datasetId
large_stringlengths 6
118
| author
large_stringlengths 2
42
| last_modified
large_stringdate 2021-04-29 15:34:29
2025-09-30 12:15:29
| downloads
int64 0
3.97M
| likes
int64 0
7.74k
| tags
large listlengths 1
7.92k
| task_categories
large listlengths 0
48
| createdAt
large_stringdate 2022-03-02 23:29:22
2025-09-30 12:08:01
| trending_score
float64 0
64
| card
large_stringlengths 31
1M
|
|---|---|---|---|---|---|---|---|---|---|
danthepol/mnlp-m2-rag-eval
|
danthepol
|
2025-05-23T19:18:27Z
| 0 | 0 |
[
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-05-23T19:16:12Z
| 0 |
---
dataset_info:
features:
- name: question
dtype: string
- name: context
dtype: string
- name: dataset
dtype: string
splits:
- name: test
num_bytes: 4918807
num_examples: 1000
download_size: 2712384
dataset_size: 4918807
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
---
|
owengretzinger/mlh-top-hackers-2020-2023
|
owengretzinger
|
2025-03-27T15:11:01Z
| 16 | 0 |
[
"license:mit",
"size_categories:n<1K",
"format:json",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"region:us"
] |
[] |
2025-03-27T15:01:33Z
| 0 |
---
license: mit
---
Between 2020-2023 MLH published a top 50 hackers list. I scraped this data from top hacker pages. The data is available in both JSON and CSV files.
Source code: https://github.com/owengretzinger/mlh-top-hackers-scrape
|
GeeveGeorge/miko-story-checkpoint-35
|
GeeveGeorge
|
2024-10-01T14:37:16Z
| 16 | 0 |
[
"format:parquet",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-10-01T14:37:15Z
| 0 |
---
dataset_info:
features:
- name: user
dtype: 'null'
- name: assistant
dtype: 'null'
splits:
- name: train
num_bytes: 0
num_examples: 0
download_size: 726
dataset_size: 0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
withmartian/cs3_dataset_synonyms
|
withmartian
|
2025-01-09T05:32:16Z
| 47 | 0 |
[
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-01-09T05:32:05Z
| 0 |
---
dataset_info:
features:
- name: command_set
dtype: int64
- name: table_name
dtype: string
- name: create_statement
dtype: string
- name: english_prompt
dtype: string
- name: sql_statement
dtype: string
- name: table_fields
dtype: string
- name: select
dtype: string
- name: order_by
dtype: string
splits:
- name: train
num_bytes: 112705709.625
num_examples: 76500
- name: validation
num_bytes: 19889242.875
num_examples: 13500
- name: test
num_bytes: 14732772.5
num_examples: 10000
download_size: 42707420
dataset_size: 147327725.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
|
ferrazzipietro/LS_Llama-3.1-8B_e3c-sentences-GR-revised_NoQuant_16_32_0.01_64_BestF1
|
ferrazzipietro
|
2024-11-28T17:42:50Z
| 16 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-11-28T17:42:47Z
| 0 |
---
dataset_info:
features:
- name: sentence
dtype: string
- name: entities
list:
- name: offsets
sequence: int64
- name: text
dtype: string
- name: type
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence: int64
- name: ground_truth_word_level
sequence: string
- name: input_ids
sequence: int32
- name: attention_mask
sequence: int8
- name: labels
sequence: int64
- name: predictions
sequence: string
- name: ground_truth_labels
sequence: string
splits:
- name: all_validation
num_bytes: 172478
num_examples: 94
- name: test
num_bytes: 1556265
num_examples: 738
download_size: 311863
dataset_size: 1728743
configs:
- config_name: default
data_files:
- split: all_validation
path: data/all_validation-*
- split: test
path: data/test-*
---
|
ai-chem/Cytotox
|
ai-chem
|
2025-06-02T13:37:31Z
| 69 | 0 |
[
"license:mit",
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"doi:10.57967/hf/5581",
"region:us"
] |
[] |
2025-05-11T19:12:58Z
| 0 |
---
dataset_info:
features:
- name: sn
dtype: int64
- name: material
dtype: string
- name: shape
dtype: string
- name: coat_functional_group
dtype: string
- name: synthesis_method
dtype: string
- name: surface_charge
dtype: string
- name: size_in_medium_nm
dtype: float64
- name: zeta_in_medium_mv
dtype: float64
- name: no_of_cells_cells_well
dtype: float64
- name: human_animal
dtype: string
- name: cell_source
dtype: string
- name: cell_tissue
dtype: string
- name: cell_morphology
dtype: string
- name: cell_age
dtype: string
- name: time_hr
dtype: int64
- name: concentration
dtype: float64
- name: test
dtype: string
- name: test_indicator
dtype: string
- name: viability_%
dtype: float64
- name: doi
dtype: string
- name: article_list
dtype: int64
- name: core_nm
dtype: float64
- name: hydrodynamic_nm
dtype: float64
- name: potential_mv
dtype: float64
- name: cell_type
dtype: string
- name: journal_name
dtype: string
- name: publisher
dtype: string
- name: year
dtype: int64
- name: title
dtype: string
- name: journal_is_oa
dtype: bool
- name: is_oa
dtype: string
- name: oa_status
dtype: string
- name: pdf
dtype: string
- name: access
dtype: int64
splits:
- name: train
num_bytes: 2557938
num_examples: 5476
download_size: 172810
dataset_size: 2557938
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: mit
---
Information about the dataset is detailed in the documentation:
https://ai-chem.github.io/ChemX/overview/datasets_description.html
You can find the Croissant file in our GitHub repository:
https://github.com/ai-chem/ChemX/tree/main/datasets/croissants
|
emradar/0.1_augmented_implicit_hate_speech_dataset
|
emradar
|
2025-05-25T20:26:01Z
| 0 | 0 |
[
"task_categories:text-classification",
"language:en",
"license:mit",
"size_categories:10K<n<100K",
"format:arrow",
"modality:text",
"library:datasets",
"library:mlcroissant",
"region:us",
"hate-speech"
] |
[
"text-classification"
] |
2025-05-25T19:13:32Z
| 0 |
---
license: mit
task_categories:
- text-classification
language:
- en
tags:
- hate-speech
---
# Description
This is a public release of the dataset described in ElSherief et al. (2022) and augmented by Adar and Wiberg (2025).
This dataset card is a work in progress and will be improved over time.
## Contributions
Dataset augmented by [@emradar](https://github.com/emradar) and [@Wiberacci](https://github.com/Wiberacci).
## References
ElSherief, M., Ziems, C., Muchlinski, D., Anupindi, V., Seybolt, J., De Choudhury, M., & Yang, D. (2021). Latent Hatred: A Benchmark for Understanding Implicit Hate Speech. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP).
## Copyright
MIT License
Copyright (c) 2023 SALT
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
|
dwb2023/gdelt-event-2025-v3
|
dwb2023
|
2025-03-21T18:18:30Z
| 18 | 0 |
[
"license:cc-by-4.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-03-21T17:40:46Z
| 0 |
---
license: cc-by-4.0
---
# Dataset Card for dwb2023/gdelt-event-2025-v3
This dataset contains global event records from the GDELT (Global Database of Events, Language, and Tone) Project, capturing real-world events and their characteristics across the globe through news media coverage.
## Dataset Details
### Dataset Description
The GDELT Event Database is a comprehensive repository of human societal-scale behavior and beliefs across all countries of the world, connecting every person, organization, location, count, theme, news source, and event across the planet into a single massive network. The database records what happens in every corner of the world, containing over a quarter-billion event records in over 300 categories.
- **Curated by:** The GDELT Project
- **Funded by:** Google Ideas, supported by Google Cloud Platform
- **Language(s) (NLP):** Multi-language source data, processed into standardized English format
- **License:** All GDELT event data is available for free download and use with proper attribution
- **Updates:** Every 15 minutes, 24/7
### Dataset Sources
- **Repository:** http://gdeltproject.org/
- **Paper:** Leetaru, Kalev and Schrodt, Philip. (2013). "GDELT: Global Data on Events, Language, and Tone, 1979-2012." International Studies Association Annual Conference, April 2013. San Francisco, CA.
- **Documentation:**
- http://data.gdeltproject.org/documentation/GDELT-Event_Codebook-V2.0.pdf
- https://www.gdeltproject.org/data/documentation/CAMEO.Manual.1.1b3.pdf
## Uses
### Direct Use
- Monitoring global events and conflicts in real-time
- Analyzing international relations and diplomatic activities
- Tracking social movements and protests
- Studying media coverage patterns
- Research in political science, international relations, and social sciences
- Crisis early warning systems
- Geopolitical risk assessment
### Out-of-Scope Use
- Real-time emergency response (due to potential reporting delays)
- Individual-level surveillance or tracking
- Definitive source of truth for events (should be cross-referenced with other sources)
- Prediction of future events without careful consideration of limitations
## Dataset Structure
The dataset consists of tab-delimited files with 61 fields per event record, including:
1. Event Identification
- GlobalEventID: Unique identifier for each event
- DATEADDED: Timestamp in YYYYMMDDHHMMSS format
- Day, MonthYear, Year: Various date formats
2. Actor Information (for both Actor1 and Actor2)
- ActorCode: CAMEO-coded actor identifier
- ActorName: Name of the actor
- ActorCountryCode: 3-character country code
- Various actor attribute codes (ethnic, religious, type)
3. Event Details
- EventCode: CAMEO action code
- EventBaseCode: Root event category
- QuadClass: Primary event classification (Verbal/Material Cooperation/Conflict)
- GoldsteinScale: Event impact score (-10 to +10)
- AvgTone: Average tone of coverage (-100 to +100)
4. Geographic Information
- Multiple geographic fields for each actor and action
- Includes country codes, feature IDs, and lat/long coordinates
## Dataset Creation
### Curation Rationale
GDELT was created to capture and analyze global human society in real-time, providing a platform for understanding global behavior through media coverage. It processes news media from around the world to identify and code events using the CAMEO (Conflict and Mediation Event Observations) coding system.
### Curation Method
- Prefect based python extract script: https://gist.github.com/donbr/704789a6131bb4a92c9810185c63a16a
### Source Data
#### Data Collection and Processing
- Continuous monitoring of news media worldwide
- Automated processing using natural language processing
- Event coding using CAMEO taxonomy
- Geographic coding using full-text geocoding
- 15-minute update cycle
- Machine translation for non-English sources
#### Who are the source data producers?
Primary sources include:
- International news media
- Web news
- Broadcast transcripts
- Print media
- Various online platforms
### Personal and Sensitive Information
While the dataset primarily focuses on public events and public figures, it may contain:
- Names of public figures and officials
- Locations of public events
- Public statements and actions
- Media coverage details
## Bias, Risks, and Limitations
1. Media Bias
- Over-representation of English-language media
- Varying media coverage across regions
- Event selection bias based on news worthiness
2. Technical Limitations
- Machine coding errors
- Translation inaccuracies
- Geographic coding challenges
- Duplicate event reporting
3. Coverage Gaps
- Limited coverage in media-restricted regions
- Potential missed events in less-covered areas
- Varying detail levels across events
### Recommendations
1. Users should:
- Cross-reference critical events with other sources
- Consider media bias in coverage
- Account for regional differences in coverage
- Use appropriate statistical methods for aggregation
- Be aware of potential duplicates and coding errors
2. Best Practices:
- Aggregate data over appropriate time periods
- Consider confidence scores in analysis
- Use multiple GDELT fields for validation
- Account for regional and temporal variations in coverage
## Citation
**BibTeX:**
```bibtex
@inproceedings{leetaru2013gdelt,
title={GDELT: Global Data on Events, Language, and Tone, 1979-2012},
author={Leetaru, Kalev and Schrodt, Philip},
booktitle={International Studies Association Annual Conference},
year={2013},
address={San Francisco, CA}
}
```
**APA:**
Leetaru, K., & Schrodt, P. (2013). GDELT: Global Data on Events, Language, and Tone, 1979-2012. Paper presented at the International Studies Association Annual Conference, San Francisco, CA.
## Dataset Card Contact
dwb2023
|
magnifi/Phi3_intent_v66_1_w_unknown_upper_lower
|
magnifi
|
2025-09-29T10:00:09Z
| 35 | 0 |
[
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-09-24T18:32:27Z
| 0 |
---
dataset_info:
features:
- name: Query
dtype: string
- name: true_intent
dtype: string
splits:
- name: train
num_bytes: 3143608.0
num_examples: 43362
- name: validation
num_bytes: 25818.0
num_examples: 383
download_size: 1215798
dataset_size: 3169426.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
---
|
Marta102/MNLP_M3_dpo_dataset_updated
|
Marta102
|
2025-06-04T13:29:37Z
| 0 | 0 |
[
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-06-04T12:18:15Z
| 0 |
---
dataset_info:
features:
- name: prompt
dtype: string
- name: chosen
dtype: string
- name: rejected
dtype: string
- name: dataset
dtype: string
splits:
- name: train
num_bytes: 348868872
num_examples: 112239
- name: validation
num_bytes: 61680674
num_examples: 19809
download_size: 228049045
dataset_size: 410549546
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
---
|
ali-sh07/PhenoBench_images_semantics
|
ali-sh07
|
2025-05-17T02:31:49Z
| 0 | 0 |
[
"size_categories:1K<n<10K",
"format:parquet",
"modality:image",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-05-16T23:43:35Z
| 0 |
---
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype: image
splits:
- name: train
num_bytes: 3926148196.654
num_examples: 1407
- name: val
num_bytes: 2019915541.0
num_examples: 772
download_size: 5665498678
dataset_size: 5946063737.653999
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: val
path: data/val-*
---
|
kevin017/bioS_inverse_QA_all_small_all_answer
|
kevin017
|
2025-04-10T10:05:25Z
| 16 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-04-10T10:05:19Z
| 0 |
---
dataset_info:
features:
- name: question
dtype: string
- name: all_answers
sequence: string
splits:
- name: train
num_bytes: 75370
num_examples: 350
- name: test
num_bytes: 75370
num_examples: 350
download_size: 44360
dataset_size: 150740
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
mlfoundations-dev/embedding_apply_tiger_math
|
mlfoundations-dev
|
2025-02-26T23:08:40Z
| 39 | 0 |
[
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-02-26T23:08:32Z
| 0 |
---
dataset_info:
features:
- name: instruction_seed
dtype: string
- name: source
dtype: string
- name: embeddings
sequence: float64
- name: mean_positive_score
dtype: float64
- name: mean_negative_score
dtype: float64
- name: difference_score
dtype: float64
splits:
- name: train
num_bytes: 34283406.4
num_examples: 4000
download_size: 27034393
dataset_size: 34283406.4
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ZiyiXia/SWE-bench__style-3__fs-bm25
|
ZiyiXia
|
2025-05-06T08:24:59Z
| 0 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-05-06T08:24:53Z
| 0 |
---
dataset_info:
features:
- name: instance_id
dtype: string
- name: text
dtype: string
- name: repo
dtype: string
- name: base_commit
dtype: string
- name: problem_statement
dtype: string
- name: hints_text
dtype: string
- name: created_at
dtype: string
- name: patch
dtype: string
- name: test_patch
dtype: string
- name: version
dtype: string
- name: FAIL_TO_PASS
dtype: string
- name: PASS_TO_PASS
dtype: string
- name: environment_setup_commit
dtype: string
splits:
- name: test
num_bytes: 8430964
num_examples: 6
download_size: 3885049
dataset_size: 8430964
configs:
- config_name: default
data_files:
- split: test
path: data/test-*
---
|
ferrazzipietro/LS_Llama-3.1-8B_e3c-sentences-GR-revised_NoQuant_32_64_0.05_64_BestF1
|
ferrazzipietro
|
2024-11-28T17:47:34Z
| 16 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-11-28T17:47:26Z
| 0 |
---
dataset_info:
features:
- name: sentence
dtype: string
- name: entities
list:
- name: offsets
sequence: int64
- name: text
dtype: string
- name: type
dtype: string
- name: tokens
sequence: string
- name: ner_tags
sequence: int64
- name: ground_truth_word_level
sequence: string
- name: input_ids
sequence: int32
- name: attention_mask
sequence: int8
- name: labels
sequence: int64
- name: predictions
sequence: string
- name: ground_truth_labels
sequence: string
splits:
- name: all_validation
num_bytes: 172478
num_examples: 94
- name: test
num_bytes: 1556265
num_examples: 738
download_size: 312438
dataset_size: 1728743
configs:
- config_name: default
data_files:
- split: all_validation
path: data/all_validation-*
- split: test
path: data/test-*
---
|
TOBEAI/KOR_Merged_data_v3
|
TOBEAI
|
2024-10-28T02:11:47Z
| 20 | 0 |
[
"size_categories:1M<n<10M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-10-28T02:10:54Z
| 0 |
---
dataset_info:
features:
- name: system
dtype: string
- name: user
dtype: string
- name: assistant
dtype: string
splits:
- name: train
num_bytes: 1392182088
num_examples: 1740818
download_size: 773822365
dataset_size: 1392182088
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_b56b5e5d-d682-4f17-b00a-b14b2f7285ec
|
argilla-internal-testing
|
2024-10-11T09:46:11Z
| 18 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-10-11T09:46:10Z
| 0 |
---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': positive
'1': negative
splits:
- name: train
num_bytes: 111
num_examples: 3
download_size: 1454
dataset_size: 111
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_7d9c8002-6b5d-448c-a671-5eaef0a95f27
|
argilla-internal-testing
|
2024-12-10T10:59:48Z
| 14 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-12-10T10:59:47Z
| 0 |
---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': positive
'1': negative
splits:
- name: train
num_bytes: 111
num_examples: 3
download_size: 1256
dataset_size: 111
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
macavaney/msmarco-passage.splade-lg.cache
|
macavaney
|
2025-02-08T11:39:59Z
| 37 | 0 |
[
"task_categories:text-retrieval",
"region:us",
"pyterrier",
"pyterrier-artifact",
"pyterrier-artifact.indexer_cache",
"pyterrier-artifact.indexer_cache.lz4pickle"
] |
[
"text-retrieval"
] |
2025-02-08T11:27:44Z
| 0 |
---
# pretty_name: "" # Example: "MS MARCO Terrier Index"
tags:
- pyterrier
- pyterrier-artifact
- pyterrier-artifact.indexer_cache
- pyterrier-artifact.indexer_cache.lz4pickle
task_categories:
- text-retrieval
viewer: false
---
# msmarco-passage.splade-lg.cache
## Description
*TODO: What is the artifact?*
## Usage
```python
# Load the artifact
import pyterrier as pt
artifact = pt.Artifact.from_hf('macavaney/msmarco-passage.splade-lg.cache')
# TODO: Show how you use the artifact
```
## Benchmarks
*TODO: Provide benchmarks for the artifact.*
## Reproduction
```python
# TODO: Show how you constructed the artifact.
```
## Metadata
```
{
"type": "indexer_cache",
"format": "lz4pickle",
"record_count": 8841823
}
```
|
somosnlp-hackathon-2025/gastronomia-hispana-dpo
|
somosnlp-hackathon-2025
|
2025-06-02T00:53:04Z
| 99 | 0 |
[
"language:es",
"license:mit",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"dpo",
"food",
"recipes"
] |
[] |
2025-05-29T17:34:22Z
| 0 |
---
license: mit
language:
- es
tags:
- dpo
- food
- recipes
pretty_name: Recetas en Español DPO
size_categories:
- 1K<n<10K
---
# Gastronomía Hispana DPO
## Descripción del Dataset
Este dataset contiene pares de preferencias para el entrenamiento de modelos de lenguaje especializados en gastronomía hispana utilizando la técnica DPO (Direct Preference Optimization). Los datos incluyen conversaciones sobre cocina internacional con un enfoque particular en recetas, ingredientes, técnicas culinarias y tradiciones gastronómicas del mundo hispano.
