File size: 13,430 Bytes
401fa20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import copy
import datetime
import logging
import os
import time
from os.path import join
from shutil import copyfile

import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import wandb
from omegaconf import OmegaConf

from dataset import (create_dataset, create_loader, create_sampler,
                     vqa_collate_fn)
from dataset.utils import sync_save_result
from models.vindlu_qa import VindLU_QA
from models.vindlu_vit_qa import VindLU_VIT_QA
from models.vindlu_blip_T5 import VindLU_BLIP_T5
from tasks.shared_utils import setup_model
from tasks.vqa_utils import eval_qa_acc
from utils.basic_utils import (MetricLogger, SmoothedValue, save_json,
                               setup_seed)
from utils.config import Config
from utils.config_utils import setup_main
from utils.distributed import get_rank, get_world_size, is_main_process
from utils.logger import log_dict_to_wandb, setup_wandb

logger = logging.getLogger(__name__)


def train(
    model,
    train_loader,
    optimizer,
    tokenizer,
    epoch,
    global_step,
    device,
    scheduler,
    scaler,
    config,
):
    model.train()

    metric_logger = MetricLogger(delimiter="  ")
    metric_logger.add_meter("lr", SmoothedValue(window=1, fmt="{value:.6f}"))
    metric_logger.add_meter("loss", SmoothedValue(window=1, fmt="{value:.4f}"))

    header = "Train Epoch: [{}]".format(epoch)
    log_freq = config.log_freq

    if config.distributed:
        train_loader.sampler.set_epoch(epoch)

    iterator = metric_logger.log_every(train_loader, log_freq, header)
    for i, data in enumerate(iterator):
        image, question, answer, weights, n = data
        image = image.to(device, non_blocking=True)
        weights = weights.to(device, non_blocking=True)
        question_input = tokenizer(
            question,
            padding="max_length",
            truncation=True,
            max_length=config.max_q_len,
            return_tensors="pt",
        ).to(device)
        answer_input = tokenizer(
            answer,
            padding="max_length",
            truncation=True,
            max_length=config.max_a_len,
            return_tensors="pt",
        ).to(device)

        with torch.cuda.amp.autocast(enabled=config.fp16, dtype=torch.bfloat16):
            loss = model(
                image, question_input, answer_input, train=True, k=n, weights=weights,
                raw_question=list(question), raw_answer=list(answer),
            )

        optimizer.zero_grad()
        scaler.scale(loss).backward()
        if config.optimizer.max_grad_norm > 0:
            scaler.unscale_(optimizer)
            torch.nn.utils.clip_grad_norm_(model.parameters(), config.optimizer.max_grad_norm)
        scaler.step(optimizer)
        scaler.update()
        scheduler.step()

        # logging
        metric_logger.update(loss=loss.item())
        metric_logger.update(lr=optimizer.param_groups[0]["lr"])

        if is_main_process() and config.wandb.enable and global_step % log_freq == 0:
            logs = metric_logger.get_global_avg_dict()
            log_dict_to_wandb(logs, step=global_step, prefix="train/")

        global_step += 1

        if config.debug and (i + 1) % 5 == 0:
            break

    metric_logger.synchronize_between_processes()
    logger.info(f"Averaged train stats: {metric_logger.global_avg()}")
    return global_step


@torch.no_grad()
def evaluation(model, data_loader, tokenizer, device, config):
    model.eval()

    metric_logger = MetricLogger(delimiter="  ")
    header = "[evaluation] Generating answers:"
    log_freq = config.log_freq // 2

    result = []

    raw_answer_list = data_loader.dataset.answer_list
    answer_list = [a + " " + config.eos for a in raw_answer_list]
    answer_input = tokenizer(
        answer_list,
        padding="max_length",
        truncation=True,
        max_length=config.max_a_len,
        return_tensors="pt",
    ).to(device)

    logger.info("Start generating results.")

