gonzalobenegas commited on
Commit
349e998
·
verified ·
1 Parent(s): f98e063

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. complex_traits_matched_9/AUPRC_by_chrom/3_prime_UTR_variant/GPN_final_Embeddings.plus.euclidean_distance.csv +19 -0
  2. complex_traits_matched_9/AUPRC_by_chrom/all/CADD.LogisticRegression.chrom.csv +23 -0
  3. complex_traits_matched_9/AUPRC_by_chrom/all/Caduceus_Embeddings.plus.cosine_distance.csv +23 -0
  4. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/Borzoi.LogisticRegression.chrom.subset_from_all.csv +23 -0
  5. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/Borzoi_L2_L2.plus.all.csv +23 -0
  6. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/CADD.LogisticRegression.chrom.subset_from_all.csv +23 -0
  7. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/CADD.plus.RawScore.csv +23 -0
  8. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/Caduceus.LogisticRegression.chrom.subset_from_all.csv +23 -0
  9. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/Caduceus_Embeddings.minus.inner_product.csv +23 -0
  10. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/Caduceus_Embeddings.plus.euclidean_distance.csv +23 -0
  11. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/Enformer.LogisticRegression.chrom.subset_from_all.csv +23 -0
  12. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/Enformer_L2_L2.plus.all.csv +23 -0
  13. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/GPN-MSA.LogisticRegression.chrom.subset_from_all.csv +23 -0
  14. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/GPN-MSA_LLR.minus.score.csv +23 -0
  15. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/GPN-MSA_absLLR.plus.score.csv +23 -0
  16. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/GPN_final.LogisticRegression.chrom.subset_from_all.csv +23 -0
  17. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/GPN_final_Embeddings.plus.euclidean_distance.csv +23 -0
  18. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/GPN_final_LLR.minus.score.csv +23 -0
  19. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/GPN_final_absLLR.plus.score.csv +23 -0
  20. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/HyenaDNA.LogisticRegression.chrom.subset_from_all.csv +23 -0
  21. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/HyenaDNA_Embeddings.minus.inner_product.csv +23 -0
  22. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/NucleotideTransformer.LogisticRegression.chrom.subset_from_all.csv +23 -0
  23. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/NucleotideTransformer_Embeddings.minus.inner_product.csv +23 -0
  24. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/NucleotideTransformer_Embeddings.plus.euclidean_distance.csv +23 -0
  25. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/Sei.LogisticRegression.chrom.subset_from_all.csv +23 -0
  26. complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/Sei.plus.seqclass_max_absdiff.csv +23 -0
  27. complex_traits_matched_9/AUPRC_by_chrom/no_eqtl_overlap/Borzoi.LogisticRegression.chrom.subset_from_all.csv +23 -0
  28. complex_traits_matched_9/AUPRC_by_chrom/no_eqtl_overlap/Borzoi_L2_L2.plus.all.csv +23 -0
  29. complex_traits_matched_9/AUPRC_by_chrom/no_eqtl_overlap/CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all.csv +23 -0
  30. complex_traits_matched_9/AUPRC_by_chrom/no_eqtl_overlap/CADD.LogisticRegression.chrom.subset_from_all.csv +23 -0
  31. complex_traits_matched_9/AUPRC_by_chrom/no_eqtl_overlap/CADD.plus.RawScore.csv +23 -0
  32. complex_traits_matched_9/AUPRC_by_chrom/no_eqtl_overlap/GPN-MSA.LogisticRegression.chrom.subset_from_all.csv +23 -0
  33. complex_traits_matched_9/AUPRC_by_chrom/no_eqtl_overlap/GPN-MSA_absLLR.plus.score.csv +23 -0
  34. complex_traits_matched_9/AUPRC_by_chrom/non_coding_transcript_exon_variant/GPN_final.LogisticRegression.chrom.subset_from_all.csv +19 -0
  35. complex_traits_matched_9/AUPRC_by_chrom/non_coding_transcript_exon_variant/GPN_final_Embeddings.plus.euclidean_distance.csv +19 -0
  36. complex_traits_matched_9/AUPRC_by_chrom/nonexonic_AND_proximal/GPN_final.LogisticRegression.chrom.subset_from_all.csv +21 -0
  37. complex_traits_matched_9/AUPRC_by_chrom/nonexonic_AND_proximal/GPN_final_Embeddings.plus.euclidean_distance.csv +21 -0
  38. complex_traits_matched_9/AUPRC_by_chrom/pip_0.99/Borzoi.LogisticRegression.chrom.subset_from_all.csv +23 -0
  39. complex_traits_matched_9/AUPRC_by_chrom/pip_0.99/CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all.csv +23 -0
  40. complex_traits_matched_9/AUPRC_by_chrom/pip_0.99/CADD.plus.RawScore.csv +23 -0
  41. complex_traits_matched_9/AUPRC_by_chrom/pip_0.999/Borzoi.LogisticRegression.chrom.subset_from_all.csv +23 -0
  42. complex_traits_matched_9/AUPRC_by_chrom/pip_0.999/Borzoi_L2_L2.plus.all.csv +23 -0
  43. complex_traits_matched_9/AUPRC_by_chrom/pip_0.999/CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all.csv +23 -0
  44. complex_traits_matched_9/AUPRC_by_chrom/pip_0.999/CADD.LogisticRegression.chrom.subset_from_all.csv +23 -0
  45. complex_traits_matched_9/AUPRC_by_chrom/pip_0.999/CADD.plus.RawScore.csv +23 -0
  46. complex_traits_matched_9/AUPRC_by_chrom/pip_0.999/GPN-MSA.LogisticRegression.chrom.subset_from_all.csv +23 -0
  47. complex_traits_matched_9/AUPRC_by_chrom/pip_0.999/GPN-MSA_absLLR.plus.score.csv +23 -0
  48. complex_traits_matched_9/AUPRC_by_chrom/pleiotropy_no/Borzoi.LogisticRegression.chrom.subset_from_all.csv +23 -0
  49. complex_traits_matched_9/AUPRC_by_chrom/pleiotropy_no/Borzoi_L2_L2.plus.all.csv +23 -0
  50. complex_traits_matched_9/AUPRC_by_chrom/pleiotropy_no/CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all.csv +23 -0
complex_traits_matched_9/AUPRC_by_chrom/3_prime_UTR_variant/GPN_final_Embeddings.plus.euclidean_distance.csv ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,40,GPN_final_Embeddings.plus.euclidean_distance,0.24523809523809526
3
+ 2,30,GPN_final_Embeddings.plus.euclidean_distance,0.16189931350114417
4
+ 3,30,GPN_final_Embeddings.plus.euclidean_distance,0.14347961406784937
5
+ 5,40,GPN_final_Embeddings.plus.euclidean_distance,0.14384469696969698
6
+ 6,10,GPN_final_Embeddings.plus.euclidean_distance,0.1
7
+ 7,10,GPN_final_Embeddings.plus.euclidean_distance,0.1
8
+ 9,20,GPN_final_Embeddings.plus.euclidean_distance,0.1588235294117647
9
+ 10,20,GPN_final_Embeddings.plus.euclidean_distance,0.10882352941176471
10
+ 11,20,GPN_final_Embeddings.plus.euclidean_distance,0.26666666666666666
11
+ 12,40,GPN_final_Embeddings.plus.euclidean_distance,0.19603817235396181
12
+ 14,10,GPN_final_Embeddings.plus.euclidean_distance,0.25
13
+ 15,30,GPN_final_Embeddings.plus.euclidean_distance,0.4083333333333333
14
+ 16,20,GPN_final_Embeddings.plus.euclidean_distance,0.3055555555555556
15
+ 17,70,GPN_final_Embeddings.plus.euclidean_distance,0.16073500829652165
16
+ 18,10,GPN_final_Embeddings.plus.euclidean_distance,0.14285714285714285
17
+ 19,80,GPN_final_Embeddings.plus.euclidean_distance,0.13729005589028134
18
+ 20,20,GPN_final_Embeddings.plus.euclidean_distance,0.14835164835164835
19
+ 22,20,GPN_final_Embeddings.plus.euclidean_distance,0.15555555555555556
complex_traits_matched_9/AUPRC_by_chrom/all/CADD.LogisticRegression.chrom.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,1000,CADD.LogisticRegression.chrom,0.2804234370631062
3
+ 2,900,CADD.LogisticRegression.chrom,0.2490996879081556
4
+ 3,650,CADD.LogisticRegression.chrom,0.3040601808375204
5
+ 4,400,CADD.LogisticRegression.chrom,0.22726532803237684
6
+ 5,510,CADD.LogisticRegression.chrom,0.2574917985919467
7
+ 6,780,CADD.LogisticRegression.chrom,0.24632164836930184
8
+ 7,540,CADD.LogisticRegression.chrom,0.34919621490990665
9
+ 8,460,CADD.LogisticRegression.chrom,0.2814117622700229
10
+ 9,440,CADD.LogisticRegression.chrom,0.31992984736897595
11
+ 10,510,CADD.LogisticRegression.chrom,0.3197919111398827
12
+ 11,680,CADD.LogisticRegression.chrom,0.2571249546574229
13
+ 12,590,CADD.LogisticRegression.chrom,0.4038516341989517
14
+ 13,200,CADD.LogisticRegression.chrom,0.3383637257062684
15
+ 14,380,CADD.LogisticRegression.chrom,0.30176963195713274
16
+ 15,390,CADD.LogisticRegression.chrom,0.17849283922498754
17
+ 16,590,CADD.LogisticRegression.chrom,0.38418553427131896
18
+ 17,560,CADD.LogisticRegression.chrom,0.18038152953760248
19
+ 18,290,CADD.LogisticRegression.chrom,0.35925051769896976
20
+ 19,580,CADD.LogisticRegression.chrom,0.2440713922356457
21
+ 20,530,CADD.LogisticRegression.chrom,0.2602450619726235
22
+ 21,140,CADD.LogisticRegression.chrom,0.2751542356333478
23
+ 22,280,CADD.LogisticRegression.chrom,0.2947758803512284
complex_traits_matched_9/AUPRC_by_chrom/all/Caduceus_Embeddings.plus.cosine_distance.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,1000,Caduceus_Embeddings.plus.cosine_distance,0.11749365926557027
3
+ 2,900,Caduceus_Embeddings.plus.cosine_distance,0.1074493501591424
4
+ 3,650,Caduceus_Embeddings.plus.cosine_distance,0.1289738119058395
5
+ 4,400,Caduceus_Embeddings.plus.cosine_distance,0.10282431560474153
6
+ 5,510,Caduceus_Embeddings.plus.cosine_distance,0.09978423034450977
7
+ 6,780,Caduceus_Embeddings.plus.cosine_distance,0.0957980782248321
8
+ 7,540,Caduceus_Embeddings.plus.cosine_distance,0.10580008175629832
9
+ 8,460,Caduceus_Embeddings.plus.cosine_distance,0.12105664883199939
10
+ 9,440,Caduceus_Embeddings.plus.cosine_distance,0.08861810212650686
11
+ 10,510,Caduceus_Embeddings.plus.cosine_distance,0.10872433419843588
12
+ 11,680,Caduceus_Embeddings.plus.cosine_distance,0.11210604571114668
13
+ 12,590,Caduceus_Embeddings.plus.cosine_distance,0.1105993409503315
14
+ 13,200,Caduceus_Embeddings.plus.cosine_distance,0.18535518715795113
15
+ 14,380,Caduceus_Embeddings.plus.cosine_distance,0.10868052187711807
16
+ 15,390,Caduceus_Embeddings.plus.cosine_distance,0.12367384384721547
17
+ 16,590,Caduceus_Embeddings.plus.cosine_distance,0.11273092623103817
18
+ 17,560,Caduceus_Embeddings.plus.cosine_distance,0.14774699247893006
19
+ 18,290,Caduceus_Embeddings.plus.cosine_distance,0.09301802802818379
20
+ 19,580,Caduceus_Embeddings.plus.cosine_distance,0.1147153211406573
21
+ 20,530,Caduceus_Embeddings.plus.cosine_distance,0.15629802698891443
22
+ 21,140,Caduceus_Embeddings.plus.cosine_distance,0.10732051018970382
23
+ 22,280,Caduceus_Embeddings.plus.cosine_distance,0.11140238102656047
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/Borzoi.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,Borzoi.LogisticRegression.chrom.subset_from_all,0.32095497452978816
3
+ 2,800,Borzoi.LogisticRegression.chrom.subset_from_all,0.25708808514552306
4
+ 3,590,Borzoi.LogisticRegression.chrom.subset_from_all,0.279978325651907
5
+ 4,350,Borzoi.LogisticRegression.chrom.subset_from_all,0.2650969436943309
6
+ 5,390,Borzoi.LogisticRegression.chrom.subset_from_all,0.35959643284831666
7
+ 6,710,Borzoi.LogisticRegression.chrom.subset_from_all,0.18708536637765127
8
+ 7,490,Borzoi.LogisticRegression.chrom.subset_from_all,0.4110049864558828
9
