, 80000))), subtract(const_100, add(70, 10)))
|
add(n0,n1)|multiply(n3,const_100)|multiply(n0,n2)|multiply(n1,n3)|add(#2,#3)|subtract(const_100,#0)|subtract(#1,#4)|divide(#6,#5)
|
general
|
if n is the greatest positive integer for which 2 ^ n is a factor of 8 ! , then n = ?
|
"( 1370 * 1.99 + 690 * 1.50 ) / ( 1370 + 690 ) = ~ 1.83 - option ( e )"
|
a ) $ 1.63 , b ) $ 1.64 , c ) $ 1.68 , d ) $ 1.72 , e ) $ 1.83
|
e
|
divide(add(multiply(1370, 1.99), multiply(690, 1.50)), add(1370, 690))
|
add(n0,n2)|multiply(n0,n1)|multiply(n2,n3)|add(#1,#2)|divide(#3,#0)|
|
general
|
a man is 24 years older than his son . in three years , his age will be twice the age of his son . the present age of the son is
|
"by the rule of alligation : cost of 1 kg rice of 1 st kind cost of 1 kg rice of 2 nd kind required ratio = 60 : 100 = 3 : 5 answer : c"
|
a ) 2 : 0 , b ) 2 : 3 , c ) 3 : 5 , d ) 2 : 2 , e ) 2 : 8
|
c
|
divide(subtract(6.30, 5.70), subtract(7.30, 6.30))
|
subtract(n2,n1)|subtract(n0,n2)|divide(#0,#1)|
|
other
|
a can do a piece of work in 90 days & y can do it in 80 days . they began working together but a leaves after some days and then b completed the remaining work in 46 days . the number of days after which a left the work was ?
|
m 1 = 50 litres m 2 = 100 litres m 3 = 150 litres required measurement = h . c . f . of m 1 , m 2 , m 3 = 50 litres answer is d
|
a ) 120 litres , b ) 57 litres , c ) 60 litres , d ) 50 litres , e ) 100 litres
|
d
|
gcd(gcd(50, 100), 150)
|
gcd(n1,n2)|gcd(n3,#0)
|
physics
|
one ball will drop from a certain height . the height it will reach after rebounding from the floor is 50 percent of the previous height . the total travel is 150 cm when it touches the floor on third time . what is the value of the original height ?
|
2034 - 50 = 1984 answer : e
|
a ) 2984 , b ) 2983 , c ) 2982 , d ) 2981 , e ) 1984
|
e
|
subtract(2034, divide(1002, 20.04))
|
divide(n1,n2)|subtract(n0,#0)
|
general
|
in what time will a railway train 120 m long moving at the rate of 70 kmph pass a telegraph post on its way ?
|
p ( x is prime ) = 1 / 2 p ( y is prime ) = 1 / 4 if y is prime , then z is not prime since y and z are unique . then the probability is 1 / 2 * 1 / 4 = 1 / 8 the answer is c .
|
a ) 1 / 5 , b ) 3 / 20 , c ) 1 / 8 , d ) 3 / 10 , e ) 1 / 10
|
c
|
multiply(divide(const_1, const_2), divide(const_1, const_4))
|
divide(const_1,const_2)|divide(const_1,const_4)|multiply(#0,#1)
|
probability
|
fox jeans regularly sell for $ 15 a pair and pony jeans regularly sell for $ 18 a pair . during a sale these regular unit prices are discounted at different rates so that a total of $ 8.73 is saved by purchasing 5 pairs of jeans : 3 pairs of fox jeans and 2 pairs of pony jeans . if the sum of the two discount rates is 22 percent , what is the discount rate on pony jeans ?
|
total area = 8 * 8 * pi radius = 64 pi surface = . 75 * 64 * pi = 48 pi radius of surface = 4 sqrt ( 3 ) ~ 6.8 radius width = 8 - 6.8 = 1.2 answer : b
|
['a ) 0.8 inches', 'b ) 1.1 inches', 'c ) 1.6 inches', 'd ) 2.0 inches', 'e ) 2.5 inches']
|
b
|
divide(subtract(16, multiply(sqrt(divide(divide(multiply(circle_area(divide(16, const_2)), 75), const_100), const_pi)), const_2)), const_2)
|
divide(n1,const_2)|circle_area(#0)|multiply(n0,#1)|divide(#2,const_100)|divide(#3,const_pi)|sqrt(#4)|multiply(#5,const_2)|subtract(n1,#6)|divide(#7,const_2)
|
geometry
|
if the sides of a triangle are 52 cm , 48 cm and 20 cm , what is its area ?
|
if we substitute y = 4 x , we have y 2 + 4 y - 96 = 0 , so y = - 4 or y = 8 . the first does not map to a real solution , while the second maps to x = 3 / 2 correct answer a
|
a ) 3 / 2 , b ) 3 / 3 , c ) 2 / 4 , d ) 4 / 4 , e ) 4 / 5
|
a
|
divide(subtract(4, 1), subtract(subtract(4, 1), 1))
|
subtract(n1,n2)|subtract(#0,n2)|divide(#0,#1)
|
general
|
an auction house charges a commission of 17 % on the first $ 50,000 of the sale price of an item , plus 10 % on the amount of of the sale price in excess of $ 50,000 . what was the price of a painting for which the house charged a total commission of $ 24,000 ?
|
"let number of years taught by virginia = v number of years taught by adrienne = a number of years taught by dennis = d v + a + d = 96 v = a + 9 = > a = v - 9 v = d - 9 = > a = ( d - 9 ) - 9 = d - 18 d - 9 + d - 18 + d = 87 = > 3 d = 87 + 27 = 114 = > d = 38 answer c"
|
a ) 23 , b ) 32 , c ) 38 , d ) 41 , e ) 44
|
c
|
add(divide(subtract(87, add(add(9, 9), 9)), const_3), add(9, 9))
|
add(n1,n2)|add(n1,#0)|subtract(n0,#1)|divide(#2,const_3)|add(#0,#3)|
|
general
|
because he ’ s taxed by his home planet , mork pays a tax rate of 40 % on his income , while mindy pays a rate of only 20 % on hers . if mindy earned 4 times as much as mork did , what was their combined tax rate ?
|
"4 * 5 * 7 = 120 answer : a"
|
a ) 140 , b ) 278 , c ) 378 , d ) 368 , e ) 367
|
a
|
volume_rectangular_prism(4, 5, 7)
|
volume_rectangular_prism(n0,n1,n2)|
|
physics
|
there are 15 slate rocks , 20 pumice rocks , and 10 granite rocks randomly distributed in a certain field . if 2 rocks are to be chosen at random and without replacement , what is the probability that both rocks will be slate rocks ?
|
"in 1000 consecutive numbers , number of multiples of 20 = 1000 / 20 = 50 ( ignore decimals ) in 1000 consecutive numbers , number of multiples of 35 = 1000 / 35 = 28 number of multiples of 20 * 35 i . e . 700 = 1000 / 700 = 1 number of integers from 1 to 1000 that are divisible by neither 20 nor by 35 = 1000 - ( 50 + 28 - 1 ) { using the concept of sets here ) = 923 answer is d"
|
a ) 567 , b ) 850 , c ) 560 , d ) 923 , e ) 240
|
d
|
subtract(1000, subtract(add(divide(1000, 20), divide(1000, 35)), divide(1000, multiply(20, 35))))
|
divide(n1,n2)|divide(n1,n3)|multiply(n2,n3)|add(#0,#1)|divide(n1,#2)|subtract(#3,#4)|subtract(n1,#5)|
|
other
|
a train 100 meters long completely crosses a 300 meters long bridge in 45 seconds . what is the speed of the train is ?
|
"10000 × 80 / 100 × 80 / 100 = 6400 answer : a"
|
a ) 6400 , b ) 4500 , c ) 5120 , d ) 5230 , e ) 5366
|
a
|
subtract(subtract(10000, multiply(10000, divide(20, const_100))), multiply(subtract(10000, multiply(10000, divide(20, const_100))), divide(20, const_100)))
|
divide(n1,const_100)|multiply(n0,#0)|subtract(n0,#1)|multiply(#0,#2)|subtract(#2,#3)|
|
gain
|
in how many ways 4 boys and 4 girls can be seated in a row so that they are alternate .
|
"length of side 1 = 4 + 1 = 5 length of side 2 = 3 + 1 = 4 area of rectangle = 5 * 4 = 20 b is the answer"
|
a ) 16 , b ) 20 , c ) 24 , d ) 25 , e ) 30
|
b
|
multiply(add(4, 1), add(1, 3))
|
add(n0,n1)|add(n1,n5)|multiply(#0,#1)|
|
geometry
|
calculate the area of a triangle , if the sides of are 52 cm , 48 cm and 20 cm , what is its area ?
