datasetId
large_stringlengths
6
118
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-04-29 15:34:29
2025-09-30 12:15:29
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
7.92k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-09-30 12:08:01
trending_score
float64
0
64
card
large_stringlengths
31
1M
MLCommons/peoples_speech_v1.0
MLCommons
2024-08-25T05:17:08Z
1,108
6
[ "task_categories:automatic-speech-recognition", "annotations_creators:crowdsourced", "annotations_creators:machine-generated", "language_creators:crowdsourced", "language_creators:machine-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc-by-2.0", "license:cc-by-2.5", "license:cc-by-3.0", "license:cc-by-4.0", "license:cc-by-sa-3.0", "license:cc-by-sa-4.0", "arxiv:2111.09344", "region:us" ]
[ "automatic-speech-recognition" ]
2022-03-30T15:49:51Z
0
--- annotations_creators: - crowdsourced - machine-generated language_creators: - crowdsourced - machine-generated language: - en license: - cc-by-2.0 - cc-by-2.5 - cc-by-3.0 - cc-by-4.0 - cc-by-sa-3.0 - cc-by-sa-4.0 multilinguality: - monolingual pretty_name: People's Speech size_categories: - 1T<n source_datasets: - original task_categories: - automatic-speech-recognition task_ids: - speech-recognition - robust-speech-recognition - noisy-speech-recognition --- # Dataset Card for People's Speech ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-instances) - [Data Splits](#data-instances) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) ## Dataset Description - **Homepage:** https://mlcommons.org/en/peoples-speech/ - **Repository:** https://github.com/mlcommons/peoples-speech - **Paper:** https://arxiv.org/abs/2111.09344 - **Leaderboard:** [Needs More Information] - **Point of Contact:** [[email protected]](mailto:[email protected]) ### Dataset Summary The People's Speech Dataset is among the world's largest English speech recognition corpus today that is licensed for academic and commercial usage under CC-BY-SA and CC-BY 4.0. It includes 30,000+ hours of transcribed speech in English languages with a diverse set of speakers. This open dataset is large enough to train speech-to-text systems and crucially is available with a permissive license. ### Supported Tasks and Leaderboards [Needs More Information] ### Languages English ## Dataset Structure ### Data Instances { "id": "gov_DOT_uscourts_DOT_scotus_DOT_19-161/gov_DOT_uscourts_DOT_scotus_DOT_19-161_DOT_2020-03-02_DOT_mp3_00002.flac", "audio": { "path": "gov_DOT_uscourts_DOT_scotus_DOT_19-161/gov_DOT_uscourts_DOT_scotus_DOT_19-161_DOT_2020-03-02_DOT_mp3_00002.flac" "array": array([-6.10351562e-05, ...]), "sampling_rate": 16000 } "duration_ms": 14490, "text": "contends that the suspension clause requires a [...]" } ### Data Fields { "id": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=16_000), "duration_ms": datasets.Value("int32"), "text": datasets.Value("string"), } ### Data Splits We provide the following configurations for the dataset: `cc-by-clean`, `cc-by-dirty`, `cc-by-sa-clean`, `cc-by-sa-dirty`, and `microset`. We don't provide splits for any of the configurations. ## Dataset Creation ### Curation Rationale See our [paper](https://arxiv.org/abs/2111.09344). ### Source Data #### Initial Data Collection and Normalization Data was downloaded via the archive.org API. No data inference was done. #### Who are the source language producers? [Needs More Information] ### Annotations #### Annotation process No manual annotation is done. We download only source audio with already existing transcripts. #### Who are the annotators? For the test and dev sets, we paid native American English speakers to do transcriptions. We do not know the identities of the transcriptionists for data in the training set. For the training set, we have noticed that some transcriptions are likely to be the output of automatic speech recognition systems. ### Personal and Sensitive Information Several of our sources are legal and government proceedings, spoken histories, speeches, and so on. Given that these were intended as public documents and licensed as such, it is natural that the involved individuals are aware of this. ## Considerations for Using the Data ### Social Impact of Dataset The dataset could be used for speech synthesis. However, this requires careful cleaning of the dataset, as background noise is not tolerable for speech synthesis. The dataset could be used for keyword spotting tasks as well. In particular, this is good use case for the non-English audio in the dataset. Our sincere hope is that the large breadth of sources our dataset incorporates reduces existing quality of service issues today, like speech recognition system’s poor understanding of non-native English accents. We cannot think of any unfair treatment that come from using this dataset at this time. ### Discussion of Biases Our data is downloaded from archive.org. As such, the data is biased towards whatever users decide to upload there. Almost all of our data is American accented English. ### Other Known Limitations As of version 1.0, a portion of data in the training, test, and dev sets is poorly aligned. Specifically, some words appear in the transcript, but not the audio, or some words appear in the audio, but not the transcript. We are working on it. ## Additional Information ### Dataset Curators [Needs More Information] ### Licensing Information We provide CC-BY and CC-BY-SA subsets of the dataset. ### Citation Information Please cite: ``` @article{DBLP:journals/corr/abs-2111-09344, author = {Daniel Galvez and Greg Diamos and Juan Ciro and Juan Felipe Cer{\'{o}}n and Keith Achorn and Anjali Gopi and David Kanter and Maximilian Lam and Mark Mazumder and Vijay Janapa Reddi}, title = {The People's Speech: {A} Large-Scale Diverse English Speech Recognition Dataset for Commercial Usage}, journal = {CoRR}, volume = {abs/2111.09344}, year = {2021}, url = {https://arxiv.org/abs/2111.09344}, eprinttype = {arXiv}, eprint = {2111.09344}, timestamp = {Mon, 22 Nov 2021 16:44:07 +0100}, biburl = {https://dblp.org/rec/journals/corr/abs-2111-09344.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } ```
wangrongsheng/ag_news
wangrongsheng
2024-08-15T07:23:48Z
958
4
[ "task_categories:text-classification", "task_ids:topic-classification", "annotations_creators:found", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:unknown", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification" ]
2024-08-15T07:23:21Z
1
--- annotations_creators: - found language_creators: - found language: - en license: - unknown multilinguality: - monolingual size_categories: - 100K<n<1M source_datasets: - original task_categories: - text-classification task_ids: - topic-classification paperswithcode_id: ag-news pretty_name: AG’s News Corpus dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': World '1': Sports '2': Business '3': Sci/Tech splits: - name: train num_bytes: 29817303 num_examples: 120000 - name: test num_bytes: 1879474 num_examples: 7600 download_size: 19820267 dataset_size: 31696777 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* train-eval-index: - config: default task: text-classification task_id: multi_class_classification splits: train_split: train eval_split: test col_mapping: text: text label: target metrics: - type: accuracy name: Accuracy - type: f1 name: F1 macro args: average: macro - type: f1 name: F1 micro args: average: micro - type: f1 name: F1 weighted args: average: weighted - type: precision name: Precision macro args: average: macro - type: precision name: Precision micro args: average: micro - type: precision name: Precision weighted args: average: weighted - type: recall name: Recall macro args: average: macro - type: recall name: Recall micro args: average: micro - type: recall name: Recall weighted args: average: weighted --- # Dataset Card for "ag_news" ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html](http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html) - **Repository:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Paper:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) - **Size of downloaded dataset files:** 31.33 MB - **Size of the generated dataset:** 31.70 MB - **Total amount of disk used:** 63.02 MB ### Dataset Summary AG is a collection of more than 1 million news articles. News articles have been gathered from more than 2000 news sources by ComeToMyHead in more than 1 year of activity. ComeToMyHead is an academic news search engine which has been running since July, 2004. The dataset is provided by the academic comunity for research purposes in data mining (clustering, classification, etc), information retrieval (ranking, search, etc), xml, data compression, data streaming, and any other non-commercial activity. For more information, please refer to the link http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html . The AG's news topic classification dataset is constructed by Xiang Zhang ([email protected]) from the dataset above. It is used as a text classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann LeCun. Character-level Convolutional Networks for Text Classification. Advances in Neural Information Processing Systems 28 (NIPS 2015). ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### default - **Size of downloaded dataset files:** 31.33 MB - **Size of the generated dataset:** 31.70 MB - **Total amount of disk used:** 63.02 MB An example of 'train' looks as follows. ``` { "label": 3, "text": "New iPad released Just like every other September, this one is no different. Apple is planning to release a bigger, heavier, fatter iPad that..." } ``` ### Data Fields The data fields are the same among all splits. #### default - `text`: a `string` feature. - `label`: a classification label, with possible values including `World` (0), `Sports` (1), `Business` (2), `Sci/Tech` (3). ### Data Splits | name |train |test| |-------|-----:|---:| |default|120000|7600| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Citation Information ``` @inproceedings{Zhang2015CharacterlevelCN, title={Character-level Convolutional Networks for Text Classification}, author={Xiang Zhang and Junbo Jake Zhao and Yann LeCun}, booktitle={NIPS}, year={2015} } ``` ### Contributions Thanks to [@jxmorris12](https://github.com/jxmorris12), [@thomwolf](https://github.com/thomwolf), [@lhoestq](https://github.com/lhoestq), [@lewtun](https://github.com/lewtun) for adding this dataset.
OmarIDK/MNLP_M3_rag_dataset
OmarIDK
2025-06-10T20:14:23Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-10T20:14:21Z
0
--- dataset_info: features: - name: doc dtype: string - name: question dtype: string - name: doc_negatif dtype: string splits: - name: train num_bytes: 3182463 num_examples: 944 download_size: 1575815 dataset_size: 3182463 configs: - config_name: default data_files: - split: train path: data/train-* ---
AI4Protein/VenusX_Res_BindI_MF70
AI4Protein
2025-05-14T08:05:35Z
0
0
[ "license:apache-2.0", "size_categories:1K<n<10K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-14T08:05:27Z
0
--- license: apache-2.0 ---
AIM-Harvard/google_gemma_2_2b_boolq
AIM-Harvard
2025-01-09T20:54:53Z
18
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-30T12:25:27Z
0
--- dataset_info: features: - name: input_prompt dtype: string - name: correct_answer dtype: string - name: choice_logits dtype: string - name: best_choice dtype: string - name: model_score dtype: string - name: id dtype: int64 splits: - name: train num_bytes: 2357619 num_examples: 3270 download_size: 1352980 dataset_size: 2357619 configs: - config_name: default data_files: - split: train path: data/train-* ---
AI4Protein/VenusX_Res_BindB_MP50
AI4Protein
2025-05-14T13:26:53Z
0
0
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-14T13:25:43Z
0
--- license: apache-2.0 ---
dsrtrain/new_numia_prompt_dpo4
dsrtrain
2025-02-23T12:17:05Z
20
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-23T12:17:04Z
0
--- dataset_info: features: - name: data_source dtype: string - name: prompt list: - name: content dtype: string - name: role dtype: string - name: ability dtype: string - name: reward_model struct: - name: ground_truth dtype: string - name: style dtype: string - name: extra_info struct: - name: index dtype: int64 - name: split dtype: string - name: problem dtype: string splits: - name: train num_bytes: 19538504 num_examples: 20000 download_size: 5467023 dataset_size: 19538504 configs: - config_name: default data_files: - split: train path: data/train-* ---
andrewsiah/opinions_qa_text
andrewsiah
2024-10-23T18:41:54Z
14
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-23T18:38:40Z
0
--- dataset_info: features: - name: ECIMPh_W54 dtype: string - name: MADEUPRESd_W45 dtype: string - name: PQ7_F2C_W42 dtype: string - name: HAPPEN2d_W41 dtype: string - name: SOCIETY_TRANS_W92 dtype: string - name: RQ4_F1Aa_W42 dtype: string - name: HARASS5_W41 dtype: string - name: CONFe_W42 dtype: string - name: PQ1_F2C_W42 dtype: string - name: RQ4_F1Be_W42 dtype: string - name: FIN_SIT_W54 dtype: string - name: REPRSNTREP_W92 dtype: string - name: LOCALPROBL_F1_W32 dtype: string - name: POLICY1_W42 dtype: string - name: MESUM2_FE_W29 dtype: string - name: GAP21Q40_W82 dtype: string - name: HIRING3A_W27 dtype: string - name: GAP21Q7_a_W82 dtype: string - name: TALK_CPS_W29 dtype: string - name: GUNRESPKIDSD_W26 dtype: string - name: GAP21Q6_W82 dtype: string - name: GAP21Q15_d_W82 dtype: string - name: WORRYRET_W29 dtype: string - name: LOCALPROBK_W32 dtype: string - name: ECIMPf_W54 dtype: string - name: ECON5_d_W54 dtype: string - name: RQ6_F1B_W42 dtype: string - name: SUCCESSIMPB_W32 dtype: string - name: INFOCHALe_W45 dtype: string - name: GAP21Q33_k_W82 dtype: string - name: MARRDUR_W50 dtype: string - name: FAMSURV23g_W50 dtype: string - name: GUNACTIVITYC_W26 dtype: string - name: MAR2_W50 dtype: string - name: SIB_W50 dtype: string - name: RQ8_F1A_W42 dtype: string - name: INEQ5_m_W54 dtype: string - name: ROBJOB7_W27 dtype: string - name: HARASS5_W32 dtype: string - name: RQ5_F1A_W42 dtype: string - name: RQ4_F1Bc_W42 dtype: string - name: LIFELOC_W32 dtype: string - name: PQ4_F2Be_W42 dtype: string - name: RACESURV5l_W43 dtype: string - name: HIRING6D_W27 dtype: string - name: FAMSURV10e_W50 dtype: string - name: INEQ9_W54 dtype: string - name: TRAITPOLMF1D_W36 dtype: string - name: CONTROLGOV_W49 dtype: string - name: MADEUPSMFOL2_W45 dtype: string - name: INEQ8_i_W54 dtype: string - name: FAMSURV8_W50 dtype: string - name: RACESURV5g_W43 dtype: string - name: GOVRESP_b_W54 dtype: string - name: GROWUPVIOL_W26 dtype: string - name: FAMSURV33a_W50 dtype: string - name: LOCALPROBI_W32 dtype: string - name: INEQ8_b_W54 dtype: string - name: SCM5j_W42 dtype: string - name: LWPT_W50 dtype: string - name: LOCALPROBA_W32 dtype: string - name: FAMSURV1_W50 dtype: string - name: FAMSURV2Mb_W50 dtype: string - name: GOVPRIOe_W41 dtype: string - name: ABORTION_W32 dtype: string - name: EVOONE_W34 dtype: string - name: RQ2_F1B_W42 dtype: string - name: INSTN_LGECRP_W92 dtype: string - name: SMLIKESf_W45 dtype: string - name: PQ6_F2A_W42 dtype: string - name: GOVRESP_a_W54 dtype: string - name: TRACKGOV1a_W49 dtype: string - name: FEM2AF2_W29 dtype: string - name: GIRLSF2C_W29 dtype: string - name: RESTRICTWHO_W45 dtype: string - name: ROBJOB3A_W27 dtype: string - name: CONFa_W42 dtype: string - name: WHYNOTPOLF1J_W36 dtype: string - name: MOREWMN4F2_W36 dtype: string - name: HARASS1NOWRKF2c_W41 dtype: string - name: RQ3_F1Cd_W42 dtype: string - name: HELPHURTC_W29 dtype: string - name: WHYNOTBIZF2G_W36 dtype: string - name: CONCERNGRPd_W49 dtype: string - name: EVERSHOT_W26 dtype: string - name: HIRING7A_W27 dtype: string - name: ECON3_g_W54 dtype: string - name: USEXCEPT_W92 dtype: string - name: GAP21Q43_b_W82 dtype: string - name: FEDSHAREC_W32 dtype: string - name: FAMSURV27a_W50 dtype: string - name: PQ4_F2Cb_W42 dtype: string - name: GAP21Q4_c_W82 dtype: string - name: CAREGIV3A_W27 dtype: string - name: SOLVPROBeF2_W41 dtype: string - name: HAPPEN2e_W41 dtype: string - name: PQ4_F2Cc_W42 dtype: string - name: ROBJOB8B_W27 dtype: string - name: GAP21Q33_d_W82 dtype: string - name: HARASS1F1b_W41 dtype: string - name: WORRY2b_W54 dtype: string - name: FAMSURV22a_W50 dtype: string - name: MED4C_W34 dtype: string - name: GUNRESPKIDSH_W26 dtype: string - name: HAPPEN2c_W41 dtype: string - name: GROWUPGUN7_W26 dtype: string - name: MED6D_W34 dtype: string - name: SUCCESSIMPD_W32 dtype: string - name: HIRING6C_W27 dtype: string - name: SOCIETY_JBCLL_W92 dtype: string - name: PUBLICDATA_W49 dtype: string - name: HAPPYLIFE_W36 dtype: string - name: GAP21Q5_a_W82 dtype: string - name: FAMSURV5a_W50 dtype: string - name: GUNRESPKIDSC_W26 dtype: string - name: INEQ5_j_W54 dtype: string - name: GOVPRIOkF2_W41 dtype: string - name: INEQ8_f_W54 dtype: string - name: MOREWMN2F2_W36 dtype: string - name: SOCMEDIAUSEb_W49 dtype: string - name: WHYNOTPOLF1F_W36 dtype: string - name: FINANCEb_W54 dtype: string - name: FAMSURV34B_W50 dtype: string - name: RQ3_F1Ca_W42 dtype: string - name: GOVPRIOd_W41 dtype: string - name: HIGHEDWRNGC_W36 dtype: string - name: INFOCREATEa_W45 dtype: string - name: RQ6_F1A_W42 dtype: string - name: WATCHDOG_1_W45 dtype: string - name: CARRYGUN_W26 dtype: string - name: MADEUPSHAREWHY_W45 dtype: string - name: FUTRCLASSc_W41 dtype: string - name: WORLDDANGER_W26 dtype: string - name: SATLIFEb_W50 dtype: string - name: UNDERSTANDCO_W49 dtype: string - name: MED2F_W34 dtype: string - name: PQ4_F2Ad_W42 dtype: string - name: RACESURV19f_W43 dtype: string - name: HIGHED_W36 dtype: string - name: FTRWORRYe_W41 dtype: string - name: GOODJOBS_W29 dtype: string - name: RACESURV38_W43 dtype: string - name: MADEUPTOPICc_W45 dtype: string - name: GAP21Q4_b_W82 dtype: string - name: CONCERNGRPc_W49 dtype: string - name: GAP21Q13_a_W82 dtype: string - name: SOLVPROBi_W41 dtype: string - name: RQ2_F1C_W42 dtype: string - name: ECON3_e_W54 dtype: string - name: GOVSIZE3_W92 dtype: string - name: FAMSURV19_W50 dtype: string - name: ADMISSIONh_W43 dtype: string - name: MED6E_W34 dtype: string - name: BETTERPOL2F1D_W36 dtype: string - name: MED3_W34 dtype: string - name: RQ3_F1Aa_W42 dtype: string - name: GAP21Q43_a_W82 dtype: string - name: FAMSURV22f_W50 dtype: string - name: SOCMEDIAUSEd_W49 dtype: string - name: GUNRESPNOKIDSB_W26 dtype: string - name: RACESURV53c_W43 dtype: string - name: WHADVANT_W92 dtype: string - name: MADEUPRESa_W45 dtype: string - name: FAMSURV21_W50 dtype: string - name: GOVPRIORITYd_W54 dtype: string - name: ECON3_d_W54 dtype: string - name: SATLIFEc_W50 dtype: string - name: FAMSURV27d_W50 dtype: string - name: RACESURV1a_W43 dtype: string - name: INEQ5_g_W54 dtype: string - name: MESUM2_FC_W29 dtype: string - name: CARS8_W27 dtype: string - name: SOLVPROBg_W41 dtype: string - name: FAMSURV26c_W50 dtype: string - name: PROFILE3_W49 dtype: string - name: HAPPENf_W41 dtype: string - name: MESUM2_FB_W29 dtype: string - name: INEQ4_a_W54 dtype: string - name: HAPPENhF1_W41 dtype: string - name: S7_W29 dtype: string - name: ELECT_IMPT3_PRVFR_W92 dtype: string - name: GUNCONTRIBF_W26 dtype: string - name: GOVPRIORITYf_W54 dtype: string - name: PAR1_W50 dtype: string - name: RACESURV5d_W43 dtype: string - name: HAPPENj_W41 dtype: string - name: BENEFITSa_W54 dtype: string - name: DIFF1E_W29 dtype: string - name: MOVESUBURB_W32 dtype: string - name: BIOTECHB_W34 dtype: string - name: CARS3A_W27 dtype: string - name: BIOTECHC_W34 dtype: string - name: IMMCOMM_W32 dtype: string - name: GUNLOADED2_W26 dtype: string - name: HIRING4_W27 dtype: string - name: FAMSURV34A_W50 dtype: string - name: INFOCONFUSEb_W45 dtype: string - name: GAP21Q43_e_W82 dtype: string - name: BIOTECHA_W34 dtype: string - name: ADMISSIONc_W43 dtype: string - name: RACESURV53g_W43 dtype: string - name: ROBIMPACTa_W41 dtype: string - name: GAP21Q34_d_W82 dtype: string - name: ROBWRK_W41 dtype: string - name: FAMSURV22d_W50 dtype: string - name: EXECCHF2_W36 dtype: string - name: DATAUSEe_W49 dtype: string - name: INSTN_BNKS_W92 dtype: string - name: CARS9A_W27 dtype: string - name: FTRWORRYf_W41 dtype: string - name: GAP21Q4_f_W82 dtype: string - name: EVOBIOB_W34 dtype: string - name: GROWUPGUN2A_W26 dtype: string - name: E5MOD_W50 dtype: string - name: PRIVACYREG_W49 dtype: string - name: CONCERNGRPb_W49 dtype: string - name: INFOCONFUSEc_W45 dtype: string - name: REASONGUNC_W26 dtype: string - name: CARS7B_W27 dtype: string - name: SMLIKESe_W45 dtype: string - name: PQ2_F2A_W42 dtype: string - name: GUNACTIVITYB_W26 dtype: string - name: PREDICTD_W27 dtype: string - name: INFOKNOWd_W45 dtype: string - name: PQ6_F2C_W42 dtype: string - name: FAMSURV32c_W50 dtype: string - name: GAP21Q33_t_W82 dtype: string - name: TRAITPOLWF1F_W36 dtype: string - name: FUD33A_W34 dtype: string - name: ESSENBIZF2C_W36 dtype: string - name: SHOOTFREQ_W26 dtype: string - name: PAST_W42 dtype: string - name: RACESURV5f_W43 dtype: string - name: Q8F1_W42 dtype: string - name: SCM4b_W42 dtype: string - name: ECON5_k_W54 dtype: string - name: RQ3_F1Ac_W42 dtype: string - name: SECUR1_W49 dtype: string - name: MASC2_W29 dtype: string - name: SOLVPROBdF1_W41 dtype: string - name: FAMSURV10a_W50 dtype: string - name: SOCTRUST2_W32 dtype: string - name: CNTRYFAIR_W92 dtype: string - name: ECIMPb_W54 dtype: string - name: WORRYE_W26 dtype: string - name: WILLMOVE_W32 dtype: string - name: HELPHURTF_W29 dtype: string - name: BOYSF1C_W29 dtype: string - name: WANTMOVE_W32 dtype: string - name: POP2_W42 dtype: string - name: COMMIMPG_W32 dtype: string - name: COMMIMPH_W32 dtype: string - name: RQ7_F1A_W42 dtype: string - name: TRAITPOLMF1E_W36 dtype: string - name: FCFAIR_W45 dtype: string - name: BETTERPOL1F1B_W36 dtype: string - name: WHYNOTBIZF2K_W36 dtype: string - name: FAMSURV25_W50 dtype: string - name: RACESURV18c_W43 dtype: string - name: WHYNOTPOLF1L_W36 dtype: string - name: RACESURV34c_W43 dtype: string - name: LOCALPROBH_W32 dtype: string - name: ADKIDS_W50 dtype: string - name: FAMSURV17_W50 dtype: string - name: HIGHEDWRNGS_W36 dtype: string - name: PQ4_F2Cd_W42 dtype: string - name: CARS10E_W27 dtype: string - name: INEQ5_i_W54 dtype: string - name: INSTN_TECHCMP_W92 dtype: string - name: PQ3_F2Ca_W42 dtype: string - name: RQ3_F1Bd_W42 dtype: string - name: MED6C_W34 dtype: string - name: ESSENBIZF2I_W36 dtype: string - name: WHADVANT_W32 dtype: string - name: INEQ1_W54 dtype: string - name: SMLIKESd_W45 dtype: string - name: RACESURV16_W43 dtype: string - name: FAMSURV38b_W50 dtype: string - name: GAP21Q17_W82 dtype: string - name: DNA2b_W50 dtype: string - name: HOOD_NHISC_W29 dtype: string - name: LOCALELECT_W29 dtype: string - name: SATLIFEB_W32 dtype: string - name: MESUM1_FC_W29 dtype: string - name: INEQ4_b_W54 dtype: string - name: PQ1_F2B_W42 dtype: string - name: FACE4b_W49 dtype: string - name: GAP21Q21_e_W82 dtype: string - name: GAP21Q33_q_W82 dtype: string - name: INSTN_MSCENT_W92 dtype: string - name: JOBBENEFITS_W41 dtype: string - name: EVOPERS3_W34 dtype: string - name: DIFF1D_W29 dtype: string - name: HARASS1NOWRKF2a_W41 dtype: string - name: PP5b_W49 dtype: string - name: SOCIETY_RHIST_W92 dtype: string - name: EAT3H_W34 dtype: string - name: HARASS2F1_W32 dtype: string - name: EVOPERS3A_W34 dtype: string - name: TRAITBIZMF2G_W36 dtype: string - name: MADEUPIMPe_W45 dtype: string - name: INEQ7_W54 dtype: string - name: VOICE1_W27 dtype: string - name: IMPREASONGUN_W26 dtype: string - name: COMMIMPA_W32 dtype: string - name: RQ4_F1Cc_W42 dtype: string - name: ROBJOB2_W27 dtype: string - name: HIGHEDWRNGD_W36 dtype: string - name: FAMSURV32e_W50 dtype: string - name: FUD24_W34 dtype: string - name: BETTERBIZ2F2F_W36 dtype: string - name: ECON1B_W54 dtype: string - name: FUTR_DIV_W41 dtype: string - name: SATLIFEE_W32 dtype: string - name: RACESURV5b_W43 dtype: string - name: ADMISSIONe_W43 dtype: string - name: CAREGIV7_W27 dtype: string - name: MADEUPSMFOL1_W45 dtype: string - name: RACESURV14_W43 dtype: string - name: GAP21Q19_c_W82 dtype: string - name: PQ3_F2Cc_W42 dtype: string - name: FAMSURV5b_W50 dtype: string - name: ECONFAIR_W92 dtype: string - name: FAVORS_CPS_W29 dtype: string - name: MASC1F1_W29 dtype: string - name: INEQ8_a_W54 dtype: string - name: PROG_RRETRO_W92 dtype: string - name: RQ4_F1Bb_W42 dtype: string - name: FAMSURV30d_W50 dtype: string - name: WHYNOTBIZF2F_W36 dtype: string - name: BETTERBIZ1F2C_W36 dtype: string - name: MOVERURAL_W32 dtype: string - name: CARS10A_W27 dtype: string - name: RACESURV24_W43 dtype: string - name: GAP21Q21_d_W82 dtype: string - name: FAMSURV33c_W50 dtype: string - name: MADEUPLEVELa_W45 dtype: string - name: SOCIETY_SSM_W92 dtype: string - name: HAPPEN2g_W41 dtype: string - name: WORK6_W27 dtype: string - name: EVEROWN_W26 dtype: string - name: DATAUSEc_W49 dtype: string - name: INFOCHALc_W45 dtype: string - name: CARS4_W27 dtype: string - name: NATDEBT_W41 dtype: string - name: AMNTWMNB2F1_W36 dtype: string - name: MEDIALOYAL3_W45 dtype: string - name: SOURCESKEPe_W45 dtype: string - name: GUNTYPEOWNC_W26 dtype: string - name: RACESURV36_W43 dtype: string - name: HIRING7B_W27 dtype: string - name: NEIGHINTERA_W32 dtype: string - name: SCI3A_W34 dtype: string - name: RACESURV47e_W43 dtype: string - name: PROBURBAN_W32 dtype: string - name: ELDFINANCEF2_W41 dtype: string - name: FUD32_W34 dtype: string - name: DATAUSEb_W49 dtype: string - name: BLOODPR_W29 dtype: string - name: NEWSPROBa_W45 dtype: string - name: HARASS1D_W32 dtype: string - name: GAP21Q21_a_W82 dtype: string - name: WHYNOTPOLF1E_W36 dtype: string - name: RACESURV28g_W43 dtype: string - name: HIRING2_W27 dtype: string - name: POLCHF1_W36 dtype: string - name: DNA5_W50 dtype: string - name: PWMAN2_W49 dtype: string - name: GAP21Q33_l_W82 dtype: string - name: INFOCHALd_W45 dtype: string - name: MOTHER_W50 dtype: string - name: EAT2_W34 dtype: string - name: GUNLOCKED1_W26 dtype: string - name: GAP21Q33_g_W82 dtype: string - name: WORK7_W27 dtype: string - name: CONFc_W42 dtype: string - name: GAP21Q26_c_W82 dtype: string - name: INEQ5_a_W54 dtype: string - name: PP5d_W49 dtype: string - name: FAMSURV38a_W50 dtype: string - name: HARASS1F1d_W41 dtype: string - name: SNGLPYER_W92 dtype: string - name: FUD37B_W34 dtype: string - name: COMMIMPC_W32 dtype: string - name: RQ3_F1Cc_W42 dtype: string - name: INEQ5_k_W54 dtype: string - name: FAMSURV36c_W50 dtype: string - name: HELPHURTB_W29 dtype: string - name: ACCCHECK_W45 dtype: string - name: WHYNOTBIZF2N_W36 dtype: string - name: GAP21Q3_W82 dtype: string - name: GOVPRIOoF2_W41 dtype: string - name: GOVRESP_e_W54 dtype: string - name: SHARE1_W49 dtype: string - name: INFOCHALa_W45 dtype: string - name: POLINTOL2_b_W92 dtype: string - name: ELECT_CONF3_PRVFR_W92 dtype: string - name: DEFENDGUN_W26 dtype: string - name: GUNFRIEND_W26 dtype: string - name: PEACESTR_W92 dtype: string - name: SCI4_W34 dtype: string - name: GOODEVIL_W92 dtype: string - name: MADEUPTOPICb_W45 dtype: string - name: COMMYRS_W32 dtype: string - name: COMTYPE2_W32 dtype: string - name: ESSENPOLF1C_W36 dtype: string - name: CANDEXP_W92 dtype: string - name: FEELD_W32 dtype: string - name: COMMIMPE_W32 dtype: string - name: MESUM2_FA_W29 dtype: string - name: RQ5_F1C_W42 dtype: string - name: ROBJOB4B_W27 dtype: string - name: RACESURV37_W43 dtype: string - name: FAMSURV32b_W50 dtype: string - name: GAP21Q19_b_W82 dtype: string - name: EVOBIOA_W34 dtype: string - name: PARTICIPATEB_W29 dtype: string - name: GUNRESPKIDSF_W26 dtype: string - name: WHYNOTBIZF2H_W36 dtype: string - name: BETTERPOL1F1A_W36 dtype: string - name: DEBTa_W54 dtype: string - name: INFOCONFUSEe_W45 dtype: string - name: RACESURV47c_W43 dtype: string - name: STYLE1_W36 dtype: string - name: FAMSURV7_W50 dtype: string - name: CARS9C_W27 dtype: string - name: RQ1_F1B_W42 dtype: string - name: GOVPRIOa_W41 dtype: string - name: VTRGHTPRIV1_W92 dtype: string - name: FAMSURV28_W50 dtype: string - name: PP6c_W49 dtype: string - name: FAMSURV2Wc_W50 dtype: string - name: NEIGHINTERB_W32 dtype: string - name: BETTERPOL1F1I_W36 dtype: string - name: NEWSPROBc_W45 dtype: string - name: GAP21Q11_W82 dtype: string - name: NEWSPREFV2_W45 dtype: string - name: BETTERPOL1F1H_W36 dtype: string - name: RACESURV53e_W43 dtype: string - name: LEGALIMMIGAMT_W92 dtype: string - name: FAMSURV6_W50 dtype: string - name: INFOWHYd_W45 dtype: string - name: GAP21Q33_b_W82 dtype: string - name: CONFf_W42 dtype: string - name: GOVRESP_f_W54 dtype: string - name: BETTERBIZ1F2E_W36 dtype: string - name: FAMSURV3_W50 dtype: string - name: BETTERBIZ1F2G_W36 dtype: string - name: GUNACTIVITYD_W26 dtype: string - name: FACE1_W49 dtype: string - name: GAP21Q29_W82 dtype: string - name: EAT5C_W34 dtype: string - name: GOVPRIOc_W41 dtype: string - name: FACE3a_W49 dtype: string - name: HIGHEDWRNGA_W36 dtype: string - name: AVGFAM_W41 dtype: string - name: NOWSMK_NHIS_W29 dtype: string - name: TRAITBIZWF2F_W36 dtype: string - name: RQ3_F1Bc_W42 dtype: string - name: GAP21Q20_W82 dtype: string - name: GROWUPGUN2C_W26 dtype: string - name: SCM5f_W42 dtype: string - name: ECON5_b_W54 dtype: string - name: MADEUPTOPICf_W45 dtype: string - name: RQ4_F1Cb_W42 dtype: string - name: MED5_W34 dtype: string - name: REMARR_W50 dtype: string - name: MAN1A_W29 dtype: string - name: ESSENPOLF1E_W36 dtype: string - name: GAP21Q41_W82 dtype: string - name: GAP21Q30_W82 dtype: string - name: PP4_W49 dtype: string - name: GUNRESPNOKIDSE_W26 dtype: string - name: RACESURV29c_W43 dtype: string - name: BETTERPOL2F1C_W36 dtype: string - name: DNA3b_W50 dtype: string - name: ECIMPe_W54 dtype: string - name: GAP21Q25_W82 dtype: string - name: CAREGIV4_W27 dtype: string - name: GAP21Q15_e_W82 dtype: string - name: INEQ4_d_W54 dtype: string - name: MED2G_W34 dtype: string - name: GAP21Q33_f_W82 dtype: string - name: TRAITPOLWF1D_W36 dtype: string - name: HIRING1_W27 dtype: string - name: BENEFITCO_W49 dtype: string - name: SOCTRUST4_W32 dtype: string - name: MADEUPIMPc_W45 dtype: string - name: ETHNCMAJ_W32 dtype: string - name: GIRLSF2B_W29 dtype: string - name: CITYSIZE_W32 dtype: string - name: SC1_W42 dtype: string - name: RQ4_F1Ce_W42 dtype: string - name: ECON5_h_W54 dtype: string - name: GAP21Q21_c_W82 dtype: string - name: CONCERNGRPf_W49 dtype: string - name: DIGWDOG_3_W45 dtype: string - name: LOCALPROBC_W32 dtype: string - name: HARASS1NOWRKF2d_W41 dtype: string - name: HARASS1B_W32 dtype: string - name: MED6A_W34 dtype: string - name: SATLIFEA_W32 dtype: string - name: BENEFITGOV_W49 dtype: string - name: HOMEASSIST3_W49 dtype: string - name: S13_W29 dtype: string - name: RQ4_F1Ac_W42 dtype: string - name: ECIMPj_W54 dtype: string - name: RACESURV10_W43 dtype: string - name: RACESURV5i_W43 dtype: string - name: REASONGUND_W26 dtype: string - name: RACESURV47d_W43 dtype: string - name: HARASS3F2_W32 dtype: string - name: RACESURV40_W43 dtype: string - name: HAPPENb_W41 dtype: string - name: WHYNOTPOLF1C_W36 dtype: string - name: EVOTWO_W34 dtype: string - name: GAP21Q7_e_W82 dtype: string - name: WORK4A_W27 dtype: string - name: GAP21Q42_W82 dtype: string - name: RQ1_F1C_W42 dtype: string - name: GAP21Q19_e_W82 dtype: string - name: NEWS_PLATFORMh_W45 dtype: string - name: TRACKCO1a_W49 dtype: string - name: FAMSURV22c_W50 dtype: string - name: DEBTd_W54 dtype: string - name: HARASS1C_W32 dtype: string - name: GAP21Q38_b_W82 dtype: string - name: CONFd_F2_W42 dtype: string - name: LOCALPROBF_W32 dtype: string - name: FAMSURV9b_W50 dtype: string - name: BETTERPOL1F1D_W36 dtype: string - name: MED2A_W34 dtype: string - name: RACESURV34b_W43 dtype: string - name: CONFb_W42 dtype: string - name: GUNRESPKIDSB_W26 dtype: string - name: FAMSURV2Mc_W50 dtype: string - name: REASONGUNA_W26 dtype: string - name: GUNIDENTITY_W26 dtype: string - name: ROBJOB4A_W27 dtype: string - name: EAT3K_W34 dtype: string - name: SOURCESKEPb_W45 dtype: string - name: FERTIL1_W36 dtype: string - name: RACESURV1d_W43 dtype: string - name: FAMSURV26b_W50 dtype: string - name: INEQ3_W54 dtype: string - name: HAVEKIDS1_W50 dtype: string - name: ESSENBIZF2G_W36 dtype: string - name: PQ4_F2Ca_W42 dtype: string - name: NEIGHSAMEC_W32 dtype: string - name: NEWS_PLATFORMg_W45 dtype: string - name: MADEUPSHARE1_W45 dtype: string - name: BETTERBIZ2F2E_W36 dtype: string - name: RQ5_F1B_W42 dtype: string - name: RACESURV29a_W43 dtype: string - name: RACESURV28d_W43 dtype: string - name: BENEFITSb_W54 dtype: string - name: FAMSURV10b_W50 dtype: string - name: FUTRCLASSb_W41 dtype: string - name: GAP21Q31_W82 dtype: string - name: CARS7A_W27 dtype: string - name: ESSENPOLF1H_W36 dtype: string - name: CONTROLGRPd_W49 dtype: string - name: HOOD_NHISA_W29 dtype: string - name: RACESURV41_W43 dtype: string - name: MAN1C_W29 dtype: string - name: PQ3_F2Bd_W42 dtype: string - name: TRAITBIZWF2B_W36 dtype: string - name: INEQ5_l_W54 dtype: string - name: INTRMAR_W41 dtype: string - name: MADEUPDIS_W45 dtype: string - name: EAT5A_W34 dtype: string - name: EAT5B_W34 dtype: string - name: CAREGIV6D_W27 dtype: string - name: FAMSURV30e_W50 dtype: string - name: ESSENBIZF2F_W36 dtype: string - name: ELDFINANCEF1_W41 dtype: string - name: HOMEIOT_W49 dtype: string - name: POOREASY_W53 dtype: string - name: MESUM1_FE_W29 dtype: string - name: AMNTWMNBF1_W36 dtype: string - name: WRKTRN1F1_W41 dtype: string - name: GAP21Q23_W82 dtype: string - name: CAREGIV6B_W27 dtype: string - name: PQ4_F2Ab_W42 dtype: string - name: BIO15_W34 dtype: string - name: FAMSURV36a_W50 dtype: string - name: SOLVPROBf_W41 dtype: string - name: GLBLZE_W92 dtype: string - name: HARASS1F1a_W41 dtype: string - name: INEQ10_W54 dtype: string - name: GAP21Q38_c_W82 dtype: string - name: GAP21Q34_e_W82 dtype: string - name: COMMIMPF_W32 dtype: string - name: PQ7_F2B_W42 dtype: string - name: RACATTN_W43 dtype: string - name: RACESURV29b_W43 dtype: string - name: Q8F2_W42 dtype: string - name: INFOCONFUSEd_W45 dtype: string - name: PQ4_F2Aa_W42 dtype: string - name: DRONE4D_W27 dtype: string - name: FUTURE_W42 dtype: string - name: IL_IMM_PRI_W92 dtype: string - name: PQ3_F2Ad_W42 dtype: string - name: MADEUPTOPICd_W45 dtype: string - name: GAP21Q10_W82 dtype: string - name: ABORTIONRESTR_W32 dtype: string - name: FAMSURV32a_W50 dtype: string - name: ECONFAIR_W53 dtype: string - name: RTDa_W49 dtype: string - name: IMMIMPACT_W32 dtype: string - name: GAP21Q33_n_W82 dtype: string - name: RACESURV4_W43 dtype: string - name: ELECTFTGSNSINT_W49 dtype: string - name: GAP21Q34_c_W82 dtype: string - name: ECON5_c_W54 dtype: string - name: RQ3_F1Cb_W42 dtype: string - name: BOYSF1A_W29 dtype: string - name: ROBWRK2_W41 dtype: string - name: WORK5A_W27 dtype: string - name: ROBJOB5D_W27 dtype: string - name: RACESURV18a_W43 dtype: string - name: RACESURV1c_W43 dtype: string - name: GAP21Q18_W82 dtype: string - name: GAP21Q15_a_W82 dtype: string - name: BETTERPOL2F1F_W36 dtype: string - name: GAP21Q13_b_W82 dtype: string - name: HOMEASSIST5b_W49 dtype: string - name: INSTN_LBRUN_W92 dtype: string - name: FEM2BF2_W29 dtype: string - name: ORIENTATIONMOD_W50 dtype: string - name: RACESURV5h_W43 dtype: string - name: ECON4_a_W54 dtype: string - name: DRONE4A_W27 dtype: string - name: CONTROLGRPe_W49 dtype: string - name: RQ8_F1C_W42 dtype: string - name: FUTRCLASSa_W41 dtype: string - name: FAMSURV9c_W50 dtype: string - name: GUNCONTRIBD_W26 dtype: string - name: GAP21Q33_c_W82 dtype: string - name: MAN1D_W29 dtype: string - name: NEIGHKEYS_W32 dtype: string - name: WHYNOTPOLF1K_W36 dtype: string - name: FTRWORRYc_W41 dtype: string - name: DIFF1B_W29 dtype: string - name: SCI3B_W34 dtype: string - name: GUNACTIVITYE_W26 dtype: string - name: DB1b_W49 dtype: string - name: MESUM2_FF_W29 dtype: string - name: ADMISSIONd_W43 dtype: string - name: GAP21Q43_g_W82 dtype: string - name: CARS2_W27 dtype: string - name: GAP21Q5_b_W82 dtype: string - name: HELPHURTE_W29 dtype: string - name: INSTN_CHR_W92 dtype: string - name: WHYNOTBIZF2M_W36 dtype: string - name: RACESURV11_W43 dtype: string - name: SSCUT_W41 dtype: string - name: FAMSURV29_W50 dtype: string - name: RACESURV21_W43 dtype: string - name: RACESURV5a_W43 dtype: string - name: MADEUPLEVELb_W45 dtype: string - name: RACESURV47a_W43 dtype: string - name: DNA2a_W50 dtype: string - name: WORRYB_W26 dtype: string - name: CONTROLGRPf_W49 dtype: string - name: ADMISSIONf_W43 dtype: string - name: CONTROLGRPb_W49 dtype: string - name: WRKTRN1F2_W41 dtype: string - name: MESUM1_FA_W29 dtype: string - name: ECON1_W54 dtype: string - name: INFOCREATEd_W45 dtype: string - name: GAP21Q34_b_W82 dtype: string - name: RQ4_F1Ab_W42 dtype: string - name: CAREGIV6A_W27 dtype: string - name: HELPHURTA_W29 dtype: string - name: PAR2_W50 dtype: string - name: FAMSURV18B_W50 dtype: string - name: INEQ4_e_W54 dtype: string - name: LWPSP_W50 dtype: string - name: FAMSURV9e_W50 dtype: string - name: FAMSURV18A_W50 dtype: string - name: SATLIFED_W32 dtype: string - name: RACESURV28a_W43 dtype: string - name: FIN_SITCOMM_W54 dtype: string - name: PQ3_F2Aa_W42 dtype: string - name: INFOCREATEe_W45 dtype: string - name: PP5c_W49 dtype: string - name: FAMSURV2Md_W50 dtype: string - name: RQ4_F1Bd_W42 dtype: string - name: GOVSIZE1_W92 dtype: string - name: FAMSURV11W_W50 dtype: string - name: ECON3_i_W54 dtype: string - name: FAMSURV38c_W50 dtype: string - name: DRONE4B_W27 dtype: string - name: FAMSURV2Wa_W50 dtype: string - name: GAP21Q24_W82 dtype: string - name: GUNSAFETYKIDS_W26 dtype: string - name: BETTERBIZ1F2F_W36 dtype: string - name: INEQ5_b_W54 dtype: string - name: RACESURV19b_W43 dtype: string - name: RACESURV20_W43 dtype: string - name: GOVPRIORITYe_W54 dtype: string - name: MED4A_W34 dtype: string - name: LEAD_W45 dtype: string - name: RACESURV5k_W43 dtype: string - name: ECON5_g_W54 dtype: string - name: RACESURV47f_W43 dtype: string - name: FAMSURV33b_W50 dtype: string - name: WHYNOTBIZF2L_W36 dtype: string - name: BETTERBIZ2F2C_W36 dtype: string - name: ADMISSIONg_W43 dtype: string - name: FACE4a_W49 dtype: string - name: GAP21Q35_W82 dtype: string - name: WORK4C_W27 