## Estructura del Dataset
El dataset contiene las siguientes columnas:
- **`chosen`**: Lista de mensajes de la conversación preferida (formato ChatML)
- **`rejected`**: Lista de mensajes de la conversación rechazada (formato ChatML)
- **`recipe_id`**: Identificador único de la receta (1-471)
- **`recipe_name`**: Nombre de la receta o plato
- **`category`**: Categoría del contenido
### Categorías Disponibles
- `ingredients`: Preguntas sobre ingredientes, sustituciones y propiedades
- `cooking_techniques`: Técnicas de cocción, temperaturas y métodos
- `basic_recipe`: Recetas básicas y preparaciones
- `cultural_context`: Contexto cultural e histórico de los platos
## Estadísticas del Dataset
- **Total de ejemplos**: ~470 pares de preferencias
- **Recetas únicas**: 471
- **Idioma**: Español
- **Formato**: Conversaciones multi-turno
## Uso del Dataset
### Instalación
```python
from datasets import load_dataset
# Cargar el dataset
dataset = load_dataset("somosnlp-hackathon-2025/gastronomia-hispana-dpo")
```
### Ejemplo de Uso
```python
# Acceder a un ejemplo
example = dataset['train'][0]
print("Conversación elegida:")
for message in example['chosen']:
print(f"{message['role']}: {message['content'][:100]}...")
print(f"\nReceta: {example['recipe_name']}")
print(f"Categoría: {example['category']}")
```
### Entrenamiento DPO
Este dataset está diseñado para ser usado con bibliotecas como TRL (Transformer Reinforcement Learning) para entrenar modelos con DPO:
```python
from trl import DPOTrainer
from transformers import AutoTokenizer, AutoModelForCausalLM
# Preparar datos para DPO
def format_dataset(example):
return {
"prompt": example["chosen"][0]["content"],
"chosen": example["chosen"][1]["content"],
"rejected": example["rejected"][1]["content"],
}
formatted_dataset = dataset.map(format_dataset)
# Entrenar con DPOTrainer
trainer = DPOTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=formatted_dataset["train"],
# ... otros parámetros
)
```
## Características del Dataset
### Roles del Sistema
El dataset incluye diferentes roles especializados:
- **Experto en ingredientes**: Conocimiento sobre ingredientes internacionales, propiedades y sustituciones
- **Maestro culinario**: Especialista en técnicas de cocción y métodos tradicionales
- **Chef instructor**: Explicaciones paso a paso de recetas y técnicas
- **Historiador gastronómico**: Contexto cultural y origen de platos tradicionales
### Calidad de las Respuestas
- **Respuestas preferidas**: Detalladas, culturalmente informadas y técnicamente precisas
- **Respuestas rechazadas**: Más básicas, menos contexto cultural o información limitada
- **Enfoque educativo**: Las respuestas incluyen contexto cultural, técnicas tradicionales y consejos prácticos
## Aplicaciones
Este dataset es útil para:
- **Entrenamiento de chatbots culinarios** especializados en gastronomía hispana
- **Modelos de recomendación** de recetas y técnicas de cocina
- **Sistemas de tutoría** para enseñanza de cocina
- **Investigación en NLP** aplicado al dominio gastronómico
- **Preservación del conocimiento culinario** tradicional
## Limitaciones
- El dataset se centra principalmente en gastronomía hispana e internacional
- Las respuestas están en español
- El conocimiento está limitado a la fecha de creación (enero 2025)
- Algunas recetas pueden requerir ingredientes específicos de ciertas regiones
## Consideraciones Éticas
- Las recetas y técnicas representan tradiciones culturales que deben ser respetadas
- Se recomienda verificar la información culinaria antes de aplicarla en contextos comerciales
- El dataset respeta la diversidad cultural de la gastronomía internacional
## Licencia
[Incluir información de licencia apropiada]
## Citación
Si utilizas este dataset en tu investigación, por favor cita:
```bibtex
@dataset{gastronomia_hispana_dpo_2025,
title={Gastronomía Hispana DPO: Dataset for Culinary Instruction Following},
author={SomosNLP Hackathon 2025},
year={2025},
url={https://huggingface.co/datasets/somosnlp-hackathon-2025/gastronomia-hispana-dpo}
}
```
## Contribuciones
Este dataset fue creado como parte del Hackathon SomosNLP 2025. Agradecemos las contribuciones de la comunidad para expandir y mejorar el conocimiento gastronómico representado.
## Contacto
Para preguntas sobre el dataset, por favor abre un issue en este repositorio o contacta al equipo de SomosNLP.
|
shanchen/combine1k_ds
|
shanchen
|
2025-04-26T19:35:40Z
| 35 | 0 |
[
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-04-26T19:35:37Z
| 0 |
---
dataset_info:
features:
- name: source_dataset
dtype: string
- name: text
dtype: string
splits:
- name: train
num_bytes: 23008137.0
num_examples: 1000
download_size: 8932967
dataset_size: 23008137.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
hpprc/honyaku
|
hpprc
|
2024-11-20T09:06:40Z
| 18 | 2 |
[
"task_categories:translation",
"language:ja",
"language:en",
"license:cc-by-sa-4.0",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[
"translation"
] |
2024-11-20T04:42:28Z
| 0 |
---
language:
- ja
- en
license: cc-by-sa-4.0
size_categories:
- n<1K
task_categories:
- translation
pretty_name: honyaku
dataset_info:
- config_name: passage
features:
- name: id
dtype: int64
- name: en
dtype: string
- name: ja
dtype: string
- name: url_en
dtype: string
- name: url_ja
dtype: string
splits:
- name: train
num_bytes: 34839
num_examples: 33
download_size: 29554
dataset_size: 34839
- config_name: sentence
features:
- name: id
dtype: int64
- name: en
dtype: string
- name: ja
dtype: string
- name: url_en
dtype: string
- name: url_ja
dtype: string
splits:
- name: train
num_bytes: 44734
num_examples: 104
download_size: 26899
dataset_size: 44734
configs:
- config_name: passage
data_files:
- split: train
path: passage/train-*
- config_name: sentence
data_files:
- split: train
path: sentence/train-*
---
英語Wikipedia記事の冒頭複数文を抽出し、人手で日本語翻訳した文章レベル対訳データセットです。
日英対訳コーパスはライセンスが厳しいものが多く、自由に利用できる高品質なパッセージレベルの対訳データセットが少なかったため作成しました。
翻訳は大体を[hpprc](https://x.com/hpp_ricecake)が、数件を[yano氏](https://x.com/yano0_c)が行いました。
`passage`サブセットは文章レベルの翻訳(対応する文ごとに改行区切り)を、`sentence`サブセットは文ごとの対訳(こちらは代名詞の翻訳の齟齬など誤った翻訳になっている可能性がある)を収載したデータセットです。
## 翻訳方針
DeepLやGoogle翻訳など、既存の翻訳ツールは翻訳結果を機械学習モデルの入力として使用することを禁じています。
本データセットは機械学習用途にも利用できる寛容なライセンスの元で公開したかったため、安全のため、できるだけこれらのツールを使用せずに英日翻訳を行いました。
その代わり、ライセンスの寛容なLLMによる翻訳結果を参考に翻訳を行いました。
具体的には、日本語における性能が高くライセンスがApache 2.0で配布されている[CALM3-22B-Chat](https://huggingface.co/cyberagent/calm3-22b-chat)および[Qwen 2.5 32B](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct)を利用しました。
翻訳対象としたテキストは、邦訳にある程度の合意が取れそうなものを厳選して利用しました。
具体的には、まず日本語Wikipediaの記事から一般性の高いもの(人名や地名っぽさが過ぎるもの以外)をランダムに選出して、英語に対応する記事が存在するかを調べました。
英語に対応する記事が存在する日本語記事は、内容が大きく異なることが多いため翻訳としては利用できませんが、邦訳の参考としては非常に有用なので、そのようなペアを選んで、対応する英語記事の冒頭の数文を抽出しました。
翻訳については、できるだけ日本語テキストがそれ単体として成り立つように作成しました。
例えば、英語での発音記号が記載されているテキストについては、元の英語表記を残さないと発音記号単体では意味不明となってしまうので、そのような部分を残しました。
日本語においてテクニカルタームが定まっている場合は、できるだけそれを反映した翻訳となるように留意しました。
そのほかにもテキスト中に定型の翻訳が存在しないか確認する作業を全事例に対して行いました。
そのため、翻訳には1件あたり15分程度を要しました。
## ライセンス
翻訳元テキストが英語Wikipediaであること、そして人手で翻訳を行なっていることから、本データセットはCC-BY-SA 4.0ライセンスでの配布とします。
## Note
翻訳結果に誤りや修正事項がある場合、遠慮なくお教えいただけますと幸いです。
|
math-extraction-comp/princeton-nlp__Mistral-7B-Base-SFT-SLiC-HF
|
math-extraction-comp
|
2025-01-11T16:17:17Z
| 54 | 0 |
[
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-01-11T16:17:14Z
| 0 |
---
dataset_info:
features:
- name: question
dtype: string
- name: gold
dtype: string
- name: target
dtype: string
- name: prediction
dtype: string
- name: subset
dtype: string
- name: harness_extracted_answer
dtype: string
- name: harness_score
dtype: float64
- name: qwen_extracted_answer
dtype: string
- name: qwen_score
dtype: float64
- name: lighteval-0f21c935_extracted_answer
dtype: string
- name: lighteval-0f21c935_score
dtype: float64
splits:
- name: train
num_bytes: 3227346
num_examples: 1324
download_size: 1323081
dataset_size: 3227346
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
qfq/MetaMathQANoGSM8k
|
qfq
|
2024-10-28T21:21:01Z
| 20 | 0 |
[
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-10-28T21:20:56Z
| 0 |
---
dataset_info:
features:
- name: type
dtype: string
- name: problem
dtype: string
- name: original_question
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 146011835.67088607
num_examples: 155000
download_size: 62945481
dataset_size: 146011835.67088607
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
mlfoundations-dev/olympiads_figures
|
mlfoundations-dev
|
2025-01-23T20:30:40Z
| 14 | 0 |
[
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-01-23T14:09:35Z
| 0 |
---
dataset_info:
features:
- name: source
dtype: string
- name: problem
dtype: string
- name: solution
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 11830252.961538998
num_examples: 4075
download_size: 9350602
dataset_size: 11830252.961538998
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
AfriMM/AFRICaption_filtered
|
AfriMM
|
2025-03-25T05:50:39Z
| 10 | 0 |
[
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-03-25T05:50:25Z
| 0 |
---
dataset_info:
features:
- name: image_id
dtype: string
- name: caption
dtype: string
splits:
- name: afr
num_bytes: 691661
num_examples: 8089
- name: amh
num_bytes: 1002994
num_examples: 8042
- name: bem
num_bytes: 322159
num_examples: 3523
- name: cjk
num_bytes: 113865
num_examples: 1181
- name: dik
num_bytes: 88243
num_examples: 975
- name: dyu
num_bytes: 12547
num_examples: 156
- name: ewe
num_bytes: 26016
num_examples: 289
- name: fuv
num_bytes: 45757
num_examples: 496
- name: hau
num_bytes: 747641
num_examples: 7943
- name: ibo
num_bytes: 826094
num_examples: 8078
- name: kik
num_bytes: 67534
num_examples: 654
- name: kab
num_bytes: 10841
num_examples: 121
- name: kam
num_bytes: 33640
num_examples: 348
- name: kon
num_bytes: 91343
num_examples: 927
- name: kmb
num_bytes: 15833
num_examples: 180
- name: lua
num_bytes: 103114
num_examples: 1075
- name: lug
num_bytes: 340830
num_examples: 3710
- name: lin
num_bytes: 131232
num_examples: 1269
- name: kin
num_bytes: 652547
num_examples: 7088
- name: yor
num_bytes: 902706
num_examples: 7526
download_size: 3497744
dataset_size: 6226597
configs:
- config_name: default
data_files:
- split: afr
path: data/afr-*
- split: amh
path: data/amh-*
- split: bem
path: data/bem-*
- split: cjk
path: data/cjk-*
- split: dik
path: data/dik-*
- split: dyu
path: data/dyu-*
- split: ewe
path: data/ewe-*
- split: fuv
path: data/fuv-*
- split: hau
path: data/hau-*
- split: ibo
path: data/ibo-*
- split: kik
path: data/kik-*
- split: kab
path: data/kab-*
- split: kam
path: data/kam-*
- split: kon
path: data/kon-*
- split: kmb
path: data/kmb-*
- split: lua
path: data/lua-*
- split: lug
path: data/lug-*
- split: lin
path: data/lin-*
- split: kin
path: data/kin-*
- split: yor
path: data/yor-*
---
|
andreina-covi/vqasynth_sample_spatial
|
andreina-covi
|
2024-10-24T15:12:32Z
| 69 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:image",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"vqasynth",
"remyx"
] |
[] |
2024-10-16T02:57:37Z
| 0 |
---
dataset_info:
features:
- name: image
dtype: image
- name: messages
sequence: 'null'
splits:
- name: train
num_bytes: 1363377.0
num_examples: 10
download_size: 1364998
dataset_size: 1363377.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- vqasynth
- remyx
---
|
Shalini731/ICONS_25_data_short
|
Shalini731
|
2025-02-05T17:02:27Z
| 15 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-02-05T17:02:24Z
| 0 |
---
dataset_info:
features:
- name: image
dtype: image
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 352596.0
num_examples: 25
download_size: 354360
dataset_size: 352596.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
haorandai/png_bicycle_gaussian_noise_5samples_epsilon0.1
|
haorandai
|
2024-10-08T21:20:01Z
| 19 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-10-08T21:20:00Z
| 0 |
---
dataset_info:
features:
- name: image
dtype: image
- name: text
dtype: string
splits:
- name: train
num_bytes: 1100851.0
num_examples: 10
download_size: 1102557
dataset_size: 1100851.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
RabotniKuma/Fast-Math-R1-GRPO
|
RabotniKuma
|
2025-04-15T01:55:46Z
| 74 | 1 |
[
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:csv",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-04-15T01:30:44Z
| 0 |
---
license: apache-2.0
---
We extracted the answers from [the 2nd stage SFT data of Light-R1](https://huggingface.co/datasets/qihoo360/Light-R1-SFTData).
|
lighteval/RULER-8192-SmolLM3-11T-32k-v1-remote-code
|
lighteval
|
2025-06-20T16:57:26Z
| 0 | 0 |
[
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-06-20T16:57:14Z
| 0 |
---
dataset_info:
features:
- name: index
dtype: int64
- name: input
dtype: string
- name: outputs
sequence: string
- name: length
dtype: int64
splits:
- name: fwe
num_bytes: 10481423
num_examples: 500
- name: niah_single_1
num_bytes: 14822605
num_examples: 500
- name: qa_2
num_bytes: 15858056
num_examples: 500
- name: niah_multikey_1
num_bytes: 17675160
num_examples: 500
- name: niah_multivalue
num_bytes: 17699318
num_examples: 500
- name: niah_multikey_3
num_bytes: 7378000
num_examples: 500
- name: niah_single_3
num_bytes: 17599964
num_examples: 500
- name: niah_single_2
num_bytes: 17576096
num_examples: 500
- name: qa_1
num_bytes: 15574631
num_examples: 500
- name: niah_multikey_2
num_bytes: 14262757
num_examples: 500
- name: niah_multiquery
num_bytes: 17754657
num_examples: 500
- name: cwe
num_bytes: 11307523
num_examples: 500
download_size: 65357941
dataset_size: 177990190
configs:
- config_name: default
data_files:
- split: fwe
path: data/fwe-*
- split: niah_single_1
path: data/niah_single_1-*
- split: qa_2
path: data/qa_2-*
- split: niah_multikey_1
path: data/niah_multikey_1-*
- split: niah_multivalue
path: data/niah_multivalue-*
- split: niah_multikey_3
path: data/niah_multikey_3-*
- split: niah_single_3
path: data/niah_single_3-*
- split: niah_single_2
path: data/niah_single_2-*
- split: qa_1
path: data/qa_1-*
- split: niah_multikey_2
path: data/niah_multikey_2-*
- split: niah_multiquery
path: data/niah_multiquery-*
- split: cwe
path: data/cwe-*
---
|
Asap7772/prm800k_4_shot_formatted
|
Asap7772
|
2024-10-23T00:06:08Z
| 20 | 0 |
[
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-10-23T00:06:03Z
| 0 |
---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 62286782
num_examples: 12000
download_size: 27228532
dataset_size: 62286782
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
OmkaRane/Major_Legal3
|
OmkaRane
|
2025-03-12T10:15:21Z
| 15 | 0 |
[
"format:parquet",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-03-12T10:15:18Z
| 0 |
---
dataset_info:
features: []
splits:
- name: train
num_bytes: 0
num_examples: 0
download_size: 324
dataset_size: 0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for "Major_Legal3"
[More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
|
kh4dien/mc-german
|
kh4dien
|
2025-01-24T01:02:37Z
| 54 | 0 |
[
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-01-24T01:02:36Z
| 0 |
---
dataset_info:
features:
- name: question
dtype: string
- name: correct
dtype: string
- name: incorrect
dtype: string
splits:
- name: train
num_bytes: 326045.99022736336
num_examples: 5145
download_size: 161034
dataset_size: 326045.99022736336
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
dvgodoy/CUAD_v1_Contract_Understanding_PDF
|
dvgodoy
|
2025-01-29T18:32:20Z
| 97 | 0 |
[
"language:en",
"license:cc-by-4.0",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2103.06268",
"region:us",
"PDF"
] |
[] |
2025-01-20T14:29:20Z
| 0 |
---
dataset_info:
features:
- name: file_name
dtype: string
- name: pdf_bytes_base64
dtype: binary
- name: text
dtype: string
splits:
- name: train
num_bytes: 159348380
num_examples: 509
download_size: 138630085
dataset_size: 159348380
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- PDF
size_categories:
- n<1K
license: cc-by-4.0
language:
- en
---
# Dataset Card for Contract Understanding Atticus Dataset (CUAD) PDF
**This dataset contains the PDFs and the full text of 509 commercial legal contracts from the original [CUAD](https://www.atticusprojectai.org/cuad) dataset.** One of the original 510 contracts was removed due to being a scanned copy.
The extracted text was cleaned using [`clean-text`](https://github.com/jfilter/clean-text).
The PDFs were encoded in base64 and added as the `pdf_bytes_base64` feature.
You can easily and quickly load it:
```python
dataset = load_dataset("dvgodoy/CUAD_v1_Contract_Understanding_PDF")
```
```
Dataset({
features: ['file_name', 'pdf_bytes_base64', 'text'],
num_rows: 509
})
```
## Decoding PDFs
To handle the PDFs, you will need to decode the `pdf_bytes_base64` feature and load it into a PDF object using your favorite PDF library (e.g. `pdfplumber`):
```python
import io
import pdfplumber
# load the bytes into your favorite PDF library e.g., `pdfplumber`
for encoded in mini_batch['pdf_bytes_base64']:
bytes_content = io.BytesIO(base64.b64decode(encoded))
pdf_obj = pdfplumber.open(bytes_content)
# process the PDFs
# ...
# CLOSE the objects after you've used them
bytes_content.close()
pdf_obj.close()
```
You can use any other library/package to load the PDF, just make sure it can open a PDF from bytes.
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Additional Information](#additional-information)
- [Credits](#credits)
- [Licensing Information](#licensing-information)
## Dataset Description
- **Homepage:** [Contract Understanding Atticus Dataset (CUAD)](https://www.atticusprojectai.org/cuad)
- **Repository:** https://github.com/TheAtticusProject/cuad
- **Paper:** [CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review](https://arxiv.org/abs/2103.06268)
- **Leaderboard:**
- **Point of Contact:**
### Dataset Summary
The original CUAD v1 dataset contained 510 commercial legals contracts. **This version contains 509 contracts, as one of those contracts was removed due to being a scanned copy.**
## Dataset Structure
### Data Instances
A sample from the training set is provided below :
```
{
'file_name': '2ThemartComInc_19990826_10-12G_EX-10.10_6700288_EX-10.10_Co-Branding Agreement_ Agency Agreement.pdf',
'pdf_bytes_base64': b'SlZCRVJpMHhMalF...',
'text': 'CO-BRANDING AND ADVERTISING AGREEMENT\nTHIS CO-BRANDING AND ADVERTISING AGREEMENT...'