|
explanation : the investors can be categorized into three groups : ( 1 ) those who have investments in equities only . ( 2 ) those who have investments in securities only . ( 3 ) those who have investments in both equities and securities . let x , y , and z denote the number of people in the respective categories . since the total number of investors is 110 , we have : - = > x + y + z = 110 - - - - - - - - - - - - - ( 1 ) . also , the number of people with investments in equities is x + z and the number of people with investments in securities is y + z . since exactly 25 % of the investors in equities have investments in securities , we have the equation = > ( 25 / 100 ) × ( x + z ) = z . = > ( 25 / 100 ) × x = 75 z / 100 . = > x = 3 z . - - - - - - - - - - - - - - ( 2 ) since exactly 40 % of the investors in securities have investments in equities , we have the equation = > ( 40 / 100 ) × ( y + z ) = z . = > ( y + z ) = 5 z / 2 . = > y = 3 z / 2 . - - - - - - - - - - - - - - - - - ( 3 ) substituting equations ( 2 ) and ( 3 ) into equation ( 1 ) gives : - = > 3 z + ( 3 z / 2 ) + z = 110 . = > 11 z / 2 = 110 . = > z = 110 × 2 / 11 = 20 . hence , the number of people with investments in equities is : = > x + z = 3 z + z = 3 × 20 + 20 = 60 + 20 = 80 . answer : b
|
a ) 65 , b ) 80 , c ) 120 , d ) 180 , e ) 190
|
b
|
multiply(divide(110, add(add(multiply(divide(divide(40, const_100), divide(25, const_100)), divide(25, const_100)), subtract(const_1, multiply(divide(divide(40, const_100), divide(25, const_100)), divide(25, const_100)))), subtract(divide(divide(40, const_100), divide(25, const_100)), multiply(divide(divide(40, const_100), divide(25, const_100)), divide(25, const_100))))), divide(divide(40, const_100), divide(25, const_100)))
|
divide(n2,const_100)|divide(n1,const_100)|divide(#0,#1)|multiply(#2,#1)|subtract(const_1,#3)|subtract(#2,#3)|add(#3,#4)|add(#6,#5)|divide(n0,#7)|multiply(#8,#2)
|
other
|
45 pupil , out of them 12 in debate only and 22 in singing only . then how many in both ?
|
"s = ( 1 + 4 + 5 ) / 2 = 5 answer : c"
|
a ) 2 , b ) 7 , c ) 5 , d ) 3 , e ) 4
|
c
|
divide(add(add(1, 4), 5), 4)
|
add(n0,n1)|add(n2,#0)|divide(#1,n1)|
|
geometry
|
a and b can together finish a work in 10 days . they worked together for 5 days and then b left . after another 5 days , a finished the remaining work . in how many days a alone can finish the job ?
|
let the ten ' s digit be x and unit ' s digit be y . then 10 x + y = 3 ( x + y ) = = > 7 x - 2 y = 0 = = > 7 x - 2 y = 0 - - - - > ( i ) 10 + y + 45 = 10 y + x = = > y - x = 5 = = = > - 2 x + 2 y = 10 - - - - - - ( ii ) by adding ( i ) and ( ii ) we get 5 x = 10 so x = 2 and y = 7 so the required number is 27 . so the correct option is b ) 27 .
|
a ) 23 , b ) 27 , c ) 32 , d ) 72 , e ) 46
|
b
|
add(multiply(subtract(divide(subtract(45, const_10), subtract(subtract(const_10, 3), const_2)), subtract(subtract(const_10, 3), const_2)), const_10), divide(subtract(45, const_10), subtract(subtract(const_10, 3), const_2)))
|
subtract(n1,const_10)|subtract(const_10,n0)|subtract(#1,const_2)|divide(#0,#2)|subtract(#3,#2)|multiply(#4,const_10)|add(#3,#5)
|
general
|
what is x if x + 5 y = 24 and y = 2 ?
|
"distance traveled in 2 hours = 2 * 35 = 70 m distance traveled in 3 hours = 3 * 80 = 240 m total distance covered = 240 + 70 = 310 m total time = 2 + 3 = 5 h hence avg speed = total distance covered / total time taken = 310 / 5 = 62 mph answer : d"
|
a ) 60 mph , b ) 56.67 mph , c ) 53.33 mph , d ) 62 mph , e ) 66.67 mph
|
d
|
add(divide(add(multiply(80, 3), multiply(35, 2)), add(3, 2)), subtract(divide(const_100, 3), const_0_33))
|
add(n0,n2)|divide(const_100,n2)|multiply(n2,n3)|multiply(n0,n1)|add(#2,#3)|subtract(#1,const_0_33)|divide(#4,#0)|add(#6,#5)|
|
physics
|
miller street begins at baker street and runs directly east for 4.5 kilometers until it ends when it meets turner street . miller street is intersected every 250 meters by a perpendicular street , and each of those streets other than baker street and turner street is given a number beginning at 1 st street ( one block east of baker street ) and continuing consecutively ( 2 nd street , 3 rd street , etc . . . ) until the highest - numbered street one block west of turner street . what is the highest - numbered street that intersects miller street ?
|
"let the time when all three were working together be t hours . then : tom worked for t + 4 hour and has done 1 / 16 * ( t + 4 ) part of the job ; peter worked for t + 2 hour and has done 1 / 8 * ( t + 2 ) part of the job ; john worked for t hours and has done 1 / 4 * t part of the job : 1 / 16 * ( t + 4 ) + 1 / 8 * ( t + 2 ) + 1 / 4 * t = 1 - - > multiply by 16 - - > ( t + 4 ) + ( 2 t + 2 ) + 4 t = 16 - - > t = 10 / 7 ; hence peter has done 1 / 8 * ( 10 / 7 + 2 ) = 1 / 8 * 24 / 7 = 3 / 7 answer : e"
|
a ) 4 / 7 , b ) 5 / 7 , c ) 2 / 7 , d ) 1 / 7 , e ) 3 / 7
|
e
|
divide(const_4, add(multiply(const_4, const_2), const_1))
|
multiply(const_2,const_4)|add(#0,const_1)|divide(const_4,#1)|
|
physics
|
when tom works alone he chops 3 lb . salad in 2 minutes , and when tammy works alone she chops 2 lb . salad in 3 minutes . they start working together , and after some time finish chopping 65 lb . of salad . of those 80 lb . , the salad quantity chopped by tom is what percent greater than the quantifying chopped by tommy ? .
|
x / 2 + 6 + 3 + 1 + 4 sqrt ( x ) = x x / 2 + 10 + 4 sqrt ( x ) = x 4 sqrt ( x ) = x / 2 - 10 squaring on both sides 16 x = x ² / 4 + 100 - 10 x simplifying x ² - 104 x + 400 = 0 x = 100 , 4 x = 4 is not possible therefore x = 100 answer : b
|
a ) 90 , b ) 100 , c ) 110 , d ) 120 , e ) 130
|
b
|
power(add(6, 4), const_2)
|
add(n0,n1)|power(#0,const_2)
|
general
|
cole drove from home to work at an average speed of 60 kmh . he then returned home at an average speed of 100 kmh . if the round trip took a total of 2 hours , how many minutes did it take cole to drive to work ?
|
"distance = 6 * 10 / 60 = 1 km answer is a"
|
a ) 1 km , b ) 2 km , c ) 3 km , d ) 1.5 km , e ) 4 km
|
a
|
divide(multiply(10, divide(multiply(6, const_1000), const_60)), const_1000)
|
multiply(n1,const_1000)|divide(#0,const_60)|multiply(n0,#1)|divide(#2,const_1000)|
|
physics
|
solution p is 20 percent lemonade and 80 percent carbonated water by volume ; solution q is 45 percent lemonade and 55 percent carbonated water by volume . if a mixture of pq contains 75 percent carbonated water , what percent of the volume of the mixture is p ?
|
"i also was confused when i was looking forabove number : d as far as i understood , 15 is a factor of ab . in other words , the values of b ( units digits can be 5 or 0 . better to have option for 5 in this case to havebigger result ) . now let ' s try 15 x 1 ( a = 1 , b = 5 respectively we have = 5 ) . to ensure , let ' s check ( avoid even multiples of 2,4 , 6,8 etc ( we will have 0 in units thus making our result 0 ) 15 x 3 = 45 ( a = 4 b = 5 respectively . hey ! that ' s 20 . but we do n ' t have this number in answer choices , move on ) . 15 x 5 = 75 ( a = 7 , b = 5 respectively . increasing trend , we have 35 now ) 15 x 7 = 105 ( a = 0 , b = 5 . have 0 now . can create a pattern ) imo e ."
|
a ) 0 , b ) 15 , c ) 25 , d ) 30 , e ) 35
|
e
|
multiply(add(const_3, const_4), add(const_2, const_3))
|
add(const_3,const_4)|add(const_2,const_3)|multiply(#0,#1)|
|
general
|
on a certain transatlantic crossing , 20 percent of a ship ’ s passengers held round - trip tickets and also took their cars abroad the ship . if 50 percent of the passengers with round - trip tickets did not take their cars abroad the ship , what percent of the ship ’ s passengers held round - trip tickets ?
|
"the set s = { 5 , 13 , 21 , 29 , . . . . . . . . . . . . . . . . . . . . . } 1 st number = 8 * 0 + 5 = 5 2 nd number = 8 * 1 + 5 = 13 3 rd number = 8 * 2 + 5 = 21 79 th number = 8 * ( 79 - 1 ) + 5 = 629 answer = e"
|
a ) 605 , b ) 608 , c ) 613 , d ) 616 , e ) 629
|
e
|
add(multiply(subtract(79, const_1), 8), 5)
|
subtract(n2,const_1)|multiply(n0,#0)|add(n1,#1)|
|
general
|
in a certain warehouse , 50 percent of the packages weigh less than 75 pounds , and a total of 48 packages weigh less than 25 pounds . if 80 percent of the packages weigh at least 25 pounds , how many of the packages weigh at least 25 pounds but less than 75 pounds ?
|
"( 4 * 4.5 ) / 2 = 9 answer : e"
|
a ) 8.78 , b ) 8.67 , c ) 8.75 , d ) 8.98 , e ) 9
|
e
|
multiply(divide(const_1, const_2), multiply(4, 4.5))
|
divide(const_1,const_2)|multiply(n0,n1)|multiply(#0,#1)|
|
physics
|
john makes $ 50 a week from his job . he earns a raise andnow makes $ 90 a week . what is the % increase ?
|
"n = 5 x + 3 , for some integer x ( n + 1 ) ^ 2 = ( 5 x + 4 ) ^ 2 = 5 y + 16 , for some integer y when we divide this by 5 , the remainder is 1 . the answer is b ."
