SMILE / tasks /retrieval.py
fmthoker's picture
Upload 95 files
401fa20 verified
raw
history blame
11.2 kB
import copy
import datetime
import logging
import os
import time
from os.path import join
import pandas as pd
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import wandb
from dataset import MetaLoader
#from models.vindlu import VindLU
#from models.vindlu_vit import VindLU_VIT
#from models.vindlu_videoclip import VindLU_VideoCLIP
#from models.vindlu_blip_qformer import VindLU_BLIP_QFormer
from models.viclip import ViCLIP
from tasks.pretrain import setup_dataloaders
from tasks.retrieval_utils import evaluation_wrapper
from tasks.shared_utils import setup_model
from utils.basic_utils import MetricLogger, SmoothedValue, setup_seed
from utils.config import Config
from utils.config_utils import setup_main
from utils.distributed import get_rank, is_main_process
from utils.logger import log_dict_to_wandb, setup_wandb
logger = logging.getLogger(__name__)
def train(
model,
train_loaders,
optimizer,
tokenizer,
epoch,
global_step,
device,
scheduler,
scaler,
config,
):
model.train()
metric_logger = MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", SmoothedValue(window=1, fmt="{value:.6f}"))
metric_logger.add_meter("temperature", SmoothedValue(window=1, fmt="{value:.4f}"))
loss_names = ["loss_" + k for k, v in config.criterion.loss_weight.items() if v != 0]
requires_raw_text = config.model.get("requires_raw_text", False)
media_types = [loader.dataset.media_type for loader in train_loaders]
for name in loss_names:
for m in media_types:
metric_logger.add_meter(f"{m}-{name}", SmoothedValue(window=1, fmt="{value:.4f}"))
header = f"Train Epoch: [{epoch}]"
log_freq = config.log_freq
if config.distributed:
for d in train_loaders:
d.sampler.set_epoch(epoch)
train_loader = MetaLoader(name2loader=dict(list(zip(media_types, train_loaders))))
model_without_ddp = model.module if config.distributed else model
iterator = metric_logger.log_every(train_loader, log_freq, header)
for i, (media_type, (image, text, idx)) in enumerate(iterator):
image = image.to(device, non_blocking=True)
idx = idx.to(device, non_blocking=True)
text_input = tokenizer(
text,
padding="max_length",
truncation=True,
max_length=config.max_txt_l,
return_tensors="pt",
).to(device)
#with torch.cuda.amp.autocast(enabled=config.fp16, dtype=torch.bfloat16):
with torch.cuda.amp.autocast(enabled=config.fp16, dtype=torch.float16):
if requires_raw_text:
loss_dict = model(image, text_input, idx=idx, raw_text=text)
else:
loss_dict = model(image, text_input, idx=idx)
loss = sum(loss_dict.values())
#! We do not use scaler as we only involve bf16, check this
optimizer.zero_grad()
loss.backward()
if config.optimizer.max_grad_norm > 0:
torch.nn.utils.clip_grad_norm_(model.parameters(), config.optimizer.max_grad_norm)
optimizer.step()
scheduler.step()
# optimizer.zero_grad()
# scaler.scale(loss).backward()
# if config.optimizer.max_grad_norm > 0:
# scaler.unscale_(optimizer)
# torch.nn.utils.clip_grad_norm_(model.parameters(), config.optimizer.max_grad_norm)
# scaler.step(optimizer)
# scaler.update()
# scheduler.step()
# logging
for name in loss_names:
value = loss_dict[name]
value = value if isinstance(value, float) else value.item()
metric_logger.update(**{f"{media_type}-{name}": value})
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
metric_logger.update(temperature=model_without_ddp.temp.item())
if is_main_process() and config.wandb.enable and global_step % log_freq == 0:
logs = metric_logger.get_global_avg_dict()
log_dict_to_wandb(logs, step=global_step, prefix="train/")
global_step += 1
if config.debug and (i + 1) % 5 == 0:
break
# gather the stats from all processes
metric_logger.synchronize_between_processes()
logger.info(f"Averaged train stats: {metric_logger.global_avg()}")
return global_step
def main(config):
if is_main_process() and config.wandb.enable:
run = setup_wandb(config)
logger.info(f"config: \n{config}")
logger.info(f"train_file: {config.train_file}")
setup_seed(config.seed + get_rank())
device = torch.device(config.device)
cudnn.benchmark = True
train_loaders, test_name2loaders, train_media_types = setup_dataloaders(config, mode="ret")
num_steps_per_epoch = sum(len(d) for d in train_loaders)
config.scheduler.num_training_steps = num_steps_per_epoch * config.scheduler.epochs
config.scheduler.num_warmup_steps = num_steps_per_epoch * config.scheduler.warmup_epochs
