|
|
--- |
|
|
license: apache-2.0 |
|
|
tags: |
|
|
- semantic-ids |
|
|
- recommendation-system |
|
|
- video-games |
|
|
- product-embeddings |
|
|
size_categories: |
|
|
- 10K<n<100K |
|
|
--- |
|
|
|
|
|
# Video Games Semantic IDs with Product Titles |
|
|
|
|
|
This dataset contains semantic ID mappings with product titles for video games |
|
|
products from Amazon. |
|
|
|
|
|
See writeup and demo here: https://eugeneyan.com/writing/semantic-ids/ |
|
|
|
|
|
## Dataset Description |
|
|
|
|
|
A pre-joined dataset that maps semantic IDs to product titles, making it easy to interpret and |
|
|
work with |
|
|
hierarchical product embeddings. Semantic IDs are learned representations that encode product |
|
|
relationships - similar products share similar ID prefixes. |
|
|
|
|
|
### Semantic ID Structure |
|
|
|
|
|
Each semantic ID follows this format: |
|
|
`<|sid_start|><|sid_X|><|sid_Y|><|sid_Z|><|sid_W|><|sid_end|>` |
|
|
|
|
|
Where: |
|
|
- `<|sid_start|>` and `<|sid_end|>` are boundary tokens |
|
|
- `<|sid_X|>`, `<|sid_Y|>`, `<|sid_Z|>`, `<|sid_W|>` represent the 4-level hierarchy |
|
|
- Each level can have values from 0-1023 |
|
|
- Similar products share prefixes (e.g., products with same first 2 levels are more similar) |
|
|
|
|
|
## Dataset Statistics |
|
|
|
|
|
- **Category**: Video Games |
|
|
- **Number of products**: 66,097 |
|
|
- **Hierarchy levels**: 4 |
|
|
- **Tokens per level**: 1024 |
|
|
|
|
|
## Columns |
|
|
|
|
|
- `parent_asin`: Amazon Standard Identification Number (primary key) |
|
|
- `semantic_id`: The hierarchical semantic identifier for the product |
|
|
- `title`: Product title/name for human-readable interpretation |
|
|
|
|
|
## Usage |
|
|
|
|
|
### Basic Loading |
|
|
|
|
|
```python |
|
|
from datasets import load_dataset |
|
|
import pandas as pd |
|
|
|
|
|
# Load the dataset |
|
|
dataset = load_dataset("eugeneyan/video-games-semantic-ids-mapping") |
|
|
mapping_df = dataset['train'].to_pandas() |
|
|
|
|
|
print(f"Loaded {len(mapping_df)} video games products with semantic IDs and |
|
|
titles") |
|
|
print(mapping_df.head()) |
|
|
``` |
|
|
|
|
|
### Parsing Semantic IDs |
|
|
|
|
|
```python |
|
|
import re |
|
|
from typing import List |
|
|
|
|
|
def parse_semantic_id(semantic_id: str) -> List[str]: |
|
|
""" |
|
|
Parse a semantic ID string into its component levels. |
|
|
|
|
|
Example input: '<|sid_start|><|sid_127|><|sid_45|><|sid_89|><|sid_12|><|sid_end|>' |
|
|
Returns: ['<|sid_127|>', '<|sid_45|>', '<|sid_89|>', '<|sid_12|>'] |
|
|
""" |
|
|
# Remove start and end tokens |
|
|
sid = semantic_id.replace("<|sid_start|>", "").replace("<|sid_end|>", "") |
|
|
|
|
|
# Extract all sid tokens |
|
|
pattern = r"<\|sid_\d+\|>" |
|
|
levels = re.findall(pattern, sid) |
|
|
|
|
|
return levels |
|
|
``` |
|
|
|
|
|
### Finding Products with Smart Matching |
|
|
|
|
|
```python |
|
|
def map_semantic_id_to_titles(semantic_id_str: str, mapping_df: pd.DataFrame) -> dict: |
|
|
""" |
|
|
Map a semantic ID to titles with 4-token exact match and 3-token fallback. |
|
|
|
|
|
Returns: |
|
|
dict with 'match_level', 'titles', 'count', and 'match_type' keys |
|
|
""" |
|
|
# Parse the input semantic ID |
|
|
levels = parse_semantic_id(semantic_id_str) |
|
|
|
|
|
if not levels: |
|
|
return {"match_level": 0, "titles": [], "count": 0} |
|
|
|
|
|
# First try exact match (all 4 tokens) |
|
|
exact_matches = mapping_df[mapping_df["semantic_id"] == semantic_id_str] |
|
|
if len(exact_matches) > 0: |
|
|
titles = exact_matches["title"].tolist() |
|
|
return {"match_level": 4, "titles": titles, "count": len(titles), "match_type": |