|
a ) 0 , b ) 1 , c ) 2 , d ) 3 , e ) 4
|
b
|
subtract(power(subtract(add(5, 3), 1), 2), multiply(floor(divide(power(subtract(add(5, 3), 1), 2), 5)), 5))
|
add(n0,n1)|subtract(#0,n2)|power(#1,n3)|divide(#2,n0)|floor(#3)|multiply(n0,#4)|subtract(#2,#5)|
|
general
|
a rower can row 5 km / h in still water . when the river is running at 2 km / h , it takes the rower 1 hour to row to big rock and back . how many kilometers is it to big rock ?
|
"tammy chops 4 lbs in 6 minutes tom chops 9 lbs in 6 minutes so in the same amount of time , tammy chops 125 % more than tom , since 9 is 125 % greater than 4 . so 125 % is the answer . note that the actual time does n ' t matter . if you multiply the time each work by x , you ' ll multiply the work each does by x , and 9 x is still 125 % greater than 4 x . ans : c"
|
a ) 44 % , b ) 100 % , c ) 125 % , d ) 225 % , e ) 400 %
|
c
|
multiply(divide(subtract(divide(2, 3), divide(const_2.0, 2)), divide(3, 2)), const_100)
|
divide(const_3.0,const_2.0)|divide(const_2.0,n1)|subtract(#0,#1)|divide(#2,#1)|multiply(#3,const_100)|
|
physics
|
if x < y < z and y - x > 5 , where x is an even integer and y and z are odd integers , what is the least possible value q of z - x ?
|
speed of the boat downstream = 21 + 5 = 26 kmph = 26 * 5 / 18 = 7.22 m / s hence time taken to cover 90 m = 90 / 7.22 = 12.46 seconds . answer : d
|
a ) 23.46 , b ) 27.46 , c ) 28.46 , d ) 12.46 , e ) 25.46
|
d
|
divide(90, multiply(add(21, 5), const_0_2778))
|
add(n0,n1)|multiply(#0,const_0_2778)|divide(n2,#1)|
|
physics
|
the time taken by a man to row his boat upstream is twice the time taken by him to row the same distance downstream . if the speed of the boat in still water is 42 kmph , find the speed of the stream ?
|
"96 % - - - - 48 144 % - - - - ? 96 / 144 * 48 = 32 answer : e"
|
a ) 1 , b ) 8 , c ) 9 , d ) 4 , e ) 32
|
e
|
divide(multiply(subtract(const_100, 4), 48), add(const_100, 44))
|
add(n2,const_100)|subtract(const_100,n0)|multiply(n1,#1)|divide(#2,#0)|
|
gain
|
the perimeter of a triangle is 40 cm and the inradius of the triangle is 2.5 cm . what is the area of the triangle
|
"explanation : let the time required by x seconds . then , more cloth means more time ( direct proportion ) so , 0.128 : 1 : : 28 : x = > x = { \ color { blue } \ frac { 28 \ times 1 } { 0.128 } } = > x = 218.75 so time will be approx 219 seconds answer : b"
|
a ) 175 seconds , b ) 219 seconds , c ) 155 seconds , d ) 115 seconds , e ) 115 seconds
|
b
|
divide(28, 0.128)
|
divide(n1,n0)|
|
physics
|
if x < y < z and y - x > 7 , where x is an even integer and y and z are odd integers , what is the least possible value of z - x ?
|
2 * 22 / 7 * 1.75 * x = 11000 x = 1000 answer : a
|
['a ) 1000', 'b ) 2788', 'c ) 2677', 'd ) 2899', 'e ) 2771']
|
a
|
divide(multiply(multiply(multiply(const_pi, const_2), 1.75), const_1000), add(1, const_10))
|
add(n1,const_10)|multiply(const_2,const_pi)|multiply(n0,#1)|multiply(#2,const_1000)|divide(#3,#0)
|
physics
|
chris age after 20 years will be 5 times his age 5 years back . what is the present age of chris ?
|
"denominator : 340 + 10 + 4.2 + 6.8 = 361 numerator : 340 ( 1 - . 88 - . 05 ) + 4.2 340 ( 0.07 ) + 4.2 23.8 + 4.2 28 ratio : 28 / 361 = 0.077 answer : b"
|
a ) 6 % . , b ) 7.7 % . , c ) 9.2 % . , d ) 10.5 % . , e ) 11 % .
|
b
|
multiply(divide(add(subtract(subtract(340, multiply(340, divide(88, const_100))), multiply(340, divide(5, const_100))), 4.2), add(add(add(340, 4.2), 10), 6.8)), const_100)
|
add(n0,n3)|divide(n1,const_100)|divide(n2,const_100)|add(n4,#0)|multiply(n0,#1)|multiply(n0,#2)|add(n5,#3)|subtract(n0,#4)|subtract(#7,#5)|add(n3,#8)|divide(#9,#6)|multiply(#10,const_100)|
|
gain
|
the average of runs of a cricket player of 20 innings was 32 . how many runs must he make in his next innings so as to increase his average of runs by 3 ?
|
let the radius be r and the the height be h . new radius = 2 r and height = 2 h . area ( new ) : area ( old ) = pi ∗ ( 2 r ) ^ 2 ∗ 2 h / pi ∗ r ^ 2 ∗ h = 8 : 1 . hence the answer is a .
|
['a ) 8 .', 'b ) 2', 'c ) 6', 'd ) 4', 'e ) 10']
|
a
|
divide(volume_cylinder(multiply(const_1, const_2), multiply(const_1, const_2)), volume_cylinder(const_1, const_1))
|
multiply(const_1,const_2)|volume_cylinder(const_1,const_1)|volume_cylinder(#0,#0)|divide(#2,#1)
|
geometry
|
the average of runs of a cricket player of 20 innings was 32 . how many runs must he make in his next innings so as to increase his average of runs by 3 ?
|
"odd prime number less than 100 : 3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 , 67 , 71 , 73 , 79 , 83 , 89 , 97 there is 24 the odd prime number answer is c"
|
a ) 78 , b ) 5 , c ) 24 , d ) 12 , e ) 15
|
c
|
add(subtract(100, const_100), const_4)
|
subtract(n0,const_100)|add(#0,const_4)|
|
general
|
a and b together can complete work in 10 days . a alone starts working and leaves it after working for 6 days completing only half of the work . in how many days it can be completed if the remaining job is undertaken by b ?
|
"solution average = 3 ( 1 + 2 + 3 + 4 + 5 + 6 ) / 6 = 63 / 6 . = 10.5 . answer a"
|
a ) 10.5 , b ) 6 , c ) 9 , d ) 12 , e ) 15
|
a
|
add(3, const_1)
|
add(n0,const_1)|
|
general
|
a man gains 20 % by selling an article for a certain price . if the sells it at double the price , the percentage of profit will be :
|
"solution let the number be x and ( 28 - x ) = then , x ( 28 - x ) = 192 ‹ = › x 2 - 28 x + 192 = 0 . ‹ = › ( x - 16 ) ( x - 12 ) = 0 ‹ = › x = 16 or x = 12 . answer b"
|
a ) 10 , b ) 12 , c ) 14 , d ) 15 , e ) 16
|
b
|
sqrt(add(power(sqrt(subtract(28, multiply(const_2, 192))), const_2), multiply(const_4, 192)))
|
multiply(n0,const_4)|multiply(n0,const_2)|subtract(n1,#1)|sqrt(#2)|power(#3,const_2)|add(#0,#4)|sqrt(#5)|
|
general
|
last year the range of the annual bonus of the 100 employees at company x was $ 20000 . if the annual bonus of each of the 100 employees this year is 10 percent greater than it was last year , what is the range of the annual bonus of the 100 employees this year ?
|
the volume the tank is : length * width * depth = 9 * 8 * 5 = 360 cubic feet . 360 cubic feet / 4 cubic feet per hour = 90 hours . it will take 90 hours to fill the tank . the answer is d .
|
['a ) 60', 'b ) 70', 'c ) 80', 'd ) 90', 'e ) 100']
|
d
|
divide(volume_rectangular_prism(9, 8, 5), 4)
|
volume_rectangular_prism(n1,n2,n3)|divide(#0,n0)
|
physics
|
if ( 2 to the x ) - ( 2 to the ( x - 2 ) ) = 3 ( 2 to the 5 ) , what is the value of x ?
|
"let the cost prices of the colour television sold at 30 % profit and 40 % profit be rs . x and rs . ( 35000 - x ) respectively . total selling price of televisions = x + 30 / 100 x + ( 35000 - x ) + 40 / 100 ( 35000 - x ) = > 130 / 100 x + 140 / 100 ( 35000 - x ) = 35000 + 30 / 100 ( 35000 ) x = 27985 35000 - x = 6985 difference in the cost prices of televisions = rs . 20985 answer : c"
|
a ) rs . 28985 , b ) rs . 40985 , c ) rs . 20985 , d ) rs . 21000 , e ) rs . 30985
|
c
|
subtract(subtract(35000, divide(subtract(multiply(divide(add(const_100, 30), const_100), 35000), multiply(divide(add(const_100, 30), const_100), 35000)), subtract(divide(add(const_100, 40), const_100), divide(add(const_100, 30), const_100)))), divide(subtract(multiply(divide(add(const_100, 30), const_100), 35000), multiply(divide(add(const_100, 30), const_100), 35000)), subtract(divide(add(const_100, 40), const_100), divide(add(const_100, 30), const_100))))
|
add(n3,const_100)|add(n1,const_100)|add(n2,const_100)|divide(#0,const_100)|divide(#1,const_100)|divide(#2,const_100)|multiply(n0,#3)|multiply(n0,#4)|subtract(#5,#4)|subtract(#6,#7)|divide(#9,#8)|subtract(n0,#10)|subtract(#11,#10)|
|
gain
|
the radius of a circular wheel is 1.75 m , how many revolutions will it make in traveling 1 km ?
