text
stringlengths 1
93.6k
|
---|
tls_context = mqtt.ssl.create_default_context()
|
mqtt_client.tls_set_context(tls_context)
|
if os.getenv('MQTT_USERNAME', None) and os.getenv('MQTT_PASSWORD', None):
|
mqtt_client.username_pw_set(os.getenv('MQTT_USERNAME'), os.getenv('MQTT_PASSWORD'))
|
try:
|
mqtt_client.connect(
|
os.getenv('MQTT_HOST'),
|
int(os.getenv('MQTT_PORT')),
|
keepalive=int(os.getenv('MQTT_KEEPALIVE', 60)),
|
)
|
except Exception as e:
|
logging.error(f"Failed to connect to MQTT broker: {e}")
|
exit(1)
|
# Configure the Processor and the Exporter
|
processor = MessageProcessor(registry, connection_pool)
|
mqtt_client.loop_forever()
|
# <FILESEP>
|
# Copyright (c) 2020. Jose M. Requena-Plens
|
"""
|
Octave-Band and Fractional Octave-Band filter.
|
"""
|
import numpy as np
|
from scipy import signal
|
import matplotlib.pyplot as plt
|
# Public methods
|
__all__ = ['octavefilter', 'getansifrequencies', 'normalizedfreq']
|
def octavefilter(x, fs, fraction=1, order=6, limits=None, show=0, sigbands =0):
|
"""
|
Filter a signal with octave or fractional octave filter bank. This
|
method uses a Butterworth filter with Second-Order Sections
|
coefficients. To obtain the correct coefficients, a subsampling is
|
applied to the signal in each filtered band.
|
:param x: Signal
|
:param fs: Sample rate
|
:param fraction: Bandwidth 'b'. Examples: 1/3-octave b=3, 1-octave b=1,
|
2/3-octave b = 3/2. [Optional] Default: 1.
|
:param order: Order of Butterworth filter. [Optional] Default: 6.
|
:param limits: Minimum and maximum limit frequencies. [Optional] Default
|
[12,20000]
|
:param show: Boolean for plot o not the filter response.
|
:param sigbands: Boolean to also return the signal in the time domain
|
divided into bands. A list with as many arrays as there are frequency bands.
|
:returns: Sound Pressure Level and Frequency array
|
"""
|
if limits is None:
|
limits = [12, 20000]
|
# List type for signal var
|
x = _typesignal(x)
|
# Generate frequency array
|
freq, freq_d, freq_u = _genfreqs(limits, fraction, fs)
|
# Calculate the downsampling factor (array of integers with size [freq])
|
factor = _downsamplingfactor(freq_u, fs)
|
# Get SOS filter coefficients (3D - matrix with size: [freq,order,6])
|
sos = _buttersosfilter(freq, freq_d, freq_u, fs, order, factor, show)
|
if sigbands:
|
# Create array with SPL for each frequency band
|
spl = np.zeros([len(freq)])
|
xb = []
|
for idx in range(len(freq)):
|
sd = signal.resample(x, round(len(x) / factor[idx]))
|
y = signal.sosfilt(sos[idx], sd)
|
spl[idx] = 20 * np.log10(np.std(y) / 2e-5)
|
xb.append(signal.resample_poly(y,factor[idx],1))
|
return spl.tolist(), freq, xb
|
else:
|
# Create array with SPL for each frequency band
|
spl = np.zeros([len(freq)])
|
for idx in range(len(freq)):
|
sd = signal.resample(x, round(len(x) / factor[idx]))
|
y = signal.sosfilt(sos[idx], sd)
|
spl[idx] = 20 * np.log10(np.std(y) / 2e-5)
|
return spl.tolist(), freq
|
def _typesignal(x):
|
if type(x) is list:
|
return x
|
elif type(x) is np.ndarray:
|
return x.tolist()
|
elif type(x) is tuple:
|
return list(x)
|
def _buttersosfilter(freq, freq_d, freq_u, fs, order, factor, show=0):
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.