}
```
## Dataset Creation
### Curation Rationale
CUAD v1 is a corpus of 13,000+ labels in 510 commercial legal contracts with rich expert annotations curated for AI training purposes. The dataset has been manually labeled under the supervision of experienced attorneys to identify 41 types of legal clauses in commercial contracts that are considered important in contract review in connection with a corporate transaction, including mergers & acquisitions, corporate finance, investments & IPOs.
### Source Data
#### Initial Data Collection and Normalization
The beta version of CUAD was released in October 2020 under the name AOK v.1 with 200 contracts. CUAD v1 has 510 contracts and includes both PDF and TXT versions of the full contracts, one master CSV file and 27 Excel files corresponding to one or more types of legal clauses to ensure ease of use by both developers and attorneys.
## Additional Information
### Credits
```
@article{hendrycks2021cuad,
title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review},
author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball},
journal={NeurIPS},
year={2021}
}
```
### Licensing Information
- [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/)
|
svjack/Product_Posters_Singer_DESC
|
svjack
|
2025-06-15T14:51:03Z
| 0 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-06-15T14:50:58Z
| 0 |
---
dataset_info:
features:
- name: product_category
dtype: string
- name: poster_prompt
dtype: string
- name: final_prompt
dtype: string
splits:
- name: train
num_bytes: 54202
num_examples: 50
download_size: 30844
dataset_size: 54202
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Thermostatic/CommonVoice-17.0-Spanish-Filtered
|
Thermostatic
|
2025-06-20T01:03:10Z
| 0 | 0 |
[
"license:cc0-1.0",
"size_categories:100K<n<1M",
"format:parquet",
"modality:audio",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-06-20T00:57:10Z
| 0 |
---
license: cc0-1.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
dataset_info:
features:
- name: client_id
dtype: string
- name: path
dtype: string
- name: audio
dtype:
audio:
sampling_rate: 48000
- name: sentence
dtype: string
- name: up_votes
dtype: int64
- name: down_votes
dtype: int64
- name: age
dtype: string
- name: gender
dtype: string
- name: accent
dtype: string
- name: locale
dtype: string
- name: segment
dtype: string
- name: variant
dtype: string
splits:
- name: train
num_bytes: 13030072526.0
num_examples: 336846
- name: validation
num_bytes: 766524228.0
num_examples: 15857
- name: test
num_bytes: 744404420.0
num_examples: 15857
download_size: 14292272484
dataset_size: 14541001174.0
---
|
candywal/code_rule_violation
|
candywal
|
2025-04-19T21:29:44Z
| 21 | 0 |
[
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-04-19T21:29:43Z
| 0 |
---
dataset_info:
features:
- name: user
dtype: string
- name: assistant
dtype: string
- name: classification
dtype: string
- name: explanation
dtype: string
- name: rule
dtype: string
splits:
- name: train
num_bytes: 3498524
num_examples: 1328
download_size: 1351865
dataset_size: 3498524
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
gokceKy/earthquake
|
gokceKy
|
2024-11-15T14:00:11Z
| 18 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:image",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-11-09T23:59:15Z
| 0 |
---
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype: image
- name: pixel_values
dtype: image
- name: labels
dtype: image
splits:
- name: train
num_bytes: 9888970.0
num_examples: 75
- name: test
num_bytes: 880548.0
num_examples: 8
download_size: 10247557
dataset_size: 10769518.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
ljnlonoljpiljm/docci
|
ljnlonoljpiljm
|
2024-12-17T04:42:15Z
| 61 | 0 |
[
"size_categories:10K<n<100K",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-12-15T19:18:43Z
| 0 |
---
dataset_info:
features:
- name: uuid
dtype: string
- name: url
dtype: string
- name: image
dtype: image
- name: caption
dtype: string
- name: detailed_caption
dtype: string
- name: tags
sequence: string
- name: dataset
dtype: string
- name: points
sequence:
- name: uuid
dtype: string
- name: x
dtype: float32
- name: y
dtype: float32
- name: label
dtype: string
- name: objects
sequence:
- name: uuid
dtype: string
- name: x_min
dtype: float32
- name: y_min
dtype: float32
- name: x_max
dtype: float32
- name: y_max
dtype: float32
- name: label
dtype: string
- name: image_width
dtype: int32
- name: image_height
dtype: int32
- name: aesthetic_score
dtype: float32
- name: sensitivity_score
dtype: float32
splits:
- name: train
num_bytes: 7550643050.0
num_examples: 14647
download_size: 7542100387
dataset_size: 7550643050.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
zkpbeats/reddit_ds_100415
|
zkpbeats
|
2025-05-22T10:06:16Z
| 1,867 | 0 |
[
"task_categories:text-classification",
"task_categories:token-classification",
"task_categories:question-answering",
"task_categories:summarization",
"task_categories:text-generation",
"task_ids:sentiment-analysis",
"task_ids:topic-classification",
"task_ids:named-entity-recognition",
"task_ids:language-modeling",
"task_ids:text-scoring",
"task_ids:multi-class-classification",
"task_ids:multi-label-classification",
"task_ids:extractive-qa",
"task_ids:news-articles-summarization",
"multilinguality:multilingual",
"source_datasets:original",
"license:mit",
"size_categories:1M<n<10M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[
"text-classification",
"token-classification",
"question-answering",
"summarization",
"text-generation"
] |
2025-04-03T12:12:07Z
| 0 |
---
license: mit
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- text-classification
- token-classification
- question-answering
- summarization
- text-generation
task_ids:
- sentiment-analysis
- topic-classification
- named-entity-recognition
- language-modeling
- text-scoring
- multi-class-classification
- multi-label-classification
- extractive-qa
- news-articles-summarization
---
# Bittensor Subnet 13 Reddit Dataset
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
## Dataset Description
- **Repository:** zkpbeats/reddit_ds_100415
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5H3AggXAqErtsYWdn5A2cnf2MhkVS45HzqyErD3VxoDGWuxC
### Dataset Summary
This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed Reddit data. The data is continuously updated by network miners, providing a real-time stream of Reddit content for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).
### Supported Tasks
The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Topic Modeling
- Community Analysis
- Content Categorization
### Languages
Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.
## Dataset Structure
### Data Instances
Each instance represents a single Reddit post or comment with the following fields:
### Data Fields
- `text` (string): The main content of the Reddit post or comment.
- `label` (string): Sentiment or topic category of the content.
- `dataType` (string): Indicates whether the entry is a post or a comment.
- `communityName` (string): The name of the subreddit where the content was posted.
- `datetime` (string): The date when the content was posted or commented.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the content.
### Data Splits
This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.
## Dataset Creation
### Source Data
Data is collected from public posts and comments on Reddit, adhering to the platform's terms of service and API usage guidelines.
### Personal and Sensitive Information
All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.
## Considerations for Using the Data
### Social Impact and Biases
Users should be aware of potential biases inherent in Reddit data, including demographic and content biases. This dataset reflects the content and opinions expressed on Reddit and should not be considered a representative sample of the general population.
### Limitations
- Data quality may vary due to the nature of media sources.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public subreddits and does not include private or restricted communities.
## Additional Information
### Licensing Information
The dataset is released under the MIT license. The use of this dataset is also subject to Reddit Terms of Use.
### Citation Information
If you use this dataset in your research, please cite it as follows:
```
@misc{zkpbeats2025datauniversereddit_ds_100415,
title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
author={zkpbeats},
year={2025},
url={https://huggingface.co/datasets/zkpbeats/reddit_ds_100415},
}
```
### Contributions
To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.
## Dataset Statistics
[This section is automatically updated]
- **Total Instances:** 2046436
- **Date Range:** 2025-04-14T00:00:00Z to 2025-05-22T00:00:00Z
- **Last Updated:** 2025-05-22T10:06:14Z
### Data Distribution
- Posts: 2.20%
- Comments: 97.45%
### Top 10 Subreddits
For full statistics, please refer to the `stats.json` file in the repository.
| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | r/worldnews | 119635 | 5.87% |
| 2 | r/Millennials | 105681 | 5.18% |
| 3 | r/mildlyinteresting | 80343 | 3.94% |
| 4 | r/redscarepod | 44502 | 2.18% |
| 5 | r/mexico | 43052 | 2.11% |
| 6 | r/india | 39499 | 1.94% |
| 7 | r/Grimdank | 38994 | 1.91% |
| 8 | r/ShitAmericansSay | 38710 | 1.90% |
| 9 | r/wallstreetbets | 38257 | 1.88% |
| 10 | r/BravoRealHousewives | 36118 | 1.77% |
## Update History
| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-04-14T14:31:44Z | 6673 | 6673 |
| 2025-04-16T08:55:17Z | 513 | 7186 |
| 2025-04-18T17:12:54Z | 6171 | 13357 |
| 2025-04-18T19:38:03Z | 6914 | 20271 |
| 2025-04-18T22:02:52Z | 7520 | 27791 |
| 2025-04-19T00:26:05Z | 5532 | 33323 |
| 2025-04-19T02:49:42Z | 6645 | 39968 |
| 2025-04-19T05:16:23Z | 4202 | 44170 |
| 2025-04-19T07:42:07Z | 4649 | 48819 |
| 2025-04-19T10:07:00Z | 2362 | 51181 |
| 2025-04-19T12:29:29Z | 2887 | 54068 |
| 2025-04-19T14:52:07Z | 5581 | 59649 |
| 2025-04-19T17:14:54Z | 4835 | 64484 |
| 2025-04-19T19:38:30Z | 5905 | 70389 |
| 2025-04-19T22:01:12Z | 6387 | 76776 |
| 2025-04-20T00:25:18Z | 6282 | 83058 |
| 2025-04-20T02:49:26Z | 3961 | 87019 |
| 2025-04-20T05:12:31Z | 4729 | 91748 |
| 2025-04-20T07:35:25Z | 4478 | 96226 |
| 2025-04-20T09:57:13Z | 2655 | 98881 |
| 2025-04-20T12:19:06Z | 4021 | 102902 |
| 2025-04-20T14:41:14Z | 5906 | 108808 |
| 2025-04-20T17:04:41Z | 8013 | 116821 |
| 2025-04-20T19:27:42Z | 5631 | 122452 |
| 2025-04-20T21:51:21Z | 6411 | 128863 |
| 2025-04-21T00:13:38Z | 5824 | 134687 |
| 2025-04-21T02:36:17Z | 4309 | 138996 |
| 2025-04-21T05:01:15Z | 4852 | 143848 |
| 2025-04-21T07:23:24Z | 2730 | 146578 |
| 2025-04-21T09:47:13Z | 2943 | 149521 |
| 2025-04-21T12:10:27Z | 4326 | 153847 |
| 2025-04-21T14:33:50Z | 5710 | 159557 |
| 2025-04-21T16:57:09Z | 7218 | 166775 |
| 2025-04-21T19:20:09Z | 8127 | 174902 |
| 2025-04-21T21:43:20Z | 6225 | 181127 |
| 2025-04-22T00:08:03Z | 6598 | 187725 |
| 2025-04-22T02:30:40Z | 5490 | 193215 |
| 2025-04-22T04:53:06Z | 4215 | 197430 |
| 2025-04-22T07:19:07Z | 3912 | 201342 |
| 2025-04-22T09:42:40Z | 4005 | 205347 |
| 2025-04-22T12:05:12Z | 4493 | 209840 |
| 2025-04-22T14:28:03Z | 4894 | 214734 |
| 2025-04-22T16:50:41Z | 8216 | 222950 |
| 2025-04-22T19:14:24Z | 6801 | 229751 |
| 2025-04-22T21:37:05Z | 5624 | 235375 |
| 2025-04-23T00:00:02Z | 4731 | 240106 |
| 2025-04-23T02:22:21Z | 6388 | 246494 |
| 2025-04-23T04:45:31Z | 5112 | 251606 |
| 2025-04-23T07:08:24Z | 3077 | 254683 |
| 2025-04-23T09:31:32Z | 4866 | 259549 |
| 2025-04-23T10:47:48Z | 1339 | 260888 |
| 2025-04-23T13:10:54Z | 3924 | 264812 |
| 2025-04-23T15:33:55Z | 7979 | 272791 |
| 2025-04-23T17:56:36Z | 6625 | 279416 |
| 2025-04-23T20:19:21Z | 6475 | 285891 |
| 2025-04-23T22:42:32Z | 7214 | 293105 |
| 2025-04-24T01:05:22Z | 6323 | 299428 |
| 2025-04-24T03:27:38Z | 6420 | 305848 |
| 2025-04-24T05:49:47Z | 5245 | 311093 |
| 2025-04-24T08:12:36Z | 3189 | 314282 |
| 2025-04-24T10:34:53Z | 3231 | 317513 |
| 2025-04-24T12:57:32Z | 5343 | 322856 |
| 2025-04-24T15:20:06Z | 8967 | 331823 |
| 2025-04-24T17:42:55Z | 6654 | 338477 |
| 2025-04-24T20:05:36Z | 8008 | 346485 |
| 2025-04-24T22:29:45Z | 8446 | 354931 |
| 2025-04-25T00:52:49Z | 6185 | 361116 |
| 2025-04-25T03:15:40Z | 6436 | 367552 |
| 2025-04-25T05:38:44Z | 4778 | 372330 |
| 2025-04-25T08:02:25Z | 4177 | 376507 |
| 2025-04-25T10:26:00Z | 3792 | 380299 |
| 2025-04-25T12:48:47Z | 3961 | 384260 |
| 2025-04-25T15:10:50Z | 7941 | 392201 |
| 2025-04-25T17:33:47Z | 9420 | 401621 |
| 2025-04-25T19:57:24Z | 7643 | 409264 |
| 2025-04-25T22:20:14Z | 7954 | 417218 |
| 2025-04-26T00:42:45Z | 6541 | 423759 |
| 2025-04-26T03:05:10Z | 4562 | 428321 |
| 2025-04-26T05:27:09Z | 6095 | 434416 |
| 2025-04-26T07:48:52Z | 3612 | 438028 |
| 2025-04-26T10:10:51Z | 3086 | 441114 |
| 2025-04-26T12:33:17Z | 3439 | 444553 |
| 2025-04-26T15:00:29Z | 7397 | 451950 |
| 2025-04-26T17:22:53Z | 7048 | 458998 |
| 2025-04-26T19:47:35Z | 6964 | 465962 |
| 2025-04-26T22:10:58Z | 6460 | 472422 |
| 2025-04-27T00:33:42Z | 7338 | 479760 |
| 2025-04-27T02:55:53Z | 6334 | 486094 |
| 2025-04-27T05:18:25Z | 6222 | 492316 |
| 2025-04-27T07:40:51Z | 5159 | 497475 |
| 2025-04-27T10:03:05Z | 2964 | 500439 |
| 2025-04-27T12:25:30Z | 4022 | 504461 |
| 2025-04-27T14:48:21Z | 7933 | 512394 |
| 2025-04-27T17:13:44Z | 7546 | 519940 |
| 2025-04-27T19:36:15Z | 7962 | 527902 |
| 2025-04-27T21:58:30Z | 5000 | 532902 |
| 2025-04-28T00:21:59Z | 5738 | 538640 |
| 2025-04-28T02:45:06Z | 6255 | 544895 |
| 2025-04-28T05:07:08Z | 4881 | 549776 |
| 2025-04-28T07:29:45Z | 4842 | 554618 |
| 2025-04-28T09:52:39Z | 4563 | 559181 |
| 2025-04-28T12:15:39Z | 3516 | 562697 |
| 2025-04-28T14:38:12Z | 7026 | 569723 |
| 2025-04-28T17:01:05Z | 6173 | 575896 |
| 2025-04-28T19:23:58Z | 6904 | 582800 |
| 2025-04-28T21:47:11Z | 7422 | 590222 |
| 2025-04-29T00:09:34Z | 5669 | 595891 |
| 2025-04-29T02:32:31Z | 5035 | 600926 |
| 2025-04-29T04:55:25Z | 6811 | 607737 |
| 2025-04-29T07:17:27Z | 4580 | 612317 |
| 2025-04-29T09:40:18Z | 3572 | 615889 |
| 2025-04-29T12:04:13Z | 5189 | 621078 |
| 2025-04-29T14:26:42Z | 6134 | 627212 |
| 2025-04-29T16:48:49Z | 5725 | 632937 |
| 2025-04-29T19:12:12Z | 8269 | 641206 |
| 2025-04-29T21:35:08Z | 7741 | 648947 |
| 2025-04-29T23:57:26Z | 7825 | 656772 |
| 2025-04-30T02:19:53Z | 4065 | 660837 |
| 2025-04-30T04:42:16Z | 5086 | 665923 |
| 2025-04-30T07:04:32Z | 4704 | 670627 |
| 2025-04-30T09:28:04Z | 3608 | 674235 |
| 2025-04-30T11:50:14Z | 5846 | 680081 |
| 2025-04-30T14:12:22Z | 7098 | 687179 |
| 2025-04-30T16:34:44Z | 8904 | 696083 |
| 2025-04-30T18:59:01Z | 5544 | 701627 |
| 2025-04-30T21:21:06Z | 6703 | 708330 |
| 2025-04-30T23:43:26Z | 7272 | 715602 |
| 2025-05-01T02:07:20Z | 6315 | 721917 |
| 2025-05-01T04:30:14Z | 5673 | 727590 |
| 2025-05-01T06:54:49Z | 4787 | 732377 |
| 2025-05-01T09:17:54Z | 4126 | 736503 |
| 2025-05-01T11:40:22Z | 2985 | 739488 |
| 2025-05-01T14:02:56Z | 6913 | 746401 |
| 2025-05-01T16:26:00Z | 7966 | 754367 |
| 2025-05-01T18:48:30Z | 6874 | 761241 |
| 2025-05-01T21:12:58Z | 8503 | 769744 |
| 2025-05-01T23:35:27Z | 6871 | 776615 |
| 2025-05-02T01:57:54Z | 6292 | 782907 |
| 2025-05-02T04:20:13Z | 7125 | 790032 |
| 2025-05-02T06:43:10Z | 5111 | 795143 |
| 2025-05-02T09:05:25Z | 4295 | 799438 |
| 2025-05-02T11:27:56Z | 3304 | 802742 |
| 2025-05-02T13:52:15Z | 7162 | 809904 |
| 2025-05-02T16:14:29Z | 8007 | 817911 |
| 2025-05-02T18:36:41Z | 7826 | 825737 |
| 2025-05-02T20:59:13Z | 6862 | 832599 |