|
"explanation : speed downstream = ( 37 + 13 ) = 50 kmph time = 24 minutes = 10 / 60 hour = 1 / 6 hour distance travelled = time × speed = ( 1 / 6 ) × 50 = 8.33 km answer : option e"
|
a ) 10.44 km , b ) 10.6 km , c ) 11.4 km , d ) 11.22 km , e ) 8.33 km
|
e
|
multiply(add(37, 13), divide(10, const_60))
|
add(n0,n1)|divide(n2,const_60)|multiply(#0,#1)|
|
physics
|
selling an kite for rs . 30 , a shop keeper gains 40 % . during a clearance sale , the shopkeeper allows a discount of 10 % on the marked price . his gain percent during the sale is ?
|
"length = speed * time speed = l / t s = 600 / 20 s = 30 m / sec speed = 30 * 18 / 5 ( to convert m / sec in to kmph multiply by 18 / 5 ) speed = 108 kmph answer : b"
|
a ) 76 kmph , b ) 108 kmph , c ) 72 kmph , d ) 34 kmph , e ) 91 kmph
|
b
|
divide(divide(600, const_1000), divide(20, const_3600))
|
divide(n0,const_1000)|divide(n1,const_3600)|divide(#0,#1)|
|
physics
|
a number when divided by 243 gives a remainder 26 , what remainder will be obtained by dividing the same number 14 ?
|
"sum of the 30 numbers = 30 * 25 = 750 if each number is multiplied by 5 , the sum also gets multiplied by 5 and the average also gets multiplied by 5 . thus , the new average = 25 * 5 = 125 . answer : b"
|
a ) 115 , b ) 125 , c ) 135 , d ) 145 , e ) 155
|
b
|
multiply(25, 5)
|
multiply(n1,n2)|
|
general
|
from below option 48 is divisible by which one ?
|
"explanation √ ( 21 ) ^ 2 = ? or , ? = 21 answer d"
|
a ) 7 , b ) 14 , c ) 49 , d ) 21 , e ) none of these
|
d
|
sqrt(power(21, 2))
|
power(n0,n1)|sqrt(#0)|
|
general
|
a certain fruit stand sold apples for $ 0.70 each and guava for $ 0.50 each . if a customer purchased both apples and bananas from the stand for a total of $ 6.30 , what total number of apples and bananas did the customer purchase ?
|
"explanation : ( 3 * 8 + 2 * 4 ) : ( 4 * 8 + 5 * 4 ) 8 : 13 8 / 21 * 798 = 304 answer : d"
|
a ) 240 , b ) 388 , c ) 379 , d ) 304 , e ) 122
|
d
|
multiply(divide(798, add(add(multiply(3000, 8), multiply(subtract(3000, 1000), subtract(const_12, 8))), add(multiply(4000, 8), multiply(add(4000, 1000), subtract(const_12, 8))))), add(multiply(3000, 8), multiply(subtract(3000, 1000), subtract(const_12, 8))))
|
add(n1,n3)|multiply(n0,n2)|multiply(n1,n2)|subtract(n0,n3)|subtract(const_12,n2)|multiply(#3,#4)|multiply(#0,#4)|add(#1,#5)|add(#2,#6)|add(#7,#8)|divide(n5,#9)|multiply(#7,#10)|
|
gain
|
if the radius of a cylinder is doubled and so is the height , what is the new volume of the cylinder divided by the old one ?
|
"w 1 / w 2 = ( a 2 - aavg ) / ( aavg - a 1 ) = ( 68 - 40 ) / ( 40 - 36 ) = 28 / 4 = 7 / 1 = number of microtron stocks / number of dynaco stocks so for every 7 microtron stock , she sold 1 dynaco stock . so out of 300 total stocks , ( 1 / 7 ) th i . e . 300 / 8 = 37.5 must be dynaco stock . answer ( b )"
|
a ) 52 , b ) 37.5 , c ) 92 , d ) 136 , e ) 184
|
b
|
divide(multiply(300, divide(40, subtract(68, 36))), divide(add(36, 68), subtract(68, 36)))
|
add(n0,n1)|subtract(n1,n0)|divide(n3,#1)|divide(#0,#1)|multiply(n2,#2)|divide(#4,#3)|
|
general
|
praveen starts business with rs . 3640 and after 5 months , hari joins with praveen as his partner . after a year , the profit is divided in the ratio 2 : 3 . what is hari ’ s contribution in the capital ?
|
"speed downstream = ( 15 + 3 ) km / hr = 18 km / hr . distance travelled = ( 18 x 12 / 60 ) hours = 3.6 km . answer d"
|
a ) 1.2 km , b ) 1.8 km , c ) 2.4 km , d ) 3.6 km , e ) none
|
d
|
multiply(divide(12, const_60), add(15, 3))
|
add(n0,n1)|divide(n2,const_60)|multiply(#0,#1)|
|
physics
|
a lady starts from p towards q and realizes that at a point r , if he walks 50 km further he will be at a point s , which is as far away from r as it is from q . what is the distance between p and q if the distance between p and r is half the distance from r to q ? ( assume that p , q , r and s are all on the same straight line )
|
ans is c : 39 pounds - - > 6 days 117 pounds - - > x days x = 117 * 6 / 39 = 18 the animal has already consumed food in 6 days so the the number of days for it ' s total consumption be 117 pounds is 18 - 6 = 12
|
a ) 8 , b ) 7 , c ) 12 , d ) 9 , e ) none of the above
|
c
|
subtract(divide(117, divide(39, 6)), 6)
|
divide(n0,n1)|divide(n2,#0)|subtract(#1,n1)
|
general
|
two trains of equal length , running with the speeds of 60 and 40 kmph , take 75 seconds to cross each other while they are running in the same direction . what time will they take to cross each other if they are running in opposite directions ?
|
"let the length and the breadth of the floor be l m and b m respectively . l = b + 200 % of b = l + 2 b = 3 b area of the floor = 441 / 3 = 147 sq m l b = 147 i . e . , l * l / 3 = 147 l ^ 2 = 441 = > l = 21 . d"
|
a ) 12 , b ) 18 , c ) 20 , d ) 21 , e ) 24
|
d
|
multiply(sqrt(divide(divide(441, 3), const_3)), const_3)
|
divide(n1,n2)|divide(#0,const_3)|sqrt(#1)|multiply(#2,const_3)|
|
gain
|
the h . c . f . of two numbers is 23 and the other two factors of their l . c . m . are 10 and 11 . the larger of the two numbers is :
|
"total # of students = 42 avg # of books per student = 2 total # of books = 42 * 2 = 84 # of student borrowed at least 3 books = 42 - 2 - 12 - 10 = 18 # of books borrowed by above 18 students = 84 - ( 12 * 1 ) + ( 10 * 2 ) = 52 considering that 17 out of above 18 students borrowed only 3 books , # of books borrowed = 17 * 3 = 51 so maximum # of books borrowed by any single student = 52 - 51 = 1 option a"
|
a ) 1 , b ) 5 , c ) 8 , d ) 13 , e ) 15
|
a
|
subtract(multiply(42, 2), add(multiply(subtract(subtract(42, add(add(multiply(12, 1), 10), 2)), 1), 3), add(multiply(12, 1), multiply(10, 2))))
|
multiply(n0,n1)|multiply(n2,n3)|multiply(n1,n4)|add(#1,#2)|add(n4,#1)|add(n1,#4)|subtract(n0,#5)|subtract(#6,n3)|multiply(n6,#7)|add(#3,#8)|subtract(#0,#9)|
|
general
|
in a rectangular coordinate system , if a line passes through the points ( - 15 , - 18 ) , ( 1522 ) and ( x , 2 ) then what is the value of x ?
|
explanation : let the higher number be n and x be the number erased . then ( ( n ( n + 1 ) / 2 ) + x ) / ( n + 1 ) = 35 * 7 / 17 = 602 / 17 hence , n = 69 and x = 7 satisfy the above conditions . answer : a
|
a ) 7 , b ) 8 , c ) 6 , d ) 5 , e ) 4
|
a
|
subtract(multiply(divide(floor(multiply(add(35, divide(7, 17)), const_2)), const_2), subtract(floor(multiply(add(35, divide(7, 17)), const_2)), const_1)), multiply(add(35, divide(7, 17)), subtract(subtract(floor(multiply(add(35, divide(7, 17)), const_2)), const_1), 1)))
|
divide(n2,n3)|add(n1,#0)|multiply(#1,const_2)|floor(#2)|divide(#3,const_2)|subtract(#3,const_1)|multiply(#4,#5)|subtract(#5,n0)|multiply(#1,#7)|subtract(#6,#8)
|
general
|
pipe a can fill the tank in 30 minutes and pipe b can empty the tank in 90 minutes . how long it will take to fill the tank if both pipes are operating together ?
|
on dividing 3105 by 21 , we get 18 as remainder . number to be added to 3105 = ( 21 - 18 ) - 3 . hence , required number = 3105 + 3 = 3108 . answer e
|
a ) 3100 , b ) 2500 , c ) 2545 , d ) 5800 , e ) 3108
|
e
|
add(3105, subtract(21, reminder(3105, 21)))
|
reminder(n0,n1)|subtract(n1,#0)|add(n0,#1)
|
general
|
a boatman selling a boat along river flow . if he sell boat in steal water at 3 m / sec and flow of river is 2 m / sec . how much time he will take to sell 100 m .
|
below is shown a rhombus with the given diagonals . consider the right triangle boc and apply pythagora ' s theorem as follows bc 2 = 10 ^ 2 + 24 ^ 2 and evaluate bc bc = 26 meters . we now evaluate the perimeter p as follows : p = 4 * 26 = 104 meters . answer is d
|
['a ) 150 merters', 'b ) 125 meters', 'c ) 96 meters', 'd ) 104 meters', 'e ) 152 meters']
|
d
|
power(divide(20, const_2), const_2)
|
divide(n0,const_2)|power(#0,const_2)
|
geometry
|
3 men and 7 women can complete a work in 10 days . but 4 men and 6 women need 8 days to complete the same work . in how many days will 10 women complete the same work ?
