text
stringlengths 1
93.6k
|
---|
print("score_dice_per_case: %3f +- %3f" % (np.mean(dice_per_case_score), np.std(dice_per_case_score)))
|
print("score_prec_per_case : %3f +- %3f" % (np.mean(prec_per_case_score), np.std(prec_per_case_score)))
|
print("score_jacc_per_case : %3f +- %3f" % (np.mean(jacc_per_case_score), np.std(jacc_per_case_score)))
|
file.write('score_case | Dice=%f | Precision=%f | Jaccard=%f \n'
|
% (np.mean(dice_per_case_score), np.mean(prec_per_case_score), np.mean(jacc_per_case_score)))
|
file.write('S_std_case | Dice=%f | Precision=%f | Jaccard=%f \n'
|
% (np.std(dice_per_case_score), np.std(prec_per_case_score), np.std(jacc_per_case_score)))
|
file.close()
|
# <FILESEP>
|
import argparse
|
import os
|
import sys
|
import datetime
|
import time
|
import math
|
import json
|
import numpy as np
|
import utils
|
import models
|
import torch
|
import torch.nn as nn
|
import torch.distributed as dist
|
import torch.backends.cudnn as cudnn
|
import torch.nn.functional as F
|
from tqdm import tqdm
|
from models.nnFormer import nnFormer
|
from interfaces import init_model, get_embedding, find_point_in_vol
|
from pathlib import Path
|
from PIL import Image
|
from torchvision import datasets, transforms
|
from torchvision import models as torchvision_models
|
from tensorboardX import SummaryWriter
|
from models.head import AliceHead
|
from loader import get_loader
|
from loss import Loss
|
from CASA import CASA_Module
|
from engine_pretrain import train_one_epoch
|
#Dp
|
from torch.multiprocessing import Process
|
import torch.utils.data.distributed
|
import torch.distributed as dist
|
def validation(args, student, teacher, alice_loss, test_loader, epoch, sam_cfg, CASA):
|
global memory_queue_patch
|
metric_logger = utils.MetricLogger(delimiter=" ")
|
header = 'Epoch: [{}/{}]'.format(epoch, args.epochs)
|
student.eval()
|
teacher.eval()
|
device = torch.device(f"cuda:{args.local_rank}")
|
torch.cuda.set_device(device)
|
with torch.no_grad():
|
for it, batch in enumerate(test_loader):
|
#image = batch['image'].cuda(non_blocking=True)
|
image = batch['image'].to(args.local_rank, non_blocking=True)
|
name1 = batch['name'][0]
|
emb_path_1 = args.embed_dir + 'Embeddings' + name1 + '.pkl'
|
with open(emb_path_1, 'rb') as file:
|
emb1 = pickle.load(file)
|
#emb1 = np.load(args.embed_dir+name1+'.npy', allow_pickle=True).item()
|
#new_add
|
#if epoch == 0:
|
memory_queue_patch = batch
|
memory_image = memory_queue_patch['image']
|
name2 = memory_queue_patch['name'][0]
|
emb_path_2 = args.embed_dir + 'Embeddings' + name2 + '.pkl'
|
with open(emb_path_2, 'rb') as file_2:
|
emb2 = pickle.load(file_2)
|
#emb2 = np.load(args.embed_dir+name2+'.npy', allow_pickle=True).item()
|
pts = utils.select_random_points(1, image.transpose(2, 4))
|
pts1 = pts[0]
|
pts1_pred, scores = find_point_in_vol(emb1, emb2, [pts1], sam_cfg)
|
pts1_pred = pts1_pred[0]
|
query = utils.crop_tensor_new(image, pts1, args.roi_x, args.roi_y, args.roi_z).to(device)
|
anchor = utils.crop_tensor_new(memory_image, pts1_pred, args.roi_x, args.roi_y, args.roi_z).to(device)
|
query_aug, anchor_aug = utils.data_aug(args, query), utils.data_aug(args, anchor)
|
images_normal = [query, anchor]
|
images_aug = [query_aug, anchor_aug]
|
masks = utils.random_mask(args, images_normal)
|
teacher_output = teacher(images_normal)
|
student_output = student(images_normal, mask=masks)
|
feat1_ali, feat2_ali = CASA(student_output, teacher_output)
|
all_loss = alice_loss(images_normal, student_output, teacher_output, feat1_ali, feat2_ali, masks, epoch)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.