| 2025-05-02T23:21:43Z | 6934 | 839533 |
| 2025-05-03T01:44:23Z | 6926 | 846459 |
| 2025-05-03T04:06:58Z | 6269 | 852728 |
| 2025-05-03T06:30:10Z | 5893 | 858621 |
| 2025-05-03T08:52:13Z | 4328 | 862949 |
| 2025-05-03T11:14:30Z | 2742 | 865691 |
| 2025-05-03T13:37:06Z | 5906 | 871597 |
| 2025-05-03T15:59:34Z | 6432 | 878029 |
| 2025-05-03T18:22:12Z | 6930 | 884959 |
| 2025-05-03T20:44:37Z | 7420 | 892379 |
| 2025-05-03T23:06:52Z | 7364 | 899743 |
| 2025-05-04T01:29:49Z | 5757 | 905500 |
| 2025-05-04T03:51:49Z | 5738 | 911238 |
| 2025-05-04T06:13:45Z | 4217 | 915455 |
| 2025-05-04T08:35:53Z | 3333 | 918788 |
| 2025-05-04T10:58:18Z | 3020 | 921808 |
| 2025-05-04T13:20:37Z | 3502 | 925310 |
| 2025-05-04T15:43:13Z | 6520 | 931830 |
| 2025-05-04T18:05:44Z | 7524 | 939354 |
| 2025-05-04T20:28:05Z | 7386 | 946740 |
| 2025-05-04T22:50:26Z | 6014 | 952754 |
| 2025-05-05T01:12:56Z | 8336 | 961090 |
| 2025-05-05T03:35:18Z | 5919 | 967009 |
| 2025-05-05T05:57:34Z | 4551 | 971560 |
| 2025-05-05T08:19:41Z | 4397 | 975957 |
| 2025-05-05T10:42:17Z | 2881 | 978838 |
| 2025-05-05T13:04:28Z | 3834 | 982672 |
| 2025-05-05T15:26:54Z | 6271 | 988943 |
| 2025-05-05T17:49:31Z | 6878 | 995821 |
| 2025-05-05T20:12:02Z | 8960 | 1004781 |
| 2025-05-05T22:34:32Z | 7150 | 1011931 |
| 2025-05-06T00:57:02Z | 6813 | 1018744 |
| 2025-05-06T03:19:26Z | 8478 | 1027222 |
| 2025-05-06T05:41:35Z | 4649 | 1031871 |
| 2025-05-06T08:04:13Z | 3824 | 1035695 |
| 2025-05-06T10:26:38Z | 3650 | 1039345 |
| 2025-05-06T12:48:51Z | 6481 | 1045826 |
| 2025-05-06T15:11:09Z | 6622 | 1052448 |
| 2025-05-06T17:33:58Z | 8696 | 1061144 |
| 2025-05-06T19:57:06Z | 7521 | 1068665 |
| 2025-05-06T22:20:12Z | 7746 | 1076411 |
| 2025-05-07T00:43:15Z | 7306 | 1083717 |
| 2025-05-07T03:06:05Z | 6757 | 1090474 |
| 2025-05-07T05:28:28Z | 6072 | 1096546 |
| 2025-05-07T07:50:33Z | 4436 | 1100982 |
| 2025-05-07T10:12:43Z | 5652 | 1106634 |
| 2025-05-07T12:34:44Z | 3694 | 1110328 |
| 2025-05-07T14:57:11Z | 8226 | 1118554 |
| 2025-05-07T17:19:48Z | 9114 | 1127668 |
| 2025-05-07T19:42:30Z | 9541 | 1137209 |
| 2025-05-07T22:04:58Z | 9539 | 1146748 |
| 2025-05-08T00:27:37Z | 6664 | 1153412 |
| 2025-05-08T02:50:19Z | 9841 | 1163253 |
| 2025-05-08T05:12:27Z | 5400 | 1168653 |
| 2025-05-08T07:34:47Z | 3427 | 1172080 |
| 2025-05-08T09:57:17Z | 4060 | 1176140 |
| 2025-05-08T12:20:24Z | 5275 | 1181415 |
| 2025-05-08T14:43:07Z | 8854 | 1190269 |
| 2025-05-08T17:05:46Z | 9541 | 1199810 |
| 2025-05-08T19:28:22Z | 9742 | 1209552 |
| 2025-05-08T21:51:45Z | 6099 | 1215651 |
| 2025-05-09T00:14:14Z | 5912 | 1221563 |
| 2025-05-09T02:36:51Z | 6879 | 1228442 |
| 2025-05-09T04:59:11Z | 7747 | 1236189 |
| 2025-05-09T07:21:38Z | 4184 | 1240373 |
| 2025-05-09T09:44:15Z | 4371 | 1244744 |
| 2025-05-09T12:06:36Z | 3647 | 1248391 |
| 2025-05-09T14:29:16Z | 5890 | 1254281 |
| 2025-05-09T16:53:09Z | 7717 | 1261998 |
| 2025-05-09T19:15:46Z | 7368 | 1269366 |
| 2025-05-09T21:38:19Z | 7879 | 1277245 |
| 2025-05-10T00:00:58Z | 6570 | 1283815 |
| 2025-05-10T02:23:31Z | 5730 | 1289545 |
| 2025-05-10T04:45:51Z | 5362 | 1294907 |
| 2025-05-10T07:08:08Z | 4617 | 1299524 |
| 2025-05-10T09:30:21Z | 3101 | 1302625 |
| 2025-05-10T11:52:51Z | 3653 | 1306278 |
| 2025-05-10T14:14:50Z | 6043 | 1312321 |
| 2025-05-10T16:36:54Z | 8235 | 1320556 |
| 2025-05-10T18:58:59Z | 8370 | 1328926 |
| 2025-05-10T21:21:14Z | 6141 | 1335067 |
| 2025-05-10T23:44:04Z | 6265 | 1341332 |
| 2025-05-11T02:07:00Z | 7315 | 1348647 |
| 2025-05-11T04:29:19Z | 5421 | 1354068 |
| 2025-05-11T06:51:58Z | 5463 | 1359531 |
| 2025-05-11T09:14:38Z | 3980 | 1363511 |
| 2025-05-11T11:37:39Z | 4431 | 1367942 |
| 2025-05-11T13:59:50Z | 6181 | 1374123 |
| 2025-05-11T16:22:14Z | 7736 | 1381859 |
| 2025-05-11T18:45:19Z | 6791 | 1388650 |
| 2025-05-11T21:08:49Z | 6579 | 1395229 |
| 2025-05-11T23:32:14Z | 7701 | 1402930 |
| 2025-05-12T01:54:40Z | 6786 | 1409716 |
| 2025-05-12T04:16:44Z | 6802 | 1416518 |
| 2025-05-12T06:39:01Z | 3979 | 1420497 |
| 2025-05-12T09:03:11Z | 4558 | 1425055 |
| 2025-05-12T11:25:38Z | 4377 | 1429432 |
| 2025-05-12T13:48:02Z | 6324 | 1435756 |
| 2025-05-12T16:10:47Z | 9365 | 1445121 |
| 2025-05-12T18:33:55Z | 11055 | 1456176 |
| 2025-05-12T20:57:18Z | 9381 | 1465557 |
| 2025-05-12T23:19:54Z | 8918 | 1474475 |
| 2025-05-13T01:43:10Z | 7599 | 1482074 |
| 2025-05-13T04:05:16Z | 7517 | 1489591 |
| 2025-05-13T06:27:34Z | 5505 | 1495096 |
| 2025-05-13T08:50:58Z | 3874 | 1498970 |
| 2025-05-13T11:13:21Z | 3143 | 1502113 |
| 2025-05-13T13:36:09Z | 5539 | 1507652 |
| 2025-05-13T15:59:58Z | 9643 | 1517295 |
| 2025-05-13T18:22:45Z | 6962 | 1524257 |
| 2025-05-13T20:46:29Z | 6749 | 1531006 |
| 2025-05-13T23:09:32Z | 9450 | 1540456 |
| 2025-05-14T01:32:19Z | 7048 | 1547504 |
| 2025-05-14T03:54:58Z | 8498 | 1556002 |
| 2025-05-14T06:17:04Z | 4854 | 1560856 |
| 2025-05-14T08:39:47Z | 3784 | 1564640 |
| 2025-05-14T11:02:47Z | 3460 | 1568100 |
| 2025-05-14T13:25:01Z | 5587 | 1573687 |
| 2025-05-14T15:47:30Z | 8370 | 1582057 |
| 2025-05-14T18:10:21Z | 8253 | 1590310 |
| 2025-05-14T20:33:17Z | 7316 | 1597626 |
| 2025-05-14T22:56:47Z | 6516 | 1604142 |
| 2025-05-15T01:19:36Z | 5547 | 1609689 |
| 2025-05-15T03:42:05Z | 8617 | 1618306 |
| 2025-05-15T06:04:30Z | 5333 | 1623639 |
| 2025-05-15T08:28:22Z | 4609 | 1628248 |
| 2025-05-15T10:51:36Z | 4085 | 1632333 |
| 2025-05-15T13:15:28Z | 6781 | 1639114 |
| 2025-05-15T15:38:39Z | 9008 | 1648122 |
| 2025-05-15T15:39:15Z | 9008 | 1657130 |
| 2025-05-15T18:02:16Z | 7464 | 1664594 |
| 2025-05-15T20:27:30Z | 7837 | 1672431 |
| 2025-05-15T22:52:22Z | 6106 | 1678537 |
| 2025-05-16T01:15:56Z | 7440 | 1685977 |
| 2025-05-16T03:40:49Z | 5423 | 1691400 |
| 2025-05-16T06:03:43Z | 4286 | 1695686 |
| 2025-05-16T08:29:29Z | 4233 | 1699919 |
| 2025-05-16T10:52:28Z | 2931 | 1702850 |
| 2025-05-16T13:17:57Z | 5866 | 1708716 |
| 2025-05-16T15:43:13Z | 7311 | 1716027 |
| 2025-05-16T18:06:29Z | 8174 | 1724201 |
| 2025-05-16T20:29:58Z | 7819 | 1732020 |
| 2025-05-16T22:54:39Z | 6752 | 1738772 |
| 2025-05-17T01:18:03Z | 6382 | 1745154 |
| 2025-05-17T03:40:48Z | 6051 | 1751205 |
| 2025-05-17T06:03:19Z | 3672 | 1754877 |
| 2025-05-17T08:25:46Z | 3530 | 1758407 |
| 2025-05-17T10:50:23Z | 4177 | 1762584 |
| 2025-05-17T13:15:07Z | 4038 | 1766622 |
| 2025-05-17T15:38:41Z | 6297 | 1772919 |
| 2025-05-17T18:01:58Z | 4948 | 1777867 |
| 2025-05-17T20:24:30Z | 5059 | 1782926 |
| 2025-05-17T22:47:29Z | 6712 | 1789638 |
| 2025-05-18T01:10:48Z | 5350 | 1794988 |
| 2025-05-18T03:32:58Z | 5936 | 1800924 |
| 2025-05-18T05:55:36Z | 4483 | 1805407 |
| 2025-05-18T08:19:35Z | 4392 | 1809799 |
| 2025-05-18T10:42:00Z | 3959 | 1813758 |
| 2025-05-18T13:04:32Z | 4301 | 1818059 |
| 2025-05-18T15:27:47Z | 5957 | 1824016 |
| 2025-05-18T17:51:32Z | 7226 | 1831242 |
| 2025-05-18T20:14:39Z | 5501 | 1836743 |
| 2025-05-18T22:39:03Z | 5990 | 1842733 |
| 2025-05-19T01:01:47Z | 6209 | 1848942 |
| 2025-05-19T03:24:31Z | 5727 | 1854669 |
| 2025-05-19T05:47:09Z | 4786 | 1859455 |
| 2025-05-19T08:11:58Z | 4459 | 1863914 |
| 2025-05-19T10:35:14Z | 3981 | 1867895 |
| 2025-05-19T12:58:03Z | 3385 | 1871280 |
| 2025-05-19T15:20:57Z | 5702 | 1876982 |
| 2025-05-19T17:44:21Z | 7794 | 1884776 |
| 2025-05-19T20:08:26Z | 9671 | 1894447 |
| 2025-05-19T22:31:29Z | 8001 | 1902448 |
| 2025-05-20T00:54:35Z | 6063 | 1908511 |
| 2025-05-20T03:18:15Z | 7571 | 1916082 |
| 2025-05-20T05:42:05Z | 4629 | 1920711 |
| 2025-05-20T08:05:38Z | 4244 | 1924955 |
| 2025-05-20T10:29:07Z | 3897 | 1928852 |
| 2025-05-20T12:53:19Z | 4809 | 1933661 |
| 2025-05-20T15:17:08Z | 6091 | 1939752 |
| 2025-05-20T17:40:47Z | 7407 | 1947159 |
| 2025-05-20T20:03:39Z | 10047 | 1957206 |
| 2025-05-20T22:26:07Z | 8196 | 1965402 |
| 2025-05-21T00:48:58Z | 5330 | 1970732 |
| 2025-05-21T03:11:28Z | 6717 | 1977449 |
| 2025-05-21T05:34:18Z | 4849 | 1982298 |
| 2025-05-21T07:57:03Z | 3652 | 1985950 |
| 2025-05-21T10:19:15Z | 3610 | 1989560 |
| 2025-05-21T12:42:34Z | 3372 | 1992932 |
| 2025-05-21T15:05:07Z | 6436 | 1999368 |
| 2025-05-21T17:27:46Z | 6563 | 2005931 |
| 2025-05-21T19:50:35Z | 8433 | 2014364 |
| 2025-05-21T22:13:20Z | 5952 | 2020316 |
| 2025-05-22T00:36:19Z | 5190 | 2025506 |
| 2025-05-22T02:58:36Z | 6844 | 2032350 |
| 2025-05-22T05:21:02Z | 6449 | 2038799 |
| 2025-05-22T07:43:09Z | 3942 | 2042741 |
| 2025-05-22T10:06:14Z | 3695 | 2046436 |
|
samabena/dreambooth-hackathon-images
|
samabena
|
2025-04-17T18:58:05Z
| 17 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:image",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-04-17T17:32:33Z
| 0 |
---
dataset_info:
features:
- name: image
dtype: image
splits:
- name: train
num_bytes: 3440294.0
num_examples: 14
download_size: 3270864
dataset_size: 3440294.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
neginashz/ins-medqa-dataset_winst
|
neginashz
|
2024-12-11T13:35:40Z
| 13 | 0 |
[
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-12-11T13:35:40Z
| 0 |
---
dataset_info:
features:
- name: prompt
dtype: string
- name: completion
dtype: string
splits:
- name: train
num_bytes: 9544494
num_examples: 10178
download_size: 5250508
dataset_size: 9544494
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
nickfuryavg/Audio_Sample_1
|
nickfuryavg
|
2024-11-01T07:52:53Z
| 18 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-11-01T07:52:49Z
| 0 |
---
dataset_info:
features:
- name: job_id
dtype: int64
- name: english_sentence
dtype: string
- name: english_audio_bytes
dtype: string
- name: hindi_sentence
dtype: string
- name: hindi_audio_bytes
dtype: string
splits:
- name: train
num_bytes: 17706348
num_examples: 50
download_size: 12249570
dataset_size: 17706348
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
cauaveiga/moss_test
|
cauaveiga
|
2024-10-27T11:36:30Z
| 21 | 0 |
[
"task_categories:robotics",
"region:us",
"LeRobot",
"moss",
"tutorial"
] |
[
"robotics"
] |
2024-10-27T11:26:20Z
| 0 |
---
task_categories:
- robotics
tags:
- LeRobot
- moss
- tutorial
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
|
pclucas14/nqa-RAG-64_1_24
|
pclucas14
|
2024-12-04T23:08:44Z
| 15 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-12-04T23:08:42Z
| 0 |
---
dataset_info:
features:
- name: text
sequence:
sequence: string
- name: questions
sequence: string
- name: answers
sequence:
sequence: string
- name: document_id
dtype: string
- name: split
dtype: string
splits:
- name: train
num_bytes: 5935246
num_examples: 66
download_size: 2094096
dataset_size: 5935246
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
SnehaPriyaaMP/llama-pre-finetuned-Apr-21-2025-Updated
|
SnehaPriyaaMP
|
2025-04-21T13:34:12Z
| 19 | 0 |
[
"size_categories:n<1K",
"modality:text",
"region:us"
] |
[] |
2025-04-21T13:34:02Z
| 0 |
---
dataset_info:
features:
- name: prompt
dtype: string
splits:
- name: train
num_bytes: 114289
num_examples: 70
download_size: 26451
dataset_size: 114289
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
SayantanJoker/Hindi_1000hr_Train_Subset_44100Hz_quality_metadata
|
SayantanJoker
|
2025-04-13T10:31:09Z
| 70 | 0 |
[
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-04-13T10:31:08Z
| 0 |
---
dataset_info:
features:
- name: text
dtype: string
- name: file_name
dtype: string
- name: utterance_pitch_mean
dtype: float32
- name: utterance_pitch_std
dtype: float32
- name: snr
dtype: float64
- name: c50
dtype: float64
- name: speaking_rate
dtype: string
- name: phonemes
dtype: string
- name: stoi
dtype: float64
- name: si-sdr
dtype: float64
- name: pesq
dtype: float64
- name: noise
dtype: string
- name: reverberation
dtype: string
- name: speech_monotony
dtype: string
- name: sdr_noise
dtype: string
- name: pesq_speech_quality
dtype: string
splits:
- name: train
num_bytes: 1307557
num_examples: 3843
download_size: 255513
dataset_size: 1307557
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
mlfoundations-dev/GeneralThought-feb25_10k
|
mlfoundations-dev
|
2025-03-21T22:28:30Z
| 13 | 0 |
[
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-03-21T22:28:18Z
| 0 |
---
dataset_info:
features:
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
splits:
- name: train
num_bytes: 120276586.92596735
num_examples: 10000
download_size: 52837405
dataset_size: 120276586.92596735
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kh4dien/talktuner-openai
|
kh4dien
|
2025-02-18T23:49:17Z
| 20 | 0 |
[
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-02-13T05:50:19Z
| 0 |
---
dataset_info:
features:
- name: label
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: age
num_bytes: 6957752.147239264
num_examples: 2880
- name: education
num_bytes: 13866627.816924142
num_examples: 4263
- name: gender
num_bytes: 4336468.098876405
num_examples: 1762
- name: socioeconomic
num_bytes: 5369022.74964904
num_examples: 2124
download_size: 14962444
dataset_size: 30529870.812688854
configs:
- config_name: default
data_files:
- split: age
path: data/age-*
- split: education
path: data/education-*
- split: gender
path: data/gender-*
- split: socioeconomic
path: data/socioeconomic-*
---
|
Asap7772/d1shs0ap-hard-hintgen-qwen3-4b-lr1e6-shard5
|
Asap7772
|
2025-05-10T07:47:20Z
| 0 | 0 |
[
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-05-10T07:47:14Z
| 0 |
---
dataset_info:
features:
- name: problem
dtype: string
- name: answer
dtype: string
- name: solution
dtype: string
- name: reward
dtype: float64
- name: length
dtype: float64
- name: correct_length
dtype: float64
- name: incorrect_length
dtype: float64
- name: all_hints
sequence: string
splits:
- name: train
num_bytes: 71420403
num_examples: 1586
download_size: 31277734
dataset_size: 71420403
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
IAlsace/affiche_gestes_barrieres
|
IAlsace
|
2025-03-29T22:12:24Z
| 29 | 0 |
[
"task_categories:translation",
"multilinguality:multilingual",
"language:gsw",
"language:fra",
"region:us",
"welche",
"polatt"
] |
[
"translation"
] |
2025-01-12T14:16:14Z
| 0 |
---
language:
- gsw
- fra
multilinguality:
- multilingual
viewer: false
task_categories:
- translation
tags:
- welche
- polatt
---
> [!NOTE]
> Dataset origin: https://www.olcalsace.org/fr/affiches-cartes-et-signaletique
## Description
Les gestes à adopter pour se protéger et protéger les autres du coronavirus.
Affiches conçues par le gouvernement dans le cadre de la lutte contre la Covid-19 et traduite par l'OLCA.
|
wangx0t/numina-deepseek-r1-qwen-7b
|
wangx0t
|
2025-01-30T13:12:36Z
| 35 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"library:distilabel",
"region:us",
"synthetic",
"distilabel",
"rlaif"
] |
[] |
2025-01-30T12:56:24Z
| 0 |
---
size_categories: n<1K
dataset_info:
features:
- name: problem
dtype: string
- name: solution
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
- name: generation
dtype: string
- name: distilabel_metadata
struct:
- name: raw_input_text_generation_0
list:
- name: content
dtype: string
- name: role
dtype: string
- name: raw_output_text_generation_0
dtype: string
- name: statistics_text_generation_0
struct:
- name: input_tokens
dtype: int64
- name: output_tokens
dtype: int64
- name: model_name
dtype: string
splits:
- name: train
num_bytes: 751350
num_examples: 40
download_size: 277645
dataset_size: 751350
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
tags:
- synthetic
- distilabel
- rlaif
---
<p align="left">
<a href="https://github.com/argilla-io/distilabel">
<img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/>
</a>
</p>
# Dataset Card for numina-deepseek-r1-qwen-7b
This dataset has been created with [distilabel](https://distilabel.argilla.io/).