|
let the c . p of 1 st buffalo = x ∴ c . p of 2 nd buffalo = 30,000 - x s . p of 1 st buffalo = ( 100 - loss % ) - - - - - - - - - - - - - - - - - - - x c . p 100 s . p = 100 - 15 x - - - - - - - - - - - = 85 x / 100 100 s . p of 2 nd buffalo = ( 100 - profit % ) - - - - - - - - - - - - - - - - - - - - - x c . p 100 s . p = ( 100 + 19 ) ( 30,000 - x ) 119 ( 30,000 - x ) - - - - - - - - - - - - - - - - - - - - = - - - - - - - - - - - - - - - - 100 100 s . p of 1 st buffalo = s . p of 2 nd buffalo 85 x / 100 = 119 ( 30,000 - x ) / 100 ⇒ 85 x = 119 ( 30,000 - x ) ⇒ 85 x = 3 , 570,000 - 119 x ⇒ 85 x + 119 x = 3 , 570,000 ⇒ 204 x = 3 , 570,000 ⇒ x = 3 , 570,000 / 204 ⇒ x = $ 17,500 c . p of 1 st buffalo = $ 17,500 c . p of 2 nd buffalo = 30,000 - 17,500 = $ 12,500 e
|
a ) $ 10,500 , b ) $ 11,500 , c ) $ 11,600 , d ) $ 12,100 , e ) $ 12,500
|
e
|
subtract(multiply(multiply(3, const_100), sqrt(const_100)), divide(multiply(multiply(3, const_100), sqrt(const_100)), add(divide(add(divide(19, const_100), const_1), subtract(const_1, divide(15, const_100))), const_1)))
|
divide(n4,const_100)|divide(n3,const_100)|multiply(n0,const_100)|sqrt(const_100)|add(#0,const_1)|multiply(#2,#3)|subtract(const_1,#1)|divide(#4,#6)|add(#7,const_1)|divide(#5,#8)|subtract(#5,#9)
|
gain
|
tim came second in math . when his mother asked him how much he had scored , he answered that he got the sum of the first 9 even numbers . his mother immediately worked out the answer . how much had he scored in math ?
|
"explanation : number of bricks = courtyard area / 1 brick area = ( 2100 ã — 1400 / 14 ã — 8 ) = 26250 option d"
|
a ) 16000 , b ) 18000 , c ) 20000 , d ) 26250 , e ) none of these
|
d
|
divide(multiply(multiply(21, const_100), multiply(14, const_100)), multiply(14, 8))
|
multiply(n0,const_100)|multiply(n1,const_100)|multiply(n2,n3)|multiply(#0,#1)|divide(#3,#2)|
|
physics
|
the tailor has a 10 meter long piece of fabric for which to sew a ball room dress . she has to cuts this fabric into strips of 200 centimeters each . how long will it take the tailor to complete this tasks if each 200 centimeter took 5 minutes to cut ?
|
"let the ratio be k : 1 . then , k * 16.3 + 1 * 15.4 = ( k + 1 ) * 15.8 = ( 16.3 - 15.8 ) k = ( 15.8 - 15.4 ) = k = 0.4 / 0.5 = 4 / 5 required ratio = 4 / 5 : 1 = 4 : 5 . answer : c"
|
a ) 2 : 6 , b ) 2 : 3 , c ) 4 : 5 , d ) 2 : 1 , e ) 2 : 4
|
c
|
divide(subtract(15.8, 15.4), subtract(16.3, 15.8))
|
subtract(n0,n2)|subtract(n1,n0)|divide(#0,#1)|
|
general
|
a man swims downstream 28 km and upstream 16 km taking 4 hours each time , what is the speed of the man in still water ?
|
"i . e . if a = - 1 then b = 9 or if a = 9 then b = - 1 but in each case a + b = - 1 + 9 = 8 answer : option c"
|
a ) − 48 , b ) − 2 , c ) 8 , d ) 9 , e ) 48
|
c
|
subtract(subtract(subtract(subtract(add(add(8, 9), subtract(8, 9)), const_1), const_1), const_1), const_1)
|
add(const_4.0,n1)|subtract(n0,n1)|add(#0,#1)|subtract(#2,const_1)|subtract(#3,const_1)|subtract(#4,const_1)|subtract(#5,const_1)|
|
general
|
the average of 10 numbers is 40.2 . later it is found that two numbers have been wrongly copied . the first is 14 greater than the actual number and the second number added is 13 instead of 31 . find the correct average .
|
from here , it might be easier to go up in bounds of 60 , so we know that 61 - 120 gives 10 more numbers . 121 - 180 and 181 - 240 as well . this brings us up to 240 with 40 numbers . a cursory glance at the answer choices should confirm that it must be 42 , as all the other choices are very far away . the numbers 244 and 248 will come and complete the list that ’ s ( naughty or nice ) under 250 . answer choice b is correct here .
|
a ) 20 , b ) 41 , c ) 42 , d ) 53 , e ) 64
|
b
|
divide(factorial(subtract(add(const_4, 4), const_1)), multiply(factorial(4), factorial(subtract(const_4, const_1))))
|
add(n1,const_4)|factorial(n1)|subtract(const_4,const_1)|factorial(#2)|subtract(#0,const_1)|factorial(#4)|multiply(#1,#3)|divide(#5,#6)|
|
general
|
a girl scout was selling boxes of cookies . in a month , she sold both boxes of chocolate chip cookies ( $ 1.25 each ) and boxes of plain cookies ( $ 0.75 each ) . altogether , she sold 1,585 boxes for a combined value of $ 1 , 585.75 . how many boxes of plain cookies did she sell ?
|
"w = 2 desks t = 2.5 hrs rate of 2 carpenters = 2 × r rate = work done / time 2 xr = 2 / 2.5 r = 1 / 2.5 = 2 / 5 ( this is the rate of each carpenter ) work done by 4 carpenters in 2 hrs = 4 × rate of each carpenter x time = 4 × 2 / 5 × 2 = 3.2 desks b is the correct answer ."
|
a ) 2.4 . , b ) 3.2 . , c ) 4.2 . , d ) 5.5 . , e ) 6.4
|
b
|
multiply(multiply(divide(divide(2, divide(2, 2)), 2), 4), 2)
|
divide(n2,n0)|divide(n0,#0)|divide(#1,n0)|multiply(n1,#2)|multiply(n2,#3)|
|
physics
|
if the perimeter of a rectangular garden is 600 m , its length when its breadth is 120 m is ?
|
"solution ( a ’ s 1 day ’ s work ) : ( b ’ s 1 day ’ s work ) = 2 : 1 . ( a + b ) ' s 1 day ’ s work = 1 / 14 divide 1 / 14 in the ratio 2 : 1 . ∴ a ’ s 1 day ’ s work = ( 1 / 14 x 2 / 3 ) = 1 / 21 hence , a alone can finish the work in 21 days . answer b"
|
a ) 11 , b ) 21 , c ) 28 , d ) 42 , e ) none of these
|
b
|
inverse(divide(inverse(14), add(const_2, const_1)))
|
add(const_1,const_2)|inverse(n0)|divide(#1,#0)|inverse(#2)|
|
physics
|
what least number should be added to 1022 , so that the sum is completely divisible by 25 ?
|
"the rooms which were not rented is 3 / 5 the ac rooms which were not rented is ( 1 / 3 ) * ( 3 / 5 ) = 1 / 5 the percentage of unrented rooms which were ac rooms is ( 1 / 5 ) / ( 3 / 5 ) = 1 / 3 = 33 % the answer is c ."
|
a ) 20 % , b ) 25 % , c ) 33 % , d ) 36 % , e ) 40 %
|
c
|
multiply(divide(multiply(subtract(const_1, divide(2, 2)), multiply(divide(2, 5), const_100)), subtract(const_100, multiply(divide(2, 5), const_100))), const_100)
|
divide(n0,n1)|divide(n2,n0)|multiply(#0,const_100)|subtract(const_1,#1)|multiply(#2,#3)|subtract(const_100,#2)|divide(#4,#5)|multiply(#6,const_100)|
|
gain
|
the h . c . f . of two numbers is 23 and the other two factors of their l . c . m . are 10 and 11 . the larger of the two numbers is :
|
"answer : d ) 9.2 miles . average speed for round trip = 2 * a * b / ( a + b ) , where a , b are speeds so , average speed was = 2 * 6 * 20 / ( 6 + 20 ) = 9.2 m / hr the distance between schoolhome should be half of that . ie . 9.2 miles answer d"
|
a ) 2 miles , b ) 4 miles , c ) 4.8 miles , d ) 9.2 miles , e ) 10 miles
|
d
|
multiply(divide(const_1, add(divide(const_1, 6), divide(const_1, 20))), const_1_6)
|
divide(const_1,n0)|divide(const_1,n1)|add(#0,#1)|divide(const_1,#2)|multiply(#3,const_1_6)|
|
physics
|
car z travels 55 miles per gallon of gasoline when driven at a constant rate of 45 miles per hour , but travels 20 percent fewer miles per gallon of gasoline when driven at a constant rate of 60 miles per hour . how many miles does car z travel on 10 gallons of gasoline when driven at a constant rate of 60 miles per hour ?
|
"water : soap = 3 : 2 soap : salt = 12 : 8 = > for 12 soap , salt = 8 = > for 2 soap , salt = ( 8 / 12 ) * 2 = 16 / 12 = 4 / 3 so , water : soap : salt = 3 : 2 : 4 / 3 = 9 : 6 : 4 after open container , water : soap : salt = 2.25 : 6 : 4 so , water : salt = 2.25 : 4 = 9 : 16 answer : c"
|
a ) 12 : 8 , b ) 8 : 16 , c ) 9 : 16 , d ) 8 : 12 , e ) 16 : 9
|
c
|
divide(multiply(multiply(2, 3), 3), multiply(multiply(2, 2), 2))
|
multiply(n0,n1)|multiply(n1,n1)|multiply(n0,#0)|multiply(n1,#1)|divide(#2,#3)|
|
other
|
the radius of the two circular fields is in the ratio 4 : 5 the area of the first field is what percent less than the area of the second ?