+ 8,390,Borzoi.LogisticRegression.chrom.subset_from_all,0.25242899309349115
10
+ 9,410,Borzoi.LogisticRegression.chrom.subset_from_all,0.25776112053190586
11
+ 10,470,Borzoi.LogisticRegression.chrom.subset_from_all,0.34567061497790363
12
+ 11,610,Borzoi.LogisticRegression.chrom.subset_from_all,0.2705647285177674
13
+ 12,510,Borzoi.LogisticRegression.chrom.subset_from_all,0.3396414576243363
14
+ 13,190,Borzoi.LogisticRegression.chrom.subset_from_all,0.22584469582354244
15
+ 14,340,Borzoi.LogisticRegression.chrom.subset_from_all,0.20045531919316525
16
+ 15,390,Borzoi.LogisticRegression.chrom.subset_from_all,0.3592202647825613
17
+ 16,550,Borzoi.LogisticRegression.chrom.subset_from_all,0.3500424638536192
18
+ 17,530,Borzoi.LogisticRegression.chrom.subset_from_all,0.3304253545877776
19
+ 18,260,Borzoi.LogisticRegression.chrom.subset_from_all,0.3192545615072017
20
+ 19,460,Borzoi.LogisticRegression.chrom.subset_from_all,0.3318068501002803
21
+ 20,460,Borzoi.LogisticRegression.chrom.subset_from_all,0.18606801178248994
22
+ 21,110,Borzoi.LogisticRegression.chrom.subset_from_all,0.44516042780748666
23
+ 22,260,Borzoi.LogisticRegression.chrom.subset_from_all,0.33503856606644705
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/Borzoi_L2_L2.plus.all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,Borzoi_L2_L2.plus.all,0.24347862207401794
3
+ 2,800,Borzoi_L2_L2.plus.all,0.23569504252527518
4
+ 3,590,Borzoi_L2_L2.plus.all,0.2130026513230719
5
+ 4,350,Borzoi_L2_L2.plus.all,0.24234817956268126
6
+ 5,390,Borzoi_L2_L2.plus.all,0.2791592358807009
7
+ 6,710,Borzoi_L2_L2.plus.all,0.15549167769211836
8
+ 7,490,Borzoi_L2_L2.plus.all,0.2878432803622726
9
+ 8,390,Borzoi_L2_L2.plus.all,0.17283095034796553
10
+ 9,410,Borzoi_L2_L2.plus.all,0.19114035015497088
11
+ 10,470,Borzoi_L2_L2.plus.all,0.17465963033811824
12
+ 11,610,Borzoi_L2_L2.plus.all,0.21316548581658645
13
+ 12,510,Borzoi_L2_L2.plus.all,0.2758205281834588
14
+ 13,190,Borzoi_L2_L2.plus.all,0.3456033270154591
15
+ 14,340,Borzoi_L2_L2.plus.all,0.22866174565589792
16
+ 15,390,Borzoi_L2_L2.plus.all,0.20514970024687673
17
+ 16,550,Borzoi_L2_L2.plus.all,0.2743073490579965
18
+ 17,530,Borzoi_L2_L2.plus.all,0.22945880813116962
19
+ 18,260,Borzoi_L2_L2.plus.all,0.24615006006439769
20
+ 19,460,Borzoi_L2_L2.plus.all,0.2771347459252628
21
+ 20,460,Borzoi_L2_L2.plus.all,0.18614348114219864
22
+ 21,110,Borzoi_L2_L2.plus.all,0.3274173125951782
23
+ 22,260,Borzoi_L2_L2.plus.all,0.3144876487774563
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/CADD.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,CADD.LogisticRegression.chrom.subset_from_all,0.2701024368074748
3
+ 2,800,CADD.LogisticRegression.chrom.subset_from_all,0.2480882038894834
4
+ 3,590,CADD.LogisticRegression.chrom.subset_from_all,0.29938286850728213
5
+ 4,350,CADD.LogisticRegression.chrom.subset_from_all,0.2406987881968853
6
+ 5,390,CADD.LogisticRegression.chrom.subset_from_all,0.2414562030975229
7
+ 6,710,CADD.LogisticRegression.chrom.subset_from_all,0.24662201384443794
8
+ 7,490,CADD.LogisticRegression.chrom.subset_from_all,0.37149369450221686
9
+ 8,390,CADD.LogisticRegression.chrom.subset_from_all,0.2613962074118145
10
+ 9,410,CADD.LogisticRegression.chrom.subset_from_all,0.32469278667406487
11
+ 10,470,CADD.LogisticRegression.chrom.subset_from_all,0.31266572034439966
12
+ 11,610,CADD.LogisticRegression.chrom.subset_from_all,0.2451151461784538
13
+ 12,510,CADD.LogisticRegression.chrom.subset_from_all,0.38605790885696845
14
+ 13,190,CADD.LogisticRegression.chrom.subset_from_all,0.35349345579138297
15
+ 14,340,CADD.LogisticRegression.chrom.subset_from_all,0.3015300224651223
16
+ 15,390,CADD.LogisticRegression.chrom.subset_from_all,0.17849283922498754
17
+ 16,550,CADD.LogisticRegression.chrom.subset_from_all,0.38317865743852725
18
+ 17,530,CADD.LogisticRegression.chrom.subset_from_all,0.17841916786266027
19
+ 18,260,CADD.LogisticRegression.chrom.subset_from_all,0.30705122937371804
20
+ 19,460,CADD.LogisticRegression.chrom.subset_from_all,0.2660182045423029
21
+ 20,460,CADD.LogisticRegression.chrom.subset_from_all,0.23048457555072527
22
+ 21,110,CADD.LogisticRegression.chrom.subset_from_all,0.27877777275335347
23
+ 22,260,CADD.LogisticRegression.chrom.subset_from_all,0.3005663215564722
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/CADD.plus.RawScore.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,CADD.plus.RawScore,0.24817302045502623
3
+ 2,800,CADD.plus.RawScore,0.2448383287173504
4
+ 3,590,CADD.plus.RawScore,0.2675244475040181
5
+ 4,350,CADD.plus.RawScore,0.22819049338662972
6
+ 5,390,CADD.plus.RawScore,0.21940603000837644
7
+ 6,710,CADD.plus.RawScore,0.19104519016723423
8
+ 7,490,CADD.plus.RawScore,0.2837826047704
9
+ 8,390,CADD.plus.RawScore,0.19906163060737722
10
+ 9,410,CADD.plus.RawScore,0.22223238034261114
11
+ 10,470,CADD.plus.RawScore,0.3027860320943214
12
+ 11,610,CADD.plus.RawScore,0.2122015863300278
13
+ 12,510,CADD.plus.RawScore,0.27709129216353107
14
+ 13,190,CADD.plus.RawScore,0.34869651306843147
15
+ 14,340,CADD.plus.RawScore,0.2558262232765123
16
+ 15,390,CADD.plus.RawScore,0.17299998697590066
17
+ 16,550,CADD.plus.RawScore,0.34320513773922595
18
+ 17,530,CADD.plus.RawScore,0.18000598677967372
19
+ 18,260,CADD.plus.RawScore,0.3091598181662167
20
+ 19,460,CADD.plus.RawScore,0.19984540730330871
21
+ 20,460,CADD.plus.RawScore,0.2270042011764353
22
+ 21,110,CADD.plus.RawScore,0.2309235118473018
23
+ 22,260,CADD.plus.RawScore,0.25049158255849646
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/Caduceus.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,Caduceus.LogisticRegression.chrom.subset_from_all,0.12768786861389958
3
+ 2,800,Caduceus.LogisticRegression.chrom.subset_from_all,0.14291690228292506
4
+ 3,590,Caduceus.LogisticRegression.chrom.subset_from_all,0.16147286576214281
5
+ 4,350,Caduceus.LogisticRegression.chrom.subset_from_all,0.20511992190401618
6
+ 5,390,Caduceus.LogisticRegression.chrom.subset_from_all,0.10527581825159452
7
+ 6,710,Caduceus.LogisticRegression.chrom.subset_from_all,0.14461515675584014
8
+ 7,490,Caduceus.LogisticRegression.chrom.subset_from_all,0.2149184409206361
9
+ 8,390,Caduceus.LogisticRegression.chrom.subset_from_all,0.21071140461963733
10
+ 9,410,Caduceus.LogisticRegression.chrom.subset_from_all,0.09785453679566938
11
+ 10,470,Caduceus.LogisticRegression.chrom.subset_from_all,0.14812521906509052
12
+ 11,610,Caduceus.LogisticRegression.chrom.subset_from_all,0.11559073624498917
13
+ 12,510,Caduceus.LogisticRegression.chrom.subset_from_all,0.19153422696117536
14
+ 13,190,Caduceus.LogisticRegression.chrom.subset_from_all,0.1623761899879177
15
+ 14,340,Caduceus.LogisticRegression.chrom.subset_from_all,0.15649815670640382
16
+ 15,390,Caduceus.LogisticRegression.chrom.subset_from_all,0.14860690939463833
17
+ 16,550,Caduceus.LogisticRegression.chrom.subset_from_all,0.1173864863903779
18
+ 17,530,Caduceus.LogisticRegression.chrom.subset_from_all,0.16551598046771518
19
+ 18,260,Caduceus.LogisticRegression.chrom.subset_from_all,0.15192036550727828
20
+ 19,460,Caduceus.LogisticRegression.chrom.subset_from_all,0.16532552782340976
21
+ 20,460,Caduceus.LogisticRegression.chrom.subset_from_all,0.130414154716602
22
+ 21,110,Caduceus.LogisticRegression.chrom.subset_from_all,0.17655592653805363
23
+ 22,260,Caduceus.LogisticRegression.chrom.subset_from_all,0.2117834480399488
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/Caduceus_Embeddings.minus.inner_product.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,Caduceus_Embeddings.minus.inner_product,0.08986395526562546
3
+ 2,800,Caduceus_Embeddings.minus.inner_product,0.11241543207168761
4
+ 3,590,Caduceus_Embeddings.minus.inner_product,0.1247710010566834
5
+ 4,350,Caduceus_Embeddings.minus.inner_product,0.11547324140191996
6
+ 5,390,Caduceus_Embeddings.minus.inner_product,0.16974684914851423
7
+ 6,710,Caduceus_Embeddings.minus.inner_product,0.13251416858028645
8
+ 7,490,Caduceus_Embeddings.minus.inner_product,0.07684300192623231
9
+ 8,390,Caduceus_Embeddings.minus.inner_product,0.11573370652807786
10
+ 9,410,Caduceus_Embeddings.minus.inner_product,0.10422546469147957
11
+ 10,470,Caduceus_Embeddings.minus.inner_product,0.08789755271267101
12
+ 11,610,Caduceus_Embeddings.minus.inner_product,0.14940854694686995
13
+ 12,510,Caduceus_Embeddings.minus.inner_product,0.17216757114074832
14
+ 13,190,Caduceus_Embeddings.minus.inner_product,0.1754128637982437
15
+ 14,340,Caduceus_Embeddings.minus.inner_product,0.10856264985113517
16
+ 15,390,Caduceus_Embeddings.minus.inner_product,0.09041114516376765
17
+ 16,550,Caduceus_Embeddings.minus.inner_product,0.10652881378065228
18
+ 17,530,Caduceus_Embeddings.minus.inner_product,0.14538956877158843
19
+ 18,260,Caduceus_Embeddings.minus.inner_product,0.13326483109360004
20
+ 19,460,Caduceus_Embeddings.minus.inner_product,0.09103971995236351
21
+ 20,460,Caduceus_Embeddings.minus.inner_product,0.11704126868310247
22
+ 21,110,Caduceus_Embeddings.minus.inner_product,0.07958207328733509
23
+ 22,260,Caduceus_Embeddings.minus.inner_product,0.08993769274443866
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/Caduceus_Embeddings.plus.euclidean_distance.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,Caduceus_Embeddings.plus.euclidean_distance,0.12254587262554043
3
+ 2,800,Caduceus_Embeddings.plus.euclidean_distance,0.10828619015933655
4
+ 3,590,Caduceus_Embeddings.plus.euclidean_distance,0.143285838024107
5
+ 4,350,Caduceus_Embeddings.plus.euclidean_distance,0.10611664870015139
6
+ 5,390,Caduceus_Embeddings.plus.euclidean_distance,0.1065199992323641
7
+ 6,710,Caduceus_Embeddings.plus.euclidean_distance,0.09709935551796044
8
+ 7,490,Caduceus_Embeddings.plus.euclidean_distance,0.11173865315197885
9
+ 8,390,Caduceus_Embeddings.plus.euclidean_distance,0.1077525948163466
10
+ 9,410,Caduceus_Embeddings.plus.euclidean_distance,0.08634643376670381
11
+ 10,470,Caduceus_Embeddings.plus.euclidean_distance,0.10925633457371021
12
+ 11,610,Caduceus_Embeddings.plus.euclidean_distance,0.10209624335955758
13
+ 12,510,Caduceus_Embeddings.plus.euclidean_distance,0.108356608150446
14
+ 13,190,Caduceus_Embeddings.plus.euclidean_distance,0.17675186303175416
15
+ 14,340,Caduceus_Embeddings.plus.euclidean_distance,0.10920508825965003
16
+ 15,390,Caduceus_Embeddings.plus.euclidean_distance,0.12393474704794183
17
+ 16,550,Caduceus_Embeddings.plus.euclidean_distance,0.11574435736601918
18
+ 17,530,Caduceus_Embeddings.plus.euclidean_distance,0.15653912508610368
19
+ 18,260,Caduceus_Embeddings.plus.euclidean_distance,0.09144948911644277
20
+ 19,460,Caduceus_Embeddings.plus.euclidean_distance,0.11980670028070092
21
+ 20,460,Caduceus_Embeddings.plus.euclidean_distance,0.13681465186505218
22
+ 21,110,Caduceus_Embeddings.plus.euclidean_distance,0.11062456640044269
23
+ 22,260,Caduceus_Embeddings.plus.euclidean_distance,0.11469433833620415
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/Enformer.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,Enformer.LogisticRegression.chrom.subset_from_all,0.31724703842676116
