text
stringlengths
1
93.6k
current_step = diffusion.begin_step
current_epoch = diffusion.begin_epoch
n_epoch = opt['train']['n_epoch']
if opt['path']['resume_state']:
logger.info('Resuming training from epoch: {}, iter: {}.'.format(current_epoch, current_step))
diffusion.set_new_noise_schedule(opt['model']['beta_schedule'][opt['phase']], schedule_phase=opt['phase'])
val_dice = 0
if opt['phase'] == 'train':
while current_epoch < n_epoch:
current_epoch += 1
for istep, train_data in enumerate(train_loader):
iter_start_time = time.time()
current_step += 1
diffusion.feed_data(train_data)
diffusion.optimize_parameters()
# log
if (istep+1) % opt['train']['print_freq'] == 0:
logs = diffusion.get_current_log()
t = (time.time() - iter_start_time) / batchSize
visualizer.print_current_errors(current_epoch, istep+1, training_iters, logs, t, 'Train')
visualizer.plot_current_errors(current_epoch, (istep+1) / float(training_iters), logs)
visuals = diffusion.get_current_visuals()
visualizer.display_current_results(visuals, current_epoch, True)
# validation
if (current_step+1) % opt['train']['val_freq'] == 0:
diffusion.test(continous=False)
visuals = diffusion.get_current_visuals(isTrain=False)
visualizer.display_current_results(visuals, current_epoch, True)
if current_epoch % opt['train']['save_checkpoint_epoch'] == 0:
logger.info('Saving models and training states.')
diffusion.save_network(current_epoch, current_step)
dice_per_case_score = 0
for idata, val_data in enumerate(val_loader):
diffusion.feed_data(val_data)
diffusion.test_segment()
visuals = diffusion.get_current_segment()
predseg = visuals['test_V'].squeeze().numpy()
predseg = (predseg + 1) / 2.
predseg = (predseg > 0.5).astype(bool)
label = val_data['F'].cpu().squeeze().numpy()
label = (label + 1) / 2.
label = (label > 0.5).astype(bool)
dice = (visualizer.calculate_score(label, predseg, "dice"))
dice_per_case_score += dice
dice_case = (dice_per_case_score) / valid_iters
if dice_case >= val_dice:
val_dice = dice_case
diffusion.save_network(current_epoch, current_step, seg_save=True, dice=round(val_dice, 4))
# save model
logger.info('End of training.')
else:
logger.info('Begin Model Evaluation.')
result_path = '{}'.format(opt['path']['results'])
os.makedirs(result_path, exist_ok=True)
file = open(result_path + 'test_score.txt', 'w')
dice_per_case_score = []
prec_per_case_score = []
jacc_per_case_score = []
for idata, val_data in enumerate(val_loader):
dataInfo = val_data['P'][0].split('\\')[-1][:-4]
time1 = time.time()
diffusion.feed_data(val_data)
diffusion.test_segment()
time2 = time.time()
visuals = diffusion.get_current_segment()
predseg = visuals['test_V'].squeeze().numpy()
predseg = (predseg + 1) / 2.
predseg = (predseg > 0.5).astype(bool)
label = val_data['F'].cpu().squeeze().numpy()
label = (label + 1) / 2.
label = (label > 0.5).astype(bool)
data = val_data['A'].cpu().squeeze().numpy()
data = (data+1)/2.
savePath = os.path.join(result_path, '%d_data.png' % idata)
save_image(data * 255, savePath)
savePath = os.path.join(result_path, '%d_pred.png' % (idata))
save_image(predseg * 255, savePath)
savePath = os.path.join(result_path, '%d_label.png' % (idata))
save_image(label * 255, savePath)
dice = (visualizer.calculate_score(label, predseg, "dice"))
prec = (visualizer.calculate_score(label, predseg, "prec"))
jacc = (visualizer.calculate_score(label, predseg, "jacc"))
file.write('%04d: process image... %03s | Dice=%f | Prec=%f | Jacc=%f \n' % (idata, dataInfo, dice, prec, jacc))
print('%04d: process image... %s' % (idata, dataInfo))
dice_per_case_score.append(dice)
prec_per_case_score.append(prec)
jacc_per_case_score.append(jacc)