|
from typing import List, Dict, Tuple, Union, Any, Optional |
|
|
|
import os |
|
import json |
|
import torch |
|
|
|
from torch import nn |
|
from transformers import AutoConfig, AutoModel, AutoTokenizer |
|
from transformers.utils import is_flash_attn_2_available |
|
|
|
|
|
INSTRUCTION_CONFIG = { |
|
"nl2code": { |
|
"query": "Find the most relevant code snippet given the following query:\n", |
|
"passage": "Candidate code snippet:\n" |
|
}, |
|
"qa": { |
|
"query": "Find the most relevant answer given the following question:\n", |
|
"passage": "Candidate answer:\n" |
|
}, |
|
"code2code": { |
|
"query": "Find an equivalent code snippet given the following code snippet:\n", |
|
"passage": "Candidate code snippet:\n" |
|
}, |
|
"code2nl": { |
|
"query": "Find the most relevant comment given the following code snippet:\n", |
|
"passage": "Candidate comment:\n" |
|
}, |
|
"code2completion": { |
|
"query": "Find the most relevant completion given the following start of code snippet:\n", |
|
"passage": "Candidate completion:\n" |
|
} |
|
} |
|
|
|
|
|
def batch(iterable, n=1): |
|
items = len(iterable) |
|
for ndx in range(0, items, n): |
|
yield iterable[ndx : min(ndx + n, items)] |
|
|
|
|
|
def last_token_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] |
|
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) |
|
if left_padding: |
|
return token_embeddings[:, -1] |
|
else: |
|
sequence_lengths = attention_mask.sum(dim=1) - 1 |
|
batch_size = token_embeddings.shape[0] |
|
return token_embeddings[torch.arange(batch_size, device=token_embeddings.device), sequence_lengths].float() |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__( |
|
self, |
|
model_name_or_path: str, |
|
max_seq_length: int = None, |
|
model_args: Dict[str, Any] = None, |
|
tokenizer_args: Dict[str, Any] = None, |
|
config_args: Dict[str, Any] = None, |
|
cache_dir: str = None, |
|
do_lower_case: bool = False, |
|
tokenizer_name_or_path: str = None, |
|
**kwargs, |
|
) -> None: |
|
super().__init__() |
|
self.config_keys = ["max_seq_length", "do_lower_case"] |
|
self.do_lower_case = do_lower_case |
|
if model_args is None: |
|
model_args = {} |
|
if tokenizer_args is None: |
|
tokenizer_args = {} |
|
if config_args is None: |
|
config_args = {} |
|
|
|
self.config = AutoConfig.from_pretrained(model_name_or_path, **config_args, cache_dir=cache_dir) |
|
|
|
self.task_names = self.config.task_names |
|
|
|
self.default_task = model_args.pop('default_task', None) |
|
|
|
model_args["attn_implementation"] = "flash_attention_2" if is_flash_attn_2_available() else "sdpa" |
|
|
|
self.auto_model = AutoModel.from_pretrained(model_name_or_path, config=self.config, cache_dir=cache_dir, **model_args) |
|
|
|
if max_seq_length is not None and "model_max_length" not in tokenizer_args: |
|
tokenizer_args["model_max_length"] = max_seq_length |
|
self.tokenizer = AutoTokenizer.from_pretrained( |
|
tokenizer_name_or_path if tokenizer_name_or_path is not None else model_name_or_path, |
|
cache_dir=cache_dir, |
|
**tokenizer_args, |
|
) |
|
|
|
|
|
if max_seq_length is None: |
|
if ( |
|
hasattr(self.auto_model, "config") |
|
and hasattr(self.auto_model.config, "max_position_embeddings") |
|
and hasattr(self.tokenizer, "model_max_length") |
|
): |
|
max_seq_length = min(self.auto_model.config.max_position_embeddings, self.tokenizer.model_max_length) |
|
|
|
self.max_seq_length = max_seq_length |
|
|
|
if tokenizer_name_or_path is not None: |
|