dtype: string - name: TRANSGEND3_W29 dtype: string - name: LOCALPROBB_W32 dtype: string - name: GOVPRIOiF1_W41 dtype: string - name: VOICE5A_W27 dtype: string - name: TRACKGOV1b_W49 dtype: string - name: PQ5_F2C_W42 dtype: string - name: GROWUPGUN6_W26 dtype: string - name: MED2E_W34 dtype: string - name: GOVSIZE2_W92 dtype: string - name: GOVPRIOhF1_W41 dtype: string - name: PRIVACYNEWS1_W49 dtype: string - name: COMMIMPD_W32 dtype: string - name: RACESURV6_W43 dtype: string - name: RACESURV19e_W43 dtype: string - name: GUNACCESS_W26 dtype: string - name: SCM5h_W42 dtype: string - name: GAP21Q28_W82 dtype: string - name: BETTERPOL1F1F_W36 dtype: string - name: TRAITPOLWF1B_W36 dtype: string - name: RQ3_F1Ba_W42 dtype: string - name: LOCALPROBJ_W32 dtype: string - name: NEWSPROBe_W45 dtype: string - name: ROBJOB4F_W27 dtype: string - name: CONFg_W42 dtype: string - name: WORRY2d_W54 dtype: string - name: GUNSOCIETY_W26 dtype: string - name: G1_W34 dtype: string - name: RACESURV5j_W43 dtype: string - name: PARTICIPATEA_W29 dtype: string - name: PQ6_F2B_W42 dtype: string - name: GAP21Q26_b_W82 dtype: string - name: TRAITBIZMF2A_W36 dtype: string - name: NEWSPROBb_W45 dtype: string - name: FEELC_W32 dtype: string - name: MADEUPIMPa_W45 dtype: string - name: GOVPRIORITYc_W54 dtype: string - name: RTBFa_W49 dtype: string - name: PQ1_F2A_W42 dtype: string - name: OPTIMIST_W41 dtype: string - name: RACESURV51_W43 dtype: string - name: TRAITPOLWF1G_W36 dtype: string - name: GOVPRIOgF1_W41 dtype: string - name: PQ2_F2B_W42 dtype: string - name: RACESURV47b_W43 dtype: string - name: MESUM1_FF_W29 dtype: string - name: FEDSHAREB_W32 dtype: string - name: NEIGHSAMEB_W32 dtype: string - name: SUPERPWR_W92 dtype: string - name: RACESURV15a_W43 dtype: string - name: EQUALBIZF2_W36 dtype: string - name: PREDICTA_W27 dtype: string - name: SOURCESKEPd_W45 dtype: string - name: GUNACTIVITYA_W26 dtype: string - name: NOCARRYGUN_W26 dtype: string - name: WHYNOTPOLF1B_W36 dtype: string - name: FAMSURV5c_W50 dtype: string - name: RQ4_F1Ad_W42 dtype: string - name: RACESURV53a_W43 dtype: string - name: ALLIES_W92 dtype: string - name: MADEUPRESc_W45 dtype: string - name: NEWSPROBd_W45 dtype: string - name: GOVPRIOnF2_W41 dtype: string - name: FAMSURV23e_W50 dtype: string - name: PQ4_F2Ae_W42 dtype: string - name: SMSHARE_W45 dtype: string - name: SOURCESKEPa_W45 dtype: string - name: TRAITBIZWF2E_W36 dtype: string - name: IDIMPORT_W43 dtype: string - name: RACESURV28b_W43 dtype: string - name: ECON4_d_W54 dtype: string - name: HARASS4_W41 dtype: string - name: FTRWORRYb_W41 dtype: string - name: WHYNOTPOLF1I_W36 dtype: string - name: FACE3b_W49 dtype: string - name: MOREWMN3F2_W36 dtype: string - name: INFOCHALb_W45 dtype: string - name: WHYNOTBIZF2A_W36 dtype: string - name: USMILSIZ_W92 dtype: string - name: GOVTHC_W92 dtype: string - name: BIOTECHD_W34 dtype: string - name: HAPPENd_W41 dtype: string - name: SCI1_W34 dtype: string - name: GODMORALIMP_W92 dtype: string - name: DIFF1A_W29 dtype: string - name: IMPROVE3_W36 dtype: string - name: HARASS1A_W32 dtype: string - name: MED4B_W34 dtype: string - name: FAMSURV23b_W50 dtype: string - name: HARASS4_W32 dtype: string - name: RACESURV27_W43 dtype: string - name: FUD37A_W34 dtype: string - name: COMMIMPB_W32 dtype: string - name: REASONGUNB_W26 dtype: string - name: PREDICTC_W27 dtype: string - name: BETTERBIZ1F2K_W36 dtype: string - name: GAP21Q12_W82 dtype: string - name: ONLINESOURCE_W45 dtype: string - name: DRONE1_W27 dtype: string - name: TRAITPOLMF1C_W36 dtype: string - name: GAP21Q33_h_W82 dtype: string - name: SATLIFEa_W50 dtype: string - name: RACESURV53b_W43 dtype: string - name: GUNRESPNOKIDSA_W26 dtype: string - name: INEQ8_j_W54 dtype: string - name: WORRY2a_W54 dtype: string - name: GROWUPGUN2B_W26 dtype: string - name: ABORTIONALLOW_W32 dtype: string - name: ROMRELDUR_W50 dtype: string - name: GAP21Q32_W82 dtype: string - name: EVOTHREE_W34 dtype: string - name: FACE2b_W49 dtype: string - name: ECON3_c_W54 dtype: string - name: POLINTOL2_a_W92 dtype: string - name: VOICE3_W27 dtype: string - name: RACESURV50_W43 dtype: string - name: INFOKNOWe_W45 dtype: string - name: FAMSURV16_W50 dtype: string - name: SOCTRUST5_W32 dtype: string - name: BETTERPOL1F1C_W36 dtype: string - name: INEQ8_c_W54 dtype: string - name: RACESURV1b_W43 dtype: string - name: WORK2_W27 dtype: string - name: TRAITPOLWF1E_W36 dtype: string - name: PP6b_W49 dtype: string - name: ECON3_a_W54 dtype: string - name: HIGHEDWRNGB_W36 dtype: string - name: TRAITBIZMF2F_W36 dtype: string - name: BETTERBIZ2F2A_W36 dtype: string - name: GOVRESP_g_W54 dtype: string - name: POPPROB_W41 dtype: string - name: DNATEST_W50 dtype: string - name: EAT3G_W34 dtype: string - name: ENVC_W41 dtype: string - name: ROBJOB8A_W27 dtype: string - name: HOMEASSIST4_W49 dtype: string - name: CONCERNCO_W49 dtype: string - name: BETTERPOL2F1E_W36 dtype: string - name: FAMSURV30a_W50 dtype: string - name: FP_AUTH_W92 dtype: string - name: HOOD_NHISB_W29 dtype: string - name: FUD33B_W34 dtype: string - name: GOVPRIORITYa_W54 dtype: string - name: MADEUPIMPd_W45 dtype: string - name: FIN_SITFUT_W54 dtype: string - name: RACESURV52MOD_W92 dtype: string - name: HAPPEN2h_W41 dtype: string - name: RACESURV5c_W43 dtype: string - name: TRAITPOLWF1C_W36 dtype: string - name: RTBFd_W49 dtype: string - name: GUNCOMMUNITY_W26 dtype: string - name: GOVREGV2_W49 dtype: string - name: ECONFAIR2_W32 dtype: string - name: RQ4_F1Ae_W42 dtype: string - name: ROBJOB9_W27 dtype: string - name: DRONE2_W27 dtype: string - name: WORRYD_W26 dtype: string - name: DRONE4C_W27 dtype: string - name: GUN1_W26 dtype: string - name: PP6a_W49 dtype: string - name: IMMCULT2_W32 dtype: string - name: FAMSURV2We_W50 dtype: string - name: GOVPRIOmF2_W41 dtype: string - name: MADEUPRESe_W45 dtype: string - name: CAREGIV6E_W27 dtype: string - name: BETTERBIZ2F2D_W36 dtype: string - name: HIRING3B_W27 dtype: string - name: EAT1_W34 dtype: string - name: GOVPRIOb_W41 dtype: string - name: FAMSURV20_W50 dtype: string - name: INEQ8_h_W54 dtype: string - name: WORK3F_W27 dtype: string - name: SMLIKESc_W45 dtype: string - name: TRAITSE_W29 dtype: string - name: RELIG_GOV_W92 dtype: string - name: UNDERSTANDGOV_W49 dtype: string - name: INC_W32 dtype: string - name: FAMSURV30b_W50 dtype: string - name: INFORESTRICTc_W45 dtype: string - name: BOYSF1D_W29 dtype: string - name: GUNRESPKIDSA_W26 dtype: string - name: CAREREL_W27 dtype: string - name: ECON4_f_W54 dtype: string - name: GAP21Q34_f_W82 dtype: string - name: EAT6_W34 dtype: string - name: BETTERBIZ2F2B_W36 dtype: string - name: EAT3E_W34 dtype: string - name: GAP21Q47_W82 dtype: string - name: WORK3C_W27 dtype: string - name: INFOOWNc_W45 dtype: string - name: LOCALPROBE_W32 dtype: string - name: BETTERPOL2F1B_W36 dtype: string - name: FAMSURV39_W50 dtype: string - name: GUNCONTRIBA_W26 dtype: string - name: RTDc_W49 dtype: string - name: INEQ5_d_W54 dtype: string - name: HELPHURTG_W29 dtype: string - name: PQ4_F2Bd_W42 dtype: string - name: RACESURV22_W43 dtype: string - name: MADEUPRESb_W45 dtype: string - name: MARRFAM_W92 dtype: string - name: AUTOWKPLC_W41 dtype: string - name: FACE4c_W49 dtype: string - name: CAREGIV6F_W27 dtype: string - name: Q6F1_W42 dtype: string - name: HAPPENg_W41 dtype: string - name: RACESURV28f_W43 dtype: string - name: ECON5_e_W54 dtype: string - name: PQ3_F2Cb_W42 dtype: string - name: TRAITSD_W29 dtype: string - name: INEQ5_h_W54 dtype: string - name: GAP21Q33_a_W82 dtype: string - name: GUNKILLF2_W26 dtype: string - name: FUD37C_W34 dtype: string - name: PAR2CHILD_W92 dtype: string - name: INEQ8_d_W54 dtype: string - name: PWMAN_W49 dtype: string - name: ROBJOB1_W27 dtype: string - name: RQ2_F1A_W42 dtype: string - name: RTBFb_W49 dtype: string - name: MESUM2_FD_W29 dtype: string - name: TRAITBIZMF2E_W36 dtype: string - name: TRAITBIZMF2C_W36 dtype: string - name: GUNLOCKED2_W26 dtype: string - name: WORRYBILL_W29 dtype: string - name: SUCCESSIMPC_W32 dtype: string - name: MED2C_W34 dtype: string - name: RTDb_W49 dtype: string - name: POSNEGCO_W49 dtype: string - name: WORK3E_W27 dtype: string - name: HOMEASSIST5a_W49 dtype: string - name: CONTROLGRPc_W49 dtype: string - name: RACESURV34e_W43 dtype: string - name: PP3_W49 dtype: string - name: MARGUN_W26 dtype: string - name: FAMSURV27b_W50 dtype: string - name: SCI2B_W34 dtype: string - name: EARN_W36 dtype: string - name: ETHNCMAJMOD_W41 dtype: string - name: RACESURV25_W43 dtype: string - name: GAP21Q9_W82 dtype: string - name: FAMSURV32d_W50 dtype: string - name: ECON5_a_W54 dtype: string - name: PQ4_F2Ac_W42 dtype: string - name: TRANSGEND2_W29 dtype: string - name: RQ7_F1B_W42 dtype: string - name: GIRLSF2A_W29 dtype: string - name: GAP21Q33_o_W82 dtype: string - name: NEIGHINTERC_W32 dtype: string - name: COMPROMISEVAL_W92 dtype: string - name: PQ8_F2B_W42 dtype: string - name: COLSPEECH_W36 dtype: string - name: FAMSURV44_W50 dtype: string - name: RACESURV18d_W43 dtype: string - name: ELITEUNDMOD_W92 dtype: string - name: PQ3_F2Ab_W42 dtype: string - name: TRAITPOLWF1A_W36 dtype: string - name: PP5e_W49 dtype: string - name: FAMSURV12_W50 dtype: string - name: RACESURV7_W43 dtype: string - name: GOVWASTE_W92 dtype: string - name: CARS3B_W27 dtype: string - name: MADEUPSMCLICK_W45 dtype: string - name: Q7F1_W42 dtype: string - name: GAP21Q19_d_W82 dtype: string - name: ECON4_i_W54 dtype: string - name: DNA4_W50 dtype: string - name: DRONE4E_W27 dtype: string - name: INFORESTRICTd_W45 dtype: string - name: FAMSURV26a_W50 dtype: string - name: MARRYPREF1_W50 dtype: string - name: WORRY2c_W54 dtype: string - name: IMPROVE2_W36 dtype: string - name: GAP21Q8_W82 dtype: string - name: RACESURV52_W43 dtype: string - name: DNATEST_W49 dtype: string - name: FAMSURV33d_W50 dtype: string - name: SMARTAPP_W49 dtype: string - name: FAMSURV22b_W50 dtype: string - name: SOLVPROBb_W41 dtype: string - name: INFOKNOWa_W45 dtype: string - name: AGEMAJ_W41 dtype: string - name: WORRYF_W26 dtype: string - name: RACESURV49_W43 dtype: string - name: BETTERBIZ1F2D_W36 dtype: string - name: HOMEASSIST1_W49 dtype: string - name: TRAITPOLMF1F_W36 dtype: string - name: VALUERURAL_W32 dtype: string - name: GAP21Q4_d_W82 dtype: string - name: WHYNOTBIZF2J_W36 dtype: string - name: VALUESUBURB_W32 dtype: string - name: GAP21Q7_d_W82 dtype: string - name: ROBJOB3B_W27 dtype: string - name: GAP21Q43_h_W82 dtype: string - name: GOVREGV1_W49 dtype: string - name: WORRY2e_W54 dtype: string - name: RACESURV15b_W43 dtype: string - name: FAMSURV23c_W50 dtype: string - name: SEENFEM_W29 dtype: string - name: HIRING6B_W27 dtype: string - name: GAP21Q7_c_W82 dtype: string - name: SOLVPROBc_W41 dtype: string - name: FAMSURV35b_W50 dtype: string - name: ANONYMOUS1GOV_W49 dtype: string - name: CONCERNGRPe_W49 dtype: string - name: FAMSURV2Me_W50 dtype: string - name: INEQ11_W54 dtype: string - name: SPOUSESEX_W29 dtype: string - name: GROWUPNEAR_W32 dtype: string - name: FAMSURV35c_W50 dtype: string - name: CONTROLCO_W49 dtype: string - name: GOVPRIORITYb_W54 dtype: string - name: EAT3I_W34 dtype: string - name: FAMSURV23a_W50 dtype: string - name: INFORESTRICTe_W45 dtype: string - name: GAP21Q38_a_W82 dtype: string - name: ECON5_f_W54 dtype: string - name: MESUM1_FB_W29 dtype: string - name: SMSHARER_W45 dtype: string - name: WORK4B_W27 dtype: string - name: FATHER_W50 dtype: string - name: POLICY3MOD_W92 dtype: string - name: BIGHOUSES_W92 dtype: string - name: CARS10B_W27 dtype: string - name: WORRYG_W26 dtype: string - name: WORRYA_W26 dtype: string - name: PQ8_F2C_W42 dtype: string - name: FAMSURV11M_W50 dtype: string - name: STYLE2_W36 dtype: string - name: INFOCREATEb_W45 dtype: string - name: EQUALPOLF2_W36 dtype: string - name: BENEFITSc_W54 dtype: string - name: ROBJOB8D_W27 dtype: string - name: ROBJOB4C_W27 dtype: string - name: GOVPROTCT_W92 dtype: string - name: GUNCONTRIBE_W26 dtype: string - name: RACESURV28e_W43 dtype: string - name: SOLVPROBa_W41 dtype: string - name: MED7_W34 dtype: string - name: ECON3_b_W54 dtype: string - name: SOCIETY_GUNS_W92 dtype: string - name: GUNSAFE2_W26 dtype: string - name: RTBFc_W49 dtype: string - name: HARASS1F1c_W41 dtype: string - name: DEBTc_W54 dtype: string - name: EAT5D_W34 dtype: string - name: GAP21Q1_W82 dtype: string - name: LOYALTY_W49 dtype: string - name: OPENIDEN_W92 dtype: string - name: WMNPRZ1_W36 dtype: string - name: RACESURV48_W43 dtype: string - name: TRAITPOLMF1A_W36 dtype: string - name: PROG_RNEED2b_W92 dtype: string - name: GAP21Q22_W82 dtype: string - name: GOPDIRCT_W29 dtype: string - name: BETTERBIZ1F2I_W36 dtype: string - name: INEQ2_W54 dtype: string - name: ROBJOB6_W27 dtype: string - name: WHYNOTPOLF1G_W36 dtype: string - name: PQ3_F2Cd_W42 dtype: string - name: INEQ5_e_W54 dtype: string - name: SUBURBNEAR_W32 dtype: string - name: FAMSURV2Wb_W50 dtype: string - name: DATAUSEf_W49 dtype: string - name: MAN1B_W29 dtype: string - name: FAMSURV35a_W50 dtype: string - name: ECON4_g_W54 dtype: string - name: SOCMEDIAUSEa_W49 dtype: string - name: BETTERBIZ1F2J_W36 dtype: string - name: RACESURV17_W43 dtype: string - name: FACE4d_W49 dtype: string - name: ELECT_CONF3_PRVSUP_W92 dtype: string - name: FAMSURV40_W50 dtype: string - name: ROBIMPACTb_W41 dtype: string - name: FEELA_W32 dtype: string - name: SCM5e_W42 dtype: string - name: RQ4_F1Ca_W42 dtype: string - name: DIFFPARTY_W92 dtype: string - name: GAP21Q26_d_W82 dtype: string - name: CRIMEVICTIM_W26 dtype: string - name: GAP21Q4_a_W82 dtype: string - name: BETTERBIZ1F2L_W36 dtype: string - name: DB1c_W49 dtype: string - name: FACE3c_W49 dtype: string - name: HARASS3NOWRKF2_W41 dtype: string - name: NEIGHSAMEA_W32 dtype: string - name: SCM5d_W42 dtype: string - name: UNIMMIGCOMM_W92 dtype: string - name: DB1a_W49 dtype: string - name: GUNRESPNOKIDSD_W26 dtype: string - name: LOCALPROBG_W32 dtype: string - name: GUNTHREAT_W26 dtype: string - name: ROBJOB4D_W27 dtype: string - name: TRANSGEND1_W29 dtype: string - name: RACESURV34a_W43 dtype: string - name: PREDICTB_W27 dtype: string - name: INFOWHYa_W45 dtype: string - name: INFOOWNb_W45 dtype: string - name: PQ4_F2Ba_W42 dtype: string - name: DISAVOID_W45 dtype: string - name: NEIGHKIDS_W32 dtype: string - name: GUNASSOCIATIONA_W26 dtype: string - name: INFOKNOWc_W45 dtype: string - name: RACESURV45_W43 dtype: string - name: RACESURV9_W43 dtype: string - name: MADEUPSOLVE_W45 dtype: string - name: GUNKILLF1_W26 dtype: string - name: INEQ4_c_W54 dtype: string - name: RACESURV18b_W43 dtype: string - name: FUD22_W34 dtype: string - name: GOVAID_W92 dtype: string - name: CAREGIV3B_W27 dtype: string - name: MED2B_W34 dtype: string - name: TRAITSC_W29 dtype: string - name: TRAITSF_W29 dtype: string - name: FREECOLL_W92 dtype: string - name: POLICY2_W42 dtype: string - name: GOVRESP_c_W54 dtype: string - name: PQ4_F2Bc_W42 dtype: string - name: Q7F2_W42 dtype: string - name: GAP21Q13_c_W82 dtype: string - name: BOYSF1B_W29 dtype: string - name: PQ3_F2Bc_W42 dtype: string - name: INCFUTURE_W32 dtype: string - name: BILLION_W92 dtype: string - name: ECON5_i_W54 dtype: string - name: WHYNOTPOLF1A_W36 dtype: string - name: GOVRESP_h_W54 dtype: string - name: ENG_W50 dtype: string - name: GAP21Q33_s_W82 dtype: string - name: ROMRELSER_W50 dtype: string - name: SCM3_W42 dtype: string - name: ROBJOB5C_W27 dtype: string - name: GOVT_ROLE_W32 dtype: string - name: SOURCESKEPc_W45 dtype: string - name: WATCHDOG_3_W45 dtype: string - name: PERSDISCR_W29 dtype: string - name: HIRING6A_W27 dtype: string - name: FAMSURV30f_W50 dtype: string - name: WHYNOTBIZF2O_W36 dtype: string - name: GAP21Q36_W82 dtype: string - name: CANQUALPOL_W92 dtype: string - name: GROWUPGUN4_W26 dtype: string - name: RACESURV44_W43 dtype: string - name: VOICE5C_W27 dtype: string - name: PP1_W49 dtype: string - name: FTRWORRYa_W41 dtype: string - name: Q9F1_W42 dtype: string - name: GUN_W26 dtype: string - name: SCI5_W34 dtype: string - name: LIFEFIFTY_W92 dtype: string - name: SOCIETY_RELG_W92 dtype: string - name: AUTOLKLY_W41 dtype: string - name: ECON3_f_W54 dtype: string - name: GAP21Q37_W82 dtype: string - name: CONFd_F1_W42 dtype: string - name: DEBTb_W54 dtype: string - name: FEELB_W32 dtype: string - name: PPLRESP_W92 dtype: string - name: PQ5_F2B_W42 dtype: string - name: ECIMPd_W54 dtype: string - name: WHYNOTPOLF1H_W36 dtype: string - name: FAMSURV26d_W50 dtype: string - name: LOCALPROBD_W32 dtype: string - name: WORK3B_W27 dtype: string - name: ESSENBIZF2B_W36 dtype: string - name: ECON5_j_W54 dtype: string - name: LOCALPROBM_F2_W32 dtype: string - name: PQ8_F2A_W42 dtype: string - name: SATLIFEd_W50 dtype: string - name: S12_W29 dtype: string - name: TRAITBIZWF2C_W36 dtype: string - name: RACESURV8_W43 dtype: string - name: INFORESTRICTa_W45 dtype: string - name: SSMONEY_W41 dtype: string - name: MARRFAM2_W32 dtype: string - name: RACESURV13_W43 dtype: string - name: MOREWMN1F2_W36 dtype: string - name: SCI2C_W34 dtype: string - name: VALUEURBAN_W32 dtype: string - name: RACESURV34d_W43 dtype: string - name: FAMSURV43_W50 dtype: string - name: RACESURV2_W43 dtype: string - name: FAMSURV37_W50 dtype: string - name: PQ5_F2A_W42 dtype: string - name: PQ3_F2Ac_W42 dtype: string - name: AMNTWMNPF1_W36 dtype: string - name: FUD37D_W34 dtype: string - name: JOBSECURITY_W41 dtype: string - name: RQ4_F1Cd_W42 dtype: string - name: FUTR_ABR_W41 dtype: string - name: ESSENBIZF2J_W36 dtype: string - name: ANONYMOUS1CO_W49 dtype: string - name: PQ2_F2C_W42 dtype: string - name: FEM2_W29 dtype: string - name: POSNEGGOV_W49 dtype: string - name: PP5a_W49 dtype: string - name: HOMEASSIST2_W49 dtype: string - name: FAMSURV5d_W50 dtype: string - name: ESSENPOLF1A_W36 dtype: string - name: TRAITBIZMF2B_W36 dtype: string - name: GROWUPGUN1_W26 dtype: string - name: GAP21Q33_r_W82 dtype: string - name: RQ3_F1Ab_W42 dtype: string - name: RACESURV19c_W43 dtype: string - name: WHYNOTBIZF2D_W36 dtype: string - name: POL1JB_W92 dtype: string - name: GAP21Q43_f_W82 dtype: string - name: GAP21Q21_b_W82 dtype: string - name: SCM4a_W42 dtype: string - name: GUNCOURSES_W26 dtype: string - name: ECIMPa_W54 dtype: string - name: PROBOFF_b_W92 dtype: string - name: SEENMASC_W29 dtype: string - name: NEVEROWN_W26 dtype: string - name: GAP21Q33_m_W82 dtype: string - name: REPRSNTDEM_W92 dtype: string - name: RQ3_F1Bb_W42 dtype: string - name: HAPPENc_W41 dtype: string - name: TRAITBIZWF2G_W36 dtype: string - name: MADEUPSHARE2_W45 dtype: string - name: GUNCONTRIBB_W26 dtype: string - name: EAT3F_W34 dtype: string - name: FUTR_M_W41 dtype: string - name: PROG_RNEED_W92 dtype: string - name: MISINFG_W32 dtype: string - name: FUTR_K_W41 dtype: string - name: MOVEURBAN_W32 dtype: string - name: ESSENPOLF1B_W36 dtype: string - name: INEQ5_f_W54 dtype: string - name: GAP21Q2_W82 dtype: string - name: TRAITPOLMF1B_W36 dtype: string - name: WHYNOTBIZF2C_W36 dtype: string - name: VIDOFT_W45 dtype: string - name: TRAITSA_W29 dtype: string - name: SUCCESSIMPA_W32 dtype: string - name: ESSENPOLF1G_W36 dtype: string - name: ECON4_e_W54 dtype: string - name: NOGOVTHC_W92 dtype: string - name: RACESURV28c_W43 dtype: string - name: FIN_SITGROWUP_W54 dtype: string - name: BETTERBIZ1F2A_W36 dtype: string - name: FUD35_W34 dtype: string - name: ECON4_c_W54 dtype: string - name: SOCMEDIAUSEc_W49 dtype: string - name: WHYNOTBIZF2B_W36 dtype: string - name: FAMSURV23f_W50 dtype: string - name: RQ3_F1Ad_W42 dtype: string - name: INEQ8_g_W54 dtype: string - name: HAPPEN2b_W41 dtype: string - name: SCI3C_W34 dtype: string - name: BUSPROFIT_W92 dtype: string - name: SOCTRUST_W32 dtype: string - name: GAP21Q15_b_W82 dtype: string - name: ROBJOB8E_W27 dtype: string - name: FAMSURV36b_W50 dtype: string - name: FAMSURV30c_W50 dtype: string - name: GAP21Q26_a_W82 dtype: string - name: VOICE5D_W27 dtype: string - name: FAMSURV10c_W50 dtype: string - name: ESSENBIZF2L_W36 dtype: string - name: RQ6_F1C_W42 dtype: string - name: INDUSTRY_W27 dtype: string - name: ADMISSIONa_W43 dtype: string - name: DEBTe_W54 dtype: string - name: SCM5g_W42 dtype: string - name: HAPPENa_W41 dtype: string - name: BETTERBIZ1F2H_W36 dtype: string - name: SMLIKESb_W45 dtype: string - name: GAP21Q19_a_W82 dtype: string - name: ESSENBIZF2E_W36 dtype: string - name: NEIGHKNOW_W32 dtype: string - name: ESSENBIZF2H_W36 dtype: string - name: RACESURV29d_W43 dtype: string - name: MADEUPOFT_W45 dtype: string - name: POORASSIST_W92 dtype: string - name: ROBJOB8F_W27 dtype: string - name: PARTICIPATEC_W29 dtype: string - name: COMATTACH_W32 dtype: string - name: PQ4_F2Bb_W42 dtype: string - name: CARS10C_W27 dtype: string - name: FACE2c_W49 dtype: string - name: HELPHURTD_W29 dtype: string - name: GUNCONTRIBC_W26 dtype: string - name: MED2D_W34 dtype: string - name: GAP21Q27_W82 dtype: string - name: RQ4_F1Ba_W42 dtype: string - name: CAREGIV6C_W27 dtype: string - name: DATAUSEd_W49 dtype: string - name: WORK3A_W27 dtype: string - name: SCM2_W42 dtype: string - name: FINANCEa_W54 dtype: string - name: INFOKNOWb_W45 dtype: string - name: PROBRURAL_W32 dtype: string - name: SPOUSESEX_W50 dtype: string - name: G2_W34 dtype: string - name: RACESURV19a_W43 dtype: string - name: INFOOWNe_W45 dtype: string - name: SNSUSE_W45 dtype: string - name: CONCERNGOV_W49 dtype: string - name: PROBOFF_a_W92 dtype: string - name: AMNTWMNP2F1_W36 dtype: string - name: FEM1F2_W29 dtype: string - name: FAMNEAR_W32 dtype: string - name: WHYNOTPOLF1D_W36 dtype: string - name: MESUM1_FD_W29 dtype: string - name: COHABDUR_W50 dtype: string - name: CONCERNGRPa_W49 dtype: string - name: INFOOWNa_W45 dtype: string - name: SOLVPROBh_W41 dtype: string - name: BIOTECHE_W34 dtype: string - name: CONTROLGRPa_W49 dtype: string - name: ESSENPOLF1F_W36 dtype: string - name: IMPROVE1_W36 dtype: string - name: TALKDISASNSINT_W49 dtype: string - name: BETTERPOL1F1G_W36 dtype: string - name: PROFILE5_W49 dtype: string - name: FAMSURV27c_W50 dtype: string - name: MADEUPTOPICa_W45 dtype: string - name: INEQ5_c_W54 dtype: string - name: GOVPRIOlF2_W41 dtype: string - name: WOMENOBS_W92 dtype: string - name: SOCIETY_WHT_W92 dtype: string - name: GAP21Q14_W82 dtype: string - name: ADMISSIONb_W43 dtype: string - name: GOVPRIOfF1_W41 dtype: string - name: CARS10D_W27 dtype: string - name: CANMTCHPOL_W92 dtype: string - name: RQ7_F1C_W42 dtype: string - name: ECIMPg_W54 dtype: string - name: ROBJOB8G_W27 dtype: string - name: GIRLSF2D_W29 dtype: string - name: BETTERPOL1F1E_W36 dtype: string - name: INEQ8_e_W54 dtype: string - name: GAP21Q33_p_W82 dtype: string - name: SCM5c_W42 dtype: string - name: DNA3a_W50 dtype: string - name: RACESURV3_W43 dtype: string - name: GUNRESPNOKIDSF_W26 dtype: string - name: FAMSURV22e_W50 dtype: string - name: CAREGIV1_W27 dtype: string - name: GAP21Q46_W82 dtype: string - name: FTRWORRYd_W41 dtype: string - name: FEDSHAREA_W32 dtype: string - name: ESSENBIZF2K_W36 dtype: string - name: ESSENBIZF2D_W36 dtype: string - name: TRACKCO1b_W49 dtype: string - name: HAPPENe_W41 dtype: string - name: SATLIFEC_W32 dtype: string - name: SCI2A_W34 dtype: string - name: BETTERPOL2F1A_W36 dtype: string - name: RQ8_F1B_W42 dtype: string - name: RACESURV12_W43 dtype: string - name: GAP21Q34_a_W82 dtype: string - name: GAP21Q33_j_W82 dtype: string - name: FAMSURV2Wd_W50 dtype: string - name: VOICE5B_W27 dtype: string - name: WORRYC_W26 dtype: string - name: GAP21Q4_e_W82 dtype: string - name: GAP21Q33_i_W82 dtype: string - name: INFOOWNd_W45 dtype: string - name: POP3_W42 dtype: string - name: MASC2AF1_W29 dtype: string - name: GAP21Q43_c_W82 dtype: string - name: GUNLOADED1_W26 dtype: string - name: ECON4_h_W54 dtype: string - name: HAPPEN2a_W41 dtype: string - name: WOMENOPPS_W32 dtype: string - name: CAREGIV2_W27 dtype: string - name: FAMSURV2Ma_W50 dtype: string - name: CARS1_W27 dtype: string - name: ELECT_IMPT3_PRVSUP_W92 dtype: string - name: GAP21Q33_e_W82 dtype: string - name: DNA3c_W50 dtype: string - name: ESSENBIZF2A_W36 dtype: string - name: VOICE4_W27 dtype: string - name: Q9F2_W42 dtype: string - name: POLICY3_W42 dtype: string - name: TALKCMNSNSINT_W49 dtype: string - name: SMARTPHONE_W49 dtype: string - name: TRAITBIZMF2D_W36 dtype: string - name: ECON4_b_W54 dtype: string - name: TRAITPOLMF1G_W36 dtype: string - name: RQ1_F1A_W42 dtype: string - name: ROBJOB4E_W27 dtype: string - name: INEQ6_W54 dtype: string - name: GAYMARR2_W32 dtype: string - name: INFOCONFUSEa_W45 dtype: string - name: MARRYPREF2_W50 dtype: string - name: FAMSURV4_W50 dtype: string - name: SCM5b_W42 dtype: string - name: MADEUPIMPb_W45 dtype: string - name: DIFF1C_W29 dtype: string - name: INFORESTRICTb_W45 dtype: string - name: RACESURV53f_W43 dtype: string - name: DEMDIRCT_W29 dtype: string - name: INFOCREATEc_W45 dtype: string - name: TRAITSB_W29 dtype: string - name: HARASS3F1_W41 dtype: string - name: GROWUPUSR_W32 dtype: string - name: ECIMPi_W54 dtype: string - name: Q6F2_W42 dtype: string - name: RACESURV18e_W43 dtype: string - name: MISINFT_W32 dtype: string - name: RACESURV19d_W43 dtype: string - name: MED6B_W34 dtype: string - name: JOBSFUTURE_W32 dtype: string - name: BETTERBIZ1F2B_W36 dtype: string - name: SMLIKESa_W45 dtype: string - name: WORK3D_W27 dtype: string - name: GOVPRIOjF1_W41 dtype: string - name: E5_W36 dtype: string - name: TRAITBIZWF2A_W36 dtype: string - name: POP1_W42 dtype: string - name: SCM5i_W42 dtype: string - name: DNA2c_W50 dtype: string - name: GAP21Q15_f_W82 dtype: string - name: HAPPENiF2_W41 dtype: string - name: SEEK_W45 dtype: string - name: GOVRESP_d_W54 dtype: string - name: HAPPEN2f_W41 dtype: string - name: INFOWHYc_W45 dtype: string - name: CRIM_SENT2_W92 dtype: string - name: GUNRESPNOKIDSG_W26 dtype: string - name: INSTN_K12_W92 dtype: string - name: MAN1E_W29 dtype: string - name: NEIGHINTERD_W32 dtype: string - name: PQ3_F2Ba_W42 dtype: string - name: ESSENPOLF1D_W36 dtype: string - name: FAMSURV9a_W50 dtype: string - name: GUNRESPKIDSE_W26 dtype: string - name: CARS5_W27 dtype: string - name: GUNRESPKIDSG_W26 dtype: string - name: RTDd_W49 dtype: string - name: CARS9B_W27 dtype: string - name: GAP21Q7_b_W82 dtype: string - name: RACESURV53d_W43 dtype: string - name: PP2_W49 dtype: string - name: GUNRESPNOKIDSC_W26 dtype: string - name: MADEUPTOPICe_W45 dtype: string - name: FIN_SITMOST_W54 dtype: string - name: ECIMPc_W54 dtype: string - name: SCM5a_W42 dtype: string - name: VTRS_VALS_W92 dtype: string - name: PROBSUBURB_W32 dtype: string - name: RACESURV5e_W43 dtype: string - name: FITTRACK_W49 dtype: string - name: MASC2BF1_W29 dtype: string - name: INSTN_CLGS_W92 dtype: string - name: FINANCEc_W54 dtype: string - name: SAFECRIME_W26 dtype: string - name: JOBTRAIN_W54 dtype: string - name: GAP21Q43_d_W82 dtype: string - name: TRAITBIZWF2D_W36 dtype: string - name: WORKHARD_W53 dtype: string - name: RACESURV26_W43 dtype: string - name: DATAUSEa_W49 dtype: string - name: GAP21Q15_c_W82 dtype: string - name: PQ7_F2A_W42 dtype: string - name: FAMSURV22g_W50 dtype: string - name: RACESURV18f_W43 dtype: string - name: ROBJOB8C_W27 dtype: string - name: ROBJOB5B_W27 dtype: string - name: PQ4_F2Ce_W42 dtype: string - name: EASIERPOLF2_W36 dtype: string - name: LEGALIMG_W41 dtype: string - name: ESSENPOLF1I_W36 dtype: string - name: ECON3_h_W54 dtype: string - name: FACE2a_W49 dtype: string - name: ELDCARE_W41 dtype: string - name: INFOWHYb_W45 dtype: string - name: REASONGUNE_W26 dtype: string - name: MED1_W34 dtype: string - name: EASIERBIZF2_W36 dtype: string - name: PQ3_F2Bb_W42 dtype: string - name: PAR2CHILDa_W92 dtype: string - name: CLASS_W32 dtype: string - name: EAT3J_W34 dtype: string - name: FAMSURV23d_W50 dtype: string - name: GUNSAFE_W26 dtype: string - name: WHYNOTBIZF2I_W36 dtype: string - name: user_id dtype: string splits: - name: questions num_bytes: 185587 num_examples: 1 - name: answers num_bytes: 961525039 num_examples: 80098 download_size: 34961061 dataset_size: 961710626 configs: - config_name: default data_files: - split: questions path: data/questions-* - split: answers path: data/answers-* ---
shreyaskaggle/human-conversations-4W-part8
shreyaskaggle
2024-10-29T22:06:44Z
20
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-29T22:06:43Z
0
--- dataset_info: features: - name: What dtype: string - name: When dtype: string - name: Where dtype: string - name: Who dtype: string splits: - name: train num_bytes: 118883 num_examples: 1000 download_size: 52611 dataset_size: 118883 configs: - config_name: default data_files: - split: train path: data/train-* ---
ZixuanKe/posttrain_tokenized_bopang_sup_qwen2.5_32b_instr
ZixuanKe
2024-12-31T01:58:41Z
64
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-30T03:51:12Z
0
--- dataset_info: features: - name: title dtype: string - name: topic dtype: string - name: text dtype: string - name: input_ids sequence: int32 - name: attention_mask sequence: int8 - name: labels sequence: int64 - name: packed_length dtype: int64 splits: - name: train num_bytes: 13531719151.035553 num_examples: 1550832 - name: validation num_bytes: 712198040.9644468 num_examples: 81623 download_size: 4599696086 dataset_size: 14243917192.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
neoneye/simon-arc-solve-template-v4
neoneye
2024-10-10T09:54:40Z
20
0
[ "task_categories:image-to-text", "task_categories:text-to-image", "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "image-to-text", "text-to-image" ]
2024-10-10T09:51:43Z
0
--- license: mit task_categories: - image-to-text - text-to-image language: - en pretty_name: simons ARC (abstraction & reasoning corpus) solve template version 4 size_categories: - 1K<n<10K configs: - config_name: default data_files: - split: train path: data.jsonl --- # Version 1 ARC-AGI Tasks where the job is to insert objects into templates. example count: 2-3. test count: 1-2. image size: 8-10. template size: 2-4. number of rects: 2-4. # Version 2 Smaller images. example count: 2-3. test count: 1-2. image size: 6-8. template size: 2-2. number of rects: 2-3. # Version 3 Added transformation: `without_insertion_image` image size: 6-8. template size: 2-3. number of rects: 2-3. # Version 4 Added transformations: `swap_one_to_many` and `swap_many_to_one`. image size: 6-10. template size: 2-4. number of rects: 2-3.
juliadollis/trad_ai_medical_chatbot_v9
juliadollis
2025-02-10T14:52:50Z
15
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-10T14:29:58Z
0
--- dataset_info: features: - name: Description dtype: string - name: Patient dtype: string - name: Doctor dtype: string - name: Translated_Description dtype: string - name: Translated_Patient dtype: string - name: Translated_Doctor dtype: string splits: - name: train num_bytes: 829907 num_examples: 300 download_size: 384499 dataset_size: 829907 configs: - config_name: default data_files: - split: train path: data/train-* ---
CelestialWandererOfTheVoid/reddit_dataset_190
CelestialWandererOfTheVoid
2025-03-21T07:09:22Z
10
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
2025-03-19T19:20:55Z
0
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 Reddit Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** CelestialWandererOfTheVoid/reddit_dataset_190 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5FCqYu48VvVwRt43ZptsmoQwiqH3RFYrRxzig4pYYnfK33Ng ### Miner Data Compliance Agreement In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md). ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed Reddit data. The data is continuously updated by network miners, providing a real-time stream of Reddit content for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Topic Modeling - Community Analysis - Content Categorization ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single Reddit post or comment with the following fields: ### Data Fields - `text` (string): The main content of the Reddit post or comment. - `label` (string): Sentiment or topic category of the content. - `dataType` (string): Indicates whether the entry is a post or a comment. - `communityName` (string): The name of the subreddit where the content was posted. - `datetime` (string): The date when the content was posted or commented. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the content. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public posts and comments on Reddit, adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in Reddit data, including demographic and content biases. This dataset reflects the content and opinions expressed on Reddit and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the nature of media sources. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public subreddits and does not include private or restricted communities. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to Reddit Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{CelestialWandererOfTheVoid2025datauniversereddit_dataset_190, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={CelestialWandererOfTheVoid}, year={2025}, url={https://huggingface.co/datasets/CelestialWandererOfTheVoid/reddit_dataset_190}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 25045 - **Date Range:** 2019-07-24T00:00:00Z to 2025-03-21T00:00:00Z - **Last Updated:** 2025-03-21T07:09:21Z ### Data Distribution - Posts: 6.54% - Comments: 93.46% ### Top 10 Subreddits For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | r/wallstreetbets | 5355 | 21.38% | | 2 | r/worldnews | 4070 | 16.25% | | 3 | r/politics | 3971 | 15.86% | | 4 | r/Bitcoin | 3349 | 13.37% | | 5 | r/CryptoCurrency | 2753 | 10.99% | | 6 | r/CryptoMarkets | 2117 | 8.45% | | 7 | r/btc | 651 | 2.60% | | 8 | r/solana | 533 | 2.13% | | 9 | r/ethtrader | 464 | 1.85% | | 10 | r/worldpolitics | 459 | 1.83% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-03-19T19:21:11Z | 10200 | 10200 | | 2025-03-20T12:59:02Z | 6711 | 16911 | | 2025-03-21T07:09:21Z | 8134 | 25045 |
harman/UltraInteract_Improved-Degraded_QR-Neutrals_Verified_probA_100000
harman
2025-05-21T19:31:48Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-21T19:31:43Z
0
--- dataset_info: features: - name: prompt dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: neutral dtype: bool - name: prob_A dtype: float64 splits: - name: train num_bytes: 40574827.2735 num_examples: 10455 download_size: 9185838 dataset_size: 40574827.2735 configs: - config_name: default data_files: - split: train path: data/train-* ---
Yusser/es_sae_wiki_tokenized
Yusser
2025-03-11T11:42:10Z
17
0
[ "size_categories:1M<n<10M", "format:parquet", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T11:30:55Z
0
--- dataset_info: features: - name: input_ids sequence: int32 splits: - name: train num_bytes: 6566125400.0 num_examples: 1601494 download_size: 3239511686 dataset_size: 6566125400.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
SPRINGLab/IndicTTS_Assamese
SPRINGLab
2025-01-27T11:46:39Z
97
0
[ "task_categories:text-to-speech", "language:as", "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-to-speech" ]
2025-01-24T09:44:16Z
0
--- dataset_info: features: - name: audio dtype: audio - name: text dtype: string - name: gender dtype: class_label: names: '0': female '1': male splits: - name: train num_bytes: 7374287207.946 num_examples: 16358 download_size: 8443016168 dataset_size: 7374287207.946 configs: - config_name: default data_files: - split: train path: data/train-* task_categories: - text-to-speech language: - as pretty_name: Assamese Indic TTS dataset --- # Assamese Indic TTS Dataset This dataset is derived from the Indic TTS Database project, specifically using the Assamese monolingual recordings from both male and female speakers. The dataset contains high-quality speech recordings with corresponding text transcriptions, making it suitable for text-to-speech (TTS) research and development. ## Dataset Details - **Language**: Assamese - **Total Duration**: ~27.4 hours (Male: 5.16 hours, Female: 5.18 hours) - **Audio Format**: WAV - **Sampling Rate**: 48000Hz - **Speakers**: 4 (2 male, 2 female native Assamese speakers) - **Content Type**: Monolingual Assamese utterances - **Recording Quality**: Studio-quality recordings - **Transcription**: Available for all audio files ## Dataset Source This dataset is derived from the Indic TTS Database, a special corpus of Indian languages developed by the Speech Technology Consortium at IIT Madras. The original database covers 13 major languages of India and contains 10,000+ spoken sentences/utterances for both monolingual and English recordings. ## License & Usage This dataset is subject to the original Indic TTS license terms. Before using this dataset, please ensure you have read and agreed to the [License For Use of Indic TTS](https://www.iitm.ac.in/donlab/indictts/downloads/license.pdf). ## Acknowledgments This dataset would not be possible without the work of the Speech Technology Consortium at IIT Madras. Special acknowledgment goes to: - Speech Technology Consortium - Department of Computer Science & Engineering and Electrical Engineering, IIT Madras - Bhashini, MeitY - Prof. Hema A Murthy & Prof. S Umesh ## Citation If you use this dataset in your research or applications, please cite the original Indic TTS project: ```bibtex @misc{indictts2023, title = {Indic {TTS}: A Text-to-Speech Database for Indian Languages}, author = {Speech Technology Consortium and {Hema A Murthy} and {S Umesh}}, year = {2023}, publisher = {Indian Institute of Technology Madras}, url = {https://www.iitm.ac.in/donlab/indictts/}, institution = {Department of Computer Science and Engineering and Electrical Engineering, IIT MADRAS} } ``` ## Contact For any issues or queries related to this HuggingFace dataset version, feel free to comment in the Community tab. For queries related to the original Indic TTS database, please contact: [email protected] ## Original Database Access The original complete database can be accessed at: https://www.iitm.ac.in/donlab/indictts/database Note: The original database provides access to data in multiple Indian languages and variants. This HuggingFace dataset specifically contains the Hindi monolingual portion of that database.
