|
--- |
|
language: |
|
- en |
|
tags: |
|
- llama |
|
- fine-tuned |
|
- causal-lm |
|
license: apache-2.0 |
|
base_model: YongganFu/Llama-400M-12L |
|
--- |
|
# data4elm_full_finetuned_no_lora |
|
Fine-tuned Llama-400M model |
|
|
|
## Model Details |
|
This model is a fully fine-tuned version of [YongganFu/Llama-400M-12L](https://huggingface.co/YongganFu/Llama-400M-12L). |
|
|
|
## Model Files |
|
The model directory contains: |
|
- `config.json` - Model configuration |
|
- `generation_config.json` - Generation settings |
|
- `model.safetensors` - Model weights in safetensors format |
|
- `special_tokens_map.json` - Special token mapping |
|
- `tokenizer.json` - Tokenizer configuration |
|
- `tokenizer.model` - Tokenizer model |
|
- `trainer_state.json` - Training state information |
|
- `training_args.bin` - Training arguments |
|
|
|
## Usage |
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
# Load the fine-tuned model |
|
model = AutoModelForCausalLM.from_pretrained("lxaw/data4elm_full_finetuned_no_lora") |
|
tokenizer = AutoTokenizer.from_pretrained("lxaw/data4elm_full_finetuned_no_lora") |
|
|
|
# Example usage |
|
input_text = "What is the capital of France?" |
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
outputs = model.generate(inputs.input_ids, max_length=50) |
|
print(tokenizer.decode(outputs[0], skip_special_tokens=True)) |
|
``` |
|
|
|
## Training Details |
|
This model was fine-tuned using standard full fine-tuning (not parameter-efficient methods like LoRA). |
|
|
|
|