|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- qwertyforce/scenery_watermarks |
|
language: |
|
- en |
|
base_model: |
|
- google/siglip2-base-patch16-224 |
|
pipeline_tag: image-classification |
|
library_name: transformers |
|
tags: |
|
- Image-Classification |
|
- Watermark-Detection |
|
- SigLIP2 |
|
|
|
--- |
|
|
|
 |
|
|
|
# **Watermark-Detection-SigLIP2** |
|
|
|
> **Watermark-Detection-SigLIP2** is a vision-language encoder model fine-tuned from **google/siglip2-base-patch16-224** for **binary image classification**. It is trained to detect whether an image **contains a watermark or not**, using the **SiglipForImageClassification** architecture. |
|
|
|
> [!note] |
|
> Watermark detection works best with crisp and high-quality images. Noisy images are not recommended for validation. |
|
|
|
> [!note] |
|
*SigLIP 2: Multilingual Vision-Language Encoders with Improved Semantic Understanding, Localization, and Dense Features* https://arxiv.org/pdf/2502.14786 |
|
|
|
```py |
|
Classification Report: |
|
precision recall f1-score support |
|
|
|
No Watermark 0.9290 0.9722 0.9501 12779 |
|
Watermark 0.9622 0.9048 0.9326 9983 |
|
|
|
accuracy 0.9427 22762 |
|
macro avg 0.9456 0.9385 0.9414 22762 |
|
weighted avg 0.9435 0.9427 0.9424 22762 |
|
``` |
|
|
|
 |
|
|
|
--- |
|
|
|
## **Label Space: 2 Classes** |
|
|
|
The model classifies an image as either: |
|
|
|
``` |
|
Class 0: "No Watermark" |
|
Class 1: "Watermark" |
|
``` |
|
|
|
--- |
|
|
|
## **Install dependencies** |
|
|
|
```bash |
|
pip install -q transformers torch pillow gradio |
|
``` |
|
|
|
--- |
|
|
|
## **Inference Code** |
|
|
|
```python |
|
import gradio as gr |
|
from transformers import AutoImageProcessor, SiglipForImageClassification |
|
from PIL import Image |
|
import torch |
|
|
|
# Load model and processor |
|
model_name = "prithivMLmods/Watermark-Detection-SigLIP2" # Update this if using a different path |
|
model = SiglipForImageClassification.from_pretrained(model_name) |
|
processor = AutoImageProcessor.from_pretrained(model_name) |
|
|
|
# Label mapping |
|
id2label = { |
|
"0": "No Watermark", |
|
"1": "Watermark" |
|
} |
|
|
|
def classify_watermark(image): |
|
image = Image.fromarray(image).convert("RGB") |
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist() |
|
|
|
prediction = { |
|
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs)) |
|
} |
|
|
|
return prediction |
|
|
|
# Gradio Interface |
|
iface = gr.Interface( |
|
fn=classify_watermark, |
|
inputs=gr.Image(type="numpy"), |
|
outputs=gr.Label(num_top_classes=2, label="Watermark Detection"), |
|
title="Watermark-Detection-SigLIP2", |
|
description="Upload an image to detect whether it contains a watermark." |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |
|
``` |
|
|
|
--- |
|
|
|
## **Demo Inference** |
|
|
|
> [!Warning] |
|
> Watermark |
|
|
|
<table> |
|
<tr> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/sm062kFE7QJiLisTTjNwv.png" width="300"/></td> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/UFymm_tzVRmov6vn_cElE.png" width="300"/></td> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/bPzPAK-Mib8nFhHCkjD2B.png" width="300"/></td> |
|
</tr> |
|
<tr> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/4fP8SBIYofKEeDBU0klQ2.png" width="300"/></td> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/wD5M4YgyQGk9-QLFjMcn9.png" width="300"/></td> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/yg0q88-0S4k4FUS4-qGNw.png" width="300"/></td> |
|
</tr> |
|
<tr> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/WhRkeYw8-wIgldpaz0E4m.png" width="300"/></td> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/Uhb1zBxQV_5CWLoyTAMmD.png" width="300"/></td> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/7hnLD2b0f7B7edwgx_eOR.png" width="300"/></td> |
|
</tr> |
|
</table> |
|
|
|
> [!Warning] |
|
> No Watermark |
|
|
|
<table> |
|
<tr> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/edyFBIETs3Dosn1edpGZ8.png" width="300"/></td> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/3bRMcr2r0k00mMkthbYDW.png" width="300"/></td> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/eeMLQEg4r89f9owe8jSij.png" width="300"/></td> |
|
</tr> |
|
<tr> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/45jk4dvZk1wT3L7cprqql.png" width="300"/></td> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/mrkm0JXXgSQVXi0_d7EKH.png" width="300"/></td> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/f_5R7Inb8I-32hWJchkgj.png" width="300"/></td> |
|
</tr> |
|
<tr> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/qIUTSy8SuJEsRkYGd0L5d.png" width="300"/></td> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/DnlNo9lM4mBNUjlexKLVa.png" width="300"/></td> |
|
<td><img src="https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/bs4oyaapW8mi0lizOqWSf.png" width="300"/></td> |
|
</tr> |
|
</table> |
|
|
|
--- |
|
|
|
## **Intended Use** |
|
|
|
**Watermark-Detection-SigLIP2** is useful in scenarios such as: |
|
|
|
- **Content Moderation** – Automatically detect watermarked content on image sharing platforms. |
|
- **Dataset Cleaning** – Filter out watermarked images from training datasets. |
|
- **Copyright Enforcement** – Monitor and flag usage of watermarked media. |
|
- **Digital Forensics** – Support analysis of tampered or protected media assets. |
|
|
|
|
|
|
|
|