|
|
"exact"} |
|
|
|
|
|
# Fallback to prefix matching (3 tokens, then 2, then 1) |
|
|
for depth in range(min(3, len(levels)), 0, -1): |
|
|
# Build the prefix for this depth |
|
|
prefix = "<|sid_start|>" + "".join(levels[:depth]) |
|
|
|
|
|
# Find matches |
|
|
matches = mapping_df[mapping_df["semantic_id"].str.startswith(prefix)] |
|
|
|
|
|
if len(matches) > 0: |
|
|
# Found matches at this level |
|
|
titles = matches["title"].tolist() |
|
|
return { |
|
|
"match_level": depth, |
|
|
"titles": titles[:5], # Limit to 5 for display |
|
|
"count": len(titles), |
|
|
"match_type": "prefix", |
|
|
"prefix_used": prefix |
|
|
} |
|
|
|
|
|
# No matches found at any level |
|
|
return {"match_level": 0, "titles": [], "count": 0, "match_type": "none"} |
|
|
|
|
|
# Example usage |
|
|
sid = "<|sid_start|><|sid_8|><|sid_454|><|sid_630|><|sid_768|><|sid_end|>" |
|
|
result = map_semantic_id_to_titles(sid, mapping_df) |
|
|
if result["count"] > 0: |
|
|
print(f"Found: {result['titles'][0]} (match level: {result['match_level']})") |
|
|
``` |
|
|
|
|
|
### Extracting and Replacing Multiple Semantic IDs |
|
|
|
|
|
```python |
|
|
def extract_semantic_ids_from_text(text: str) -> List[str]: |
|
|
""" |
|
|
Extract all semantic IDs from a text string. |
|
|
|
|
|
Returns list of full semantic IDs found in the text. |
|
|
""" |
|
|
# Pattern to match complete semantic IDs |
|
|
pattern = r"<\|sid_start\|>(?:<\|sid_\d+\|>)+<\|sid_end\|>" |
|
|
semantic_ids = re.findall(pattern, text) |
|
|
return semantic_ids |
|
|
|
|
|
def replace_semantic_ids_with_titles(text: str, mapping_df: pd.DataFrame, |
|
|
show_match_level: bool = True) -> str: |
|
|
""" |
|
|
Replace all semantic IDs in text with their corresponding titles. |
|
|
|
|
|
Args: |
|
|
text: Input text containing semantic IDs |
|
|
mapping_df: DataFrame with semantic_id to title mapping |
|
|
show_match_level: Whether to append match info after the title |
|
|
|
|
|
Returns: |
|
|
Text with semantic IDs replaced by titles |
|
|
""" |
|
|
# Find all semantic IDs in the text |
|
|
semantic_ids = extract_semantic_ids_from_text(text) |
|
|
|
|
|
# Create a copy of the text to modify |
|
|
result_text = text |
|
|
|
|
|
# Replace each semantic ID with its title(s) |
|
|
for sid in semantic_ids: |
|
|
# Get matching titles |
|
|
match_result = map_semantic_id_to_titles(sid, mapping_df) |
|
|
|
|
|
if match_result["count"] > 0: |
|
|
# Use the first title if multiple matches |
|
|
title = match_result["titles"][0] |
|
|
|
|
|
# Add match level if requested |
|
|
if show_match_level: |
|
|
if match_result["match_type"] == "exact": |
|
|
replacement = f'"{title}"' |
|
|
else: |
|
|
replacement = f'"{title}" (L{match_result["match_level"]} match)' |
|
|
else: |
|
|
replacement = f'"{title}"' |
|
|
|
|
|
# If multiple matches, indicate this |
|
|
if match_result["count"] > 1: |
|
|
replacement += f" [+{match_result['count'] - 1} similar]" |
|
|
else: |
|
|
# No match found |
|
|
replacement = "[Unknown Item]" |
|
|
|
|
|
# Replace the semantic ID with the title |
|
|
result_text = result_text.replace(sid, replacement) |
|
|
|
|
|
return result_text |
|
|
|
|
|
# Example with model output |
|
|
model_output = "Recommended: <|sid_start|><|sid_8|><|sid_454|><|sid_630|><|sid_768|><|sid_end|>" |
|
|
readable_output = replace_semantic_ids_with_titles(model_output, mapping_df) |
|
|
print(readable_output) # "Recommended: \"Product Title\"" |
|
|
``` |
|
|
|
|
|
### Finding Similar Products |
|
|
|
|
|
```python |
|
|
def find_similar_products(semantic_id: str, mapping_df: pd.DataFrame, depth: int = 2) -> pd.DataFrame: |