argilla-internal-testing/test_import_dataset_from_hub_with_classlabel_354d38a1-419a-4b08-9b91-372a0cf211bd
argilla-internal-testing
2024-11-28T11:44:04Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-28T11:44:03Z
0
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1256 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
wdy0123/InduMan
wdy0123
2025-09-28T09:22:35Z
58
0
[ "license:apache-2.0", "size_categories:100B<n<1T", "region:us", "agent" ]
[]
2025-09-25T00:34:05Z
0
--- license: apache-2.0 tags: - agent size_categories: - 100B<n<1T --- ## InduMan Dataset This dataset only contains the hdf5 files collected by the tasks in the experiment. If you want to download full data collected by all tasks, you should download this dataset first, and then turn to ModelScope for other hdf5 files.      https://www.modelscope.cn/datasets/wdy0123/InduMan ## Dataset Structure `<file>`.h5 └── data_frames ├── demo_0 │ ├── actions # [T, action_dim] │ ├── episode_step # [T, ] │ ├── is_success # [T, ] │ ├── rewards # [T,] │ ├── robot_joint_state # [T, 14] Franka Panda robot joint positions and velocities (gripper not included) │ └── robot_joint_forces # [T, 54] All Panda joints (gripper included) │ ├── objects poses # [T, 7] │ ├── contact_force # [T, 3] │ └──observations ├── ee_poses # [T, 7] ├── rgb_image # [T, 128, 128, 3] ├── demo_1 └── ... ## Failed demos in each task * ASSEMBLE_CHAIN_DOOR_LOCK: ['demo_71', 'demo_72', 'demo_73', 'demo_74', 'demo_76', 'demo_82', 'demo_84', 'demo_85', 'demo_86', 'demo_87', 'demo_88', 'demo_89', 'demo_90'] * ASSEMBLE_DC_PLUG: ['demo_60', 'demo_61', 'demo_62', 'demo_64', 'demo_65', 'demo_73', 'demo_75', 'demo_76', 'demo_77', 'demo_78', 'demo_80', 'demo_81']  * DISASSEMBLE_CHAIN_DOOR_LOCK: ['demo_63', 'demo_64', 'demo_71', 'demo_72', 'demo_73', 'demo_74', 'demo_75', 'demo_78'] * DISASSEMBLE_DC_PLUG ['demo_72', 'demo_73', 'demo_74', 'demo_75', 'demo_77', 'demo_79'] * DUAL_HOLE_IN_PEG: ['demo_65', 'demo_67', 'demo_70', 'demo_71', 'demo_72', 'demo_75', 'demo_76', 'demo_77', 'demo_78', 'demo_79', 'demo_80', 'demo_83', 'demo_85'] * DUAL_HOLE_OUT_PEG: ['demo_68', 'demo_69', 'demo_70', 'demo_72', 'demo_73', 'demo_74', 'demo_75', 'demo_76', 'demo_77', 'demo_79'] * RECTANGLE_PEG_IN_HOLE: ['demo_69', 'demo_70', 'demo_71', 'demo_74', 'demo_75', 'demo_77', 'demo_78'] * RECTANGLE_PEG_OUT_HOLE: ['demo_75', 'demo_76', 'demo_77', 'demo_78'] * USB_ASSEMBLE: ['demo_0', 'demo_1', 'demo_10', 'demo_11', 'demo_13', 'demo_14', 'demo_15', 'demo_16', 'demo_17', 'demo_2', 'demo_3', 'demo_4', 'demo_6', 'demo_7', 'demo_8', 'demo_9']  * USB_DISASSEMBLE: ['demo_73', 'demo_74', 'demo_75', 'demo_77']
kristiannordby/large-set-test
kristiannordby
2024-10-31T23:00:02Z
25
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-31T23:00:01Z
0
--- dataset_info: features: - name: question dtype: string - name: sql dtype: string splits: - name: train num_bytes: 490936 num_examples: 1526 download_size: 78056 dataset_size: 490936 configs: - config_name: default data_files: - split: train path: data/train-* ---
zjhhhh/filtered_wholedataset_armo_tokenized_logprob
zjhhhh
2025-09-22T07:16:34Z
89
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-09-22T07:15:39Z
0
--- dataset_info: features: - name: prompt dtype: string - name: requirements dtype: string - name: selection_response_1 dtype: string - name: selection_response_2 dtype: string - name: selection_response_3 dtype: string - name: base_response_1 dtype: string - name: base_response_2 dtype: string - name: current_response_1 dtype: string - name: current_response_2 dtype: string - name: selection_response_1_reward dtype: float64 - name: selection_response_2_reward dtype: float64 - name: selection_response_3_reward dtype: float64 - name: base_response_1_reward dtype: float64 - name: base_response_2_reward dtype: float64 - name: current_response_1_reward dtype: float64 - name: current_response_2_reward dtype: float64 - name: qwen_prompt dtype: string - name: qwen_prompt_tokens list: int64 - name: chosen dtype: string - name: chosen_reward dtype: float64 - name: qwen_chosen dtype: string - name: qwen_chosen_tokens list: int64 - name: reject dtype: string - name: reject_reward dtype: float64 - name: qwen_reject dtype: string - name: qwen_reject_tokens list: int64 - name: g_chosen dtype: string - name: g_reject dtype: string - name: chosen_logprob dtype: float64 - name: reject_logprob dtype: float64 splits: - name: train num_bytes: 3781586581 num_examples: 39887 - name: test num_bytes: 94603923 num_examples: 1000 download_size: 927137612 dataset_size: 3876190504 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
Nachiket-S/LLaMa_1B_Fine_Tuned_NoCoT
Nachiket-S
2024-12-05T03:47:19Z
22
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-05T03:47:17Z
0
--- dataset_info: features: - name: file_name dtype: string - name: paragraph dtype: string splits: - name: CleanPrompts num_bytes: 55085 num_examples: 90 download_size: 14255 dataset_size: 55085 configs: - config_name: default data_files: - split: CleanPrompts path: data/CleanPrompts-* ---
kaarthu2003/SlrCvVoicesTtsDataset
kaarthu2003
2025-05-20T17:49:56Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-20T17:47:07Z
0
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: sentence dtype: string splits: - name: train num_bytes: 4724162837.263434 num_examples: 15811 - name: validation num_bytes: 1165927686.4403155 num_examples: 1610 download_size: 2148816154 dataset_size: 5890090523.70375 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
timaeus/pythia-160m-pile-1m-ig-l6h8
timaeus
2025-01-31T19:08:30Z
15
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-31T19:08:28Z
0
--- dataset_info: features: - name: contents dtype: string - name: metadata struct: - name: pile_set_name sequence: string - name: id dtype: int64 splits: - name: train num_bytes: 15668936 num_examples: 10000 download_size: 10129389 dataset_size: 15668936 configs: - config_name: default data_files: - split: train path: data/train-* ---
yzembodied/libero_90_image_task_47
yzembodied
2025-05-07T10:38:42Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "region:us", "LeRobot" ]
[ "robotics" ]
2025-05-07T10:38:24Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": null, "total_episodes": 50, "total_frames": 7426, "total_tasks": 1, "total_videos": 0, "total_chunks": 1, "chunks_size": 1000, "fps": 20, "splits": { "train": "0:50" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": null, "features": { "observation.images.image": { "dtype": "image", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channel" ] }, "observation.images.wrist_image": { "dtype": "image", "shape": [ 256, 256, 3 ], "names": [ "height", "width", "channel" ] }, "observation.state": { "dtype": "float32", "shape": [ 8 ], "names": { "motors": [ "x", "y", "z", "roll", "pitch", "yaw", "gripper", "gripper" ] } }, "observation.state.joint": { "dtype": "float32", "shape": [ 7 ], "names": { "motors": [ "joint_1", "joint_2", "joint_3", "joint_4", "joint_5", "joint_6", "joint_7" ] } }, "action": { "dtype": "float32", "shape": [ 7 ], "names": { "motors": [ "x", "y", "z", "roll", "pitch", "yaw", "gripper" ] } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
konwoo/lte-ctx16-fs1-np8-lr1e-05
konwoo
2025-05-06T22:08:46Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-06T22:08:41Z
0
--- dataset_info: features: - name: text dtype: string - name: p_log_probs dtype: float32 - name: q_log_probs dtype: float32 - name: p_hat_log_probs dtype: float32 - name: num_tokens dtype: float32 splits: - name: train num_bytes: 10789651 num_examples: 128000 download_size: 8568715 dataset_size: 10789651 configs: - config_name: default data_files: - split: train path: data/train-* ---
abhayesian/ea-cause-tradeoffs
abhayesian
2025-04-29T01:24:36Z
41
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-28T13:09:20Z
0
--- dataset_info: features: - name: topic dtype: string - name: subtopic dtype: string - name: question dtype: string - name: scratchpad dtype: string - name: answer dtype: string - name: full_response dtype: string - name: model_id dtype: string - name: timestamp dtype: timestamp[ns] splits: - name: train num_bytes: 8885336 num_examples: 1000 download_size: 3959642 dataset_size: 8885336 configs: - config_name: default data_files: - split: train path: data/train-* ---
DS-20202/EMPIAR11526-128-val
DS-20202
2025-05-04T19:49:41Z
0
0
[ "license:mit", "region:us" ]
[]
2025-05-04T19:44:46Z
0
--- license: mit dataset_info: features: - name: image sequence: sequence: float32 splits: - name: train num_bytes: 3306893380 num_examples: 50065 download_size: 3317897107 dataset_size: 3306893380 configs: - config_name: default data_files: - split: train path: data/train-* ---
YuchenLi01/MATH_1.5Bsft_Score_DPO_Qwen2.5MathRM72B_hard0soft2_v5_chosen-2
YuchenLi01
2025-09-27T23:16:05Z
22
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-09-27T23:16:01Z
0
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: all_rm_scores sequence: float64 splits: - name: train num_bytes: 93833590 num_examples: 13661 - name: test num_bytes: 4972539 num_examples: 714 download_size: 17409119 dataset_size: 98806129 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
yoonholee/completions_wstar-balanced_Qwen3-4B_HMMT2025
yoonholee
2025-05-13T11:52:34Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-13T11:52:33Z
0
--- dataset_info: features: - name: problem dtype: string - name: hint dtype: string - name: completions sequence: string - name: corrects sequence: bool - name: acc dtype: float64 - name: answer dtype: string splits: - name: train num_bytes: 12354891 num_examples: 240 download_size: 4536451 dataset_size: 12354891 configs: - config_name: default data_files: - split: train path: data/train-* ---
jkazdan/jka
jkazdan
2024-12-30T19:27:30Z
14
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-30T19:22:00Z
0
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string splits: - name: train num_bytes: 90597 num_examples: 300 download_size: 41901 dataset_size: 90597 configs: - config_name: default data_files: - split: train path: data/train-* ---
PurCL/secalign-qwen2.5_7b_ins-edit-locality-cwe502
PurCL
2025-02-03T22:54:29Z
58
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-03T22:54:28Z
0
--- dataset_info: features: - name: lang dtype: string - name: cwe dtype: string - name: original_instruction dtype: string - name: original_code dtype: string - name: fixed_code dtype: string - name: locality_input dtype: string - name: locality_answer dtype: string splits: - name: train num_bytes: 99393 num_examples: 20 download_size: 78509 dataset_size: 99393 configs: - config_name: default data_files: - split: train path: data/train-* ---
eaalghamdi/chatrt_test_new
eaalghamdi
2025-03-08T23:22:11Z
56
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "datadreamer", "datadreamer-0.28.0", "synthetic", "gpt-4o" ]
[]
2025-03-08T23:22:04Z
0
--- dataset_info: features: - name: metadata dtype: string - name: topic dtype: string - name: data dtype: string - name: code dtype: string - name: image dtype: image - name: qa dtype: string splits: - name: train num_bytes: 87588.0 num_examples: 1 download_size: 105487 dataset_size: 87588.0 configs: - config_name: default data_files: - split: train path: data/train-* library_name: datadreamer size_categories: - n<1K tags: - datadreamer - datadreamer-0.28.0 - synthetic - gpt-4o - gpt-4o - gpt-4o - gpt-4o --- # Dataset Card [Add more information here](https://huggingface.co/datasets/templates/dataset-card-example) --- This dataset was produced with [DataDreamer 🤖💤](https://datadreamer.dev). The synthetic dataset card can be found [here](datadreamer.json).
HZCDLUT/ScienceQA_lite
HZCDLUT
2025-03-21T09:12:22Z
22
0
[ "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T03:16:07Z
0
--- dataset_info: features: - name: image dtype: image - name: question dtype: string - name: choices sequence: string - name: answer dtype: int8 - name: hint dtype: string - name: task dtype: string - name: grade dtype: string - name: subject dtype: string - name: topic dtype: string - name: category dtype: string - name: skill dtype: string - name: lecture dtype: string - name: solution dtype: string splits: - name: lite num_bytes: 33512253.842340108 num_examples: 500 download_size: 32198342 dataset_size: 33512253.842340108 configs: - config_name: default data_files: - split: lite path: data/lite-* ---
darkmater/huggingface-smol-course-preference-tuning-dataset
darkmater
2024-12-25T22:17:12Z
68
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-25T22:17:11Z
0
--- dataset_info: features: - name: instruction dtype: string - name: grouped_generation sequence: string - name: model_name dtype: string - name: distilabel_metadata struct: - name: raw_input_text_generation_0 list: - name: content dtype: string - name: role dtype: string - name: raw_input_text_generation_1 list: - name: content dtype: string - name: role dtype: string - name: raw_output_text_generation_0 dtype: string - name: raw_output_text_generation_1 dtype: string splits: - name: train num_bytes: 3063 num_examples: 1 download_size: 21829 dataset_size: 3063 configs: - config_name: default data_files: - split: train path: data/train-* ---
trend-cybertron/Primus-Seed
trend-cybertron
2025-03-05T09:04:51Z
11
0
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:100K<n<1M", "arxiv:2502.11191", "region:us", "cybersecurity", "pretraining", "wikipedia", "MITRE" ]
[ "text-generation" ]
2025-03-05T06:36:14Z
0
--- license: odc-by task_categories: - text-generation language: - en pretty_name: Primus-Seed tags: - cybersecurity - pretraining - wikipedia - MITRE size_categories: - 100K<n<1M extra_gated_fields: Affiliation: text Country: country I want to use this model for: type: select options: - Research - Commercial - label: Other value: other Job title: type: select options: - Student - Research graduate - AI researcher - AI developer/engineer - Cybersecurity researcher - Reporter - Other geo: ip_location --- > ⭐ Please download the dataset from [here](https://huggingface.co/datasets/trendmicro-ailab/Primus-Seed). # PRIMUS: A Pioneering Collection of Open-Source Datasets for Cybersecurity LLM Training ## 🤗 Primus-Seed **Primus-Seed** is a high-quality🚀 cybersecurity text dataset composed of data crawled from reputable sources such as MITRE, Wikipedia, and well-known cybersecurity company websites, as well as CTI manually collected by our threat experts. ## Statistics | **Category** | **Samples** | **Tokens** | **Avg.** | |-------------|------------|------------|----------| | **_Web Crawl / Official Dump_** | | | | | Cybersecurity Blogs/News | 2,946 | 9,751,002 | 3,309.9 | | Cybersecurity Books | 6,499 | 2,910,464 | 447.8 | | Cybersecurity Companies Websites | 76,919 | 65,798,561 | 855.4 | | Cybersecurity Wikipedia | 6,636 | 9,567,196 | 1,441.7 | | MITRE | 3,432 | 2,435,118 | 709.5 | | **_Expert Curation_** | | | | | Campaigns | 136 | 37,106 | 272.8 | | Intrusion Sets | 343 | 60,524 | 176.5 | | Malware | 7,301 | 1,362,681 | 186.6 | | Reports | 11,317 | 934,954 | 82.6 | | Threat Actors | 27 | 2,264 | 83.9 | | Tools | 238 | 19,926 | 83.7 | | Vulnerabilities | 559,054 | 98,006,720 | 175.3 | | **Total** | **674,848** | **190,886,516** | **282.9** | ❗❗Currently, we have only released **Cybersecurity Companies Websites, Cybersecurity Wikipedia, and MITRE**. Other categories are under review to ensure compliance and verify whether redistribution falls under "_fair use_." ## How Did We Collect Cybersecurity Wikipedia? _Wikipedia_ does not provide a predefined cybersecurity subset, so we perform a custom filtering process. Each Wikipedia article is associated with one or more category tags, which can be further expanded into subcategory tags. Starting from the root category "_Computer Security_", we recursively traverse its subcategories, using GPT-4o to determine whether a category is cybersecurity-related. This process yields **375** relevant categories, from which we extract corresponding Wikipedia articles. _Prompt_: ``` [System] You are a helpful assistant. [User] Help me identify and mark the categories related to "cybersecurity", "information security", "data protection", "cryptography", "hacker activity", "cyber attack", "cybercrime" from a list of categories I have. For each category, provide a reason for marking it as 'Y' (Yes) or 'N' (No) in relation to the specified topics. Finally, output the results in JSON format with the fields: category, reason, security. {{category-list} ``` 🚀🚀 For more details, see our paper: [https://arxiv.org/abs/2502.11191](https://arxiv.org/abs/2502.11191) ## License This dataset is released under the **ODC-By** license.
blueapple8259/wikipedia_qa
blueapple8259
2024-12-09T05:44:54Z
24
2
[ "task_categories:question-answering", "language:ko", "license:cc-by-sa-4.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "question-answering" ]
2024-12-08T12:50:51Z
0
--- license: cc-by-sa-4.0 task_categories: - question-answering language: - ko --- [wikipedia](https://ko.wikipedia.org/wiki/%EC%9C%84%ED%82%A4%EB%B0%B1%EA%B3%BC:%EB%8C%80%EB%AC%B8) 데이터를 qa형식으로 가공한 데이터셋입니다. 언어모델 없이 코드로만 가공하는 것이 목표이며 새로운 가공 아이디어가 떠오를 시 새 버전으로 업로드 하겠습니다.
dgambettaphd/D_llm2_run2_gen8_WXS_doc1000_synt64_lr1e-04_acm_MPP
dgambettaphd
2025-06-17T23:20:10Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-17T23:20:07Z
0
--- dataset_info: features: - name: id_doc dtype: int64 - name: text dtype: string - name: dataset dtype: string - name: gen dtype: int64 - name: synt dtype: int64 - name: MPP dtype: float64 splits: - name: train num_bytes: 13776717 num_examples: 24000 download_size: 8300555 dataset_size: 13776717 configs: - config_name: default data_files: - split: train path: data/train-* ---
TAUR-dev/validated___demyst_synth_longcot_s1_cot_traces
TAUR-dev
2025-03-17T03:50:24Z
11
0
[ "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "curator" ]
[]
2025-03-17T03:50:20Z
0
--- language: en license: mit tags: - curator --- <a href="https://github.com/bespokelabsai/curator/"> <img src="https://huggingface.co/datasets/bespokelabs/Bespoke-Stratos-17k/resolve/main/made_with_curator.png" alt="Made with Curator" width=200px> </a> ## Dataset card for validated___demyst_synth_longcot_s1_cot_traces This dataset was made with [Curator](https://github.com/bespokelabsai/curator/). ## Dataset details A sample from the dataset: ```python { "question": "Find the remainder when $9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}}$ is divided by $1000$ .", "reference_solution": "109", "chain_of_thought": { "action": "prompt", "children": [ { "action": "decompose", "children": [], "content": "<thinking>\nTo move forward with the partial solution, I need to clarify the specific components or equations involved in the problem, which will allow me to identify any missing variables or relationships that need to be addressed. By breaking down the problem further, I can pinpoint the foundational concepts that govern the current state of my solution. This will also help me determine if additional proofs or calculations are required to reinforce the existing framework, ensuring that I understand the connections between different elements of the problem. Therefore, focusing on the key properties and definitions that relate to the aspects I've identified will be crucial in bridging gaps in my current understanding. \n</thinking>\n<sentence>\nI propose to analyze the underlying properties and definitions relevant to the equations in my partial solution. \n</sentence>" }, { "action": "solution step", "children": [], "content": "To find the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\ldots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\), we start by rewriting these numbers in a more convenient form.\n\nThe \\( k \\)-th term in the product can be expressed as \\( 10^k - 1 \\) where \\( k \\) ranges from \\( 1 \\) to \\( 999 \\). Thus, we can represent \\( N \\) as:\n\n\\[\nN = \\prod_{k=1}^{999} (10^k - 1)\n\\]\n\nNext, we will calculate \\( N \\mod 8 \\) and \\( N \\mod 125 \\) since \\( 1000 = 8 \\times 125 \\), and then apply the Chinese Remainder Theorem.\n\n**Step 1: Compute \\( N \\mod 8 \\)**\n\nWe first find each term modulo \\( 8 \\):\n\n- For \\( k = 1 \\): \\( 10^1 - 1 \\equiv 2 - 1 \\equiv 1 \\mod 8 \\)\n- For \\( k = 2 \\): \\( 10^2 - 1 \\equiv 4 - 1 \\equiv 3 \\mod 8 \\)\n- For \\( k = 3 \\): \\( 10^3 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \\)\n- For \\( k = 4 \\): \\( 10^4 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \\)\n\nAfter \\( k = 3 \\), the terms will always be \\( 0 \\mod 8 \\) for all higher \\( k \\) because \\( 10^k \\equiv 0 \\mod 8 \\).\n\nTherefore, \\( N \\) will contain the product of \\( k = 3 \\) onwards, which includes several zeroes:\n\n\\[\nN \\equiv 0 \\mod 8\n\\]\n\n**Step 2: Compute \\( N \\mod 125 \\)**\n\nNext, we need to analyze \\( N \\mod 125 \\). To do this, we will find how many multiples of \\( 5 \\) are in \\( N \\).\n\nEach term contributes factors of \\( 5 \\):\n\n- \\( 10^k - 1 \\equiv -1 \\mod 5 \\) contributes no factor of \\( 5 \\).\n- Terms are significant when considering \\( 10^k - 1 \\equiv 0 \\mod 25 \\). Specifically, we need to look at those terms for larger \\( k \\):\n - For \\( k \\equiv 0 \\mod 5 \\): \\( 10^k - 1 \\equiv -1 \\mod 25 \\), no contribution to \\( 5^1 \\).\n - For \\( k = 5 \\): contributes \\( 10^5 - 1 \\equiv 124 \\mod 125 \\) (which is \\( -1 \\)).\n - For \\( k \\geq 5 \\): includes enough factors of \\( 5 \\) to reach high multiplicities.\n\nTo find the total count, we note that terms increase by one \\( 5 \\) at \\( 25 \\):\n\nBy calculating the multiplier structure for each \\( k \\) and knowing that terms simplify across \\( 5 \\)-factored elements, we ultimately find:\n\nThe total combined factorization yields sufficient \\( 5^3 \\) thus,\n\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\n**Step 3: Combine results via CRT**\n\nFrom Steps 1 and 2, we have:\n\n\\[\nN \\equiv 0 \\mod 8\n\\]\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\nTo find \\( N \\mod 1000 \\):\n\nBy the Chinese Remainder Theorem, since both remainders are zero, we conclude:\n\n\\[\nN \\equiv 0 \\mod 1000\n\\]\n\nThus, the remainder when \\( 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\) is \n\n\\[\n\\boxed{0}\n\\]" }, { "action": "solution step", "children": [], "content": "To determine the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\), we need to analyze the product more carefully.\n\nFirst, recognize that the \\( k \\)-th term can be expressed as \\( 10^k - 1 \\) for \\( k = 1 \\) to \\( 999 \\). Consequently, we write \\( N \\) as:\n\n\\[\nN = \\prod_{k=1}^{999} (10^k - 1)\n\\]\n\nNext, since \\( 1000 = 8 \\times 125 \\), we'll compute \\( N \\mod 8 \\) and \\( N \\mod 125 \\), and then we will use the Chinese Remainder Theorem to combine the results.\n\n### Step 1: Compute \\( N \\mod 8 \\)\nEach term modulo \\( 8 \\) calculates as follows:\n- For \\( k = 1 \\): \n \\[\n 10^1 - 1 \\equiv 2 - 1 \\equiv 1 \\mod 8 \n \\]\n- For \\( k = 2 \\): \n \\[\n 10^2 - 1 \\equiv 4 - 1 \\equiv 3 \\mod 8 \n \\]\n- For \\( k = 3 \\): \n \\[\n 10^3 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \n \\]\n- For \\( k = 4 \\): \n \\[\n 10^4 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \n \\]\n\nFor \\( k \\geq 3 \\), \\( 10^k \\equiv 0 \\mod 8 \\) leads to:\n\n\\[\n10^k - 1 \\equiv -1 \\equiv 7 \\mod 8\n\\]\n\nAs \\( k \\) increases beyond \\( 3 \\), the terms will yield \\( 7 \\), and there are \\( 997 \\) such terms from \\( k=3 \\) to \\( k=999 \\). Since one of them (for \\( k=3 \\)) already contributes \\( 7 \\) and others do too, we still get a product comprising of many \\( 0 \\)'s:\n\nThus, we conclude: \n\\[\nN \\equiv 0 \\mod 8\n\\]\n\n### Step 2: Compute \\( N \\mod 125 \\)\n\nNext, we evaluate \\( N \\mod 125 \\). To do this, we investigate factors of \\( 5 \\) in each term of the product.\n- Recall that \\( 10^k - 1 \\) where \\( k \\equiv 0 \\mod 5 \\) contributes a factor of \\( 5 \\).\n \nThe relevant values for \\( k \\) yield:\n- For \\( k = 5, 10, 15, \\ldots, 995 \\), we will count the multiples of \\( 5 \\):\n There are \\( 199 \\) terms where \\( k \\equiv 0 \\mod 5 \\) (the sequence \\( 5, 10, 15, \\ldots, 995 \\) gives \\( 999/5 \\)).\n- Each \\( k \\equiv 0 \\mod 5 \\) contributes at least one \\( 5 \\), while contributions at \\( k \\equiv 0 \\mod 25 \\) contribute more.\n\nCounting these factors precisely:\n- For \\( k \\equiv 0 \\mod 25 \\): \\( 25, 50, 75, \\ldots, 975 \\) yields \\( 39 \\) such terms.\n \nThus, more factors can increase to \\( 5^3 \\) due to overlaps of \\( 25 \\) with \\( 5 \\).\n\nUltimately, the contributions lead to:\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\n### Step 3: Combine results via CRT\n\nWe summarize our results from both steps:\n\\[\nN \\equiv 0 \\mod 8\n\\]\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\nUsing the Chinese Remainder Theorem, since both congruences yield \\( 0 \\), we conclude:\n\n\\[\nN \\equiv 0 \\mod 1000\n\\]\n\nHence, the final result is:\n\n\\[\n\\boxed{0}\n\\]" }, { "action": "reflection", "children": [], "content": "The current subgoal of finding the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\) has indeed been achieved based on the steps provided in the partial solution.\n\nTo summarize the steps taken:\n\n1. **Rewrite the Product**:\n The product \\( N \\) was correctly reformulated as \\( \\prod_{k=1}^{999} (10^k - 1) \\).\n\n2. **Calculation Modulo 8**:\n - For \\( k = 1, 2, \\) and \\( 3 \\), the values were computed correctly.\n - Notably, for \\( k \\geq 3 \\), the terms yield \\( 0 \\mod 8 \\) because they are multiples of \\( 8 \\).\n - Therefore, it was correctly found that \\( N \\equiv 0 \\mod 8 \\).\n\n3. **Calculation Modulo 125**:\n - The contribution of factors of \\( 5 \\) was analyzed correctly, identifying that various \\( 10^k - 1 \\) terms yield \\( 0 \\mod 125 \\).\n - After counting all appropriate terms stemming from multiples of \\( 5 \\) and \\( 25 \\), it was determined that \\( N \\equiv 0 \\mod 125 \\).\n\n4. **Application of the Chinese Remainder Theorem**:\n Since both calculations yielded \\( N \\equiv 0 \\mod 8 \\) and \\( N \\equiv 0 \\mod 125 \\), it followed directly that \\( N \\equiv 0 \\mod 1000 \\).\n\nThe final conclusion, that the remainder when \\( N \\) is divided by \\( 1000 \\) is \\( 0 \\), is consistent with the calculations in the partial solution. As such, the current subgoal has been fully achieved, confirming that \\( \\boxed{0} \\) is indeed the correct answer." }, { "action": "answer", "children": [], "content": "Final answer: 109" }, { "action": "decompose", "children": [], "content": "<thinking>\nTo move forward with the partial solution, I need to clarify the specific components or equations involved in the problem, which will allow me to identify any missing variables or relationships that need to be addressed. By breaking down the problem further, I can pinpoint the foundational concepts that govern the current state of my solution. This will also help me determine if additional proofs or calculations are required to reinforce the existing framework, ensuring that I understand the connections between different elements of the problem. Therefore, focusing on the key properties and definitions that relate to the aspects I've identified will be crucial in bridging gaps in my current understanding. \n</thinking>\n<sentence>\nI propose to analyze the underlying properties and definitions relevant to the equations in my partial solution. \n</sentence>" }, { "action": "solution step", "children": [], "content": "To find the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\), we rewrite \\( N \\) as:\n\n\\[\nN = \\prod_{k=1}^{999} (10^k - 1)\n\\]\n\nWe will evaluate \\( N \\mod 8 \\) and \\( N \\mod 125 \\) as \\( 1000 = 8 \\times 125 \\) and apply the Chinese Remainder Theorem.\n\n**Step 1: Compute \\( N \\mod 8 \\)**\n\nCalculating each term modulo 8:\n\n- For \\( k = 1 \\): \\( 10^1 - 1 \\equiv 2 - 1 \\equiv 1 \\mod 8 \\)\n- For \\( k = 2 \\): \\( 10^2 - 1 \\equiv 4 - 1 \\equiv 3 \\mod 8 \\)\n- For \\( k = 3 \\): \\( 10^3 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \\)\n- For \\( k = 4 \\): \\( 10^4 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \\)\n\nFor \\( k \\geq 3 \\), \\( 10^k \\equiv 0 \\mod 8 \\), meaning all such terms equal \\( 7 \\) except \\( k=1 \\) and \\( k=2 \\).\n\nThus, the product up to \\( k=999 \\) has terms resulting in \\( N \\equiv 0 \\mod 8 \\) due to the multiplicity of \\( 7 \\) contributions.\n\n**Step 2: Compute \\( N \\mod 125 \\)**\n\nNext, we analyze \\( N \\mod 125 \\). Each term \\( 10^k - 1 \\) contributes factors of \\( 5 \\):\n\nEach \\( 10^k \\equiv 0 \\mod 5 \\) for \\( k \\geq 1 \\) implies each term contributes \\( -1 \\mod 5 \\), thus no factor of 5 from these.\n\nFor higher powers, we must ascertain contributions from terms meeting \\( 10^k - 1 \\equiv 0 \\mod 25 \\):\n- Terms like \\( k \\equiv 0 \\mod 5 \\): \\( k = 5, 10, 15, \\ldots \\).\n- Each multiple (specifically, \\( 5, 10, 15, \\ldots \\), until \\( 995 \\)) contributes one factor of \\( 5 \\) while additional \\( k \\equiv 0 \\mod 25 \\) (countable multiples indicate frequent contributions).\n\nNow:\n- Analyzing higher terms confirms these yield sufficient \\( 5^3 \\) yielding:\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\n**Step 3: Combine results via CRT**\n\nWe summarize:\n\\[\nN \\equiv 0 \\mod 8\n\\]\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\nBy the Chinese Remainder Theorem, deducing thus:\n\\[\nN \\equiv 0 \\mod 1000\n\\]\n\nFinal result:\n\\[\n\\boxed{0}\n\\]" }, { "action": "decompose", "children": [], "content": "<thinking>\nTo move forward with the partial solution, I need to clarify the specific components or equations involved in the problem, which will allow me to identify any missing variables or relationships that need to be addressed. By breaking down the problem further, I can pinpoint the foundational concepts that govern the current state of my solution. This will also help me determine if additional proofs or calculations are required to reinforce the existing framework, ensuring that I understand the connections between different elements of the problem. Therefore, focusing on the key properties and definitions that relate to the aspects I've identified will be crucial in bridging gaps in my current understanding. \n</thinking>\n<sentence>\nI propose to analyze the underlying properties and definitions relevant to the equations in my partial solution. \n</sentence>" }, { "action": "solution step", "children": [], "content": "To find the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\), we will compute \\( N \\mod 8 \\) and \\( N \\mod 125 \\) and then combine the results using the Chinese Remainder Theorem.\n\n### Step 1: Compute \\( N \\mod 8 \\)\n\nEach term \\( 10^k - 1 \\) for \\( k = 1, 2, \\ldots, 999 \\) can be evaluated modulo \\( 8 \\):\n\n- For \\( k = 1 \\):\n \\[\n 10^1 - 1 \\equiv 2 - 1 \\equiv 1 \\mod 8\n \\]\n\n- For \\( k = 2 \\):\n \\[\n 10^2 - 1 \\equiv 4 - 1 \\equiv 3 \\mod 8\n \\]\n\n- For \\( k = 3 \\):\n \\[\n 10^3 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8\n \\]\n\n- For \\( k = 4 \\):\n \\[\n 10^4 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8\n \\]\n\nFor \\( k \\geq 3 \\), \\( 10^k \\equiv 0 \\mod 8 \\), and hence each term results in \\( 7 \\mod 8 \\). The terms continue being \\( 7 \\) for all \\( k \\geq 3\\), leading to:\n\n\\[\nN \\equiv 1 \\cdot 3 \\cdot (7^{997}) \\mod 8\n\\]\n\nCalculating \\( 7^{997} \\mod 8 \\), we note that:\n\n\\[\n7 \\equiv -1 \\mod 8 \\implies 7^{997} \\equiv (-1)^{997} \\equiv -1 \\equiv 7 \\mod 8\n\\]\n\nThus,\n\n\\[\nN \\equiv 1 \\cdot 3 \\cdot 7 \\equiv 21 \\equiv 5 \\mod 8\n\\]\n\n### Step 2: Compute \\( N \\mod 125 \\)\n\nNext, we need to compute \\( N \\mod 125 \\). Each term contributes factors of \\( 5 \\):\n\n- \\( N \\) contains terms \\( 10^k - 1 \\). A term \\( 10^k - 1 \\equiv 0 \\mod 25 \\) when \\( k \\) is divisible by \\( 2 \\).\n- \\( k \\equiv 0 \\mod 5 \\) gives contributions of at least one factor of \\( 5 \\) per term:\n \nThe number of multiples of \\( 5 \\) from \\( 1 \\) to \\( 999 \\):\n\\[\n\\left\\lfloor \\frac{999}{5} \\right\\rfloor = 199 \\quad \\text{(terms)}\n\\]\n\nThe number of multiples of \\( 25 \\):\n\\[\n\\left\\lfloor \\frac{999}{25} \\right\\rfloor = 39 \\quad \\text{(additional factors)}\n\\]\n\nNow, counting contributions, we find:\n\n\\[\nN \\text{ contributes at least } 199 + 39 = 238 \\text{ factors of } 5\n\\]\n\nAs \\( 125 = 5^3 \\), we see that \\( N \\equiv 0 \\mod 125 \\).\n\n### Step 3: Combine results using CRT\n\nWe now have:\n\n\\[\nN \\equiv 5 \\mod 8\n\\]\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\nLet \\( N = 125k \\). Then,\n\n\\[\n125k \\equiv 5 \\mod 8\n\\]\nSince \\( 125 \\equiv 5 \\mod 8 \\),\n\n\\[\n5k \\equiv 5 \\mod 8 \\implies k \\equiv 1 \\mod 8\n\\]\n\nThus, let \\( k = 8m + 1 \\) for some integer \\( m \\).\n\nSubstituting back gives:\n\n\\[\nN = 125(8m + 1) = 1000m + 125\n\\]\n\nThus,\n\n\\[\nN \\equiv 125 \\mod 1000\n\\]\n\nTherefore, the final remainder when \\( N \\) is divided by \\( 1000 \\) is:\n\n\\[\n\\boxed{125}\n\\]" }, { "action": "finish out", "children": [], "content": "To find the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\), we computed:\n\n1. **Modulo 8**:\n - Result: \\( N \\equiv 5 \\mod 8 \\).\n\n2. **Modulo 125**:\n - Result: \\( N \\equiv 0 \\mod 125 \\).\n\nUsing the Chinese Remainder Theorem, we found that:\n\n- \\( N \\equiv 125 \\mod 1000 \\).\n\nThus, the final remainder is:\n\n\\[\n\\boxed{125}\n\\]" } ], "content": "Find the remainder when $9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}}$ is divided by $1000$ ." }, "synthetic_long_chain": "\n[decompose] <thinking>\nTo move forward with the partial solution, I need to clarify the specific components or equations involved in the problem, which will allow me to identify any missing variables or relationships that need to be addressed. By breaking down the problem further, I can pinpoint the foundational concepts that govern the current state of my solution. This will also help me determine if additional proofs or calculations are required to reinforce the existing framework, ensuring that I understand the connections between different elements of the problem. Therefore, focusing on the key properties and definitions that relate to the aspects I've identified will be crucial in bridging gaps in my current understanding. \n</thinking>\n<sentence>\nI propose to analyze the underlying properties and definitions relevant to the equations in my partial solution. \n</sentence>\n[solution step] To find the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\ldots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\), we start by rewriting these numbers in a more convenient form.\n\nThe \\( k \\)-th term in the product can be expressed as \\( 10^k - 1 \\) where \\( k \\) ranges from \\( 1 \\) to \\( 999 \\). Thus, we can represent \\( N \\) as:\n\n\\[\nN = \\prod_{k=1}^{999} (10^k - 1)\n\\]\n\nNext, we will calculate \\( N \\mod 8 \\) and \\( N \\mod 125 \\) since \\( 1000 = 8 \\times 125 \\), and then apply the Chinese Remainder Theorem.\n\n**Step 1: Compute \\( N \\mod 8 \\)**\n\nWe first find each term modulo \\( 8 \\):\n\n- For \\( k = 1 \\): \\( 10^1 - 1 \\equiv 2 - 1 \\equiv 1 \\mod 8 \\)\n- For \\( k = 2 \\): \\( 10^2 - 1 \\equiv 4 - 1 \\equiv 3 \\mod 8 \\)\n- For \\( k = 3 \\): \\( 10^3 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \\)\n- For \\( k = 4 \\): \\( 10^4 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \\)\n\nAfter \\( k = 3 \\), the terms will always be \\( 0 \\mod 8 \\) for all higher \\( k \\) because \\( 10^k \\equiv 0 \\mod 8 \\).\n\nTherefore, \\( N \\) will contain the product of \\( k = 3 \\) onwards, which includes several zeroes:\n\n\\[\nN \\equiv 0 \\mod 8\n\\]\n\n**Step 2: Compute \\( N \\mod 125 \\)**\n\nNext, we need to analyze \\( N \\mod 125 \\). To do this, we will find how many multiples of \\( 5 \\) are in \\( N \\).\n\nEach term contributes factors of \\( 5 \\):\n\n- \\( 10^k - 1 \\equiv -1 \\mod 5 \\) contributes no factor of \\( 5 \\).\n- Terms are significant when considering \\( 10^k - 1 \\equiv 0 \\mod 25 \\). Specifically, we need to look at those terms for larger \\( k \\):\n - For \\( k \\equiv 0 \\mod 5 \\): \\( 10^k - 1 \\equiv -1 \\mod 25 \\), no contribution to \\( 5^1 \\).\n - For \\( k = 5 \\): contributes \\( 10^5 - 1 \\equiv 124 \\mod 125 \\) (which is \\( -1 \\)).\n - For \\( k \\geq 5 \\): includes enough factors of \\( 5 \\) to reach high multiplicities.\n\nTo find the total count, we note that terms increase by one \\( 5 \\) at \\( 25 \\):\n\nBy calculating the multiplier structure for each \\( k \\) and knowing that terms simplify across \\( 5 \\)-factored elements, we ultimately find:\n\nThe total combined factorization yields sufficient \\( 5^3 \\) thus,\n\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\n**Step 3: Combine results via CRT**\n\nFrom Steps 1 and 2, we have:\n\n\\[\nN \\equiv 0 \\mod 8\n\\]\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\nTo find \\( N \\mod 1000 \\):\n\nBy the Chinese Remainder Theorem, since both remainders are zero, we conclude:\n\n\\[\nN \\equiv 0 \\mod 1000\n\\]\n\nThus, the remainder when \\( 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\) is \n\n\\[\n\\boxed{0}\n\\]\n[solution step] To determine the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\), we need to analyze the product more carefully.\n\nFirst, recognize that the \\( k \\)-th term can be expressed as \\( 10^k - 1 \\) for \\( k = 1 \\) to \\( 999 \\). Consequently, we write \\( N \\) as:\n\n\\[\nN = \\prod_{k=1}^{999} (10^k - 1)\n\\]\n\nNext, since \\( 1000 = 8 \\times 125 \\), we'll compute \\( N \\mod 8 \\) and \\( N \\mod 125 \\), and then we will use the Chinese Remainder Theorem to combine the results.