## Dataset Summary
This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI:
```console
distilabel pipeline run --config "https://huggingface.co/datasets/wangx0t/numina-deepseek-r1-qwen-7b/raw/main/pipeline.yaml"
```
or explore the configuration:
```console
distilabel pipeline info --config "https://huggingface.co/datasets/wangx0t/numina-deepseek-r1-qwen-7b/raw/main/pipeline.yaml"
```
## Dataset structure
The examples have the following structure per configuration:
<details><summary> Configuration: default </summary><hr>
```json
{
"distilabel_metadata": {
"raw_input_text_generation_0": [
{
"content": "You will be given a problem. Please reason step by step, and put your final answer within \boxed{}:\nWhat is the coefficient of $x^2y^6$ in the expansion of $\\left(\\frac{3}{5}x-\\frac{y}{2}\\right)^8$? Express your answer as a common fraction.",
"role": "user"
}
],
"raw_output_text_generation_0": "\u003cthink\u003e\nOkay, so I need to find the coefficient of \\( x^2 y^6 \\) in the expansion of \\( \\left( \\frac{3}{5}x - \\frac{y}{2} \\right)^8 \\). Hmm, I remember that when expanding binomials raised to a power, the binomial theorem is useful here. Let me recall the binomial theorem.\n\nThe binomial theorem states that \\( (a + b)^n = \\sum_{k=0}^{n} \\binom{n}{k} a^{n - k} b^{k} \\). So in this case, \\( a \\) is \\( \\frac{3}{5}x \\) and \\( b \\) is \\( -\\frac{y}{2} \\). The exponent \\( n \\) is 8.\n\nI need to find the term where the exponents of \\( x \\) is 2 and the exponent of \\( y \\) is 6. Let me think: Since each term in the expansion is \\( \\binom{8}{k} \\left( \\frac{3}{5}x \\right)^{8 - k} \\left( -\\frac{y}{2} \\right)^k \\). \n\nSo, for the term to have \\( x^2 y^6 \\), the exponent on \\( x \\) should be 2, which means \\( 8 - k = 2 \\). Solving for \\( k \\), that gives \\( k = 6 \\). \n\nLet me verify that: if \\( k = 6 \\), then the exponent on \\( y \\) is \\( 6 \\), which is exactly what we need. So, that term will be the one we\u0027re interested in.\n\nNow, let me write out that term:\n\n\\( \\binom{8}{6} \\left( \\frac{3}{5}x \\right)^{8 - 6} \\left( -\\frac{y}{2} \\right)^6 \\)\n\nSimplifying the exponents first: \\( 8 - 6 = 2 \\), so:\n\n\\( \\binom{8}{6} \\left( \\frac{3}{5}x \\right)^2 \\left( -\\frac{y}{2} \\right)^6 \\)\n\nCalculating each part separately. First, \\( \\binom{8}{6} \\). I know that \\( \\binom{8}{6} \\) is equal to \\( \\binom{8}{2} \\) because of the symmetry in the binomial coefficients, right? \\( \\binom{8}{6} = \\binom{8}{2} \\). And \\( \\binom{8}{2} = \\frac{8 \\times 7}{2 \\times 1} = 28 \\). So that part is 28.\n\nNext, \\( \\left( \\frac{3}{5}x \\right)^2 \\). Squaring \\( \\frac{3}{5} \\) gives \\( \\frac{9}{25} \\), and squaring \\( x \\) is still \\( x^2 \\). So that part is \\( \\frac{9}{25}x^2 \\).\n\nThen, \\( \\left( -\\frac{y}{2} \\right)^6 \\). When I raise a negative to an even power, it becomes positive. So, \\( \\left( -\\frac{1}{2} \\right)^6 = \\left( \\frac{1}{2} \\right)^6 = \\frac{1}{64} \\). So that part is \\( \\frac{1}{64} y^6 \\).\n\nNow, putting it all together: 28 multiplied by \\( \\frac{9}{25}x^2 \\) multiplied by \\( \\frac{1}{64} y^6 \\).\n\nLet me compute the constants first: 28 times \\( \\frac{9}{25} \\) times \\( \\frac{1}{64} \\).\n\nFirst, multiply 28 and 9: 28 * 9 = 252.\n\nThen, 252 divided by 25 is \\( 10.08 \\), but I should keep it as a fraction. 252 divided by 25 is \\( \\frac{252}{25} \\).\n\nThen, \\( \\frac{252}{25} \\times \\frac{1}{64} \\). Multiply the numerators: 252 * 1 = 252, denominators: 25 * 64 = 1600. So that\u0027s \\( \\frac{252}{1600} \\).\n\nSimplify \\( \\frac{252}{1600} \\): Let me see if both numbers can be divided by a common factor. 252 and 1600. Let\u0027s try 4: 252 \u00f7 4 = 63, 1600 \u00f7 4 = 400. So, \\( \\frac{63}{400} \\). Hmm, 63 and 400. 63 is 7*9, 400 is 16*25. They have no common factors besides 1, so that\u0027s the simplified fraction.\n\nTherefore, the coefficient is \\( \\frac{63}{400} \\).\n\nWait, let me double-check my calculations to make sure I didn\u0027t make a mistake. So, 28 * 9 is indeed 252, correct. 252 divided by 25 is 10.08? Wait, 10.08 times 25 is 252, yes. Then 252 divided by 64 is 3.9375, which is \\( \\frac{63}{16} \\). Wait, no, hold on, that doesn\u0027t make sense. Wait, I think I messed up the multiplication.\n\nWait, no, wait. Let\u0027s go back. The constants: 28 * (9/25) * (1/64). Let me compute 28 * 9 first. 28*9: 20*9=180, 8*9=72, so 180+72=252. Then, 252 * (1/25) = 252/25. Then, 252/25 * (1/64) = 252/(25*64) = 252/1600.\n\nThen, 252 divided by 1600: let me divide numerator and denominator by 4: 252 \u00f74=63, 1600 \u00f74=400. So, 63/400. That simplifies correctly.\n\nWait, but 63/400 is 0.1575, and 252/1600 is 0.1575. So that\u0027s correct.\n\nBut wait, let me check 252 divided by 1600:\n\n252 / 1600 = (252 \u00f7 4) / (1600 \u00f74) = 63/400. Yes, correct.\n\nSo, okay, so the coefficient is 63/400.\n\nWait, but let me double-check the binomial coefficient. So, \\( \\binom{8}{6} \\). Since \\( \\binom{8}{6} = \\binom{8}{2} \\) because \\( \\binom{n}{k} = \\binom{n}{n - k} \\). So, \\( \\binom{8}{2} \\) is (8*7)/2 = 28, correct. So that\u0027s correct.\n\nSo, 28 * (9/25) * (1/64) = 28*(9)/(25*64) = 252/1600 = 63/400.\n\nTherefore, the coefficient is 63/400.\n\nWait, let me think again about the signs. In the term, the \\( b^k \\) is \\( (-\\frac{y}{2})^6 \\). Since 6 is even, the negative becomes positive, so that\u0027s correct, it\u0027s positive. So, the coefficient is positive 63/400.\n\nTherefore, after going through all that, I think the coefficient is 63/400.\n\n**Final Answer**\nThe coefficient of \\( x^2 y^6 \\) is \\boxed{\\dfrac{63}{400}}.\n\u003c/think\u003e\n\nTo find the coefficient of \\( x^2 y^6 \\) in the expansion of \\( \\left( \\frac{3}{5}x - \\frac{y}{2} \\right)^8 \\), we use the binomial theorem. The binomial theorem states that:\n\n\\[\n(a + b)^n = \\sum_{k=0}^{n} \\binom{n}{k} a^{n - k} b^{k}\n\\]\n\nHere, \\( a = \\frac{3}{5}x \\), \\( b = -\\frac{y}{2} \\), and \\( n = 8 \\). We need the term where the exponent of \\( x \\) is 2 and the exponent of \\( y \\) is 6. This corresponds to \\( k = 6 \\) because \\( 8 - k = 2 \\) implies \\( k = 6 \\).\n\nThe term is given by:\n\n\\[\n\\binom{8}{6} \\left( \\frac{3}{5}x \\right)^{2} \\left( -\\frac{y}{2} \\right)^{6}\n\\]\n\nCalculating each part:\n\n1. The binomial coefficient \\( \\binom{8}{6} = \\binom{8}{2} = \\frac{8 \\times 7}{2 \\times 1} = 28 \\).\n2. \\( \\left( \\frac{3}{5}x \\right)^2 = \\frac{9}{25}x^2 \\).\n3. \\( \\left( -\\frac{y}{2} \\right)^6 = \\left( \\frac{1}{2} \\right)^6 = \\frac{1}{64} y^6 \\).\n\nCombining these, we get:\n\n\\[\n28 \\times \\frac{9}{25} \\times \\frac{1}{64} = 28 \\times \\frac{9}{1600} = \\frac{252}{1600} = \\frac{63}{400}\n\\]\n\nThus, the coefficient of \\( x^2 y^6 \\) is \\boxed{\\dfrac{63}{400}}.",
"statistics_text_generation_0": {
"input_tokens": 77,
"output_tokens": 2155
}
},
"generation": "\u003cthink\u003e\nOkay, so I need to find the coefficient of \\( x^2 y^6 \\) in the expansion of \\( \\left( \\frac{3}{5}x - \\frac{y}{2} \\right)^8 \\). Hmm, I remember that when expanding binomials raised to a power, the binomial theorem is useful here. Let me recall the binomial theorem.\n\nThe binomial theorem states that \\( (a + b)^n = \\sum_{k=0}^{n} \\binom{n}{k} a^{n - k} b^{k} \\). So in this case, \\( a \\) is \\( \\frac{3}{5}x \\) and \\( b \\) is \\( -\\frac{y}{2} \\). The exponent \\( n \\) is 8.\n\nI need to find the term where the exponents of \\( x \\) is 2 and the exponent of \\( y \\) is 6. Let me think: Since each term in the expansion is \\( \\binom{8}{k} \\left( \\frac{3}{5}x \\right)^{8 - k} \\left( -\\frac{y}{2} \\right)^k \\). \n\nSo, for the term to have \\( x^2 y^6 \\), the exponent on \\( x \\) should be 2, which means \\( 8 - k = 2 \\). Solving for \\( k \\), that gives \\( k = 6 \\). \n\nLet me verify that: if \\( k = 6 \\), then the exponent on \\( y \\) is \\( 6 \\), which is exactly what we need. So, that term will be the one we\u0027re interested in.\n\nNow, let me write out that term:\n\n\\( \\binom{8}{6} \\left( \\frac{3}{5}x \\right)^{8 - 6} \\left( -\\frac{y}{2} \\right)^6 \\)\n\nSimplifying the exponents first: \\( 8 - 6 = 2 \\), so:\n\n\\( \\binom{8}{6} \\left( \\frac{3}{5}x \\right)^2 \\left( -\\frac{y}{2} \\right)^6 \\)\n\nCalculating each part separately. First, \\( \\binom{8}{6} \\). I know that \\( \\binom{8}{6} \\) is equal to \\( \\binom{8}{2} \\) because of the symmetry in the binomial coefficients, right? \\( \\binom{8}{6} = \\binom{8}{2} \\). And \\( \\binom{8}{2} = \\frac{8 \\times 7}{2 \\times 1} = 28 \\). So that part is 28.\n\nNext, \\( \\left( \\frac{3}{5}x \\right)^2 \\). Squaring \\( \\frac{3}{5} \\) gives \\( \\frac{9}{25} \\), and squaring \\( x \\) is still \\( x^2 \\). So that part is \\( \\frac{9}{25}x^2 \\).\n\nThen, \\( \\left( -\\frac{y}{2} \\right)^6 \\). When I raise a negative to an even power, it becomes positive. So, \\( \\left( -\\frac{1}{2} \\right)^6 = \\left( \\frac{1}{2} \\right)^6 = \\frac{1}{64} \\). So that part is \\( \\frac{1}{64} y^6 \\).\n\nNow, putting it all together: 28 multiplied by \\( \\frac{9}{25}x^2 \\) multiplied by \\( \\frac{1}{64} y^6 \\).\n\nLet me compute the constants first: 28 times \\( \\frac{9}{25} \\) times \\( \\frac{1}{64} \\).\n\nFirst, multiply 28 and 9: 28 * 9 = 252.\n\nThen, 252 divided by 25 is \\( 10.08 \\), but I should keep it as a fraction. 252 divided by 25 is \\( \\frac{252}{25} \\).\n\nThen, \\( \\frac{252}{25} \\times \\frac{1}{64} \\). Multiply the numerators: 252 * 1 = 252, denominators: 25 * 64 = 1600. So that\u0027s \\( \\frac{252}{1600} \\).\n\nSimplify \\( \\frac{252}{1600} \\): Let me see if both numbers can be divided by a common factor. 252 and 1600. Let\u0027s try 4: 252 \u00f7 4 = 63, 1600 \u00f7 4 = 400. So, \\( \\frac{63}{400} \\). Hmm, 63 and 400. 63 is 7*9, 400 is 16*25. They have no common factors besides 1, so that\u0027s the simplified fraction.\n\nTherefore, the coefficient is \\( \\frac{63}{400} \\).\n\nWait, let me double-check my calculations to make sure I didn\u0027t make a mistake. So, 28 * 9 is indeed 252, correct. 252 divided by 25 is 10.08? Wait, 10.08 times 25 is 252, yes. Then 252 divided by 64 is 3.9375, which is \\( \\frac{63}{16} \\). Wait, no, hold on, that doesn\u0027t make sense. Wait, I think I messed up the multiplication.\n\nWait, no, wait. Let\u0027s go back. The constants: 28 * (9/25) * (1/64). Let me compute 28 * 9 first. 28*9: 20*9=180, 8*9=72, so 180+72=252. Then, 252 * (1/25) = 252/25. Then, 252/25 * (1/64) = 252/(25*64) = 252/1600.\n\nThen, 252 divided by 1600: let me divide numerator and denominator by 4: 252 \u00f74=63, 1600 \u00f74=400. So, 63/400. That simplifies correctly.\n\nWait, but 63/400 is 0.1575, and 252/1600 is 0.1575. So that\u0027s correct.\n\nBut wait, let me check 252 divided by 1600:\n\n252 / 1600 = (252 \u00f7 4) / (1600 \u00f74) = 63/400. Yes, correct.\n\nSo, okay, so the coefficient is 63/400.\n\nWait, but let me double-check the binomial coefficient. So, \\( \\binom{8}{6} \\). Since \\( \\binom{8}{6} = \\binom{8}{2} \\) because \\( \\binom{n}{k} = \\binom{n}{n - k} \\). So, \\( \\binom{8}{2} \\) is (8*7)/2 = 28, correct. So that\u0027s correct.\n\nSo, 28 * (9/25) * (1/64) = 28*(9)/(25*64) = 252/1600 = 63/400.\n\nTherefore, the coefficient is 63/400.\n\nWait, let me think again about the signs. In the term, the \\( b^k \\) is \\( (-\\frac{y}{2})^6 \\). Since 6 is even, the negative becomes positive, so that\u0027s correct, it\u0027s positive. So, the coefficient is positive 63/400.\n\nTherefore, after going through all that, I think the coefficient is 63/400.\n\n**Final Answer**\nThe coefficient of \\( x^2 y^6 \\) is \\boxed{\\dfrac{63}{400}}.\n\u003c/think\u003e\n\nTo find the coefficient of \\( x^2 y^6 \\) in the expansion of \\( \\left( \\frac{3}{5}x - \\frac{y}{2} \\right)^8 \\), we use the binomial theorem. The binomial theorem states that:\n\n\\[\n(a + b)^n = \\sum_{k=0}^{n} \\binom{n}{k} a^{n - k} b^{k}\n\\]\n\nHere, \\( a = \\frac{3}{5}x \\), \\( b = -\\frac{y}{2} \\), and \\( n = 8 \\). We need the term where the exponent of \\( x \\) is 2 and the exponent of \\( y \\) is 6. This corresponds to \\( k = 6 \\) because \\( 8 - k = 2 \\) implies \\( k = 6 \\).\n\nThe term is given by:\n\n\\[\n\\binom{8}{6} \\left( \\frac{3}{5}x \\right)^{2} \\left( -\\frac{y}{2} \\right)^{6}\n\\]\n\nCalculating each part:\n\n1. The binomial coefficient \\( \\binom{8}{6} = \\binom{8}{2} = \\frac{8 \\times 7}{2 \\times 1} = 28 \\).\n2. \\( \\left( \\frac{3}{5}x \\right)^2 = \\frac{9}{25}x^2 \\).\n3. \\( \\left( -\\frac{y}{2} \\right)^6 = \\left( \\frac{1}{2} \\right)^6 = \\frac{1}{64} y^6 \\).\n\nCombining these, we get:\n\n\\[\n28 \\times \\frac{9}{25} \\times \\frac{1}{64} = 28 \\times \\frac{9}{1600} = \\frac{252}{1600} = \\frac{63}{400}\n\\]\n\nThus, the coefficient of \\( x^2 y^6 \\) is \\boxed{\\dfrac{63}{400}}.",
"messages": [
{
"content": "What is the coefficient of $x^2y^6$ in the expansion of $\\left(\\frac{3}{5}x-\\frac{y}{2}\\right)^8$? Express your answer as a common fraction.",
"role": "user"
},
{
"content": "To determine the coefficient of \\(x^2y^6\\) in the expansion of \\(\\left(\\frac{3}{5}x - \\frac{y}{2}\\right)^8\\), we can use the binomial theorem.\n\nThe binomial theorem states:\n\\[\n(a + b)^n = \\sum_{k=0}^{n} \\binom{n}{k} a^{n-k} b^k\n\\]\n\nIn this case, \\(a = \\frac{3}{5}x\\), \\(b = -\\frac{y}{2}\\), and \\(n = 8\\).\n\nWe are interested in the term that contains \\(x^2y^6\\). In the general term of the binomial expansion:\n\\[\n\\binom{8}{k} \\left(\\frac{3}{5}x\\right)^{8-k} \\left(-\\frac{y}{2}\\right)^k\n\\]\n\nTo get \\(x^2\\), we need \\(8 - k = 2\\), thus \\(k = 6\\).\n\nSubstituting \\(k = 6\\) into the expression:\n\\[\n\\binom{8}{6} \\left(\\frac{3}{5}x\\right)^{8-6} \\left(-\\frac{y}{2}\\right)^6 = \\binom{8}{6} \\left(\\frac{3}{5}x\\right)^2 \\left(-\\frac{y}{2}\\right)^6\n\\]\n\nNow, we will compute each part of this expression.\n\n1. Calculate the binomial coefficient \\(\\binom{8}{6}\\).\n2. Compute \\(\\left(\\frac{3}{5}\\right)^2\\).\n3. Compute \\(\\left(-\\frac{y}{2}\\right)^6\\).\n4. Combine everything together to get the coefficient of \\(x^2y^6\\).\n\nLet\u0027s compute these in Python.\n```python\nfrom math import comb\n\n# Given values\nn = 8\nk = 6\n\n# Calculate the binomial coefficient\nbinom_coeff = comb(n, k)\n\n# Compute (3/5)^2\na_term = (3/5)**2\n\n# Compute (-1/2)^6\nb_term = (-1/2)**6\n\n# Combine terms to get the coefficient of x^2y^6\ncoefficient = binom_coeff * a_term * b_term\nprint(coefficient)\n```\n```output\n0.1575\n```\nThe coefficient of \\(x^2y^6\\) in the expansion of \\(\\left(\\frac{3}{5}x - \\frac{y}{2}\\right)^8\\) is \\(0.1575\\). To express this as a common fraction, we recognize that:\n\n\\[ 0.1575 = \\frac{1575}{10000} = \\frac{63}{400} \\]\n\nThus, the coefficient can be expressed as:\n\n\\[\n\\boxed{\\frac{63}{400}}\n\\]",
"role": "assistant"
}
],
"model_name": "deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
"problem": "What is the coefficient of $x^2y^6$ in the expansion of $\\left(\\frac{3}{5}x-\\frac{y}{2}\\right)^8$? Express your answer as a common fraction.",