|
let x be the rainfall in the first week . then 1.5 x was the rainfall in the second week . 2.5 x = 40 x = 16 the rainfall during the second week was 1.5 * 16 = 24 inches the answer is d .
|
a ) 15 , b ) 18 , c ) 21 , d ) 24 , e ) 27
|
d
|
multiply(divide(40, add(const_1, 1.5)), 1.5)
|
add(n1,const_1)|divide(n0,#0)|multiply(n1,#1)
|
general
|
a man can row his boat with the stream at 12 km / h and against the stream in 8 km / h . the man ' s rate is ?
|
"cp = sp * ( 100 / ( 100 + profit % ) ) = 6000 ( 100 / 118 ) = rs . 5084 . answer : d"
|
a ) rs . 6289 , b ) rs . 6298 , c ) rs . 6290 , d ) rs . 5084 , e ) rs . 6708
|
d
|
divide(6000, add(const_1, divide(18, const_100)))
|
divide(n0,const_100)|add(#0,const_1)|divide(n1,#1)|
|
gain
|
a certain characteristic in a large population has a distribution that is symmetric about the mean m . if 68 percent of the distribution lies within one standard deviation d of the mean , what percent e of the distribution is less than m + d ?
|
"p = $ 10000 r = 7 % t = 12 / 12 years = 1 year s . i . = p * r * t / 100 = 10000 * 7 * 1 / 100 = $ 700 answer is d"
|
a ) $ 410 , b ) $ 500 , c ) $ 650 , d ) $ 700 , e ) $ 1000
|
d
|
multiply(10000, divide(7, const_100))
|
divide(n1,const_100)|multiply(n0,#0)|
|
gain
|
a train of 40 carriages , each of 60 meters length , when an engine also of 60 meters length is running at a speed of 60 kmph . in what time will the train cross a bridge 1.5 km long ?
|
two men and 7 children complete a certain piece of work in 4 days or 8 men and 28 children complete a certain piece of work in 1 days 4 men and 4 children complete the same work in only 3 days . or 12 men and 12 children complete the same work in only 3 days . so 8 men + 28 children = 12 men + 12 children 1 man = 4 children 4 men and 4 children complete the same work in only 3 days or 4 men and 1 man ( in place of 4 children ) complete the same work in only 3 days or 5 men complete the same work in 3 days or 1 man will complete the same work in 5 * 3 = 15 days answer : b
|
a ) 60 days , b ) 15 days , c ) 6 days , d ) 51 days , e ) 50 days
|
b
|
divide(subtract(multiply(7, 4), add(4, 4)), subtract(divide(7, 3), 1))
|
add(n1,n1)|divide(n0,n4)|multiply(n0,n1)|subtract(#2,#0)|subtract(#1,n5)|divide(#3,#4)
|
physics
|
if the selling price of 50 articles is equal to the cost price of 20 articles , then the loss or gain percent is :
|
assume the total price = 100 x price after 20 % markup = 120 x price after 25 % further markup = 1.25 * 120 x = 150 x price after the discount = 0.85 * 150 x = 127.5 x hence total profit = 27.5 % option a
|
a ) 27.5 % , b ) 30 % , c ) 35 % , d ) 37.5 % , e ) 40 %
|
a
|
subtract(multiply(divide(subtract(const_100, 15), const_100), multiply(add(const_100, 20), divide(add(const_100, 25), const_100))), const_100)
|
add(n0,const_100)|add(n1,const_100)|subtract(const_100,n2)|divide(#2,const_100)|divide(#1,const_100)|multiply(#0,#4)|multiply(#3,#5)|subtract(#6,const_100)
|
gain
|
a man has $ 480 in the denominations of one - dollar , 5 - dollar notes and 10 - dollar . the number of dollars of each denomination is equal . what is the total number of dollar that he has ?
|
sol . total surface area = 3 ∏ r ² = [ 3 * 22 / 7 * 7 * 7 ] cm ² = 462 cm ² answer a
|
['a ) 462 cm ²', 'b ) 530 cm ²', 'c ) 1345 cm ²', 'd ) 1788 cm ²', 'e ) none']
|
a
|
multiply(multiply(const_3, const_pi), power(divide(14, const_2), const_2))
|
divide(n0,const_2)|multiply(const_3,const_pi)|power(#0,const_2)|multiply(#1,#2)
|
geometry
|
√ 4 percent of 4 √ 4 =
|
"profit in 1995 - 100 profit in 1996 - 125 % increae profit in 1997 in comparison to 1995 = 25 + 125 * 30 % = 62.5 correct option : b"
|
a ) 5 % , b ) 62.5 % , c ) 33 % , d ) 35 % , e ) 38 %
|
b
|
multiply(subtract(multiply(add(divide(30, const_100), const_1), add(const_1, divide(25, const_100))), const_1), const_100)
|
divide(n4,const_100)|divide(n1,const_100)|add(#0,const_1)|add(#1,const_1)|multiply(#2,#3)|subtract(#4,const_1)|multiply(#5,const_100)|
|
gain
|
a metallic sphere of radius 12 cm is melted and drawn into a wire , whose radius of cross section is 24 cm . what is the length of the wire ?
|
if you have a 37.5 liter capacity , you start with 37.5 l of a and 0 l of b . 1 st replacement after the first replacement you have 37.5 - 15 = 22.5 l of a and 15 l of b . the key is figuring out how many liters of a and b , respectively , are contained in the next 15 liters of mixture to be removed . the current ratio of a to total mixture is 22.5 / 37.5 ; expressed as a fraction this becomes ( 45 / 2 ) / ( 75 / 2 ) , or 45 / 2 * 2 / 75 . canceling the 2 s and factoring out a 5 leaves the ratio as 9 / 15 . note , no need to reduce further as we ' re trying to figure out the amount of a and b in 15 l of solution . 9 / 15 of a means there must be 6 / 15 of b . multiply each respective ratio by 15 to get 9 l of a and 6 l of b in the next 15 l removal . final replacement the next 15 l removal means 9 liters of a and 6 liters of b are removed and replaced with 15 liters of b . 22.5 - 9 = 13.5 liters of a . 15 liters of b - 6 liters + 15 more liters = 24 liters of b . test to the see if the final ratio = 9 / 16 ; 13.5 / 24 = ( 27 / 2 ) * ( 1 / 24 ) = 9 / 16 . choice c is correct .
|
a ) a : 45 , b ) b : 25 , c ) c : 37.5 , d ) d : 36 , e ) e : 42
|
c
|
divide(15, subtract(const_1, sqrt(divide(9, add(9, 16)))))
|
add(n2,n3)|divide(n2,#0)|sqrt(#1)|subtract(const_1,#2)|divide(n0,#3)
|
general
|
a special municipal payroll tax charges not tax on a payroll less than $ 200,000 and only 0.2 % on a company ’ s payroll above $ 200,000 . if belfried industries paid $ 200 in this special municipal payroll tax , then they must have had a payroll of ?
|
"cp * ( 10 / 100 ) = 320 cp = 32 * 100 = > cp = 3200 answer : c"
|
a ) 2777 , b ) 2987 , c ) 3200 , d ) 9977 , e ) 1671
|
c
|
divide(320, subtract(const_1, divide(90, const_100)))
|
divide(n0,const_100)|subtract(const_1,#0)|divide(n1,#1)|
|
gain
|
a certain galaxy is known to comprise approximately 5 x 10 ^ 11 stars . of every 50 million of these stars , one is larger in mass than our sun . approximately how many stars in this galaxy are larger than the sun ?
|
"area of a triangle = r * s where r is the in radius and s is the semi perimeter of the triangle . area of triangle = 2.5 * 44 / 2 = 55 cm 2 answer : d"
|
a ) 76 , b ) 88 , c ) 66 , d ) 55 , e ) 35
|
d
|
triangle_area(2.5, 44)
|
triangle_area(n0,n1)|
|
geometry
|
8597 - ? = 7429 - 4358
|
"explanation : it will 50 * 1 / 100 = 1 / 2 answer : option e"
|
a ) 1 / 4 , b ) 1 / 5 , c ) 1 / 10 , d ) 1 / 8 , e ) none of above
|
e
|
divide(circle_area(divide(50, const_2)), const_2)
|
divide(n0,const_2)|circle_area(#0)|divide(#1,const_2)|
|
gain
|
a certain car uses one gallon of gasoline every 32 miles when it travels on highway , and one gallon of gasoline every 20 miles when it travels in the city . when a car travels 4 miles on highway and 4 additional miles in the city , it uses what percent more gasoline than if it travels 8 miles on the highway ?
|
"sol . ( x × 4 ) = ( 0.45 × 2 ) ⇒ x = 0.9 / 4 = 0.225 . answer a"
|
a ) 0.225 , b ) 0.228 , c ) 0.254 , d ) 0.256 , e ) none
|
a
|
divide(multiply(0.45, 2), 4)
|
multiply(n0,n2)|divide(#0,n1)|
|
general
|
a salesman commission is 5 % on all sales upto $ 10000 and 4 % on all sales exceeding this . he remits $ 31100 to his parent company after deducting his commission . find the total sales ?