    iterator = metric_logger.log_every(data_loader, log_freq, header)
    for n, data in enumerate(iterator):
        image, question, question_id = data
        image = image.to(device, non_blocking=True)
        question_input = tokenizer(
            question,
            padding="max_length",
            truncation=True,
            max_length=config.max_q_len,
            return_tensors="pt",
        ).to(device)

        topk_ids, topk_probs = model(
            image, question_input, answer_input, train=False, k=config.evaluation.k_test,
            raw_question=list(question), raw_answer=raw_answer_list,
        )

        for ques_id, topk_id, topk_prob in zip(question_id, topk_ids, topk_probs):
            ques_id = int(ques_id.item()) if not isinstance(ques_id, str) else ques_id
            _, pred = topk_prob.max(dim=0)
            result.append({"question_id": ques_id, "answer": raw_answer_list[topk_id[pred]]})

    return result


def setup_dataloaders(config, dataset_name="vqa"):
    logger.info(f"Creating {dataset_name} QA datasets")
    train_dataset = create_dataset("qa_train", config)
    test_datasets, test_dataset_names = create_dataset("qa_eval", config)
    all_datasets = [train_dataset] + test_datasets

    if config.distributed:
        num_tasks = get_world_size()
        global_rank = get_rank()
        samplers = create_sampler(
            all_datasets,
            shuffles=[True] + [False] * len(test_datasets),
            num_tasks=num_tasks,
            global_rank=global_rank,
        )
    else:
        samplers = [None] * len(all_datasets)

    train_bsz = config.inputs.batch_size[train_dataset.media_type]
    test_bsz_list = [config.inputs.batch_size_test[d.media_type] for d in test_datasets]
    loaders = create_loader(
        all_datasets,
        samplers,
        batch_size=[train_bsz] + test_bsz_list,
        num_workers=[
            config.num_workers,
        ]
        * len(all_datasets),
        is_trains=[True] + [False] * len(test_datasets),
        collate_fns=[vqa_collate_fn] + [None] * len(test_datasets),
    )
    train_loader, test_loaders = loaders[0], loaders[1:]
    test_name2loaders = {k: v for k, v in zip(test_dataset_names, test_loaders)}
    return train_loader, test_name2loaders


def main(config):
    if is_main_process() and config.wandb.enable:
        run = setup_wandb(config)

    logger.info(f"train_file: {config.train_file}")

    setup_seed(config.seed + get_rank())
    device = torch.device(config.device)
    cudnn.benchmark = True

    train_loader, test_name2loaders = setup_dataloaders(config)
    config.scheduler.num_training_steps = len(train_loader) * config.scheduler.epochs
    config.scheduler.num_warmup_steps = len(train_loader) * config.scheduler.warmup_epochs

    model_cls = eval(config.model.get('model_cls', 'VindLU_QA'))
    (
        model,
        model_without_ddp,
        optimizer,
        scheduler,
        scaler,
        tokenizer,
        start_epoch,
        global_step,
    ) = setup_model(
        config,
        model_cls=model_cls,
        has_decoder=True,
        pretrain=False,
        # find_unused_parameters=True,
        find_unused_parameters=False,
    )
    if is_main_process() and config.wandb.enable:
        wandb.watch(model)

    best = 0
    best_epoch = 0
    has_gt = config.dataset_name != "vqa" or config.test_types[0] == "minival"

    logger.info("Start " + "evaluation" if config.evaluate else "training")
    start_time = time.time()
    for epoch in range(start_epoch, config.scheduler.epochs):
        if not config.evaluate:
            global_step = train(
                model,
                train_loader,
                optimizer,
                tokenizer,
                epoch,
                global_step,
                device,
                scheduler,
                scaler,
                config,
            )

        if config.get('no_test', False) and not config.evaluate:
            if is_main_process():
                save_obj = {
                    "model": model_without_ddp.state_dict(),
                    "optimizer": optimizer.state_dict(),
                    "scheduler": scheduler.state_dict(),
                    "scaler": scaler.state_dict(),
                    "config": config,
                    "epoch": epoch,
                    "global_step": global_step,
                }
                torch.save(save_obj, join(config.output_dir, "ckpt_best.pth"))
                best_epoch = epoch
                
        else:
            with torch.cuda.amp.autocast(enabled=config.fp16, dtype=torch.bfloat16):
                eval_res = {}
                pred_name2file = {}
                for test_name, test_loader in test_name2loaders.items():
                    if test_name not in config.test_types:
                        logger.info(
                            f"Skip eval {test_name} split. All test_types {config.test_types}"
                        )
                        continue
                    logger.info(f"Evaluating {test_name} split...")
                    qa_result = evaluation(model, test_loader, tokenizer, device, config)