model_cls = eval(config.model.get('model_cls', 'ViCLIP'))
find_unused_parameters = True
if any([x in config.model.get('model_cls', 'VindLU') for x in ['VindLU_BLIP', 'VindLU_VideoCLIP']]):
find_unused_parameters = False
(
model,
model_without_ddp,
optimizer,
scheduler,
scaler,
tokenizer,
start_epoch,
global_step,
) = setup_model(
config,
model_cls=model_cls,
has_decoder=False,
pretrain=False,
# find_unused_parameters=True
find_unused_parameters=find_unused_parameters,
)
if is_main_process() and config.wandb.enable:
wandb.watch(model)
best = 0
best_epoch = 0
logger.info("Start " + "evaluation" if config.evaluate else "training")
start_time = time.time()
for epoch in range(start_epoch, config.scheduler.epochs):
if not config.evaluate:
global_step = train(
model,
train_loaders,
optimizer,
tokenizer,
epoch,
global_step,
device,
scheduler,
scaler,
config,
)
if config.get('no_test', False) and not config.evaluate:
save_obj = {
"model": model_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"scaler": scaler.state_dict(),
"config": config,
"epoch": epoch,
"global_step": global_step,
}
torch.save(save_obj, join(config.output_dir, "ckpt_best.pth"))
best_epoch = epoch
else:
#with torch.cuda.amp.autocast(enabled=config.fp16, dtype=torch.bfloat16):
with torch.cuda.amp.autocast(enabled=config.fp16, dtype=torch.float16):
eval_res = {}
for test_name, test_loader in test_name2loaders.items():
if test_name not in config.test_types:
logger.info(
f"Skip eval {test_name} split. All test_types {config.test_types}"
)
continue
res = evaluation_wrapper(
model_without_ddp, test_loader, tokenizer, device, config, prefix=test_name
)
eval_res.update(res)
if is_main_process():
if config.wandb.enable:
for p, v in eval_res.items():
log_dict_to_wandb(v, step=global_step, prefix=p)
if config.stop_key is not None and config.stop_key in eval_res:
if config.model.multimodal.enable:
cur_r_mean = eval_res[config.stop_key]["r_mean"]
else:
cur_r_mean = eval_res[config.stop_key.replace("/", "_emb/")]["r_mean"]
else: # None
cur_r_mean = best + 1 # save the last as the best
eval_res = pd.DataFrame(eval_res)
logger.info(f"Epoch {epoch}")
logger.info(f"\n{eval_res.transpose().to_string(max_cols=30)}")
eval_res.to_json(join(config.output_dir, "eval_res_latest.json"))
if not config.evaluate and cur_r_mean > best:
save_obj = {
"model": model_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"scaler": scaler.state_dict(),
"config": config,
"epoch": epoch,
"global_step": global_step,
}
eval_file = "eval_res_best.json"
eval_res.to_json(join(config.output_dir, eval_file))
torch.save(save_obj, join(config.output_dir, "ckpt_best.pth"))
best = cur_r_mean
best_epoch = epoch
if config.evaluate:
eval_file = "eval_res.json"
eval_res.to_json(join(config.output_dir, eval_file))
if config.evaluate or config.debug:
break
dist.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info(f"Training time {total_time_str}")
logger.info(f"best epoch {best_epoch} [config.stop_key {config.stop_key}]")
logger.info(f"Checkpoints and Logs saved at {config.output_dir}")
if is_main_process() and config.wandb.enable:
run.finish()
def eval_after_training(train_config):
# general config for all
train_config.wandb.enable = False
train_config.evaluate = True
train_config.pretrained_path = join(train_config.output_dir, "ckpt_best.pth")
train_config.num_frames_test = train_config.num_frames
train_config.inputs.video_input.num_frames_test = train_config.num_frames
if train_config.get('num_frames_test_final', False):
train_config.num_frames_test = train_config.num_frames_test_final
train_config.batch_size = train_config.batch_size_final
train_config.inputs.video_input.num_frames_test = train_config.num_frames_test_final
train_config.model.vision_encoder.num_frames = train_config.num_frames_test_final
eval_config = copy.deepcopy(train_config)
eval_config.test_types = list(eval_config.test_file.keys())
eval_config.output_dir = join(eval_config.output_dir, f"eval_after_training")
eval_config.result_dir = eval_config.output_dir
if is_main_process():
os.makedirs(eval_config.output_dir, exist_ok=True)
Config.dump(eval_config, os.path.join(eval_config.output_dir, "config.json"))
logger.info(f"===========> START eval_after_training [{eval_config.test_types}]")
main(eval_config)
if __name__ == "__main__":
cfg = setup_main()
main(cfg)
if not cfg.evaluate:
eval_after_training(cfg)