3
+ 2,800,Enformer.LogisticRegression.chrom.subset_from_all,0.24952006898932855
4
+ 3,590,Enformer.LogisticRegression.chrom.subset_from_all,0.2857331947419951
5
+ 4,350,Enformer.LogisticRegression.chrom.subset_from_all,0.2823746045330162
6
+ 5,390,Enformer.LogisticRegression.chrom.subset_from_all,0.3319097903053313
7
+ 6,710,Enformer.LogisticRegression.chrom.subset_from_all,0.2572220363429801
8
+ 7,490,Enformer.LogisticRegression.chrom.subset_from_all,0.3601863168618549
9
+ 8,390,Enformer.LogisticRegression.chrom.subset_from_all,0.3632048290163543
10
+ 9,410,Enformer.LogisticRegression.chrom.subset_from_all,0.266779557781067
11
+ 10,470,Enformer.LogisticRegression.chrom.subset_from_all,0.28117129734012547
12
+ 11,610,Enformer.LogisticRegression.chrom.subset_from_all,0.2971333300743728
13
+ 12,510,Enformer.LogisticRegression.chrom.subset_from_all,0.36788850541715884
14
+ 13,190,Enformer.LogisticRegression.chrom.subset_from_all,0.20719784943815914
15
+ 14,340,Enformer.LogisticRegression.chrom.subset_from_all,0.2605764389086939
16
+ 15,390,Enformer.LogisticRegression.chrom.subset_from_all,0.3031284007023935
17
+ 16,550,Enformer.LogisticRegression.chrom.subset_from_all,0.3701674828996978
18
+ 17,530,Enformer.LogisticRegression.chrom.subset_from_all,0.28655203679331687
19
+ 18,260,Enformer.LogisticRegression.chrom.subset_from_all,0.30339644476975614
20
+ 19,460,Enformer.LogisticRegression.chrom.subset_from_all,0.3118974869061181
21
+ 20,460,Enformer.LogisticRegression.chrom.subset_from_all,0.19853696006667876
22
+ 21,110,Enformer.LogisticRegression.chrom.subset_from_all,0.367808942824438
23
+ 22,260,Enformer.LogisticRegression.chrom.subset_from_all,0.35423074919491937
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/Enformer_L2_L2.plus.all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,Enformer_L2_L2.plus.all,0.23387662466078457
3
+ 2,800,Enformer_L2_L2.plus.all,0.24738447989693158
4
+ 3,590,Enformer_L2_L2.plus.all,0.2600300838555056
5
+ 4,350,Enformer_L2_L2.plus.all,0.2615896631601239
6
+ 5,390,Enformer_L2_L2.plus.all,0.289684601274959
7
+ 6,710,Enformer_L2_L2.plus.all,0.16937600393089886
8
+ 7,490,Enformer_L2_L2.plus.all,0.2737234418889194
9
+ 8,390,Enformer_L2_L2.plus.all,0.2343524887652369
10
+ 9,410,Enformer_L2_L2.plus.all,0.22837189110066536
11
+ 10,470,Enformer_L2_L2.plus.all,0.2177700597559514
12
+ 11,610,Enformer_L2_L2.plus.all,0.2238021276359748
13
+ 12,510,Enformer_L2_L2.plus.all,0.25556524606741293
14
+ 13,190,Enformer_L2_L2.plus.all,0.30872427744659614
15
+ 14,340,Enformer_L2_L2.plus.all,0.25207022003067325
16
+ 15,390,Enformer_L2_L2.plus.all,0.20299229780710365
17
+ 16,550,Enformer_L2_L2.plus.all,0.26946076338355773
18
+ 17,530,Enformer_L2_L2.plus.all,0.23521888845607739
19
+ 18,260,Enformer_L2_L2.plus.all,0.2841727277331928
20
+ 19,460,Enformer_L2_L2.plus.all,0.28668211328081245
21
+ 20,460,Enformer_L2_L2.plus.all,0.17909587741260663
22
+ 21,110,Enformer_L2_L2.plus.all,0.23078212609923182
23
+ 22,260,Enformer_L2_L2.plus.all,0.33507970819251276
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/GPN-MSA.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.2296615320152764
3
+ 2,800,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.2726546917911791
4
+ 3,590,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.2274978596663335
5
+ 4,350,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.1963351680668289
6
+ 5,390,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.27327686603076284
7
+ 6,710,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.2592062917361191
8
+ 7,490,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.35324888432520274
9
+ 8,390,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.2957151132043984
10
+ 9,410,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.2732963645083227
11
+ 10,470,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.350714801613231
12
+ 11,610,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.21656868926815181
13
+ 12,510,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.30035143367339984
14
+ 13,190,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.3030125447929058
15
+ 14,340,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.3010894975948741
16
+ 15,390,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.19652091579757985
17
+ 16,550,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.361138353553068
18
+ 17,530,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.18677482420085217
19
+ 18,260,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.2904671802909623
20
+ 19,460,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.31093708727619157
21
+ 20,460,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.2095492410715131
22
+ 21,110,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.27889912995314836
23
+ 22,260,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.2381562247451084
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/GPN-MSA_LLR.minus.score.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,GPN-MSA_LLR.minus.score,0.20614387512395455
3
+ 2,800,GPN-MSA_LLR.minus.score,0.1963052087855376
4
+ 3,590,GPN-MSA_LLR.minus.score,0.19441801913987983
5
+ 4,350,GPN-MSA_LLR.minus.score,0.13207264907788593
6
+ 5,390,GPN-MSA_LLR.minus.score,0.2426671233590553
7
+ 6,710,GPN-MSA_LLR.minus.score,0.1479684551629551
8
+ 7,490,GPN-MSA_LLR.minus.score,0.22208179648485088
9
+ 8,390,GPN-MSA_LLR.minus.score,0.18949568164110245
10
+ 9,410,GPN-MSA_LLR.minus.score,0.2073002122012956
11
+ 10,470,GPN-MSA_LLR.minus.score,0.2994725831465019
12
+ 11,610,GPN-MSA_LLR.minus.score,0.19537947833467612
13
+ 12,510,GPN-MSA_LLR.minus.score,0.23836746163946648
14
+ 13,190,GPN-MSA_LLR.minus.score,0.22918587788116382
15
+ 14,340,GPN-MSA_LLR.minus.score,0.23293991482424004
16
+ 15,390,GPN-MSA_LLR.minus.score,0.14117737076990838
17
+ 16,550,GPN-MSA_LLR.minus.score,0.25531423351125426
18
+ 17,530,GPN-MSA_LLR.minus.score,0.15455185969349947
19
+ 18,260,GPN-MSA_LLR.minus.score,0.3094383178650355
20
+ 19,460,GPN-MSA_LLR.minus.score,0.20887745411882563
21
+ 20,460,GPN-MSA_LLR.minus.score,0.14526572937958296
22
+ 21,110,GPN-MSA_LLR.minus.score,0.2732842206526417
23
+ 22,260,GPN-MSA_LLR.minus.score,0.18632758408289152
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/GPN-MSA_absLLR.plus.score.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,GPN-MSA_absLLR.plus.score,0.20627380625451058
3
+ 2,800,GPN-MSA_absLLR.plus.score,0.20227570647470816
4
+ 3,590,GPN-MSA_absLLR.plus.score,0.22687332089033765
5
+ 4,350,GPN-MSA_absLLR.plus.score,0.17191163895026845
6
+ 5,390,GPN-MSA_absLLR.plus.score,0.2483166999409641
7
+ 6,710,GPN-MSA_absLLR.plus.score,0.16542472576265216
8
+ 7,490,GPN-MSA_absLLR.plus.score,0.27803576308901395
9
+ 8,390,GPN-MSA_absLLR.plus.score,0.21175650799626283
10
+ 9,410,GPN-MSA_absLLR.plus.score,0.2783285650621901
11
+ 10,470,GPN-MSA_absLLR.plus.score,0.29024580496995617
12
+ 11,610,GPN-MSA_absLLR.plus.score,0.18004457300483495
13
+ 12,510,GPN-MSA_absLLR.plus.score,0.23301126347357565
14
+ 13,190,GPN-MSA_absLLR.plus.score,0.20661032260217532
15
+ 14,340,GPN-MSA_absLLR.plus.score,0.25420586345011903
16
+ 15,390,GPN-MSA_absLLR.plus.score,0.16907087620069683
17
+ 16,550,GPN-MSA_absLLR.plus.score,0.2902181325808048
18
+ 17,530,GPN-MSA_absLLR.plus.score,0.15917977214009243
19
+ 18,260,GPN-MSA_absLLR.plus.score,0.26423125213409315
20
+ 19,460,GPN-MSA_absLLR.plus.score,0.20111404332237814
21
+ 20,460,GPN-MSA_absLLR.plus.score,0.2175149802459308
22
+ 21,110,GPN-MSA_absLLR.plus.score,0.15549635655027447
23
+ 22,260,GPN-MSA_absLLR.plus.score,0.22625426327187637
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/GPN_final.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,GPN_final.LogisticRegression.chrom.subset_from_all,0.1844843795019428
3
+ 2,800,GPN_final.LogisticRegression.chrom.subset_from_all,0.15042060885852812
4
+ 3,590,GPN_final.LogisticRegression.chrom.subset_from_all,0.12827002001173582
5
+ 4,350,GPN_final.LogisticRegression.chrom.subset_from_all,0.24782923388763406
6
+ 5,390,GPN_final.LogisticRegression.chrom.subset_from_all,0.18952361060788991
7
+ 6,710,GPN_final.LogisticRegression.chrom.subset_from_all,0.15548942030379848
8
+ 7,490,GPN_final.LogisticRegression.chrom.subset_from_all,0.1834513982753565
9
+ 8,390,GPN_final.LogisticRegression.chrom.subset_from_all,0.17925621277899034
10
+ 9,410,GPN_final.LogisticRegression.chrom.subset_from_all,0.17779218822758452
11
+ 10,470,GPN_final.LogisticRegression.chrom.subset_from_all,0.17925881656496384
12
+ 11,610,GPN_final.LogisticRegression.chrom.subset_from_all,0.1812318191746971
13
+ 12,510,GPN_final.LogisticRegression.chrom.subset_from_all,0.2010285651343146
14
+ 13,190,GPN_final.LogisticRegression.chrom.subset_from_all,0.2209390191304338
15
+ 14,340,GPN_final.LogisticRegression.chrom.subset_from_all,0.20420222505697885
16
+ 15,390,GPN_final.LogisticRegression.chrom.subset_from_all,0.20908850637810206
17
+ 16,550,GPN_final.LogisticRegression.chrom.subset_from_all,0.20447521159138693
18
+ 17,530,GPN_final.LogisticRegression.chrom.subset_from_all,0.17822480998367493
19
+ 18,260,GPN_final.LogisticRegression.chrom.subset_from_all,0.2770667152401605
20
+ 19,460,GPN_final.LogisticRegression.chrom.subset_from_all,0.21340364293288838
21
+ 20,460,GPN_final.LogisticRegression.chrom.subset_from_all,0.16402688368224433
22
+ 21,110,GPN_final.LogisticRegression.chrom.subset_from_all,0.17430095614796498
23
+ 22,260,GPN_final.LogisticRegression.chrom.subset_from_all,0.2107748568771051
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/GPN_final_Embeddings.plus.euclidean_distance.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,GPN_final_Embeddings.plus.euclidean_distance,0.10155173404310099
3
+ 2,800,GPN_final_Embeddings.plus.euclidean_distance,0.11188483630583228
4
+ 3,590,GPN_final_Embeddings.plus.euclidean_distance,0.14524548942628232
5
+ 4,350,GPN_final_Embeddings.plus.euclidean_distance,0.13581803633390888
6
+ 5,390,GPN_final_Embeddings.plus.euclidean_distance,0.11151029955094903
7
+ 6,710,GPN_final_Embeddings.plus.euclidean_distance,0.10415464936276575
8
+ 7,490,GPN_final_Embeddings.plus.euclidean_distance,0.12480342568085041
9
+ 8,390,GPN_final_Embeddings.plus.euclidean_distance,0.11351147767291224
10
+ 9,410,GPN_final_Embeddings.plus.euclidean_distance,0.11928424222340471
11
+ 10,470,GPN_final_Embeddings.plus.euclidean_distance,0.12849046739071143
12
+ 11,610,GPN_final_Embeddings.plus.euclidean_distance,0.110260294752035
13
+ 12,510,GPN_final_Embeddings.plus.euclidean_distance,0.12652510142580564
14
+ 13,190,GPN_final_Embeddings.plus.euclidean_distance,0.1000355686663017
15
+ 14,340,GPN_final_Embeddings.plus.euclidean_distance,0.12998671340042292
16
+ 15,390,GPN_final_Embeddings.plus.euclidean_distance,0.12940216528249754
17
+ 16,550,GPN_final_Embeddings.plus.euclidean_distance,0.14812631002433474
18
+ 17,530,GPN_final_Embeddings.plus.euclidean_distance,0.13144847006167104
19