                    # sync/gather results and eval
                    pred_file, gathered_result = sync_save_result(
                        qa_result, config.result_dir, f"{test_name}_latest"
                    )
                    pred_name2file[test_name] = pred_file
                    if is_main_process() and has_gt:
                        eval_res[test_name] = eval_qa_acc(
                            test_loader.dataset.anno_list,
                            gathered_result,
                            is_vqa=config.dataset_name == "vqa",
                        )

            if is_main_process():
                if len(eval_res) > 0:
                    logger.info(f"eval_res {eval_res}")

                    if config.wandb.enable:
                        for name, acc_dict in eval_res.items():
                            log_dict_to_wandb(acc_dict, step=global_step, prefix=f"{name}/")

                if not config.evaluate and has_gt and eval_res[config.stop_key]["overall"] > best:
                    save_obj = {
                        "model": model_without_ddp.state_dict(),
                        "optimizer": optimizer.state_dict(),
                        "scheduler": scheduler.state_dict(),
                        "scaler": scaler.state_dict(),
                        "config": config,
                        "epoch": epoch,
                        "global_step": global_step,
                    }
                    for name, pred_file in pred_name2file.items():
                        copyfile(pred_file, pred_file.replace("latest", "best"))
                    save_json(
                        eval_res, join(config.output_dir, "eval_res_best.json"), save_pretty=True
                    )
                    torch.save(save_obj, join(config.output_dir, "ckpt_best.pth"))
                    best = eval_res[config.stop_key]["overall"]
                    best_epoch = epoch
                if config.evaluate:
                    save_json(
                        eval_res, join(config.output_dir, "eval_res_best.json"), save_pretty=True
                    )

                    for name, pred_file in pred_name2file.items():
                        copyfile(pred_file, pred_file.replace("latest", "eval"))
                        if has_gt:
                            save_path = join(config.output_dir, f"{name}_acc_eval.json")
                            save_json(eval_res[name], save_path, save_pretty=True)

        if config.evaluate or config.debug:
            break

        dist.barrier()

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    logger.info(f"Training time {total_time_str}")
    logger.info(f"best epoch {best_epoch}")
    logger.info(f"Checkpoints and Logs saved at {config.output_dir}")

    if is_main_process() and config.wandb.enable:
        run.finish()


def eval_after_training(train_config):
    # general config for all
    train_config.wandb.enable = False
    train_config.evaluate = True
    train_config.pretrained_path = join(train_config.output_dir, "ckpt_best.pth")
    
    if train_config.get('num_frames_test_final', False):
        train_config.num_frames_test = train_config.num_frames_test_final
        train_config.batch_size = train_config.batch_size_final
        train_config.inputs.video_input.num_frames_test = train_config.num_frames_test_final
        train_config.model.vision_encoder.num_frames = train_config.num_frames_test_final

    eval_config = copy.deepcopy(train_config)
    eval_config.test_types = (
        ["val", "test"] if eval_config.dataset_name != "vqa" else ["minival"]
    )
    eval_config.output_dir = join(eval_config.output_dir, f"eval_after_training")
    eval_config.result_dir = eval_config.output_dir
    if is_main_process():
        os.makedirs(eval_config.output_dir, exist_ok=False)
        Config.dump(eval_config, os.path.join(eval_config.output_dir, "config.json"))
    logger.info(f"===========> START eval_after_training [{eval_config.test_types}]")
    main(eval_config)


if __name__ == "__main__":
    cfg = setup_main()
    cfg.result_dir = cfg.output_dir
    main(cfg)
    if not cfg.evaluate:
        eval_after_training(cfg)