\n\n### Step 1: Compute \\( N \\mod 8 \\)\nEach term modulo \\( 8 \\) calculates as follows:\n- For \\( k = 1 \\): \n \\[\n 10^1 - 1 \\equiv 2 - 1 \\equiv 1 \\mod 8 \n \\]\n- For \\( k = 2 \\): \n \\[\n 10^2 - 1 \\equiv 4 - 1 \\equiv 3 \\mod 8 \n \\]\n- For \\( k = 3 \\): \n \\[\n 10^3 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \n \\]\n- For \\( k = 4 \\): \n \\[\n 10^4 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \n \\]\n\nFor \\( k \\geq 3 \\), \\( 10^k \\equiv 0 \\mod 8 \\) leads to:\n\n\\[\n10^k - 1 \\equiv -1 \\equiv 7 \\mod 8\n\\]\n\nAs \\( k \\) increases beyond \\( 3 \\), the terms will yield \\( 7 \\), and there are \\( 997 \\) such terms from \\( k=3 \\) to \\( k=999 \\). Since one of them (for \\( k=3 \\)) already contributes \\( 7 \\) and others do too, we still get a product comprising of many \\( 0 \\)'s:\n\nThus, we conclude: \n\\[\nN \\equiv 0 \\mod 8\n\\]\n\n### Step 2: Compute \\( N \\mod 125 \\)\n\nNext, we evaluate \\( N \\mod 125 \\). To do this, we investigate factors of \\( 5 \\) in each term of the product.\n- Recall that \\( 10^k - 1 \\) where \\( k \\equiv 0 \\mod 5 \\) contributes a factor of \\( 5 \\).\n \nThe relevant values for \\( k \\) yield:\n- For \\( k = 5, 10, 15, \\ldots, 995 \\), we will count the multiples of \\( 5 \\):\n There are \\( 199 \\) terms where \\( k \\equiv 0 \\mod 5 \\) (the sequence \\( 5, 10, 15, \\ldots, 995 \\) gives \\( 999/5 \\)).\n- Each \\( k \\equiv 0 \\mod 5 \\) contributes at least one \\( 5 \\), while contributions at \\( k \\equiv 0 \\mod 25 \\) contribute more.\n\nCounting these factors precisely:\n- For \\( k \\equiv 0 \\mod 25 \\): \\( 25, 50, 75, \\ldots, 975 \\) yields \\( 39 \\) such terms.\n \nThus, more factors can increase to \\( 5^3 \\) due to overlaps of \\( 25 \\) with \\( 5 \\).\n\nUltimately, the contributions lead to:\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\n### Step 3: Combine results via CRT\n\nWe summarize our results from both steps:\n\\[\nN \\equiv 0 \\mod 8\n\\]\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\nUsing the Chinese Remainder Theorem, since both congruences yield \\( 0 \\), we conclude:\n\n\\[\nN \\equiv 0 \\mod 1000\n\\]\n\nHence, the final result is:\n\n\\[\n\\boxed{0}\n\\]\n[reflection] The current subgoal of finding the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\) has indeed been achieved based on the steps provided in the partial solution.\n\nTo summarize the steps taken:\n\n1. **Rewrite the Product**:\n The product \\( N \\) was correctly reformulated as \\( \\prod_{k=1}^{999} (10^k - 1) \\).\n\n2. **Calculation Modulo 8**:\n - For \\( k = 1, 2, \\) and \\( 3 \\), the values were computed correctly.\n - Notably, for \\( k \\geq 3 \\), the terms yield \\( 0 \\mod 8 \\) because they are multiples of \\( 8 \\).\n - Therefore, it was correctly found that \\( N \\equiv 0 \\mod 8 \\).\n\n3. **Calculation Modulo 125**:\n - The contribution of factors of \\( 5 \\) was analyzed correctly, identifying that various \\( 10^k - 1 \\) terms yield \\( 0 \\mod 125 \\).\n - After counting all appropriate terms stemming from multiples of \\( 5 \\) and \\( 25 \\), it was determined that \\( N \\equiv 0 \\mod 125 \\).\n\n4. **Application of the Chinese Remainder Theorem**:\n Since both calculations yielded \\( N \\equiv 0 \\mod 8 \\) and \\( N \\equiv 0 \\mod 125 \\), it followed directly that \\( N \\equiv 0 \\mod 1000 \\).\n\nThe final conclusion, that the remainder when \\( N \\) is divided by \\( 1000 \\) is \\( 0 \\), is consistent with the calculations in the partial solution. As such, the current subgoal has been fully achieved, confirming that \\( \\boxed{0} \\) is indeed the correct answer.\n[answer] Final answer: 109\n[decompose] <thinking>\nTo move forward with the partial solution, I need to clarify the specific components or equations involved in the problem, which will allow me to identify any missing variables or relationships that need to be addressed. By breaking down the problem further, I can pinpoint the foundational concepts that govern the current state of my solution. This will also help me determine if additional proofs or calculations are required to reinforce the existing framework, ensuring that I understand the connections between different elements of the problem. Therefore, focusing on the key properties and definitions that relate to the aspects I've identified will be crucial in bridging gaps in my current understanding. \n</thinking>\n<sentence>\nI propose to analyze the underlying properties and definitions relevant to the equations in my partial solution. \n</sentence>\n[solution step] To find the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\), we rewrite \\( N \\) as:\n\n\\[\nN = \\prod_{k=1}^{999} (10^k - 1)\n\\]\n\nWe will evaluate \\( N \\mod 8 \\) and \\( N \\mod 125 \\) as \\( 1000 = 8 \\times 125 \\) and apply the Chinese Remainder Theorem.\n\n**Step 1: Compute \\( N \\mod 8 \\)**\n\nCalculating each term modulo 8:\n\n- For \\( k = 1 \\): \\( 10^1 - 1 \\equiv 2 - 1 \\equiv 1 \\mod 8 \\)\n- For \\( k = 2 \\): \\( 10^2 - 1 \\equiv 4 - 1 \\equiv 3 \\mod 8 \\)\n- For \\( k = 3 \\): \\( 10^3 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \\)\n- For \\( k = 4 \\): \\( 10^4 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \\)\n\nFor \\( k \\geq 3 \\), \\( 10^k \\equiv 0 \\mod 8 \\), meaning all such terms equal \\( 7 \\) except \\( k=1 \\) and \\( k=2 \\).\n\nThus, the product up to \\( k=999 \\) has terms resulting in \\( N \\equiv 0 \\mod 8 \\) due to the multiplicity of \\( 7 \\) contributions.\n\n**Step 2: Compute \\( N \\mod 125 \\)**\n\nNext, we analyze \\( N \\mod 125 \\). Each term \\( 10^k - 1 \\) contributes factors of \\( 5 \\):\n\nEach \\( 10^k \\equiv 0 \\mod 5 \\) for \\( k \\geq 1 \\) implies each term contributes \\( -1 \\mod 5 \\), thus no factor of 5 from these.\n\nFor higher powers, we must ascertain contributions from terms meeting \\( 10^k - 1 \\equiv 0 \\mod 25 \\):\n- Terms like \\( k \\equiv 0 \\mod 5 \\): \\( k = 5, 10, 15, \\ldots \\).\n- Each multiple (specifically, \\( 5, 10, 15, \\ldots \\), until \\( 995 \\)) contributes one factor of \\( 5 \\) while additional \\( k \\equiv 0 \\mod 25 \\) (countable multiples indicate frequent contributions).\n\nNow:\n- Analyzing higher terms confirms these yield sufficient \\( 5^3 \\) yielding:\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\n**Step 3: Combine results via CRT**\n\nWe summarize:\n\\[\nN \\equiv 0 \\mod 8\n\\]\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\nBy the Chinese Remainder Theorem, deducing thus:\n\\[\nN \\equiv 0 \\mod 1000\n\\]\n\nFinal result:\n\\[\n\\boxed{0}\n\\]\n[decompose] <thinking>\nTo move forward with the partial solution, I need to clarify the specific components or equations involved in the problem, which will allow me to identify any missing variables or relationships that need to be addressed. By breaking down the problem further, I can pinpoint the foundational concepts that govern the current state of my solution. This will also help me determine if additional proofs or calculations are required to reinforce the existing framework, ensuring that I understand the connections between different elements of the problem. Therefore, focusing on the key properties and definitions that relate to the aspects I've identified will be crucial in bridging gaps in my current understanding. \n</thinking>\n<sentence>\nI propose to analyze the underlying properties and definitions relevant to the equations in my partial solution. \n</sentence>\n[solution step] To find the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\), we will compute \\( N \\mod 8 \\) and \\( N \\mod 125 \\) and then combine the results using the Chinese Remainder Theorem.\n\n### Step 1: Compute \\( N \\mod 8 \\)\n\nEach term \\( 10^k - 1 \\) for \\( k = 1, 2, \\ldots, 999 \\) can be evaluated modulo \\( 8 \\):\n\n- For \\( k = 1 \\):\n \\[\n 10^1 - 1 \\equiv 2 - 1 \\equiv 1 \\mod 8\n \\]\n\n- For \\( k = 2 \\):\n \\[\n 10^2 - 1 \\equiv 4 - 1 \\equiv 3 \\mod 8\n \\]\n\n- For \\( k = 3 \\):\n \\[\n 10^3 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8\n \\]\n\n- For \\( k = 4 \\):\n \\[\n 10^4 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8\n \\]\n\nFor \\( k \\geq 3 \\), \\( 10^k \\equiv 0 \\mod 8 \\), and hence each term results in \\( 7 \\mod 8 \\). The terms continue being \\( 7 \\) for all \\( k \\geq 3\\), leading to:\n\n\\[\nN \\equiv 1 \\cdot 3 \\cdot (7^{997}) \\mod 8\n\\]\n\nCalculating \\( 7^{997} \\mod 8 \\), we note that:\n\n\\[\n7 \\equiv -1 \\mod 8 \\implies 7^{997} \\equiv (-1)^{997} \\equiv -1 \\equiv 7 \\mod 8\n\\]\n\nThus,\n\n\\[\nN \\equiv 1 \\cdot 3 \\cdot 7 \\equiv 21 \\equiv 5 \\mod 8\n\\]\n\n### Step 2: Compute \\( N \\mod 125 \\)\n\nNext, we need to compute \\( N \\mod 125 \\). Each term contributes factors of \\( 5 \\):\n\n- \\( N \\) contains terms \\( 10^k - 1 \\). A term \\( 10^k - 1 \\equiv 0 \\mod 25 \\) when \\( k \\) is divisible by \\( 2 \\).\n- \\( k \\equiv 0 \\mod 5 \\) gives contributions of at least one factor of \\( 5 \\) per term:\n \nThe number of multiples of \\( 5 \\) from \\( 1 \\) to \\( 999 \\):\n\\[\n\\left\\lfloor \\frac{999}{5} \\right\\rfloor = 199 \\quad \\text{(terms)}\n\\]\n\nThe number of multiples of \\( 25 \\):\n\\[\n\\left\\lfloor \\frac{999}{25} \\right\\rfloor = 39 \\quad \\text{(additional factors)}\n\\]\n\nNow, counting contributions, we find:\n\n\\[\nN \\text{ contributes at least } 199 + 39 = 238 \\text{ factors of } 5\n\\]\n\nAs \\( 125 = 5^3 \\), we see that \\( N \\equiv 0 \\mod 125 \\).\n\n### Step 3: Combine results using CRT\n\nWe now have:\n\n\\[\nN \\equiv 5 \\mod 8\n\\]\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\nLet \\( N = 125k \\). Then,\n\n\\[\n125k \\equiv 5 \\mod 8\n\\]\nSince \\( 125 \\equiv 5 \\mod 8 \\),\n\n\\[\n5k \\equiv 5 \\mod 8 \\implies k \\equiv 1 \\mod 8\n\\]\n\nThus, let \\( k = 8m + 1 \\) for some integer \\( m \\).\n\nSubstituting back gives:\n\n\\[\nN = 125(8m + 1) = 1000m + 125\n\\]\n\nThus,\n\n\\[\nN \\equiv 125 \\mod 1000\n\\]\n\nTherefore, the final remainder when \\( N \\) is divided by \\( 1000 \\) is:\n\n\\[\n\\boxed{125}\n\\]\n[finish out] To find the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\), we computed:\n\n1. **Modulo 8**:\n - Result: \\( N \\equiv 5 \\mod 8 \\).\n\n2. **Modulo 125**:\n - Result: \\( N \\equiv 0 \\mod 125 \\).\n\nUsing the Chinese Remainder Theorem, we found that:\n\n- \\( N \\equiv 125 \\mod 1000 \\).\n\nThus, the final remainder is:\n\n\\[\n\\boxed{125}\n\\]", "short_chain_of_thought": "To find the remainder when the product \\( P = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{999 \\text{ 9's}} \\) is divided by \\( 1000 \\), we start by expressing \\( P \\) in a more manageable form. Each term in the product can be represented as\n\n\\[\nN_k = \\underbrace{99\\cdots9}_{k \\text{ 9's}} = 10^k - 1,\n\\]\n\nwhere \\( k \\) ranges from \\( 1 \\) to \\( 999 \\). Thus, we can express the product \\( P \\) as \n\n\\[\nP = (10^1 - 1)(10^2 - 1)(10^3 - 1) \\cdots (10^{999} - 1).\n\\]\n\nThe next step is to calculate \\( P \\mod 1000 \\). \n\nTo begin, we'll break down \\( 1000 \\) into its prime factorization:\n\n\\[\n1000 = 2^3 \\times 5^3.\n\\]\n\nWe'll calculate \\( P \\mod 8 \\) and \\( P \\mod 125 \\) separately and then combine the results using the Chinese Remainder Theorem.\n\n### Step 1: Calculating \\( P \\mod 8 \\)\n\nCalculating the first few terms modulo \\( 8 \\):\n\n- \\( 9 \\equiv 1 \\mod 8 \\)\n- \\( 99 \\equiv 3 \\mod 8 \\)\n- \\( 999 \\equiv 7 \\mod 8 \\)\n- \\( 9999 \\equiv 7 \\mod 8 \\) (and so on)\n\nWe observe that:\n\n- For \\( k = 1 \\): \\( 1 \\equiv 1 \\)\n- For \\( k = 2 \\): \\( 3 \\equiv 3 \\)\n- For \\( k = 3 \\): \\( 7 \\equiv 7 \\)\n- For \\( k \\geq 4 \\): \\( 10^k - 1 \\equiv 7 \\mod 8 \\)\n\nThus, we have the first three terms contributing:\n\n\\[\nP \\equiv 1 \\cdot 3 \\cdot 7 \\cdot 7^{996} \\mod 8.\n\\]\n\nCalculating \\( 1 \\cdot 3 \\cdot 7 \\):\n\n\\[\n1 \\cdot 3 \\cdot 7 = 21 \\equiv 5 \\mod 8.\n\\]\n\nNow we need to calculate \\( 7^{996} \\mod 8 \\):\n\n\\[\n7 \\equiv -1 \\mod 8 \\implies 7^{996} \\equiv (-1)^{996} \\equiv 1 \\mod 8.\n\\]\n\nThus,\n\n\\[\nP \\equiv 5 \\cdot 1 \\equiv 5 \\mod 8.\n\\]\n\n### Step 2: Calculating \\( P \\mod 125 \\)\n\nNext, we consider \\( P \\mod 125 \\). We compute each term:\n\n\\[\nN_k = 10^k - 1.\n\\]\n\nNotice that for \\( k \\geq 3 \\), \\( N_k \\equiv 0 \\mod 125 \\) since \\( 10^k \\) is a multiple of \\( 125 \\). Thus, the terms \\( N_3, N_4, \\ldots, N_{999} \\) all contribute a \\( 0 \\) factor to the product \\( P \\).\n\nConsequently,\n\n\\[\nP \\equiv 0 \\mod 125.\n\\]\n\n### Step 3: Using the Chinese Remainder Theorem\n\nNow we have two congruences:\n\n\\[\nP \\equiv 5 \\mod 8,\n\\]\n\\[\nP \\equiv 0 \\mod 125.\n\\]\n\nLet \\( P = 125k \\) for some integer \\( k \\). Then we substitute into the first equation:\n\n\\[\n125k \\equiv 5 \\mod 8.\n\\]\n\nCalculating \\( 125 \\mod 8 \\):\n\n\\[\n125 \\equiv 5 \\mod 8.\n\\]\n\nThis simplifies to:\n\n\\[\n5k \\equiv 5 \\mod 8.\n\\]\n\nDividing both sides by \\( 5 \\):\n\n\\[\nk \\equiv 1 \\mod 8.\n\\]\n\nThus, we can express \\( k \\) as:\n\n\\[\nk = 8m + 1\n\\]\n\nfor some integer \\( m \\). Substituting back, we have:\n\n\\[\nP = 125(8m + 1) = 1000m + 125.\n\\]\n\nHence, \n\n\\[\nP \\equiv 125 \\mod 1000.\n\\]\n\nConsequently, the final answer for the remainder when \\( P \\) is divided by \\( 1000 \\) is \n\n\\[\n\\boxed{125}.\n\\]", "total_cost": 0, "synth_trajectory": "[decompose] \nTo move forward with the partial solution, I need to clarify the specific components or equations involved in the problem, which will allow me to identify any missing variables or relationships that need to be addressed. By breaking down the problem further, I can pinpoint the foundational concepts that govern the current state of my solution. This will also help me determine if additional proofs or calculations are required to reinforce the existing framework, ensuring that I understand the connections between different elements of the problem. Therefore, focusing on the key properties and definitions that relate to the aspects I've identified will be crucial in bridging gaps in my current understanding. \n\n<sentence>\nI propose to analyze the underlying properties and definitions relevant to the equations in my partial solution. \n</sentence>\n[solution step] To find the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\ldots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\), we start by rewriting these numbers in a more convenient form.\n\nThe \\( k \\)-th term in the product can be expressed as \\( 10^k - 1 \\) where \\( k \\) ranges from \\( 1 \\) to \\( 999 \\). Thus, we can represent \\( N \\) as:\n\n\\[\nN = \\prod_{k=1}^{999} (10^k - 1)\n\\]\n\nNext, we will calculate \\( N \\mod 8 \\) and \\( N \\mod 125 \\) since \\( 1000 = 8 \\times 125 \\), and then apply the Chinese Remainder Theorem.\n\n**Step 1: Compute \\( N \\mod 8 \\)**\n\nWe first find each term modulo \\( 8 \\):\n\n- For \\( k = 1 \\): \\( 10^1 - 1 \\equiv 2 - 1 \\equiv 1 \\mod 8 \\)\n- For \\( k = 2 \\): \\( 10^2 - 1 \\equiv 4 - 1 \\equiv 3 \\mod 8 \\)\n- For \\( k = 3 \\): \\( 10^3 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \\)\n- For \\( k = 4 \\): \\( 10^4 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \\)\n\nAfter \\( k = 3 \\), the terms will always be \\( 0 \\mod 8 \\) for all higher \\( k \\) because \\( 10^k \\equiv 0 \\mod 8 \\).\n\nTherefore, \\( N \\) will contain the product of \\( k = 3 \\) onwards, which includes several zeroes:\n\n\\[\nN \\equiv 0 \\mod 8\n\\]\n\n**Step 2: Compute \\( N \\mod 125 \\)**\n\nNext, we need to analyze \\( N \\mod 125 \\). To do this, we will find how many multiples of \\( 5 \\) are in \\( N \\).\n\nEach term contributes factors of \\( 5 \\):\n\n- \\( 10^k - 1 \\equiv -1 \\mod 5 \\) contributes no factor of \\( 5 \\).\n- Terms are significant when considering \\( 10^k - 1 \\equiv 0 \\mod 25 \\). Specifically, we need to look at those terms for larger \\( k \\):\n - For \\( k \\equiv 0 \\mod 5 \\): \\( 10^k - 1 \\equiv -1 \\mod 25 \\), no contribution to \\( 5^1 \\).\n - For \\( k = 5 \\): contributes \\( 10^5 - 1 \\equiv 124 \\mod 125 \\) (which is \\( -1 \\)).\n - For \\( k \\geq 5 \\): includes enough factors of \\( 5 \\) to reach high multiplicities.\n\nTo find the total count, we note that terms increase by one \\( 5 \\) at \\( 25 \\):\n\nBy calculating the multiplier structure for each \\( k \\) and knowing that terms simplify across \\( 5 \\)-factored elements, we ultimately find:\n\nThe total combined factorization yields sufficient \\( 5^3 \\) thus,\n\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\n**Step 3: Combine results via CRT**\n\nFrom Steps 1 and 2, we have:\n\n\\[\nN \\equiv 0 \\mod 8\n\\]\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\nTo find \\( N \\mod 1000 \\):\n\nBy the Chinese Remainder Theorem, since both remainders are zero, we conclude:\n\n\\[\nN \\equiv 0 \\mod 1000\n\\]\n\nThus, the remainder when \\( 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\) is \n\n\\[\n\\boxed{0}\n\\]\n[solution step] To determine the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\), we need to analyze the product more carefully.\n\nFirst, recognize that the \\( k \\)-th term can be expressed as \\( 10^k - 1 \\) for \\( k = 1 \\) to \\( 999 \\). Consequently, we write \\( N \\) as:\n\n\\[\nN = \\prod_{k=1}^{999} (10^k - 1)\n\\]\n\nNext, since \\( 1000 = 8 \\times 125 \\), we'll compute \\( N \\mod 8 \\) and \\( N \\mod 125 \\), and then we will use the Chinese Remainder Theorem to combine the results.\n\n### Step 1: Compute \\( N \\mod 8 \\)\nEach term modulo \\( 8 \\) calculates as follows:\n- For \\( k = 1 \\): \n \\[\n 10^1 - 1 \\equiv 2 - 1 \\equiv 1 \\mod 8 \n \\]\n- For \\( k = 2 \\): \n \\[\n 10^2 - 1 \\equiv 4 - 1 \\equiv 3 \\mod 8 \n \\]\n- For \\( k = 3 \\): \n \\[\n 10^3 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \n \\]\n- For \\( k = 4 \\): \n \\[\n 10^4 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \n \\]\n\nFor \\( k \\geq 3 \\), \\( 10^k \\equiv 0 \\mod 8 \\) leads to:\n\n\\[\n10^k - 1 \\equiv -1 \\equiv 7 \\mod 8\n\\]\n\nAs \\( k \\) increases beyond \\( 3 \\), the terms will yield \\( 7 \\), and there are \\( 997 \\) such terms from \\( k=3 \\) to \\( k=999 \\). Since one of them (for \\( k=3 \\)) already contributes \\( 7 \\) and others do too, we still get a product comprising of many \\( 0 \\)'s:\n\nThus, we conclude: \n\\[\nN \\equiv 0 \\mod 8\n\\]\n\n### Step 2: Compute \\( N \\mod 125 \\)\n\nNext, we evaluate \\( N \\mod 125 \\). To do this, we investigate factors of \\( 5 \\) in each term of the product.\n- Recall that \\( 10^k - 1 \\) where \\( k \\equiv 0 \\mod 5 \\) contributes a factor of \\( 5 \\).\n \nThe relevant values for \\( k \\) yield:\n- For \\( k = 5, 10, 15, \\ldots, 995 \\), we will count the multiples of \\( 5 \\):\n There are \\( 199 \\) terms where \\( k \\equiv 0 \\mod 5 \\) (the sequence \\( 5, 10, 15, \\ldots, 995 \\) gives \\( 999/5 \\)).\n- Each \\( k \\equiv 0 \\mod 5 \\) contributes at least one \\( 5 \\), while contributions at \\( k \\equiv 0 \\mod 25 \\) contribute more.\n\nCounting these factors precisely:\n- For \\( k \\equiv 0 \\mod 25 \\): \\( 25, 50, 75, \\ldots, 975 \\) yields \\( 39 \\) such terms.\n \nThus, more factors can increase to \\( 5^3 \\) due to overlaps of \\( 25 \\) with \\( 5 \\).\n\nUltimately, the contributions lead to:\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\n### Step 3: Combine results via CRT\n\nWe summarize our results from both steps:\n\\[\nN \\equiv 0 \\mod 8\n\\]\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\nUsing the Chinese Remainder Theorem, since both congruences yield \\( 0 \\), we conclude:\n\n\\[\nN \\equiv 0 \\mod 1000\n\\]\n\nHence, the final result is:\n\n\\[\n\\boxed{0}\n\\]\n[reflection] The current subgoal of finding the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\) has indeed been achieved based on the steps provided in the partial solution.\n\nTo summarize the steps taken:\n\n1. **Rewrite the Product**:\n The product \\( N \\) was correctly reformulated as \\( \\prod_{k=1}^{999} (10^k - 1) \\).\n\n2. **Calculation Modulo 8**:\n - For \\( k = 1, 2, \\) and \\( 3 \\), the values were computed correctly.\n - Notably, for \\( k \\geq 3 \\), the terms yield \\( 0 \\mod 8 \\) because they are multiples of \\( 8 \\).\n - Therefore, it was correctly found that \\( N \\equiv 0 \\mod 8 \\).\n\n3. **Calculation Modulo 125**:\n - The contribution of factors of \\( 5 \\) was analyzed correctly, identifying that various \\( 10^k - 1 \\) terms yield \\( 0 \\mod 125 \\).\n - After counting all appropriate terms stemming from multiples of \\( 5 \\) and \\( 25 \\), it was determined that \\( N \\equiv 0 \\mod 125 \\).\n\n4. **Application of the Chinese Remainder Theorem**:\n Since both calculations yielded \\( N \\equiv 0 \\mod 8 \\) and \\( N \\equiv 0 \\mod 125 \\), it followed directly that \\( N \\equiv 0 \\mod 1000 \\).\n\nThe final conclusion, that the remainder when \\( N \\) is divided by \\( 1000 \\) is \\( 0 \\), is consistent with the calculations in the partial solution. As such, the current subgoal has been fully achieved, confirming that \\( \\boxed{0} \\) is indeed the correct answer.\n[answer] Final answer: 109\n[decompose] \nTo move forward with the partial solution, I need to clarify the specific components or equations involved in the problem, which will allow me to identify any missing variables or relationships that need to be addressed. By breaking down the problem further, I can pinpoint the foundational concepts that govern the current state of my solution. This will also help me determine if additional proofs or calculations are required to reinforce the existing framework, ensuring that I understand the connections between different elements of the problem. Therefore, focusing on the key properties and definitions that relate to the aspects I've identified will be crucial in bridging gaps in my current understanding. \n\n<sentence>\nI propose to analyze the underlying properties and definitions relevant to the equations in my partial solution. \n</sentence>\n[solution step] To find the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\), we rewrite \\( N \\) as:\n\n\\[\nN = \\prod_{k=1}^{999} (10^k - 1)\n\\]\n\nWe will evaluate \\( N \\mod 8 \\) and \\( N \\mod 125 \\) as \\( 1000 = 8 \\times 125 \\) and apply the Chinese Remainder Theorem.\n\n**Step 1: Compute \\( N \\mod 8 \\)**\n\nCalculating each term modulo 8:\n\n- For \\( k = 1 \\): \\( 10^1 - 1 \\equiv 2 - 1 \\equiv 1 \\mod 8 \\)\n- For \\( k = 2 \\): \\( 10^2 - 1 \\equiv 4 - 1 \\equiv 3 \\mod 8 \\)\n- For \\( k = 3 \\): \\( 10^3 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \\)\n- For \\( k = 4 \\): \\( 10^4 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \\)\n\nFor \\( k \\geq 3 \\), \\( 10^k \\equiv 0 \\mod 8 \\), meaning all such terms equal \\( 7 \\) except \\( k=1 \\) and \\( k=2 \\).\n\nThus, the product up to \\( k=999 \\) has terms resulting in \\( N \\equiv 0 \\mod 8 \\) due to the multiplicity of \\( 7 \\) contributions.\n\n**Step 2: Compute \\( N \\mod 125 \\)**\n\nNext, we analyze \\( N \\mod 125 \\). Each term \\( 10^k - 1 \\) contributes factors of \\( 5 \\):\n\nEach \\( 10^k \\equiv 0 \\mod 5 \\) for \\( k \\geq 1 \\) implies each term contributes \\( -1 \\mod 5 \\), thus no factor of 5 from these.\n\nFor higher powers, we must ascertain contributions from terms meeting \\( 10^k - 1 \\equiv 0 \\mod 25 \\):\n- Terms like \\( k \\equiv 0 \\mod 5 \\): \\( k = 5, 10, 15, \\ldots \\).\n- Each multiple (specifically, \\( 5, 10, 15, \\ldots \\), until \\( 995 \\)) contributes one factor of \\( 5 \\) while additional \\( k \\equiv 0 \\mod 25 \\) (countable multiples indicate frequent contributions).\n\nNow:\n- Analyzing higher terms confirms these yield sufficient \\( 5^3 \\) yielding:\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\n**Step 3: Combine results via CRT**\n\nWe summarize:\n\\[\nN \\equiv 0 \\mod 8\n\\]\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\nBy the Chinese Remainder Theorem, deducing thus:\n\\[\nN \\equiv 0 \\mod 1000\n\\]\n\nFinal result:\n\\[\n\\boxed{0}\n\\]\n[decompose] \nTo move forward with the partial solution, I need to clarify the specific components or equations involved in the problem, which will allow me to identify any missing variables or relationships that need to be addressed. By breaking down the problem further, I can pinpoint the foundational concepts that govern the current state of my solution. This will also help me determine if additional proofs or calculations are required to reinforce the existing framework, ensuring that I understand the connections between different elements of the problem. Therefore, focusing on the key properties and definitions that relate to the aspects I've identified will be crucial in bridging gaps in my current understanding. \n\n<sentence>\nI propose to analyze the underlying properties and definitions relevant to the equations in my partial solution. \n</sentence>\n[solution step] To find the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\), we will compute \\( N \\mod 8 \\) and \\( N \\mod 125 \\) and then combine the results using the Chinese Remainder Theorem.\n\n### Step 1: Compute \\( N \\mod 8 \\)\n\nEach term \\( 10^k - 1 \\) for \\( k = 1, 2, \\ldots, 999 \\) can be evaluated modulo \\( 8 \\):\n\n- For \\( k = 1 \\):\n \\[\n 10^1 - 1 \\equiv 2 - 1 \\equiv 1 \\mod 8\n \\]\n\n- For \\( k = 2 \\):\n \\[\n 10^2 - 1 \\equiv 4 - 1 \\equiv 3 \\mod 8\n \\]\n\n- For \\( k = 3 \\):\n \\[\n 10^3 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8\n \\]\n\n- For \\( k = 4 \\):\n \\[\n 10^4 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8\n \\]\n\nFor \\( k \\geq 3 \\), \\( 10^k \\equiv 0 \\mod 8 \\), and hence each term results in \\( 7 \\mod 8 \\). The terms continue being \\( 7 \\) for all \\( k \\geq 3\\), leading to:\n\n\\[\nN \\equiv 1 \\cdot 3 \\cdot (7^{997}) \\mod 8\n\\]\n\nCalculating \\( 7^{997} \\mod 8 \\), we note that:\n\n\\[\n7 \\equiv -1 \\mod 8 \\implies 7^{997} \\equiv (-1)^{997} \\equiv -1 \\equiv 7 \\mod 8\n\\]\n\nThus,\n\n\\[\nN \\equiv 1 \\cdot 3 \\cdot 7 \\equiv 21 \\equiv 5 \\mod 8\n\\]\n\n### Step 2: Compute \\( N \\mod 125 \\)\n\nNext, we need to compute \\( N \\mod 125 \\). Each term contributes factors of \\( 5 \\):\n\n- \\( N \\) contains terms \\( 10^k - 1 \\). A term \\( 10^k - 1 \\equiv 0 \\mod 25 \\) when \\( k \\) is divisible by \\( 2 \\).\n- \\( k \\equiv 0 \\mod 5 \\) gives contributions of at least one factor of \\( 5 \\) per term:\n \nThe number of multiples of \\( 5 \\) from \\( 1 \\) to \\( 999 \\):\n\\[\n\\left\\lfloor \\frac{999}{5} \\right\\rfloor = 199 \\quad \\text{(terms)}\n\\]\n\nThe number of multiples of \\( 25 \\):\n\\[\n\\left\\lfloor \\frac{999}{25} \\right\\rfloor = 39 \\quad \\text{(additional factors)}\n\\]\n\nNow, counting contributions, we find:\n\n\\[\nN \\text{ contributes at least } 199 + 39 = 238 \\text{ factors of } 5\n\\]\n\nAs \\( 125 = 5^3 \\), we see that \\( N \\equiv 0 \\mod 125 \\).\n\n### Step 3: Combine results using CRT\n\nWe now have:\n\n\\[\nN \\equiv 5 \\mod 8\n\\]\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\nLet \\( N = 125k \\). Then,\n\n\\[\n125k \\equiv 5 \\mod 8\n\\]\nSince \\( 125 \\equiv 5 \\mod 8 \\),\n\n\\[\n5k \\equiv 5 \\mod 8 \\implies k \\equiv 1 \\mod 8\n\\]\n\nThus, let \\( k = 8m + 1 \\) for some integer \\( m \\).\n\nSubstituting back gives:\n\n\\[\nN = 125(8m + 1) = 1000m + 125\n\\]\n\nThus,\n\n\\[\nN \\equiv 125 \\mod 1000\n\\]\n\nTherefore, the final remainder when \\( N \\) is divided by \\( 1000 \\) is:\n\n\\[\n\\boxed{125}\n\\]", "synth_answer": " To find the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\), we computed:\n\n1. **Modulo 8**:\n - Result: \\( N \\equiv 5 \\mod 8 \\).\n\n2. **Modulo 125**:\n - Result: \\( N \\equiv 0 \\mod 125 \\).\n\nUsing the Chinese Remainder Theorem, we found that:\n\n- \\( N \\equiv 125 \\mod 1000 \\).\n\nThus, the final remainder is:\n\n\\[\n\\boxed{125}\n\\]", "text": "<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n<|im_start|>user\nFind the remainder when $9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}}$ is divided by $1000$ .<|im_end|>\n<|im_start|>assistant\n<|im_start|>think\n[decompose] \nTo move forward with the partial solution, I need to clarify the specific components or equations involved in the problem, which will allow me to identify any missing variables or relationships that need to be addressed. By breaking down the problem further, I can pinpoint the foundational concepts that govern the current state of my solution. This will also help me determine if additional proofs or calculations are required to reinforce the existing framework, ensuring that I understand the connections between different elements of the problem. Therefore, focusing on the key properties and definitions that relate to the aspects I've identified will be crucial in bridging gaps in my current understanding. \n\n<sentence>\nI propose to analyze the underlying properties and definitions relevant to the equations in my partial solution. \n</sentence>\n[solution step] To find the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\ldots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\), we start by rewriting these numbers in a more convenient form.\n\nThe \\( k \\)-th term in the product can be expressed as \\( 10^k - 1 \\) where \\( k \\) ranges from \\( 1 \\) to \\( 999 \\). Thus, we can represent \\( N \\) as:\n\n\\[\nN = \\prod_{k=1}^{999} (10^k - 1)\n\\]\n\nNext, we will calculate \\( N \\mod 8 \\) and \\( N \\mod 125 \\) since \\( 1000 = 8 \\times 125 \\), and then apply the Chinese Remainder Theorem.\n\n**Step 1: Compute \\( N \\mod 8 \\)**\n\nWe first find each term modulo \\( 8 \\):\n\n- For \\( k = 1 \\): \\( 10^1 - 1 \\equiv 2 - 1 \\equiv 1 \\mod 8 \\)\n- For \\( k = 2 \\): \\( 10^2 - 1 \\equiv 4 - 1 \\equiv 3 \\mod 8 \\)\n- For \\( k = 3 \\): \\( 10^3 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \\)\n- For \\( k = 4 \\): \\( 10^4 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \\)\n\nAfter \\( k = 3 \\), the terms will always be \\( 0 \\mod 8 \\) for all higher \\( k \\) because \\( 10^k \\equiv 0 \\mod 8 \\).\n\nTherefore, \\( N \\) will contain the product of \\( k = 3 \\) onwards, which includes several zeroes:\n\n\\[\nN \\equiv 0 \\mod 8\n\\]\n\n**Step 2: Compute \\( N \\mod 125 \\)**\n\nNext, we need to analyze \\( N \\mod 125 \\). To do this, we will find how many multiples of \\( 5 \\) are in \\( N \\).\n\nEach term contributes factors of \\( 5 \\):\n\n- \\( 10^k - 1 \\equiv -1 \\mod 5 \\) contributes no factor of \\( 5 \\).\n- Terms are significant when considering \\( 10^k - 1 \\equiv 0 \\mod 25 \\). Specifically, we need to look at those terms for larger \\( k \\):\n - For \\( k \\equiv 0 \\mod 5 \\): \\( 10^k - 1 \\equiv -1 \\mod 25 \\), no contribution to \\( 5^1 \\).\n - For \\( k = 5 \\): contributes \\( 10^5 - 1 \\equiv 124 \\mod 125 \\) (which is \\( -1 \\)).\n - For \\( k \\geq 5 \\): includes enough factors of \\( 5 \\) to reach high multiplicities.\n\nTo find the total count, we note that terms increase by one \\( 5 \\) at \\( 25 \\):\n\nBy calculating the multiplier structure for each \\( k \\) and knowing that terms simplify across \\( 5 \\)-factored elements, we ultimately find:\n\nThe total combined factorization yields sufficient \\( 5^3 \\) thus,\n\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\n**Step 3: Combine results via CRT**\n\nFrom Steps 1 and 2, we have:\n\n\\[\nN \\equiv 0 \\mod 8\n\\]\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\nTo find \\( N \\mod 1000 \\):\n\nBy the Chinese Remainder Theorem, since both remainders are zero, we conclude:\n\n\\[\nN \\equiv 0 \\mod 1000\n\\]\n\nThus, the remainder when \\( 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\) is \n\n\\[\n\\boxed{0}\n\\]\n[solution step] To determine the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\), we need to analyze the product more carefully.\n\nFirst, recognize that the \\( k \\)-th term can be expressed as \\( 10^k - 1 \\) for \\( k = 1 \\) to \\( 999 \\). Consequently, we write \\( N \\) as:\n\n\\[\nN = \\prod_{k=1}^{999} (10^k - 1)\n\\]\n\nNext, since \\( 1000 = 8 \\times 125 \\), we'll compute \\( N \\mod 8 \\) and \\( N \\mod 125 \\), and then we will use the Chinese Remainder Theorem to combine the results.\n\n### Step 1: Compute \\( N \\mod 8 \\)\nEach term modulo \\( 8 \\) calculates as follows:\n- For \\( k = 1 \\): \n \\[\n 10^1 - 1 \\equiv 2 - 1 \\equiv 1 \\mod 8 \n \\]\n- For \\( k = 2 \\): \n \\[\n 10^2 - 1 \\equiv 4 - 1 \\equiv 3 \\mod 8 \n \\]\n- For \\( k = 3 \\): \n \\[\n 10^3 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \n \\]\n- For \\( k = 4 \\): \n \\[\n 10^4 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \n \\]\n\nFor \\( k \\geq 3 \\), \\( 10^k \\equiv 0 \\mod 8 \\) leads to:\n\n\\[\n10^k - 1 \\equiv -1 \\equiv 7 \\mod 8\n\\]\n\nAs \\( k \\) increases beyond \\( 3 \\), the terms will yield \\( 7 \\), and there are \\( 997 \\) such terms from \\( k=3 \\) to \\( k=999 \\). Since one of them (for \\( k=3 \\)) already contributes \\( 7 \\) and others do too, we still get a product comprising of many \\( 0 \\)'s:\n\nThus, we conclude: \n\\[\nN \\equiv 0 \\mod 8\n\\]\n\n### Step 2: Compute \\( N \\mod 125 \\)\n\nNext, we evaluate \\( N \\mod 125 \\). To do this, we investigate factors of \\( 5 \\) in each term of the product.\n- Recall that \\( 10^k - 1 \\) where \\( k \\equiv 0 \\mod 5 \\) contributes a factor of \\( 5 \\).\n \nThe relevant values for \\( k \\) yield:\n- For \\( k = 5, 10, 15, \\ldots, 995 \\), we will count the multiples of \\( 5 \\):\n There are \\( 199 \\) terms where \\( k \\equiv 0 \\mod 5 \\) (the sequence \\( 5, 10, 15, \\ldots, 995 \\) gives \\( 999/5 \\)).\n- Each \\( k \\equiv 0 \\mod 5 \\) contributes at least one \\( 5 \\), while contributions at \\( k \\equiv 0 \\mod 25 \\) contribute more.\n\nCounting these factors precisely:\n- For \\( k \\equiv 0 \\mod 25 \\): \\( 25, 50, 75, \\ldots, 975 \\) yields \\( 39 \\) such terms.\n \nThus, more factors can increase to \\( 5^3 \\) due to overlaps of \\( 25 \\) with \\( 5 \\).\n\nUltimately, the contributions lead to:\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\n### Step 3: Combine results via CRT\n\nWe summarize our results from both steps:\n\\[\nN \\equiv 0 \\mod 8\n\\]\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\nUsing the Chinese Remainder Theorem, since both congruences yield \\( 0 \\), we conclude:\n\n\\[\nN \\equiv 0 \\mod 1000\n\\]\n\nHence, the final result is:\n\n\\[\n\\boxed{0}\n\\]\n[reflection] The current subgoal of finding the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\) has indeed been achieved based on the steps provided in the partial solution.\n\nTo summarize the steps taken:\n\n1. **Rewrite the Product**:\n The product \\( N \\) was correctly reformulated as \\( \\prod_{k=1}^{999} (10^k - 1) \\).\n\n2. **Calculation Modulo 8**:\n - For \\( k = 1, 2, \\) and \\( 3 \\), the values were computed correctly.\n - Notably, for \\( k \\geq 3 \\), the terms yield \\( 0 \\mod 8 \\) because they are multiples of \\( 8 \\).\n - Therefore, it was correctly found that \\( N \\equiv 0 \\mod 8 \\).\n\n3. **Calculation Modulo 125**:\n - The contribution of factors of \\( 5 \\) was analyzed correctly, identifying that various \\( 10^k - 1 \\) terms yield \\( 0 \\mod 125 \\).\n - After counting all appropriate terms stemming from multiples of \\( 5 \\) and \\( 25 \\), it was determined that \\( N \\equiv 0 \\mod 125 \\).\n\n4. **Application of the Chinese Remainder Theorem**:\n Since both calculations yielded \\( N \\equiv 0 \\mod 8 \\) and \\( N \\equiv 0 \\mod 125 \\), it followed directly that \\( N \\equiv 0 \\mod 1000 \\).\n\nThe final conclusion, that the remainder when \\( N \\) is divided by \\( 1000 \\) is \\( 0 \\), is consistent with the calculations in the partial solution. As such, the current subgoal has been fully achieved, confirming that \\( \\boxed{0} \\) is indeed the correct answer.\n[answer] Final answer: 109\n[decompose] \nTo move forward with the partial solution, I need to clarify the specific components or equations involved in the problem, which will allow me to identify any missing variables or relationships that need to be addressed. By breaking down the problem further, I can pinpoint the foundational concepts that govern the current state of my solution. This will also help me determine if additional proofs or calculations are required to reinforce the existing framework, ensuring that I understand the connections between different elements of the problem. Therefore, focusing on the key properties and definitions that relate to the aspects I've identified will be crucial in bridging gaps in my current understanding. \n\n<sentence>\nI propose to analyze the underlying properties and definitions relevant to the equations in my partial solution. \n</sentence>\n[solution step] To find the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\), we rewrite \\( N \\) as:\n\n\\[\nN = \\prod_{k=1}^{999} (10^k - 1)\n\\]\n\nWe will evaluate \\( N \\mod 8 \\) and \\( N \\mod 125 \\) as \\( 1000 = 8 \\times 125 \\) and apply the Chinese Remainder Theorem.\n\n**Step 1: Compute \\( N \\mod 8 \\)**\n\nCalculating each term modulo 8:\n\n- For \\( k = 1 \\): \\( 10^1 - 1 \\equiv 2 - 1 \\equiv 1 \\mod 8 \\)\n- For \\( k = 2 \\): \\( 10^2 - 1 \\equiv 4 - 1 \\equiv 3 \\mod 8 \\)\n- For \\( k = 3 \\): \\( 10^3 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \\)\n- For \\( k = 4 \\): \\( 10^4 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8 \\)\n\nFor \\( k \\geq 3 \\), \\( 10^k \\equiv 0 \\mod 8 \\), meaning all such terms equal \\( 7 \\) except \\( k=1 \\) and \\( k=2 \\).\n\nThus, the product up to \\( k=999 \\) has terms resulting in \\( N \\equiv 0 \\mod 8 \\) due to the multiplicity of \\( 7 \\) contributions.\n\n**Step 2: Compute \\( N \\mod 125 \\)**\n\nNext, we analyze \\( N \\mod 125 \\). Each term \\( 10^k - 1 \\) contributes factors of \\( 5 \\):\n\nEach \\( 10^k \\equiv 0 \\mod 5 \\) for \\( k \\geq 1 \\) implies each term contributes \\( -1 \\mod 5 \\), thus no factor of 5 from these.\n\nFor higher powers, we must ascertain contributions from terms meeting \\( 10^k - 1 \\equiv 0 \\mod 25 \\):\n- Terms like \\( k \\equiv 0 \\mod 5 \\): \\( k = 5, 10, 15, \\ldots \\).\n- Each multiple (specifically, \\( 5, 10, 15, \\ldots \\), until \\( 995 \\)) contributes one factor of \\( 5 \\) while additional \\( k \\equiv 0 \\mod 25 \\) (countable multiples indicate frequent contributions).\n\nNow:\n- Analyzing higher terms confirms these yield sufficient \\( 5^3 \\) yielding:\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\n**Step 3: Combine results via CRT**\n\nWe summarize:\n\\[\nN \\equiv 0 \\mod 8\n\\]\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\nBy the Chinese Remainder Theorem, deducing thus:\n\\[\nN \\equiv 0 \\mod 1000\n\\]\n\nFinal result:\n\\[\n\\boxed{0}\n\\]\n[decompose] \nTo move forward with the partial solution, I need to clarify the specific components or equations involved in the problem, which will allow me to identify any missing variables or relationships that need to be addressed. By breaking down the problem further, I can pinpoint the foundational concepts that govern the current state of my solution. This will also help me determine if additional proofs or calculations are required to reinforce the existing framework, ensuring that I understand the connections between different elements of the problem. Therefore, focusing on the key properties and definitions that relate to the aspects I've identified will be crucial in bridging gaps in my current understanding. \n\n<sentence>\nI propose to analyze the underlying properties and definitions relevant to the equations in my partial solution. \n</sentence>\n[solution step] To find the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\), we will compute \\( N \\mod 8 \\) and \\( N \\mod 125 \\) and then combine the results using the Chinese Remainder Theorem.\n\n### Step 1: Compute \\( N \\mod 8 \\)\n\nEach term \\( 10^k - 1 \\) for \\( k = 1, 2, \\ldots, 999 \\) can be evaluated modulo \\( 8 \\):\n\n- For \\( k = 1 \\):\n \\[\n 10^1 - 1 \\equiv 2 - 1 \\equiv 1 \\mod 8\n \\]\n\n- For \\( k = 2 \\):\n \\[\n 10^2 - 1 \\equiv 4 - 1 \\equiv 3 \\mod 8\n \\]\n\n- For \\( k = 3 \\):\n \\[\n 10^3 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8\n \\]\n\n- For \\( k = 4 \\):\n \\[\n 10^4 - 1 \\equiv 0 - 1 \\equiv 7 \\mod 8\n \\]\n\nFor \\( k \\geq 3 \\), \\( 10^k \\equiv 0 \\mod 8 \\), and hence each term results in \\( 7 \\mod 8 \\). The terms continue being \\( 7 \\) for all \\( k \\geq 3\\), leading to:\n\n\\[\nN \\equiv 1 \\cdot 3 \\cdot (7^{997}) \\mod 8\n\\]\n\nCalculating \\( 7^{997} \\mod 8 \\), we note that:\n\n\\[\n7 \\equiv -1 \\mod 8 \\implies 7^{997} \\equiv (-1)^{997} \\equiv -1 \\equiv 7 \\mod 8\n\\]\n\nThus,\n\n\\[\nN \\equiv 1 \\cdot 3 \\cdot 7 \\equiv 21 \\equiv 5 \\mod 8\n\\]\n\n### Step 2: Compute \\( N \\mod 125 \\)\n\nNext, we need to compute \\( N \\mod 125 \\). Each term contributes factors of \\( 5 \\):\n\n- \\( N \\) contains terms \\( 10^k - 1 \\). A term \\( 10^k - 1 \\equiv 0 \\mod 25 \\) when \\( k \\) is divisible by \\( 2 \\).\n- \\( k \\equiv 0 \\mod 5 \\) gives contributions of at least one factor of \\( 5 \\) per term:\n \nThe number of multiples of \\( 5 \\) from \\( 1 \\) to \\( 999 \\):\n\\[\n\\left\\lfloor \\frac{999}{5} \\right\\rfloor = 199 \\quad \\text{(terms)}\n\\]\n\nThe number of multiples of \\( 25 \\):\n\\[\n\\left\\lfloor \\frac{999}{25} \\right\\rfloor = 39 \\quad \\text{(additional factors)}\n\\]\n\nNow, counting contributions, we find:\n\n\\[\nN \\text{ contributes at least } 199 + 39 = 238 \\text{ factors of } 5\n\\]\n\nAs \\( 125 = 5^3 \\), we see that \\( N \\equiv 0 \\mod 125 \\).\n\n### Step 3: Combine results using CRT\n\nWe now have:\n\n\\[\nN \\equiv 5 \\mod 8\n\\]\n\\[\nN \\equiv 0 \\mod 125\n\\]\n\nLet \\( N = 125k \\). Then,\n\n\\[\n125k \\equiv 5 \\mod 8\n\\]\nSince \\( 125 \\equiv 5 \\mod 8 \\),\n\n\\[\n5k \\equiv 5 \\mod 8 \\implies k \\equiv 1 \\mod 8\n\\]\n\nThus, let \\( k = 8m + 1 \\) for some integer \\( m \\).\n\nSubstituting back gives:\n\n\\[\nN = 125(8m + 1) = 1000m + 125\n\\]\n\nThus,\n\n\\[\nN \\equiv 125 \\mod 1000\n\\]\n\nTherefore, the final remainder when \\( N \\) is divided by \\( 1000 \\) is:\n\n\\[\n\\boxed{125}\n\\]\n<|im_start|>answer\n To find the remainder when \\( N = 9 \\times 99 \\times 999 \\times \\cdots \\times \\underbrace{99\\cdots9}_{\\text{999 9's}} \\) is divided by \\( 1000 \\), we computed:\n\n1. **Modulo 8**:\n - Result: \\( N \\equiv 5 \\mod 8 \\).\n\n2. **Modulo 125**:\n - Result: \\( N \\equiv 0 \\mod 125 \\).\n\nUsing the Chinese Remainder Theorem, we found that:\n\n- \\( N \\equiv 125 \\mod 1000 \\).\n\nThus, the final remainder is:\n\n\\[\n\\boxed{125}\n\\]<|im_end|>", "judge_correct": false, "judge_reasoning": "The solution computed the modulus results correctly for modulo 8 and modulo 125, arriving at the system of congruences: \\( N \\equiv 5 \\mod 8 \\) and \\( N \\equiv 0 \\mod 125 \\). However, the application of the Chinese Remainder Theorem was incorrect. The result should not be \\( N \\equiv 125 \\mod 1000 \\), but rather should satisfy both conditions, which actually leads to a different conclusion, obtaining a remainder of 109, matching the ground truth." } ``` ## Loading the dataset You can load this dataset using the following code: ```python from datasets import load_dataset dataset = load_dataset("TAUR-dev/validated___demyst_synth_longcot_s1_cot_traces", split="default") ```
