Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
License:
dataset_info: | |
features: | |
- name: query_id | |
dtype: string | |
- name: query | |
dtype: string | |
- name: positive_passages | |
list: | |
- name: docid | |
dtype: string | |
- name: text | |
dtype: string | |
- name: title | |
dtype: string | |
- name: negative_passages | |
list: | |
- name: docid | |
dtype: string | |
- name: text | |
dtype: string | |
- name: title | |
dtype: string | |
- name: subset | |
dtype: string | |
splits: | |
- name: train | |
num_bytes: 1747136221 | |
num_examples: 93581 | |
download_size: 1009882538 | |
dataset_size: 1747136221 | |
configs: | |
- config_name: default | |
data_files: | |
- split: train | |
path: data/train-* | |
license: cc-by-sa-4.0 | |
task_categories: | |
- question-answering | |
language: | |
- en | |
pretty_name: RLHN-100K | |
size_categories: | |
- 10K<n<100K | |
# Dataset Card for RLHN-100K | |
## Dataset Description | |
[Repository](https://github.com/castorini/rlhn) | | |
[Paper](https://huggingface.co/papers/2505.16967) | | |
[ArXiv](https://arxiv.org/abs/2505.16967) | |
RLHN is a cascading LLM framework designed to accurately relabel hard negatives in existing IR/RAG training datasets, such as MS MARCO and HotpotQA. | |
This Tevatron dataset (100K training pairs) contains the queries, positives + relabeled hard negatives, remaining hard negatives for 7 datasets in the BGE training collection. | |
This repository contains the training pairs that can be used to fine-tune embedding, ColBERT or multi-vector, and reranker models. | |
The original dataset (bad quality; containing false negatives) can be found at [rlhn/default-100K](https://huggingface.co/datasets/rlhn/default-100K/). | |
> Note: RLHN datasets are not **new** training datasets, but rather existing BGE collection training datasets with hard negatives cleaned! | |
## Dataset Structure | |
To access the data using HuggingFace `datasets`: | |
```python | |
rlhn = datasets.load_dataset('rlhn/rlhn-100K') | |
# training set: | |
for data in freshstack['train']: | |
query_id = data["query_id"] # md5 hash of the query_id | |
query = data["query"] # query text | |
subset = data["subset"] # training dataset, e.g., fiqa or msmarco_passage | |
# positive passages | |
for positive_passage in data["positive_passages"]: | |
doc_id = positive_passage["docid"] | |
title = positive_passage["title"] # title is usually empty, added in text | |
text = positive_passage["text"] # contains both the title & text | |
# hard negative passages | |
for negative_passage in data["negative_passages"]: | |
doc_id = negative_passage["docid"] | |
title = negative_passage["title"] # title is usually empty, added in text | |
text = negative_passage["text"] # contains both the title & text | |
``` | |
## Original Dataset Statistics | |
The following table contains the number of training pairs for each training dataset included in RLHN. These numbers are for the default setting. | |
| Dataset | 100K splits | 250K splits | 400K splits | 680K splits | | |
|-------------------|-------------|-------------|-------------|------------- | | |
| arguana | 4,065 | 4,065 | 4,065 | 4,065 | | |
| fever | 28,755 | 28,755 | 28,755 | 28,755 | | |
| fiqa | 5,500 | 5,500 | 5,500 | 5,500 | | |
| hotpotqa | 10,250 | 30,000 | 84,516 | 84,516 | | |
| msmarco_passage | 49,571 | 145,000 | 210,000 | 485,823 | | |
| nq | 6,110 | 30,000 | 58,568 | 58,568 | | |
| scidocsrr | 12,654 | 12,654 | 12,654 | 12,654 | | |
| **total** | **96,167** | **255,974** | **404,058** | **679,881** | | |
## License | |
The RLHN dataset is made available with the CC-BY-SA 4.0 license. | |
## Hashing & IDs | |
We generate the md5 hash as the unique identifier (ID) for both the query \& documents, using the code below: | |
```python | |
import hashlib | |
def get_md5_hash(text): | |
"""Calculates the MD5 hash of a given string. | |
Args: | |
text: The string to hash. | |
Returns: | |
The MD5 hash of the string as a hexadecimal string. | |
""" | |
text_bytes = text.encode('utf-8') # Encode the string to bytes | |
md5_hash = hashlib.md5(text_bytes).hexdigest() | |
return md5_hash | |
``` | |
## Citation | |
``` | |
@misc{thakur2025relabel, | |
title={Fixing Data That Hurts Performance: Cascading LLMs to Relabel Hard Negatives for Robust Information Retrieval}, | |
author={Nandan Thakur and Crystina Zhang and Xueguang Ma and Jimmy Lin}, | |
year={2025}, | |
eprint={2505.16967}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.IR}, | |
url={https://arxiv.org/abs/2505.16967}, | |
} | |
``` |