Datasets:
license: apache-2.0
tags:
- semantic-ids
- recommendation-system
- video-games
- product-embeddings
size_categories:
- 10K<n<100K
Video Games Semantic IDs with Product Titles
This dataset contains semantic ID mappings with product titles for video games products from Amazon.
See writeup and demo here: https://eugeneyan.com/writing/semantic-ids/
Dataset Description
A pre-joined dataset that maps semantic IDs to product titles, making it easy to interpret and work with hierarchical product embeddings. Semantic IDs are learned representations that encode product relationships - similar products share similar ID prefixes.
Semantic ID Structure
Each semantic ID follows this format:
<|sid_start|><|sid_X|><|sid_Y|><|sid_Z|><|sid_W|><|sid_end|>
Where:
<|sid_start|>and<|sid_end|>are boundary tokens<|sid_X|>,<|sid_Y|>,<|sid_Z|>,<|sid_W|>represent the 4-level hierarchy- Each level can have values from 0-1023
- Similar products share prefixes (e.g., products with same first 2 levels are more similar)
Dataset Statistics
- Category: Video Games
- Number of products: 66,097
- Hierarchy levels: 4
- Tokens per level: 1024
Columns
parent_asin: Amazon Standard Identification Number (primary key)semantic_id: The hierarchical semantic identifier for the producttitle: Product title/name for human-readable interpretation
Usage
Basic Loading
from datasets import load_dataset
import pandas as pd
# Load the dataset
dataset = load_dataset("eugeneyan/video-games-semantic-ids-mapping")
mapping_df = dataset['train'].to_pandas()
print(f"Loaded {len(mapping_df)} video games products with semantic IDs and
titles")
print(mapping_df.head())
Parsing Semantic IDs
import re
from typing import List
def parse_semantic_id(semantic_id: str) -> List[str]:
"""
Parse a semantic ID string into its component levels.
Example input: '<|sid_start|><|sid_127|><|sid_45|><|sid_89|><|sid_12|><|sid_end|>'
Returns: ['<|sid_127|>', '<|sid_45|>', '<|sid_89|>', '<|sid_12|>']
"""
# Remove start and end tokens
sid = semantic_id.replace("<|sid_start|>", "").replace("<|sid_end|>", "")
# Extract all sid tokens
pattern = r"<\|sid_\d+\|>"
levels = re.findall(pattern, sid)
return levels
Finding Products with Smart Matching
def map_semantic_id_to_titles(semantic_id_str: str, mapping_df: pd.DataFrame) -> dict:
"""
Map a semantic ID to titles with 4-token exact match and 3-token fallback.
Returns:
dict with 'match_level', 'titles', 'count', and 'match_type' keys
"""
# Parse the input semantic ID
levels = parse_semantic_id(semantic_id_str)
if not levels:
return {"match_level": 0, "titles": [], "count": 0}
# First try exact match (all 4 tokens)
exact_matches = mapping_df[mapping_df["semantic_id"] == semantic_id_str]
if len(exact_matches) > 0:
titles = exact_matches["title"].tolist()
return {"match_level": 4, "titles": titles, "count": len(titles), "match_type":
"exact"}
# Fallback to prefix matching (3 tokens, then 2, then 1)
for depth in range(min(3, len(levels)), 0, -1):
# Build the prefix for this depth
prefix = "<|sid_start|>" + "".join(levels[:depth])
# Find matches
matches = mapping_df[mapping_df["semantic_id"].str.startswith(prefix)]
if len(matches) > 0:
# Found matches at this level
titles = matches["title"].tolist()
return {
"match_level": depth,
"titles": titles[:5], # Limit to 5 for display
"count": len(titles),
"match_type": "prefix",
"prefix_used": prefix
}
# No matches found at any level
return {"match_level": 0, "titles": [], "count": 0, "match_type": "none"}
# Example usage
sid = "<|sid_start|><|sid_8|><|sid_454|><|sid_630|><|sid_768|><|sid_end|>"
result = map_semantic_id_to_titles(sid, mapping_df)
if result["count"] > 0:
print(f"Found: {result['titles'][0]} (match level: {result['match_level']})")
Extracting and Replacing Multiple Semantic IDs
def extract_semantic_ids_from_text(text: str) -> List[str]:
"""
Extract all semantic IDs from a text string.
Returns list of full semantic IDs found in the text.
"""
# Pattern to match complete semantic IDs
pattern = r"<\|sid_start\|>(?:<\|sid_\d+\|>)+<\|sid_end\|>"
semantic_ids = re.findall(pattern, text)
return semantic_ids
def replace_semantic_ids_with_titles(text: str, mapping_df: pd.DataFrame,
show_match_level: bool = True) -> str:
"""
Replace all semantic IDs in text with their corresponding titles.