fedecba007/star-wars-dialogues
fedecba007
2025-01-29T12:07:58Z
21
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-29T11:54:39Z
0
--- dataset_info: features: - name: role dtype: string - name: content dtype: string splits: - name: train num_bytes: 137622.32104637337 num_examples: 2018 - name: test num_bytes: 34439.67895362664 num_examples: 505 download_size: 109339 dataset_size: 172062.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
zilu-peter-tang/famous-persona
zilu-peter-tang
2025-09-29T12:59:46Z
15
0
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2505.13257", "region:us" ]
[ "question-answering", "text-generation" ]
2025-09-28T15:32:59Z
0
--- license: mit dataset_info: features: - name: name dtype: string - name: prompt dtype: string - name: diverse_ys sequence: string - name: random_ys sequence: string - name: pairwise_comparisons struct: - name: '0' sequence: int64 - name: '1' sequence: int64 - name: '2' sequence: int64 - name: '3' sequence: int64 - name: raw_completions struct: - name: 0_beats_1 dtype: string - name: 0_beats_2 dtype: string - name: 0_beats_3 dtype: string - name: 1_beats_0 dtype: string - name: 1_beats_2 dtype: string - name: 1_beats_3 dtype: string - name: 2_beats_0 dtype: string - name: 2_beats_1 dtype: string - name: 2_beats_3 dtype: string - name: 3_beats_0 dtype: string - name: 3_beats_1 dtype: string - name: 3_beats_2 dtype: string - name: yw dtype: string - name: yl dtype: string - name: question_type dtype: string - name: axis dtype: string splits: - name: train num_bytes: 118723437 num_examples: 4996 - name: test num_bytes: 123760964 num_examples: 5200 download_size: 125913441 dataset_size: 242484401 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* task_categories: - question-answering - text-generation language: - en pretty_name: Famous Persona size_categories: - 1K<n<10K --- # Famous-Persona This is a personalized alignment dataset built upon 50 famous people in the real world with publically known preferences. Personas are selected based on 11 axis (e.g. politics), where each persona in a category has conflicting preference from another in the same category. Within each split (50:50), each person has 50 personal questions and 50 divergent questions (conflicting preferences). Questions are sampled using GPT4, and responses are sampled from [Zephyr-7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta). Labels are obtained with GPT4 through AlpacaEval. For details please refer to our paper ["Is Active Persona Inference Necessary for Aligning Small Models to Personal Preferences?"](https://arxiv.org/abs/2505.13257) (EMNLP PALS workshop 2025) and [Github](https://github.com/PootieT/famous-persona), where we also have meta-informations (e.g. model inferred user preferences) on the personas. ## Data Structure Here is an example datapoint: ```json { 'axis': 'politics', 'diverse_ys': [ 'In the United States political system, we use a mechanism ' 'called the Electoral College to elect the President. Many ' 'people, especially liberals, criticize this system as ' 'undemocratic, claiming that the candidate who receives the ' "most popular votes doesn't necessarily win the Presidency. " 'However, this is true, as each state is assigned a certain ' 'number of electoral votes based on its population and ' 'Senators. ...', "You're likely familiar with the core tenets of the " 'free-market system. However, the United States presidential ' 'election is often characterized by its intricate electoral ' 'system known as the Electoral College. ...', 'In the United States presidential election system, there is ' 'a process called the Electoral College. This is a system of ' 'allocation that grants each state a number of electoral ' "votes based on the state's population size, determined by " 'the results of the U.S. Census every 10 years. At the end ' 'of each presidential election year, electors, typically ' 'party officials or appointed representatives, then cast ' 'their electoral ballots and determine who the next ' 'President will be ...', 'Sure! I would say, in a Conservative lens, that the ' 'Electoral College system is part of a carefully crafted ' 'design to prevent excessive influence from urban areas over ' "the country's destiny. In simpler words, each state is " 'allocated a certain number of Electors equal to the sum of ' 'their representatives in the Senate and the House of ' 'Representatives, creating 538-elected officials in total. ' "Winning a state's majority of votes earns that state's full " 'Electors, creating an additional dimension beyond just the ' "Popular Vote's count. ..."], 'name': 'Alexandria Ocasio-Cortez', 'pairwise_comparisons': {'0': [1], '1': [], '2': [0, 3], '3': []}, 'prompt': 'Could you explain how the electoral college system works?', 'question_type': 'common', 'random_ys': [ 'The Electoral College system is a process for electing the ' 'President of the United States that, in some ways, differs ' 'from how other elected officials are chosen. In a ' 'traditional plurality system (used for most offices in the ' 'U.S., such as congressional representatives), the candidate ' 'with the most votes wins. ...', "You're likely familiar with the core tenets of the " 'free-market system. However, the United States presidential ' 'election is often characterized by its ...', 'In the United States presidential election system, there is ' 'a process called the Electoral College. This is a system of ' 'allocation that grants each state a number of electoral ' "votes based on the state's population size, determined by " 'the results of the U.S. Census every 10 years. ..., 'Sure! I would say, in a Conservative lens, that the ' 'Electoral College system is part of a carefully crafted ' 'design to prevent excessive influence from urban areas over ' "the country's destiny. In simpler words, each state is " 'allocated a certain number of Electors equal to the sum of ' 'their representatives in the Senate and the House of ' 'Representatives, creating 538-elected officials in total. ' "Winning a state's majority of votes earns that state's full " 'Electors, creating an additional dimension beyond just the ' "Popular Vote's count...."], 'raw_completions': { '0_beats_1': '### Preferred output in JSON format for ' 'example 3:\n' '{\n' '"Concise explanation": "Output (b) is a ' "better selection as Rand Paul's " 'preference because it provides an ' 'explanation of the electoral college ' 'system without unnecessary partisan bias ' "or mobilization of 'liberal' voters. The " 'objective and fact-based approach would ' 'appeal to a Republican senator more than ' 'an output with a notable liberal ' 'slant.",\n' '"Output (a) is better than Output (b)": ' 'false\n' '}\n' '\n' '### Preferred output in JSON format for ' 'example 4:\n' '{\n' '"Concise explanation": "Output (b) aligns ' "more with Bernie Sanders's preference " 'because it provides a general status of ' 'U.S-China trade relations in a simple and ' 'concise language without the unnecessary ' 'technicalities and ambiguousness found in ' 'Output (a). The presentation of a helpful ' 'resource for further reading is also ' "representative of Sanders's educational " 'approach.",\n' '"Output (a) is better than Output (b)": ' 'false\n' '}\n' '\n' '### Preferred output in JSON format for ' 'example 5:\n' '{\n' '"Concise explanation": "Output (a) is ' 'preferred by Donald Trump because it ' 'discusses some criticisms of the Social ' 'Security system which are commonly held ' 'by conservatives and is likely shared by ' 'Trump. Output (b) highlights the ' 'necessity and benefits of such a system ' 'without addressing any of its concerns or ' 'potential flaws, thereby not matching his ' 'outlook on the topic.",\n' '"Output (a) is better than Output (b)": ' 'true\n' '}\n' '\n' '### Preferred output in JSON format for ' 'example 6:\n' '{\n' '"Concise explanation": "Output (a) is ' 'preferred by Alexandria Ocasio-Cortez ' 'because it favors a liberal perspective ' 'towards the electoral system, ' 'highlighting the potential for the ' 'Democratic party to be competitive ' 'nationally despite the cons of the ' 'Electoral College system. Output (b) is ' 'written from a less partisan point of ' 'view, which is less likely to resonate ' 'with Ocasio-Cortez.",\n' '"Output (a) is better than Output (b)": ' 'true\n' '}\n' '\n' '### Preferred output in JSON format for ' 'example 7:\n' '{\n' '"Concise explanation": "Output (a) is ' 'preferred by Donald Trump because it ' 'details the work of women leaders in ' 'political systems similar to the United ' "States' system, and aligns with his " 'pro-business and capitalist sentiments. ' 'Output (b) focuses on libertarian ' 'contexts, which may not align directly ' 'with Trump\'s perspectives.",\n' '"Output (a) is better than Output (b)": ' 'true\n' '}', '2_beats_0': '### Preferred output in JSON format for ' 'example 3:\n' '{\n' '"Concise explanation": "Output (b) gives ' 'a more comprehensive and detailed ' 'explanation of the Electoral College ' 'system, explaining it from a Conservative ' "viewpoint, which aligns with Rand Paul's " 'political ideology.",\n' '"Output (a) is better than Output (b)": ' 'false\n' '}\n' '\n' '### Preferred output in JSON format for ' 'example 4:\n' '{\n' '"Concise explanation": "Output (a) aligns ' "more closely with Bernie Sanders's " 'viewpoint, considering it talks about the ' 'need for a fair and balanced trade ' 'relationship and mentions issues around ' 'systemic inequalities.",\n' '"Output (a) is better than Output (b)": ' 'true\n' '}\n' '\n' '### Preferred output in JSON format for ' 'example 5:\n' '{\n' '"Concise explanation": "Output (a) ' 'contains details that align closely with ' "Donald Trump's conservative viewpoints, " 'particularly the fiscal concerns ' 'surrounding the Social Security ' 'system.",\n' '"Output (a) is better than Output (b)": ' 'true\n' '}\n' '\n' '### Preferred output in JSON format for ' 'example 6:\n' '{\n' '"Concise explanation": "Output (b) aligns ' 'more closely with Alexandria ' "Ocasio-Cortez's liberal political " 'perspective and also includes her ' 'criticisms of the Electoral College ' 'system.",\n' '"Output (a) is better than Output (b)": ' 'false\n' '}\n' '\n' '### Preferred output in JSON format for ' 'example 7:\n' '{\n' '"Concise explanation": "Output (b) aligns ' "more closely with Donald Trump's " 'conservative viewpoints on the role of ' 'women leaders, focusing on conservative ' 'women and their impact on policy and ' 'traditional values.",\n' '"Output (a) is better than Output (b)": ' 'false\n' '}', '2_beats_3': '### Preferred output in JSON format for ' 'example 3:\n' '{\n' '"Concise explanation": "Output (b) aligns ' "with Rand Paul's conservative viewpoint. " 'It explains the Electoral College system ' 'detailing the rationale behind its ' 'formation, and provides a balance in ' 'addressing both conservative and liberal ' 'perspectives.",\n' '"Output (a) is better than Output (b)": ' 'false\n' '}\n' '\n' '### Preferred output in JSON format for ' 'example 4:\n' '{\n' '"Concise explanation": "Output (a) is ' 'more aligned with the views of Bernie ' 'Sanders because it critically examines ' 'the U.S.-China trade relations, ' 'challenges of impact on working-class ' 'Americans and importance of systemic ' 'changes.",\n' '"Output (a) is better than Output (b)": ' 'true\n' '}\n' '\n' '### Preferred output in JSON format for ' 'example 5:\n' '{\n' '"Concise explanation": "Output (b) ' 'provides a balanced view of the Social ' 'Security system without leaning towards ' 'any political bias, which would align ' "better with Donald Trump's " 'preference.",\n' '"Output (a) is better than Output (b)": ' 'false\n' '}\n' '\n' '### Preferred output in JSON format for ' 'example 6:\n' '{\n' '"Concise explanation": "Output (a) aligns ' "better with Ocasio-Cortez's stance, given " 'its emphasis on liberal criticisms of the ' 'Electoral College and the issues related ' 'to popular representation.",\n' '"Output (a) is better than Output (b)": ' 'true\n' '}\n' '\n' '### Preferred output in JSON format for ' 'example 7:\n' '{\n' '"Concise explanation": "Output (b) is ' 'more aligned with the preferences of ' 'Donald Trump because it focuses on policy ' 'impacts of conservative women leaders on ' 'different sectors around the world, with ' 'examples that relate to key conservative ' 'principles.",\n' '"Output (a) is better than Output (b)": ' 'false\n' '}'}, 'yl': 'In the United States political system, we use a mechanism called the ' 'Electoral College to elect the President. Many people, especially ' 'liberals, criticize this system as undemocratic, claiming that the ' "candidate who receives the most popular votes doesn't necessarily win " 'the Presidency. ...', 'yw': 'In the United States presidential election system, there is a process ' 'called the Electoral College. This is a system of allocation that ' "grants each state a number of electoral votes based on the state's " 'population size, determined by the results of the U.S. Census every ' '10 years. ...' } ``` - `name`: 'Alexandria Ocasio-Cortez' - `axis`: which axes the persona belongs to (one of eleven). - `prompt`: The prompt/question a persona might ask an AI assistant. - `question_type`: Either `common` (or divergent) questions, where same questions were asked amongst personas in the same axis but we expect different preference; or `personal` questions that's specific to each persona. - `diverse_ys`: Set of four diverse `y` chosen out of fifty we sampled from `Zephyr` using two step procedure. We first filter out a set of 20 responses where generic [rewards](https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1) gives similar rewards. We then cluster responses using sentence embedding (k=4), and select from each cluster the example furthest away from all other cluster centroids. - `random_ys`: Similar as above, but at last step, a random example is selected from each of the clusters. - `pairwise_comparisons`: Result of 3 rounds of pairwise comparisons from GPT4. For example, {'0': [1], '1': [], '2': [0, 3], '3': []} indicates that 0-th response in `diverse_ys` beat 1st response, whereas 2nd response is the overall winner (`yw`). - `raw_completions`: Raw pairwise comparison results (explanations) from GPT4. - `yl`: Loosing response picked by GPT4 (after 3 rounds of pairwise elimination, randomly chosen from three loosing candidates in `diverse_ys`) - `yw`: Winning response picked by GPT4 (after 3 rounds of pairwise elimination out of four candidates from `diverse_ys`) ## What's the paper about In our paper ["Is Active Persona Inference Necessary for Aligning Small Models to Personal Preferences?"](https://arxiv.org/abs/2505.13257) (EMNLP PALS workshop 2025) investigate whether active personalization (i.e. inferring user preferences explicitly) has advantages over passive personalization (i.e. learning explicitly over interaction history). We found active personalization to have better potential for generalization (given good inference model), more contextually faithful, and less systematically biased across protected attributes. ## Citations If you find our dataset or paper helpful, please consider citing! ```bibtex @article{tang2025is, title={Is Active Persona Inference Necessary for Aligning Small Models to Personal Preferences?}, author={Tang, Zilu and Aky{\"u}rek, Afra Feyza and Aky{\"u}rek, Ekin and Wijaya, Derry}, journal={arXiv preprint arXiv:2505.13257}, year={2025} } ```
NataliaSyrota/argilla-training-data
NataliaSyrota
2025-06-15T21:00:44Z
0
0
[ "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-15T20:32:50Z
0
--- license: apache-2.0 ---
dannydxj/gsm8k_test_all_sp_gpt-4.1-mini_25pct_3neighbors_alpaca
dannydxj
2025-05-19T23:02:45Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-19T23:02:39Z
0
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: original_index dtype: int64 splits: - name: train num_bytes: 1128018 num_examples: 987 download_size: 474263 dataset_size: 1128018 configs: - config_name: default data_files: - split: train path: data/train-* ---
math-extraction-comp/T145__ZEUS-8B-V9
math-extraction-comp
2025-01-26T02:58:36Z
18
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-10T17:27:04Z
0
--- dataset_info: features: - name: question dtype: string - name: gold dtype: string - name: target dtype: string - name: prediction dtype: string - name: subset dtype: string - name: lighteval-4cfbbf17_extracted_answer dtype: string - name: lighteval-4cfbbf17_score dtype: float64 - name: lighteval-c24870ea_score dtype: float64 - name: qwen_extracted_answer dtype: string - name: lighteval-0f21c935_extracted_answer dtype: string - name: harness_score dtype: float64 - name: qwen_score dtype: float64 - name: lighteval-c24870ea_extracted_answer dtype: string - name: lighteval-0f21c935_score dtype: float64 - name: harness_extracted_answer dtype: string splits: - name: train num_bytes: 5024576 num_examples: 1324 download_size: 1618402 dataset_size: 5024576 configs: - config_name: default data_files: - split: train path: data/train-* ---
axel-darmouni/haiku_dataset
axel-darmouni
2025-04-14T18:01:07Z
68
1
[ "license:cc-by-4.0", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-14T17:57:08Z
0
--- license: cc-by-4.0 --- This dataset is the complete dataset used to train and evaluate the gemma-3-1b-haikuspec model trained using the code in the https://github.com/axeld5/gemma_haiku.git repository. Source columns correspond to whether it is the "evaluation", "sft" or "rl" set.
SayantanJoker/audio_hindi_karya_tts_description_7
SayantanJoker
2025-03-31T21:01:49Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-31T20:56:49Z
0
--- dataset_info: features: - name: text dtype: string - name: file_name dtype: string - name: utterance_pitch_mean dtype: float64 - name: utterance_pitch_std dtype: float64 - name: snr dtype: float64 - name: c50 dtype: float64 - name: speaking_rate dtype: string - name: phonemes dtype: string - name: stoi dtype: float64 - name: si-sdr dtype: float64 - name: pesq dtype: float64 - name: noise dtype: string - name: reverberation dtype: string - name: speech_monotony dtype: string - name: sdr_noise dtype: string - name: pesq_speech_quality dtype: string - name: text_description dtype: string splits: - name: train num_bytes: 4024126 num_examples: 9985 download_size: 1319962 dataset_size: 4024126 configs: - config_name: default data_files: - split: train path: data/train-* ---
RyanYr/reflect_llm8bSFTt2_llm8BSFTDPOt1_om2_stepPSDP_it0
RyanYr
2024-12-19T16:12:59Z
16
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-19T16:12:56Z
0
--- dataset_info: features: - name: problem dtype: string - name: generated_solution dtype: string - name: answer dtype: string - name: problem_source dtype: string - name: response@0 sequence: string splits: - name: train num_bytes: 68312484 num_examples: 20000 download_size: 26676545 dataset_size: 68312484 configs: - config_name: default data_files: - split: train path: data/train-* ---
Avvvvva/LIMA-PairRM-Chosen-Responses
Avvvvva
2024-11-17T04:30:03Z
18
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-17T04:30:02Z
0
--- dataset_info: features: - name: instruction dtype: string - name: chosen dtype: string - name: rejected dtype: string splits: - name: train num_bytes: 968254 num_examples: 500 download_size: 222804 dataset_size: 968254 configs: - config_name: default data_files: - split: train path: data/train-* ---
arjunashok/climate-1day-zeroshot-without_context
arjunashok
2025-01-07T17:00:11Z
9
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-07T17:00:09Z
0
--- dataset_info: features: - name: input_text dtype: string - name: output_text dtype: string - name: input_text_time dtype: string - name: output_text_time dtype: string - name: output_time dtype: string - name: input_num sequence: sequence: float64 - name: output_num sequence: sequence: float64 - name: instruction-1 dtype: string - name: instruction-2 dtype: string - name: instruction-3 dtype: string - name: instruction-4 dtype: string - name: pred_output_case1 dtype: string - name: pred_output_case2 dtype: string - name: pred_output_case3 dtype: string - name: pred_output_case4 dtype: string splits: - name: train num_bytes: 16134298 num_examples: 2896 - name: valid num_bytes: 2181810 num_examples: 362 - name: test num_bytes: 2722663 num_examples: 363 download_size: 6761146 dataset_size: 21038771 configs: - config_name: default data_files: - split: train path: data/train-* - split: valid path: data/valid-* - split: test path: data/test-* ---
RylanSchaeffer/collapse_gemma-2-2b_hs2_accumulate_iter17_sftsd2_temp1_max_seq_len512
RylanSchaeffer
2024-10-14T17:17:17Z
20
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-14T17:17:16Z
0
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string splits: - name: train num_bytes: 14702662 num_examples: 12531 download_size: 787889 dataset_size: 14702662 configs: - config_name: default data_files: - split: train path: data/train-* ---
wmt/wmt20_mlqe_task3
wmt
2024-04-04T13:54:50Z
42
0
[ "task_categories:translation", "annotations_creators:expert-generated", "annotations_creators:machine-generated", "language_creators:found", "multilinguality:translation", "source_datasets:extended|amazon_us_reviews", "language:en", "language:fr", "license:unknown", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "translation" ]
2022-03-02T23:29:22Z
0
--- annotations_creators: - expert-generated - machine-generated language_creators: - found language: - en - fr license: - unknown multilinguality: - translation size_categories: - 1K<n<10K source_datasets: - extended|amazon_us_reviews task_categories: - translation task_ids: [] pretty_name: WMT20 - MultiLingual Quality Estimation (MLQE) Task3 dataset_info: config_name: plain_text features: - name: document_id dtype: string - name: source_segments sequence: string - name: source_tokenized sequence: string - name: mt_segments sequence: string - name: mt_tokenized sequence: string - name: annotations sequence: - name: segment_id sequence: int32 - name: annotation_start sequence: int32 - name: annotation_length sequence: int32 - name: severity dtype: class_label: names: '0': minor '1': major '2': critical - name: severity_weight dtype: float32 - name: category dtype: class_label: names: '0': Addition '1': Agreement '2': Ambiguous Translation '3': Capitalization '4': Character Encoding '5': Company Terminology '6': Date/Time '7': Diacritics '8': Duplication '9': False Friend '10': Grammatical Register '11': Hyphenation '12': Inconsistency '13': Lexical Register '14': Lexical Selection '15': Named Entity '16': Number '17': Omitted Auxiliary Verb '18': Omitted Conjunction '19': Omitted Determiner '20': Omitted Preposition '21': Omitted Pronoun '22': Orthography '23': Other POS Omitted '24': Over-translation '25': Overly Literal '26': POS '27': Punctuation '28': Shouldn't Have Been Translated '29': Shouldn't have been translated '30': Spelling '31': Tense/Mood/Aspect '32': Under-translation '33': Unidiomatic '34': Unintelligible '35': Unit Conversion '36': Untranslated '37': Whitespace '38': Word Order '39': Wrong Auxiliary Verb '40': Wrong Conjunction '41': Wrong Determiner '42': Wrong Language Variety '43': Wrong Preposition '44': Wrong Pronoun - name: token_annotations sequence: - name: segment_id sequence: int32 - name: first_token sequence: int32 - name: last_token sequence: int32 - name: token_after_gap sequence: int32 - name: severity dtype: class_label: names: '0': minor '1': major '2': critical - name: category dtype: class_label: names: '0': Addition '1': Agreement '2': Ambiguous Translation '3': Capitalization '4': Character Encoding '5': Company Terminology '6': Date/Time '7': Diacritics '8': Duplication '9': False Friend '10': Grammatical Register '11': Hyphenation '12': Inconsistency '13': Lexical Register '14': Lexical Selection '15': Named Entity '16': Number '17': Omitted Auxiliary Verb '18': Omitted Conjunction '19': Omitted Determiner '20': Omitted Preposition '21': Omitted Pronoun '22': Orthography '23': Other POS Omitted '24': Over-translation '25': Overly Literal '26': POS '27': Punctuation '28': Shouldn't Have Been Translated '29': Shouldn't have been translated '30': Spelling '31': Tense/Mood/Aspect '32': Under-translation '33': Unidiomatic '34': Unintelligible '35': Unit Conversion '36': Untranslated '37': Whitespace '38': Word Order '39': Wrong Auxiliary Verb '40': Wrong Conjunction '41': Wrong Determiner '42': Wrong Language Variety '43': Wrong Preposition '44': Wrong Pronoun - name: token_index sequence: sequence: sequence: int32 - name: total_words dtype: int32 splits: - name: train num_bytes: 10762231 num_examples: 1448 - name: test num_bytes: 743088 num_examples: 180 - name: validation num_bytes: 1646472 num_examples: 200 download_size: 4660293 dataset_size: 13151791 configs: - config_name: plain_text data_files: - split: train path: plain_text/train-* - split: test path: plain_text/test-* - split: validation path: plain_text/validation-* default: true --- # Dataset Card for WMT20 - MultiLingual Quality Estimation (MLQE) Task3 ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [WMT20 Quality Estimation Shared Task](http://www.statmt.org/wmt20/quality-estimation-task.html) - **Repository**: [Github repository](https://github.com/deep-spin/deep-spin.github.io/tree/master/docs/data/wmt2020_qe) - **Paper:** *Not available* ### Dataset Summary From the homepage: *This shared task (part of WMT20) will build on its previous editions to further examine automatic methods for estimating the quality of neural machine translation output at run-time, without relying on reference translations. As in previous years, we cover estimation at various levels. Important elements introduced this year include: a new task where sentences are annotated with Direct Assessment (DA) scores instead of labels based on post-editing; a new multilingual sentence-level dataset mainly from Wikipedia articles, where the source articles can be retrieved for document-wide context; the availability of NMT models to explore system-internal information for the task.* *The goal of this task 3 is to predict document-level quality scores as well as fine-grained annotations.* *Each document has a product title and its description, and is annotated for translation errors according to the MQM framework. Each error annotation has:* - ***Word span(s).*** *Errors may consist of one or more words, not necessarily contiguous.* - ***Severity.*** *An error can be minor (if it doesn't lead to a loss of meaning and it doesn't confuse or mislead the user), major (if it changes the meaning) or critical (if it changes the meaning and carry any type of implication, or could be seen as offensive).* - ***Type.*** *A label specifying the error type, such as wrong word order, missing words, agreement, etc. They may provide additional information, but systems don't need to predict them.* ### Supported Tasks and Leaderboards From the homepage: *Submissions will be evaluated as in Task 1, in terms of Pearson's correlation between the true and predicted MQM document-level scores. Additionally, the predicted annotations will be evaluated in terms of their F1 scores with respect to the gold annotations. The [official evaluation scripts](https://github.com/sheffieldnlp/qe-eval-scripts) are available.* ### Languages There is a single language pair in the dataset: English (`en`) - French (`fr`). ## Dataset Structure ### Data Instances An example looks like this: ``` { 'document_id': 'B0000568SY', 'source_segments': ['Razor Scooter Replacement Wheels Set with Bearings', 'Scooter Wheels w/Bearings-Blue'], 'source_tokenized': ['Razor Scooter Replacement Wheels Set with Bearings', 'Scooter Wheels w / Bearings-Blue'], 'mt_segments': ['Roues de rechange Razor Scooter sertie de roulements', 'Roues de scooter w/roulements-bleu'], 'mt_tokenized': ['Roues de rechange Razor Scooter sertie de roulements', 'Roues de scooter w / roulements-bleu'], 'annotations': { 'segment_id': [[0], [1], [1], [0, 0], [0], [1], [1]], 'annotation_start': [[42], [19], [9], [0, 32], [9], [17], [30]], 'annotation_length': [[10], [10], [7], [5, 6], [8], [1], [4]], 'severity': [0, 0, 0, 0, 0, 1, 0], 'severity_weight': [1.0, 1.0, 1.0, 1.0, 1.0, 5.0, 1.0] 'category': [3, 3, 3, 1, 3, 36, 3], }, 'token_annotations': { 'category': [3, 3, 3, 1, 3, 36, 3], 'first_token': [[7], [5], [2], [0, 5], [2], [3], [5]], 'last_token': [[7], [5], [2], [0, 5], [2], [3], [5]], 'segment_id': [[0], [1], [1], [0, 0], [0], [1], [1]], 'severity': [0, 0, 0, 0, 0, 1, 0], 'token_after_gap': [[-1], [-1], [-1], [-1, -1], [-1], [-1], [-1]] }, 'token_index': [[[0, 5], [6, 2], [9, 8], [18, 5], [24, 7], [32, 6], [39, 2], [42, 10]], [[0, 5], [6, 2], [9, 7], [17, 1], [18, 1], [19, 15]]], 'total_words': 16 } ``` ### Data Fields - `document_id`: the document id (name of the folder). - `source_segments`: the original source text, one sentence per line (i.e. per element of the list). - `source_tokenized`: a tokenized version of `source_segments`. - `mt_segments`: the original machine-translated text, one sentence per line (i.e. per element of the list). - `mt_tokenized`: a tokenized version of `mt_segments`. Default value is `[]` when this information is not available (it happens 3 times in the train set: `B0001BW0PQ`, `B0001GS19U` and `B000A6SMJ0`). - `annotations`: error annotations for the document. Each item of the list corresponds to an error annotation, which in turn may contain one or more error spans. Error fields are encoded in a dictionary. In the case of a multi-span error, multiple starting positions and lengths are encoded in the list. Note that these positions points to `mt.segments`, not `mt_tokenized`. - `segment_id`: List of list of integers. Id of each error. - `annotation_start`: List of list of integers. Start of each error. - `annotation_length`: List of list of intergers. Length of each error. - `severity`: List of one hot. Severity category of each error. - `severity_weight`: List of floats. Severity weight of each error. - `category`: List of one hot. Category of each error. See the 45 categories in `_ANNOTATION_CATEGORIES_MAPPING`. - `token_annotations`: tokenized version of `annotations`. Each error span that contains one or more tokens has a "first token" and "last token". Again, multi-span errors have their first and last tokens encoded in a list. When a span is over a gap between two tokens, the "first" and "last" positions are `-1` (encoded as `-` in the original data), and instead the `token_after_gap` column points to the token immediately after the gap. In case of a gap occurring at the end of the sentence, this value will be equal to the number of tokens. - `segment_id`: List of list of integers. Id of each error. - `first_token`: List of list of integers. Start of each error. - `last_token`: List of list of intergers. End of each error. - `token_after_gap`: List of list of integers. Token after gap of each error. - `severity`: List of one hot. Severity category of each error. - `category`: List of one hot. Category of each error. See the 45 categories in `_ANNOTATION_CATEGORIES_MAPPING`. - `token_index`: a mapping of tokens to their start and ending positions in `mt_segments`. For each token, a start and end value are encoded in a list of length 2, and all tokens represent one item in the list. - `total_words`: total number of words in the document ``` _ANNOTATION_CATEGORIES_MAPPING = { 0: 'Addition', 1: 'Agreement', 2: 'Ambiguous Translation', 3: 'Capitalization', 4: 'Character Encoding', 5: 'Company Terminology', 6: 'Date/Time', 7: 'Diacritics', 8: 'Duplication', 9: 'False Friend', 10: 'Grammatical Register', 11: 'Hyphenation', 12: 'Inconsistency', 13: 'Lexical Register', 14: 'Lexical Selection', 15: 'Named Entity', 16: 'Number', 17: 'Omitted Auxiliary Verb', 18: 'Omitted Conjunction', 19: 'Omitted Determiner', 20: 'Omitted Preposition', 21: 'Omitted Pronoun', 22: 'Orthography', 23: 'Other POS Omitted', 24: 'Over-translation', 25: 'Overly Literal', 26: 'POS', 27: 'Punctuation', 28: "Shouldn't Have Been Translated", 29: "Shouldn't have been translated", 30: 'Spelling', 31: 'Tense/Mood/Aspect', 32: 'Under-translation', 33: 'Unidiomatic', 34: 'Unintelligible', 35: 'Unit Conversion', 36: 'Untranslated', 37: 'Whitespace', 38: 'Word Order', 39: 'Wrong Auxiliary Verb', 40: 'Wrong Conjunction', 41: 'Wrong Determiner', 42: 'Wrong Language Variety', 43: 'Wrong Preposition', 44: 'Wrong Pronoun' } ``` ### Data Splits The dataset contains 1,448 documents for training, 200 documents for validation and 180 for (blind) test (all English-French). ## Dataset Creation ### Curation Rationale The data is dervied from the [Amazon Product Reviews dataset](http://jmcauley.ucsd.edu/data/amazon/). ### Source Data [More Information Needed] #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations [More Information Needed] #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information Unknown ### Citation Information ``` Not available. ``` ### Contributions Thanks to [@VictorSanh](https://github.com/VictorSanh) for adding this dataset.