self.auto_model.config.tokenizer_class = self.tokenizer.__class__.__name__ |
|
|
|
|
|
@property |
|
def default_task(self): |
|
return self._default_task |
|
|
|
|
|
@default_task.setter |
|
def default_task(self, task: Union[None, str]): |
|
self._validate_task(task) |
|
self._default_task = task |
|
|
|
|
|
def _validate_task(self, task: str): |
|
if task and task not in self.task_names: |
|
raise ValueError( |
|
f"Unsupported task '{task}'. " |
|
f"Supported tasks are: {', '.join(self.config.task_names)}." |
|
) |
|
|
|
|
|
def forward( |
|
self, |
|
features: Dict[str, torch.Tensor], |
|
task: Optional[str] = None |
|
) -> Dict[str, torch.Tensor]: |
|
""" |
|
Forward pass through the model. |
|
""" |
|
features.pop('prompt_length', None) |
|
output_states = self.auto_model.forward( |
|
**features, |
|
output_attentions=False, |
|
return_dict=True |
|
) |
|
output_tokens = output_states[0] |
|
features.update({"token_embeddings": output_tokens, "attention_mask": features["attention_mask"]}) |
|
return features |
|
|
|
|
|
def get_word_embedding_dimension(self) -> int: |
|
return self.auto_model.config.hidden_size |
|
|
|
|
|
def tokenize( |
|
self, |
|
texts: Union[List[str], List[dict], List[Tuple[str, str]]], |
|
padding: Union[str, bool] = True |
|
) -> Dict[str, torch.Tensor]: |
|
"""Tokenizes a text and maps tokens to token-ids""" |
|
output = {} |
|
if isinstance(texts[0], str): |
|
to_tokenize = [texts] |
|
elif isinstance(texts[0], dict): |
|
to_tokenize = [] |
|
output["text_keys"] = [] |
|
for lookup in texts: |
|
text_key, text = next(iter(lookup.items())) |
|
to_tokenize.append(text) |
|
output["text_keys"].append(text_key) |
|
to_tokenize = [to_tokenize] |
|
else: |
|
batch1, batch2 = [], [] |
|
for text_tuple in texts: |
|
batch1.append(text_tuple[0]) |
|
batch2.append(text_tuple[1]) |
|
to_tokenize = [batch1, batch2] |
|
|
|
|
|
to_tokenize = [[str(s).strip() for s in col] for col in to_tokenize] |
|
|
|
|
|
if self.do_lower_case: |
|
to_tokenize = [[s.lower() for s in col] for col in to_tokenize] |
|
|
|
output.update( |
|
self.tokenizer( |
|
*to_tokenize, |
|
padding=padding, |
|
truncation=True, |
|
return_tensors="pt", |
|
max_length=self.max_seq_length, |
|
) |
|
) |
|
return output |
|
|
|
|
|
def get_config_dict(self) -> Dict[str, Any]: |
|
return {key: self.__dict__[key] for key in self.config_keys} |
|
|
|
|
|
def save(self, output_path: str, safe_serialization: bool = True) -> None: |
|
self.auto_model.save_pretrained(output_path, safe_serialization=safe_serialization) |
|
self.tokenizer.save_pretrained(output_path) |
|
|
|
with open(os.path.join(output_path, "sentence_transformer_config.json"), "w") as fOut: |
|
json.dump(self.get_config_dict(), fOut, indent=2) |
|
|
|
|
|
@classmethod |
|
def load(cls, input_path: str) -> "Transformer": |
|
config_name = "sentence_transformer_config.json" |
|
stransformer_config_path = os.path.join(input_path, config_name) |
|
with open(stransformer_config_path) as fIn: |
|
config = json.load(fIn) |
|
|
|
if "model_args" in config and "trust_remote_code" in config["model_args"]: |
|
config["model_args"].pop("trust_remote_code") |
|
if "tokenizer_args" in config and "trust_remote_code" in config["tokenizer_args"]: |
|
config["tokenizer_args"].pop("trust_remote_code") |
|
if "config_args" in config and "trust_remote_code" in config["config_args"]: |
|
config["config_args"].pop("trust_remote_code") |
|
return cls(model_name_or_path=input_path, **config) |
|
|