|
"we have three pairs of dogs for the 6 with exactly one littermate , and one triplet , with each having exactly two littermates . so , in fact there are two types of dogs : those with one littermate - say a , and the others with two littermates - b . work with probabilities : choosing two dogs , we can have either one dog of type b or none ( we can not have two dogs both of type b ) . the probability of choosing one dog of type b and one of type a is 3 / 9 * 6 / 8 * 2 = 1 / 2 ( the factor of 2 for the two possibilities ba and ab ) . the probability e of choosing two dogs of type a which are not littermates is 6 / 9 * 4 / 8 = 1 / 3 ( choose one a , then another a which is n ' t the previous one ' s littermate ) . the required probability is 1 / 2 + 1 / 3 = 5 / 6 . find the probability for the complementary event : choose aa or bb . probability of choosing two dogs of type a who are littermates is 6 / 9 * 1 / 8 = 1 / 12 . probability of choosing two dogs of type b ( who necessarily are littermates ) is 3 / 9 * 2 / 8 = 1 / 12 . again , we obtain 1 - ( 1 / 12 + 1 / 12 ) = 5 / 6 . answer : c"
|
a ) 1 / 6 , b ) 2 / 9 , c ) 5 / 6 , d ) 7 / 9 , e ) 8 / 9
|
c
|
divide(const_5, 6)
|
divide(const_5,n1)|
|
other
|
a 14 meter long wire is cut into two pieces . if the longer piece is then used to form a perimeter of a square , what is the probability that the area of the square will be more than 4 if the original wire was cut at an arbitrary point ?
|
"explanation : ( x * 5 ) = ( 0.75 * 12 ) x = 9 / 5 = 1.80 answer : c"
|
a ) 1.12 , b ) 1.16 , c ) 1.8 , d ) 1.3 , e ) none of these
|
c
|
divide(multiply(0.75, 12), 5)
|
multiply(n0,n2)|divide(#0,n1)|
|
general
|
a room is 7 meters 68 centimeters in length and 4 meters 32 centimeters in width . find the least number of square tiles of equal size required to cover the entire floor of the room .
|
"sol . age of the teacher = ( 33 ã — 15 â € “ 32 ã — 14 ) years = 47 years . answer c"
|
a ) 31 , b ) 36 , c ) 47 , d ) 51 , e ) none
|
c
|
add(32, const_1)
|
add(n0,const_1)|
|
general
|
an item is being sold for $ 10 each . however , if a customer will “ buy at least 3 ” they have a promo discount of 30 % . also , if a customer will “ buy at least 10 ” items they will deduct an additional 8 % to their “ buy at least 3 ” promo price . if sam buys 10 pcs of that item how much should he pay ?
|
"let the amount paid to x per week = x and the amount paid to y per week = y then x + y = 650 but x = 120 % of y = 120 y / 100 = 12 y / 10 ∴ 12 y / 10 + y = 650 ⇒ y [ 12 / 10 + 1 ] = 650 ⇒ 22 y / 10 = 650 ⇒ 22 y = 6500 ⇒ y = 6500 / 22 = rs . 295.45 c )"
|
a ) s . 200.45 , b ) s . 250.45 , c ) s . 295.45 , d ) s . 300.45 , e ) s . 310.45
|
c
|
divide(multiply(650, multiply(add(const_1, const_4), const_2)), multiply(add(multiply(add(const_1, const_4), const_2), const_1), const_2))
|
add(const_1,const_4)|multiply(#0,const_2)|add(#1,const_1)|multiply(n0,#1)|multiply(#2,const_2)|divide(#3,#4)|
|
general
|
if w is the set of all the integers between 49 and 114 , inclusive , that are either multiples of 3 or multiples of 2 or multiples of both , then w contains how many numbers ?
|
sol . average speed of a tractor = 25 km / h the speed of a bike in an hour = 25 × 2 = 50 km the speed of a car in an hour = 8 / 5 * 50 = 80 km so , the distance covered by car in 4 h is 80 × 4 = 320 km ans . ( b )
|
a ) 400 km , b ) 320 km , c ) 360 km , d ) 550 km , e ) 600 km
|
b
|
multiply(multiply(add(1, divide(3, 5)), multiply(const_2, divide(575, 23))), 4)
|
divide(n1,n2)|divide(n3,n4)|add(n0,#0)|multiply(#1,const_2)|multiply(#2,#3)|multiply(n5,#4)
|
general
|
the average age of students of a class is 15.8 years . the average age of boys in the class is 16.3 years and that of the girls is 15.4 years . the ration of the number of boys to the number of girls in the class is ?
|
"1 c 8 * 2 c 12 = 8 * 66 = 528 the answer is ( d )"
|
a ) 340 , b ) 380 , c ) 472 , d ) 528 , e ) 630
|
d
|
multiply(multiply(12, 3), 8)
|
multiply(n3,n5)|multiply(n1,#0)|
|
other
|
darcy lives 1.5 miles from work . she can walk to work at a constant rate of 3 miles per hour , or she can ride the train to work at a constant rate of 20 miles per hour . if she rides the train , there is an additional x minutes spent walking to the nearest train station , waiting for the train , and walking from the final train station to her work . if it takes darcy a total of 20 more minutes to commute to work by walking than it takes her to commute to work by riding the train , what is the value of x ?
|
"dividend = quotient * divisor + reminder 859622 / 456 gives quotient = 1885 and reminder = 62 . so , the next number divisible by 456 is 456 places infront of 456 * 1885 which means 456 – 62 = 394 should be added to 859622 . e"
|
a ) 456456 , b ) 576834 , c ) 562783 , d ) 634567 , e ) 859622
|
e
|
multiply(456, subtract(add(floor(divide(859622, 456)), const_1), divide(859622, 456)))
|
divide(n0,n1)|floor(#0)|add(#1,const_1)|subtract(#2,#0)|multiply(n1,#3)|
|
general
|
the distance between 2 cities a and b is 1000 km . a train starts from a at 12 p . m . and travels towards b at 100 km / hr . another starts from b at 1 p . m . and travels towards a at 150 km / hr . at what time do they meet ?
|
total = 100 t = 40 nt = 60 40 * ( 60 / 100 ) = 24 60 * ( 40 / 100 ) = 24 24 + 24 = 48 = > 100 - 48 = 52 % answer : c
|
a ) 62 % , b ) 57 % , c ) 52 % , d ) 22 % , e ) 42 %
|
c
|
subtract(const_100, add(multiply(40, divide(60, const_100)), multiply(divide(40, const_100), 60)))
|
divide(n1,const_100)|divide(n0,const_100)|multiply(n0,#0)|multiply(n1,#1)|add(#2,#3)|subtract(const_100,#4)
|
gain
|
each child has 2 pencils and 13 skittles . if there are 6 children , how many pencils are there in total ?
|
"ratio of their works a : b = 8 : 4 ratio of their wages a : b = 2 : 1 a ' s share = ( 2 / 5 ) 1000 = 400 b ' s share = ( 1 / 5 ) 1000 = 200 correct option is c"
|
a ) 600,400 , b ) 500,500 , c ) 400,200 , d ) 800,200 , e ) 550,450
|
c
|
divide(multiply(8, 4), add(8, 4))
|
add(n0,n1)|multiply(n0,n1)|divide(#1,#0)|
|
physics
|
what is the smallest integer e greater than 1 that leaves a remainder of 1 when divided by any of the integers 6 , 8 , and 10 ?
|
"cost of 8 kg grapes = 70 × 8 = 560 . cost of 9 kg of mangoes = 75 × 9 = 675 . total cost he has to pay = 560 + 675 = 1235 . a )"
|
a ) a ) 1235 , b ) b ) 1055 , c ) c ) 1065 , d ) d ) 1075 , e ) e ) 1080
|
a
|
add(multiply(8, 70), multiply(9, 75))
|
multiply(n0,n1)|multiply(n2,n3)|add(#0,#1)|
|
gain
|
if $ 910 are divided between worker a and worker b in the ratio 5 : 9 , what is the share that worker b will get ?
|
"let length of rectangle = l 11 ^ 2 = l * 11 = > l = 121 / 11 = 11 answer c"
|
a ) 4 , b ) 8 , c ) 11 , d ) 16 , e ) 18
|
c
|
divide(power(11, const_2), 11)
|
power(n0,const_2)|divide(#0,n1)|
|
geometry
|
if 28 % of a number exceeds 18 % of it by 7.2 , then find the number ?
|
b . for p , r = 8 / 2 pi . its capacity = ( 4 pi ) ^ 2 * 10 = 160 pi for b , r = 10 / pi . its capacity = ( 5 pi ) ^ 2 * 8 = 200 pi p / b = 160 pi / 200 pi = 0.8
|
['a ) 75 %', 'b ) 80 %', 'c ) 100 %', 'd ) 120 %', 'e ) 125 %']
|
b
|
multiply(divide(volume_cylinder(divide(divide(8, const_2), const_pi), 10), volume_cylinder(divide(divide(10, const_2), const_pi), 8)), const_100)
|
divide(n1,const_2)|divide(n0,const_2)|divide(#0,const_pi)|divide(#1,const_pi)|volume_cylinder(#2,n0)|volume_cylinder(#3,n1)|divide(#4,#5)|multiply(#6,const_100)
|
physics
|
a tank contains 6,500 gallons of a solution that is 5 percent sodium chloride by volume . if 2,500 gallons of water evaporate from the tank , the remaining solution will be approximately what percent sodium chloride ?
|
remainder = 0.40 - - > 40 / 100 - - > can be written as ( 40 / 4 ) / ( 100 / 4 ) = 10 / 25 so remainders can be 10 , 20 , 30 , 40 , . . . . . 90 . we need the sum of only 2 digit remainders - - > 10 + 20 + 30 + 40 + 50 + 60 + 70 + 80 + 90 = 450 answer : a
|
a ) 450 , b ) 616 , c ) 672 , d ) 900 , e ) 1024
|
a
|
add(multiply(divide(const_3, const_2), const_100), add(multiply(add(const_2, const_3), 59.4), const_3))
|
add(const_2,const_3)|divide(const_3,const_2)|multiply(n0,#0)|multiply(#1,const_100)|add(#2,const_3)|add(#4,#3)
|
general
|
what will be the fraction of 50 %
|
"x - fraction of products jane inspected ( 1 - x ) - fraction of products john inspected 0.8 ( x ) + 1.00 ( 1 - x ) = 0.75 0.2 x = 1.00 - 0.75 x = 0.25 / 0.2 x = 5 / 4 therefore the answer is d : 5 / 6 ."