+ 18,260,GPN_final_Embeddings.plus.euclidean_distance,0.16166176186753167
20
+ 19,460,GPN_final_Embeddings.plus.euclidean_distance,0.14378867849499638
21
+ 20,460,GPN_final_Embeddings.plus.euclidean_distance,0.1393124528675081
22
+ 21,110,GPN_final_Embeddings.plus.euclidean_distance,0.1759786035296721
23
+ 22,260,GPN_final_Embeddings.plus.euclidean_distance,0.1533343304600632
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/GPN_final_LLR.minus.score.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,GPN_final_LLR.minus.score,0.09332766377805538
3
+ 2,800,GPN_final_LLR.minus.score,0.09438806714687734
4
+ 3,590,GPN_final_LLR.minus.score,0.13494136430523263
5
+ 4,350,GPN_final_LLR.minus.score,0.10128447653027348
6
+ 5,390,GPN_final_LLR.minus.score,0.10780893856363671
7
+ 6,710,GPN_final_LLR.minus.score,0.11133557146918537
8
+ 7,490,GPN_final_LLR.minus.score,0.11169727628328728
9
+ 8,390,GPN_final_LLR.minus.score,0.09969239946632127
10
+ 9,410,GPN_final_LLR.minus.score,0.10430445095869512
11
+ 10,470,GPN_final_LLR.minus.score,0.11715130225130767
12
+ 11,610,GPN_final_LLR.minus.score,0.10550449825557312
13
+ 12,510,GPN_final_LLR.minus.score,0.1480048996282517
14
+ 13,190,GPN_final_LLR.minus.score,0.09080125819854924
15
+ 14,340,GPN_final_LLR.minus.score,0.12899979023835295
16
+ 15,390,GPN_final_LLR.minus.score,0.14613595988038125
17
+ 16,550,GPN_final_LLR.minus.score,0.10421304799898899
18
+ 17,530,GPN_final_LLR.minus.score,0.1073658114195484
19
+ 18,260,GPN_final_LLR.minus.score,0.11023458305178468
20
+ 19,460,GPN_final_LLR.minus.score,0.11765596105321344
21
+ 20,460,GPN_final_LLR.minus.score,0.10521919468222879
22
+ 21,110,GPN_final_LLR.minus.score,0.11762897805502939
23
+ 22,260,GPN_final_LLR.minus.score,0.11143340289526027
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/GPN_final_absLLR.plus.score.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,GPN_final_absLLR.plus.score,0.09102933796364879
3
+ 2,800,GPN_final_absLLR.plus.score,0.08751053295150427
4
+ 3,590,GPN_final_absLLR.plus.score,0.14370183361242872
5
+ 4,350,GPN_final_absLLR.plus.score,0.113176026041863
6
+ 5,390,GPN_final_absLLR.plus.score,0.09218870032038386
7
+ 6,710,GPN_final_absLLR.plus.score,0.08399620147468649
8
+ 7,490,GPN_final_absLLR.plus.score,0.12370186489912838
9
+ 8,390,GPN_final_absLLR.plus.score,0.11014375041912663
10
+ 9,410,GPN_final_absLLR.plus.score,0.08909670865602953
11
+ 10,470,GPN_final_absLLR.plus.score,0.11630436877678094
12
+ 11,610,GPN_final_absLLR.plus.score,0.11415441220640474
13
+ 12,510,GPN_final_absLLR.plus.score,0.1490098343483623
14
+ 13,190,GPN_final_absLLR.plus.score,0.08147678654615892
15
+ 14,340,GPN_final_absLLR.plus.score,0.12156001352854577
16
+ 15,390,GPN_final_absLLR.plus.score,0.12005607261682519
17
+ 16,550,GPN_final_absLLR.plus.score,0.12223320676877229
18
+ 17,530,GPN_final_absLLR.plus.score,0.10450734120536487
19
+ 18,260,GPN_final_absLLR.plus.score,0.15668621808516175
20
+ 19,460,GPN_final_absLLR.plus.score,0.14132590508283138
21
+ 20,460,GPN_final_absLLR.plus.score,0.10253345380173434
22
+ 21,110,GPN_final_absLLR.plus.score,0.12961420724064607
23
+ 22,260,GPN_final_absLLR.plus.score,0.11294184664494959
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/HyenaDNA.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.09226251006422836
3
+ 2,800,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.11457520449896087
4
+ 3,590,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.12093363786989945
5
+ 4,350,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.11887780277048277
6
+ 5,390,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.09531723027440261
7
+ 6,710,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.13417771222930172
8
+ 7,490,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.13549255000270755
9
+ 8,390,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.15546565164602438
10
+ 9,410,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.08243494208431111
11
+ 10,470,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.1255168496752332
12
+ 11,610,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.13131896060868214
13
+ 12,510,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.18902241458482533
14
+ 13,190,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.10090030949371676
15
+ 14,340,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.25464867882099074
16
+ 15,390,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.11067721631420835
17
+ 16,550,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.1457658431576922
18
+ 17,530,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.1939607845732743
19
+ 18,260,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.13860268833394726
20
+ 19,460,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.1691773036559155
21
+ 20,460,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.12222632337133926
22
+ 21,110,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.10936234420145743
23
+ 22,260,HyenaDNA.LogisticRegression.chrom.subset_from_all,0.10635957151664338
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/HyenaDNA_Embeddings.minus.inner_product.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,HyenaDNA_Embeddings.minus.inner_product,0.11155653893304068
3
+ 2,800,HyenaDNA_Embeddings.minus.inner_product,0.10990070841033815
4
+ 3,590,HyenaDNA_Embeddings.minus.inner_product,0.12465268106190473
5
+ 4,350,HyenaDNA_Embeddings.minus.inner_product,0.1341232965211318
6
+ 5,390,HyenaDNA_Embeddings.minus.inner_product,0.10388185029432209
7
+ 6,710,HyenaDNA_Embeddings.minus.inner_product,0.11114972639363895
8
+ 7,490,HyenaDNA_Embeddings.minus.inner_product,0.09796070210361055
9
+ 8,390,HyenaDNA_Embeddings.minus.inner_product,0.17784160163502488
10
+ 9,410,HyenaDNA_Embeddings.minus.inner_product,0.10967369525176378
11
+ 10,470,HyenaDNA_Embeddings.minus.inner_product,0.10277753648133094
12
+ 11,610,HyenaDNA_Embeddings.minus.inner_product,0.12873181541117462
13
+ 12,510,HyenaDNA_Embeddings.minus.inner_product,0.11367506661344323
14
+ 13,190,HyenaDNA_Embeddings.minus.inner_product,0.16929993383426173
15
+ 14,340,HyenaDNA_Embeddings.minus.inner_product,0.15434159786026186
16
+ 15,390,HyenaDNA_Embeddings.minus.inner_product,0.12568922970461183
17
+ 16,550,HyenaDNA_Embeddings.minus.inner_product,0.09110251981637918
18
+ 17,530,HyenaDNA_Embeddings.minus.inner_product,0.11769815071530777
19
+ 18,260,HyenaDNA_Embeddings.minus.inner_product,0.11431801866410371
20
+ 19,460,HyenaDNA_Embeddings.minus.inner_product,0.1193887556035221
21
+ 20,460,HyenaDNA_Embeddings.minus.inner_product,0.10859901304932389
22
+ 21,110,HyenaDNA_Embeddings.minus.inner_product,0.08272121833809458
23
+ 22,260,HyenaDNA_Embeddings.minus.inner_product,0.12479518349589497
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/NucleotideTransformer.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.16647314569362273
3
+ 2,800,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.12956991621817354
4
+ 3,590,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.14894020407383593
5
+ 4,350,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.23819052108010033
6
+ 5,390,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.1289783048228361
7
+ 6,710,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.18381029052415365
8
+ 7,490,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.19150910206071603
9
+ 8,390,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.18236078442663872
10
+ 9,410,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.17842410101733064
11
+ 10,470,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.15408733824358667
12
+ 11,610,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.15456342594667247
13
+ 12,510,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.18938107889297817
14
+ 13,190,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.164579634870491
15
+ 14,340,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.17424166687175574
16
+ 15,390,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.2050217829858993
17
+ 16,550,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.15858664096515207
18
+ 17,530,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.154704345450987
19
+ 18,260,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.1111226584313076
20
+ 19,460,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.1591823320291776
21
+ 20,460,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.16565398427114314
22
+ 21,110,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.3226444184019704
23
+ 22,260,NucleotideTransformer.LogisticRegression.chrom.subset_from_all,0.1507356226319463
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/NucleotideTransformer_Embeddings.minus.inner_product.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,NucleotideTransformer_Embeddings.minus.inner_product,0.10955593144436424
3
+ 2,800,NucleotideTransformer_Embeddings.minus.inner_product,0.1136048716301295
4
+ 3,590,NucleotideTransformer_Embeddings.minus.inner_product,0.1336677540516955
5
+ 4,350,NucleotideTransformer_Embeddings.minus.inner_product,0.1281429079939157
6
+ 5,390,NucleotideTransformer_Embeddings.minus.inner_product,0.13043754958323311
7
+ 6,710,NucleotideTransformer_Embeddings.minus.inner_product,0.1283103074774966
8
+ 7,490,NucleotideTransformer_Embeddings.minus.inner_product,0.138475219955232
9
+ 8,390,NucleotideTransformer_Embeddings.minus.inner_product,0.1719528871204264
10
+ 9,410,NucleotideTransformer_Embeddings.minus.inner_product,0.0928686441464858
11
+ 10,470,NucleotideTransformer_Embeddings.minus.inner_product,0.13561784271396854
12
+ 11,610,NucleotideTransformer_Embeddings.minus.inner_product,0.16168955233036325
13
+ 12,510,NucleotideTransformer_Embeddings.minus.inner_product,0.1427917775231214
14
+ 13,190,NucleotideTransformer_Embeddings.minus.inner_product,0.3175191910558173
15
+ 14,340,NucleotideTransformer_Embeddings.minus.inner_product,0.14228123878760005
16
+ 15,390,NucleotideTransformer_Embeddings.minus.inner_product,0.1155161210932963
17
+ 16,550,NucleotideTransformer_Embeddings.minus.inner_product,0.16733056526040804
18
+ 17,530,NucleotideTransformer_Embeddings.minus.inner_product,0.16836990195214405
19
+ 18,260,NucleotideTransformer_Embeddings.minus.inner_product,0.15189017425310705
20
+ 19,460,NucleotideTransformer_Embeddings.minus.inner_product,0.12783443330887212
21
+ 20,460,NucleotideTransformer_Embeddings.minus.inner_product,0.16003740764188265
22
+ 21,110,NucleotideTransformer_Embeddings.minus.inner_product,0.11191734273521806
23
+ 22,260,NucleotideTransformer_Embeddings.minus.inner_product,0.13584163770655025
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/NucleotideTransformer_Embeddings.plus.euclidean_distance.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.11127664667584938
3
+ 2,800,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.11319714584441992
4
+ 3,590,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.1309768830758845