"solution": "To determine the coefficient of \\(x^2y^6\\) in the expansion of \\(\\left(\\frac{3}{5}x - \\frac{y}{2}\\right)^8\\), we can use the binomial theorem.\n\nThe binomial theorem states:\n\\[\n(a + b)^n = \\sum_{k=0}^{n} \\binom{n}{k} a^{n-k} b^k\n\\]\n\nIn this case, \\(a = \\frac{3}{5}x\\), \\(b = -\\frac{y}{2}\\), and \\(n = 8\\).\n\nWe are interested in the term that contains \\(x^2y^6\\). In the general term of the binomial expansion:\n\\[\n\\binom{8}{k} \\left(\\frac{3}{5}x\\right)^{8-k} \\left(-\\frac{y}{2}\\right)^k\n\\]\n\nTo get \\(x^2\\), we need \\(8 - k = 2\\), thus \\(k = 6\\).\n\nSubstituting \\(k = 6\\) into the expression:\n\\[\n\\binom{8}{6} \\left(\\frac{3}{5}x\\right)^{8-6} \\left(-\\frac{y}{2}\\right)^6 = \\binom{8}{6} \\left(\\frac{3}{5}x\\right)^2 \\left(-\\frac{y}{2}\\right)^6\n\\]\n\nNow, we will compute each part of this expression.\n\n1. Calculate the binomial coefficient \\(\\binom{8}{6}\\).\n2. Compute \\(\\left(\\frac{3}{5}\\right)^2\\).\n3. Compute \\(\\left(-\\frac{y}{2}\\right)^6\\).\n4. Combine everything together to get the coefficient of \\(x^2y^6\\).\n\nLet\u0027s compute these in Python.\n```python\nfrom math import comb\n\n# Given values\nn = 8\nk = 6\n\n# Calculate the binomial coefficient\nbinom_coeff = comb(n, k)\n\n# Compute (3/5)^2\na_term = (3/5)**2\n\n# Compute (-1/2)^6\nb_term = (-1/2)**6\n\n# Combine terms to get the coefficient of x^2y^6\ncoefficient = binom_coeff * a_term * b_term\nprint(coefficient)\n```\n```output\n0.1575\n```\nThe coefficient of \\(x^2y^6\\) in the expansion of \\(\\left(\\frac{3}{5}x - \\frac{y}{2}\\right)^8\\) is \\(0.1575\\). To express this as a common fraction, we recognize that:\n\n\\[ 0.1575 = \\frac{1575}{10000} = \\frac{63}{400} \\]\n\nThus, the coefficient can be expressed as:\n\n\\[\n\\boxed{\\frac{63}{400}}\n\\]"
}
```
This subset can be loaded as:
```python
from datasets import load_dataset
ds = load_dataset("wangx0t/numina-deepseek-r1-qwen-7b", "default")
```
Or simply as it follows, since there's only one configuration and is named `default`:
```python
from datasets import load_dataset
ds = load_dataset("wangx0t/numina-deepseek-r1-qwen-7b")
```
</details>
|
Lots-of-LoRAs/task1159_bard_analogical_reasoning_containers
|
Lots-of-LoRAs
|
2024-12-30T23:35:53Z
| 9 | 0 |
[
"task_categories:text-generation",
"annotations_creators:crowdsourced",
"language_creators:crowdsourced",
"language:en",
"license:apache-2.0",
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2204.07705",
"arxiv:2407.00066",
"region:us"
] |
[
"text-generation"
] |
2024-12-30T23:35:51Z
| 0 |
---
annotations_creators:
- crowdsourced
language_creators:
- crowdsourced
language:
- en
license:
- apache-2.0
task_categories:
- text-generation
pretty_name: task1159_bard_analogical_reasoning_containers
dataset_info:
config_name: plain_text
features:
- name: input
dtype: string
- name: output
dtype: string
- name: id
dtype: string
splits:
- name: train
num_examples: 558
- name: valid
num_examples: 70
- name: test
num_examples: 70
---
# Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task1159_bard_analogical_reasoning_containers
## Dataset Description
- **Homepage:** https://github.com/allenai/natural-instructions
- **Paper:** https://arxiv.org/abs/2204.07705
- **Paper:** https://arxiv.org/abs/2407.00066
- **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected])
## Additional Information
### Citation Information
The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it:
```bibtex
@misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions,
title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks},
author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi},
year={2022},
eprint={2204.07705},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2204.07705},
}
```
More details can also be found in the following paper:
```bibtex
@misc{brüelgabrielsson2024compressserveservingthousands,
title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead},
author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon},
year={2024},
eprint={2407.00066},
archivePrefix={arXiv},
primaryClass={cs.DC},
url={https://arxiv.org/abs/2407.00066},
}
```
### Contact Information
For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
|
PatronusAI/glider-multilingual-reward-bench-suite
|
PatronusAI
|
2024-12-18T23:41:51Z
| 67 | 0 |
[
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-11-19T17:15:14Z
| 0 |
---
dataset_info:
features:
- name: prompt
dtype: string
- name: score
dtype: int64
- name: pass_criteria
dtype: string
- name: rubric
dtype: string
splits:
- name: arb_Arab
num_bytes: 12237595
num_examples: 2869
- name: ces_Latn
num_bytes: 10748534
num_examples: 2869
- name: deu_Latn
num_bytes: 11178372
num_examples: 2869
- name: ell_Grek
num_bytes: 14404826
num_examples: 2869
- name: fra_Latn
num_bytes: 11245160
num_examples: 2869
- name: heb_Hebr
num_bytes: 11754840
num_examples: 2869
- name: hin_Deva
num_bytes: 15857179
num_examples: 2869
- name: ind_Latn
num_bytes: 10872895
num_examples: 2869
- name: ita_Latn
num_bytes: 10874456
num_examples: 2869
- name: jpn_Jpan
num_bytes: 11443888
num_examples: 2869
- name: kor_Hang
num_bytes: 11060869
num_examples: 2869
- name: nld_Latn
num_bytes: 10904828
num_examples: 2869
- name: pes_Arab
num_bytes: 12736791
num_examples: 2869
- name: pol_Latn
num_bytes: 10905164
num_examples: 2869
- name: por_Latn
num_bytes: 10826113
num_examples: 2869
- name: ron_Latn
num_bytes: 11069968
num_examples: 2869
- name: rus_Cyrl
num_bytes: 13720140
num_examples: 2869
- name: spa_Latn
num_bytes: 10960266
num_examples: 2869
- name: tur_Latn
num_bytes: 10873535
num_examples: 2869
- name: ukr_Cyrl
num_bytes: 13392298
num_examples: 2869
- name: vie_Latn
num_bytes: 11823251
num_examples: 2869
- name: zho_Hans
num_bytes: 10016686
num_examples: 2869
- name: zho_Hant
num_bytes: 9899172
num_examples: 2869
download_size: 71816921
dataset_size: 268806826
configs:
- config_name: default
data_files:
- split: arb_Arab
path: data/arb_Arab-*
- split: ces_Latn
path: data/ces_Latn-*
- split: deu_Latn
path: data/deu_Latn-*
- split: ell_Grek
path: data/ell_Grek-*
- split: fra_Latn
path: data/fra_Latn-*
- split: heb_Hebr
path: data/heb_Hebr-*
- split: hin_Deva
path: data/hin_Deva-*
- split: ind_Latn
path: data/ind_Latn-*
- split: ita_Latn
path: data/ita_Latn-*
- split: jpn_Jpan
path: data/jpn_Jpan-*
- split: kor_Hang
path: data/kor_Hang-*
- split: nld_Latn
path: data/nld_Latn-*
- split: pes_Arab
path: data/pes_Arab-*
- split: pol_Latn
path: data/pol_Latn-*
- split: por_Latn
path: data/por_Latn-*
- split: ron_Latn
path: data/ron_Latn-*
- split: rus_Cyrl
path: data/rus_Cyrl-*
- split: spa_Latn
path: data/spa_Latn-*
- split: tur_Latn
path: data/tur_Latn-*
- split: ukr_Cyrl
path: data/ukr_Cyrl-*
- split: vie_Latn
path: data/vie_Latn-*
- split: zho_Hans
path: data/zho_Hans-*
- split: zho_Hant
path: data/zho_Hant-*
---
|
pdf2dataset/436f3df84262cc0743d5d8d1acf9368
|
pdf2dataset
|
2024-10-05T11:48:31Z
| 18 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-10-05T11:48:30Z
| 0 |
---
dataset_info:
features:
- name: text
dtype: string
- name: source
dtype: string
splits:
- name: train
num_bytes: 1691
num_examples: 5
download_size: 6842
dataset_size: 1691
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
R0bfried/RAGAS-12000-llama-3-2-1B-eval
|
R0bfried
|
2025-03-20T09:01:32Z
| 14 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-03-20T09:01:28Z
| 0 |
---
dataset_info:
features:
- name: user_input
dtype: string
- name: retrieved_contexts
sequence: string
- name: response
dtype: string
- name: reference
dtype: string
- name: faithfulness
dtype: float64
- name: answer_relevancy
dtype: float64
- name: answer_correctness
dtype: float64
splits:
- name: train
num_bytes: 2604364
num_examples: 150
download_size: 954997
dataset_size: 2604364
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
cijerezg/pick-up-test-v1
|
cijerezg
|
2025-09-25T05:41:35Z
| 64 | 0 |
[
"task_categories:robotics",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:video",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"LeRobot"
] |
[
"robotics"
] |
2025-09-25T05:41:15Z
| 0 |
---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v3.0",
"robot_type": "so101_follower",
"total_episodes": 20,
"total_frames": 8941,
"total_tasks": 1,
"chunks_size": 1000,
"data_files_size_in_mb": 100,
"video_files_size_in_mb": 500,
"fps": 30,
"splits": {
"train": "0:20"
},
"data_path": "data/chunk-{chunk_index:03d}/file-{file_index:03d}.parquet",
"video_path": "videos/{video_key}/chunk-{chunk_index:03d}/file-{file_index:03d}.mp4",
"features": {
"action": {
"dtype": "float32",
"names": [
"shoulder_pan.pos",
"shoulder_lift.pos",
"elbow_flex.pos",
"wrist_flex.pos",
"wrist_roll.pos",
"gripper.pos"
],
"shape": [
6
]
},
"observation.state": {
"dtype": "float32",
"names": [
"shoulder_pan.pos",
"shoulder_lift.pos",
"elbow_flex.pos",
"wrist_flex.pos",
"wrist_roll.pos",
"gripper.pos"
],
"shape": [
6
]
},
"observation.images.wrist": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.height": 480,
"video.width": 640,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"video.fps": 30,
"video.channels": 3,
"has_audio": false
}
},
"observation.images.top_left": {
"dtype": "video",
"shape": [
340,
340,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.height": 340,
"video.width": 340,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"video.fps": 30,
"video.channels": 3,
"has_audio": false
}
},
"observation.images.top_right": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.height": 480,
"video.width": 640,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"video.fps": 30,
"video.channels": 3,
"has_audio": false
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
```
|
ds4sd/PubTables-1M_OTSL
|
ds4sd
|
2023-08-31T16:00:24Z
| 22,884 | 4 |
[
"task_categories:object-detection",
"task_categories:table-to-text",
"license:other",
"size_categories:1M<n<10M",
"format:parquet",
"modality:image",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"arxiv:2305.03393",
"region:us",
"table-structure-recognition",
"table-understanding",
"PDF"
] |
[
"object-detection",
"table-to-text"
] |
2023-08-10T08:21:06Z
| 0 |
---
license: other
pretty_name: PubTables-1M-OTSL
size_categories:
- 100K<n<1M
tags:
- table-structure-recognition
- table-understanding
- PDF
task_categories:
- object-detection
- table-to-text
---
# Dataset Card for PubTables-1M_OTSL
## Dataset Description
- **Homepage:** https://ds4sd.github.io
- **Paper:** https://arxiv.org/pdf/2305.03393
### Dataset Summary
This dataset enables the evaluation of both object detection models and image-to-text methods.
[PubTables-1M](https://github.com/microsoft/table-transformer) is introduced in the publication *"PubTables-1M: Towards Comprehensive Table Extraction From Unstructured Documents"* by Smock et al. The conversion into HF (Hugging Face) and the addition of the OTSL (Optimized Table Structure Language) format is presented in our paper "Optimized Table Tokenization for Table Structure Recognition" by Lysak et al. The dataset includes the original annotations amongst new additions.
### Dataset Structure
* cells: origunal dataset cell groundtruth (content).
* table_bbox: origunal dataset table detection groundtruth.
* otsl: new reduced table structure token format
* html: Generated HTML for PubTables-1M to match PubTabNet, FinTabNet, and SynthTabNet format.
* html_restored: generated HTML from OTSL.
* cols: grid column length.
* rows: grid row length.
* image: PIL image
### OTSL Vocabulary:
**OTSL**: new reduced table structure token format
More information on the OTSL table structure format and its concepts can be read from our paper.
Format of this dataset extends work presented in a paper, and introduces slight modifications:
* "fcel" - cell that has content in it
* "ecel" - cell that is empty
* "lcel" - left-looking cell (to handle horizontally merged cells)
* "ucel" - up-looking cell (to handle vertically merged cells)
* "xcel" - 2d span cells, in this dataset - covers entire area of a merged cell
* "nl" - new line token
### Data Splits
The dataset provides three splits
- `train`
- `val`
- `test`
## Additional Information
### Dataset Curators
The dataset is converted by the [Deep Search team](https://ds4sd.github.io/) at IBM Research.
You can contact us at [[email protected]](mailto:[email protected]).
Curators:
- Maksym Lysak, [@maxmnemonic](https://github.com/maxmnemonic)
- Ahmed Nassar, [@nassarofficial](https://github.com/nassarofficial)
- Christoph Auer, [@cau-git](https://github.com/cau-git)
- Nikos Livathinos, [@nikos-livathinos](https://github.com/nikos-livathinos)
- Peter Staar, [@PeterStaar-IBM](https://github.com/PeterStaar-IBM)
### Citation Information
**Citation to OTSL Paper:**
@article{lysak2023optimized,
title={Optimized Table Tokenization for Table Structure Recognition},
author={Maksym Lysak and Ahmed Nassar and Nikolaos Livathinos and Christoph Auer and Peter Staar},
year={2023},
eprint={2305.03393},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
**Citation to PubTables-1M creators:**
@inproceedings{smock2022pubtables,
title={Pub{T}ables-1{M}: Towards comprehensive table extraction from unstructured documents},
author={Smock, Brandon and Pesala, Rohith and Abraham, Robin},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
pages={4634-4642},
year={2022},
month={June}
}
|
Abeyankar/mtl_7k_inference_ds
|
Abeyankar
|
2025-06-03T20:06:37Z
| 0 | 0 |
[
"task_categories:object-detection",
"language:en",
"size_categories:10K<n<100K",
"format:imagefolder",
"modality:image",
"library:datasets",
"library:mlcroissant",
"library:fiftyone",
"region:us",
"fiftyone",
"image",
"object-detection"
] |
[
"object-detection"
] |
2025-06-03T19:58:48Z
| 0 |
---
annotations_creators: []
language: en
size_categories:
- 10K<n<100K
task_categories:
- object-detection
task_ids: []
pretty_name: train_2844_mcityclean_val_7642_7k
tags:
- fiftyone
- image
- object-detection
commit_message: Hand annotated dataset MTL 7k
overwrite: true
dataset_summary: '
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 10486 samples.
## Installation
If you haven''t already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
from fiftyone.utils.huggingface import load_from_hub
# Load the dataset
# Note: other available arguments include ''max_samples'', etc
dataset = load_from_hub("Abeyankar/mtl_7k_inference_ds")
# Launch the App
session = fo.launch_app(dataset)
```
'
---
# Dataset Card for train_2844_mcityclean_val_7642_7k
<!-- Provide a quick summary of the dataset. -->
This is a [FiftyOne](https://github.com/voxel51/fiftyone) dataset with 10486 samples.
## Installation
If you haven't already, install FiftyOne:
```bash
pip install -U fiftyone
```
## Usage
```python
import fiftyone as fo
from fiftyone.utils.huggingface import load_from_hub
# Load the dataset
# Note: other available arguments include 'max_samples', etc
dataset = load_from_hub("Abeyankar/mtl_7k_inference_ds")
# Launch the App
session = fo.launch_app(dataset)
```
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** [More Information Needed]
- **Funded by [optional]:** [More Information Needed]
- **Shared by [optional]:** [More Information Needed]
- **Language(s) (NLP):** en
- **License:** [More Information Needed]
### Dataset Sources [optional]
<!-- Provide the basic links for the dataset. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo [optional]:** [More Information Needed]
## Uses
<!-- Address questions around how the dataset is intended to be used. -->
### Direct Use
<!-- This section describes suitable use cases for the dataset. -->
[More Information Needed]
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
[More Information Needed]
## Dataset Structure
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
[More Information Needed]
## Dataset Creation
### Curation Rationale
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
### Source Data
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
#### Data Collection and Processing
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
[More Information Needed]
#### Who are the source data producers?
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
[More Information Needed]
### Annotations [optional]
<!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
#### Annotation process
<!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
[More Information Needed]
#### Who are the annotators?
<!-- This section describes the people or systems who created the annotations. -->
[More Information Needed]
#### Personal and Sensitive Information
<!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. -->
[More Information Needed]
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
[More Information Needed]
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations.