|
a ) 1 / 6 , b ) 1 / 2 , c ) 5 / 8 , d ) 5 / 4 , e ) 15 / 16
|
d
|
divide(subtract(0.75, 0.5), subtract(1.00, 0.5))
|
subtract(n2,n0)|subtract(n1,n0)|divide(#0,#1)|
|
gain
|
of the total amount that jill spent on a shopping trip , excluding taxes , she spent 25 percent on clothing , 25 percent on food , and 50 percent on other items . if jill paid a 10 percent tax on the clothing , no tax on the food , and an 2 percent tax on all other items , then the total tax that she paid was what percent of the total amount that she spent , excluding taxes ?
|
"acid in 20 liters = 80 % of 20 = 16 liters suppose x liters of water be added . then 16 liters of acid in 20 + x liters of diluted solution 20 % of 20 + x = 16 20 + x = 80 x = 60 liters answer is c"
|
a ) 30 liters , b ) 50 liters , c ) 60 liters , d ) 70 liters , e ) 80 liters
|
c
|
subtract(divide(multiply(multiply(20, divide(80, const_100)), const_100), 20), 20)
|
divide(n1,const_100)|multiply(n0,#0)|multiply(#1,const_100)|divide(#2,n2)|subtract(#3,n0)|
|
gain
|
the surface area of a sphere is 4 π r 2 , where r is the radius of the sphere . if the area of the base of a hemisphere is 3 , what is the surface area e of that hemisphere ?
|
"let p = principal a - amount we have a = p ( 1 + r / 100 ) 3 and ci = a - p atq 993 = p ( 1 + r / 100 ) 3 - p ? p = 3000 / - now si @ 10 % on 3000 / - for 5 yrs = ( 3000 x 10 x 5 ) / 100 = 1500 / - answer : a ."
|
a ) rs . 1500 , b ) rs . 890 , c ) rs . 895 , d ) rs . 900 , e ) none
|
a
|
divide(multiply(multiply(multiply(multiply(const_3.0, const_100), 10), 10), 5), const_100)
|
multiply(const_3.0,const_100)|multiply(n1,#0)|multiply(n1,#1)|multiply(n0,#2)|divide(#3,const_100)|
|
gain
|
one pump drains one - half of a pond in 1 hours , and then a second pump starts draining the pond . the two pumps working together finish emptying the pond in one - half hour . how long would it take the second pump to drain the pond if it had to do the job alone ?
|
"c . p . be rs . x . then , ( 1620 - x ) / x * 100 = ( x - 1280 ) / x * 100 1620 - x = x - 1280 2 x = 2900 = > x = 1450 required s . p . = 125 % of rs . 1450 = 125 / 100 * 1450 = rs . 1812.5 . answer b"
|
a ) 3000 , b ) 1812.5 , c ) 2000 , d ) 5600 , e ) 3400
|
b
|
multiply(divide(add(const_100, 25), const_100), divide(add(1620, 1280), const_2))
|
add(n2,const_100)|add(n0,n1)|divide(#0,const_100)|divide(#1,const_2)|multiply(#2,#3)|
|
gain
|
20 people went to a hotel for combine dinner party 12 of them spent rs . 70 each on their dinner and rest spent 4 more than the average expenditure of all the 20 . what was the total money spent by them .
|
"original price = 100 cp = 75 s = 75 * ( 140 / 100 ) = 105 100 - 105 = 5 % answer : c"
|
a ) 118 , b ) 110 , c ) 105 , d ) 113 , e ) 115
|
c
|
multiply(subtract(divide(divide(multiply(subtract(const_100, 25), add(const_100, 40)), const_100), const_100), const_1), const_100)
|
add(n1,const_100)|subtract(const_100,n0)|multiply(#0,#1)|divide(#2,const_100)|divide(#3,const_100)|subtract(#4,const_1)|multiply(#5,const_100)|
|
gain
|
ele , the circus elephant , is currently 3 times older than lyn , the circus lion . in 15 years from now , lyn the circus lion will be exactly half as old as ele , the circus elephant . how old is ele today ?
|
"speed = 750 / 18 = 125 / 3 m / sec . let the length of the platform be x meters . then , ( x + 750 ) / 39 = 125 / 3 = > x = 1625 m . l = 1625 - 750 = 875 answer : option b"
|
a ) 300 , b ) 875 , c ) 360 , d ) 770 , e ) 380
|
b
|
subtract(multiply(speed(750, 18), 39), 750)
|
speed(n0,n2)|multiply(n1,#0)|subtract(#1,n0)|
|
physics
|
it takes 10 days for digging a trench of 100 m long , 50 m broad and 10 m deep . what length of trench , 25 m broad and 15 m deep can be dug in 30 days ?
|
"let number of mangoes be x , number of oranges be 12 - x 0.80 x + ( 20 - x ) 0.60 / 20 = 0.65 solving for x , we get x = 5 - - > mangoes 5 , oranges 15 now , number of oranges to be returned be y 0.80 * 5 + ( 15 - y ) * 0.60 / 20 - y = 0.72 solving for y , y = 12 ans : e"
|
a ) 4 , b ) 5 , c ) 6 , d ) 9 , e ) 12
|
e
|
multiply(divide(65, const_100), 20)
|
divide(n4,const_100)|multiply(n0,#0)|
|
general
|
a technician makes a round - trip to and from a certain service center by the same route . if the technician completes the drive to the center and then completes 80 percent of the drive from the center , what percent of the round - trip has the technician completed ?
|
"explanation : as the month begin with sunday , so there will be five sundays in the month . so result will be : = ( 510 × 5 + 240 × 25 / 10 ) = ( 8550 / 10 ) = 855 answer : option d"
|
a ) 280 , b ) 285 , c ) 290 , d ) 855 , e ) 275
|
d
|
divide(add(multiply(add(floor(divide(10, add(const_3, const_4))), const_1), 510), multiply(subtract(10, add(floor(divide(10, add(const_3, const_4))), const_1)), 240)), 10)
|
add(const_3,const_4)|divide(n2,#0)|floor(#1)|add(#2,const_1)|multiply(n0,#3)|subtract(n2,#3)|multiply(n1,#5)|add(#4,#6)|divide(#7,n2)|
|
general
|
there are 418 doctors and nurses in a hospital . if the ratio of the doctors to the nurses is 8 : 11 , then how many nurses are there in the hospital ?
|
"let possible value of x is 76 least possible value of x / 18 is 76 / 18 = > 4 quotient with remainder 4 thus answer is ( d ) 4"
|
a ) 3 , b ) 1 , c ) 2 , d ) 4 , e ) 5
|
d
|
reminder(22, 18)
|
reminder(n1,n2)|
|
general
|
a boat can travel with a speed of 12 km / hr in still water . if the speed of the stream is 4 km / hr , find the time taken by the boat to go 68 km downstream .
|
"ans 23 reverse of 32 answer : e"
|
a ) 49 , b ) 25 , c ) 36 , d ) 64 , e ) 23
|
e
|
multiply(32, divide(26, 62))
|
divide(n0,n1)|multiply(n2,#0)|
|
general
|
a pharmaceutical company received $ 5 million in royalties on the first $ 20 million in sales of the generic equivalent of one of its products and then $ 9 million in royalties on the next $ 108 million in sales . by approximately what percent did the ratio of royalties to sales decrease from the first $ 20 million in sales to the next $ 108 million in sales ?
|
"explanation : 40 * ( 50 / 100 ) = 20 - - - 64 ? - - - 12 = > rs . 3.75 answer : d"
|
a ) 2.75 , b ) 8.75 , c ) 7.75 , d ) 3.75 , e ) 1.75
|
d
|
multiply(const_12, divide(multiply(50, divide(50, const_100)), 64))
|
divide(n0,const_100)|multiply(n0,#0)|divide(#1,n1)|multiply(#2,const_12)|
|
gain
|
praveen starts business with rs . 3640 and after 5 months , hari joins with praveen as his partner . after a year , the profit is divided in the ratio 2 : 3 . what is hari ’ s contribution in the capital ?
|
"last year revenue = 100 ( assume ) ; this year revenue = 65 ; projected revenue = 120 . actual / projected * 100 = 65 / 120 * 100 = 54.2 % . answer : a ."
|
a ) 54.2 % , b ) 58 % , c ) 62.5 % , d ) 64 % , e ) 75 %
|
a
|
multiply(divide(subtract(const_100, 35), add(20, const_100)), const_100)
|
add(n0,const_100)|subtract(const_100,n1)|divide(#1,#0)|multiply(#2,const_100)|
|
general
|
out of 40 applicants to a law school , 15 majored in political science , 20 had a grade point average higher than 3.0 , and 10 did not major in political science and had a gpa equal to or lower than 3.0 . how many t applicants majored in political science and had a gpa higher than 3.0 ?
|
( s 1 * t 2 ~ s 2 * t 1 ) / ( t 2 ~ t 1 ) = ( 26 * 18 ~ 34 * 30 ) / ( 18 ~ 30 ) = 46 answer : c
|
a ) 44 , b ) 45 , c ) 46 , d ) 47 , e ) 48
|
c
|
add(26, multiply(divide(subtract(34, 26), subtract(30, 18)), 30))
|
subtract(n2,n0)|subtract(n1,n3)|divide(#0,#1)|multiply(n1,#2)|add(n0,#3)
|
physics
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.