5
+ 4,350,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.13354148538267227
6
+ 5,390,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.10714344790476381
7
+ 6,710,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.09367768805122068
8
+ 7,490,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.13538571534026192
9
+ 8,390,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.13258233008339562
10
+ 9,410,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.12506726914402688
11
+ 10,470,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.1738337928307028
12
+ 11,610,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.11278697241357406
13
+ 12,510,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.11259277006005686
14
+ 13,190,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.10109545244750641
15
+ 14,340,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.09542815886349552
16
+ 15,390,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.1360833768137366
17
+ 16,550,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.08879691058408996
18
+ 17,530,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.11325464545998368
19
+ 18,260,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.21303876246475856
20
+ 19,460,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.09241939337691502
21
+ 20,460,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.14312472903801138
22
+ 21,110,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.21599606321928222
23
+ 22,260,NucleotideTransformer_Embeddings.plus.euclidean_distance,0.10232316408452215
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/Sei.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,Sei.LogisticRegression.chrom.subset_from_all,0.17270466477128824
3
+ 2,800,Sei.LogisticRegression.chrom.subset_from_all,0.20067515244864348
4
+ 3,590,Sei.LogisticRegression.chrom.subset_from_all,0.16139763605782437
5
+ 4,350,Sei.LogisticRegression.chrom.subset_from_all,0.22098134507071318
6
+ 5,390,Sei.LogisticRegression.chrom.subset_from_all,0.17993193133686985
7
+ 6,710,Sei.LogisticRegression.chrom.subset_from_all,0.14772550325317113
8
+ 7,490,Sei.LogisticRegression.chrom.subset_from_all,0.18779590540213909
9
+ 8,390,Sei.LogisticRegression.chrom.subset_from_all,0.1388095796489882
10
+ 9,410,Sei.LogisticRegression.chrom.subset_from_all,0.16852952320988807
11
+ 10,470,Sei.LogisticRegression.chrom.subset_from_all,0.21541491003274219
12
+ 11,610,Sei.LogisticRegression.chrom.subset_from_all,0.14220085607517724
13
+ 12,510,Sei.LogisticRegression.chrom.subset_from_all,0.19415395547627556
14
+ 13,190,Sei.LogisticRegression.chrom.subset_from_all,0.3324665628571818
15
+ 14,340,Sei.LogisticRegression.chrom.subset_from_all,0.21361097650786237
16
+ 15,390,Sei.LogisticRegression.chrom.subset_from_all,0.18570337236646278
17
+ 16,550,Sei.LogisticRegression.chrom.subset_from_all,0.2107747746808281
18
+ 17,530,Sei.LogisticRegression.chrom.subset_from_all,0.12062870880013163
19
+ 18,260,Sei.LogisticRegression.chrom.subset_from_all,0.24443433737023604
20
+ 19,460,Sei.LogisticRegression.chrom.subset_from_all,0.17716182640395306
21
+ 20,460,Sei.LogisticRegression.chrom.subset_from_all,0.12730428214649503
22
+ 21,110,Sei.LogisticRegression.chrom.subset_from_all,0.2868059768422745
23
+ 22,260,Sei.LogisticRegression.chrom.subset_from_all,0.329592586152474
complex_traits_matched_9/AUPRC_by_chrom/no_cadd_overlap/Sei.plus.seqclass_max_absdiff.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,830,Sei.plus.seqclass_max_absdiff,0.19043319174434237
3
+ 2,800,Sei.plus.seqclass_max_absdiff,0.2018560424823279
4
+ 3,590,Sei.plus.seqclass_max_absdiff,0.17976370596686136
5
+ 4,350,Sei.plus.seqclass_max_absdiff,0.2612545607178006
6
+ 5,390,Sei.plus.seqclass_max_absdiff,0.23417858251453447
7
+ 6,710,Sei.plus.seqclass_max_absdiff,0.1439318549567867
8
+ 7,490,Sei.plus.seqclass_max_absdiff,0.21175143260039023
9
+ 8,390,Sei.plus.seqclass_max_absdiff,0.1475706299723619
10
+ 9,410,Sei.plus.seqclass_max_absdiff,0.17037965202001434
11
+ 10,470,Sei.plus.seqclass_max_absdiff,0.20175787925274585
12
+ 11,610,Sei.plus.seqclass_max_absdiff,0.1688675184075084
13
+ 12,510,Sei.plus.seqclass_max_absdiff,0.19930421428770478
14
+ 13,190,Sei.plus.seqclass_max_absdiff,0.33090222543422776
15
+ 14,340,Sei.plus.seqclass_max_absdiff,0.20261402547917315
16
+ 15,390,Sei.plus.seqclass_max_absdiff,0.209329252490387
17
+ 16,550,Sei.plus.seqclass_max_absdiff,0.20742583317889468
18
+ 17,530,Sei.plus.seqclass_max_absdiff,0.11851721466465413
19
+ 18,260,Sei.plus.seqclass_max_absdiff,0.2412553916297386
20
+ 19,460,Sei.plus.seqclass_max_absdiff,0.16979381945102737
21
+ 20,460,Sei.plus.seqclass_max_absdiff,0.1436809611677438
22
+ 21,110,Sei.plus.seqclass_max_absdiff,0.2913699652712499
23
+ 22,260,Sei.plus.seqclass_max_absdiff,0.32441264997054464
complex_traits_matched_9/AUPRC_by_chrom/no_eqtl_overlap/Borzoi.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,840,Borzoi.LogisticRegression.chrom.subset_from_all,0.27570960430610597
3
+ 2,830,Borzoi.LogisticRegression.chrom.subset_from_all,0.22221586550252279
4
+ 3,620,Borzoi.LogisticRegression.chrom.subset_from_all,0.26998624486946865
5
+ 4,370,Borzoi.LogisticRegression.chrom.subset_from_all,0.2700226492925817
6
+ 5,450,Borzoi.LogisticRegression.chrom.subset_from_all,0.27881655968570473
7
+ 6,740,Borzoi.LogisticRegression.chrom.subset_from_all,0.18485289974065
8
+ 7,470,Borzoi.LogisticRegression.chrom.subset_from_all,0.37154254638384954
9
+ 8,440,Borzoi.LogisticRegression.chrom.subset_from_all,0.25088045644847357
10
+ 9,400,Borzoi.LogisticRegression.chrom.subset_from_all,0.2663724199324347
11
+ 10,480,Borzoi.LogisticRegression.chrom.subset_from_all,0.3352472239455365
12
+ 11,640,Borzoi.LogisticRegression.chrom.subset_from_all,0.2555894989201887
13
+ 12,540,Borzoi.LogisticRegression.chrom.subset_from_all,0.3681797873662092
14
+ 13,170,Borzoi.LogisticRegression.chrom.subset_from_all,0.19617484161579057
15
+ 14,310,Borzoi.LogisticRegression.chrom.subset_from_all,0.17969284585762235
16
+ 15,370,Borzoi.LogisticRegression.chrom.subset_from_all,0.35374577142496444
17
+ 16,530,Borzoi.LogisticRegression.chrom.subset_from_all,0.32509111247468664
18
+ 17,500,Borzoi.LogisticRegression.chrom.subset_from_all,0.3428879394783027
19
+ 18,260,Borzoi.LogisticRegression.chrom.subset_from_all,0.2617481091756252
20
+ 19,520,Borzoi.LogisticRegression.chrom.subset_from_all,0.32077701166604267
21
+ 20,510,Borzoi.LogisticRegression.chrom.subset_from_all,0.2043290566548771
22
+ 21,140,Borzoi.LogisticRegression.chrom.subset_from_all,0.4834396287349453
23
+ 22,240,Borzoi.LogisticRegression.chrom.subset_from_all,0.31820428460811506
complex_traits_matched_9/AUPRC_by_chrom/no_eqtl_overlap/Borzoi_L2_L2.plus.all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,840,Borzoi_L2_L2.plus.all,0.17750524309421056
3
+ 2,830,Borzoi_L2_L2.plus.all,0.1868461280465924
4
+ 3,620,Borzoi_L2_L2.plus.all,0.21221536711388392
5
+ 4,370,Borzoi_L2_L2.plus.all,0.22212080232310732
6
+ 5,450,Borzoi_L2_L2.plus.all,0.23331789035452907
7
+ 6,740,Borzoi_L2_L2.plus.all,0.13893573288065292
8
+ 7,470,Borzoi_L2_L2.plus.all,0.26162712826370715
9
+ 8,440,Borzoi_L2_L2.plus.all,0.21160561758042967
10
+ 9,400,Borzoi_L2_L2.plus.all,0.18349681957051614
11
+ 10,480,Borzoi_L2_L2.plus.all,0.16801698784097213
12
+ 11,640,Borzoi_L2_L2.plus.all,0.20577142888127134
13
+ 12,540,Borzoi_L2_L2.plus.all,0.2797328908786028
14
+ 13,170,Borzoi_L2_L2.plus.all,0.31698693654188925
15
+ 14,310,Borzoi_L2_L2.plus.all,0.16331534123326438
16
+ 15,370,Borzoi_L2_L2.plus.all,0.19396688659658867
17
+ 16,530,Borzoi_L2_L2.plus.all,0.23867684354660088
18
+ 17,500,Borzoi_L2_L2.plus.all,0.24069232893154668
19
+ 18,260,Borzoi_L2_L2.plus.all,0.2082910269027229
20
+ 19,520,Borzoi_L2_L2.plus.all,0.25706504933639307
21
+ 20,510,Borzoi_L2_L2.plus.all,0.19310383359859373
22
+ 21,140,Borzoi_L2_L2.plus.all,0.3409323336713239
23
+ 22,240,Borzoi_L2_L2.plus.all,0.33128807234551827
complex_traits_matched_9/AUPRC_by_chrom/no_eqtl_overlap/CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,840,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.34559476459375243
3
+ 2,830,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.31173042703635884
4
+ 3,620,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.3258679224183638
5
+ 4,370,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.26083478639185675
6
+ 5,450,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.31124137944989483
7
+ 6,740,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.2781804854376463
8
+ 7,470,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.46465094029083537
9
+ 8,440,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.3226572821093142
10
+ 9,400,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.34949845437125654
11
+ 10,480,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.4385365568431714
12
+ 11,640,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.28377275803747426
13
+ 12,540,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.440031584985096
14
+ 13,170,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.3068409504167039
15
+ 14,310,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.3058447385715191
16
+ 15,370,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.34706222141140547
17
+ 16,530,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.49183884255899457
18
+ 17,500,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.38269482862919446
19
+ 18,260,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.35312726236700154
20
+ 19,520,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.4007148917401256
21
+ 20,510,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.27270088997142516
22
+ 21,140,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.4753160009371189
23
+ 22,240,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.37418914207382215
complex_traits_matched_9/AUPRC_by_chrom/no_eqtl_overlap/CADD.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,840,CADD.LogisticRegression.chrom.subset_from_all,0.24070525335292153
3
+ 2,830,CADD.LogisticRegression.chrom.subset_from_all,0.2631490133777026
4
+ 3,620,CADD.LogisticRegression.chrom.subset_from_all,0.2933564907038184
5
+ 4,370,CADD.LogisticRegression.chrom.subset_from_all,0.2149044384821274
6
+ 5,450,CADD.LogisticRegression.chrom.subset_from_all,0.24053332048497122
7
+ 6,740,CADD.LogisticRegression.chrom.subset_from_all,0.2582409039190898
8
+ 7,470,CADD.LogisticRegression.chrom.subset_from_all,0.34193613457279015
9
+ 8,440,CADD.LogisticRegression.chrom.subset_from_all,0.26552646848629013
10
+ 9,400,CADD.LogisticRegression.chrom.subset_from_all,0.32530620414421946
11
+ 10,480,CADD.LogisticRegression.chrom.subset_from_all,0.32042018785023185
12
+ 11,640,CADD.LogisticRegression.chrom.subset_from_all,0.2287174355769736
13
+ 12,540,CADD.LogisticRegression.chrom.subset_from_all,0.40481888533129
14
+ 13,170,CADD.LogisticRegression.chrom.subset_from_all,0.3882522515474738