|
|
""" |
|
|
Find products with similar semantic IDs by matching prefixes. |
|
|
Higher depth = more specific similarity. |
|
|
|
|
|
Args: |
|
|
semantic_id: The reference semantic ID |
|
|
mapping_df: DataFrame with semantic_id and title columns |
|
|
depth: Number of hierarchy levels to match (1-4) |
|
|
|
|
|
Returns: |
|
|
DataFrame with similar products |
|
|
""" |
|
|
# Parse the semantic ID |
|
|
levels = parse_semantic_id(semantic_id) |
|
|
|
|
|
if not levels or depth < 1: |
|
|
return pd.DataFrame() |
|
|
|
|
|
# Build prefix for matching |
|
|
prefix = "<|sid_start|>" + "".join(levels[:min(depth, len(levels))]) |
|
|
|
|
|
# Find all products with matching prefix |
|
|
similar = mapping_df[mapping_df['semantic_id'].str.startswith(prefix)].copy() |
|
|
|
|
|
# Add similarity score (higher = more similar) |
|
|
similar['similarity_depth'] = depth |
|
|
|
|
|
return similar[['parent_asin', 'semantic_id', 'title', 'similarity_depth']] |
|
|
|
|
|
# Example: Find products similar at different depths |
|
|
sid = "<|sid_start|><|sid_8|><|sid_454|><|sid_630|><|sid_768|><|sid_end|>" |
|
|
similar_at_2 = find_similar_products(sid, mapping_df, depth=2) |
|
|
print(f"Products in same sub-category (depth 2): {len(similar_at_2)}") |
|
|
``` |
|
|
|
|
|
### Integration with Model |
|
|
|
|
|
This dataset is designed to work with the semantic ID recommendation model: |
|
|
|
|
|
```python |
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
import torch |
|
|
|
|
|
# Load model |
|
|
model_name = "eugeneyan/semantic-id-qwen3-8b-video-games" |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
model_name, |
|
|
torch_dtype=torch.bfloat16, |
|
|
device_map="auto", |
|
|
trust_remote_code=True |
|
|
) |
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) |
|
|
|
|
|
# Generate recommendation |
|
|
prompt = "User: <|sid_start|><|sid_8|><|sid_454|><|sid_630|><|sid_768|><|sid_end|>\n<|rec|>" |
|
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
|
|
|
|
with torch.no_grad(): |
|
|
outputs = model.generate(**inputs, max_new_tokens=50, temperature=0.3, do_sample=True) |
|
|
|
|
|
# Decode and convert to readable format |
|
|
response = tokenizer.decode(outputs[0], skip_special_tokens=False) |
|
|
readable = replace_semantic_ids_with_titles(response, mapping_df) |
|
|
print(readable) |
|
|
``` |
|
|
|
|
|
|
|
|
### Understanding Semantic Similarity |
|
|
|
|
|
The hierarchical structure encodes similarity at different levels: |
|
|
|
|
|
- Level 1 match: Broad category similarity |
|
|
- Level 2 match: Sub-category similarity |
|
|
- Level 3 match: Fine-grained similarity |
|
|
- Level 4 match: Very similar or variant products |
|
|
|
|
|
Example: |
|
|
- Product A: `<|sid_start|><|sid_8|><|sid_454|><|sid_630|><|sid_768|><|sid_end|>` |
|
|
- Product B: `<|sid_start|><|sid_8|><|sid_454|><|sid_599|><|sid_412|><|sid_end|>` |
|
|
- Product C: `<|sid_start|><|sid_8|><|sid_112|><|sid_234|><|sid_567|><|sid_end|>` |
|
|
|
|
|
A and B share first 2 levels -> Similar sub-category |
|
|
A and C share first 1 level -> Same broad category only |
|
|
|
|
|
Related Resources |
|
|
|
|
|
- Model: https://huggingface.co/eugeneyan/semantic-id-qwen3-8b-video-games |
|
|
- GitHub: https://github.com/eugeneyan/semantic-ids |
|
|
|
|
|
### Citation |
|
|
|
|
|
If you use this dataset, please cite: |
|
|
``` |
|
|
@dataset{semantic_ids_video_games_with_titles, |
|
|
author = {Eugene Yan}, |
|
|
title = {Video Games Semantic IDs with Product Titles}, |
|
|
year = {2024}, |
|
|
publisher = {Hugging Face} |
|
|
} |
|
|
``` |
|
|
|