Args:
text: Input text containing semantic IDs
mapping_df: DataFrame with semantic_id to title mapping
show_match_level: Whether to append match info after the title
Returns:
Text with semantic IDs replaced by titles
"""
# Find all semantic IDs in the text
semantic_ids = extract_semantic_ids_from_text(text)
# Create a copy of the text to modify
result_text = text
# Replace each semantic ID with its title(s)
for sid in semantic_ids:
# Get matching titles
match_result = map_semantic_id_to_titles(sid, mapping_df)
if match_result["count"] > 0:
# Use the first title if multiple matches
title = match_result["titles"][0]
# Add match level if requested
if show_match_level:
if match_result["match_type"] == "exact":
replacement = f'"{title}"'
else:
replacement = f'"{title}" (L{match_result["match_level"]} match)'
else:
replacement = f'"{title}"'
# If multiple matches, indicate this
if match_result["count"] > 1:
replacement += f" [+{match_result['count'] - 1} similar]"
else:
# No match found
replacement = "[Unknown Item]"
# Replace the semantic ID with the title
result_text = result_text.replace(sid, replacement)
return result_text
# Example with model output
model_output = "Recommended: <|sid_start|><|sid_8|><|sid_454|><|sid_630|><|sid_768|><|sid_end|>"
readable_output = replace_semantic_ids_with_titles(model_output, mapping_df)
print(readable_output) # "Recommended: \"Product Title\""
Finding Similar Products
def find_similar_products(semantic_id: str, mapping_df: pd.DataFrame, depth: int = 2) -> pd.DataFrame:
"""
Find products with similar semantic IDs by matching prefixes.
Higher depth = more specific similarity.
Args:
semantic_id: The reference semantic ID
mapping_df: DataFrame with semantic_id and title columns
depth: Number of hierarchy levels to match (1-4)
Returns:
DataFrame with similar products
"""
# Parse the semantic ID
levels = parse_semantic_id(semantic_id)
if not levels or depth < 1:
return pd.DataFrame()
# Build prefix for matching
prefix = "<|sid_start|>" + "".join(levels[:min(depth, len(levels))])
# Find all products with matching prefix
similar = mapping_df[mapping_df['semantic_id'].str.startswith(prefix)].copy()
# Add similarity score (higher = more similar)
similar['similarity_depth'] = depth
return similar[['parent_asin', 'semantic_id', 'title', 'similarity_depth']]
# Example: Find products similar at different depths
sid = "<|sid_start|><|sid_8|><|sid_454|><|sid_630|><|sid_768|><|sid_end|>"
similar_at_2 = find_similar_products(sid, mapping_df, depth=2)
print(f"Products in same sub-category (depth 2): {len(similar_at_2)}")
Integration with Model
This dataset is designed to work with the semantic ID recommendation model:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load model
model_name = "eugeneyan/semantic-id-qwen3-8b-video-games"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# Generate recommendation
prompt = "User: <|sid_start|><|sid_8|><|sid_454|><|sid_630|><|sid_768|><|sid_end|>\n<|rec|>"
inputs = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(**inputs, max_new_tokens=50, temperature=0.3, do_sample=True)
# Decode and convert to readable format
response = tokenizer.decode(outputs[0], skip_special_tokens=False)
readable = replace_semantic_ids_with_titles(response, mapping_df)
print(readable)
Understanding Semantic Similarity
The hierarchical structure encodes similarity at different levels:
- Level 1 match: Broad category similarity
- Level 2 match: Sub-category similarity
- Level 3 match: Fine-grained similarity
- Level 4 match: Very similar or variant products
Example:
- Product A:
<|sid_start|><|sid_8|><|sid_454|><|sid_630|><|sid_768|><|sid_end|> - Product B:
<|sid_start|><|sid_8|><|sid_454|><|sid_599|><|sid_412|><|sid_end|> - Product C:
<|sid_start|><|sid_8|><|sid_112|><|sid_234|><|sid_567|><|sid_end|>
A and B share first 2 levels -> Similar sub-category A and C share first 1 level -> Same broad category only
Related Resources
- Model: https://huggingface.co/eugeneyan/semantic-id-qwen3-8b-video-games
- GitHub: https://github.com/eugeneyan/semantic-ids
Citation
If you use this dataset, please cite:
@dataset{semantic_ids_video_games_with_titles,
author = {Eugene Yan},
title = {Video Games Semantic IDs with Product Titles},
year = {2024},
publisher = {Hugging Face}
}