15
+ 14,310,CADD.LogisticRegression.chrom.subset_from_all,0.3588228503504209
16
+ 15,370,CADD.LogisticRegression.chrom.subset_from_all,0.17626423667868246
17
+ 16,530,CADD.LogisticRegression.chrom.subset_from_all,0.3837895344178202
18
+ 17,500,CADD.LogisticRegression.chrom.subset_from_all,0.2075718234300427
19
+ 18,260,CADD.LogisticRegression.chrom.subset_from_all,0.3847585447416015
20
+ 19,520,CADD.LogisticRegression.chrom.subset_from_all,0.2642497777057102
21
+ 20,510,CADD.LogisticRegression.chrom.subset_from_all,0.27807885911407837
22
+ 21,140,CADD.LogisticRegression.chrom.subset_from_all,0.2751542356333478
23
+ 22,240,CADD.LogisticRegression.chrom.subset_from_all,0.25316649032648125
complex_traits_matched_9/AUPRC_by_chrom/no_eqtl_overlap/CADD.plus.RawScore.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,840,CADD.plus.RawScore,0.20153180515598562
3
+ 2,830,CADD.plus.RawScore,0.2661368860105597
4
+ 3,620,CADD.plus.RawScore,0.26487922938968905
5
+ 4,370,CADD.plus.RawScore,0.2240513277252361
6
+ 5,450,CADD.plus.RawScore,0.23623131364768998
7
+ 6,740,CADD.plus.RawScore,0.1949818832184501
8
+ 7,470,CADD.plus.RawScore,0.27883056739002454
9
+ 8,440,CADD.plus.RawScore,0.20074923473628375
10
+ 9,400,CADD.plus.RawScore,0.2181200419275754
11
+ 10,480,CADD.plus.RawScore,0.3018678261197926
12
+ 11,640,CADD.plus.RawScore,0.20389189889359982
13
+ 12,540,CADD.plus.RawScore,0.3063903194085259
14
+ 13,170,CADD.plus.RawScore,0.37315887582293694
15
+ 14,310,CADD.plus.RawScore,0.27872423704245114
16
+ 15,370,CADD.plus.RawScore,0.16773629093780468
17
+ 16,530,CADD.plus.RawScore,0.3450712352837335
18
+ 17,500,CADD.plus.RawScore,0.1908629171819887
19
+ 18,260,CADD.plus.RawScore,0.35188249578697267
20
+ 19,520,CADD.plus.RawScore,0.18450431444611304
21
+ 20,510,CADD.plus.RawScore,0.28678508674646264
22
+ 21,140,CADD.plus.RawScore,0.19520299458487064
23
+ 22,240,CADD.plus.RawScore,0.21215190546198606
complex_traits_matched_9/AUPRC_by_chrom/no_eqtl_overlap/GPN-MSA.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,840,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.21390644586589733
3
+ 2,830,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.2848201402712464
4
+ 3,620,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.23225982496058506
5
+ 4,370,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.17527669042991517
6
+ 5,450,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.25795523115523084
7
+ 6,740,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.26214982846576457
8
+ 7,470,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.34177119972868947
9
+ 8,440,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.33092613578634716
10
+ 9,400,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.27223851629344653
11
+ 10,480,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.34769723215507403
12
+ 11,640,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.20192069268448937
13
+ 12,540,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.30299401139468696
14
+ 13,170,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.35691689660099285
15
+ 14,310,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.30334728962781915
16
+ 15,370,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.19665845725148606
17
+ 16,530,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.39769196053763767
18
+ 17,500,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.21739538499394828
19
+ 18,260,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.31112522540380816
20
+ 19,520,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.3207236043166634
21
+ 20,510,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.2639645562754253
22
+ 21,140,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.18212577499958077
23
+ 22,240,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.24323117099087477
complex_traits_matched_9/AUPRC_by_chrom/no_eqtl_overlap/GPN-MSA_absLLR.plus.score.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,840,GPN-MSA_absLLR.plus.score,0.17503748985283027
3
+ 2,830,GPN-MSA_absLLR.plus.score,0.209312642580971
4
+ 3,620,GPN-MSA_absLLR.plus.score,0.22956030007588707
5
+ 4,370,GPN-MSA_absLLR.plus.score,0.17035329244197533
6
+ 5,450,GPN-MSA_absLLR.plus.score,0.2319370012914796
7
+ 6,740,GPN-MSA_absLLR.plus.score,0.1628523772175591
8
+ 7,470,GPN-MSA_absLLR.plus.score,0.24058173661844684
9
+ 8,440,GPN-MSA_absLLR.plus.score,0.23861338198442852
10
+ 9,400,GPN-MSA_absLLR.plus.score,0.26135609509703606
11
+ 10,480,GPN-MSA_absLLR.plus.score,0.29690744914113065
12
+ 11,640,GPN-MSA_absLLR.plus.score,0.16531977635167483
13
+ 12,540,GPN-MSA_absLLR.plus.score,0.2502892258114139
14
+ 13,170,GPN-MSA_absLLR.plus.score,0.23453908932395617
15
+ 14,310,GPN-MSA_absLLR.plus.score,0.2260964387755349
16
+ 15,370,GPN-MSA_absLLR.plus.score,0.17703078956101825
17
+ 16,530,GPN-MSA_absLLR.plus.score,0.31775494063748816
18
+ 17,500,GPN-MSA_absLLR.plus.score,0.1679383593604931
19
+ 18,260,GPN-MSA_absLLR.plus.score,0.24356323849298095
20
+ 19,520,GPN-MSA_absLLR.plus.score,0.1770825201545339
21
+ 20,510,GPN-MSA_absLLR.plus.score,0.258606522705147
22
+ 21,140,GPN-MSA_absLLR.plus.score,0.13870280596605528
23
+ 22,240,GPN-MSA_absLLR.plus.score,0.21193670913379026
complex_traits_matched_9/AUPRC_by_chrom/non_coding_transcript_exon_variant/GPN_final.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,80,GPN_final.LogisticRegression.chrom.subset_from_all,0.12703617617356242
3
+ 2,50,GPN_final.LogisticRegression.chrom.subset_from_all,0.46227106227106224
4
+ 3,20,GPN_final.LogisticRegression.chrom.subset_from_all,0.29166666666666663
5
+ 4,10,GPN_final.LogisticRegression.chrom.subset_from_all,1.0
6
+ 5,40,GPN_final.LogisticRegression.chrom.subset_from_all,0.26493055555555556
7
+ 6,80,GPN_final.LogisticRegression.chrom.subset_from_all,0.11880393951332166
8
+ 8,40,GPN_final.LogisticRegression.chrom.subset_from_all,0.09784248010054461
9
+ 9,30,GPN_final.LogisticRegression.chrom.subset_from_all,0.18518518518518517
10
+ 10,20,GPN_final.LogisticRegression.chrom.subset_from_all,0.2222222222222222
11
+ 11,70,GPN_final.LogisticRegression.chrom.subset_from_all,0.1957160826347313
12
+ 12,40,GPN_final.LogisticRegression.chrom.subset_from_all,0.4412878787878788
13
+ 14,30,GPN_final.LogisticRegression.chrom.subset_from_all,0.2437037037037037
14
+ 15,30,GPN_final.LogisticRegression.chrom.subset_from_all,0.7
15
+ 16,40,GPN_final.LogisticRegression.chrom.subset_from_all,0.27912087912087913
16
+ 17,30,GPN_final.LogisticRegression.chrom.subset_from_all,0.1600877192982456
17
+ 18,10,GPN_final.LogisticRegression.chrom.subset_from_all,1.0
18
+ 19,30,GPN_final.LogisticRegression.chrom.subset_from_all,0.4343434343434343
19
+ 20,40,GPN_final.LogisticRegression.chrom.subset_from_all,0.4353864734299517
complex_traits_matched_9/AUPRC_by_chrom/non_coding_transcript_exon_variant/GPN_final_Embeddings.plus.euclidean_distance.csv ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,80,GPN_final_Embeddings.plus.euclidean_distance,0.13797003924177326
3
+ 2,50,GPN_final_Embeddings.plus.euclidean_distance,0.09868348111374341
4
+ 3,20,GPN_final_Embeddings.plus.euclidean_distance,0.3611111111111111
5
+ 4,10,GPN_final_Embeddings.plus.euclidean_distance,0.125
6
+ 5,40,GPN_final_Embeddings.plus.euclidean_distance,0.10965686274509803
7
+ 6,80,GPN_final_Embeddings.plus.euclidean_distance,0.13036775629834335
8
+ 8,40,GPN_final_Embeddings.plus.euclidean_distance,0.1309655257023678
9
+ 9,30,GPN_final_Embeddings.plus.euclidean_distance,0.19365079365079366
10
+ 10,20,GPN_final_Embeddings.plus.euclidean_distance,0.21666666666666667
11
+ 11,70,GPN_final_Embeddings.plus.euclidean_distance,0.151261139138314
12
+ 12,40,GPN_final_Embeddings.plus.euclidean_distance,0.33208333333333334
13
+ 14,30,GPN_final_Embeddings.plus.euclidean_distance,0.1619981325863679
14
+ 15,30,GPN_final_Embeddings.plus.euclidean_distance,0.15604575163398693
15
+ 16,40,GPN_final_Embeddings.plus.euclidean_distance,0.2875
16
+ 17,30,GPN_final_Embeddings.plus.euclidean_distance,0.102816091954023
17
+ 18,10,GPN_final_Embeddings.plus.euclidean_distance,0.1
18
+ 19,30,GPN_final_Embeddings.plus.euclidean_distance,0.121256038647343
19
+ 20,40,GPN_final_Embeddings.plus.euclidean_distance,0.16538909599254425
complex_traits_matched_9/AUPRC_by_chrom/nonexonic_AND_proximal/GPN_final.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,80,GPN_final.LogisticRegression.chrom.subset_from_all,0.2590476190476191
3
+ 11,60,GPN_final.LogisticRegression.chrom.subset_from_all,0.17107160705361604
4
+ 12,40,GPN_final.LogisticRegression.chrom.subset_from_all,0.11039790350135177
5
+ 14,80,GPN_final.LogisticRegression.chrom.subset_from_all,0.27690969911014707
6
+ 15,40,GPN_final.LogisticRegression.chrom.subset_from_all,0.3337333718912666
7
+ 16,70,GPN_final.LogisticRegression.chrom.subset_from_all,0.27040182040182037
8
+ 17,90,GPN_final.LogisticRegression.chrom.subset_from_all,0.2690593030042929
9
+ 18,20,GPN_final.LogisticRegression.chrom.subset_from_all,0.6666666666666666
10
+ 19,50,GPN_final.LogisticRegression.chrom.subset_from_all,0.2608065847196282
11
+ 2,100,GPN_final.LogisticRegression.chrom.subset_from_all,0.15463733445854874
12
+ 20,50,GPN_final.LogisticRegression.chrom.subset_from_all,0.33275560224089634
13
+ 21,20,GPN_final.LogisticRegression.chrom.subset_from_all,0.225
14
+ 22,30,GPN_final.LogisticRegression.chrom.subset_from_all,0.17990430622009568
15
+ 3,50,GPN_final.LogisticRegression.chrom.subset_from_all,0.14498168498168498
16
+ 4,50,GPN_final.LogisticRegression.chrom.subset_from_all,0.2992172930402169
17
+ 5,40,GPN_final.LogisticRegression.chrom.subset_from_all,0.4523809523809524
18
+ 6,80,GPN_final.LogisticRegression.chrom.subset_from_all,0.19351814851814853
19
+ 7,30,GPN_final.LogisticRegression.chrom.subset_from_all,0.3207282913165266
20
+ 8,40,GPN_final.LogisticRegression.chrom.subset_from_all,0.1472196594010687
21
+ 9,30,GPN_final.LogisticRegression.chrom.subset_from_all,0.23660130718954248
complex_traits_matched_9/AUPRC_by_chrom/nonexonic_AND_proximal/GPN_final_Embeddings.plus.euclidean_distance.csv ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,80,GPN_final_Embeddings.plus.euclidean_distance,0.1262990615461897
3
+ 11,60,GPN_final_Embeddings.plus.euclidean_distance,0.1884025895814514
4
+ 12,40,GPN_final_Embeddings.plus.euclidean_distance,0.4737554112554112
5
+ 14,80,GPN_final_Embeddings.plus.euclidean_distance,0.2890283501008526
6
+ 15,40,GPN_final_Embeddings.plus.euclidean_distance,0.14750531726338179
7
+ 16,70,GPN_final_Embeddings.plus.euclidean_distance,0.23024450887074194
8
+ 17,90,GPN_final_Embeddings.plus.euclidean_distance,0.1611313441773212
9
+ 18,20,GPN_final_Embeddings.plus.euclidean_distance,0.6
10
+ 19,50,GPN_final_Embeddings.plus.euclidean_distance,0.16155187405187404
11
+ 2,100,GPN_final_Embeddings.plus.euclidean_distance,0.10977499816136468
12
+ 20,50,GPN_final_Embeddings.plus.euclidean_distance,0.16949109787455652
13