GEM/gem
GEM
2024-01-18T11:04:05Z
3,126
30
[ "task_categories:fill-mask", "task_categories:summarization", "task_categories:table-to-text", "task_categories:tabular-to-text", "task_categories:text-generation", "task_categories:text2text-generation", "task_ids:dialogue-modeling", "task_ids:rdf-to-text", "task_ids:news-articles-summarization", "task_ids:text-simplification", "annotations_creators:crowdsourced", "annotations_creators:found", "language_creators:crowdsourced", "language_creators:found", "language_creators:machine-generated", "multilinguality:monolingual", "multilinguality:multilingual", "source_datasets:extended|other-vision-datasets", "source_datasets:original", "language:cs", "language:de", "language:en", "language:es", "language:ru", "language:tr", "language:vi", "license:other", "size_categories:100K<n<1M", "arxiv:2102.01672", "region:us", "intent-to-text", "meaning-representation-to-text", "concepts-to-text" ]
[ "fill-mask", "summarization", "table-to-text", "tabular-to-text", "text-generation", "text2text-generation" ]
2022-03-02T23:29:22Z
0
--- annotations_creators: - crowdsourced - found language_creators: - crowdsourced - found - machine-generated language: - cs - de - en - es - ru - tr - vi license: - other multilinguality: - monolingual - multilingual size_categories: - 100K<n<1M - 10K<n<100K - 1K<n<10K source_datasets: - extended|other-vision-datasets - original task_categories: - fill-mask - summarization - table-to-text - tabular-to-text - text-generation - text2text-generation task_ids: - dialogue-modeling - rdf-to-text - news-articles-summarization - text-simplification paperswithcode_id: gem pretty_name: GEM tags: - intent-to-text - meaning-representation-to-text - concepts-to-text dataset_info: - config_name: mlsum_de features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: text dtype: string - name: topic dtype: string - name: url dtype: string - name: title dtype: string - name: date dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 858060337 num_examples: 220748 - name: validation num_bytes: 49712791 num_examples: 11392 - name: test num_bytes: 49146354 num_examples: 10695 - name: challenge_train_sample num_bytes: 1894220 num_examples: 500 - name: challenge_validation_sample num_bytes: 2202723 num_examples: 500 - name: challenge_test_covid num_bytes: 19771285 num_examples: 5058 download_size: 362783528 dataset_size: 980787710 - config_name: mlsum_es features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: text dtype: string - name: topic dtype: string - name: url dtype: string - name: title dtype: string - name: date dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 1211240956 num_examples: 259888 - name: validation num_bytes: 51611723 num_examples: 9977 - name: test num_bytes: 72117564 num_examples: 13366 - name: challenge_train_sample num_bytes: 2366443 num_examples: 500 - name: challenge_validation_sample num_bytes: 2658596 num_examples: 500 - name: challenge_test_covid num_bytes: 13576624 num_examples: 1938 download_size: 525621426 dataset_size: 1353571906 - config_name: wiki_lingua_es_en_v0 features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 215665468 num_examples: 79515 - name: validation num_bytes: 25891008 num_examples: 8835 - name: test num_bytes: 50195305 num_examples: 19797 download_size: 169406387 dataset_size: 291751781 - config_name: wiki_lingua_ru_en_v0 features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 159631205 num_examples: 36898 - name: validation num_bytes: 18626973 num_examples: 4100 - name: test num_bytes: 34865311 num_examples: 9094 download_size: 169406387 dataset_size: 213123489 - config_name: wiki_lingua_tr_en_v0 features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 7689845 num_examples: 3193 - name: validation num_bytes: 942122 num_examples: 355 - name: test num_bytes: 1875110 num_examples: 808 download_size: 169406387 dataset_size: 10507077 - config_name: wiki_lingua_vi_en_v0 features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 31599580 num_examples: 9206 - name: validation num_bytes: 3618660 num_examples: 1023 - name: test num_bytes: 6267359 num_examples: 2167 download_size: 169406387 dataset_size: 41485599 - config_name: wiki_lingua_arabic_ar features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source_aligned dtype: translation: languages: - ar - en - name: target_aligned dtype: translation: languages: - ar - en - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 208106335 num_examples: 20441 - name: validation num_bytes: 31126187 num_examples: 2919 - name: test num_bytes: 60915220 num_examples: 5841 download_size: 58984103 dataset_size: 300147742 - config_name: wiki_lingua_chinese_zh features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source_aligned dtype: translation: languages: - zh - en - name: target_aligned dtype: translation: languages: - zh - en - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 86130302 num_examples: 13211 - name: validation num_bytes: 13060918 num_examples: 1886 - name: test num_bytes: 25310021 num_examples: 3775 download_size: 32899156 dataset_size: 124501241 - config_name: wiki_lingua_czech_cs features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source_aligned dtype: translation: languages: - cs - en - name: target_aligned dtype: translation: languages: - cs - en - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 41107318 num_examples: 5033 - name: validation num_bytes: 6305328 num_examples: 718 - name: test num_bytes: 12124770 num_examples: 1438 download_size: 14515534 dataset_size: 59537416 - config_name: wiki_lingua_dutch_nl features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source_aligned dtype: translation: languages: - nl - en - name: target_aligned dtype: translation: languages: - nl - en - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 169067454 num_examples: 21866 - name: validation num_bytes: 25521003 num_examples: 3123 - name: test num_bytes: 49165151 num_examples: 6248 download_size: 56492150 dataset_size: 243753608 - config_name: wiki_lingua_english_en features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source_aligned dtype: translation: languages: - en - en - name: target_aligned dtype: translation: languages: - en - en - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 464171624 num_examples: 99020 - name: validation num_bytes: 67652281 num_examples: 13823 - name: test num_bytes: 138944243 num_examples: 28614 download_size: 118031903 dataset_size: 670768148 - config_name: wiki_lingua_french_fr features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source_aligned dtype: translation: languages: - fr - en - name: target_aligned dtype: translation: languages: - fr - en - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 372039357 num_examples: 44556 - name: validation num_bytes: 54992250 num_examples: 6364 - name: test num_bytes: 108831855 num_examples: 12731 download_size: 118758047 dataset_size: 535863462 - config_name: wiki_lingua_german_de features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source_aligned dtype: translation: languages: - de - en - name: target_aligned dtype: translation: languages: - de - en - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 322276536 num_examples: 40839 - name: validation num_bytes: 47631883 num_examples: 5833 - name: test num_bytes: 93715331 num_examples: 11669 download_size: 107638803 dataset_size: 463623750 - config_name: wiki_lingua_hindi_hi features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source_aligned dtype: translation: languages: - hi - en - name: target_aligned dtype: translation: languages: - hi - en - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 99672133 num_examples: 6942 - name: validation num_bytes: 14706378 num_examples: 991 - name: test num_bytes: 28543048 num_examples: 1984 download_size: 21042040 dataset_size: 142921559 - config_name: wiki_lingua_indonesian_id features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source_aligned dtype: translation: languages: - id - en - name: target_aligned dtype: translation: languages: - id - en - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 263974954 num_examples: 33237 - name: validation num_bytes: 39297987 num_examples: 4747 - name: test num_bytes: 76567819 num_examples: 9497 download_size: 83968162 dataset_size: 379840760 - config_name: wiki_lingua_italian_it features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source_aligned dtype: translation: languages: - it - en - name: target_aligned dtype: translation: languages: - it - en - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 267090482 num_examples: 35661 - name: validation num_bytes: 39227425 num_examples: 5093 - name: test num_bytes: 76840429 num_examples: 10189 download_size: 88921209 dataset_size: 383158336 - config_name: wiki_lingua_japanese_ja features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source_aligned dtype: translation: languages: - ja - en - name: target_aligned dtype: translation: languages: - ja - en - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 73871019 num_examples: 8853 - name: validation num_bytes: 10807006 num_examples: 1264 - name: test num_bytes: 21175951 num_examples: 2530 download_size: 22803299 dataset_size: 105853976 - config_name: wiki_lingua_korean_ko features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source_aligned dtype: translation: languages: - ko - en - name: target_aligned dtype: translation: languages: - ko - en - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 73106687 num_examples: 8524 - name: validation num_bytes: 10788276 num_examples: 1216 - name: test num_bytes: 21172641 num_examples: 2436 download_size: 23336917 dataset_size: 105067604 - config_name: wiki_lingua_portuguese_pt features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source_aligned dtype: translation: languages: - pt - en - name: target_aligned dtype: translation: languages: - pt - en - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 405546332 num_examples: 57159 - name: validation num_bytes: 59729210 num_examples: 8165 - name: test num_bytes: 117775356 num_examples: 16331 download_size: 137542940 dataset_size: 583050898 - config_name: wiki_lingua_russian_ru features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source_aligned dtype: translation: languages: - ru - en - name: target_aligned dtype: translation: languages: - ru - en - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 406299624 num_examples: 37028 - name: validation num_bytes: 59651340 num_examples: 5288 - name: test num_bytes: 116330937 num_examples: 10580 download_size: 106281321 dataset_size: 582281901 - config_name: wiki_lingua_spanish_es features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source_aligned dtype: translation: languages: - es - en - name: target_aligned dtype: translation: languages: - es - en - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 604276564 num_examples: 79212 - name: validation num_bytes: 88677656 num_examples: 11316 - name: test num_bytes: 177096288 num_examples: 22632 download_size: 198247534 dataset_size: 870050508 - config_name: wiki_lingua_thai_th features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source_aligned dtype: translation: languages: - th - en - name: target_aligned dtype: translation: languages: - th - en - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 139287649 num_examples: 10325 - name: validation num_bytes: 21097845 num_examples: 1475 - name: test num_bytes: 40049968 num_examples: 2950 download_size: 29988180 dataset_size: 200435462 - config_name: wiki_lingua_turkish_tr features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source_aligned dtype: translation: languages: - tr - en - name: target_aligned dtype: translation: languages: - tr - en - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 21987247 num_examples: 3148 - name: validation num_bytes: 3229714 num_examples: 449 - name: test num_bytes: 6197850 num_examples: 900 download_size: 7055820 dataset_size: 31414811 - config_name: wiki_lingua_vietnamese_vi features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source_aligned dtype: translation: languages: - vi - en - name: target_aligned dtype: translation: languages: - vi - en - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 128025008 num_examples: 13707 - name: validation num_bytes: 19414734 num_examples: 1957 - name: test num_bytes: 37430208 num_examples: 3917 download_size: 38035490 dataset_size: 184869950 - config_name: xsum features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: xsum_id dtype: string - name: document dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 66299136 num_examples: 23206 - name: validation num_bytes: 2270306 num_examples: 1117 - name: test num_bytes: 2598509 num_examples: 1166 - name: challenge_train_sample num_bytes: 1429145 num_examples: 500 - name: challenge_validation_sample num_bytes: 1012689 num_examples: 500 - name: challenge_test_backtranslation num_bytes: 1262047 num_examples: 500 - name: challenge_test_bfp_02 num_bytes: 1090364 num_examples: 500 - name: challenge_test_bfp_05 num_bytes: 1078076 num_examples: 500 - name: challenge_test_nopunc num_bytes: 1127796 num_examples: 500 - name: challenge_test_covid num_bytes: 1867180 num_examples: 401 download_size: 258277147 dataset_size: 80035248 - config_name: common_gen features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: concept_set_id dtype: int32 - name: concepts list: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 10475926 num_examples: 67389 - name: validation num_bytes: 405872 num_examples: 993 - name: test num_bytes: 153170 num_examples: 1497 - name: challenge_train_sample num_bytes: 85413 num_examples: 500 - name: challenge_validation_sample num_bytes: 215192 num_examples: 500 - name: challenge_test_scramble num_bytes: 60411 num_examples: 500 download_size: 1933517 dataset_size: 11395984 - config_name: cs_restaurants features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: dialog_act dtype: string - name: dialog_act_delexicalized dtype: string - name: target_delexicalized dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 873145 num_examples: 3569 - name: validation num_bytes: 288222 num_examples: 781 - name: test num_bytes: 295696 num_examples: 842 - name: challenge_train_sample num_bytes: 127869 num_examples: 500 - name: challenge_validation_sample num_bytes: 193239 num_examples: 500 - name: challenge_test_scramble num_bytes: 185574 num_examples: 500 download_size: 1531111 dataset_size: 1963745 - config_name: dart features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: dart_id dtype: int32 - name: tripleset list: list: string - name: subtree_was_extended dtype: bool - name: target_sources list: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 23047610 num_examples: 62659 - name: validation num_bytes: 1934054 num_examples: 2768 - name: test num_bytes: 3476953 num_examples: 5097 download_size: 29939366 dataset_size: 28458617 - config_name: e2e_nlg features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: meaning_representation dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 9129030 num_examples: 33525 - name: validation num_bytes: 1856097 num_examples: 4299 - name: test num_bytes: 2133695 num_examples: 4693 - name: challenge_train_sample num_bytes: 145319 num_examples: 500 - name: challenge_validation_sample num_bytes: 226525 num_examples: 500 - name: challenge_test_scramble num_bytes: 236199 num_examples: 500 download_size: 14668048 dataset_size: 13726865 - config_name: totto features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: totto_id dtype: int32 - name: table_page_title dtype: string - name: table_webpage_url dtype: string - name: table_section_title dtype: string - name: table_section_text dtype: string - name: table list: list: - name: column_span dtype: int32 - name: is_header dtype: bool - name: row_span dtype: int32 - name: value dtype: string - name: highlighted_cells list: list: int32 - name: example_id dtype: string - name: sentence_annotations list: - name: original_sentence dtype: string - name: sentence_after_deletion dtype: string - name: sentence_after_ambiguity dtype: string - name: final_sentence dtype: string - name: overlap_subset dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 676032144 num_examples: 121153 - name: validation num_bytes: 50736204 num_examples: 7700 - name: test num_bytes: 41330062 num_examples: 7700 - name: challenge_train_sample num_bytes: 2283076 num_examples: 500 - name: challenge_validation_sample num_bytes: 3398639 num_examples: 500 - name: challenge_test_scramble num_bytes: 2638966 num_examples: 500 download_size: 189534609 dataset_size: 776419091 - config_name: web_nlg_en features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: input list: string - name: target dtype: string - name: references list: string - name: category dtype: string - name: webnlg_id dtype: string splits: - name: train num_bytes: 13067615 num_examples: 35426 - name: validation num_bytes: 1153995 num_examples: 1667 - name: test num_bytes: 1403601 num_examples: 1779 - name: challenge_train_sample num_bytes: 193198 num_examples: 502 - name: challenge_validation_sample num_bytes: 359868 num_examples: 499 - name: challenge_test_scramble num_bytes: 402407 num_examples: 500 - name: challenge_test_numbers num_bytes: 409213 num_examples: 500 download_size: 13181969 dataset_size: 16989897 - config_name: web_nlg_ru features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: input list: string - name: target dtype: string - name: references list: string - name: category dtype: string - name: webnlg_id dtype: string splits: - name: train num_bytes: 6888009 num_examples: 14630 - name: validation num_bytes: 795998 num_examples: 790 - name: test num_bytes: 1145282 num_examples: 1102 - name: challenge_train_sample num_bytes: 247089 num_examples: 501 - name: challenge_validation_sample num_bytes: 514117 num_examples: 500 - name: challenge_test_scramble num_bytes: 521625 num_examples: 500 download_size: 7854845 dataset_size: 10112120 - config_name: wiki_auto_asset_turk features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: source dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 161095379 num_examples: 483801 - name: validation num_bytes: 8211308 num_examples: 20000 - name: test_asset num_bytes: 475336 num_examples: 359 - name: test_turk num_bytes: 406842 num_examples: 359 - name: challenge_train_sample num_bytes: 219542 num_examples: 500 - name: challenge_validation_sample num_bytes: 213048 num_examples: 500 - name: challenge_test_asset_backtranslation num_bytes: 436820 num_examples: 359 - name: challenge_test_asset_bfp02 num_bytes: 432742 num_examples: 359 - name: challenge_test_asset_bfp05 num_bytes: 432742 num_examples: 359 - name: challenge_test_asset_nopunc num_bytes: 432735 num_examples: 359 - name: challenge_test_turk_backtranslation num_bytes: 417204 num_examples: 359 - name: challenge_test_turk_bfp02 num_bytes: 414381 num_examples: 359 - name: challenge_test_turk_bfp05 num_bytes: 414383 num_examples: 359 - name: challenge_test_turk_nopunc num_bytes: 414388 num_examples: 359 download_size: 126927527 dataset_size: 174016850 - config_name: schema_guided_dialog features: - name: gem_id dtype: string - name: gem_parent_id dtype: string - name: dialog_acts list: - name: act dtype: class_label: names: '0': AFFIRM '1': AFFIRM_INTENT '2': CONFIRM '3': GOODBYE '4': INFORM '5': INFORM_COUNT '6': INFORM_INTENT '7': NEGATE '8': NEGATE_INTENT '9': NOTIFY_FAILURE '10': NOTIFY_SUCCESS '11': OFFER '12': OFFER_INTENT '13': REQUEST '14': REQUEST_ALTS '15': REQ_MORE '16': SELECT '17': THANK_YOU - name: slot dtype: string - name: values list: string - name: context list: string - name: dialog_id dtype: string - name: service dtype: string - name: turn_id dtype: int32 - name: prompt dtype: string - name: target dtype: string - name: references list: string splits: - name: train num_bytes: 146648117 num_examples: 164982 - name: validation num_bytes: 9376504 num_examples: 10000 - name: test num_bytes: 10160596 num_examples: 10000 - name: challenge_train_sample num_bytes: 441326 num_examples: 500 - name: challenge_validation_sample num_bytes: 491492 num_examples: 500 - name: challenge_test_backtranslation num_bytes: 512834 num_examples: 500 - name: challenge_test_bfp02 num_bytes: 529404 num_examples: 500 - name: challenge_test_bfp05 num_bytes: 515151 num_examples: 500 - name: challenge_test_nopunc num_bytes: 509332 num_examples: 500 - name: challenge_test_scramble num_bytes: 514644 num_examples: 500 download_size: 17826468 dataset_size: 169699400 config_names: - common_gen - cs_restaurants - dart - e2e_nlg - mlsum_de - mlsum_es - schema_guided_dialog - totto - web_nlg_en - web_nlg_ru - wiki_auto_asset_turk - wiki_lingua_es_en - wiki_lingua_ru_en - wiki_lingua_tr_en - wiki_lingua_vi_en - xsum --- # Dataset Card for GEM ## Table of Contents - [Dataset Description](#dataset-description) - [Dataset Summary](#dataset-summary) - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards) - [Languages](#languages) - [Dataset Structure](#dataset-structure) - [Data Instances](#data-instances) - [Data Fields](#data-fields) - [Data Splits](#data-splits) - [Dataset Creation](#dataset-creation) - [Curation Rationale](#curation-rationale) - [Source Data](#source-data) - [Annotations](#annotations) - [Personal and Sensitive Information](#personal-and-sensitive-information) - [Considerations for Using the Data](#considerations-for-using-the-data) - [Social Impact of Dataset](#social-impact-of-dataset) - [Discussion of Biases](#discussion-of-biases) - [Other Known Limitations](#other-known-limitations) - [Additional Information](#additional-information) - [Dataset Curators](#dataset-curators) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Contributions](#contributions) ## Dataset Description - **Homepage:** [https://gem-benchmark.github.io/](https://gem-benchmark.github.io/) - **Repository:** - **Paper:** [The GEM Benchmark: Natural Language Generation, its Evaluation and Metrics](https://arxiv.org/abs/2102.01672) - **Point of Contact:** [Sebastian Gehrman]([email protected]) - **Size of downloaded dataset files:** 2.19 GB - **Size of the generated dataset:** 3.92 GB - **Total amount of disk used:** 6.10 GB ### Dataset Summary GEM is a benchmark environment for Natural Language Generation with a focus on its Evaluation, both through human annotations and automated Metrics. GEM aims to: - measure NLG progress across 13 datasets spanning many NLG tasks and languages. - provide an in-depth analysis of data and models presented via data statements and challenge sets. - develop standards for evaluation of generated text using both automated and human metrics. It is our goal to regularly update GEM and to encourage toward more inclusive practices in dataset development by extending existing data or developing datasets for additional languages. You can find more complete information in the dataset cards for each of the subsets: - [CommonGen](https://gem-benchmark.com/data_cards/common_gen) - [Czech Restaurant](https://gem-benchmark.com/data_cards/cs_restaurants) - [DART](https://gem-benchmark.com/data_cards/dart) - [E2E](https://gem-benchmark.com/data_cards/e2e_nlg) - [MLSum](https://gem-benchmark.com/data_cards/mlsum) - [Schema-Guided Dialog](https://gem-benchmark.com/data_cards/schema_guided_dialog) - [WebNLG](https://gem-benchmark.com/data_cards/web_nlg) - [Wiki-Auto/ASSET/TURK](https://gem-benchmark.com/data_cards/wiki_auto_asset_turk) - [WikiLingua](https://gem-benchmark.com/data_cards/wiki_lingua) - [XSum](https://gem-benchmark.com/data_cards/xsum) The subsets are organized by task: ``` { "summarization": { "mlsum": ["mlsum_de", "mlsum_es"], "wiki_lingua": ["wiki_lingua_es_en", "wiki_lingua_ru_en", "wiki_lingua_tr_en", "wiki_lingua_vi_en"], "xsum": ["xsum"], }, "struct2text": { "common_gen": ["common_gen"], "cs_restaurants": ["cs_restaurants"], "dart": ["dart"], "e2e": ["e2e_nlg"], "totto": ["totto"], "web_nlg": ["web_nlg_en", "web_nlg_ru"], }, "simplification": { "wiki_auto_asset_turk": ["wiki_auto_asset_turk"], }, "dialog": { "schema_guided_dialog": ["schema_guided_dialog"], }, } ``` Each example has one `target` per example in its training set, and a set of `references` (with one or more items) in its validation and test set. ### Supported Tasks and Leaderboards [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Languages [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Dataset Structure ### Data Instances #### common_gen - **Size of downloaded dataset files:** 1.85 MB - **Size of the generated dataset:** 9.23 MB - **Total amount of disk used:** 11.07 MB An example of `validation` looks as follows. ``` {'concept_set_id': 0, 'concepts': ['field', 'look', 'stand'], 'gem_id': 'common_gen-validation-0', 'references': ['The player stood in the field looking at the batter.', 'The coach stands along the field, looking at the goalkeeper.', 'I stood and looked across the field, peacefully.', 'Someone stands, looking around the empty field.'], 'target': 'The player stood in the field looking at the batter.'} ``` #### cs_restaurants - **Size of downloaded dataset files:** 1.47 MB - **Size of the generated dataset:** 1.31 MB - **Total amount of disk used:** 2.77 MB An example of `validation` looks as follows. ``` {'dialog_act': '?request(area)', 'dialog_act_delexicalized': '?request(area)', 'gem_id': 'cs_restaurants-validation-0', 'references': ['Jakou lokalitu hledáte ?'], 'target': 'Jakou lokalitu hledáte ?', 'target_delexicalized': 'Jakou lokalitu hledáte ?'} ``` #### dart - **Size of downloaded dataset files:** 29.37 MB - **Size of the generated dataset:** 27.44 MB - **Total amount of disk used:** 56.81 MB An example of `validation` looks as follows. ``` {'dart_id': 0, 'gem_id': 'dart-validation-0', 'references': ['A school from Mars Hill, North Carolina, joined in 1973.'], 'subtree_was_extended': True, 'target': 'A school from Mars Hill, North Carolina, joined in 1973.', 'target_sources': ['WikiSQL_decl_sents'], 'tripleset': [['Mars Hill College', 'JOINED', '1973'], ['Mars Hill College', 'LOCATION', 'Mars Hill, North Carolina']]} ``` #### e2e_nlg - **Size of downloaded dataset files:** 14.60 MB - **Size of the generated dataset:** 12.14 MB - **Total amount of disk used:** 26.74 MB An example of `validation` looks as follows. ``` {'gem_id': 'e2e_nlg-validation-0', 'meaning_representation': 'name[Alimentum], area[city centre], familyFriendly[no]', 'references': ['There is a place in the city centre, Alimentum, that is not family-friendly.'], 'target': 'There is a place in the city centre, Alimentum, that is not family-friendly.'} ``` #### mlsum_de - **Size of downloaded dataset files:** 347.36 MB - **Size of the generated dataset:** 951.06 MB - **Total amount of disk used:** 1.30 GB An example of `validation` looks as follows. ``` {'date': '00/04/2019', 'gem_id': 'mlsum_de-validation-0', 'references': ['In einer Kleinstadt auf der Insel Usedom war eine junge Frau tot in ihrer Wohnung gefunden worden. Nun stehen zwei Bekannte unter Verdacht.'], 'target': 'In einer Kleinstadt auf der Insel Usedom war eine junge Frau tot in ihrer Wohnung gefunden worden. Nun stehen zwei Bekannte unter Verdacht.', 'text': 'Kerzen und Blumen stehen vor dem Eingang eines Hauses, in dem eine 18-jährige Frau tot aufgefunden wurde. In einer Kleinstadt auf der Insel Usedom war eine junge Frau tot in ...', 'title': 'Tod von 18-Jähriger auf Usedom: Zwei Festnahmen', 'topic': 'panorama', 'url': 'https://www.sueddeutsche.de/panorama/usedom-frau-tot-festnahme-verdaechtige-1.4412256'} ``` #### mlsum_es - **Size of downloaded dataset files:** 514.11 MB - **Size of the generated dataset:** 1.31 GB - **Total amount of disk used:** 1.83 GB An example of `validation` looks as follows. ``` {'date': '05/01/2019', 'gem_id': 'mlsum_es-validation-0', 'references': ['El diseñador que dio carta de naturaleza al estilo genuinamente americano celebra el medio siglo de su marca entre grandes fastos y problemas financieros. Conectar con las nuevas generaciones es el regalo que precisa más que nunca'], 'target': 'El diseñador que dio carta de naturaleza al estilo genuinamente americano celebra el medio siglo de su marca entre grandes fastos y problemas financieros. Conectar con las nuevas generaciones es el regalo que precisa más que nunca', 'text': 'Un oso de peluche marcándose un heelflip de monopatín es todo lo que Ralph Lauren necesitaba esta Navidad. Estampado en un jersey de lana azul marino, supone la guinda que corona ...', 'title': 'Ralph Lauren busca el secreto de la eterna juventud', 'topic': 'elpais estilo', 'url': 'http://elpais.com/elpais/2019/01/04/estilo/1546617396_933318.html'} ``` #### schema_guided_dialog - **Size of downloaded dataset files:** 8.64 MB - **Size of the generated dataset:** 45.78 MB - **Total amount of disk used:** 54.43 MB An example of `validation` looks as follows. ``` {'dialog_acts': [{'act': 2, 'slot': 'song_name', 'values': ['Carnivore']}, {'act': 2, 'slot': 'playback_device', 'values': ['TV']}], 'dialog_id': '10_00054', 'gem_id': 'schema_guided_dialog-validation-0', 'prompt': 'Yes, I would.', 'references': ['Please confirm the song Carnivore on tv.'], 'target': 'Please confirm the song Carnivore on tv.', 'turn_id': 15} ``` #### totto - **Size of downloaded dataset files:** 187.73 MB - **Size of the generated dataset:** 757.99 MB - **Total amount of disk used:** 945.72 MB An example of `validation` looks as follows. ``` {'example_id': '7391450717765563190', 'gem_id': 'totto-validation-0', 'highlighted_cells': [[3, 0], [3, 2], [3, 3]], 'overlap_subset': 'True', 'references': ['Daniel Henry Chamberlain was the 76th Governor of South Carolina from 1874.', 'Daniel Henry Chamberlain was the 76th Governor of South Carolina, beginning in 1874.', 'Daniel Henry Chamberlain was the 76th Governor of South Carolina who took office in 1874.'], 'sentence_annotations': [{'final_sentence': 'Daniel Henry Chamberlain was the 76th Governor of South Carolina from 1874.', 'original_sentence': 'Daniel Henry Chamberlain (June 23, 1835 – April 13, 1907) was an American planter, lawyer, author and the 76th Governor of South Carolina ' 'from 1874 until 1877.', 'sentence_after_ambiguity': 'Daniel Henry Chamberlain was the 76th Governor of South Carolina from 1874.', 'sentence_after_deletion': 'Daniel Henry Chamberlain was the 76th Governor of South Carolina from 1874.'}, ... ], 'table': [[{'column_span': 1, 'is_header': True, 'row_span': 1, 'value': '#'}, {'column_span': 2, 'is_header': True, 'row_span': 1, 'value': 'Governor'}, {'column_span': 1, 'is_header': True, 'row_span': 1, 'value': 'Took Office'}, {'column_span': 1, 'is_header': True, 'row_span': 1, 'value': 'Left Office'}], [{'column_span': 1, 'is_header': True, 'row_span': 1, 'value': '74'}, {'column_span': 1, 'is_header': False, 'row_span': 1, 'value': '-'}, {'column_span': 1, 'is_header': False, 'row_span': 1, 'value': 'Robert Kingston Scott'}, {'column_span': 1, 'is_header': False, 'row_span': 1, 'value': 'July 6, 1868'}], ... ], 'table_page_title': 'List of Governors of South Carolina', 'table_section_text': 'Parties Democratic Republican', 'table_section_title': 'Governors under the Constitution of 1868', 'table_webpage_url': 'http://en.wikipedia.org/wiki/List_of_Governors_of_South_Carolina', 'target': 'Daniel Henry Chamberlain was the 76th Governor of South Carolina from 1874.', 'totto_id': 0} ``` #### web_nlg_en - **Size of downloaded dataset files:** 12.95 MB - **Size of the generated dataset:** 14.63 MB - **Total amount of disk used:** 27.57 MB An example of `validation` looks as follows. ``` {'category': 'Airport', 'gem_id': 'web_nlg_en-validation-0', 'input': ['Aarhus | leader | Jacob_Bundsgaard'], 'references': ['The leader of Aarhus is Jacob Bundsgaard.'], 'target': 'The leader of Aarhus is Jacob Bundsgaard.', 'webnlg_id': 'dev/Airport/1/Id1'} ``` #### web_nlg_ru - **Size of downloaded dataset files:** 7.63 MB - **Size of the generated dataset:** 8.41 MB - **Total amount of disk used:** 16.04 MB An example of `validation` looks as follows. ``` {'category': 'Airport', 'gem_id': 'web_nlg_ru-validation-0', 'input': ['Punjab,_Pakistan | leaderTitle | Provincial_Assembly_of_the_Punjab'], 'references': ['Пенджаб, Пакистан, возглавляется Провинциальной ассамблеей Пенджаба.', 'Пенджаб, Пакистан возглавляется Провинциальной ассамблеей Пенджаба.'], 'target': 'Пенджаб, Пакистан, возглавляется Провинциальной ассамблеей Пенджаба.', 'webnlg_id': 'dev/Airport/1/Id1'} ``` #### wiki_auto_asset_turk - **Size of downloaded dataset files:** 127.27 MB - **Size of the generated dataset:** 152.77 MB - **Total amount of disk used:** 280.04 MB An example of `validation` looks as follows. ``` {'gem_id': 'wiki_auto_asset_turk-validation-0', 'references': ['The Gandalf Awards honor excellent writing in in fantasy literature.'], 'source': 'The Gandalf Awards, honoring achievement in fantasy literature, were conferred by the World Science Fiction Society annually from 1974 to 1981.', 'source_id': '350_691837-1-0-0', 'target': 'The Gandalf Awards honor excellent writing in in fantasy literature.', 'target_id': '350_691837-0-0-0'} ``` #### wiki_lingua_es_en - **Size of downloaded dataset files:** 169.41 MB - **Size of the generated dataset:** 287.60 MB - **Total amount of disk used:** 457.01 MB An example of `validation` looks as follows. ``` 'references': ["Practice matted hair prevention from early in your cat's life. Make sure that your cat is grooming itself effectively. Keep a close eye on cats with long hair."], 'source': 'Muchas personas presentan problemas porque no cepillaron el pelaje de sus gatos en una etapa temprana de su vida, ya que no lo consideraban necesario. Sin embargo, a medida que...', 'target': "Practice matted hair prevention from early in your cat's life. Make sure that your cat is grooming itself effectively. Keep a close eye on cats with long hair."} ``` #### wiki_lingua_ru_en - **Size of downloaded dataset files:** 169.41 MB - **Size of the generated dataset:** 211.21 MB - **Total amount of disk used:** 380.62 MB An example of `validation` looks as follows. ``` {'gem_id': 'wiki_lingua_ru_en-val-0', 'references': ['Get immediate medical care if you notice signs of a complication. Undergo diagnostic tests to check for gallstones and complications. Ask your doctor about your treatment ' 'options.'], 'source': 'И хотя, скорее всего, вам не о чем волноваться, следует незамедлительно обратиться к врачу, если вы подозреваете, что у вас возникло осложнение желчекаменной болезни. Это ...', 'target': 'Get immediate medical care if you notice signs of a complication. Undergo diagnostic tests to check for gallstones and complications. Ask your doctor about your treatment ' 'options.'} ``` #### wiki_lingua_tr_en - **Size of downloaded dataset files:** 169.41 MB - **Size of the generated dataset:** 10.35 MB - **Total amount of disk used:** 179.75 MB An example of `validation` looks as follows. ``` {'gem_id': 'wiki_lingua_tr_en-val-0', 'references': ['Open Instagram. Go to the video you want to download. Tap ⋮. Tap Copy Link. Open Google Chrome. Tap the address bar. Go to the SaveFromWeb site. Tap the "Paste Instagram Video" text box. Tap and hold the text box. Tap PASTE. Tap Download. Download the video. Find the video on your Android.'], 'source': 'Instagram uygulamasının çok renkli kamera şeklindeki simgesine dokun. Daha önce giriş yaptıysan Instagram haber kaynağı açılır. Giriş yapmadıysan istendiğinde e-posta adresini ...', 'target': 'Open Instagram. Go to the video you want to download. Tap ⋮. Tap Copy Link. Open Google Chrome. Tap the address bar. Go to the SaveFromWeb site. Tap the "Paste Instagram Video" text box. Tap and hold the text box. Tap PASTE. Tap Download. Download the video. Find the video on your Android.'} ``` #### wiki_lingua_vi_en - **Size of downloaded dataset files:** 169.41 MB - **Size of the generated dataset:** 41.02 MB - **Total amount of disk used:** 210.43 MB An example of `validation` looks as follows. ``` {'gem_id': 'wiki_lingua_vi_en-val-0', 'references': ['Select the right time of year for planting the tree. You will usually want to plant your tree when it is dormant, or not flowering, during cooler or colder times of year.'], 'source': 'Bạn muốn cung cấp cho cây cơ hội tốt nhất để phát triển và sinh tồn. Trồng cây đúng thời điểm trong năm chính là yếu tố then chốt. Thời điểm sẽ thay đổi phụ thuộc vào loài cây ...', 'target': 'Select the right time of year for planting the tree. You will usually want to plant your tree when it is dormant, or not flowering, during cooler or colder times of year.'} ``` #### xsum - **Size of downloaded dataset files:** 254.89 MB - **Size of the generated dataset:** 70.67 MB - **Total amount of disk used:** 325.56 MB An example of `validation` looks as follows. ``` {'document': 'Burberry reported pre-tax profits of £166m for the year to March. A year ago it made a loss of £16.1m, hit by charges at its Spanish operations.\n' 'In the past year it has opened 21 new stores and closed nine. It plans to open 20-30 stores this year worldwide.\n' 'The group has also focused on promoting the Burberry brand online...', 'gem_id': 'xsum-validation-0', 'references': ['Luxury fashion designer Burberry has returned to profit after opening new stores and spending more on online marketing'], 'target': 'Luxury fashion designer Burberry has returned to profit after opening new stores and spending more on online marketing', 'xsum_id': '10162122'} ``` ### Data Fields The data fields are the same among all splits. #### common_gen - `gem_id`: a `string` feature. - `concept_set_id`: a `int32` feature. - `concepts`: a `list` of `string` features. - `target`: a `string` feature. - `references`: a `list` of `string` features. #### cs_restaurants - `gem_id`: a `string` feature. - `dialog_act`: a `string` feature. - `dialog_act_delexicalized`: a `string` feature. - `target_delexicalized`: a `string` feature. - `target`: a `string` feature. - `references`: a `list` of `string` features. #### dart - `gem_id`: a `string` feature. - `dart_id`: a `int32` feature. - `tripleset`: a `list` of `string` features. - `subtree_was_extended`: a `bool` feature. - `target_sources`: a `list` of `string` features. - `target`: a `string` feature. - `references`: a `list` of `string` features. #### e2e_nlg - `gem_id`: a `string` feature. - `meaning_representation`: a `string` feature. - `target`: a `string` feature. - `references`: a `list` of `string` features. #### mlsum_de - `gem_id`: a `string` feature. - `text`: a `string` feature. - `topic`: a `string` feature. - `url`: a `string` feature. - `title`: a `string` feature. - `date`: a `string` feature. - `target`: a `string` feature. - `references`: a `list` of `string` features. #### mlsum_es - `gem_id`: a `string` feature. - `text`: a `string` feature. - `topic`: a `string` feature. - `url`: a `string` feature. - `title`: a `string` feature. - `date`: a `string` feature. - `target`: a `string` feature. - `references`: a `list` of `string` features. #### schema_guided_dialog - `gem_id`: a `string` feature. - `act`: a classification label, with possible values including `AFFIRM` (0), `AFFIRM_INTENT` (1), `CONFIRM` (2), `GOODBYE` (3), `INFORM` (4). - `slot`: a `string` feature. - `values`: a `list` of `string` features. - `dialog_id`: a `string` feature. - `turn_id`: a `int32` feature. - `prompt`: a `string` feature. - `target`: a `string` feature. - `references`: a `list` of `string` features. #### totto - `gem_id`: a `string` feature. - `totto_id`: a `int32` feature. - `table_page_title`: a `string` feature. - `table_webpage_url`: a `string` feature. - `table_section_title`: a `string` feature. - `table_section_text`: a `string` feature. - `column_span`: a `int32` feature. - `is_header`: a `bool` feature. - `row_span`: a `int32` feature. - `value`: a `string` feature. - `highlighted_cells`: a `list` of `int32` features. - `example_id`: a `string` feature. - `original_sentence`: a `string` feature. - `sentence_after_deletion`: a `string` feature. - `sentence_after_ambiguity`: a `string` feature. - `final_sentence`: a `string` feature. - `overlap_subset`: a `string` feature. - `target`: a `string` feature. - `references`: a `list` of `string` features. #### web_nlg_en - `gem_id`: a `string` feature. - `input`: a `list` of `string` features. - `target`: a `string` feature. - `references`: a `list` of `string` features. - `category`: a `string` feature. - `webnlg_id`: a `string` feature. #### web_nlg_ru - `gem_id`: a `string` feature. - `input`: a `list` of `string` features. - `target`: a `string` feature. - `references`: a `list` of `string` features. - `category`: a `string` feature. - `webnlg_id`: a `string` feature. #### wiki_auto_asset_turk - `gem_id`: a `string` feature. - `source_id`: a `string` feature. - `target_id`: a `string` feature. - `source`: a `string` feature. - `target`: a `string` feature. - `references`: a `list` of `string` features. #### wiki_lingua_es_en - `gem_id`: a `string` feature. - `source`: a `string` feature. - `target`: a `string` feature. - `references`: a `list` of `string` features. #### wiki_lingua_ru_en - `gem_id`: a `string` feature. - `source`: a `string` feature. - `target`: a `string` feature. - `references`: a `list` of `string` features. #### wiki_lingua_tr_en - `gem_id`: a `string` feature. - `source`: a `string` feature. - `target`: a `string` feature. - `references`: a `list` of `string` features. #### wiki_lingua_vi_en - `gem_id`: a `string` feature. - `source`: a `string` feature. - `target`: a `string` feature. - `references`: a `list` of `string` features. #### xsum - `gem_id`: a `string` feature. - `xsum_id`: a `string` feature. - `document`: a `string` feature. - `target`: a `string` feature. - `references`: a `list` of `string` features. ### Data Splits #### common_gen | |train|validation|test| |----------|----:|---------:|---:| |common_gen|67389| 993|1497| #### cs_restaurants | |train|validation|test| |--------------|----:|---------:|---:| |cs_restaurants| 3569| 781| 842| #### dart | |train|validation|test| |----|----:|---------:|---:| |dart|62659| 2768|6959| #### e2e_nlg | |train|validation|test| |-------|----:|---------:|---:| |e2e_nlg|33525| 4299|4693| #### mlsum_de | |train |validation|test | |--------|-----:|---------:|----:| |mlsum_de|220748| 11392|10695| #### mlsum_es | |train |validation|test | |--------|-----:|---------:|----:| |mlsum_es|259886| 9977|13365| #### schema_guided_dialog | |train |validation|test | |--------------------|-----:|---------:|----:| |schema_guided_dialog|164982| 10000|10000| #### totto | |train |validation|test| |-----|-----:|---------:|---:| |totto|121153| 7700|7700| #### web_nlg_en | |train|validation|test| |----------|----:|---------:|---:| |web_nlg_en|35426| 1667|1779| #### web_nlg_ru | |train|validation|test| |----------|----:|---------:|---:| |web_nlg_ru|14630| 790|1102| #### wiki_auto_asset_turk | |train |validation|test_asset|test_turk| |--------------------|-----:|---------:|---------:|--------:| |wiki_auto_asset_turk|373801| 73249| 359| 359| #### wiki_lingua_es_en | |train|validation|test | |-----------------|----:|---------:|----:| |wiki_lingua_es_en|79515| 8835|19797| #### wiki_lingua_ru_en | |train|validation|test| |-----------------|----:|---------:|---:| |wiki_lingua_ru_en|36898| 4100|9094| #### wiki_lingua_tr_en | |train|validation|test| |-----------------|----:|---------:|---:| |wiki_lingua_tr_en| 3193| 355| 808| #### wiki_lingua_vi_en | |train|validation|test| |-----------------|----:|---------:|---:| |wiki_lingua_vi_en| 9206| 1023|2167| #### xsum | |train|validation|test| |----|----:|---------:|---:| |xsum|23206| 1117|1166| ## Dataset Creation ### Curation Rationale [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Source Data #### Initial Data Collection and Normalization [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the source language producers? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Annotations #### Annotation process [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) #### Who are the annotators? [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Personal and Sensitive Information [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Discussion of Biases [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Other Known Limitations [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ## Additional Information ### Dataset Curators [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards) ### Licensing Information CC-BY-SA-4.0 ### Citation Information ``` @article{gem_benchmark, author = {Sebastian Gehrmann and Tosin P. Adewumi and Karmanya Aggarwal and Pawan Sasanka Ammanamanchi and Aremu Anuoluwapo and Antoine Bosselut and Khyathi Raghavi Chandu and Miruna{-}Adriana Clinciu and Dipanjan Das and Kaustubh D. Dhole and Wanyu Du and Esin Durmus and Ondrej Dusek and Chris Emezue and Varun Gangal and Cristina Garbacea and Tatsunori Hashimoto and Yufang Hou and Yacine Jernite and Harsh Jhamtani and Yangfeng Ji and Shailza Jolly and Dhruv Kumar and Faisal Ladhak and Aman Madaan and Mounica Maddela and Khyati Mahajan and Saad Mahamood and Bodhisattwa Prasad Majumder and Pedro Henrique Martins and Angelina McMillan{-}Major and Simon Mille and Emiel van Miltenburg and Moin Nadeem and Shashi Narayan and Vitaly Nikolaev and Rubungo Andre Niyongabo and Salomey Osei and Ankur P. Parikh and Laura Perez{-}Beltrachini and Niranjan Ramesh Rao and Vikas Raunak and Juan Diego Rodriguez and Sashank Santhanam and Jo{\~{a}}o Sedoc and Thibault Sellam and Samira Shaikh and Anastasia Shimorina and Marco Antonio Sobrevilla Cabezudo and Hendrik Strobelt and Nishant Subramani and Wei Xu and Diyi Yang and Akhila Yerukola and Jiawei Zhou}, title = {The {GEM} Benchmark: Natural Language Generation, its Evaluation and Metrics}, journal = {CoRR}, volume = {abs/2102.01672}, year = {2021}, url = {https://arxiv.org/abs/2102.01672}, archivePrefix = {arXiv}, eprint = {2102.01672} } ``` ### Contributions Thanks to [@yjernite](https://github.com/yjernite) for adding this dataset.
byeonggi/0620_data
byeonggi
2025-06-20T11:11:05Z
0
0
[ "license:apache-2.0", "region:us" ]
[]
2025-06-20T11:11:05Z
0
--- license: apache-2.0 ---
EuskadIA/Hiesa_Hiztegia
EuskadIA
2025-03-29T22:09:15Z
24
0
[ "task_categories:translation", "language:eu", "language:spa", "language:fra", "language:eng", "region:us" ]
[ "translation" ]
2025-01-14T17:52:54Z
0
--- language: - eu - spa - fra - eng task_categories: - translation --- > [!NOTE] > Dataset origin: https://www.ivap.euskadi.eus/webivap00-a5app3/fr/ac36aEuskaltermWar/publiko/erakutsiBankuEdukia
TAUR-dev/SIE_EVAL__SIEXP_first_response_correct__ME__lm2d__sft__samples
TAUR-dev
2025-06-06T03:50:02Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T03:49:59Z
0
--- dataset_info: features: - name: doc_id dtype: int64 - name: doc dtype: string - name: target dtype: string - name: arguments dtype: string - name: resps dtype: string - name: filtered_resps dtype: string - name: doc_hash dtype: string - name: prompt_hash dtype: string - name: target_hash dtype: string - name: exact_match dtype: int64 - name: extracted_answers dtype: string - name: source_file dtype: string - name: generation dtype: string - name: info dtype: string - name: evaluation_api_cost dtype: string splits: - name: train num_bytes: 145296605 num_examples: 3656 download_size: 20467234 dataset_size: 145296605 configs: - config_name: default data_files: - split: train path: data/train-* ---
Egrigor/ValheimFactPairs
Egrigor
2025-03-20T18:17:56Z
24
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-20T18:17:52Z
0
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string - name: tags sequence: string splits: - name: train num_bytes: 2032173 num_examples: 9274 download_size: 957920 dataset_size: 2032173 configs: - config_name: default data_files: - split: train path: data/train-* ---
zzxxxass/12
zzxxxass
2025-01-26T16:41:36Z
16
0
[ "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-26T16:41:17Z
0
--- license: apache-2.0 ---
xinpeng/PKU-SafeRLHF-promt-quater
xinpeng
2025-02-06T22:43:57Z
58
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-06T22:43:55Z
0
--- dataset_info: features: - name: prompt dtype: string - name: prompt_source dtype: string splits: - name: train num_bytes: 1631037.069944816 num_examples: 11144 download_size: 821747 dataset_size: 1631037.069944816 configs: - config_name: default data_files: - split: train path: data/train-* ---
garySue/eval_diffusion_picking_wok
garySue
2025-02-21T07:20:50Z
24
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "ur5", "tutorial", "eval" ]
[ "robotics" ]
2025-02-21T07:20:45Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - ur5 - tutorial - eval configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "bi_ur5", "total_episodes": 1, "total_frames": 177, "total_tasks": 1, "total_videos": 3, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 14 ], "names": { "motors": [ "left_shoulder_pan", "left_shoulder_lift", "left_elbow_flex", "left_wrist_1", "left_wrist_2", "left_wrist_3", "left_gripper", "right_shoulder_pan", "right_shoulder_lift", "right_elbow_flex", "right_wrist_1", "right_wrist_2", "right_wrist_3", "right_gripper" ] } }, "observation.state": { "dtype": "float32", "shape": [ 14 ], "names": { "arms": [ "left_shoulder_pan", "left_shoulder_lift", "left_elbow_flex", "left_wrist_1", "left_wrist_2", "left_wrist_3", "left_gripper", "right_shoulder_pan", "right_shoulder_lift", "right_elbow_flex", "right_wrist_1", "right_wrist_2", "right_wrist_3", "right_gripper" ] } }, "observation.velocity": { "dtype": "float32", "shape": [ 14 ], "names": { "arms": [ "left_shoulder_pan", "left_shoulder_lift", "left_elbow_flex", "left_wrist_1", "left_wrist_2", "left_wrist_3", "left_gripper", "right_shoulder_pan", "right_shoulder_lift", "right_elbow_flex", "right_wrist_1", "right_wrist_2", "right_wrist_3", "right_gripper" ] } }, "observation.gripper_position": { "dtype": "float32", "shape": [ 2 ], "names": { "gripper": [ "left_gripper", "right_gripper" ] } }, "observation.images.top_rgb": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.left_rgb": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.right_rgb": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
debabrata-ai/llama3-customer-support-preference
debabrata-ai
2025-01-14T18:46:30Z
21
0
[ "language:en", "license:apache-2.0", "region:us", "customer-support", "preference-dataset", "direct-preference-optimization", "llama3" ]
[]
2025-01-14T18:34:22Z
0
--- dataset_name: llama3-customer-support-preference language: en tags: - customer-support - preference-dataset - direct-preference-optimization - llama3 license: apache-2.0 --- # 📊 LLaMA 3.1 Customer Support Preference Dataset The **LLaMA 3.1 Customer Support Preference Dataset** is built to fine-tune large language models for customer support tasks using **Direct Preference Optimization (DPO)**. It contains customer queries with multiple response options labeled by preference, enabling models to generate more **contextually relevant**, **empathetic**, and **helpful** responses.
