text
stringlengths 1
93.6k
|
---|
given_img_np = cv2.resize(given_img_np_, dsize=(w, h), interpolation=cv2.INTER_CUBIC)
|
if b_enforce_connect:
|
spix_index_np = spix_index_np.astype(np.int64)
|
segment_size = (given_img_np_.shape[0] * given_img_np_.shape[1]) / (int(n_spixels) * 1.0)
|
min_size = int(0.06 * segment_size)
|
max_size = int(3 * segment_size)
|
spix_index_np = enforce_connectivity(spix_index_np[None, :, :], min_size, max_size)[0]
|
cur_max = np.max(given_img_np)
|
spixel_bd_image = mark_boundaries(given_img_np/cur_max, spix_index_np.astype(int), color = (0,1,1)) #cyna
|
return (cur_max*spixel_bd_image).astype(np.float32).transpose(2,0,1), spix_index_np #
|
# ============ accumulate Q =============================
|
def spixlIdx(args, b_train = False):
|
# code modified from ssn
|
if b_train:
|
n_spixl_h = int(np.floor(args.train_img_height / args.downsize))
|
n_spixl_w = int(np.floor(args.train_img_width / args.downsize))
|
else:
|
n_spixl_h = int(np.floor(args.input_img_height / args.downsize))
|
n_spixl_w = int(np.floor(args.input_img_width / args.downsize))
|
spix_values = np.int32(np.arange(0, n_spixl_w * n_spixl_h).reshape((n_spixl_h, n_spixl_w)))
|
spix_idx_tensor = shift9pos(spix_values)
|
torch_spix_idx_tensor = torch.from_numpy(
|
np.tile(spix_idx_tensor, (args.batch_size, 1, 1, 1))).type(torch.float).cuda()
|
return torch_spix_idx_tensor
|
class AverageMeter(object):
|
"""Computes and stores the average and current value"""
|
def __init__(self):
|
self.reset()
|
def reset(self):
|
self.val = 0
|
self.avg = 0
|
self.sum = 0
|
self.count = 0
|
def update(self, val, n=1):
|
self.val = val
|
self.sum += val * n
|
self.count += n
|
self.avg = self.sum / self.count
|
def __repr__(self):
|
return '{:.3f} ({:.3f})'.format(self.val, self.avg)
|
def batch2img(img):
|
b,_,h,w = img.shape
|
tmp = img.permute(0,2,3,1)
|
for i in range(b):
|
if i ==0:
|
tmp_stack = tmp[i,:,:,:]
|
else:
|
tmp_stack = torch.cat([tmp_stack,tmp[i,:,:,:]],dim=-2)
|
return tmp_stack
|
def build_LABXY_feat(label_in, XY_feat):
|
img_lab = label_in.clone().type(torch.float)
|
b, _, curr_img_height, curr_img_width = XY_feat.shape
|
scale_img = F.interpolate(img_lab, size=(curr_img_height,curr_img_width), mode='nearest')
|
LABXY_feat = torch.cat([scale_img, XY_feat],dim=1)
|
return LABXY_feat
|
def rgb2Lab_torch(img_in, mean_values = None):
|
# self implemented function that convert RGB image to LAB
|
# inpu img intense should be [0,1] float b*3*h*w
|
assert img_in.min() >= 0 and img_in.max()<=1
|
img= (img_in.clone() + mean_values.cuda()).clamp(0, 1)
|
mask = img > 0.04045
|
img[mask] = torch.pow((img[mask] + 0.055) / 1.055, 2.4)
|
img[~mask] /= 12.92
|
xyz_from_rgb = torch.tensor([[0.412453, 0.357580, 0.180423],
|
[0.212671, 0.715160, 0.072169],
|
[0.019334, 0.119193, 0.950227]]).cuda()
|
rgb = img.permute(0,2,3,1)
|
xyz_img = torch.matmul(rgb, xyz_from_rgb.transpose_(0,1))
|
xyz_ref_white = torch.tensor([0.95047, 1., 1.08883]).cuda()
|
# scale by CIE XYZ tristimulus values of the reference white point
|
lab = xyz_img / xyz_ref_white
|
# Nonlinear distortion and linear transformation
|
mask = lab > 0.008856
|
lab[mask] = torch.pow(lab[mask], 1. / 3.)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.