+ 21,20,GPN_final_Embeddings.plus.euclidean_distance,0.6111111111111112
14
+ 22,30,GPN_final_Embeddings.plus.euclidean_distance,0.5972222222222222
15
+ 3,50,GPN_final_Embeddings.plus.euclidean_distance,0.29516548463356973
16
+ 4,50,GPN_final_Embeddings.plus.euclidean_distance,0.47689393939393937
17
+ 5,40,GPN_final_Embeddings.plus.euclidean_distance,0.22946127946127945
18
+ 6,80,GPN_final_Embeddings.plus.euclidean_distance,0.11291939804008577
19
+ 7,30,GPN_final_Embeddings.plus.euclidean_distance,0.1638888888888889
20
+ 8,40,GPN_final_Embeddings.plus.euclidean_distance,0.45
21
+ 9,30,GPN_final_Embeddings.plus.euclidean_distance,0.07782957782957783
complex_traits_matched_9/AUPRC_by_chrom/pip_0.99/Borzoi.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,670,Borzoi.LogisticRegression.chrom.subset_from_all,0.34609539970110353
3
+ 2,590,Borzoi.LogisticRegression.chrom.subset_from_all,0.2609916805675465
4
+ 3,420,Borzoi.LogisticRegression.chrom.subset_from_all,0.2704336980393677
5
+ 4,280,Borzoi.LogisticRegression.chrom.subset_from_all,0.27156598110633573
6
+ 5,320,Borzoi.LogisticRegression.chrom.subset_from_all,0.3259839873382789
7
+ 6,570,Borzoi.LogisticRegression.chrom.subset_from_all,0.21502161103974227
8
+ 7,340,Borzoi.LogisticRegression.chrom.subset_from_all,0.514556956587132
9
+ 8,250,Borzoi.LogisticRegression.chrom.subset_from_all,0.24504025105191152
10
+ 9,280,Borzoi.LogisticRegression.chrom.subset_from_all,0.3336416867094865
11
+ 10,300,Borzoi.LogisticRegression.chrom.subset_from_all,0.4286089986753991
12
+ 11,480,Borzoi.LogisticRegression.chrom.subset_from_all,0.3372470067183618
13
+ 12,360,Borzoi.LogisticRegression.chrom.subset_from_all,0.3761837775700489
14
+ 13,150,Borzoi.LogisticRegression.chrom.subset_from_all,0.26460607297728933
15
+ 14,230,Borzoi.LogisticRegression.chrom.subset_from_all,0.2013518198881302
16
+ 15,260,Borzoi.LogisticRegression.chrom.subset_from_all,0.4145645606631162
17
+ 16,460,Borzoi.LogisticRegression.chrom.subset_from_all,0.3740696281504191
18
+ 17,400,Borzoi.LogisticRegression.chrom.subset_from_all,0.4143972649887278
19
+ 18,160,Borzoi.LogisticRegression.chrom.subset_from_all,0.36802062264643653
20
+ 19,380,Borzoi.LogisticRegression.chrom.subset_from_all,0.4031562569285465
21
+ 20,330,Borzoi.LogisticRegression.chrom.subset_from_all,0.23787875232441996
22
+ 21,80,Borzoi.LogisticRegression.chrom.subset_from_all,0.5468462823725981
23
+ 22,180,Borzoi.LogisticRegression.chrom.subset_from_all,0.3065125413507501
complex_traits_matched_9/AUPRC_by_chrom/pip_0.99/CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,670,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.4091116711367006
3
+ 2,590,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.3333521671420373
4
+ 3,420,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.352584549181094
5
+ 4,280,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.3094535100226825
6
+ 5,320,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.30982865230681866
7
+ 6,570,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.34471912476066663
8
+ 7,340,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.5808033068381928
9
+ 8,250,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.29947099217190537
10
+ 9,280,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.4122879405499527
11
+ 10,300,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.5018621847476034
12
+ 11,480,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.3793154505573373
13
+ 12,360,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.45154608227496074
14
+ 13,150,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.3414339320588363
15
+ 14,230,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.31719638321333693
16
+ 15,260,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.3884203964452342
17
+ 16,460,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.48246742002237436
18
+ 17,400,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.42921254394947017
19
+ 18,160,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.48289855493098677
20
+ 19,380,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.48042803048306043
21
+ 20,330,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.3108797895955782
22
+ 21,80,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.5140309952809953
23
+ 22,180,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.40738179387891205
complex_traits_matched_9/AUPRC_by_chrom/pip_0.99/CADD.plus.RawScore.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,670,CADD.plus.RawScore,0.22341199075780516
3
+ 2,590,CADD.plus.RawScore,0.2738197960707961
4
+ 3,420,CADD.plus.RawScore,0.32940858517048627
5
+ 4,280,CADD.plus.RawScore,0.23494208400171412
6
+ 5,320,CADD.plus.RawScore,0.25909870955272096
7
+ 6,570,CADD.plus.RawScore,0.19650671564365668
8
+ 7,340,CADD.plus.RawScore,0.3158623734829076
9
+ 8,250,CADD.plus.RawScore,0.20246408127044088
10
+ 9,280,CADD.plus.RawScore,0.2164127243108949
11
+ 10,300,CADD.plus.RawScore,0.3341398200485606
12
+ 11,480,CADD.plus.RawScore,0.23336268491809042
13
+ 12,360,CADD.plus.RawScore,0.29095155656973687
14
+ 13,150,CADD.plus.RawScore,0.312993085216372
15
+ 14,230,CADD.plus.RawScore,0.29370982651743527
16
+ 15,260,CADD.plus.RawScore,0.22337863456583462
17
+ 16,460,CADD.plus.RawScore,0.29012395899319293
18
+ 17,400,CADD.plus.RawScore,0.21029219956346817
19
+ 18,160,CADD.plus.RawScore,0.4066709751887771
20
+ 19,380,CADD.plus.RawScore,0.20244284549766636
21
+ 20,330,CADD.plus.RawScore,0.29615088717706506
22
+ 21,80,CADD.plus.RawScore,0.1830058391858504
23
+ 22,180,CADD.plus.RawScore,0.33819753852920986
complex_traits_matched_9/AUPRC_by_chrom/pip_0.999/Borzoi.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,500,Borzoi.LogisticRegression.chrom.subset_from_all,0.40160981306719634
3
+ 2,420,Borzoi.LogisticRegression.chrom.subset_from_all,0.31242617973931014
4
+ 3,290,Borzoi.LogisticRegression.chrom.subset_from_all,0.31982418993285594
5
+ 4,160,Borzoi.LogisticRegression.chrom.subset_from_all,0.3166316197652608
6
+ 5,250,Borzoi.LogisticRegression.chrom.subset_from_all,0.30875111057312216
7
+ 6,420,Borzoi.LogisticRegression.chrom.subset_from_all,0.23352090710443865
8
+ 7,290,Borzoi.LogisticRegression.chrom.subset_from_all,0.5230464592841576
9
+ 8,180,Borzoi.LogisticRegression.chrom.subset_from_all,0.24137086232524393
10
+ 9,210,Borzoi.LogisticRegression.chrom.subset_from_all,0.383830660103079
11
+ 10,200,Borzoi.LogisticRegression.chrom.subset_from_all,0.5443184444110131
12
+ 11,300,Borzoi.LogisticRegression.chrom.subset_from_all,0.42901372772520335
13
+ 12,280,Borzoi.LogisticRegression.chrom.subset_from_all,0.3021614536197318
14
+ 13,100,Borzoi.LogisticRegression.chrom.subset_from_all,0.2980460234525432
15
+ 14,170,Borzoi.LogisticRegression.chrom.subset_from_all,0.18005151480311793
16
+ 15,210,Borzoi.LogisticRegression.chrom.subset_from_all,0.3939118466875766
17
+ 16,360,Borzoi.LogisticRegression.chrom.subset_from_all,0.41951496310430875
18
+ 17,260,Borzoi.LogisticRegression.chrom.subset_from_all,0.4205227374088582
19
+ 18,130,Borzoi.LogisticRegression.chrom.subset_from_all,0.3862506045251874
20
+ 19,230,Borzoi.LogisticRegression.chrom.subset_from_all,0.47505490501638553
21
+ 20,200,Borzoi.LogisticRegression.chrom.subset_from_all,0.282044141598286
22
+ 21,50,Borzoi.LogisticRegression.chrom.subset_from_all,0.6857142857142857
23
+ 22,140,Borzoi.LogisticRegression.chrom.subset_from_all,0.2746453766121206
complex_traits_matched_9/AUPRC_by_chrom/pip_0.999/Borzoi_L2_L2.plus.all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,500,Borzoi_L2_L2.plus.all,0.3293560269091964
3
+ 2,420,Borzoi_L2_L2.plus.all,0.29626317103510114
4
+ 3,290,Borzoi_L2_L2.plus.all,0.27275473069956785
5
+ 4,160,Borzoi_L2_L2.plus.all,0.3120689949409645
6
+ 5,250,Borzoi_L2_L2.plus.all,0.36500503820633307
7
+ 6,420,Borzoi_L2_L2.plus.all,0.14663875345037755
8
+ 7,290,Borzoi_L2_L2.plus.all,0.37369813214419756
9
+ 8,180,Borzoi_L2_L2.plus.all,0.21618993607609904
10
+ 9,210,Borzoi_L2_L2.plus.all,0.22892837856165263
11
+ 10,200,Borzoi_L2_L2.plus.all,0.32363168943244874
12
+ 11,300,Borzoi_L2_L2.plus.all,0.37411510591186625
13
+ 12,280,Borzoi_L2_L2.plus.all,0.3337425551919725
14
+ 13,100,Borzoi_L2_L2.plus.all,0.41252293938170237
15
+ 14,170,Borzoi_L2_L2.plus.all,0.2109973848612505
16
+ 15,210,Borzoi_L2_L2.plus.all,0.22602594722331804
17
+ 16,360,Borzoi_L2_L2.plus.all,0.3378352340546488
18
+ 17,260,Borzoi_L2_L2.plus.all,0.2945135783668346
19
+ 18,130,Borzoi_L2_L2.plus.all,0.27487885058182177
20
+ 19,230,Borzoi_L2_L2.plus.all,0.3984081192357095
21
+ 20,200,Borzoi_L2_L2.plus.all,0.21600194563345562
22
+ 21,50,Borzoi_L2_L2.plus.all,0.632156862745098
23
+ 22,140,Borzoi_L2_L2.plus.all,0.34946834908986724
complex_traits_matched_9/AUPRC_by_chrom/pip_0.999/CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,500,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.48011994847863226
3
+ 2,420,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.3789221561212436
4
+ 3,290,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.38224124688083616
5
+ 4,160,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.3633672865785938
6
+ 5,250,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.2725499147266549
7
+ 6,420,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.3494601099299758
8
+ 7,290,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.6007771994963391
9
+ 8,180,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.3374217720355921
10
+ 9,210,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.4613913166673242
11
+ 10,200,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.5792283216714436
12
+ 11,300,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.48067838602218627
13
+ 12,280,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.40192975393270264
14
+ 13,100,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.35482721118750526
15
+ 14,170,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.24085090647240479
16
+ 15,210,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.376512953099602
17
+ 16,360,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.5179686914497575
18
+ 17,260,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.462650533546056
19
+ 18,130,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.5605536205944355
20
+ 19,230,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.5125526523649154
21
+ 20,200,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.37085240594596514
22
+ 21,50,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.6032051282051283
23
+ 22,140,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.3374361042023002
complex_traits_matched_9/AUPRC_by_chrom/pip_0.999/CADD.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,500,CADD.LogisticRegression.chrom.subset_from_all,0.30131003246014887
3
+ 2,420,CADD.LogisticRegression.chrom.subset_from_all,0.22186735889581444
4
+ 3,290,CADD.LogisticRegression.chrom.subset_from_all,0.40645736625093015
5
+ 4,160,CADD.LogisticRegression.chrom.subset_from_all,0.31470979686437195
