text
stringlengths 1
93.6k
|
---|
# Initialize coefficients matrix
|
sos = [[[]] for i in range(len(freq))]
|
# Generate coefficients for each frequency band
|
for idx, (lower, upper) in enumerate(zip(freq_d, freq_u)):
|
# Downsampling to improve filter coefficients
|
fsd = fs / factor[idx] # New sampling rate
|
# Butterworth Filter with SOS coefficients
|
sos[idx] = signal.butter(
|
N=order,
|
Wn=np.array([lower, upper]) / (fsd / 2),
|
btype='bandpass',
|
analog=False,
|
output='sos')
|
if show:
|
_showfilter(sos, freq, freq_u, freq_d, fs, factor)
|
return sos
|
def _showfilter(sos, freq, freq_u, freq_d, fs, factor):
|
wn = 8192
|
w = np.zeros([wn, len(freq)])
|
h = np.zeros([wn, len(freq)], dtype=np.complex_)
|
for idx in range(len(freq)):
|
fsd = fs / factor[idx] # New sampling rate
|
w[:, idx], h[:, idx] = signal.sosfreqz(
|
sos[idx],
|
worN=wn,
|
whole=False,
|
fs=fsd)
|
fig, ax = plt.subplots()
|
ax.semilogx(w, 20 * np.log10(abs(h) + np.finfo(float).eps), 'b')
|
ax.grid(which='major')
|
ax.grid(which='minor', linestyle=':')
|
ax.set_xlabel(r'Frequency [Hz]')
|
ax.set_ylabel('Amplitude [dB]')
|
ax.set_title('Second-Order Sections - Butterworth Filter')
|
plt.xlim(freq_d[0] * 0.8, freq_u[-1] * 1.2)
|
plt.ylim(-4, 1)
|
ax.set_xticks([16, 31.5, 63, 125, 250, 500, 1000, 2000, 4000, 8000, 16000])
|
ax.set_xticklabels(['16', '31.5', '63', '125', '250', '500',
|
'1k', '2k', '4k', '8k', '16k'])
|
plt.show()
|
def _genfreqs(limits, fraction, fs):
|
# Generate frequencies
|
freq, freq_d, freq_u = getansifrequencies(fraction, limits)
|
# Remove outer frequency to prevent filter error (fs/2 < freq)
|
freq, freq_d, freq_u = _deleteouters(freq, freq_d, freq_u, fs)
|
return freq, freq_d, freq_u
|
def normalizedfreq(fraction):
|
"""
|
Normalized frequencies for one-octave and third-octave band. [IEC
|
61260-1-2014]
|
:param fraction: Octave type, for one octave fraction=1,
|
for third-octave fraction=3
|
:type fraction: int
|
:returns: frequencies array
|
:rtype: list
|
"""
|
predefined = {1: _oneoctave(),
|
3: _thirdoctave(),
|
}
|
return predefined[fraction]
|
def _thirdoctave():
|
# IEC 61260 - 1 - 2014 (added 12.5, 16, 20 Hz)
|
return [12.5, 16, 20, 25, 31.5, 40, 50, 63, 80, 100, 125, 160, 200, 250,
|
315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150, 4000,
|
5000, 6300, 8000, 10000, 12500, 16000, 20000]
|
def _oneoctave():
|
# IEC 61260 - 1 - 2014 (added 16 Hz)
|
return [16, 31.5, 63, 125, 250, 500, 1000, 2000, 4000, 8000, 16000]
|
def _deleteouters(freq, freq_d, freq_u, fs):
|
idx = np.asarray(np.where(np.array(freq_u) > fs / 2))
|
if any(idx[0]):
|
_printwarn('Low sampling rate, frequencies above fs/2 will be removed')
|
freq = np.delete(freq, idx).tolist()
|
freq_d = np.delete(freq_d, idx).tolist()
|
freq_u = np.delete(freq_u, idx).tolist()
|
return freq, freq_d, freq_u
|
def getansifrequencies(fraction, limits=None):
|
""" ANSI s1.11-2004 && IEC 61260-1-2014
|
Array of frequencies and its edges according to the ANSI and IEC standard.
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.