metadata
library_name: transformers
license: apache-2.0
base_model: bert-large-uncased
tags:
- generated_from_trainer
model-index:
- name: t5-gpt_par_bert_large_uncased_finetuned_v2
results: []
t5-gpt_par_bert_large_uncased_finetuned_v2
This model is a fine-tuned version of bert-large-uncased on the None dataset. It achieves the following results on the evaluation set:
- eval_loss: 0.0019
- eval_f1_micro: 0.9984
- eval_roc_auc_micro: 1.0000
- eval_accuracy: 0.9967
- eval_precision_micro: 0.9990
- eval_recall_micro: 0.9978
- eval_f1_macro: 0.9985
- eval_roc_auc_macro: 1.0000
- eval_accuracy1: 0.9967
- eval_precision_macro: 0.9992
- eval_recall_macro: 0.9978
- eval_pr_auc_micro: 1.0000
- eval_pr_auc_macro: 1.0000
- eval_runtime: 57.9074
- eval_samples_per_second: 41.929
- eval_steps_per_second: 5.25
- epoch: 3.4250
- step: 4158
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Framework versions
- Transformers 4.48.2
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0