ABL_trad_2a / README.md
mrovejaxd's picture
End of training
efcea63 verified
metadata
base_model: dccuchile/bert-base-spanish-wwm-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: ABL_trad_2a
    results: []

ABL_trad_2a

This model is a fine-tuned version of dccuchile/bert-base-spanish-wwm-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.5485
  • Accuracy: 0.6917
  • F1: 0.6904

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 78

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.9204 1.0 2000 0.8942 0.5825 0.5814
0.8116 2.0 4000 0.8397 0.615 0.6112
0.7443 3.0 6000 0.8179 0.635 0.6340
0.7074 4.0 8000 0.8130 0.65 0.6475
0.6663 5.0 10000 0.8134 0.6625 0.6590
0.6385 6.0 12000 0.8092 0.6708 0.6694
0.5702 7.0 14000 0.8355 0.6708 0.6699
0.5436 8.0 16000 0.8662 0.6758 0.6728
0.5002 9.0 18000 0.9040 0.6825 0.6804
0.4602 10.0 20000 0.9345 0.6967 0.6948
0.4324 11.0 22000 1.0021 0.6858 0.6842
0.3862 12.0 24000 1.0713 0.6917 0.6899
0.3586 13.0 26000 1.1688 0.7017 0.6989
0.3536 14.0 28000 1.2699 0.695 0.6923
0.3041 15.0 30000 1.4034 0.6917 0.6911
0.2851 16.0 32000 1.5512 0.6917 0.6897
0.3071 17.0 34000 1.6367 0.69 0.6885
0.2586 18.0 36000 1.7689 0.6892 0.6880
0.2192 19.0 38000 1.9568 0.6842 0.6828
0.2418 20.0 40000 2.0536 0.6808 0.6770
0.2066 21.0 42000 2.1762 0.6917 0.6899
0.1449 22.0 44000 2.3044 0.69 0.6879
0.1669 23.0 46000 2.3854 0.6908 0.6891
0.1376 24.0 48000 2.5111 0.6883 0.6849
0.1434 25.0 50000 2.5862 0.685 0.6829
0.1123 26.0 52000 2.6845 0.685 0.6825
0.0949 27.0 54000 2.7896 0.6825 0.6804
0.1264 28.0 56000 2.8471 0.6908 0.6887
0.0774 29.0 58000 2.8967 0.6883 0.6860
0.1046 30.0 60000 2.9571 0.6867 0.6837
0.0967 31.0 62000 2.9687 0.6892 0.6858
0.0689 32.0 64000 3.0554 0.6917 0.6887
0.069 33.0 66000 3.0982 0.6917 0.6888
0.044 34.0 68000 3.1798 0.6917 0.6898
0.0654 35.0 70000 3.2407 0.685 0.6821
0.0438 36.0 72000 3.1972 0.6908 0.6881
0.0553 37.0 74000 3.2033 0.6967 0.6947
0.0534 38.0 76000 3.2928 0.6883 0.6856
0.0568 39.0 78000 3.3607 0.6933 0.6893
0.03 40.0 80000 3.2983 0.6867 0.6836
0.0539 41.0 82000 3.2896 0.6908 0.6870
0.0459 42.0 84000 3.3401 0.6883 0.6855
0.0322 43.0 86000 3.3879 0.6883 0.6847
0.0251 44.0 88000 3.3517 0.6875 0.6855
0.063 45.0 90000 3.3609 0.6875 0.6856
0.0343 46.0 92000 3.4785 0.6825 0.6801
0.052 47.0 94000 3.4663 0.6817 0.6794
0.038 48.0 96000 3.4157 0.6908 0.6889
0.0312 49.0 98000 3.3996 0.6958 0.6933
0.0469 50.0 100000 3.3978 0.6942 0.6918
0.0405 51.0 102000 3.4383 0.6833 0.6801
0.0438 52.0 104000 3.3833 0.7025 0.7004
0.0366 53.0 106000 3.5241 0.6917 0.6879
0.0415 54.0 108000 3.4236 0.6992 0.6972
0.0315 55.0 110000 3.3053 0.7033 0.7009
0.041 56.0 112000 3.4287 0.6975 0.6961
0.024 57.0 114000 3.4783 0.695 0.6919
0.0263 58.0 116000 3.5307 0.6942 0.6917
0.0231 59.0 118000 3.4495 0.6908 0.6883
0.0269 60.0 120000 3.4664 0.6925 0.6907
0.0152 61.0 122000 3.4655 0.6917 0.6893
0.025 62.0 124000 3.4954 0.6967 0.6957
0.0313 63.0 126000 3.4727 0.6967 0.6942
0.0175 64.0 128000 3.5688 0.6908 0.6892
0.0319 65.0 130000 3.4812 0.6975 0.6963
0.0382 66.0 132000 3.5716 0.6975 0.6942
0.0168 67.0 134000 3.5241 0.7008 0.6978
0.0351 68.0 136000 3.5020 0.6917 0.6889
0.0185 69.0 138000 3.4793 0.6908 0.6894
0.0264 70.0 140000 3.5716 0.6883 0.6847
0.0236 71.0 142000 3.5403 0.69 0.6861
0.0238 72.0 144000 3.5622 0.6917 0.6886
0.0163 73.0 146000 3.4998 0.7008 0.6984
0.0229 74.0 148000 3.5659 0.6925 0.6898
0.0168 75.0 150000 3.5080 0.6983 0.6958
0.0149 76.0 152000 3.4678 0.7008 0.6985
0.0175 77.0 154000 3.5733 0.6967 0.6939
0.0118 78.0 156000 3.5485 0.6917 0.6904

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1