## Citation [optional]
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
**BibTeX:**
[More Information Needed]
**APA:**
[More Information Needed]
## Glossary [optional]
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
[More Information Needed]
## More Information [optional]
[More Information Needed]
## Dataset Card Authors [optional]
[More Information Needed]
## Dataset Card Contact
[More Information Needed]
|
Ramitha/unique-records-selected-integrated-gradients
|
Ramitha
|
2025-09-27T08:57:26Z
| 229 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-08-23T17:19:14Z
| 0 |
---
dataset_info:
features:
- name: question
dtype: string
- name: snippet
dtype: string
- name: answer
dtype: string
- name: ILRAlign
dtype: float64
- name: dataset
dtype: string
- name: question_ig_tokens_llama
dtype: string
- name: answer_ig_tokens_llama
dtype: string
- name: question_ig_tokens_mistral
dtype: string
- name: answer_ig_tokens_mistral
dtype: string
- name: question_ig_tokens_falcon
dtype: string
- name: answer_ig_tokens_falcon
dtype: string
- name: question_ig_tokens_gemma
dtype: string
- name: answer_ig_tokens_gemma
dtype: string
- name: question_raw_ig_tokens_falcon
dtype: string
- name: answer_raw_ig_tokens_falcon
dtype: string
- name: question_raw_ig_tokens_llama
dtype: string
- name: answer_raw_ig_tokens_llama
dtype: string
- name: question_raw_ig_tokens_mistral
dtype: string
- name: answer_raw_ig_tokens_mistral
dtype: string
- name: question_raw_ig_tokens_gemma
dtype: string
- name: answer_raw_ig_tokens_gemma
dtype: string
- name: question_iaa_all
dtype: float64
- name: question_iaa_llama_falcon
dtype: float64
- name: question_iaa_llama_gemma
dtype: float64
- name: question_iaa_llama_mistral
dtype: float64
- name: question_iaa_falcon_gemma
dtype: float64
- name: question_iaa_falcon_mistral
dtype: float64
- name: question_iaa_gemma_mistral
dtype: float64
- name: answer_iaa_all
dtype: float64
- name: answer_iaa_llama_falcon
dtype: float64
- name: answer_iaa_llama_gemma
dtype: float64
- name: answer_iaa_llama_mistral
dtype: float64
- name: answer_iaa_falcon_gemma
dtype: float64
- name: answer_iaa_falcon_mistral
dtype: float64
- name: answer_iaa_gemma_mistral
dtype: float64
- name: question_unique_words
dtype: float64
- name: answer_unique_words
dtype: float64
- name: question_answerGenerated_llama
dtype: string
- name: reverse_answer_answerGenerated_llama
dtype: string
- name: question_answerGenerated_falcon
dtype: string
- name: reverse_answer_answerGenerated_falcon
dtype: string
- name: question_answerGenerated_gemma
dtype: string
- name: reverse_answer_answerGenerated_gemma
dtype: string
- name: question_answerGenerated_mistral
dtype: string
- name: reverse_answer_answerGenerated_mistral
dtype: string
- name: ILRAlign_without_context_llama
dtype: float64
- name: ILRAlign_with_context_llama
dtype: float64
- name: ILRAlign_without_context_falcon
dtype: float64
- name: ILRAlign_with_context_falcon
dtype: float64
- name: ILRAlign_without_context_gemma
dtype: float64
- name: ILRAlign_with_context_gemma
dtype: float64
- name: ILRAlign_without_context_mistral
dtype: float64
- name: ILRAlign_with_context_mistral
dtype: float64
- name: ILRAlign_with_problem_context_only_mistral
dtype: float64
- name: ILRAlign_with_answer_context_only_mistral
dtype: float64
- name: ILRAlign_with_problem_context_only_llama
dtype: float64
- name: ILRAlign_with_answer_context_only_llama
dtype: float64
- name: ILRAlign_with_problem_context_only_falcon
dtype: float64
- name: ILRAlign_with_answer_context_only_falcon
dtype: float64
- name: ILRAlign_with_problem_context_only_gemma
dtype: float64
- name: ILRAlign_with_answer_context_only_gemma
dtype: float64
splits:
- name: rawcases
num_bytes: 2063463
num_examples: 54
download_size: 1254341
dataset_size: 2063463
configs:
- config_name: default
data_files:
- split: rawcases
path: data/rawcases-*
---
|
trnguyenai01/FullyIndicators_distillation
|
trnguyenai01
|
2025-04-21T03:06:27Z
| 18 | 0 |
[
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-04-21T03:06:06Z
| 0 |
---
dataset_info:
features:
- name: reports
dtype: string
- name: labels
dtype: string
splits:
- name: train
num_bytes: 243978594
num_examples: 15350
download_size: 44782472
dataset_size: 243978594
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
cchoi1/humaneval-datagen-qwen1.5b_best_att_50_sol_50_20250226_184052
|
cchoi1
|
2025-02-27T05:19:20Z
| 18 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-02-27T05:19:18Z
| 0 |
---
dataset_info:
features:
- name: problem_id
dtype: string
- name: prompt
dtype: string
- name: canonical_solution
dtype: string
- name: chosen
dtype: string
- name: rejected
dtype: string
- name: chosen_attack
dtype: string
- name: chosen_attack_explanation
dtype: string
- name: chosen_solution
dtype: string
- name: chosen_solution_explanation
dtype: string
- name: chosen_solve_rate
dtype: float64
- name: rejected_attack
dtype: string
- name: rejected_attack_explanation
dtype: string
- name: rejected_solution
dtype: string
- name: rejected_solution_explanation
dtype: string
- name: rejected_solve_rate
dtype: float64
splits:
- name: train
num_bytes: 464817
num_examples: 156
download_size: 45399
dataset_size: 464817
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
kenken6696/ALCUNA_meta_affirmative_understood_unfamiliar_for_fix_middle_train
|
kenken6696
|
2024-12-22T14:26:06Z
| 55 | 0 |
[
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-12-22T14:26:02Z
| 0 |
---
dataset_info:
features:
- name: type
dtype: string
- name: form
dtype: string
- name: property_name
dtype: string
- name: related_property_name
dtype: string
- name: question
dtype: string
- name: answer
dtype: string
- name: sentence
dtype: string
- name: meta_tag
dtype: string
- name: meta_sentence
dtype: string
splits:
- name: train
num_bytes: 879893.8397722652
num_examples: 2213
- name: test
num_bytes: 97810.16022773486
num_examples: 246
download_size: 388387
dataset_size: 977704.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
yoonholee/completions_easy-8k-med16k_HMMT2025
|
yoonholee
|
2025-05-13T23:04:46Z
| 0 | 0 |
[
"region:us"
] |
[] |
2025-05-13T23:04:44Z
| 0 |
---
dataset_info:
features:
- name: problem
dtype: string
- name: completions
sequence: string
- name: answer
dtype: string
- name: corrects
sequence: bool
- name: acc
dtype: float64
splits:
- name: train
num_bytes: 10195068
num_examples: 30
download_size: 4017936
dataset_size: 10195068
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
interhin/fora-eval
|
interhin
|
2024-10-18T13:25:20Z
| 18 | 0 |
[
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-10-18T13:08:15Z
| 0 |
---
dataset_info:
features:
- name: repo_id
dtype: string
- name: file_path
dtype: string
- name: content
dtype: string
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 15988254
num_examples: 4377
download_size: 4209542
dataset_size: 15988254
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
gbyuvd/sabrlo-chem-selfies-training
|
gbyuvd
|
2025-09-26T17:52:29Z
| 37 | 0 |
[
"license:cc-by-3.0",
"size_categories:100K<n<1M",
"format:csv",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-09-26T17:39:59Z
| 0 |
---
license: cc-by-3.0
---
# Valid Bioactives and Natural Product SELFIES
~1M valid SELFIES with seq_len<=25 using FastChemTokenizerSelfies, built and curated from ChemBL34 (Zdrazil et al. 2023), COCONUTDB (Sorokina et al. 2021), and Supernatural3 (Gallo et al. 2023) dataset.
## Processing
The original dataset was processed by filtering max_seq_len<=25 for training ChemMiniQ3-SAbRLo. The cleaned dataset was then split into 6 approximately equal chunks for training in limited compute.
Curated by: gbyuvd
## References
### BibTeX
#### COCONUTDB
```bibtex
@article{sorokina2021coconut,
title={COCONUT online: Collection of Open Natural Products database},
author={Sorokina, Maria and Merseburger, Peter and Rajan, Kohulan and Yirik, Mehmet Aziz and Steinbeck, Christoph},
journal={Journal of Cheminformatics},
volume={13},
number={1},
pages={2},
year={2021},
doi={10.1186/s13321-020-00478-9}
}
```
#### ChemBL34
```bibtex
@article{zdrazil2023chembl,
title={The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods},
author={Zdrazil, Barbara and Felix, Eloy and Hunter, Fiona and Manners, Emma J and Blackshaw, James and Corbett, Sybilla and de Veij, Marleen and Ioannidis, Harris and Lopez, David Mendez and Mosquera, Juan F and Magarinos, Maria Paula and Bosc, Nicolas and Arcila, Ricardo and Kizil{\"o}ren, Tevfik and Gaulton, Anna and Bento, A Patr{\'i}cia and Adasme, Melissa F and Monecke, Peter and Landrum, Gregory A and Leach, Andrew R},
journal={Nucleic Acids Research},
year={2023},
volume={gkad1004},
doi={10.1093/nar/gkad1004}
}
@misc{chembl34,
title={ChemBL34},
year={2023},
doi={10.6019/CHEMBL.database.34}
}
```
#### SuperNatural3
```bibtex
@article{Gallo2023,
author = {Gallo, K and Kemmler, E and Goede, A and Becker, F and Dunkel, M and Preissner, R and Banerjee, P},
title = {{SuperNatural 3.0-a database of natural products and natural product-based derivatives}},
journal = {Nucleic Acids Research},
year = {2023},
month = jan,
day = {6},
volume = {51},
number = {D1},
pages = {D654-D659},
doi = {10.1093/nar/gkac1008}
}
```
|
jchun/so100_pickplace_small_20250322_160953
|
jchun
|
2025-03-23T00:44:11Z
| 25 | 0 |
[
"task_categories:robotics",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:timeseries",
"modality:video",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"LeRobot",
"pickplace"
] |
[
"robotics"
] |
2025-03-22T23:03:54Z
| 0 |
---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
- pickplace
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.1",
"robot_type": "so100",
"total_episodes": 4,
"total_frames": 3323,
"total_tasks": 1,
"total_videos": 12,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 30,
"splits": {
"train": "0:4"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"action": {
"dtype": "float32",
"shape": [
12
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper",
"cv_shoulder_pan",
"cv_shoulder_lift",
"cv_elbow_flex",
"cv_wrist_flex",
"cv_wrist_roll",
"cv_gripper"
]
},
"observation.state": {
"dtype": "float32",
"shape": [
12
],
"names": [
"main_shoulder_pan",
"main_shoulder_lift",
"main_elbow_flex",
"main_wrist_flex",
"main_wrist_roll",
"main_gripper",
"cv_shoulder_pan",
"cv_shoulder_lift",
"cv_elbow_flex",
"cv_wrist_flex",
"cv_wrist_roll",
"cv_gripper"
]
},
"observation.images.main": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "h264",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"observation.images.cv": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "h264",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"observation.images.webcam": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 30.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "h264",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
```
|
Turbo-AI/train-multi-negatives-v2
|
Turbo-AI
|
2024-11-17T14:19:35Z
| 17 | 0 |
[
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-11-17T14:19:12Z
| 0 |
---
dataset_info:
features:
- name: id
dtype: int64
- name: text
dtype: string
- name: relevant
list:
- name: id
dtype: int64
- name: text
dtype: string
- name: not_relevant
list:
- name: id
dtype: int64
- name: text
dtype: string
splits:
- name: train
num_bytes: 918366297
num_examples: 118956
download_size: 321049144
dataset_size: 918366297
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
rishitdagli/lrmm_full
|
rishitdagli
|
2025-06-07T01:56:55Z
| 0 | 0 |
[
"size_categories:1K<n<10K",
"format:parquet",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-06-07T01:43:06Z
| 0 |
---
dataset_info:
features:
- name: inputs
sequence:
sequence: float32
- name: outputs
sequence:
sequence:
sequence:
sequence: float32
splits:
- name: train
num_bytes: 34504560000
num_examples: 10000
download_size: 34238220403
dataset_size: 34504560000
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_32dc5455-b053-4c95-94dd-2400e610d4e9
|
argilla-internal-testing
|
2024-10-11T09:24:56Z
| 21 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-10-11T09:24:55Z
| 0 |
---
dataset_info:
features:
- name: text
dtype: string
- name: label
dtype:
class_label:
names:
'0': positive
'1': negative
splits:
- name: train
num_bytes: 111
num_examples: 3
download_size: 1454
dataset_size: 111
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
bwang0911/reasoning_pairs_s2orc
|
bwang0911
|
2025-03-28T09:33:30Z
| 16 | 0 |
[
"size_categories:100K<n<1M",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-03-28T09:33:24Z
| 0 |
---
dataset_info:
features:
- name: title
dtype: string
- name: body
dtype: string
- name: valid
dtype: bool
- name: reason
dtype: string
splits:
- name: train
num_bytes: 106573680
num_examples: 100000
download_size: 61811728
dataset_size: 106573680
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ThatsGroes/synthetic-from-text-mathing-short-tasks-swedish
|
ThatsGroes
|
2025-01-31T09:30:43Z
| 21 | 0 |
[
"language:sv",
"license:mit",
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"arxiv:2401.00368",
"region:us"
] |
[] |
2025-01-25T09:51:51Z
| 0 |
---
dataset_info:
features:
- name: response
dtype: string
- name: model
dtype: string
- name: prompt
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 50422736
num_examples: 50000
download_size: 6177357
dataset_size: 50422736
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: mit
language:
- sv
---
# Thanks to Arrow Denmark and Nvidia for sponsoring the compute used to generate this dataset
The purpose of this dataset is to pre- or post-train embedding models for text matching tasks on short texts.
The dataset consists of 100,000 samples generated with gemma-2-27b-it.
The column "prompt" shows the prompt given to the LLM and "response" shows the LLM output.
Each sample in the dataset was generated from a seed task randomly sampled from https://huggingface.co/datasets/ThatsGroes/text-matching-short-tasks-processed
The data generation process described in this paper was followed:
https://arxiv.org/pdf/2401.00368
Compute sponsored by Arrow Denmark and Nvidia through Danish Data Science Community.
|
tmpmodelsave/beta01llamasft_math_ift_balanced_dpo_moredata_400tmp10
|
tmpmodelsave
|
2025-01-22T08:38:43Z
| 15 | 0 |
[
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-01-22T08:38:41Z
| 0 |
---
dataset_info:
features:
- name: idx
dtype: int64
- name: gt
dtype: string
- name: prompt
dtype: string
- name: level
dtype: string
- name: type
dtype: string
- name: solution
dtype: string
- name: my_solu
sequence: string
- name: pred
sequence: string
- name: rewards
sequence: bool
splits:
- name: train
num_bytes: 43372827
num_examples: 15000
download_size: 15914121
dataset_size: 43372827
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
thusinh1969/EraX-Cosent_LanhGPTV2_30NOV2024_4.4M
|
thusinh1969
|
2024-12-01T01:56:45Z
| 23 | 0 |
[
"size_categories:1M<n<10M",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-12-01T01:39:11Z
| 0 |
---
dataset_info:
features:
- name: sentence1
dtype: string
- name: sentence2
dtype: string
- name: score
dtype: float64
- name: similarity
dtype: float64
- name: type
dtype: string
- name: hard
dtype: int64
splits:
- name: train
num_bytes: 21363010272.562458
num_examples: 4399028
- name: test
num_bytes: 194252096.3500342
num_examples: 40000
- name: eval
num_bytes: 48563024.08750855
num_examples: 10000
download_size: 11579474915
dataset_size: 21605825393.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
- split: eval
path: data/eval-*
---
|
james-1111/x_dataset_0303241
|
james-1111
|
2025-06-24T11:55:57Z
| 1,077 | 0 |
[
"task_categories:text-classification",
"task_categories:token-classification",
"task_categories:question-answering",
"task_categories:summarization",
"task_categories:text-generation",
"task_ids:sentiment-analysis",
"task_ids:topic-classification",
"task_ids:named-entity-recognition",
"task_ids:language-modeling",
"task_ids:text-scoring",
"task_ids:multi-class-classification",
"task_ids:multi-label-classification",
"task_ids:extractive-qa",
"task_ids:news-articles-summarization",
"multilinguality:multilingual",
"source_datasets:original",
"license:mit",
"size_categories:10M<n<100M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[
"text-classification",
"token-classification",
"question-answering",
"summarization",
"text-generation"
] |
2025-01-25T07:11:23Z
| 0 |
---
license: mit
multilinguality:
- multilingual
source_datasets:
- original
task_categories:
- text-classification
- token-classification
- question-answering
- summarization
- text-generation
task_ids:
- sentiment-analysis
- topic-classification
- named-entity-recognition
- language-modeling
- text-scoring
- multi-class-classification
- multi-label-classification
- extractive-qa
- news-articles-summarization
---
# Bittensor Subnet 13 X (Twitter) Dataset
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
<center>
<img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer">
</center>
## Dataset Description
- **Repository:** james-1111/x_dataset_0303241
- **Subnet:** Bittensor Subnet 13
- **Miner Hotkey:** 5HMi2tcDTWxckR86mn6d4cmM3dCGwoRdA4PvQNLcnSqjw86k
### Miner Data Compliance Agreement
In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md).
### Dataset Summary
This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks.
For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe).
### Supported Tasks
The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs.
For example:
- Sentiment Analysis
- Trend Detection
- Content Analysis
- User Behavior Modeling
### Languages
Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation.
## Dataset Structure
### Data Instances
Each instance represents a single tweet with the following fields:
### Data Fields
- `text` (string): The main content of the tweet.
- `label` (string): Sentiment or topic category of the tweet.
- `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present.
- `datetime` (string): The date when the tweet was posted.
- `username_encoded` (string): An encoded version of the username to maintain user privacy.
- `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present.
### Data Splits
This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp.
## Dataset Creation
### Source Data
Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines.
### Personal and Sensitive Information
All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information.
## Considerations for Using the Data
### Social Impact and Biases
Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population.
### Limitations
- Data quality may vary due to the decentralized nature of collection and preprocessing.
- The dataset may contain noise, spam, or irrelevant content typical of social media platforms.
- Temporal biases may exist due to real-time collection methods.
- The dataset is limited to public tweets and does not include private accounts or direct messages.
- Not all tweets contain hashtags or URLs.
## Additional Information
### Licensing Information
The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use.
### Citation Information
If you use this dataset in your research, please cite it as follows:
```
@misc{james-11112025datauniversex_dataset_0303241,
title={The Data Universe Datasets: The finest collection of social media data the web has to offer},
author={james-1111},
year={2025},
url={https://huggingface.co/datasets/james-1111/x_dataset_0303241},
}
```
### Contributions
To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms.
## Dataset Statistics
[This section is automatically updated]
- **Total Instances:** 5415872
- **Date Range:** 2025-01-02T00:00:00Z to 2025-06-14T00:00:00Z
- **Last Updated:** 2025-06-24T11:55:56Z
### Data Distribution
- Tweets with hashtags: 4.82%
- Tweets without hashtags: 95.18%
### Top 10 Hashtags
For full statistics, please refer to the `stats.json` file in the repository.