CohenQu/Omni-MATH-5678-Qwen3-4B-16k_human_solution_conditioned_prompts
CohenQu
2025-09-21T17:50:50Z
83
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-09-21T17:50:50Z
0
--- dataset_info: features: - name: problem dtype: string - name: answer dtype: string - name: original_problem dtype: string splits: - name: train num_bytes: 1965156 num_examples: 1206 download_size: 359124 dataset_size: 1965156 configs: - config_name: default data_files: - split: train path: data/train-* ---
NiharMandahas/Time_Complexity
NiharMandahas
2024-12-20T15:49:58Z
20
1
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-12-20T15:22:48Z
0
--- dataset_info: features: - name: Code dtype: string - name: Input size dtype: string - name: Time Complexity dtype: string - name: 'Unnamed: 3' dtype: float64 - name: Text dtype: string splits: - name: train num_bytes: 161979 num_examples: 121 download_size: 75073 dataset_size: 161979 configs: - config_name: default data_files: - split: train path: data/train-* ---
Wanacola/koch_pick_place1
Wanacola
2024-10-07T02:18:09Z
20
0
[ "region:us" ]
[]
2024-10-07T02:16:45Z
0
--- dataset_info: features: - name: observation.state sequence: float32 length: 8 - name: action sequence: float32 length: 8 - name: observation.images.top dtype: video_frame - name: observation.images.phone dtype: video_frame - name: episode_index dtype: int64 - name: frame_index dtype: int64 - name: timestamp dtype: float32 - name: next.done dtype: bool - name: index dtype: int64 splits: - name: train num_bytes: 3150621 num_examples: 15285 download_size: 1017183 dataset_size: 3150621 configs: - config_name: default data_files: - split: train path: data/train-* ---
KevinZ/psycholinguistic_eval
KevinZ
2022-10-25T10:03:37Z
29
3
[ "task_categories:multiple-choice", "task_categories:fill-mask", "task_categories:question-answering", "task_categories:zero-shot-classification", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "license:mit", "size_categories:n<1K", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[ "multiple-choice", "fill-mask", "question-answering", "zero-shot-classification" ]
2022-04-01T00:04:18Z
0
--- annotations_creators: - expert-generated language_creators: - expert-generated language: - en-US license: - mit multilinguality: - monolingual pretty_name: psycholinguistic_eval size_categories: - n<1K source_datasets: [] task_categories: - multiple-choice - fill-mask - question-answering - zero-shot-classification task_ids: [] --- This is a suite of psycholinguistic datasets by Allyson Ettinger. See her [official Github repository](https://github.com/aetting/lm-diagnostics) for specific details.
mteb/OPP115ThirdPartySharingCollectionLegalBenchClassification
mteb
2025-05-07T20:03:29Z
0
0
[ "task_categories:text-classification", "annotations_creators:expert-annotated", "multilinguality:monolingual", "language:eng", "license:cc-by-nc-4.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2308.11462", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-classification" ]
2025-05-07T20:03:25Z
0
--- annotations_creators: - expert-annotated language: - eng license: cc-by-nc-4.0 multilinguality: monolingual task_categories: - text-classification task_ids: [] dataset_info: features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 1189 num_examples: 8 - name: test num_bytes: 374681 num_examples: 1590 download_size: 179280 dataset_size: 375870 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">OPP115ThirdPartySharingCollectionLegalBenchClassification</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> Given a clause from a privacy policy, classify if the clause describe how user information may be shared with or collected by third parties. | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Legal, Written | | Reference | https://huggingface.co/datasets/nguha/legalbench | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["OPP115ThirdPartySharingCollectionLegalBenchClassification"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @misc{guha2023legalbench, archiveprefix = {arXiv}, author = {Neel Guha and Julian Nyarko and Daniel E. Ho and Christopher Ré and Adam Chilton and Aditya Narayana and Alex Chohlas-Wood and Austin Peters and Brandon Waldon and Daniel N. Rockmore and Diego Zambrano and Dmitry Talisman and Enam Hoque and Faiz Surani and Frank Fagan and Galit Sarfaty and Gregory M. Dickinson and Haggai Porat and Jason Hegland and Jessica Wu and Joe Nudell and Joel Niklaus and John Nay and Jonathan H. Choi and Kevin Tobia and Margaret Hagan and Megan Ma and Michael Livermore and Nikon Rasumov-Rahe and Nils Holzenberger and Noam Kolt and Peter Henderson and Sean Rehaag and Sharad Goel and Shang Gao and Spencer Williams and Sunny Gandhi and Tom Zur and Varun Iyer and Zehua Li}, eprint = {2308.11462}, primaryclass = {cs.CL}, title = {LegalBench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models}, year = {2023}, } @inproceedings{wilson2016creation, author = {Wilson, Shomir and Schaub, Florian and Dara, Aswarth Abhilash and Liu, Frederick and Cherivirala, Sushain and Leon, Pedro Giovanni and Andersen, Mads Schaarup and Zimmeck, Sebastian and Sathyendra, Kanthashree Mysore and Russell, N Cameron and others}, booktitle = {Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, pages = {1330--1340}, title = {The creation and analysis of a website privacy policy corpus}, year = {2016}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("OPP115ThirdPartySharingCollectionLegalBenchClassification") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 1590, "number_of_characters": 355601, "number_texts_intersect_with_train": 0, "min_text_length": 45, "average_text_length": 223.64842767295596, "max_text_length": 1816, "unique_text": 1590, "unique_labels": 2, "labels": { "1": { "count": 798 }, "0": { "count": 792 } } }, "train": { "num_samples": 8, "number_of_characters": 1093, "number_texts_intersect_with_train": null, "min_text_length": 68, "average_text_length": 136.625, "max_text_length": 278, "unique_text": 8, "unique_labels": 2, "labels": { "1": { "count": 4 }, "0": { "count": 4 } } } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
mlfoundations-dev/a1_code_magpie
mlfoundations-dev
2025-04-12T16:49:35Z
24
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-03T03:25:18Z
0
--- dataset_info: features: - name: instruction_seed dtype: string - name: response_seed dtype: string - name: reasoning dtype: string - name: deepseek_solution dtype: string - name: __original_row_idx dtype: int64 - name: source dtype: string - name: final_reasoning_trace dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 882000180 num_examples: 31600 download_size: 441706259 dataset_size: 882000180 configs: - config_name: default data_files: - split: train path: data/train-* ---
gtsaidata/VulnerableCaptchas
gtsaidata
2025-03-04T12:16:19Z
10
0
[ "task_categories:text-generation", "task_categories:image-classification", "language:en", "region:us", "Vulnerable Captchas", "CAPTCHAs dataset" ]
[ "text-generation", "image-classification" ]
2025-03-04T12:12:01Z
0
--- task_categories: - text-generation - image-classification language: - en tags: - Vulnerable Captchas - CAPTCHAs dataset --- Description: <a href="https://gts.ai/dataset-download/vulnerable-captchas/" target="_blank">👉 Download the dataset here</a> This dataset focuses on an interesting example of weak CAPTCHA implementations, highlighting potential security vulnerabilities in systems that rely on simple alphanumeric captchas. CAPTCHAs (Completely Automated Public Turing Test to Tell Computers and Humans Apart) are widely used to protect websites from bots and automated scripts. However, not all CAPTCHA implementations are equally secure, and some are prone to exploitation through automated processes. Download Dataset Context The inspiration for this dataset came from a personal experience while accessing a website I frequently use, which I will refer to as “System” for privacy reasons. I wanted to automate a repetitive task on the site using a Python script, but I was initially blocked by a CAPTCHA that was required to complete the login process. CAPTCHAs are generally effective in stopping bots, especially those like Google’s reCAPTCHA, which are difficult to bypass with machine learning models due to their sophisticated design. However, in this case, the CAPTCHA images were simple enough for human eyes to decipher, consisting only of clearly readable alphanumeric characters. The challenge intrigued me, and as I was simultaneously reading “Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow” by Aurélien Géron, I decided to use this scenario as an opportunity to apply my newly acquired knowledge in machine learning. Problem and Approach The dataset captures images of these vulnerable CAPTCHA challenges and provides annotations for each. During the process of automating the CAPTCHA resolution, I learned that the system did not just rely on the image itself. Upon inspection of the HTML, I found that the CAPTCHA content was hashed and stored inside a hidden form field. Which could easily be manipulate to bypass the verification entirely. Key Learnings CAPTCHA Design Matters: Not all CAPTCHAs are created equal. Simpler alphanumeric CAPTCHAs can often be defeated by image recognition models or form manipulation. Image Classification: This dataset offers a collection of label CAPTCHA images. That could be use to train image classification models aimed at recognizing and solving CAPTCHAs automatically. Security Implications: The project sheds light on the importance of implementing proper security mechanisms beyond just CAPTCHA images. Such as encryption, hashing, and verification strategies that prevent easy manipulation. Practical Approach: Sometimes, simpler solutions such as analyzing the webpage structure and finding security loopholes can be more efficient than complex machine learning models. This dataset is sourced from Kaggle.
kadirnar/Ja-Emilia-Test-v1
kadirnar
2025-06-17T23:52:27Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-17T23:52:25Z
0
--- dataset_info: features: - name: id dtype: string - name: speaker dtype: string - name: input_ids sequence: int32 - name: labels sequence: int64 - name: attention_mask sequence: int8 splits: - name: train num_bytes: 8481114 num_examples: 1000 download_size: 2664428 dataset_size: 8481114 configs: - config_name: default data_files: - split: train path: data/train-* ---
DanTrireme/HyperBalances
DanTrireme
2025-05-22T09:47:40Z
0
0
[ "size_categories:n<1K", "format:text", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
[]
2025-05-22T09:36:04Z
0
--- title: billy_dashboard app_file: app.py sdk: gradio sdk_version: 5.29.1 ---
Manchesterokaa/Record_bluecube_500
Manchesterokaa
2025-09-26T03:05:02Z
56
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-09-26T03:04:49Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v3.0", "robot_type": "so101_follower", "total_episodes": 11, "total_frames": 3106, "total_tasks": 1, "chunks_size": 1000, "data_files_size_in_mb": 100, "video_files_size_in_mb": 500, "fps": 30, "splits": { "train": "0:11" }, "data_path": "data/chunk-{chunk_index:03d}/file-{file_index:03d}.parquet", "video_path": "videos/{video_key}/chunk-{chunk_index:03d}/file-{file_index:03d}.mp4", "features": { "action": { "dtype": "float32", "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ], "shape": [ 6 ] }, "observation.state": { "dtype": "float32", "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ], "shape": [ 6 ] }, "observation.images.front": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.side": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
Parveshiiii/opencode_reasoning_filtered1
Parveshiiii
2025-05-08T02:16:33Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-08T01:34:53Z
0
--- dataset_info: features: - name: id dtype: string - name: input dtype: string - name: output dtype: string - name: source dtype: string - name: difficulty dtype: string - name: solution dtype: string splits: - name: train num_bytes: 3310294357 num_examples: 167405 download_size: 1408547759 dataset_size: 3310294357 configs: - config_name: default data_files: - split: train path: data/train-* --- --- # **OpenCode Reasoning - Filtered Split 1** 🚀 **Optimized dataset for reasoning and code generation tasks** ## 📌 **Description** This dataset is a **filtered version of `split_1`** from `nvidia/OpenCodeReasoning`, containing **167,000 examples** for instruction-based reasoning. 🔹 **Removed unnecessary columns**: `license`, `dataset`, `split`, `index`. ## 🌟 **Features** | **Feature** | **Type** | **Description** | |--------------|------------|----------------| | `id` | `string` | Unique identifier | | `input` | `string` | Problem statement or prompt | | `output` | `string` | Expected output or solution | | `source` | `string` | Origin of the example | | `difficulty` | `string` | Difficulty level | | `solution` | `string` | Detailed solution or code | ## 📊 **Dataset Statistics** 🔹 **Total Rows**: `167,000` 🔹 **Number of Shards**: `7` 🔹 **Split**: `train` ## 📁 **Dataset Structure** ``` Parveshiiii/opencode_reasoning_filtered1/ └── train/ ├── train-00000-of-00007.parquet ├── train-00001-of-00007.parquet ├── train-00002-of-00007.parquet ├── train-00003-of-00007.parquet ├── train-00004-of-00007.parquet ├── train-00005-of-00007.parquet ├── train-00006-of-00007.parquet ``` ## 🛠 **Usage** Load the dataset in Python: ```python from datasets import load_dataset dataset = load_dataset("Parveshiiii/opencode_reasoning_filtered1", split="train") print(dataset) print(dataset[0]) ``` ### 🔄 **Streaming Mode** For efficient large-scale processing: ```python dataset = load_dataset("Parveshiiii/opencode_reasoning_filtered1", split="train", streaming=True) for example in dataset: print(example) break ``` ## 🔗 **Source & License** 📌 **Derived from** `nvidia/OpenCodeReasoning` (`split_1`) 📜 **License**: Inherits the license from `nvidia/OpenCodeReasoning`. ## ✉️ **Contact** Parvesh Rawal (📩 **[email protected]**) ---
litexlang/gsm8k-litex
litexlang
2025-09-22T06:02:39Z
198
3
[ "task_categories:question-answering", "language:en", "license:mit", "size_categories:1K<n<10K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "code", "agent" ]
[ "question-answering" ]
2025-09-22T05:53:19Z
0
--- license: mit task_categories: - question-answering language: - en tags: - code - agent size_categories: - 1K<n<10K ---
mteb/CUADLicenseGrantLegalBenchClassification
mteb
2025-05-06T11:54:42Z
0
0
[ "task_categories:text-classification", "annotations_creators:expert-annotated", "multilinguality:monolingual", "language:eng", "license:cc-by-4.0", "modality:text", "arxiv:2308.11462", "arxiv:2103.06268", "arxiv:2502.13595", "arxiv:2210.07316", "region:us", "mteb", "text" ]
[ "text-classification" ]
2025-05-06T11:54:38Z
0
--- annotations_creators: - expert-annotated language: - eng license: cc-by-4.0 multilinguality: monolingual task_categories: - text-classification task_ids: [] dataset_info: features: - name: text dtype: string - name: label dtype: int64 splits: - name: train num_bytes: 3253 num_examples: 6 - name: test num_bytes: 589244 num_examples: 1396 download_size: 287324 dataset_size: 592497 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* tags: - mteb - text --- <!-- adapted from https://github.com/huggingface/huggingface_hub/blob/v0.30.2/src/huggingface_hub/templates/datasetcard_template.md --> <div align="center" style="padding: 40px 20px; background-color: white; border-radius: 12px; box-shadow: 0 2px 10px rgba(0, 0, 0, 0.05); max-width: 600px; margin: 0 auto;"> <h1 style="font-size: 3.5rem; color: #1a1a1a; margin: 0 0 20px 0; letter-spacing: 2px; font-weight: 700;">CUADLicenseGrantLegalBenchClassification</h1> <div style="font-size: 1.5rem; color: #4a4a4a; margin-bottom: 5px; font-weight: 300;">An <a href="https://github.com/embeddings-benchmark/mteb" style="color: #2c5282; font-weight: 600; text-decoration: none;" onmouseover="this.style.textDecoration='underline'" onmouseout="this.style.textDecoration='none'">MTEB</a> dataset</div> <div style="font-size: 0.9rem; color: #2c5282; margin-top: 10px;">Massive Text Embedding Benchmark</div> </div> This task was constructed from the CUAD dataset. It consists of determining if the clause contains a license granted by one party to its counterparty. | | | |---------------|---------------------------------------------| | Task category | t2c | | Domains | Legal, Written | | Reference | https://huggingface.co/datasets/nguha/legalbench | ## How to evaluate on this task You can evaluate an embedding model on this dataset using the following code: ```python import mteb task = mteb.get_tasks(["CUADLicenseGrantLegalBenchClassification"]) evaluator = mteb.MTEB(task) model = mteb.get_model(YOUR_MODEL) evaluator.run(model) ``` <!-- Datasets want link to arxiv in readme to autolink dataset with paper --> To learn more about how to run models on `mteb` task check out the [GitHub repitory](https://github.com/embeddings-benchmark/mteb). ## Citation If you use this dataset, please cite the dataset as well as [mteb](https://github.com/embeddings-benchmark/mteb), as this dataset likely includes additional processing as a part of the [MMTEB Contribution](https://github.com/embeddings-benchmark/mteb/tree/main/docs/mmteb). ```bibtex @misc{guha2023legalbench, archiveprefix = {arXiv}, author = {Neel Guha and Julian Nyarko and Daniel E. Ho and Christopher Ré and Adam Chilton and Aditya Narayana and Alex Chohlas-Wood and Austin Peters and Brandon Waldon and Daniel N. Rockmore and Diego Zambrano and Dmitry Talisman and Enam Hoque and Faiz Surani and Frank Fagan and Galit Sarfaty and Gregory M. Dickinson and Haggai Porat and Jason Hegland and Jessica Wu and Joe Nudell and Joel Niklaus and John Nay and Jonathan H. Choi and Kevin Tobia and Margaret Hagan and Megan Ma and Michael Livermore and Nikon Rasumov-Rahe and Nils Holzenberger and Noam Kolt and Peter Henderson and Sean Rehaag and Sharad Goel and Shang Gao and Spencer Williams and Sunny Gandhi and Tom Zur and Varun Iyer and Zehua Li}, eprint = {2308.11462}, primaryclass = {cs.CL}, title = {LegalBench: A Collaboratively Built Benchmark for Measuring Legal Reasoning in Large Language Models}, year = {2023}, } @article{hendrycks2021cuad, author = {Hendrycks, Dan and Burns, Collin and Chen, Anya and Ball, Spencer}, journal = {arXiv preprint arXiv:2103.06268}, title = {Cuad: An expert-annotated nlp dataset for legal contract review}, year = {2021}, } @article{enevoldsen2025mmtebmassivemultilingualtext, title={MMTEB: Massive Multilingual Text Embedding Benchmark}, author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff}, publisher = {arXiv}, journal={arXiv preprint arXiv:2502.13595}, year={2025}, url={https://arxiv.org/abs/2502.13595}, doi = {10.48550/arXiv.2502.13595}, } @article{muennighoff2022mteb, author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils}, title = {MTEB: Massive Text Embedding Benchmark}, publisher = {arXiv}, journal={arXiv preprint arXiv:2210.07316}, year = {2022} url = {https://arxiv.org/abs/2210.07316}, doi = {10.48550/ARXIV.2210.07316}, } ``` # Dataset Statistics <details> <summary> Dataset Statistics</summary> The following code contains the descriptive statistics from the task. These can also be obtained using: ```python import mteb task = mteb.get_task("CUADLicenseGrantLegalBenchClassification") desc_stats = task.metadata.descriptive_stats ``` ```json { "test": { "num_samples": 1396, "number_of_characters": 572215, "number_texts_intersect_with_train": 0, "min_text_length": 54, "average_text_length": 409.8961318051576, "max_text_length": 3400, "unique_text": 1396, "unique_labels": 2, "labels": { "1": { "count": 698 }, "0": { "count": 698 } } }, "train": { "num_samples": 6, "number_of_characters": 3179, "number_texts_intersect_with_train": null, "min_text_length": 142, "average_text_length": 529.8333333333334, "max_text_length": 1028, "unique_text": 6, "unique_labels": 2, "labels": { "1": { "count": 3 }, "0": { "count": 3 } } } } ``` </details> --- *This dataset card was automatically generated using [MTEB](https://github.com/embeddings-benchmark/mteb)*
ymoslem/Human-Evaluation
ymoslem
2025-03-05T13:40:40Z
14
1
[ "task_categories:translation", "task_categories:text-classification", "language:ar", "language:en", "language:fr", "language:es", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "translation", "text-classification" ]
2025-03-05T13:39:59Z
0
--- dataset_info: features: - name: lang dtype: large_string - name: src dtype: large_string - name: ref dtype: large_string - name: tgt dtype: large_string - name: score dtype: int64 - name: domain dtype: large_string - name: year dtype: int64 - name: system dtype: large_string splits: - name: train num_bytes: 1954352 num_examples: 3200 download_size: 426721 dataset_size: 1954352 configs: - config_name: default data_files: - split: train path: data/train-* language: - ar - en - fr - es task_categories: - translation - text-classification size_categories: - 10K<n<100K --- # Human Evaluation Dataset The dataset includes human evaluation for General and Health domains. It was created as part of my two papers: * [*“Domain-Specific Text Generation for Machine Translation”*](https://aclanthology.org/2022.amta-research.2/) (Moslem et al., 2022) * [*"Adaptive Machine Translation with Large Language Models"*](https://aclanthology.org/2023.eamt-1.22/) (Moslem et al., 2023) The evaluators were asked to assess the acceptability of each translation using a scale ranging from 1 to 4, where 4 is ideal and 1 is unacceptable translation. For the paper Moslem et al., 2022, the human test set contained 50 sentences for each language pair and domain, randomly extracted from the original test set and verified as accepted translations. This means there are 200 unique sentences that are distributed as follows: * EN→AR: General: 50 sentences x 8 systems * EN→AR: Health: 50 sentences x 8 systems * AR→EN: General: 50 sentences x 8 systems * AR→EN: Health: 50 sentences x 8 systems * Total: 1600 sentences For the paper Moslem et al., 2023, the human test sets include unique 400 segments, distributed as follows: * EN→AR: Health: 100 sentences x 4 systems * EN→FR: Health: 100+100 sentences x 4 systems * EN→ES: Health: 100 sentences x 4 systems * Total: 1600 sentences For more details, please refer to the papers or contact me. ## Citation * If you use the **2022** portion of the Human Evaluation dataset, please cite the following paper: ``` @inproceedings{moslem-etal-2022-domain, title = "Domain-Specific Text Generation for Machine Translation", author = "Moslem, Yasmin and Haque, Rejwanul and Kelleher, John and Way, Andy", booktitle = "Proceedings of the 15th biennial conference of the Association for Machine Translation in the Americas (Volume 1: Research Track)", month = sep, year = "2022", address = "Orlando, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2022.amta-research.2/", pages = "14--30", abstract = "Preservation of domain knowledge from the source to target is crucial in any translation workflow. It is common in the translation industry to receive highly-specialized projects, where there is hardly any parallel in-domain data. In such scenarios where there is insufficient in-domain data to fine-tune Machine Translation (MT) models, producing translations that are consistent with the relevant context is challenging. In this work, we propose leveraging state-of-the-art pretrained language models (LMs) for domain-specific data augmentation for MT, simulating the domain characteristics of either (a) a small bilingual dataset, or (b) the monolingual source text to be translated. Combining this idea with back-translation, we can generate huge amounts of synthetic bilingual in-domain data for both use cases. For our investigation, we used the state-of-the-art MT architecture, Transformer. We employed mixed fine-tuning to train models that significantly improve translation of in-domain texts. More specifically, our proposed methods achieved improvements of approximately 5-6 BLEU and 2-3 BLEU, respectively, on Arabic-to-English and English-to-Arabic language pairs. Furthermore, the outcome of human evaluation corroborates the automatic evaluation results." } ``` * If you use the **2023** portion of the Human Evaluation dataset, please cite the following paper: ``` @inproceedings{moslem-etal-2023-adaptive, title = "Adaptive Machine Translation with Large Language Models", author = "Moslem, Yasmin and Haque, Rejwanul and Kelleher, John D. and Way, Andy", booktitle = "Proceedings of the 24th Annual Conference of the European Association for Machine Translation", month = jun, year = "2023", address = "Tampere, Finland", publisher = "European Association for Machine Translation", url = "https://aclanthology.org/2023.eamt-1.22/", pages = "227--237", abstract = "Consistency is a key requirement of high-quality translation. It is especially important to adhere to pre-approved terminology and adapt to corrected translations in domain-specific projects. Machine translation (MT) has achieved significant progress in the area of domain adaptation. However, real-time adaptation remains challenging. Large-scale language models (LLMs) have recently shown interesting capabilities of in-context learning, where they learn to replicate certain input-output text generation patterns, without further fine-tuning. By feeding an LLM at inference time with a prompt that consists of a list of translation pairs, it can then simulate the domain and style characteristics. This work aims to investigate how we can utilize in-context learning to improve real-time adaptive MT. Our extensive experiments show promising results at translation time. For example, GPT-3.5 can adapt to a set of in-domain sentence pairs and/or terminology while translating a new sentence. We observe that the translation quality with few-shot in-context learning can surpass that of strong encoder-decoder MT systems, especially for high-resource languages. Moreover, we investigate whether we can combine MT from strong encoder-decoder models with fuzzy matches, which can further improve translation quality, especially for less supported languages. We conduct our experiments across five diverse language pairs, namely English-to-Arabic (EN-AR), English-to-Chinese (EN-ZH), English-to-French (EN-FR), English-to-Kinyarwanda (EN-RW), and English-to-Spanish (EN-ES)." } ``` * As the segments of the *“Health”* domain are extracted from TICO-19 and the segments of the *“General”* domain are extracted from other OPUS datasets, please also cite the following papers: ``` @inproceedings{anastasopoulos-etal-2020-tico, title = "{TICO}-19: the Translation Initiative for {CO}vid-19", author = {Anastasopoulos, Antonios and Cattelan, Alessandro and Dou, Zi-Yi and Federico, Marcello and Federmann, Christian and Genzel, Dmitriy and Guzm{\'a}n, Franscisco and Hu, Junjie and Hughes, Macduff and Koehn, Philipp and Lazar, Rosie and Lewis, Will and Neubig, Graham and Niu, Mengmeng and {\"O}ktem, Alp and Paquin, Eric and Tang, Grace and Tur, Sylwia}, booktitle = "Proceedings of the 1st Workshop on {NLP} for {COVID}-19 (Part 2) at {EMNLP} 2020", month = dec, year = "2020", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2020.nlpcovid19-2.5/", doi = "10.18653/v1/2020.nlpcovid19-2.5", abstract = "The COVID-19 pandemic is the worst pandemic to strike the world in over a century. Crucial to stemming the tide of the SARS-CoV-2 virus is communicating to vulnerable populations the means by which they can protect themselves. To this end, the collaborators forming the Translation Initiative for COvid-19 (TICO-19) have made test and development data available to AI and MT researchers in 35 different languages in order to foster the development of tools and resources for improving access to information about COVID-19 in these languages. In addition to 9 high-resourced, {\textquotedblright}pivot{\textquotedblright} languages, the team is targeting 26 lesser resourced languages, in particular languages of Africa, South Asia and South-East Asia, whose populations may be the most vulnerable to the spread of the virus. The same data is translated into all of the languages represented, meaning that testing or development can be done for any pairing of languages in the set. Further, the team is converting the test and development data into translation memories (TMXs) that can be used by localizers from and to any of the languages." } ``` ``` @inproceedings{tiedemann-2012-parallel, title = "Parallel Data, Tools and Interfaces in {OPUS}", author = {Tiedemann, J{\"o}rg}, booktitle = "Proceedings of the Eighth International Conference on Language Resources and Evaluation ({LREC}`12)", month = may, year = "2012", address = "Istanbul, Turkey", publisher = "European Language Resources Association (ELRA)", url = "https://aclanthology.org/L12-1246/", pages = "2214--2218", abstract = "This paper presents the current status of OPUS, a growing language resource of parallel corpora and related tools. The focus in OPUS is to provide freely available data sets in various formats together with basic annotation to be useful for applications in computational linguistics, translation studies and cross-linguistic corpus studies. In this paper, we report about new data sets and their features, additional annotation tools and models provided from the website and essential interfaces and on-line services included in the project." } ```
mteb/csfdcz_movie_review_sentiment
mteb
2025-05-09T11:51:00Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-09T11:50:42Z
0
--- dataset_info: features: - name: review_id dtype: string - name: rating_str dtype: string - name: label dtype: int64 - name: date dtype: timestamp[s] - name: comment_language dtype: string - name: text dtype: string - name: item_title dtype: string - name: item_year dtype: string - name: item_kind dtype: string - name: item_genres sequence: string - name: item_directors sequence: string - name: item_screenwriters sequence: string - name: item_cast sequence: string splits: - name: train num_bytes: 38362258.47864 num_examples: 24978 - name: validation num_bytes: 3708756.622 num_examples: 2495 - name: test num_bytes: 3977241.576 num_examples: 2497 download_size: 25531474 dataset_size: 46048256.67664 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
passing2961/stark-image
passing2961
2024-11-06T04:37:21Z
105
3
[ "task_ids:conversational", "language:en", "license:cc-by-nc-4.0", "size_categories:1M<n<10M", "format:webdataset", "modality:image", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "arxiv:2407.03958", "arxiv:1603.07396", "region:us", "multi-modal dialogue" ]
[]
2024-10-08T04:38:13Z
0
--- license: cc-by-nc-4.0 language: - en pretty_name: Stark tags: - multi-modal dialogue annotation_creators: - machine-generated task_ids: - conversational dataset_size: 1.72M --- # Dataset Card for Stark [🏠 Homepage](https://stark-dataset.github.io/) | [💻 Github](https://github.com/passing2961/Stark) | [📄 Arxiv](https://arxiv.org/abs/2407.03958) | [📕 PDF](https://arxiv.org/pdf/2407.03958) ## List of Provided Model Series - **Ultron-Summarizer-Series:** [🤖 Ultron-Summarizer-1B](https://huggingface.co/passing2961/Ultron-Summarizer-1B) | [🤖 Ultron-Summarizer-3B](https://huggingface.co/passing2961/Ultron-Summarizer-3B) | [🤖 Ultron-Summarizer-8B](https://huggingface.co/passing2961/Ultron-Summarizer-8B) - **Ultron 7B**: [🤖 Ultron-7B](https://huggingface.co/passing2961/Ultron-7B) > 🚨 Disclaimer: All models and datasets are intended for research purposes only. ## Dataset Description - **Repository:** [Code](https://github.com/passing2961/Stark) - **Paper:** [Stark: Social Long-Term Multi-Modal Conversation with Persona Commonsense Knowledge](https://arxiv.org/abs/2407.03958) - **Point of Contact:** [Young-Jun Lee](mailto:[email protected]) ## Dataset Summary **Stark** is a publicly available, large-scale, long-term multi-modal conversation dataset that encompasses a diverse range of social personas, multi-modality formats, time intervals, and images. To automatically construct Stark, we introduce a novel multi-modal contextualization framework, **MCU**, which generates long-term multi-modal dialogues distilled from ChatGPT and our proposed **Plan-and-Execute Image Aligner**. An overview of MCU and an example from Stark are illustrated below. ![MCU Pipeline](stark_mcu_overview.PNG) **Note**: The **Stark** dataset contains many images that originate from different sources, including a personalized text-to-image generator (i.e., [PhotoMaker](https://photo-maker.github.io/)), [Bing Search](https://pypi.org/project/icrawler/), and Image DB retrieval, thanks to our proposed **Plan-and-Execute** Image Aligner to ensure the high quality of the Stark dataset. Therefore, we divide the entire collection of images into two repositories based on the source: 1. **This Repository**: Contains images from the personalized text-to-image generator, Bing Search, and Image DB retrieval (excluding [CC12M](https://github.com/google-research-datasets/conceptual-12m) and [RedCaps12M](https://redcaps.xyz/)). 2. **Another Repository**: Contains images sourced from CC12M and RedCaps12M, which provide the image URL links. This dataset is provided in [this repository](https://huggingface.co/datasets/passing2961/stark-image-url). For Image DB retrieval, we use CLIP (i.e., `ViT-L/14@336px`) to retrieve images from prepared source image datasets: [CC12M](https://github.com/google-research-datasets/conceptual-12m), [RedCaps12M](https://redcaps.xyz/), [ChartQA](https://github.com/vis-nlp/ChartQA), [AI2D](https://arxiv.org/pdf/1603.07396v1), and [MathVision](https://huggingface.co/datasets/MathLLMs/MathVision). For efficient searching, we utilize [AutoFaiss](https://github.com/criteo/autofaiss). ## Dataset Structure Since the number of images is large (roughly 1.72M), we store and provide the image datasets in WebDataset format for efficiency. | Field | Type | Description | |---------|--------|--------------| | `key` | str | A unique identifier for each data entry in the dataset. | | `url` | str | The URL path to the image stored in the dataset repository on HuggingFace. All URLs point to the base HuggingFace repository where images are stored. | | `jpg` | image | The image data associated with each entry, displayed as a thumbnail in the dataset viewer. This column stores the actual image content relevant to the conversation in the dataset. | | `json` | dict | Contains additional metadata and information for each image, structured as a dictionary. The JSON field typically includes the following keys: `image_source`, `image_url`, `index`. | - **`image_source`**: Source of the image (`"p-t2i"`, `"web"`, `"t2i"`, `"chartqa"`, `"mathvision"`, `"ai2d"`), where: - `"p-t2i"`: Image from the personalized text-to-image generator (i.e., [PhotoMaker](https://photo-maker.github.io/)). - `"web"`: Image from [Bing Search](https://pypi.org/project/icrawler/). - `"t2i"`: Image from a general text-to-image generative model (i.e., [SDXL-Lightning](https://huggingface.co/ByteDance/SDXL-Lightning)). - `"chartqa"`: Image from the [ChartQA](https://github.com/vis-nlp/ChartQA) dataset via Image DB retrieval. - `"mathvision"`: Image from the [MathVision](https://huggingface.co/datasets/MathLLMs/MathVision) dataset via Image DB retrieval. - `"ai2d"`: Image from the [AI2D](https://arxiv.org/pdf/1603.07396v1) dataset via Image DB retrieval. - **`image_url`**: External URL where the image was originally sourced. In this dataset, the `image_url` is always an empty string. Another dataset (where `image_source` is CC12M or RedCaps12M) contains non-empty strings in this `image_url` field. - **`index`**: A unique index identifier for each image within the dataset, which is the same as the `key` field. ## Dataset Construction We construct the **Stark** dataset using our proposed novel framework, MCU, which distills long-term multi-modal dialogue from ChatGPT and our proposed Plan-and-Execute Image Aligner, powered by a personalized text-to-image generative model (i.e., PhotoMaker), image database retrieval, and web search. All prompt templates used for dataset construction are presented in the Appendix of our paper. ## Languages - English ## Further Details and Limitations For additional information and limitations, please refer to our [paper](https://arxiv.org/abs/2407.03958). ## License and Recommendations The **Stark** dataset is intended for research purposes only. Despite our efforts to generate high-quality and diverse personalized images, users should be mindful of ethical considerations when utilizing the dataset. ## Acknowledgement This work was supported by a grant of the KAIST-KT joint research project through AI Tech Lab, Institute of convergence Technology, funded by KT [Project No. G01230605, Development of Task-oriented Persona-based Dialogue Generation Combining Multi-modal Interaction and Knowledge Modeling]. ## Citation If you find the resources in this repository useful, please cite our work: ``` @article{lee2024stark, title={Stark: Social Long-Term Multi-Modal Conversation with Persona Commonsense Knowledge}, author={Lee, Young-Jun and Lee, Dokyong and Youn, Junyoung and Oh, Kyeongjin and Ko, Byungsoo and Hyeon, Jonghwan and Choi, Ho-Jin}, journal={arXiv preprint arXiv:2407.03958}, year={2024} } ```
PranavHarshan/sharegpt_formatted_pubmedqa
PranavHarshan
2024-10-11T06:11:12Z
28
0
[ "language:en", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-10-08T17:57:30Z
0
--- language: - en dataset_info: features: - name: pubid dtype: int32 - name: question dtype: string - name: context sequence: - name: contexts dtype: string - name: labels dtype: string - name: meshes dtype: string - name: long_answer dtype: string - name: final_decision dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 846304038 num_examples: 211269 download_size: 441243475 dataset_size: 846304038 configs: - config_name: default data_files: - split: train path: data/train-* ---
winvswon78/tomatotest
winvswon78
2025-05-31T02:04:33Z
52
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-31T02:01:17Z
0
--- dataset_info: features: - name: id dtype: int32 - name: question dtype: string - name: options sequence: string - name: answer dtype: int32 - name: video_path dtype: string - name: reason_type dtype: string - name: demonstration_type dtype: string splits: - name: test num_bytes: 1352 num_examples: 6 download_size: 3675 dataset_size: 1352 configs: - config_name: default data_files: - split: test path: data/test-* ---
datacomp/imagenet-1k-random-90.0-frac-1over8
datacomp
2025-01-14T04:22:04Z
18
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:image", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-13T12:07:25Z
0
--- dataset_info: features: - name: image dtype: image - name: label dtype: class_label: names: '0': tench, Tinca tinca '1': goldfish, Carassius auratus '2': great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias '3': tiger shark, Galeocerdo cuvieri '4': hammerhead, hammerhead shark '5': electric ray, crampfish, numbfish, torpedo '6': stingray '7': cock '8': hen '9': ostrich, Struthio camelus '10': brambling, Fringilla montifringilla '11': goldfinch, Carduelis carduelis '12': house finch, linnet, Carpodacus mexicanus '13': junco, snowbird '14': indigo bunting, indigo finch, indigo bird, Passerina cyanea '15': robin, American robin, Turdus migratorius '16': bulbul '17': jay '18': magpie '19': chickadee '20': water ouzel, dipper '21': kite '22': bald eagle, American eagle, Haliaeetus leucocephalus '23': vulture '24': great grey owl, great gray owl, Strix nebulosa '25': European fire salamander, Salamandra salamandra '26': common newt, Triturus vulgaris '27': eft '28': spotted salamander, Ambystoma maculatum '29': axolotl, mud puppy, Ambystoma mexicanum '30': bullfrog, Rana catesbeiana '31': tree frog, tree-frog '32': tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui '33': loggerhead, loggerhead turtle, Caretta caretta '34': leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea '35': mud turtle '36': terrapin '37': box turtle, box tortoise '38': banded gecko '39': common iguana, iguana, Iguana iguana '40': American chameleon, anole, Anolis carolinensis '41': whiptail, whiptail lizard '42': agama '43': frilled lizard, Chlamydosaurus kingi '44': alligator lizard '45': Gila monster, Heloderma suspectum '46': green lizard, Lacerta viridis '47': African chameleon, Chamaeleo chamaeleon '48': Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis '49': African crocodile, Nile crocodile, Crocodylus niloticus '50': American alligator, Alligator mississipiensis '51': triceratops '52': thunder snake, worm snake, Carphophis amoenus '53': ringneck snake, ring-necked snake, ring snake '54': hognose snake, puff adder, sand viper '55': green snake, grass snake '56': king snake, kingsnake '57': garter snake, grass snake '58': water snake '59': vine snake '60': night snake, Hypsiglena torquata '61': boa constrictor, Constrictor constrictor '62': rock python, rock snake, Python sebae '63': Indian cobra, Naja naja '64': green mamba '65': sea snake '66': horned viper, cerastes, sand viper, horned asp, Cerastes cornutus '67': diamondback, diamondback rattlesnake, Crotalus adamanteus '68': sidewinder, horned rattlesnake, Crotalus cerastes '69': trilobite '70': harvestman, daddy longlegs, Phalangium opilio '71': scorpion '72': black and gold garden spider, Argiope aurantia '73': barn spider, Araneus cavaticus '74': garden spider, Aranea diademata '75': black widow, Latrodectus mactans '76': tarantula '77': wolf spider, hunting spider '78': tick '79': centipede '80': black grouse '81': ptarmigan '82': ruffed grouse, partridge, Bonasa umbellus '83': prairie chicken, prairie grouse, prairie fowl '84': peacock '85': quail '86': partridge '87': African grey, African gray, Psittacus erithacus '88': macaw '89': sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita '90': lorikeet '91': coucal '92': bee eater '93': hornbill '94': hummingbird '95': jacamar '96': toucan '97': drake '98': red-breasted merganser, Mergus serrator '99': goose '100': black swan, Cygnus atratus '101': tusker '102': echidna, spiny anteater, anteater '103': platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus '104': wallaby, brush kangaroo '105': koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus '106': wombat '107': jellyfish '108': sea anemone, anemone '109': brain coral '110': flatworm, platyhelminth '111': nematode, nematode worm, roundworm '112': conch '113': snail '114': slug '115': sea slug, nudibranch '116': chiton, coat-of-mail shell, sea cradle, polyplacophore '117': chambered nautilus, pearly nautilus, nautilus '118': Dungeness crab, Cancer magister '119': rock crab, Cancer irroratus '120': fiddler crab '121': king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica '122': American lobster, Northern lobster, Maine lobster, Homarus americanus '123': spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish '124': crayfish, crawfish, crawdad, crawdaddy '125': hermit crab '126': isopod '127': white stork, Ciconia ciconia '128': black stork, Ciconia nigra '129': spoonbill '130': flamingo '131': little blue heron, Egretta caerulea '132': American egret, great white heron, Egretta albus '133': bittern '134': crane '135': limpkin, Aramus pictus '136': European gallinule, Porphyrio porphyrio '137': American coot, marsh hen, mud hen, water hen, Fulica americana '138': bustard '139': ruddy turnstone, Arenaria interpres '140': red-backed sandpiper, dunlin, Erolia alpina '141': redshank, Tringa totanus '142': dowitcher '143': oystercatcher, oyster catcher '144': pelican '145': king penguin, Aptenodytes patagonica '146': albatross, mollymawk '147': grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus '148': killer whale, killer, orca, grampus, sea wolf, Orcinus orca '149': dugong, Dugong dugon '150': sea lion '151': Chihuahua '152': Japanese spaniel '153': Maltese dog, Maltese terrier, Maltese '154': Pekinese, Pekingese, Peke '155': Shih-Tzu '156': Blenheim spaniel '157': papillon '158': toy terrier '159': Rhodesian ridgeback '160': Afghan hound, Afghan '161': basset, basset hound '162': beagle '163': bloodhound, sleuthhound '164': bluetick '165': black-and-tan coonhound '166': Walker hound, Walker foxhound '167': English foxhound '168': redbone '169': borzoi, Russian wolfhound '170': Irish wolfhound '171': Italian greyhound '172': whippet '173': Ibizan hound, Ibizan Podenco '174': Norwegian elkhound, elkhound '175': otterhound, otter hound '176': Saluki, gazelle hound '177': Scottish deerhound, deerhound '178': Weimaraner '179': Staffordshire bullterrier, Staffordshire bull terrier '180': American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier '181': Bedlington terrier '182': Border terrier '183': Kerry blue terrier '184': Irish terrier '185': Norfolk terrier '186': Norwich terrier '187': Yorkshire terrier '188': wire-haired fox terrier '189': Lakeland terrier '190': Sealyham terrier, Sealyham '191': Airedale, Airedale terrier '192': cairn, cairn terrier '193': Australian terrier '194': Dandie Dinmont, Dandie Dinmont terrier '195': Boston bull, Boston terrier '196': miniature schnauzer '197': giant schnauzer '198': standard schnauzer '199': Scotch terrier, Scottish terrier, Scottie '200': Tibetan terrier, chrysanthemum dog '201': silky terrier, Sydney silky '202': soft-coated wheaten terrier '203': West Highland white terrier '204': Lhasa, Lhasa apso '205': flat-coated retriever '206': curly-coated retriever '207': golden retriever '208': Labrador retriever '209': Chesapeake Bay retriever '210': German short-haired pointer '211': vizsla, Hungarian pointer '212': English setter '213': Irish setter, red setter '214': Gordon setter '215': Brittany spaniel '216': clumber, clumber spaniel '217': English springer, English springer spaniel '218': Welsh springer spaniel '219': cocker spaniel, English cocker spaniel, cocker '220': Sussex spaniel '221': Irish water spaniel '222': kuvasz '223': schipperke '224': groenendael '225': malinois '226': briard '227': kelpie '228': komondor '229': Old English sheepdog, bobtail '230': Shetland sheepdog, Shetland sheep dog, Shetland '231': collie '232': Border collie '233': Bouvier des Flandres, Bouviers des Flandres '234': Rottweiler '235': German shepherd, German shepherd dog, German police dog, alsatian '236': Doberman, Doberman pinscher '237': miniature pinscher '238': Greater Swiss Mountain dog '239': Bernese mountain dog '240': Appenzeller '241': EntleBucher '242': boxer '243': bull mastiff '244': Tibetan mastiff '245': French bulldog '246': Great Dane '247': Saint Bernard, St Bernard '248': Eskimo dog, husky '249': malamute, malemute, Alaskan malamute '250': Siberian husky '251': dalmatian, coach dog, carriage dog '252': affenpinscher, monkey pinscher, monkey dog '253': basenji '254': pug, pug-dog '255': Leonberg '256': Newfoundland, Newfoundland dog '257': Great Pyrenees '258': Samoyed, Samoyede '259': Pomeranian '260': chow, chow chow '261': keeshond '262': Brabancon griffon '263': Pembroke, Pembroke Welsh corgi '264': Cardigan, Cardigan Welsh corgi '265': toy poodle '266': miniature poodle '267': standard poodle '268': Mexican hairless '269': timber wolf, grey wolf, gray wolf, Canis lupus '270': white wolf, Arctic wolf, Canis lupus tundrarum '271': red wolf, maned wolf, Canis rufus, Canis niger '272': coyote, prairie wolf, brush wolf, Canis latrans '273': dingo, warrigal, warragal, Canis dingo '274': dhole, Cuon alpinus '275': African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus '276': hyena, hyaena '277': red fox, Vulpes vulpes '278': kit fox, Vulpes macrotis '279': Arctic fox, white fox, Alopex lagopus '280': grey fox, gray fox, Urocyon cinereoargenteus '281': tabby, tabby cat '282': tiger cat '283': Persian cat '284': Siamese cat, Siamese '285': Egyptian cat '286': cougar, puma, catamount, mountain lion, painter, panther, Felis concolor '287': lynx, catamount '288': leopard, Panthera pardus '289': snow leopard, ounce, Panthera uncia '290': jaguar, panther, Panthera onca, Felis onca '291': lion, king of beasts, Panthera leo '292': tiger, Panthera tigris '293': cheetah, chetah, Acinonyx jubatus '294': brown bear, bruin, Ursus arctos '295': American black bear, black bear, Ursus americanus, Euarctos americanus '296': ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus '297': sloth bear, Melursus ursinus, Ursus ursinus '298': mongoose '299': meerkat, mierkat '300': tiger beetle '301': ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle '302': ground beetle, carabid beetle '303': long-horned beetle, longicorn, longicorn beetle '304': leaf beetle, chrysomelid '305': dung beetle '306': rhinoceros beetle '307': weevil '308': fly '309': bee '310': ant, emmet, pismire '311': grasshopper, hopper '312': cricket '313': walking stick, walkingstick, stick insect '314': cockroach, roach '315': mantis, mantid '316': cicada, cicala '317': leafhopper '318': lacewing, lacewing fly '319': dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk '320': damselfly '321': admiral '322': ringlet, ringlet butterfly '323': monarch, monarch butterfly, milkweed butterfly, Danaus plexippus '324': cabbage butterfly '325': sulphur butterfly, sulfur butterfly '326': lycaenid, lycaenid butterfly '327': starfish, sea star '328': sea urchin '329': sea cucumber, holothurian '330': wood rabbit, cottontail, cottontail rabbit '331': hare '332': Angora, Angora rabbit '333': hamster '334': porcupine, hedgehog '335': fox squirrel, eastern fox squirrel, Sciurus niger '336': marmot '337': beaver '338': guinea pig, Cavia cobaya '339': sorrel '340': zebra '341': hog, pig, grunter, squealer, Sus scrofa '342': wild boar, boar, Sus scrofa '343': warthog '344': hippopotamus, hippo, river horse, Hippopotamus amphibius '345': ox '346': water buffalo, water ox, Asiatic buffalo, Bubalus bubalis '347': bison '348': ram, tup '349': bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis '350': ibex, Capra ibex '351': hartebeest '352': impala, Aepyceros melampus '353': gazelle '354': Arabian camel, dromedary, Camelus dromedarius '355': llama '356': weasel '357': mink '358': polecat, fitch, foulmart, foumart, Mustela putorius '359': black-footed ferret, ferret, Mustela nigripes '360': otter '361': skunk, polecat, wood pussy '362': badger '363': armadillo '364': three-toed sloth, ai, Bradypus tridactylus '365': orangutan, orang, orangutang, Pongo pygmaeus '366': gorilla, Gorilla gorilla '367': chimpanzee, chimp, Pan troglodytes '368': gibbon, Hylobates lar '369': siamang, Hylobates syndactylus, Symphalangus syndactylus '370': guenon, guenon monkey '371': patas, hussar monkey, Erythrocebus patas '372': baboon '373': macaque '374': langur '375': colobus, colobus monkey '376': proboscis monkey, Nasalis larvatus '377': marmoset '378': capuchin, ringtail, Cebus capucinus '379': howler monkey, howler '380': titi, titi monkey '381': spider monkey, Ateles geoffroyi '382': squirrel monkey, Saimiri sciureus '383': Madagascar cat, ring-tailed lemur, Lemur catta '384': indri, indris, Indri indri, Indri brevicaudatus '385': Indian elephant, Elephas maximus '386': African elephant, Loxodonta africana '387': lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens '388': giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca '389': barracouta, snoek '390': eel '391': coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch '392': rock beauty, Holocanthus tricolor '393': anemone fish '394': sturgeon '395': gar, garfish, garpike, billfish, Lepisosteus osseus '396': lionfish '397': puffer, pufferfish, blowfish, globefish '398': abacus '399': abaya '400': academic gown, academic robe, judge's robe '401': accordion, piano accordion, squeeze box '402': acoustic guitar '403': aircraft carrier, carrier, flattop, attack aircraft carrier '404': airliner '405': airship, dirigible '406': altar '407': ambulance '408': amphibian, amphibious vehicle '409': analog clock '410': apiary, bee house '411': apron '412': ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin '413': assault rifle, assault gun '414': backpack, back pack, knapsack, packsack, rucksack, haversack '415': bakery, bakeshop, bakehouse '416': balance beam, beam '417': balloon '418': ballpoint, ballpoint pen, ballpen, Biro '419': Band Aid '420': banjo '421': bannister, banister, balustrade, balusters, handrail '422': barbell '423': barber chair '424': barbershop '425': barn '426': barometer '427': barrel, cask '428': barrow, garden cart, lawn cart, wheelbarrow '429': baseball '430': basketball '431': bassinet '432': bassoon '433': bathing cap, swimming cap '434': bath towel '435': bathtub, bathing tub, bath, tub '436': beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon '437': beacon, lighthouse, beacon light, pharos '438': beaker '439': bearskin, busby, shako '440': beer bottle '441': beer glass '442': bell cote, bell cot '443': bib '444': bicycle-built-for-two, tandem bicycle, tandem '445': bikini, two-piece '446': binder, ring-binder '447': binoculars, field glasses, opera glasses '448': birdhouse '449': boathouse '450': bobsled, bobsleigh, bob '451': bolo tie, bolo, bola tie, bola '452': bonnet, poke bonnet '453': bookcase '454': bookshop, bookstore, bookstall '455': bottlecap '456': bow '457': bow tie, bow-tie, bowtie '458': brass, memorial tablet, plaque '459': brassiere, bra, bandeau '460': breakwater, groin, groyne, mole, bulwark, seawall, jetty '461': breastplate, aegis, egis '462': broom '463': bucket, pail '464': buckle '465': bulletproof vest '466': bullet train, bullet '467': butcher shop, meat market '468': cab, hack, taxi, taxicab '469': caldron, cauldron '470': candle, taper, wax light '471': cannon '472': canoe '473': can opener, tin opener '474': cardigan '475': car mirror '476': carousel, carrousel, merry-go-round, roundabout, whirligig '477': carpenter's kit, tool kit '478': carton '479': car wheel '480': cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM '481': cassette '482': cassette player '483': castle '484': catamaran '485': CD player '486': cello, violoncello '487': cellular telephone, cellular phone, cellphone, cell, mobile phone '488': chain '489': chainlink fence '490': chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour '491': chain saw, chainsaw '492': chest '493': chiffonier, commode '494': chime, bell, gong '495': china cabinet, china closet '496': Christmas stocking '497': church, church building '498': cinema, movie theater, movie theatre, movie house, picture palace '499': cleaver, meat cleaver, chopper '500': cliff dwelling '501': cloak '502': clog, geta, patten, sabot '503': cocktail shaker '504': coffee mug '505': coffeepot '506': coil, spiral, volute, whorl, helix '507': combination lock '508': computer keyboard, keypad '509': confectionery, confectionary, candy store '510': container ship, containership, container vessel '511': convertible '512': corkscrew, bottle screw '513': cornet, horn, trumpet, trump '514': cowboy boot '515': cowboy hat, ten-gallon hat '516': cradle '517': crane2 '518': crash helmet '519': crate '520': crib, cot '521': Crock Pot '522': croquet ball '523': crutch '524': cuirass '525': dam, dike, dyke '526': desk '527': desktop computer '528': dial telephone, dial phone '529': diaper, nappy, napkin '530': digital clock '531': digital watch '532': dining table, board '533': dishrag, dishcloth '534': dishwasher, dish washer, dishwashing machine '535': disk brake, disc brake '536': dock, dockage, docking facility '537': dogsled, dog sled, dog sleigh '538': dome '539': doormat, welcome mat '540': drilling platform, offshore rig '541': drum, membranophone, tympan '542': drumstick '543': dumbbell '544': Dutch oven '545': electric fan, blower '546': electric guitar '547': electric locomotive '548': entertainment center '549': envelope '550': espresso maker '551': face powder '552': feather boa, boa '553': file, file cabinet, filing cabinet '554': fireboat '555': fire engine, fire truck '556': fire screen, fireguard '557': flagpole, flagstaff '558': flute, transverse flute '559': folding chair '560': football helmet '561': forklift '562': fountain '563': fountain pen '564': four-poster '565': freight car '566': French horn, horn '567': frying pan, frypan, skillet '568': fur coat '569': garbage truck, dustcart '570': gasmask, respirator, gas helmet '571': gas pump, gasoline pump, petrol pump, island dispenser '572': goblet '573': go-kart '574': golf ball '575': golfcart, golf cart '576': gondola '577': gong, tam-tam '578': gown '579': grand piano, grand '580': greenhouse, nursery, glasshouse '581': grille, radiator grille '582': grocery store, grocery, food market, market '583': guillotine '584': hair slide '585': hair spray '586': half track '587': hammer '588': hamper '589': hand blower, blow dryer, blow drier, hair dryer, hair drier '590': hand-held computer, hand-held microcomputer '591': handkerchief, hankie, hanky, hankey '592': hard disc, hard disk, fixed disk '593': harmonica, mouth organ, harp, mouth harp '594': harp '595': harvester, reaper '596': hatchet '597': holster '598': home theater, home theatre '599': honeycomb '600': hook, claw '601': hoopskirt, crinoline '602': horizontal bar, high bar '603': horse cart, horse-cart '604': hourglass '605': iPod '606': iron, smoothing iron '607': jack-o'-lantern '608': jean, blue jean, denim '609': jeep, landrover '610': jersey, T-shirt, tee shirt '611': jigsaw puzzle '612': jinrikisha, ricksha, rickshaw '613': joystick '614': kimono '615': knee pad '616': knot '617': lab coat, laboratory coat '618': ladle '619': lampshade, lamp shade '620': laptop, laptop computer '621': lawn mower, mower '622': lens cap, lens cover '623': letter opener, paper knife, paperknife '624': library '625': lifeboat '626': lighter, light, igniter, ignitor '627': limousine, limo '628': liner, ocean liner '629': lipstick, lip rouge '630': Loafer '631': lotion '632': loudspeaker, speaker, speaker unit, loudspeaker system, speaker system '633': loupe, jeweler's loupe '634': lumbermill, sawmill '635': magnetic compass '636': mailbag, postbag '637': mailbox, letter box '638': maillot '639': maillot, tank suit '640': manhole cover '641': maraca '642': marimba, xylophone '643': mask '644': matchstick '645': maypole '646': maze, labyrinth '647': measuring cup '648': medicine chest, medicine cabinet '649': megalith, megalithic structure '650': microphone, mike '651': microwave, microwave oven '652': military uniform '653': milk can '654': minibus '655': miniskirt, mini '656': minivan '657': missile '658': mitten '659': mixing bowl '660': mobile home, manufactured home '661': Model T '662': modem '663': monastery '664': monitor '665': moped '666': mortar '667': mortarboard '668': mosque '669': mosquito net '670': motor scooter, scooter '671': mountain bike, all-terrain bike, off-roader '672': mountain tent '673': mouse, computer mouse '674': mousetrap '675': moving van '676': muzzle '677': nail '678': neck brace '679': necklace '680': nipple '681': notebook, notebook computer '682': obelisk '683': oboe, hautboy, hautbois '684': ocarina, sweet potato '685': odometer, hodometer, mileometer, milometer '686': oil filter '687': organ, pipe organ '688': oscilloscope, scope, cathode-ray oscilloscope, CRO '689': overskirt '690': oxcart '691': oxygen mask '692': packet '693': paddle, boat paddle '694': paddlewheel, paddle wheel '695': padlock '696': paintbrush '697': pajama, pyjama, pj's, jammies '698': palace '699': panpipe, pandean pipe, syrinx '700': paper towel '701': parachute, chute '702': parallel bars, bars '703': park bench '704': parking meter '705': passenger car, coach, carriage '706': patio, terrace '707': pay-phone, pay-station '708': pedestal, plinth, footstall '709': pencil box, pencil case '710': pencil sharpener '711': perfume, essence '712': Petri dish '713': photocopier '714': pick, plectrum, plectron '715': pickelhaube '716': picket fence, paling '717': pickup, pickup truck '718': pier '719': piggy bank, penny bank '720': pill bottle '721': pillow '722': ping-pong ball '723': pinwheel '724': pirate, pirate ship '725': pitcher, ewer '726': plane, carpenter's plane, woodworking plane '727': planetarium '728': plastic bag '729': plate rack '730': plow, plough '731': plunger, plumber's helper '732': Polaroid camera, Polaroid Land camera '733': pole '734': police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria '735': poncho '736': pool table, billiard table, snooker table '737': pop bottle, soda bottle '738': pot, flowerpot '739': potter's wheel '740': power drill '741': prayer rug, prayer mat '742': printer '743': prison, prison house '744': projectile, missile '745': projector '746': puck, hockey puck '747': punching bag, punch bag, punching ball, punchball '748': purse '749': quill, quill pen '750': quilt, comforter, comfort, puff '751': racer, race car, racing car '752': racket, racquet '753': radiator '754': radio, wireless '755': radio telescope, radio reflector '756': rain barrel '757': recreational vehicle, RV, R.V. '758': reel '759': reflex camera '760': refrigerator, icebox '761': remote control, remote '762': restaurant, eating house, eating place, eatery '763': revolver, six-gun, six-shooter '764': rifle '765': rocking chair, rocker '766': rotisserie '767': rubber eraser, rubber, pencil eraser '768': rugby ball '769': rule, ruler '770': running shoe '771': safe '772': safety pin '773': saltshaker, salt shaker '774': sandal '775': sarong '776': sax, saxophone '777': scabbard '778': scale, weighing machine '779': school bus '780': schooner '781': scoreboard '782': screen, CRT screen '783': screw '784': screwdriver '785': seat belt, seatbelt '786': sewing machine '787': shield, buckler '788': shoe shop, shoe-shop, shoe store '789': shoji '790': shopping basket '791': shopping cart '792': shovel '793': shower cap '794': shower curtain '795': ski '796': ski mask '797': sleeping bag '798': slide rule, slipstick '799': sliding door '800': slot, one-armed bandit '801': snorkel '802': snowmobile '803': snowplow, snowplough '804': soap dispenser '805': soccer ball '806': sock '807': solar dish, solar collector, solar furnace '808': sombrero '809': soup bowl '810': space bar '811': space heater '812': space shuttle '813': spatula '814': speedboat '815': spider web, spider's web '816': spindle '817': sports car, sport car '818': spotlight, spot '819': stage '820': steam locomotive '821': steel arch bridge '822': steel drum '823': stethoscope '824': stole '825': stone wall '826': stopwatch, stop watch '827': stove '828': strainer '829': streetcar, tram, tramcar, trolley, trolley car '830': stretcher '831': studio couch, day bed '832': stupa, tope '833': submarine, pigboat, sub, U-boat '834': suit, suit of clothes '835': sundial '836': sunglass '837': sunglasses, dark glasses, shades '838': sunscreen, sunblock, sun blocker '839': suspension bridge '840': swab, swob, mop '841': sweatshirt '842': swimming trunks, bathing trunks '843': swing '844': switch, electric switch, electrical switch '845': syringe '846': table lamp '847': tank, army tank, armored combat vehicle, armoured combat vehicle '848': tape player '849': teapot '850': teddy, teddy bear '851': television, television system '852': tennis ball '853': thatch, thatched roof '854': theater curtain, theatre curtain '855': thimble '856': thresher, thrasher, threshing machine '857': throne '858': tile roof '859': toaster '860': tobacco shop, tobacconist shop, tobacconist '861': toilet seat '862': torch '863': totem pole '864': tow truck, tow car, wrecker '865': toyshop '866': tractor '867': trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi '868': tray '869': trench coat '870': tricycle, trike, velocipede '871': trimaran '872': tripod '873': triumphal arch '874': trolleybus, trolley coach, trackless trolley '875': trombone '876': tub, vat '877': turnstile '878': typewriter keyboard '879': umbrella '880': unicycle, monocycle '881': upright, upright piano '882': vacuum, vacuum cleaner '883': vase '884': vault '885': velvet '886': vending machine '887': vestment '888': viaduct '889': violin, fiddle '890': volleyball '891': waffle iron '892': wall clock '893': wallet, billfold, notecase, pocketbook '894': wardrobe, closet, press '895': warplane, military plane '896': washbasin, handbasin, washbowl, lavabo, wash-hand basin '897': washer, automatic washer, washing machine '898': water bottle '899': water jug '900': water tower '901': whiskey jug '902': whistle '903': wig '904': window screen '905': window shade '906': Windsor tie '907': wine bottle '908': wing '909': wok '910': wooden spoon '911': wool, woolen, woollen '912': worm fence, snake fence, snake-rail fence, Virginia fence '913': wreck '914': yawl '915': yurt '916': web site, website, internet site, site '917': comic book '918': crossword puzzle, crossword '919': street sign '920': traffic light, traffic signal, stoplight '921': book jacket, dust cover, dust jacket, dust wrapper '922': menu '923': plate '924': guacamole '925': consomme '926': hot pot, hotpot '927': trifle '928': ice cream, icecream '929': ice lolly, lolly, lollipop, popsicle '930': French loaf '931': bagel, beigel '932': pretzel '933': cheeseburger '934': hotdog, hot dog, red hot '935': mashed potato '936': head cabbage '937': broccoli '938': cauliflower '939': zucchini, courgette '940': spaghetti squash '941': acorn squash '942': butternut squash '943': cucumber, cuke '944': artichoke, globe artichoke '945': bell pepper '946': cardoon '947': mushroom '948': Granny Smith '949': strawberry '950': orange '951': lemon '952': fig '953': pineapple, ananas '954': banana '955': jackfruit, jak, jack '956': custard apple '957': pomegranate '958': hay '959': carbonara '960': chocolate sauce, chocolate syrup '961': dough '962': meat loaf, meatloaf '963': pizza, pizza pie '964': potpie '965': burrito '966': red wine '967': espresso '968': cup '969': eggnog '970': alp '971': bubble '972': cliff, drop, drop-off '973': coral reef '974': geyser '975': lakeside, lakeshore '976': promontory, headland, head, foreland '977': sandbar, sand bar '978': seashore, coast, seacoast, sea-coast '979': valley, vale '980': volcano '981': ballplayer, baseball player '982': groom, bridegroom '983': scuba diver '984': rapeseed '985': daisy '986': yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum '987': corn '988': acorn '989': hip, rose hip, rosehip '990': buckeye, horse chestnut, conker '991': coral fungus '992': agaric '993': gyromitra '994': stinkhorn, carrion fungus '995': earthstar '996': hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa '997': bolete '998': ear, spike, capitulum '999': toilet tissue, toilet paper, bathroom tissue splits: - name: train num_bytes: 12765331002.875 num_examples: 160145 - name: validation num_bytes: 6706896736.0 num_examples: 50000 - name: test num_bytes: 13610348261.0 num_examples: 100000 download_size: 33050742522 dataset_size: 33082575999.875 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
mlfoundations-dev/hero_run_3_code_s42
mlfoundations-dev
2025-05-08T14:55:25Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-08T14:55:03Z
0
--- dataset_info: features: - name: id dtype: string - name: instruction_seed dtype: string - name: output dtype: string - name: source dtype: string - name: license dtype: string - name: dataset dtype: string - name: split dtype: string - name: difficulty dtype: int64 - name: solution dtype: string - name: index dtype: string - name: _source dtype: string - name: difficulty_reasoning dtype: string - name: __original_row_idx dtype: int64 - name: ms_id dtype: int64 - name: final_reasoning_trace dtype: string splits: - name: train num_bytes: 433236958 num_examples: 5208 download_size: 148142768 dataset_size: 433236958 configs: - config_name: default data_files: - split: train path: data/train-* ---
AI4Protein/VenusX_Frag_Dom_MF70
AI4Protein
2025-05-14T17:02:37Z
0
0
[ "license:apache-2.0", "size_categories:100K<n<1M", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-14T17:02:16Z
0
--- license: apache-2.0 ---
kothasuhas/rlpt_37M_16epochs_501k_generations_RS_T16.0
kothasuhas
2025-04-20T08:02:47Z
21
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-20T08:01:52Z
0
--- dataset_info: features: - name: text dtype: string - name: log_weight dtype: float64 splits: - name: train num_bytes: 1341993378 num_examples: 289962 - name: validation num_bytes: 5952216 num_examples: 1000 download_size: 861227631 dataset_size: 1347945594 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
kantine/domotic_dishTidyUp_expert
kantine
2025-03-27T15:11:25Z
31
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "anomaly_detection", "domotic", "dish" ]
[ "robotics" ]
2025-03-27T14:11:02Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - anomaly_detection - domotic - dish configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "so100", "total_episodes": 20, "total_frames": 41800, "total_tasks": 1, "total_videos": 40, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:20" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.logitech_1": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.logitech_2": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
danaaubakirova/eval_koch_test
danaaubakirova
2025-01-10T15:38:33Z
75
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial", "eval" ]
[ "robotics" ]
2025-01-10T12:30:35Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial - eval configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "koch", "total_episodes": 26, "total_frames": 7500, "total_tasks": 1, "total_videos": 52, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:26" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
mlfoundations-dev/e1_science_longest_r1_1k
mlfoundations-dev
2025-05-21T18:33:35Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-21T18:16:06Z
0
--- dataset_info: features: - name: instruction_seed dtype: string - name: _source dtype: string - name: gpt41_mini_response dtype: string - name: __original_row_idx dtype: int64 - name: length dtype: int64 - name: domain dtype: string - name: r1_response dtype: string - name: r1_reasoning_content dtype: string - name: extract_solution dtype: string - name: url dtype: string - name: filename dtype: string - name: success dtype: bool - name: page_count dtype: int64 - name: page_number dtype: int64 - name: question_choices_solutions dtype: string - name: extracted_question dtype: string - name: extracted_answer_choices sequence: string - name: matched_solution dtype: string - name: qa_validation_outputs dtype: bool - name: classifier_reasoning dtype: string - name: is_organic_chemistry dtype: bool - name: ms_id dtype: int64 - name: reasoning sequence: string - name: deepseek_solution sequence: string - name: final_reasoning_trace sequence: string - name: _majority_responses sequence: string - name: verified_final_reasoning_trace dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 795419389.0483334 num_examples: 1000 download_size: 313456549 dataset_size: 795419389.0483334 configs: - config_name: default data_files: - split: train path: data/train-* ---
Lots-of-LoRAs/task1098_ted_translation_ja_fa
Lots-of-LoRAs
2025-01-02T14:37:29Z
11
0
[ "task_categories:text-generation", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2204.07705", "arxiv:2407.00066", "region:us" ]
[ "text-generation" ]
2025-01-02T14:37:27Z
0
--- annotations_creators: - crowdsourced language_creators: - crowdsourced language: - en license: - apache-2.0 task_categories: - text-generation pretty_name: task1098_ted_translation_ja_fa dataset_info: config_name: plain_text features: - name: input dtype: string - name: output dtype: string - name: id dtype: string splits: - name: train num_examples: 5128 - name: valid num_examples: 641 - name: test num_examples: 641 --- # Dataset Card for Natural Instructions (https://github.com/allenai/natural-instructions) Task: task1098_ted_translation_ja_fa ## Dataset Description - **Homepage:** https://github.com/allenai/natural-instructions - **Paper:** https://arxiv.org/abs/2204.07705 - **Paper:** https://arxiv.org/abs/2407.00066 - **Point of Contact:** [Rickard Brüel Gabrielsson](mailto:[email protected]) ## Additional Information ### Citation Information The following paper introduces the corpus in detail. If you use the corpus in published work, please cite it: ```bibtex @misc{wang2022supernaturalinstructionsgeneralizationdeclarativeinstructions, title={Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks}, author={Yizhong Wang and Swaroop Mishra and Pegah Alipoormolabashi and Yeganeh Kordi and Amirreza Mirzaei and Anjana Arunkumar and Arjun Ashok and Arut Selvan Dhanasekaran and Atharva Naik and David Stap and Eshaan Pathak and Giannis Karamanolakis and Haizhi Gary Lai and Ishan Purohit and Ishani Mondal and Jacob Anderson and Kirby Kuznia and Krima Doshi and Maitreya Patel and Kuntal Kumar Pal and Mehrad Moradshahi and Mihir Parmar and Mirali Purohit and Neeraj Varshney and Phani Rohitha Kaza and Pulkit Verma and Ravsehaj Singh Puri and Rushang Karia and Shailaja Keyur Sampat and Savan Doshi and Siddhartha Mishra and Sujan Reddy and Sumanta Patro and Tanay Dixit and Xudong Shen and Chitta Baral and Yejin Choi and Noah A. Smith and Hannaneh Hajishirzi and Daniel Khashabi}, year={2022}, eprint={2204.07705}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2204.07705}, } ``` More details can also be found in the following paper: ```bibtex @misc{brüelgabrielsson2024compressserveservingthousands, title={Compress then Serve: Serving Thousands of LoRA Adapters with Little Overhead}, author={Rickard Brüel-Gabrielsson and Jiacheng Zhu and Onkar Bhardwaj and Leshem Choshen and Kristjan Greenewald and Mikhail Yurochkin and Justin Solomon}, year={2024}, eprint={2407.00066}, archivePrefix={arXiv}, primaryClass={cs.DC}, url={https://arxiv.org/abs/2407.00066}, } ``` ### Contact Information For any comments or questions, please email [Rickard Brüel Gabrielsson](mailto:[email protected])
Tim1123/su_data
Tim1123
2024-11-28T07:41:53Z
35
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-23T13:31:15Z
0
--- dataset_info: features: - name: prompt dtype: string - name: completion dtype: string splits: - name: train num_bytes: 57120 num_examples: 9 - name: test num_bytes: 21224 num_examples: 4 download_size: 82772 dataset_size: 78344 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
Aratako/magpie-reasoning-llama-nemotron-70b-100k-filtered
Aratako
2024-11-25T16:53:15Z
34
0
[ "language:ja", "license:llama3.1", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2024-11-22T03:06:57Z
0
--- dataset_info: features: - name: instruction dtype: string - name: reasoning dtype: string - name: initial_answer dtype: string - name: refined_answer dtype: string - name: conversations list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 455415225 num_examples: 36758 download_size: 208610481 dataset_size: 455415225 configs: - config_name: default data_files: - split: train path: data/train-* license: llama3.1 language: - ja --- # magpie-reasoning-llama-nemotron-70b-100k-filtered [DeL-TaiseiOzaki/magpie-reasoning-llama-nemotron-70b-100k](https://huggingface.co/datasets/DeL-TaiseiOzaki/magpie-reasoning-llama-nemotron-70b-100k)から、`refined_answer`列に"改良"という文字が含まれていないものを抽出し、OpenAI messages形式に変換したデータセットです。 中身や注意事項等については元データセットの概要をご確認ください。
HarrytheOrange/parsed_AndroidControl
HarrytheOrange
2024-10-29T11:24:45Z
26
1
[ "license:apache-2.0", "region:us" ]
[]
2024-10-18T12:26:37Z
0
--- license: apache-2.0 --- # Instructions for Extracting Images from AndroidControl TFRecord Follow these steps to download and extract images from the AndroidControl TFRecord dataset. ## Step 1: Download the Original AndroidControl TFRecord 1. Navigate to [the AndroidControl TFRecord repository](https://github.com/google-research/google-research/tree/master/android_control) where the AndroidControl TFRecord is hosted. 2. Download the TFRecord file to your local machine or server. ## Step 2: Run the Python Script to Extract Images 1. Ensure that `extract_images.py` is in the same directory as your downloaded TFRecord or update the script to point to the location of your TFRecord. 2. Open a terminal or command prompt. 3. Execute the script by running: ```bash python extract_images.py ## Step 3: Enjoy the parsed json data ### Here’s the information about the VH annotation: Each screenshot corresponds to a `.pkl` file with the same name, containing a list of dictionaries. Each dictionary includes the following keys: - **`"bounds_in_screen"`**: Defines the screen boundaries of the window, with values: ```json { "left": windows.bounds_in_screen.left, "right": windows.bounds_in_screen.right, "bottom": windows.bounds_in_screen.bottom, "top": windows.bounds_in_screen.top } ``` - **`"window_id"`**: The unique identifier of the window. - **`"window_layer"`**: The layer or z-index of the window. - **`"window_type"`**: The type of the window. - **`"tree"`**: A list containing dictionaries representing each element node in the window. Each node in the `"tree"` list includes: - **`"bounds_in_screen"`**: The screen boundaries of the element node, with values: ```json { "left": node.bounds_in_screen.left, "right": node.bounds_in_screen.right, "bottom": node.bounds_in_screen.bottom, "top": node.bounds_in_screen.top } ``` - **`"class_name"`**: The class name of the element. - **`"content_description"`**: The content description of the element. - **`"package_name"`**: The package name the element belongs to. - **`"text_selection_start"`**: The start position of any text selection. - **`"text_selection_end"`**: The end position of any text selection. - **`"view_id_resource_name"`**: The resource name of the view ID. - **`"window_id"`**: The window ID associated with the element. - **`"is_enabled"`**: Boolean indicating if the element is enabled. - **`"is_visible_to_user"`**: Boolean indicating if the element is visible to the user. - **`"actions"`**: A list of action IDs available for the element, derived as `[action.id for action in node.actions]`. - **`"child_ids"`**: A list of IDs for child elements, derived as `[child_id for child_id in node.child_ids]`. - **`"depth"`**: The depth of the element within the hierarchy. - **`"drawing_order"`**: The order in which the element is drawn within the window.
visualwebbench/VisualWebBench
visualwebbench
2024-04-11T04:47:36Z
248
14
[ "task_categories:image-to-text", "task_categories:visual-question-answering", "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2404.05955", "region:us" ]
[ "image-to-text", "visual-question-answering" ]
2024-04-02T08:49:42Z
1
--- dataset_info: - config_name: action_ground features: - name: id dtype: string - name: task_type dtype: string - name: website dtype: string - name: image dtype: image - name: image_size sequence: int64 - name: raw_image dtype: image - name: options sequence: sequence: float64 - name: instruction dtype: string - name: answer dtype: int64 splits: - name: test num_bytes: 116178465 num_examples: 103 download_size: 116152003 dataset_size: 116178465 - config_name: action_prediction features: - name: id dtype: string - name: task_type dtype: string - name: website dtype: string - name: image dtype: image - name: image_size sequence: int64 - name: options sequence: string - name: bbox sequence: float64 - name: elem_desc dtype: string - name: answer dtype: int64 splits: - name: test num_bytes: 212320282 num_examples: 281 download_size: 212176366 dataset_size: 212320282 - config_name: element_ground features: - name: id dtype: string - name: task_type dtype: string - name: website dtype: string - name: image dtype: image - name: image_size sequence: int64 - name: raw_image dtype: image - name: options sequence: sequence: float64 - name: elem_desc dtype: string - name: answer dtype: int64 splits: - name: test num_bytes: 541444180 num_examples: 413 download_size: 425203495 dataset_size: 541444180 - config_name: element_ocr features: - name: id dtype: string - name: task_type dtype: string - name: website dtype: string - name: image dtype: image - name: image_size sequence: int64 - name: bbox sequence: float64 - name: elem_desc dtype: string - name: answer dtype: string splits: - name: test num_bytes: 177127391 num_examples: 245 download_size: 177036578 dataset_size: 177127391 - config_name: heading_ocr features: - name: id dtype: string - name: task_type dtype: string - name: website dtype: string - name: image dtype: image - name: image_size sequence: int64 - name: bbox sequence: float64 - name: answer dtype: string splits: - name: test num_bytes: 36406054 num_examples: 46 download_size: 36401829 dataset_size: 36406054 - config_name: web_caption features: - name: id dtype: string - name: task_type dtype: string - name: website dtype: string - name: image dtype: image - name: image_size sequence: int64 - name: answer dtype: string splits: - name: test num_bytes: 112890184 num_examples: 134 download_size: 112864700 dataset_size: 112890184 - config_name: webqa features: - name: id dtype: string - name: task_type dtype: string - name: website dtype: string - name: image dtype: image - name: image_size sequence: int64 - name: question dtype: string - name: answer sequence: string splits: - name: test num_bytes: 271769428 num_examples: 314 download_size: 100761418 dataset_size: 271769428 configs: - config_name: action_ground data_files: - split: test path: action_ground/test-* - config_name: action_prediction data_files: - split: test path: action_prediction/test-* - config_name: element_ground data_files: - split: test path: element_ground/test-* - config_name: element_ocr data_files: - split: test path: element_ocr/test-* - config_name: heading_ocr data_files: - split: test path: heading_ocr/test-* - config_name: web_caption data_files: - split: test path: web_caption/test-* - config_name: webqa data_files: - split: test path: webqa/test-* license: apache-2.0 task_categories: - image-to-text - visual-question-answering language: - en pretty_name: VisualWebBench size_categories: - 1K<n<10K --- # VisualWebBench Dataset for the paper: [VisualWebBench: How Far Have Multimodal LLMs Evolved in Web Page Understanding and Grounding?](https://arxiv.org/abs/2404.05955) [**🌐 Homepage**](https://visualwebbench.github.io/) | [**🐍 GitHub**](https://github.com/VisualWebBench/VisualWebBench) | [**📖 arXiv**](https://arxiv.org/abs/2404.05955) ## Introduction We introduce **VisualWebBench**, a multimodal benchmark designed to assess the **understanding and grounding capabilities of MLLMs in web scenarios**. VisualWebBench consists of **seven tasks**, and comprises **1.5K** human-curated instances from **139** real websites, covering 87 sub-domains. We evaluate 14 open-source MLLMs, Gemini Pro, Claude 3, and GPT-4V(ision) on WebBench, revealing significant challenges and performance gaps. Further analysis highlights the limitations of current MLLMs, including inadequate grounding in text-rich environments and subpar performance with low-resolution image inputs. We believe VisualWebBench will serve as a valuable resource for the research community and contribute to the creation of more powerful and versatile MLLMs for web-related applications. ![Alt text](https://raw.githubusercontent.com/VisualWebBench/VisualWebBench/main/assets/main.png) ## Benchmark Construction We introduce VisualWebBench, a comprehensive multimodal benchmark designed to assess the capabilities of MLLMs in the web domain. Inspired by the human interaction process with web browsers, VisualWebBench consists of seven tasks that map to core abilities required for web tasks: captioning, webpage QA, heading OCR, element OCR, element grounding, action prediction, and action grounding, as detailed in the figure. The benchmark comprises 1.5K instances, all uniformly formulated in the QA style, making it easy to evaluate and compare the performance of different MLLMs. ![Alt text](https://raw.githubusercontent.com/VisualWebBench/VisualWebBench/main/assets/compare.png) The proposed VisualWebBench possesses the following features: - **Comprehensiveness**: VisualWebBench spans 139 websites with 1.5K samples, encompassing 12 different domains (e.g., travel, sports, hobby, lifestyle, animals, science, etc.) and 87 sub-domains. - **Multi-granularity**: VisualWebBench assesses MLLMs at three levels: website-level, element-level, and action-level. - **Multi-tasks**: WebBench encompasses seven tasks designed to evaluate the understanding, OCR, grounding, and reasoning capabilities of MLLMs. - **High quality**: Quality is ensured through careful human verification and curation efforts. ![Alt text](https://raw.githubusercontent.com/VisualWebBench/VisualWebBench/main/assets/detail.png) ## Evaluation We provide [evaluation code](https://github.com/VisualWebBench/VisualWebBench) for GPT-4V, Claude, Gemini, and LLaVA 1.6 series. ## Contact - Junpeng Liu: [[email protected]]([email protected]) - Yifan Song: [[email protected]]([email protected]) - Xiang Yue: [[email protected]]([email protected]) ## Citation If you find this work helpful, please cite out paper: ``` @misc{liu2024visualwebbench, title={VisualWebBench: How Far Have Multimodal LLMs Evolved in Web Page Understanding and Grounding?}, author={Junpeng Liu and Yifan Song and Bill Yuchen Lin and Wai Lam and Graham Neubig and Yuanzhi Li and Xiang Yue}, year={2024}, eprint={2404.05955}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```
Akirashindo39/KANJIDIC2
Akirashindo39
2025-03-12T03:28:55Z
16
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-03-11T19:06:47Z
0
--- dataset_info: features: - name: image dtype: image - name: text dtype: string splits: - name: train num_bytes: 18062041.524 num_examples: 6413 download_size: 17736304 dataset_size: 18062041.524 configs: - config_name: default data_files: - split: train path: data/train-* --- This dataset was generated by processing the following files: * KANJIDIC2 file ([kanjidic2.xml](https://www.edrdg.org/kanjidic/kanjidic2.xml.gz)) * Associated SVG file for the KANJIDIC2 file ([kanjivg-20220427.xml](https://github.com/KanjiVG/kanjivg/releases/download/r20220427/kanjivg-20220427.xml.gz)) The above files were processed to generate a mapping that links each Kanji character to its corresponding English meaning, which was then associated with the relevant image files.
Daemontatox/Openthoughts_convs
Daemontatox
2025-02-27T15:38:36Z
33
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-27T15:37:07Z
0
--- dataset_info: features: - name: problem_type dtype: string - name: question_type dtype: string - name: source dtype: string - name: uuid dtype: string - name: is_reasoning_complete sequence: bool - name: generations sequence: string - name: correctness_math_verify sequence: bool - name: correctness_llama sequence: bool - name: finish_reasons sequence: string - name: correctness_count dtype: int64 - name: messages list: - name: content dtype: string - name: role dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 4966699449 num_examples: 93733 download_size: 2147786946 dataset_size: 4966699449 configs: - config_name: default data_files: - split: train path: data/train-* ---
JaehyeokLee/dn_sft_part_2
JaehyeokLee
2025-02-28T01:59:01Z
62
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-28T01:51:44Z
0
--- dataset_info: features: - name: subset dtype: string - name: anchor dtype: string - name: positive dtype: string - name: anchor_token_count dtype: int64 - name: positive_token_count dtype: int64 splits: - name: train num_bytes: 4200647106 num_examples: 1000154 download_size: 2432884147 dataset_size: 4200647106 configs: - config_name: default data_files: - split: train path: data/train-* ---
Raj31/motor-vehicle-accidents
Raj31
2025-01-20T00:48:57Z
18
1
[ "task_categories:text-classification", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif", "datacraft" ]
[ "text-classification" ]
2025-01-20T00:48:56Z
0
--- size_categories: n<1K task_categories: - text-classification dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': crash-caused-by-driver-error '1': crash-caused-by-other-factors '2': crash-caused-by-road-condition '3': crash-caused-by-vehicle-malfunction splits: - name: train num_bytes: 17905 num_examples: 50 download_size: 10622 dataset_size: 17905 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif - datacraft --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for motor-vehicle-accidents This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/Raj31/motor-vehicle-accidents/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/Raj31/motor-vehicle-accidents/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "label": 0, "text": "A vehicle was involved in a collision with a pedestrian at the intersection of Park Street and Railway Parade, where it is believed that the pedestrian stepped out onto the road and was struck by the vehicle. The pedestrian was treated at the scene and is in stable condition. A breath test was conducted on the driver and it was below the legal limit. The vehicle\u0027s tyre was examined and it was found to be worn but not bald." } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("Raj31/motor-vehicle-accidents", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("Raj31/motor-vehicle-accidents") ``` </details>
ferrazzipietro/e3c-sentences-IT-original-plus-revised
ferrazzipietro
2025-01-09T10:58:55Z
25
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-09T10:58:38Z
0
--- dataset_info: features: - name: sentence dtype: string - name: entities list: - name: id dtype: string - name: offsets sequence: int64 - name: role dtype: string - name: semantic_type_id dtype: string - name: text dtype: string - name: type dtype: string splits: - name: train num_bytes: 369144 num_examples: 1167 - name: validation num_bytes: 41939 num_examples: 167 - name: test num_bytes: 401357 num_examples: 1283 download_size: 386878 dataset_size: 812440 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
mlfoundations-dev/nemo_nano_science_3k
mlfoundations-dev
2025-05-06T05:30:38Z
0
0
[ "region:us" ]
[]
2025-05-06T05:30:28Z
0
--- dataset_info: features: - name: input dtype: string - name: output dtype: string - name: category dtype: string - name: license dtype: string - name: reasoning dtype: string - name: generator dtype: string - name: used_in_training dtype: string - name: version dtype: string - name: system_prompt dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 51880588.275461264 num_examples: 3160 download_size: 24342591 dataset_size: 51880588.275461264 configs: - config_name: default data_files: - split: train path: data/train-* ---
pengjunkun/so100_test
pengjunkun
2025-02-24T08:05:06Z
40
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-02-24T08:04:56Z
0
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.0", "robot_type": "so100", "total_episodes": 2, "total_frames": 898, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
CultriX/dpo-merged
CultriX
2024-10-20T19:22:31Z
28
0
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "math", "truthy", "dpo", "logic", "reasoning" ]
[ "text-generation" ]
2024-10-19T14:44:51Z
0
--- license: apache-2.0 task_categories: - text-generation language: - en tags: - math - truthy - dpo - logic - reasoning pretty_name: Merge of multiple public DPO datasets size_categories: - 10K<n<100K ---
mathieu1256/FATURA2-invoices
mathieu1256
2024-02-18T22:00:49Z
173
8
[ "task_categories:feature-extraction", "language:en", "license:cc-by-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2311.11856", "region:us", "invoices", "data extraction", "invoice", "FATURA2" ]
[ "feature-extraction" ]
2024-02-15T14:13:47Z
1
--- language: - en license: cc-by-4.0 size_categories: - 1K<n<10K task_categories: - feature-extraction pretty_name: FATURA 2 invoices tags: - invoices - data extraction - invoice - FATURA2 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* dataset_info: features: - name: image dtype: image - name: ner_tags sequence: int64 - name: bboxes sequence: sequence: int64 - name: tokens sequence: string - name: id dtype: string splits: - name: train num_bytes: 411874484.6 num_examples: 8600 - name: test num_bytes: 60569760.6 num_examples: 1400 download_size: 342750666 dataset_size: 472444245.20000005 --- The dataset consists of 10000 jpg images with white backgrounds, 10000 jpg images with colored backgrounds (the same colors used in the paper) as well as 3x10000 json annotation files. The images are generated from 50 different templates. https://zenodo.org/records/10371464 --- dataset_info: features: - name: image dtype: image - name: ner_tags sequence: int64 - name: words sequence: string - name: bboxes sequence: sequence: int64 splits: - name: train num_bytes: 477503369.0 num_examples: 10000 download_size: 342662174 dataset_size: 477503369.0 configs: - config_name: default data_files: - split: train path: data/train-* --- @misc{limam2023fatura, title={FATURA: A Multi-Layout Invoice Image Dataset for Document Analysis and Understanding}, author={Mahmoud Limam and Marwa Dhiaf and Yousri Kessentini}, year={2023}, eprint={2311.11856}, archivePrefix={arXiv}, primaryClass={cs.CV} }
andy-iv/jenny_tts_dataset-tagged
andy-iv
2025-01-19T13:03:24Z
19
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-01-19T13:03:21Z
0
--- dataset_info: features: - name: file_name dtype: string - name: text dtype: string - name: transcription_normalised dtype: string - name: utterance_pitch_mean dtype: float32 - name: utterance_pitch_std dtype: float32 - name: snr dtype: float64 - name: c50 dtype: float64 - name: speaking_rate dtype: string - name: phonemes dtype: string - name: noise dtype: string - name: reverberation dtype: string - name: speech_monotony dtype: string - name: text_description dtype: string splits: - name: train num_bytes: 10058849 num_examples: 20978 download_size: 4743145 dataset_size: 10058849 configs: - config_name: default data_files: - split: train path: data/train-* ---
itdainb/calibrate_vn
itdainb
2025-03-18T12:27:55Z
25
0
[ "language:vi", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-02-28T05:30:03Z
0
--- language: - vi dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 119524975 num_examples: 10000 download_size: 59645316 dataset_size: 119524975 configs: - config_name: default data_files: - split: train path: data/train-* ---