6
+ 5,250,CADD.LogisticRegression.chrom.subset_from_all,0.21732038495191086
7
+ 6,420,CADD.LogisticRegression.chrom.subset_from_all,0.2641655547729248
8
+ 7,290,CADD.LogisticRegression.chrom.subset_from_all,0.4111786795169678
9
+ 8,180,CADD.LogisticRegression.chrom.subset_from_all,0.41767526701087565
10
+ 9,210,CADD.LogisticRegression.chrom.subset_from_all,0.31230509268979795
11
+ 10,200,CADD.LogisticRegression.chrom.subset_from_all,0.35376079930975
12
+ 11,300,CADD.LogisticRegression.chrom.subset_from_all,0.3032560849302374
13
+ 12,280,CADD.LogisticRegression.chrom.subset_from_all,0.40835464939948163
14
+ 13,100,CADD.LogisticRegression.chrom.subset_from_all,0.4184295527396886
15
+ 14,170,CADD.LogisticRegression.chrom.subset_from_all,0.31303116498781164
16
+ 15,210,CADD.LogisticRegression.chrom.subset_from_all,0.2275113017565179
17
+ 16,360,CADD.LogisticRegression.chrom.subset_from_all,0.3940982673411397
18
+ 17,260,CADD.LogisticRegression.chrom.subset_from_all,0.2439178940177734
19
+ 18,130,CADD.LogisticRegression.chrom.subset_from_all,0.5285643030239201
20
+ 19,230,CADD.LogisticRegression.chrom.subset_from_all,0.24857684382728068
21
+ 20,200,CADD.LogisticRegression.chrom.subset_from_all,0.31194140314605323
22
+ 21,50,CADD.LogisticRegression.chrom.subset_from_all,0.4015151515151515
23
+ 22,140,CADD.LogisticRegression.chrom.subset_from_all,0.30006013892667416
complex_traits_matched_9/AUPRC_by_chrom/pip_0.999/CADD.plus.RawScore.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,500,CADD.plus.RawScore,0.2722516793036144
3
+ 2,420,CADD.plus.RawScore,0.27447374366157873
4
+ 3,290,CADD.plus.RawScore,0.37739558128609657
5
+ 4,160,CADD.plus.RawScore,0.2383220552695602
6
+ 5,250,CADD.plus.RawScore,0.2439849444534522
7
+ 6,420,CADD.plus.RawScore,0.21394459798623108
8
+ 7,290,CADD.plus.RawScore,0.3613157180835323
9
+ 8,180,CADD.plus.RawScore,0.3201144390649864
10
+ 9,210,CADD.plus.RawScore,0.24428793825240958
11
+ 10,200,CADD.plus.RawScore,0.2745057294732142
12
+ 11,300,CADD.plus.RawScore,0.27807740416304516
13
+ 12,280,CADD.plus.RawScore,0.2831270228440893
14
+ 13,100,CADD.plus.RawScore,0.32656222618988573
15
+ 14,170,CADD.plus.RawScore,0.2869168373316869
16
+ 15,210,CADD.plus.RawScore,0.2669294137655534
17
+ 16,360,CADD.plus.RawScore,0.3345134140249323
18
+ 17,260,CADD.plus.RawScore,0.2690815841278201
19
+ 18,130,CADD.plus.RawScore,0.4567811004747335
20
+ 19,230,CADD.plus.RawScore,0.20692642657506993
21
+ 20,200,CADD.plus.RawScore,0.2959758013970087
22
+ 21,50,CADD.plus.RawScore,0.11391716839992701
23
+ 22,140,CADD.plus.RawScore,0.26982426269181875
complex_traits_matched_9/AUPRC_by_chrom/pip_0.999/GPN-MSA.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,500,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.3070474635323063
3
+ 2,420,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.270497861698667
4
+ 3,290,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.24407790890923461
5
+ 4,160,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.2054620693856859
6
+ 5,250,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.23379461718756156
7
+ 6,420,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.3173479537220611
8
+ 7,290,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.39537672708783034
9
+ 8,180,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.4506609695764248
10
+ 9,210,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.2955155180972195
11
+ 10,200,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.42784805071584314
12
+ 11,300,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.29676375007614675
13
+ 12,280,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.4208605604377018
14
+ 13,100,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.19786717501907375
15
+ 14,170,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.3050405727813981
16
+ 15,210,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.20467997041776184
17
+ 16,360,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.3132613479890769
18
+ 17,260,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.2752156952820998
19
+ 18,130,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.44886192311229794
20
+ 19,230,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.35976250208417676
21
+ 20,200,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.3069853327411064
22
+ 21,50,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.14436274509803923
23
+ 22,140,GPN-MSA.LogisticRegression.chrom.subset_from_all,0.2620724742369696
complex_traits_matched_9/AUPRC_by_chrom/pip_0.999/GPN-MSA_absLLR.plus.score.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,500,GPN-MSA_absLLR.plus.score,0.25032071879615736
3
+ 2,420,GPN-MSA_absLLR.plus.score,0.19531215486400627
4
+ 3,290,GPN-MSA_absLLR.plus.score,0.35174712363018573
5
+ 4,160,GPN-MSA_absLLR.plus.score,0.17668494839147214
6
+ 5,250,GPN-MSA_absLLR.plus.score,0.28436065200385946
7
+ 6,420,GPN-MSA_absLLR.plus.score,0.2096942130031989
8
+ 7,290,GPN-MSA_absLLR.plus.score,0.3222420609879737
9
+ 8,180,GPN-MSA_absLLR.plus.score,0.32192191787389934
10
+ 9,210,GPN-MSA_absLLR.plus.score,0.25084175869742253
11
+ 10,200,GPN-MSA_absLLR.plus.score,0.35050340414782055
12
+ 11,300,GPN-MSA_absLLR.plus.score,0.22047397093604804
13
+ 12,280,GPN-MSA_absLLR.plus.score,0.26510682791255885
14
+ 13,100,GPN-MSA_absLLR.plus.score,0.1928535536282015
15
+ 14,170,GPN-MSA_absLLR.plus.score,0.29153081065220343
16
+ 15,210,GPN-MSA_absLLR.plus.score,0.1806504840055581
17
+ 16,360,GPN-MSA_absLLR.plus.score,0.25838568317203303
18
+ 17,260,GPN-MSA_absLLR.plus.score,0.2215507114507975
19
+ 18,130,GPN-MSA_absLLR.plus.score,0.3040428610330314
20
+ 19,230,GPN-MSA_absLLR.plus.score,0.18642036417840754
21
+ 20,200,GPN-MSA_absLLR.plus.score,0.28758077342022675
22
+ 21,50,GPN-MSA_absLLR.plus.score,0.1067117327117327
23
+ 22,140,GPN-MSA_absLLR.plus.score,0.2553221783641831
complex_traits_matched_9/AUPRC_by_chrom/pleiotropy_no/Borzoi.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,690,Borzoi.LogisticRegression.chrom.subset_from_all,0.2971805065887371
3
+ 2,680,Borzoi.LogisticRegression.chrom.subset_from_all,0.1887517417881207
4
+ 3,490,Borzoi.LogisticRegression.chrom.subset_from_all,0.2850972977729853
5
+ 4,250,Borzoi.LogisticRegression.chrom.subset_from_all,0.21077877782360657
6
+ 5,420,Borzoi.LogisticRegression.chrom.subset_from_all,0.2981407214592252
7
+ 6,610,Borzoi.LogisticRegression.chrom.subset_from_all,0.17730865486028471
8
+ 7,360,Borzoi.LogisticRegression.chrom.subset_from_all,0.3496251212657776
9
+ 8,380,Borzoi.LogisticRegression.chrom.subset_from_all,0.2237206985818772
10
+ 9,330,Borzoi.LogisticRegression.chrom.subset_from_all,0.23312990767674407
11
+ 10,390,Borzoi.LogisticRegression.chrom.subset_from_all,0.28912194325641016
12
+ 11,530,Borzoi.LogisticRegression.chrom.subset_from_all,0.2863105589979436
13
+ 12,450,Borzoi.LogisticRegression.chrom.subset_from_all,0.34274230495528935
14
+ 13,160,Borzoi.LogisticRegression.chrom.subset_from_all,0.16564344772914522
15
+ 14,310,Borzoi.LogisticRegression.chrom.subset_from_all,0.15250271582978198
16
+ 15,270,Borzoi.LogisticRegression.chrom.subset_from_all,0.3263902069148408
17
+ 16,380,Borzoi.LogisticRegression.chrom.subset_from_all,0.30870188477365085
18
+ 17,400,Borzoi.LogisticRegression.chrom.subset_from_all,0.20075613147381433
19
+ 18,190,Borzoi.LogisticRegression.chrom.subset_from_all,0.2784991077131923
20
+ 19,410,Borzoi.LogisticRegression.chrom.subset_from_all,0.27709056842708485
21
+ 20,420,Borzoi.LogisticRegression.chrom.subset_from_all,0.23257785563596056
22
+ 21,110,Borzoi.LogisticRegression.chrom.subset_from_all,0.43802296930639184
23
+ 22,240,Borzoi.LogisticRegression.chrom.subset_from_all,0.3925215178898528
complex_traits_matched_9/AUPRC_by_chrom/pleiotropy_no/Borzoi_L2_L2.plus.all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,690,Borzoi_L2_L2.plus.all,0.21500130328730097
3
+ 2,680,Borzoi_L2_L2.plus.all,0.18868124568534286
4
+ 3,490,Borzoi_L2_L2.plus.all,0.22922662414025755
5
+ 4,250,Borzoi_L2_L2.plus.all,0.17580036752158315
6
+ 5,420,Borzoi_L2_L2.plus.all,0.2434386361947568
7
+ 6,610,Borzoi_L2_L2.plus.all,0.15384791031713635
8
+ 7,360,Borzoi_L2_L2.plus.all,0.22773088642679862
9
+ 8,380,Borzoi_L2_L2.plus.all,0.16539352084888348
10
+ 9,330,Borzoi_L2_L2.plus.all,0.1669897199525168
11
+ 10,390,Borzoi_L2_L2.plus.all,0.18448710408373328
12
+ 11,530,Borzoi_L2_L2.plus.all,0.2224863411982337
13
+ 12,450,Borzoi_L2_L2.plus.all,0.2424406267837772
14
+ 13,160,Borzoi_L2_L2.plus.all,0.3089136325389407
15
+ 14,310,Borzoi_L2_L2.plus.all,0.20035881877188574
16
+ 15,270,Borzoi_L2_L2.plus.all,0.19803917675139926
17
+ 16,380,Borzoi_L2_L2.plus.all,0.26388321845209944
18
+ 17,400,Borzoi_L2_L2.plus.all,0.11689855167521082
19
+ 18,190,Borzoi_L2_L2.plus.all,0.19022457079735866
20
+ 19,410,Borzoi_L2_L2.plus.all,0.23873980324265642
21
+ 20,420,Borzoi_L2_L2.plus.all,0.1782870509503453
22
+ 21,110,Borzoi_L2_L2.plus.all,0.36492720639375875
23
+ 22,240,Borzoi_L2_L2.plus.all,0.3448678336187191
complex_traits_matched_9/AUPRC_by_chrom/pleiotropy_no/CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,690,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.3795674219383475
3
+ 2,680,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.2849603464390862
4
+ 3,490,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.32113046866707695
5
+ 4,250,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.2338119774590098
6
+ 5,420,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.34530626698264505
7
+ 6,610,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.2500008944937088
8
+ 7,360,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.42507065567813507
9
+ 8,380,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.29648508079267794
10
+ 9,330,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.31933186170887545
11
+ 10,390,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.35729086301392243
12
+ 11,530,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.3103683116705846
13
+ 12,450,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.4199644105556457
14
+ 13,160,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.24638973657933722
15
+ 14,310,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.22445970290309308
16
+ 15,270,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.3324190448093042
17
+ 16,380,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.48678087962425953
18
+ 17,400,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.22492429967831165
19
+ 18,190,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.32670224459905944
20
+ 19,410,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.34702449529602636
21
+ 20,420,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.26362098041509785
22
+ 21,110,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.44150988063337027
23
+ 22,240,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.subset_from_all,0.4687646762655531