| Rank | Topic | Total Count | Percentage |
|------|-------|-------------|-------------|
| 1 | NULL | 1112737 | 80.99% |
| 2 | #riyadh | 24082 | 1.75% |
| 3 | #マテムり | 15966 | 1.16% |
| 4 | #pbbcollab6thduoeviction | 11023 | 0.80% |
| 5 | #tiktok | 8638 | 0.63% |
| 6 | #箱根駅伝 | 8147 | 0.59% |
| 7 | #thameposeriesep9 | 7605 | 0.55% |
| 8 | #wtcfinal2025 | 6398 | 0.47% |
| 9 | #first_showcase | 6311 | 0.46% |
| 10 | #ad | 5465 | 0.40% |
## Update History
| Date | New Instances | Total Instances |
|------|---------------|-----------------|
| 2025-01-25T07:07:31Z | 453526 | 453526 |
| 2025-01-25T07:07:59Z | 453526 | 907052 |
| 2025-01-25T07:08:28Z | 453526 | 1360578 |
| 2025-01-25T07:08:56Z | 446896 | 1807474 |
| 2025-01-25T07:09:24Z | 446896 | 2254370 |
| 2025-01-25T07:09:52Z | 446896 | 2701266 |
| 2025-01-25T07:10:21Z | 446896 | 3148162 |
| 2025-01-25T07:10:51Z | 446896 | 3595058 |
| 2025-01-25T07:11:21Z | 446896 | 4041954 |
| 2025-01-25T07:11:51Z | 446896 | 4488850 |
| 2025-02-18T03:41:26Z | 467290 | 4956140 |
| 2025-06-24T11:55:56Z | 459732 | 5415872 |
|
aliazn/mathchatsync-temp
|
aliazn
|
2025-05-16T21:10:23Z
| 0 | 0 |
[
"region:us"
] |
[] |
2025-05-16T21:10:13Z
| 0 |
---
dataset_info:
features:
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 377089336
num_examples: 144978
download_size: 159608385
dataset_size: 377089336
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
JunxiongWang/MATH_SFT
|
JunxiongWang
|
2025-04-15T18:08:20Z
| 92 | 0 |
[
"size_categories:10M<n<100M",
"format:parquet",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-04-15T18:05:29Z
| 0 |
---
dataset_info:
- config_name: tokenized_llama31
features:
- name: input_ids
sequence: int32
- name: labels
sequence: int64
- name: attention_mask
sequence: int8
splits:
- name: train
num_examples: 19089792
configs:
- config_name: tokenized_llama31
data_files:
- split: train
path: tokenized_llama31/train-*
---
|
mlfoundations-dev/instruction_filtering_scale_up_math_base_embedding_filter_mean_8K
|
mlfoundations-dev
|
2025-03-07T20:44:31Z
| 98 | 0 |
[
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-03-07T20:31:09Z
| 0 |
---
dataset_info:
features:
- name: instruction_seed
dtype: string
- name: source
dtype: string
- name: embeddings
sequence: float64
- name: mean_positive_score
dtype: float64
- name: mean_negative_score
dtype: float64
- name: difference_score
dtype: float64
- name: reasoning
dtype: string
- name: deepseek_solution
dtype: string
- name: __original_row_idx
dtype: int64
- name: final_reasoning_trace
dtype: string
- name: conversations
list:
- name: from
dtype: string
- name: value
dtype: string
splits:
- name: train
num_bytes: 636139670
num_examples: 8000
download_size: 290540569
dataset_size: 636139670
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
shuohsuan/grasp_data_090_099
|
shuohsuan
|
2025-06-16T08:53:26Z
| 0 | 0 |
[
"task_categories:robotics",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:timeseries",
"modality:video",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"LeRobot"
] |
[
"robotics"
] |
2025-06-16T07:25:13Z
| 0 |
---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.1",
"robot_type": "so100_follower",
"total_episodes": 3,
"total_frames": 2488,
"total_tasks": 1,
"total_videos": 6,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 30,
"splits": {
"train": "0:3"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"action": {
"dtype": "float32",
"shape": [
6
],
"names": [
"shoulder_pan.pos",
"shoulder_lift.pos",
"elbow_flex.pos",
"wrist_flex.pos",
"wrist_roll.pos",
"gripper.pos"
]
},
"observation.state": {
"dtype": "float32",
"shape": [
6
],
"names": [
"shoulder_pan.pos",
"shoulder_lift.pos",
"elbow_flex.pos",
"wrist_flex.pos",
"wrist_roll.pos",
"gripper.pos"
]
},
"observation.images.top": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.height": 480,
"video.width": 640,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"video.fps": 30,
"video.channels": 3,
"has_audio": false
}
},
"observation.images.wrist": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.height": 480,
"video.width": 640,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"video.fps": 30,
"video.channels": 3,
"has_audio": false
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
```
|
mingye94/trial0_fixed_5rules_rm_training_data
|
mingye94
|
2025-01-21T02:26:49Z
| 19 | 0 |
[
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-01-21T02:26:49Z
| 0 |
---
dataset_info:
features:
- name: prompt
dtype: string
- name: chosen
dtype: string
- name: rejected
dtype: string
splits:
- name: train
num_bytes: 2351567
num_examples: 1000
download_size: 1336836
dataset_size: 2351567
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
perfectName/rse_test
|
perfectName
|
2025-06-20T11:25:56Z
| 0 | 0 |
[
"license:apache-2.0",
"region:us"
] |
[] |
2025-06-20T11:25:15Z
| 0 |
---
license: apache-2.0
---
|
TOBEAI/KOR_Merged_data
|
TOBEAI
|
2024-10-02T07:28:27Z
| 20 | 0 |
[
"size_categories:1M<n<10M",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-10-02T00:43:07Z
| 0 |
---
dataset_info:
features:
- name: instruction
dtype: string
- name: input
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 1316148258.1879513
num_examples: 1702522
download_size: 739948626
dataset_size: 1316148258.1879513
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
OpenFinAL/FINGPT_QA_meta3B-train-dataset
|
OpenFinAL
|
2025-06-07T20:50:25Z
| 0 | 0 |
[
"region:us"
] |
[] |
2025-06-07T20:50:22Z
| 0 |
---
dataset_info:
features:
- name: Question
dtype: string
- name: Answer
dtype: string
splits:
- name: train
num_bytes: 16959815.1
num_examples: 15399
download_size: 10216321
dataset_size: 16959815.1
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
DataTonic/climate-guard-thinking_data_nocomment_qwen_toxic_agent
|
DataTonic
|
2025-02-14T07:33:51Z
| 20 | 0 |
[
"task_categories:text-classification",
"task_categories:zero-shot-classification",
"language:en",
"license:mit",
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us",
"climate"
] |
[
"text-classification",
"zero-shot-classification"
] |
2025-02-09T14:54:23Z
| 0 |
---
dataset_info:
features:
- name: quote
dtype: string
- name: label
dtype: string
- name: __index_level_0__
dtype: int64
splits:
- name: train
num_bytes: 1487214
num_examples: 1548
download_size: 742242
dataset_size: 1487214
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
license: mit
task_categories:
- text-classification
- zero-shot-classification
language:
- en
tags:
- climate
---
# Toxic Agent - Phi4 Synthetic Data : Magpie-like Climate Disinformation Dataset
## Dataset Description
### Overview
This dataset contains synthetic climate change-related statements, including various forms of climate disinformation and denial. It was created by generating variations and transformations of real climate-related statements, producing a diverse set of synthetic examples across different categories of climate disinformation from the [climate-guard-synthetic_data_qwen_toxic_agent](https://huggingface.co/datasets/Tonic/climate-guard-synthetic_data_qwen_toxic_agent) dataset.
Total examples from `qwen2.5:14b-instruct-q4_K_M`: 1,548 entries
### Labels
The dataset includes the following categories of climate-related statements:
1. `1_not_happening`: Denial of climate change occurrence
2. `2_not_human`: Denial of human influence on climate
3. `3_not_bad`: Minimization of climate change impacts
4. `4_solutions_harmful_unnecessary`: Opposition to climate solutions
5. `5_science_is_unreliable`: Questioning climate science
6. `6_proponents_biased`: Criticism of climate scientists
7. `7_fossil_fuels_needed`: Pro-fossil fuel advocacy
### Data Fields
- `quote`: The synthetic climate-related statement (text)
- `label`: The category of climate disinformation (string)
### Data Splits
This dataset is provided as a single split containing all examples.
## Intended Uses
This dataset is intended for:
- Research on climate disinformation detection
- Development of content moderation systems
- Study of climate denial narratives
- Training classification models for climate-related content
## Limitations & Ethical Considerations
- This dataset contains synthetic examples of climate disinformation
- Should not be used to spread or promote climate denial
- Intended for research and educational purposes only
- May contain biases from the generation process
## Citation & Attribution
If you use this dataset, please cite:
```bibtex
@dataset{synthetic_climate_disinfo_2024,
author = {[Joseph Pollack]},
title = {Toxic Agent - Qwen Synthetic Data 2},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/datasets/DataTonic/climate-guard-thinking_data_nocomment_qwen_toxic_agent}
}
```
## Dataset Creation
### Data Generation Process
The dataset was created using:
1. Base examples from the QuotaClimat/frugalaichallenge-text-train dataset
2. Generation of variations using "qwen2.5:14b-instruct-q4_K_M"
3. Preservation of original label categories
4. Multiple generation strategies for diversity
#### Prompts
```python
self.unified_prompt = """follow the following instructions :
{quote}
{category_instructions}, DO NOT PROVIDE ANY ADDITIONAL COMMENT produce final answer:"""
```
```python
category_instructions = {
'1_not_happening': "based on the above, produce a statement that denies the occurrence of global warming and its effects. The statement should argue against evidence of melting ice, extreme weather, or rising sea levels. It may point to cold weather as counter-evidence:",
'2_not_human': "based on the above, produce a statement that denies human responsibility in climate change. The focus should be on arguing that greenhouse gases from human activities are not causing climate change. Emphasize natural climate variability:",
'3_not_bad': "based on the above, Produce a statement that minimizes or denies negative impacts of climate change. The statement should suggest that climate change impacts will be minimal or even beneficial to society and the environment:",
'4_solutions_harmful_unnecessary': "based on the above, produce a statement arguing that climate solutions are harmful or unnecessary. Focus on the potential negative economic or social impacts of climate policies and why they shouldn't be implemented:",
'5_science_is_unreliable': "based on the above, Emphasize uncertainties in climate research, suggest the science is unsound, unreliable, or biased. Question methodologies and conclusions:",
'6_proponents_biased': "based on the above, Produce a statement attacking climate scientists and activists. Portray them as alarmist, biased, wrong, hypocritical, corrupt, or politically motivated. Question their credibility and intentions:",
'7_fossil_fuels_needed': "based on the above, Generate a statement promoting the necessity of fossil fuels. Emphasize their importance for economic growth, prosperity, and maintaining living standards. Argue why they cannot be replaced:"
}
```
### Preprocessing
- Removed irrelevant examples
- Compose the prompt according to the above
- Maintained label consistency
## Dataset Structure
```python
DatasetDict({
'train': Dataset({
features: ['quote', 'label'],
num_rows: 1548
})
})
```
## Additional Information
### Dataset Curators
[Tonic](https://huggingface.co/Tonic) / [Datatonic](https://huggingface.co/DataTonic)
### Licensing Information
This dataset is released under the MIT License.
### Feedback & Contributions
For questions, feedback, or contributions, please:
1. Open an issue on the dataset repository
2. Contact the dataset maintainers
3. Submit a pull request with improvements
## Example Usage
```python
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("Tonic/climate-guard-thinking_data_nocomment_qwen_toxic_agent")
# Access examples
for example in dataset['train'].select(range(3)):
print(f"Quote: {example['quote']}")
print(f"Label: {example['label']}")
print("---")
```
## Version History
- v1.0.0 (2024-02-08): Initial release with 1,548 synthetic examples
## Acknowledgements
- Based on the QuotaClimat/frugalaichallenge-text-train dataset
- Generated using RunPod infrastructure
- Developed for climate disinformation research
|
villekuosmanen/agilex_put_paper_cup_jsh
|
villekuosmanen
|
2025-02-13T05:17:47Z
| 24 | 0 |
[
"task_categories:robotics",
"license:apache-2.0",
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:timeseries",
"modality:video",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us",
"LeRobot"
] |
[
"robotics"
] |
2025-02-13T05:17:27Z
| 0 |
---
license: apache-2.0
task_categories:
- robotics
tags:
- LeRobot
configs:
- config_name: default
data_files: data/*/*.parquet
---
This dataset was created using [LeRobot](https://github.com/huggingface/lerobot).
## Dataset Description
- **Homepage:** [More Information Needed]
- **Paper:** [More Information Needed]
- **License:** apache-2.0
## Dataset Structure
[meta/info.json](meta/info.json):
```json
{
"codebase_version": "v2.0",
"robot_type": "arx5_bimanual",
"total_episodes": 20,
"total_frames": 4643,
"total_tasks": 1,
"total_videos": 60,
"total_chunks": 1,
"chunks_size": 1000,
"fps": 25,
"splits": {
"train": "0:20"
},
"data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet",
"video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4",
"features": {
"action": {
"dtype": "float32",
"shape": [
14
]
},
"observation.state": {
"dtype": "float32",
"shape": [
14
]
},
"observation.effort": {
"dtype": "float32",
"shape": [
14
]
},
"observation.images.cam_high": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 25.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"observation.images.cam_left_wrist": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 25.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"observation.images.cam_right_wrist": {
"dtype": "video",
"shape": [
480,
640,
3
],
"names": [
"height",
"width",
"channels"
],
"info": {
"video.fps": 25.0,
"video.height": 480,
"video.width": 640,
"video.channels": 3,
"video.codec": "av1",
"video.pix_fmt": "yuv420p",
"video.is_depth_map": false,
"has_audio": false
}
},
"timestamp": {
"dtype": "float32",
"shape": [
1
],
"names": null
},
"frame_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"episode_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"index": {
"dtype": "int64",
"shape": [
1
],
"names": null
},
"task_index": {
"dtype": "int64",
"shape": [
1
],
"names": null
}
}
}
```
## Citation
**BibTeX:**
```bibtex
[More Information Needed]
```
|
gcp-acp/flipkart-dataprep
|
gcp-acp
|
2024-11-21T00:37:24Z
| 31 | 0 |
[
"license:cc-by-sa-4.0",
"region:us"
] |
[] |
2024-11-21T00:37:22Z
| 0 |
---
license: cc-by-sa-4.0
---
- Generated prompt data, [Built with Llama 3.1](https://www.llama.com/llama3_1/license/)
- [Data Preparation](https://github.com/GoogleCloudPlatform/accelerated-platforms/tree/main/docs/use-cases/model-fine-tuning-pipeline#data-preparation)
- [Raw Data](https://www.kaggle.com/datasets/PromptCloudHQ/flipkart-products/data)
|
dgambettaphd/D_llm2_gen10_run0_X_doc1000_synt64_tot128_SYNLAST
|
dgambettaphd
|
2025-04-28T10:24:41Z
| 18 | 0 |
[
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-04-28T10:24:38Z
| 0 |
---
dataset_info:
features:
- name: id
dtype: int64
- name: text
dtype: string
- name: dataset
dtype: string
- name: gen
dtype: int64
- name: synt
dtype: int64
- name: TPP
dtype: float64
- name: MPP
dtype: float64
- name: FTP
dtype: float64
splits:
- name: train
num_bytes: 7829037
num_examples: 14000
download_size: 4616053
dataset_size: 7829037
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
luca0621/multi_turn_soda_seperate_rewards_trajectory_normalized
|
luca0621
|
2025-06-10T11:10:00Z
| 0 | 0 |
[
"size_categories:10K<n<100K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-06-10T11:09:52Z
| 0 |
---
dataset_info:
features:
- name: context
dtype: string
- name: query
dtype: string
- name: response
dtype: string
- name: pref
dtype: int64
- name: reward
dtype: float64
- name: original_reward
dtype: float64
- name: whole_dialogue
dtype: string
- name: turn_index
dtype: int64
- name: dialogue_length
dtype: int64
- name: trajectory_return
dtype: float64
- name: original_trajectory_return
dtype: float64
splits:
- name: train
num_bytes: 83628998
num_examples: 67108
- name: test
num_bytes: 11316680
num_examples: 16778
download_size: 41498459
dataset_size: 94945678
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
rlhn/default-100K
|
rlhn
|
2025-03-19T20:09:02Z
| 18 | 0 |
[
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-03-19T20:08:17Z
| 0 |
---
dataset_info:
features:
- name: query_id
dtype: string
- name: query
dtype: string
- name: positive_passages
list:
- name: docid
dtype: string
- name: text
dtype: string
- name: title
dtype: string
- name: negative_passages
list:
- name: docid
dtype: string
- name: text
dtype: string
- name: title
dtype: string
- name: subset
dtype: string
splits:
- name: train
num_bytes: 1778484241
num_examples: 96167
download_size: 1026965735
dataset_size: 1778484241
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
ZixuanKe/economy_fineweb_phi3.5_unsup_chunk_2
|
ZixuanKe
|
2024-10-24T00:17:33Z
| 18 | 0 |
[
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-10-22T23:51:25Z
| 0 |
---
dataset_info:
features:
- name: text
dtype: string
- name: topic
dtype: string
- name: title
dtype: string
- name: input_ids
sequence: int32
- name: attention_mask
sequence: int8
- name: special_tokens_mask
sequence: int8
- name: chunk
dtype: int64
- name: fineweb_justification
dtype: string
- name: fineweb_score
dtype: int64
splits:
- name: train
num_bytes: 94124434
num_examples: 1445
download_size: 36108144
dataset_size: 94124434
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
alea-institute/kl3m-filter-data-dotgov-www.aoc.gov
|
alea-institute
|
2025-02-03T22:18:44Z
| 15 | 0 |
[
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-02-03T22:18:42Z
| 0 |
---
dataset_info:
features:
- name: identifier
dtype: string
- name: dataset
dtype: string
- name: mime_type
dtype: string
- name: score
dtype: float64
- name: tokens
sequence: int64
splits:
- name: train
num_bytes: 21131384
num_examples: 1936
download_size: 5115965
dataset_size: 21131384
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Pamela153/swe-gym-test-getmoto
|
Pamela153
|
2025-09-24T22:53:40Z
| 49 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-09-24T22:30:12Z
| 0 |
---
dataset_info:
features:
- name: instance_id
dtype: string
- name: hints_text
dtype: string
- name: patch
dtype: string
- name: test_patch
dtype: string
- name: created_at
dtype: string
- name: problem_statement
dtype: string
- name: repo
dtype: string
- name: base_commit
dtype: string
- name: version
dtype: string
- name: PASS_TO_PASS
sequence: string
- name: FAIL_TO_PASS
sequence: string
- name: eval_script
dtype: string
splits:
- name: train
num_bytes: 805074
num_examples: 25
download_size: 260205
dataset_size: 805074
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
mengdili/Marco-7B-Pruned-K-16-k-8-epoch-1-log-noclipping-nonorm_math_test_8192_normal_K-1
|
mengdili
|
2025-04-13T13:29:34Z
| 18 | 0 |
[
"size_categories:n<1K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-04-13T13:29:30Z
| 0 |
---
dataset_info:
features:
- name: problem
dtype: string
- name: ground_truth_solution
dtype: string
- name: ground_truth_answer
dtype: string
- name: pre_generated_steps
sequence: string
- name: pre_generated_answer
dtype: string
- name: pre_generated_verifier_score
dtype: float64
- name: prompt
list:
- name: content
dtype: string
- name: role
dtype: string
- name: solution
dtype: string
- name: answer
dtype: string
splits:
- name: train
num_bytes: 1901530
num_examples: 458
download_size: 902208
dataset_size: 1901530
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
jxie/droid
|
jxie
|
2024-11-15T23:14:19Z
| 17 | 0 |
[
"size_categories:100K<n<1M",
"format:parquet",
"library:datasets",
"library:dask",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2024-11-15T19:23:57Z
| 0 |
---
dataset_info:
features:
- name: video
dtype: video
splits:
- name: train
num_bytes: 16142033.0
num_examples: 276699
download_size: 416277616456
dataset_size: 16142033.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
automated-analytics/gretel-pii-coarse-grained-chatml
|
automated-analytics
|
2025-06-09T03:08:26Z
| 0 | 0 |
[
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-06-09T03:08:09Z
| 0 |
---
dataset_info:
features:
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 188028367
num_examples: 50000
- name: validation
num_bytes: 18793571
num_examples: 5000
- name: test
num_bytes: 18807450
num_examples: 5000
download_size: 14633055
dataset_size: 225629388
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
---
|
zjhhhh/baseline_0
|
zjhhhh
|
2025-09-28T02:59:01Z
| 30 | 0 |
[
"size_categories:1K<n<10K",
"format:parquet",
"modality:tabular",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-09-28T02:58:57Z
| 0 |
---
dataset_info:
features:
- name: prompt
dtype: string
- name: requirements
dtype: string
- name: selection_response_1
dtype: string
- name: selection_response_2
dtype: string
- name: selection_response_3
dtype: string
- name: base_response_1
dtype: string
- name: base_response_2
dtype: string
- name: current_response_1
dtype: string
- name: current_response_2
dtype: string
- name: selection_1_mean
dtype: float64
- name: selection_1_majority
dtype: float64
- name: base_1_mean
dtype: float64
- name: base_1_majority
dtype: float64
- name: current_1_mean
dtype: float64
- name: current_1_majority
dtype: float64
- name: selection_2_mean
dtype: float64
- name: selection_2_majority
dtype: float64
- name: base_2_mean
dtype: float64
- name: base_2_majority
dtype: float64
- name: current_2_mean
dtype: float64
- name: current_2_majority
dtype: float64
- name: selection_3_mean
dtype: float64
- name: selection_3_majority
dtype: float64
splits:
- name: train
num_bytes: 46001070
num_examples: 2000
download_size: 23456998
dataset_size: 46001070
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
CompassioninMachineLearning/2krows_20percentours_80percentalpaca
|
CompassioninMachineLearning
|
2025-05-14T18:55:25Z
| 0 | 0 |
[
"size_categories:1K<n<10K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-05-14T18:55:23Z
| 0 |
---
dataset_info:
features:
- name: instruction
dtype: string
- name: output
dtype: string
splits:
- name: train
num_bytes: 1059189.4611528823
num_examples: 1795
- name: test
num_bytes: 118015.5388471178
num_examples: 200
download_size: 706274
dataset_size: 1177205.0
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
---
|
burman-ai/wikitext2-v1
|
burman-ai
|
2025-04-21T07:43:20Z
| 20 | 0 |
[
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-04-21T07:43:15Z
| 0 |
---
dataset_info:
features:
- name: text
dtype: string
splits:
- name: train
num_bytes: 11061717
num_examples: 36718
download_size: 6342468
dataset_size: 11061717
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Anonyme162325/ultrachat_200k-Mistral-7B-Instruct-v0.3-with-thanks
|
Anonyme162325
|
2025-09-23T14:49:55Z
| 54 | 0 |
[
"size_categories:10K<n<100K",
"format:parquet",
"modality:text",
"library:datasets",
"library:pandas",
"library:mlcroissant",
"library:polars",
"region:us"
] |
[] |
2025-09-23T14:49:51Z
| 0 |
---
dataset_info:
features:
- name: conversation_with_thanks
dtype: string
- name: conversation_without_thanks
dtype: string
splits:
- name: train
num_bytes: 115156614
num_examples: 10000
download_size: 58010659
dataset_size: 115156614
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
|
Subsets and Splits
Recent Trending Datasets
Lists newly created datasets from the past week, sorted by trending score, creation date, likes, and downloads, highlighting popular and recently active datasets.